WO2022083769A1 - 一种数据传输方法、装置及终端 - Google Patents

一种数据传输方法、装置及终端 Download PDF

Info

Publication number
WO2022083769A1
WO2022083769A1 PCT/CN2021/125903 CN2021125903W WO2022083769A1 WO 2022083769 A1 WO2022083769 A1 WO 2022083769A1 CN 2021125903 W CN2021125903 W CN 2021125903W WO 2022083769 A1 WO2022083769 A1 WO 2022083769A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
selection window
resource selection
resource
data packet
Prior art date
Application number
PCT/CN2021/125903
Other languages
English (en)
French (fr)
Inventor
温小然
赵锐
Original Assignee
大唐高鸿智联科技(重庆)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大唐高鸿智联科技(重庆)有限公司 filed Critical 大唐高鸿智联科技(重庆)有限公司
Priority to US18/249,951 priority Critical patent/US20230403681A1/en
Priority to JP2023522929A priority patent/JP7458558B2/ja
Priority to KR1020237012917A priority patent/KR20230067671A/ko
Priority to EP21882181.7A priority patent/EP4236477A4/en
Publication of WO2022083769A1 publication Critical patent/WO2022083769A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0216Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave using a pre-established activity schedule, e.g. traffic indication frame
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0219Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave where the power saving management affects multiple terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0229Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a wanted signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0248Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal dependent on the time of the day, e.g. according to expected transmission activity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0261Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level
    • H04W52/0274Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level by switching on or off the equipment or parts thereof
    • H04W52/028Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level by switching on or off the equipment or parts thereof switching on or off only a part of the equipment circuit blocks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present disclosure relates to the field of communication technologies, and in particular, to a data transmission method, device, and terminal.
  • the transmission of uplink and downlink data is controlled by the base station (eNB) scheduler. Inform the terminal on which resource to send or receive data.
  • the terminal (UE) monitors the control channel, and when detecting scheduling information containing itself, completes data transmission (uplink) or data reception (downlink) according to the instructions on the control channel.
  • a common working mode is that the terminal continuously monitors the control channel and parses each subframe containing its downlink scheduling control channel to determine whether to be scheduled. This way of working can achieve higher efficiency when the amount of terminal data is large and may be frequently scheduled.
  • the LTE system adopts a discontinuous reception (Discontinuous Reception, DRX) working mode. In this working mode, the terminal periodically monitors the control channel, thus achieving the purpose of saving power.
  • DRX discontinuous Reception
  • the base station informs the user terminal on which resources the UE sends or receives data through the control channel.
  • the UE monitors the control channel during the DRX duration (On Duration), and when it detects scheduling information containing itself, completes data transmission (uplink) or data reception (downlink) according to the instructions on the control channel.
  • the UE adopts the method of autonomously selecting resources to transmit data packets.
  • the present disclosure provides a data transmission method, device and terminal, which solve the problem that reliable transmission of services cannot be guaranteed when the DRX mechanism is introduced in the direct link in the prior art.
  • an embodiment of the present disclosure provides a data transmission method, applied to a first terminal, including:
  • a transmission resource is selected for the data packet; wherein, at least the first M transmission resources of the data packet are within a target period, and the target period is the target resource selection window and the DRX configuration
  • the receiving period overlaps, N ⁇ M ⁇ 1, N is the total number of transmissions of the data packet;
  • the data packet is transmitted to the second terminal on the transmission resource.
  • the determining the target resource selection window according to the discontinuous reception DRX configuration of the second terminal includes:
  • n+T RX_on and n+T1 as the front edge of the target resource selection window, and using n+T2 as the back edge of the target resource selection window;
  • n+T RX_on is the leading edge of the first on-duration of the second terminal after the n time
  • n is the arrival time of the data packet or the resource reselection time
  • n+T1 is the determined resource selection window.
  • the leading edge, n+T2 is the trailing edge of the determined resource selection window.
  • selecting a transmission resource for the data packet includes:
  • the time domain position is in the candidate single-slot resources of the target period, and randomly select the first M transmission resources of the data packet;
  • the leading edge of the target period is the maximum value among n+T RX_on and n+T1
  • the trailing edge of the target period is n+T RX_end
  • n+T RX_end is the first time of the second terminal after n time
  • the trailing edge of an on-duration, n+T RX_end is less than n+T2.
  • selecting a transmission resource for the data packet further includes:
  • N-M transmission resources for the data packet among the candidate single-slot resources whose time domain position is from the trailing edge of the target period to the n+T2 time period .
  • selecting a transmission resource for the data packet includes:
  • the leading edge of the target period is the maximum value among n+T RX_on and n+T1
  • the trailing edge of the target period is n+T RX_end
  • n+T RX_end is the first time of the second terminal after n time
  • the trailing edge of an on-duration, n+T RX_end is less than n+T2.
  • the target resource selection window includes a first resource selection window and a second resource selection window, and the second resource selection window corresponds to the target time period;
  • the determining the target resource selection window according to the discontinuous reception DRX configuration of the second terminal includes:
  • n+T RX_on and n+T1 are used as the leading edge of the first resource selection window, and taking n+T2 as the trailing edge of the first resource selection window; or taking n+T RX_end as the The front edge of the first resource selection window, and n+T2 is used as the rear edge of the first resource selection window;
  • n+T RX_on is the leading edge of the first on-duration of the second terminal after time n
  • n+T RX_end is the trailing edge of the first on-duration of the second terminal after time n
  • n is the The arrival time of the data packet or the resource reselection time
  • n+T1 is the front edge of the determined resource selection window
  • n+T2 is the back edge of the determined resource selection window
  • n+T RX_end is less than n+T2.
  • selecting a transmission resource for the data packet includes:
  • a first available candidate single-slot resource set is obtained from the first resource selection window, and a second available candidate single-slot resource set is obtained from the second resource selection window;
  • transmission resources are selected for N-M times of transmission of the data packet, N ⁇ M ⁇ 1.
  • the method before determining the target resource selection window according to the discontinuous reception DRX configuration of the second terminal, the method further includes:
  • the DRX configuration of the second terminal at least includes: the duration for which the second terminal monitors the direct link and the period of DRX.
  • embodiments of the present disclosure provide a terminal, where the terminal is a first terminal, including: a transceiver, a memory, a processor, and a computer program stored in the memory and executable on the processor, the processing When the computer executes the computer program, the steps of the data transmission method described above are realized.
  • an embodiment of the present disclosure provides a data transmission apparatus, applied to a first terminal, including:
  • a determining module configured to determine a target resource selection window according to the discontinuous reception DRX configuration of the second terminal
  • a resource selection module configured to select a transmission resource for a data packet in the target resource selection window; wherein, at least the first M transmission resources of the data packet are within a target time period, and the target time period is the target resource selection
  • the period in which the window overlaps with the receiving period configured by the DRX, N ⁇ M ⁇ 1, and N is the total number of transmissions of the data packet;
  • a transmission module configured to transmit the data packet to the second terminal on the transmission resource.
  • embodiments of the present disclosure provide a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, implements the steps of the above-described data transmission method.
  • the first terminal determines a target resource selection window according to the discontinuous reception DRX configuration of the second terminal; and in the target resource selection window, selects a transmission resource for a data packet; M times of transmission resources are within the target period, and the target period is the period in which the target resource selection window overlaps the receiving period configured by the DRX, N ⁇ M ⁇ 1, and N is the total number of data packet transmissions; further in The data packet is transmitted to the second terminal on the transmission resource.
  • the influence of the DRX configuration of the second terminal on the selection of initial transmission and retransmission resources of the first terminal can be fully considered, and it can be ensured that at least the transmission resources selected for the first M times correspond to the receiving time periods of the second terminal, so that the The two terminals can reduce power consumption while ensuring reliable reception of services.
  • Figure 1 shows the basic principle of DRX
  • Fig. 2 shows the time relationship diagram of the resource selection window and the resource awareness window
  • Figure 3 shows a schematic diagram of the re-evaluation mechanism
  • Figure 4 shows a schematic diagram of a resource preemption mechanism
  • FIG. 5 shows one of the flowcharts of the data transmission method according to the embodiment of the present disclosure
  • FIG. 6 shows a schematic sequence diagram of resource sensing and selection performed by a first terminal and discontinuous reception performed by a second terminal according to an embodiment of the present disclosure
  • FIG. 7 shows one of the sequence diagrams of the target resource selection window and the discontinuous reception of the second terminal according to the embodiment of the present disclosure
  • FIG. 8 shows the second schematic diagram of the sequence of the target resource selection window and the discontinuous reception of the second terminal according to the embodiment of the present disclosure
  • FIG. 9 shows the second flow chart of the data transmission method according to the embodiment of the present disclosure.
  • FIG. 10 shows one of the schematic diagrams of resource selection according to an embodiment of the present disclosure
  • FIG. 11 shows the third flowchart of the data transmission method according to the embodiment of the present disclosure.
  • FIG. 12 shows the second schematic diagram of resource selection according to an embodiment of the present disclosure
  • FIG. 13 shows the fourth flowchart of the data transmission method according to the embodiment of the present disclosure
  • FIG. 14 is a schematic diagram of resource selection based on HARQ retransmission of the present disclosure.
  • FIG. 17 shows the third schematic diagram of the DRX process of the second terminal of the present disclosure
  • FIG. 18 shows the fourth schematic diagram of the DRX process of the second terminal of the present disclosure
  • Fig. 20 shows the structural block diagram of the data transmission device of the present disclosure
  • FIG. 21 is a block diagram showing the structure of the terminal of the present disclosure.
  • system and “network” are often used interchangeably herein.
  • B corresponding to A means that B is associated with A, and B can be determined according to A.
  • determining B according to A does not mean that B is only determined according to A, and B may also be determined according to A and/or other information.
  • the form of the access network is not limited, and may include a macro base station (Macro Base Station), a micro base station (Pico Base Station), a Node B (the name of a 3G mobile base station), an enhanced base station (eNB), Home-enhanced base station (Femto eNB or Home eNode B or Home eNB or HeNB), relay station, access point, RRU (Remote Radio Unit, remote radio module), RRH (Remote Radio Head, radio remote head), etc. access the network.
  • a macro base station Micro Base Station
  • a micro base station Pico Base Station
  • Node B the name of a 3G mobile base station
  • eNB enhanced base station
  • eNB Home-enhanced base station
  • Femto eNB or Home eNode B or Home eNB or HeNB relay station
  • access point RRU (Remote Radio Unit, remote radio module), RRH (Remote Radio Head, radio remote head), etc.
  • RRU Remote Radio
  • the user terminal may be a mobile phone (or cell phone), or other device capable of sending or receiving wireless signals, including user equipment, personal digital assistants (PDAs), wireless modems, wireless communication devices, handheld devices, laptop computers, cordless phones , Wireless Local Loop (WLL) station, Customer Premise Equipment (CPE) capable of converting mobile signals into WiFi signals, or mobile smart hotspots, smart home appliances, or others that can spontaneously communicate with mobile communication networks without human operation equipment, etc.
  • PDAs personal digital assistants
  • WLL Wireless Local Loop
  • CPE Customer Premise Equipment
  • On duration represents the time period during which the terminal UE monitors the control channel, during which the radio frequency channel is open, and continuously monitors the control channel; except for the other time except the On duration, the UE is in the sleep state, and its radio frequency link will be closed, and no Then monitor the control channel to save power.
  • On Duration is a periodic occurrence (Cycle), and the specific period is implemented by the eNB configuration.
  • the DRX mechanism of the cellular network considers the arrival model of data services, that is, the arrival of data packets is sudden (it can be understood that once a data packet arrives, more packets will arrive continuously in a short period of time).
  • the LTE DRX process adopts a variety of timers and combines with the Hybrid Automatic Repeat Request (HARQ) process to achieve better power saving performance.
  • HARQ Hybrid Automatic Repeat Request
  • the timers related to DRX are introduced, mainly including:
  • drx-onDurationTimer The time when the UE periodically wakes up to monitor the control channel.
  • Short DRX cycle Timer In order to better match the characteristics of data service arrival, the cellular network communication system supports the configuration of two DRX cycles: long cycle and short cycle ( short cycle). The on duration timer of the two cycles is the same, but the sleep time is different. In the short cycle, the sleep time is relatively shorter, and the UE can monitor the control channel again faster. Long cycle is mandatory and is the initial state of the DRX process; short cycle is optional. The short DRX cycle timer sets the duration of the short cycle. After the Short cycle timer expires, the UE will use the Long cycle.
  • DRX inactivity timer (drx-InactivityTimer): After DRX is configured, when the UE receives the control signaling of HARQ initial transmission within the time allowed to monitor the control channel (active time) Before the timer expires, the UE continuously monitors the control channel. If the UE receives the control signaling of HARQ initial transmission before the drx-InactivityTimer times out, it will terminate and restart the drx-InactivityTimer.
  • HARQ round-trip delay timer (HARQ Round-Trip Time Timer, HARQ RTT Timer): divided into DRX downlink HARQ round-trip delay timer (drx-HARQ-RTT-TimerDL) and DRX uplink HARQ round-trip delay timer ( drx-HARQ-RTT-TimerUL), the purpose is to make it possible for the UE not to monitor the control channel before the next retransmission, so as to achieve better power saving effect.
  • PUCCH Physical Uplink Control Channel
  • the UE opens the DRX downlink retransmission timer (drx- RetransmissionTimerDL). If the data in the corresponding HARQ process is successfully decoded after the previous HARQ transmission (the UE feeds back ACK), the UE does not start drx-RetransmissionTimerDL after the drx-HARQ-RTT-TimerDL timer expires. If only drx-HARQ-RTT-TimerDL is currently running, the UE does not monitor the control channel.
  • HARQ retransmission timer (HARQ retransmission Timer): divided into drx-RetransmissionTimerDL and DRX uplink retransmission timer (drx-RetransmissionTimer UL).
  • drx-RetransmissionTimer UL DRX uplink retransmission timer
  • the second terminal will monitor the control channel.
  • the duration that the second terminal monitors the control channel is also called Active Time.
  • the Active Time of LTE Rel-8UE includes the following times:
  • DRX duration timer (drx-onDuration Timer) or DRX inactivity timer (drx-Inactivity Timer) or DRX downlink retransmission timer (drx-Retransmission Timer DL) or DRX uplink retransmission timer (drx- Retransmission Timer UL) or the running time of the contention resolution timer (ra-Contention Resolution Timer);
  • SFN is the SFN number of the current radio frame
  • Subframe number is the number of the current subframe
  • shortDRX-Cycle is the short DRX cycle
  • longDRX-Cycle is the long DRX cycle
  • drxStartOffset is an offset value configured by RRC signaling.
  • NR-V2X Mode 2 resource allocation is designed to support the enhanced application requirements that LTE-V2X cannot support in protocol version 15 (Release-15, Rel-15), and adopts a distributed resource scheduling method (that is, the UE autonomously selects transmission resources). Since there is no base station For unified scheduling, the UE needs to determine the resource occupancy of other UEs through the sensing mechanism, and select resources according to the sensing result.
  • the resource selection process of NR-V2X Mode 2 is as follows:
  • the candidate single-slot resource R x,y is the consecutive x+j sub-channels on the ty slot within the time of [n+T 1 ,n+T 2 ], as shown in FIG. 2 .
  • T proc,1 represents the UE's transmission processing delay (including the resource selection time based on perception, the transmission preparation time of PSCCH, and the transmission preparation time of PSSCH), and the value can be ⁇ 3 , 5, 9, 17 ⁇ physical slots, corresponding to the sub-carrier space (Sub-Carrier Space, SCS) ⁇ 15, 30, 60, 120 ⁇ kHz, T 2min ⁇ T 2 ⁇ the remaining service packet transmission delay budget (Remaining Packet Delay Budget, Remaining PDB), T 2min is the minimum value of T 2 configured by the high-level parameter t2min_SelectionWindow, and remaining PDB is the remaining delay budget of the data packet.
  • the total number of candidate single slot resources is M total ;
  • Process 2 The UE continuously monitors the slot within the sensing window [nT 0 ,nT proc,0 ], and performs PSCCH, PSSCH decoding and PSSCH or PSCCH-RSRP measurement.
  • T0 is the length of the sensing window configured by the high layer
  • T proc,0 is the time for the UE to process the sensing result before, the value can be ⁇ 1, 1, 2, 4 ⁇ physical slots, corresponding to SCS ⁇ 15, 30, 60, 120 ⁇ kHz;
  • Process 4 Initialize SA as the set of all candidate single-slot resources
  • Skip slots are the slots (such as y) that cannot be sensed due to the influence of half-duplex. For all periods of system configuration (such as 20ms, 50ms) , 100ms), excluding all candidate slots in subsequent corresponding positions (ie y, y+20 ⁇ 2 ⁇ , y+40 ⁇ 2 ⁇ , y+50 ⁇ 2 ⁇ , y+60 ⁇ 2 ⁇ , y+80 ⁇ 2 ⁇ , y+100 ⁇ 2 ⁇ ... etc. slots that fall within the selection window);
  • Process 6 Exclude candidate single-slot resources that meet the following two conditions
  • Condition b The reserved resource indicated by the SCI will partially or completely overlap the TB sent on the candidate resource y or the TB sent on the subsequent candidate resource on y+x ⁇ P step ⁇ 2 ⁇ , where P step is The cycle of service generation, in ms, where x is an integer, representing the number of subsequent cycles.
  • Process 7 If the remaining resources in SA are less than X ⁇ M total , increase Th(pi ,p j ) by 3dB and return to process 4; for a given prio TX , X is determined by the high-level parameter sl-xPercentage(prio TX ) configuration;
  • Process 8 UE reports SA to higher layer
  • the Re-evaluation (re-evaluation) mechanism and the Pre-emption (preemption) mechanism are respectively added, as shown in the figure. 3 and Figure 4.
  • the re-evaluation mechanism is mainly for unreserved resources. Before the resources are sent, it is judged whether the selected resources collide according to the latest perception results. If a collision occurs, reselection can be performed to reduce the probability of resource collision; the preemption mechanism is mainly for reserved resources.
  • the embodiments of the present disclosure provide a data transmission method, device, and terminal, which solve the problem that reliable transmission of services cannot be guaranteed when a DRX mechanism is introduced into a cut-through link in the prior art.
  • an embodiment of the present disclosure provides a data transmission method, which is applied to a first terminal, and specifically includes the following steps:
  • Step 11 Determine the target resource selection window according to the discontinuous reception DRX configuration of the second terminal
  • the target resource selection window is determined from the determined resource selection window; the determined resource selection window is set by the first terminal according to the parameters configured by the high layer, as shown in FIG. 2 , the determined resource selection window corresponds to the time period from n+T1 to n+T2, n is the generation moment of the current data packet or the resource reselection moment, 0 ⁇ T 1 ⁇ T proc,1 , T proc,1 represents the transmission of the terminal Processing delay, T 2min ⁇ T 2 ⁇ remaining PDB, T 2min is the minimum value of T 2 configured by the upper layer, and remaining PDB is the remaining delay budget of the data packet.
  • Figure 2 shows the temporal relationship between the determined resource selection window and the resource awareness window.
  • the discontinuous reception DRX configuration of the second terminal is a set of DRX parameters configured by the network for the second terminal, or a set of DRX parameters selected by the second terminal from multiple sets of DRX parameters configured by the network, or a set of DRX parameters for the second terminal A set of DRX parameters that are autonomously configured and notified to the network side, or a set of DRX parameters that are configured to the second terminal by the first terminal that has established the connection in advance.
  • the DRX configuration of the second terminal includes at least: the duration of the second terminal monitoring the direct link and the period of the DRX, wherein the duration of the second terminal monitoring the direct link at least includes the DRX duration timer (drx-onDurationTimer). ) and the period during which the DRX inactivity timer (drx-inactivityTimer) is on.
  • the terminal must wake up and start the drx-onDurationTimer at the starting position of onDuration of each DRX cycle, that is, start monitoring the control channel; for drx-InactivityTimer: After DRX is configured, when the second terminal is allowed to monitor the control channel at the time The drx-InactivityTimer timer is turned on when receiving the control signaling of HARQ initial transmission within the Active Time, and the second terminal continuously monitors the control channel before the drx-InactivityTimer timer expires. If the second terminal receives the control signaling of HARQ initial transmission before the drx-InactivityTimer times out, it will terminate and restart the drx-InactivityTimer.
  • Step 12 In the target resource selection window, select a transmission resource for the data packet; wherein, at least the first M transmission resources of the data packet are within the target time period, and the target time period is the target resource selection window and the target time period.
  • the time period in which the receiving periods of the DRX configuration overlap, N ⁇ M ⁇ 1, and N is the total number of transmissions of the data packet;
  • the target period is the target of the first terminal (TxUE).
  • the time period during which the resource selection window overlaps with the receiving period (onDuration) of the DRX configuration of the second terminal (RxUE) is the period corresponding to the dotted line in FIG. 6 .
  • PSCCH Physical Sidelink Control Channel, Physical Direct Link Control Channel
  • PSSCH Physical Sidelink Shared Channel, Physical Direct Link Shared Channel
  • RSRP Reference Signal Receiving Power
  • Step 13 Transmit the data packet to the second terminal on the transmission resource.
  • the first terminal determines a target resource selection window according to the discontinuous reception DRX configuration of the second terminal; and in the target resource selection window, selects a transmission resource for the data packet;
  • the transmission resource is within the target period, where the target period is the period in which the target resource selection window overlaps the receiving period configured by the DRX, N ⁇ M ⁇ 1, and N is the total number of transmissions of the data packet; further in the transmission and transmitting the data packet to the second terminal on the resource.
  • the influence of the DRX configuration of the second terminal on the selection of initial transmission and retransmission resources of the first terminal can be fully considered, and it can be ensured that at least the transmission resources selected for the first M times correspond to the receiving time periods of the second terminal, so that the The two terminals can reduce power consumption while ensuring reliable reception of services.
  • the target resource selection window includes the following two situations:
  • the above step 11 includes:
  • n+T RX_on and n+T1 is used as the front edge of the target resource selection window, and n+T2 is used as the back edge of the target resource selection window; wherein, n+T RX_on is the second time after n time.
  • the leading edge of the first on-duration of the terminal, n is the arrival time of the data packet or the resource reselection time, n+T1 is the leading edge of the determined resource selection window, and n+T2 is the determined resource selection window. rear edge.
  • the time n+T RX_on is greater than the time n+T1
  • the target resource selection window is a time period from n+T RX_on to n+T2, where n+T RX_end is less than n+T2.
  • the time n+T RX_on is smaller than the time n+T1
  • the target resource selection window is a time period from n+T1 to n+T2, where n+T RX_end is smaller than n+T2.
  • step 12 includes the following two ways:
  • step 12 includes step 121a and step 122a
  • Step 121a by performing resource awareness, obtain a set of all available candidate single-slot resources from the target resource selection window;
  • Step 122a In the set of all available candidate single-slot resources, the time-domain position is in the candidate single-slot resources of the target period, and randomly select the first M transmission resources of the data packet;
  • the leading edge of the target period is the maximum value among n+T RX_on and n+T1
  • the trailing edge of the target period is n+T RX_end
  • n+T RX_end is the first one of the second terminal after n time
  • the trailing edge of on-duration, n+T RX_end is less than n+T2.
  • this step 121a may include:
  • a1 Initialize SA as the set of all candidate single-slot resources in the target resource selection window, and the total number of candidate resources in SA is M total ;
  • a2 Exclude the candidate resources corresponding to the skip slot in SA and the candidate resources that overlap with the reserved resources in the received SCI and whose RSRP is higher than the threshold value to obtain a set of all available candidate single-slot resources.
  • X is determined by High-level parameter configuration
  • the set of all available candidate single-slot resources and the leading edge of the target resource selection window are reported to the upper layer; the leading edge of the target resource selection window is the starting moment of the target resource selection window, that is, n+T1 or n+ T RX_on moment.
  • step 12 further includes:
  • N-M transmission resources for the data packet among the candidate single-slot resources whose time domain position is from the trailing edge of the target period to the n+T2 time period .
  • the trailing edge of the target period is n+T RX_end , n+T RX_end is the trailing edge of the first on-duration of the second terminal after time n, and n+T RX_end is less than n+T2.
  • the transmitting UE needs to randomly select retransmission for the current data packet from the set of all available candidate single-slot resources under the constraint of HARQ RTT. resource.
  • the leading edge of the target period is the maximum value among n+T RX _on and n+T1
  • the trailing edge of the target period is n+T RX_end
  • n+T RX_end is the first time of the second terminal after n time
  • the trailing edge of on-duration, n+T RX_end is less than n+T2.
  • the method 2 specifically includes: randomly selecting N transmission resources for the current data packet at any position in the set of all available candidate single-slot resources, including 1 initial transmission resource and N-1 retransmission resources; judging the N transmission resources Whether the time domain positions of at least M resources in the resource are in the time period from the front edge of the target resource selection window to n+T RX_end , if yes, complete the resource selection, if not, repeat this step until the resource selection is completed.
  • N is the total number of transmissions of the current data packet
  • M is an integer that satisfies M ⁇ 1 and M ⁇ N.
  • the first terminal needs to randomly select a retransmission resource for the current data packet from the set of all available candidate single-slot resources under the constraint of HARQ RTT .
  • FIG. 10 shows that in the set of all available candidate single-slot resources, N transmission resources are randomly selected for the data packet, wherein the initial transmission resources are in the Schematic diagram in the target period.
  • the target resource selection window includes a first resource selection window and a second resource selection window, and the second resource selection window corresponds to the target time period.
  • Step 11 above includes:
  • n+T RX_on and n+T1 is used as the front edge of the first resource selection window, and n+T2 is used as the back edge of the first resource selection window; or n+T RX_end is used as the first resource selection window.
  • the front edge of a resource selection window, and n+T2 is used as the rear edge of the first resource selection window;
  • n+T RX_on is the leading edge of the first on-duration of the second terminal after time n
  • n+T RX_end is the trailing edge of the first on-duration of the second terminal after time n
  • n is the data
  • n+T1 is the front edge of the determined resource selection window
  • n+T2 is the back edge of the determined resource selection window
  • n+T RX_end is less than n+T2.
  • the time n+T RX_on is larger than the time n+T1, then the first resource selection window is from n+T RX_on to n+T2; or the first resource selection window is from n+T RX_end to n+T2 segment; the second resource selection window is a period from n+T RX_on to n+T RX_end , where n+T RX_end is less than n+T2.
  • the time n+T RX_on is smaller than the time n+T1, then the first resource selection window is from n+T1 to n+T2; or the first resource selection window is from n+T RX_end to n+T2 ;
  • the second resource selection window is a period from n+T1 to n+T RX_end , where n+T RX_end is less than n+T2.
  • step 12 includes:
  • Step 121b by performing resource sensing, obtain a first available candidate single-slot resource set from the first resource selection window, and obtain a second available candidate single-slot resource set from the second resource selection window;
  • Step 122b In the second available candidate single-slot resource set, select a transmission resource for the first M transmissions of the data packet; in the first available candidate single-slot resource set, select a transmission resource for the data packet Select transmission resources for N-M times of transmission, N ⁇ M ⁇ 1.
  • an initial transmission resource is selected in the second resource selection window, and a retransmission resource is selected in the first resource selection window.
  • step 121b may include:
  • b2 Exclude candidate resources corresponding to skip slots in S A and S B and candidate resources that overlap with the reserved resources in the received SCI and whose RSRP is higher than the threshold to obtain the first available candidate single-slot resource set and the second A set of available candidate single-slot resources;
  • b3 Determine whether it is satisfied that the remaining resources in S A (the resources in the set of the first available candidate single-slot resources) are less than X 1 ⁇ M total_1 , and/or, the remaining resources in S B (the second available candidate single-slot resources) (resources in the set of time slot resources) is less than X 2 ⁇ M total_2 , if so, increase Th( pi , pj) by 3dB and return to step b1; X 1 and X 2 are configured by high-level parameters; if not, proceed to step b4;
  • RSRP Reference Signal Receiving Power, reference signal received power
  • step 122b includes:
  • the upper layer randomly selects at least M resources for the current data packet in the second available candidate single-slot resource set, including 1 initial transmission resource and M-1 retransmission resources; in the first available candidate single-slot resource set where (N-M) retransmission resources are randomly selected for the current data packet, where N is the total number of transmissions of the current data packet, and M is an integer satisfying M ⁇ 1 and M ⁇ N.
  • the first terminal needs to randomly select retransmission resources for the current data packet under the constraint of HARQ RTT. That is, when the second terminal supports HARQ-based feedback, when the first terminal performs the above resource selection process, the interval between the selected two adjacent resources must satisfy L ⁇ HARQ RTT.
  • the HARQ RTT is the round-trip delay required for the second terminal to decode the information and perform HARQ-based feedback, that is, the minimum time interval for the first terminal to send two consecutive data packets.
  • the first terminal may select a retransmission resource at any position after the initial transmission resource.
  • the method further includes: acquiring the DRX configuration of the second terminal; wherein, the DRX configuration of the second terminal at least includes: the duration of the second terminal monitoring the direct link and the period of DRX.
  • the acquiring the DRX configuration of the second terminal includes: sending a configuration acquisition request to a network side device; and receiving the DRX configuration of the second terminal fed back by the network side device according to the configuration acquisition request.
  • the acquiring the DRX configuration of the second terminal includes: receiving the DRX configuration of the second terminal sent by the second terminal, where the second terminal is the same as the first terminal A pre-connected terminal.
  • the following describes the discontinuous reception DRX process of the second terminal.
  • the second terminal monitors the PSCCH and PSSCH during the on-duration period.
  • the DRX process of the second terminal can be divided into the following types:
  • the DRX duration timer After receiving the data packet sent by the sender, if the data packet is successfully decoded or the transmission end indication sent by the sender is received, the DRX duration timer will enter the sleep state after the DRX duration timer expires until the DRX duration timer starts again. .
  • the transmission end indication is the indication information sent by the first terminal to the second terminal during the last transmission, indicating that the transmission of the current data packet is over. Even if the second terminal fails to decode successfully, it does not need to continue to wait. Retransmit packets.
  • the receiving UE supports retransmission based on HARQ ACK/NACK feedback, after successfully decoding the data packet, the ACK is fed back to the sending UE.
  • the DRX inactivity timer is activated, or according to the transmission resource of the retransmitted data packet indicated by the initial transmission data packet Location, monitor retransmission packets;
  • the second process may further include the following situations:
  • Case 1 The data packet supports resource preemption and the receiver does not support HARQ-based retransmission;
  • the second terminal since the retransmission resource indicated by the initial transmission SCI of the first terminal may be preempted by other terminals, and the second terminal cannot determine the transmission position of the retransmitted data packet according to the SCI indication, the second terminal
  • the DRX process can include:
  • Case 2 The data packet supports resource preemption and the receiver supports retransmission based on HARQ feedback;
  • the second terminal since the retransmission resource indicated by the initial transmission SCI of the first terminal may be preempted by other terminals, the second terminal cannot determine the transmission position of the retransmitted data packet according to the indication, and because the first terminal The transmission interval of the HARQ RTT needs to be met between two adjacent transmissions of the terminal. Therefore, after the drx-onDurationTimer times out, the second terminal can go to sleep every time it receives a retransmitted data packet, and the duration is equal to the HARQ RTT.
  • the DRX process can include:
  • Case 3 The data packet does not support resource preemption
  • the second terminal can determine the transmission position of the retransmitted data packet according to the indication of the initial transmission SCI, without starting drx-inactivityTimer, the second terminal
  • the DRX process can include:
  • the second terminal records the transmission position of the retransmitted data packet obtained by decoding the initial transmission of the SCI, wherein if the retransmission based on HARQ feedback is supported, a NACK is fed back to the sending UE;
  • the second terminal goes to sleep after the drx-onDurationTimer times out, starts at the transmission position of the corresponding retransmitted data packet, and monitors the retransmitted data packet;
  • NACK is fed back to the sending UE;
  • Step 191 The first terminal acquires the DRX configuration of the second terminal from the network side or its own memory.
  • Step 192 The first terminal sets the first resource selection window and the second resource selection window of the current data packet according to the DRX configuration of the second terminal.
  • the first resource selection window is a time period from n+T1 to n+T2, where n is the current data packet generation time, 0 ⁇ T1 ⁇ Tproc,1, Tproc,1 indicates the terminal's sending processing delay, T2min ⁇ T2 ⁇ remaining PDB, T2min is the minimum value of T2 configured by the upper layer, and remaining PDB is the remaining delay budget of the data packet.
  • the second resource selection window is a time period from n+T1 to n+T RX_end , where n+T RX_end is the trailing edge of the current DRX-On Duration of the second terminal.
  • Step 193 The first terminal selects initial transmission and retransmission resources for the current data packet according to the sensing result.
  • Step 194 After receiving the initially transmitted data packet, the second terminal activates the drx-inactivityTimer to monitor the retransmitted data packet.
  • Step 195 The second terminal enters a sleep state after successfully decoding the data packet until the drx-onDurationTimer starts again.
  • the first terminal sets the target resource selection window, or sets the first resource selection window and the second resource selection window according to the DRX configuration of the second terminal.
  • the first terminal selects the initial transmission and retransmission resources for the current data packet according to the sensing result, it is guaranteed that at least one resource falls within the time period corresponding to the DRX-on duration of the second terminal.
  • the second terminal activates the drx-inactivityTimer, or monitors the retransmitted data packet according to the instruction of the initial transmission SCI. After the second terminal successfully decodes the data packet or receives the transmission end indication from the first terminal, it goes to sleep until the drx-onDurationTimer starts again.
  • the second terminal can reduce power consumption while ensuring reliable service reception, which is more suitable for direct links Resource selection and discontinuous reception of UEs at both ends.
  • an embodiment of the present disclosure provides a data transmission apparatus 2000, applied to a first terminal, including:
  • a determination module 2001 configured to determine a target resource selection window according to the discontinuous reception DRX configuration of the second terminal
  • a resource selection module 2002 configured to select a transmission resource for a data packet in the target resource selection window; wherein, at least the first M transmission resources of the data packet are within a target period, and the target period is the target resource Select the time period in which the window overlaps with the receiving time period configured by the DRX, N ⁇ M ⁇ 1, and N is the total number of transmissions of the data packet;
  • a transmission module 2003 configured to transmit the data packet to the second terminal on the transmission resource.
  • the determining module 2001 includes:
  • a first determination submodule used for taking the maximum value of n+T RX_on and n+T1 as the front edge of the target resource selection window, and taking n+T2 as the back edge of the target resource selection window;
  • n+T RX_on is the leading edge of the first on-duration of the second terminal after time n
  • n is the arrival time of the data packet or the resource reselection time
  • n+T1 is the leading edge of the determined resource selection window
  • n+T2 is the trailing edge of the determined resource selection window.
  • the resource selection module 2002 includes:
  • a first selection submodule configured to obtain a set of all available candidate single-slot resources from the target resource selection window by performing resource sensing
  • the second selection sub-module is configured to randomly select the first M times of the data packet among the candidate single-slot resources whose time domain position is in the target period in the set of all available candidate single-slot resources transmission resources;
  • the leading edge of the target period is the maximum value among n+T RX_on and n+T1
  • the trailing edge of the target period is n+T RX_end
  • n+T RX_end is the first one of the second terminal after n time
  • the trailing edge of on-duration, n+T RX_end is less than n+T2.
  • the resource selection module 2002 further includes:
  • a third selection submodule configured to select N-M transmission resources for the data packet from the set of all available candidate single-slot resources
  • the fourth selection sub-module is used to select all available candidate single-slot resources in the set of candidate single-slot resources whose time domain position is from the trailing edge of the target period to the n+T2 time period.
  • the data packet selects N-M transmission resources.
  • the resource selection module 2002 includes:
  • a fifth selection sub-module configured to randomly select N transmission resources for the data packet from the set of all available candidate single-slot resources until the first M transmission resources in the N transmission resources are determined When in the target period, complete resource selection;
  • the leading edge of the target period is the maximum value among n+T RX_on and n+T1
  • the trailing edge of the target period is n+T RX_end
  • n+T RX_end is the first one of the second terminal after n time
  • the trailing edge of on-duration, n+T RX_end is less than n+T2.
  • the target resource selection window includes a first resource selection window and a second resource selection window, and the second resource selection window corresponds to the target period;
  • the determining module 2001 includes:
  • the second determination submodule is configured to use the maximum value of n+T RX_on and n+T1 as the front edge of the first resource selection window, and use n+T2 as the back edge of the first resource selection window; or n+T RX_end is used as the front edge of the first resource selection window, and n+T2 is used as the back edge of the first resource selection window;
  • a third determination submodule configured to use the maximum value of n+T RX_on and n+T1 as the front edge of the second resource selection window, and use n+T RX_end as the back edge of the second resource selection window;
  • n+T RX_on is the leading edge of the first on-duration of the second terminal after time n
  • n+T RX_end is the trailing edge of the first on-duration of the second terminal after time n
  • n is the data
  • n+T1 is the front edge of the determined resource selection window
  • n+T2 is the back edge of the determined resource selection window
  • n+T RX_end is less than n+T2.
  • the resource selection module 2002 includes:
  • the sixth selection sub-module is configured to obtain a first available candidate single-slot resource set from the first resource selection window by performing resource sensing, and obtain a second available candidate single-slot resource set from the second resource selection window Time slot resource set;
  • a seventh selection sub-module configured to select transmission resources for the first M times of transmission of the data packet in the second available candidate single-slot resource set
  • the eighth selection sub-module is configured to select transmission resources for N-M times of transmission of the data packet in the first available candidate single-slot resource set, where N ⁇ M ⁇ 1.
  • the above-mentioned apparatus 2000 further includes:
  • an acquiring module configured to acquire the DRX configuration of the second terminal, wherein the DRX configuration of the second terminal at least includes: the duration of the second terminal monitoring the direct link and the period of the DRX.
  • the second embodiment of the present disclosure corresponds to the method of the above-mentioned first embodiment, and all the implementation means in the above-mentioned first embodiment are applicable to the embodiment of the data transmission apparatus, and can also achieve the same technical effect.
  • the present disclosure also provides a terminal, which is specifically a first terminal, including: a processor 2100; and a terminal connected to the processor 2100 through a bus interface
  • the memory 2120 is used for storing programs and data used by the processor 2100 when performing operations, and the processor 2100 calls and executes the programs and data stored in the memory 2120 .
  • the transceiver 2110 is connected to the bus interface for receiving and sending data under the control of the processor 2100; the processor 2100 is used to read the program in the memory 2120 and execute the following steps:
  • a transmission resource is selected for the data packet; wherein, at least the first M transmission resources of the data packet are within a target period, and the target period is the target resource selection window and the DRX configuration
  • the receiving period overlaps, N ⁇ M ⁇ 1, N is the total number of transmissions of the data packet;
  • the data packet is transmitted to the second terminal on the transmission resource.
  • the bus architecture may include any number of interconnected buses and bridges, specifically one or more processors represented by processor 2100 and various circuits of memory represented by memory 2120 are linked together.
  • the bus architecture may also link together various other circuits, such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be described further herein.
  • the bus interface provides the interface.
  • Transceiver 2110 may be a number of elements, including transmitters and transceivers, that provide means for communicating with various other devices over a transmission medium.
  • the user interface 2130 may also be an interface capable of externally connecting a required device, and the connected devices include but are not limited to a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • the processor 2100 is responsible for managing the bus architecture and general processing, and the memory 2120 may store data used by the processor 2100 when performing operations.
  • the processor 2100 when determining the target resource selection window according to the discontinuous reception DRX configuration of the second terminal, is specifically configured to:
  • n+T RX_on is the leading edge of the first on-duration of the second terminal after time n
  • n is the arrival time of the data packet or the resource reselection time
  • n+T1 is the leading edge of the determined resource selection window
  • n+T2 is the trailing edge of the determined resource selection window.
  • the processor 2100 selects a transmission resource for a data packet in the target resource selection window, it is specifically used to:
  • the time domain position is in the candidate single-slot resources of the target period, and randomly select the first M transmission resources of the data packet;
  • the leading edge of the target period is the maximum value among n+T RX_on and n+T1
  • the trailing edge of the target period is n+T RX_end
  • n+T RX_end is the first one of the second terminal after n time
  • the trailing edge of on-duration, n+T RX_end is less than n+T2.
  • the processor 2100 when the processor 2100 selects a transmission resource for a data packet in the target resource selection window, the processor 2100 is further specifically configured to:
  • N-M transmission resources for the data packet among the candidate single-slot resources whose time domain position is from the trailing edge of the target period to the n+T2 time period .
  • the processor 2100 when selecting a transmission resource for a data packet in the target resource selection window, is specifically configured to:
  • the leading edge of the target period is the maximum value among n+T RX_on and n+T1
  • the trailing edge of the target period is n+T RX_end
  • n+T RX_end is the first one of the second terminal after n time
  • the trailing edge of on-duration, n+T RX_end is less than n+T2.
  • the target resource selection window includes a first resource selection window and a second resource selection window, and the second resource selection window corresponds to the target time period;
  • the processor 2100 When determining the target resource selection window according to the discontinuous reception DRX configuration of the second terminal, the processor 2100 is specifically configured to:
  • n+T RX_on and n+T1 is used as the front edge of the first resource selection window, and n+T2 is used as the back edge of the first resource selection window; or n+T RX_end is used as the first resource selection window.
  • the front edge of a resource selection window, and n+T2 is used as the rear edge of the first resource selection window;
  • n+T RX_on is the leading edge of the first on-duration of the second terminal after time n
  • n+T RX_end is the trailing edge of the first on-duration of the second terminal after time n
  • n is the data
  • n+T1 is the front edge of the determined resource selection window
  • n+T2 is the back edge of the determined resource selection window
  • n+T RX_end is less than n+T2.
  • the processor 2100 when selecting a transmission resource for a data packet in the target resource selection window, is specifically configured to:
  • a first available candidate single-slot resource set is obtained from the first resource selection window, and a second available candidate single-slot resource set is obtained from the second resource selection window;
  • transmission resources are selected for N-M times of transmission of the data packet, N ⁇ M ⁇ 1.
  • the processor 2100 is further configured to:
  • the DRX configuration of the second terminal at least includes: the duration for which the second terminal monitors the direct link and the period of DRX.
  • the terminal provided by the present disclosure determines a target resource selection window according to the discontinuous reception DRX configuration of the second terminal; and in the target resource selection window, selects a transmission resource for a data packet; Within the target period, where the target period is the period in which the target resource selection window overlaps the receiving period configured by the DRX, N ⁇ M ⁇ 1, and N is the total number of data packet transmissions; further on the transmission resource The data packet is transmitted to the second terminal.
  • the influence of the DRX configuration of the second terminal on the selection of initial transmission and retransmission resources of the first terminal can be fully considered, and it can be ensured that at least the transmission resources selected for the first M times correspond to the receiving time periods of the second terminal, so that the The two terminals can reduce power consumption while ensuring reliable reception of services.
  • a specific embodiment of the present disclosure further provides a computer-readable storage medium on which a computer program is stored, and when the program is executed by a processor, implements the steps of the method in the first embodiment described above. And can achieve the same technical effect, in order to avoid repetition, it is not repeated here.
  • each component or each step can be decomposed and/or recombined.
  • These disaggregations and/or recombinations should be considered equivalents of the present disclosure.
  • the steps of performing the above-mentioned series of processes can naturally be performed in chronological order in the order described, but need not necessarily be performed in chronological order, and some steps can be performed in parallel or independently of each other.
  • Those of ordinary skill in the art can understand all or any steps or components of the method and device of the present disclosure. , software, or a combination thereof, which can be implemented by those of ordinary skill in the art using their basic programming skills after reading the description of the present disclosure.
  • the objects of the present disclosure can also be achieved by running a program or set of programs on any computing device.
  • the computing device may be a known general purpose device. Therefore, the objects of the present disclosure can also be achieved merely by providing a program product containing program code for implementing the method or apparatus. That is, such a program product also constitutes the present disclosure, and a storage medium in which such a program product is stored also constitutes the present disclosure.
  • the storage medium can be any known storage medium or any storage medium developed in the future.
  • each component or each step can be decomposed and/or recombined. These disaggregations and/or recombinations should be considered equivalents of the present disclosure.
  • the steps of executing the above-described series of processes can naturally be executed in chronological order in the order described, but need not necessarily be executed in chronological order. Certain steps may be performed in parallel or independently of each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供了一种数据传输方法、装置及终端,方法应用于第一终端,包括:根据第二终端的非连续接收DRX配置,确定目标资源选择窗口;在所述目标资源选择窗口中,为数据包选择传输资源;其中,所述数据包的至少前M次传输资源处于目标时段内,所述目标时段为所述目标资源选择窗口与所述DRX配置的接收时段相重叠的时段,N≥M≥1,N为数据包的总传输次数;在所述传输资源上向所述第二终端传输所述数据包。

Description

一种数据传输方法、装置及终端
相关公开的交叉引用
本公开主张在2020年10月22日在中国提交的中国专利公开号No.202011140957.8的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及通信技术领域,尤其涉及一种数据传输方法、装置及终端。
背景技术
在基于共享信道的移动通信系统中,例如长期演进(Long Term Evolution,LTE)中,上下行数据的传输由基站(eNB)调度器负责控制,当调度器确定调度某用户时,将通过控制信道通知终端在何种资源上发送或接收数据。终端(UE)监听控制信道,当检测到包含自己的调度信息时,根据控制信道上的指示完成数据的发送(上行)或接收(下行)。在激活状态下,由于终端不确定eNB何时对其进行调度,因此一种常见的工作模式为,终端连续监听控制信道,对每个包含其下行调度控制信道的子帧都进行解析,以判断是否被调度。这种工作方式在终端数据量较大,可能被频繁调度的情况下能获得较高的效率。然而对某些业务而言,数据的到达频率较低,导致终端被调度的次数也较小,如果终端仍然连续监听控制信道,无疑会增加其耗电量。为了解决耗电问题,LTE系统采用了非连续接收(Discontinuous Reception,DRX)工作模式,在这种工作模式下,终端周期性的对控制信道进行监听,因而达到节电的目的。
在现有Uu口(一种在UE与地面无线接入网之间的接口)的DRX机制中,基站通过控制信道通知用户终端UE在何种资源上发送或接收数据。UE在DRX持续期间(On Duration)监听控制信道,当检测到包含自己的调度信息时,根据控制信道上的指示完成数据的发送(上行)或接收(下行)。然而在直通链路(sidelink,SL)模式2(mode-2)资源分配中,UE采用自主选择资源的方式进行数据包的传输,在直通链路中引入DRX机制时,会存在不能保 证业务的可靠传输的问题。
发明内容
本公开提供一种数据传输方法、装置及终端,解决了现有技术中在直通链路中引入DRX机制时,存在不能保证业务的可靠传输的问题。
第一方面,本公开的实施例提供一种数据传输方法,应用于第一终端,包括:
根据第二终端的非连续接收DRX配置,确定目标资源选择窗口;
在所述目标资源选择窗口中,为数据包选择传输资源;其中,所述数据包的至少前M次传输资源处于目标时段内,所述目标时段为所述目标资源选择窗口与所述DRX配置的接收时段相重叠的时段,N≥M≥1,N为数据包的总传输次数;
在所述传输资源上向所述第二终端传输所述数据包。
可选的,所述根据第二终端的非连续接收DRX配置,确定目标资源选择窗口,包括:
将n+T RX_on与n+T1中的最大值作为所述目标资源选择窗口的前沿,将n+T2作为所述目标资源选择窗口的后沿;
其中,n+T RX_on为n时刻后第二终端的第一个on-duration的前沿,n为所述数据包的到达时刻或者资源重选时刻,n+T1为已确定的资源选择窗口的前沿,n+T2为已确定的资源选择窗口的后沿。
可选的,所述在所述目标资源选择窗口中,为数据包选择传输资源,包括:
通过执行资源感知,从所述目标资源选择窗口中获取所有可用的候选单时隙资源的集合;
在所述所有可用的候选单时隙资源的集合中的,时域位置处于所述目标时段的候选单时隙资源中,随机选择所述数据包的前M次传输资源;
其中,所述目标时段的前沿为n+T RX_on与n+T1中的最大值,所述目标时段的后沿为n+T RX_end,n+T RX_end为n时刻后第二终端的第一个on-duration的后沿,n+T RX_end小于n+T2。
可选的,所述在所述目标资源选择窗口中,为数据包选择传输资源,还包括:
在所述所有可用的候选单时隙资源的集合中为所述数据包选择N-M个传输资源;
或者
在所述所有可用的候选单时隙资源的集合中的,时域位置处于所述目标时段的后沿至n+T2时间段的候选单时隙资源中为所述数据包选择N-M个传输资源。
可选的,所述在所述目标资源选择窗口中,为数据包选择传输资源,包括:
在所述所有可用的候选单时隙资源的集合中,为所述数据包随机选择N个传输资源,直至确定所述N个传输资源中的前M个传输资源处于所述目标时段中时,完成资源选择;
其中,所述目标时段的前沿为n+T RX_on与n+T1中的最大值,所述目标时段的后沿为n+T RX_end,n+T RX_end为n时刻后第二终端的第一个on-duration的后沿,n+T RX_end小于n+T2。
可选的,所述目标资源选择窗口包括第一资源选择窗口和第二资源选择窗口,所述第二资源选择窗口与所述目标时段对应;
所述根据第二终端的非连续接收DRX配置,确定目标资源选择窗口,包括:
将n+T RX_on与n+T1中的最大值作为所述第一资源选择窗口的前沿,将n+T2作为所述第一资源选择窗口的后沿;或者将n+T RX_end作为所述第一资源选择窗口的前沿,将n+T2作为所述第一资源选择窗口的后沿;
将n+T RX_on与n+T1中的最大值作为所述第二资源选择窗口的前沿,将n+T RX_end作为所述第二资源选择窗口的后沿;
其中,n+T RX_on为n时刻后第二终端的第一个on-duration的前沿,n+T RX_end为n时刻后第二终端的第一个on-duration的后沿,n为所述数据包的到达时刻或者资源重选时刻,n+T1为已确定的资源选择窗口的前沿,n+T2为已确定的资源选择窗口的后沿,n+T RX_end小于n+T2。
可选的,所述在所述目标资源选择窗口中,为数据包选择传输资源,包括:
通过执行资源感知,从所述第一资源选择窗口中,获取第一可用候选单时隙资源集合,从所述第二资源选择窗口中,获取第二可用候选单时隙资源集合;
在所述第二可用候选单时隙资源集合中,为所述数据包的前M次传输选择传输资源;
在所述第一可用候选单时隙资源集合中,为所述数据包的N-M次传输选择传输资源,N≥M≥1。
可选的,所述根据第二终端的非连续接收DRX配置,确定目标资源选择窗口之前,还包括:
获取第二终端的DRX配置;其中,所述第二终端的DRX配置至少包括:所述第二终端监听直通链路的持续时间和DRX的周期。
第二方面,本公开的实施例提供一种终端,所述终端为第一终端,包括:收发机、存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如上所述的数据传输方法的步骤。
第三方面,本公开的实施例提供一种数据传输装置,应用于第一终端,包括:
确定模块,用于根据第二终端的非连续接收DRX配置,确定目标资源选择窗口;
资源选择模块,用于在所述目标资源选择窗口中,为数据包选择传输资源;其中,所述数据包的至少前M次传输资源处于目标时段内,所述目标时段为所述目标资源选择窗口与所述DRX配置的接收时段相重叠的时段,N≥M≥1,N为数据包的总传输次数;
传输模块,用于在所述传输资源上向所述第二终端传输所述数据包。
第四方面,本公开的实施例提供一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现如上所述的数据传输方法的步骤。
本公开的上述技术方案的有益效果是:
上述方案中,第一终端根据第二终端的非连续接收DRX配置,确定目标资源选择窗口;并在所述目标资源选择窗口中,为数据包选择传输资源;其中,所述数据包的至少前M次传输资源处于目标时段内,所述目标时段为所述目标资源选择窗口与所述DRX配置的接收时段相重叠的时段,N≥M≥1,N为数据包的总传输次数;进一步在所述传输资源上向所述第二终端传输所述数据包。这样,充分考虑了第二终端的DRX配置对第一终端的初传和重传资源选择的影响,能够保证至少前M次选择的传输资源对应于第二终端的接收时间段对应,从而使第二终端能够在减少功耗的同时保证业务的可靠接收。
附图说明
图1表示DRX的基本原理;
图2表示资源选择窗口与资源感知窗口的时间关系图;
图3表示重评估机制示意图;
图4表示资源抢占机制示意图;
图5表示本公开实施例的数据传输方法的流程图之一;
图6表示本公开实施例的第一终端进行资源感知和选择以及第二终端进行非连续接收的时序示意图;
图7表示本公开实施例的目标资源选择窗口与第二终端的非连续接收的时序示意图之一;
图8表示本公开实施例的目标资源选择窗口与第二终端的非连续接收的时序示意图之二;
图9表示本公开实施例的数据传输方法的流程图之二;
图10表示本公开实施例的资源选择的示意图之一;
图11表示本公开实施例的数据传输方法的流程图之三;
图12表示本公开实施例的资源选择的示意图之二;
图13表示本公开实施例的数据传输方法的流程图之四;
图14表示本公开基于HARQ重传的资源选择的示意图;
图15表示本公开第二终端的DRX过程的示意图之一;
图16表示本公开第二终端的DRX过程的示意图之二;
图17表示本公开第二终端的DRX过程的示意图之三;
图18表示本公开第二终端的DRX过程的示意图之四;
图19表示本公开第一终端的数据传输方法和第二终端的非连续接收的流程图;
图20表示本公开数据传输装置的结构框图;
图21表示本公开的终端的结构框图。
具体实施方式
为使本公开要解决的技术问题、技术方案和优点更加清楚,下面将结合附图及具体实施例进行详细描述。在下面的描述中,提供诸如具体的配置和组件的特定细节仅仅是为了帮助全面理解本公开的实施例。因此,本领域技术人员应该清楚,可以对这里描述的实施例进行各种改变和修改而不脱离本公开的范围和精神。另外,为了清楚和简洁,省略了对已知功能和构造的描述。
应理解,说明书通篇中提到的“一个实施例”或“一实施例”意味着与实施例有关的特定特征、结构或特性包括在本公开的至少一个实施例中。因此,在整个说明书各处出现的“在一个实施例中”或“在一实施例中”未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。
在本公开的各种实施例中,应理解,下述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本公开实施例的实施过程构成任何限定。
另外,本文中术语“系统”和“网络”在本文中常可互换使用。
在本申请所提供的实施例中,应理解,“与A相应的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。
本公开实施例中,接入网的形式不限,可以是包括宏基站(Macro Base Station)、微基站(Pico Base Station)、Node B(3G移动基站的称呼)、增强型基站(eNB)、家庭增强型基站(Femto eNB或Home eNode B或Home eNB 或HeNB)、中继站、接入点、RRU(Remote Radio Unit,远端射频模块)、RRH(Remote Radio Head,射频拉远头)等的接入网。用户终端可以是移动电话(或手机),或者其他能够发送或接收无线信号的设备,包括用户设备、个人数字助理(PDA)、无线调制解调器、无线通信装置、手持装置、膝上型计算机、无绳电话、无线本地回路(WLL)站、能够将移动信号转换为WiFi信号的客户终端(Customer Premise Equipment,CPE)或移动智能热点、智能家电、或其他不通过人的操作就能自发与移动通信网络通信的设备等。
在进行本公开实施例的说明时,首先对下面描述中所用到的一些概念进行解释说明。
一、DRX基本原理
DRX的基本原理如图1所示。其中On duration表示终端UE监听控制信道的时间段,其间射频通道打开,并连续监听控制信道;除去On duration之外的其它时间,UE处于睡眠(Sleep)状态,其射频链路将被关闭,不再监听控制信道,以达到省电的目的。On Duration都是周期性出现(Cycle),具体周期由eNB配置实现。
蜂窝网络的DRX机制考虑了数据业务的到达模型,即数据分组的到达是突发的(可以理解为,一旦有数据分组到达,那么会在较短时间内连续到达较多的分组)。为了适应这种业务到达特点,LTE DRX过程采用了多种定时器,并与混合自动重传请求(Hybrid Automatic Repeat reQuest,HARQ)过程相结合,以期达到更好的节电性能。
二、与DRX相关的定时器进行介绍,主要包括:
1、drx-onDurationTimer:UE周期性醒来监听控制信道的时间。
2、短DRX周期定时器(Short DRX cycle Timer):为了更好的配合数据业务到达的特点,蜂窝网络通信系统支持配置两种DRX周期(DRX cycle):长周期(long cycle)和短周期(short cycle)。两种cycle的on duration timer相同,但sleep的时间不一样。在short cycle中,sleep时间相对更短,UE可以更快地再次监听控制信道。Long cycle是必须配置的,并且是DRX过程的初始状态;short cycle是可选的。short DRX cycle timer设置了采用short cycle持续的时间。短周期定时器(Short cycle timer)超时后,UE将使用Long cycle。
3、DRX非活动定时器(drx-InactivityTimer):配置了DRX后,当UE在允许监听控制信道的时间内(激活时间Active Time)收到HARQ初始传输的控制信令时打开该定时器,在该定时器超时之前,UE连续监听控制信道。如果在drx-InactivityTimer超时前,UE收到HARQ初始传输的控制信令,将终止并重新启动drx-InactivityTimer。
4、HARQ往返时延定时器(HARQ Round-Trip Time Timer,HARQ RTT Timer):分为DRX下行HARQ往返时延定时器(drx-HARQ-RTT-TimerDL)和DRX上行HARQ往返时延定时器(drx-HARQ-RTT-TimerUL),目的是使UE有可能在下次重传到来前不监听控制信道,达到更好的节电效果。以下行为例,UE相关进程的物理上行链路控制信道(Physical Uplink Control Channel,PUCCH)传输之后的第一个符号启动,将打开此定时器。如果对应HARQ进程中的数据在前一次HARQ传输后解码不成功(UE反馈NACK),在下行HARQ往返时延定时器(DL HARQ RTT Timer)超时后,UE打开DRX下行重传输定时器(drx-RetransmissionTimerDL)。如果对应HARQ进程中的数据在前一次HARQ传输后解码成功(UE反馈ACK),在drx-HARQ-RTT-TimerDL定时器超时后,UE不启动drx-RetransmissionTimerDL。如果当前只有drx-HARQ-RTT-TimerDL运行,UE不监听控制信道。
5、HARQ重传定时器(HARQ retransmission Timer):分为drx-RetransmissionTimerDL和DRX上行重传定时器(drx-RetransmissionTimer UL)。以下行为例,在下行重传定时器(DL HARQ retransmission Timer)运行其间,UE监听控制信令,等待对应HARQ进程的重传调度。
三、关于DRX下Active time定义
在On duration Timer、HARQ retransmission Timer和非活动定时器(Inactivity Timer)中有任何一个定时器正在运行,第二终端都将监听控制信道。第二终端监听控制信道的持续时间又称为Active Time。
在LTE系统中Active Time除了受DRX定时器(DRX timer)的影响外还有其它因素影响,LTE Rel-8UE的Active Time包括如下时间:
(1)DRX持续时间定时器(drx-onDuration Timer)或DRX非活动定时器(drx-Inactivity Timer)或者DRX下行重传定时器(drx-Retransmission Timer  DL)或者DRX上行重传定时器(drx-Retransmission Timer UL)或者竞争解决定时器(ra-Contention Resolution Timer)运行的时间;
(2)UE发送上行调度请求(Scheduling Request,SR)后等待基站发送物理下行控制信道(Physical Downlink Control Channel,PDCCH)的时间;
(3)非竞争随机接入UE接收到随机接入响应(Random Access Response,RAR)后等待小区无线网络临时标识(Cell-Radio Network Temporary Identifier,C-RNTI)调度的PDCCH的时间。
需要说明的是,公共DRX(Common DRX)下onduration计算可以如下:
(1)对于short DRX cycle,onduration计算公式如下:
[(SFN×10)+subframe number]modulo(shortDRX-Cycle)=(drxStartOffset)modulo(shortDRX-Cycle);
(2)对于long DRX cycle,onduration的计算公式如下:
[(SFN×10)+subframe number]modulo(longDRX-Cycle)=drxStartOffset;
其中:SFN为当前无线帧的SFN编号;Subframe number为当前子帧的编号;shortDRX-Cycle为短DRX周期;longDRX-Cycle为长DRX周期;drxStartOffset为RRC信令配置的一个偏移值。
四、基于新空口的车用无线通信技术模式2(New Radio-Vehicle to Everything Mode 2,NR-V2X Mode 2)资源分配过程
NR-V2X Mode 2资源分配旨在支持协议版本15(Release-15,Rel-15)LTE-V2X不能支持的增强应用需求,采用分布式资源调度方式(即UE自主选择传输资源),由于没有基站统一调度,UE需通过感知机制确定其它UE的资源占用情况,并根据感知结果进行资源选择。NR-V2X Mode 2的资源选择流程为:
流程1:候选单slot资源R x,y为[n+T 1,n+T 2]时间内ty slot上的连续x+j个子信道,如图2所示。其中0≤T 1≤T proc,1,T proc,1表示UE的发送处理时延(包括基于感知的资源选择时间、PSCCH的发送准备时间以及PSSCH的发送准备时间),取值可为{3,5,9,17}物理slots,分别对应子载波间隔(Sub-Carrier Space,SCS){15,30,60,120}kHz,T 2min≤T 2≤剩余业务包 传输时延预算(Remaining Packet Delay Budget,Remaining PDB),T 2min为高层参数t2min_SelectionWindow配置的T 2最小取值,remaining PDB为数据包剩余延迟预算。候选单slot资源总数为M total
流程2:UE持续监测感知窗口[n-T 0,n-T proc,0]内的slot,进行PSCCH、PSSCH解码和PSSCH或PSCCH-RSRP测量。T0为高层配置的感知窗口长度,T proc,0为UE处理之前感知结果的时间,取值可为{1,1,2,4}物理slots,分别对应SCS{15,30,60,120}kHz;
流程3:Th(p i,p j)指示sl-ThresPSSCH-RSRP-List-r16中的第i个RSRP域,i=pi+(p j-1)×8,p i表示接收到SCI中指示的优先级,p j表示发送UE传输的优先级,p j=prio TX
流程4:初始化S A为所有候选单slot资源的集合;
流程5:排除skip slots对应的候选slots,未监听时隙(skip slots)为由于半双工影响而无法进行感应(sensing)的slots(如y),对于系统配置的所有周期(如20ms,50ms,100ms),排除后续相应位置的所有候选slots(即y,y+20×2 μ,y+40×2 μ,y+50×2 μ,y+60×2 μ,y+80×2 μ,y+100×2 μ…等中落在选择窗口内的slots);
流程6:排除满足如下两个条件的候选单slot资源;
条件a:接收到直通链路控制信息(Sidelink Control Information,SCI)指示的PSSCH-RSRP测量值高于Th(prio RX,prio TX);
条件b:接收到SCI指示的预留资源会与在候选资源y上发送的TB或与后续的y+x×P step×2 μ上的候选资源发送的TB部分重叠或全部重叠,P step是业务生成的周期,单位为ms,x取整数,代表后续的周期数。
流程7:如果S A中剩余的资源小于X×M total,则将Th(p i,p j)均提升3dB并返回流程4;对于给定的prio TX,X由高层参数sl-xPercentage(prio TX)配置;
流程8:UE上报S A给高层;
流程9:高层在满足HARQ RTT(Round-Trip Time,往返时延)的约束条件下,在S A中为当前数据包随机选择初传和重传资源。
在此基础上,为了解决非周期性突发业务导致的资源碰撞以及为了保证高优先级业务的可靠性,分别增加了Re-evaluation(重评估)机制和 Pre-emption(抢占)机制,如图3和图4所示。其中,重评估机制主要针对未被预约的资源,在资源发送前,根据最新的感知结果判断已选资源是否发生碰撞。如果发生碰撞,可以进行重选,从而降低资源碰撞概率;抢占机制主要针对已被预约的资源,如果发现已被预约的资源被高优先级终端UE抢占,需要触发低优先级UE进行资源重选,从而避免高低优先级之间发生碰撞,从而保证高优先级业务的性能。
具体地,本公开的实施例提供了一种数据传输方法、装置及终端,解决了现有技术中在直通链路中引入DRX机制时,存在不能保证业务的可靠传输的问题。
第一实施例
如图5所示,本公开的实施例提供了一种数据传输方法,应用于第一终端,具体包括以下步骤:
步骤11:根据第二终端的非连续接收DRX配置,确定目标资源选择窗口;
其中,根据第二终端的非连续接收DRX配置,从已确定的资源选择窗口中,确定目标资源选择窗口;已确定的资源选择窗口是第一终端根据高层配置的参数设置的,如图2中,已确定的资源选择窗口对应n+T1至n+T2时间段,n为当前数据包的生成时刻或者资源重选时刻,0≤T 1≤T proc,1,T proc,1表示终端的发送处理时延,T 2min≤T 2≤remaining PDB,T 2min为高层配置的T 2的最小值,remaining PDB为数据包剩余延迟预算。图2示出了已确定的资源选择窗口与资源感知窗口之间的时间关系。
其中,第二终端的非连续接收DRX配置为网络配置给第二终端的一组DRX参数,或者为第二终端从网络配置的多组DRX参数中选择的一组DRX参数,或者为第二终端自主配置并告知网络侧的一组DRX参数,或者为由预先建立连接的第一终端配置给第二终端的一组DRX参数。
进一步的,第二终端的DRX配置至少包括:第二终端监听直通链路的持续时间和DRX的周期,其中,第二终端监听直通链路的持续时间至少包括DRX持续时间定时器(drx-onDurationTimer)和DRX非活动定时器(drx-inactivityTimer)开启的时间段。其中,终端在每个DRX周期的 onDuration的起始位置都要醒来启动drx-onDurationTimer,即开始监听控制信道;对于drx-InactivityTimer:配置了DRX后,当第二终端在允许监听控制信道的时间内(Active Time)收到HARQ初始传输的控制信令时打开该drx-InactivityTimer定时器,在drx-InactivityTimer定时器超时之前,第二终端连续监听控制信道。如果在drx-InactivityTimer超时前,第二终端收到HARQ初始传输的控制信令,将终止并重新启动drx-InactivityTimer。
步骤12:在所述目标资源选择窗口中,为数据包选择传输资源;其中,所述数据包的至少前M次传输资源处于目标时段内,所述目标时段为所述目标资源选择窗口与所述DRX配置的接收时段相重叠的时段,N≥M≥1,N为数据包的总传输次数;
本步骤中,如图6所示,其示出有第一终端进行资源感知和选择以及第二终端进行非连续接收的时序示意图,如图6中,目标时段为第一终端(TxUE)的目标资源选择窗口与第二终端(RxUE)的DRX配置的接收时段(onDuration)相重叠的时段,图6中虚线对应的时段。
具体的,通过检测感知窗口[n-T 0,n-T proc,0)时间段,进行PSCCH(PhysicalSidelinkControlChannel,物理直通链路控制信道)解码和PSSCH(Physical Sidelink Shared Channel,物理直通链路共享信道)-RSRP(Reference Signal Receiving Power,参考信号接收功率)或PSCCH-RSRP测量得到用于资源选择的结果,根据该感知结果在所述目标资源选择窗口中,为数据包选择传输资源,其中T 0为高层配置的感知窗口长度,T proc,0为终端UE处理之前感知结果的时间。
步骤13:在所述传输资源上向所述第二终端传输所述数据包。
该实施例中,第一终端根据第二终端的非连续接收DRX配置,确定目标资源选择窗口;并在所述目标资源选择窗口中,为数据包选择传输资源;将数据包的至少前M次传输资源处于目标时段内,其中目标时段为所述目标资源选择窗口与所述DRX配置的接收时段相重叠的时段,N≥M≥1,N为数据包的总传输次数;进一步在所述传输资源上向所述第二终端传输所述数据包。这样,充分考虑了第二终端的DRX配置对第一终端的初传和重传资源选择的影响,能够保证至少前M次选择的传输资源对应于第二终端的接收时间段对 应,从而使第二终端能够在减少功耗的同时保证业务的可靠接收。
下面对目标资源选择窗口和对应的资源选择方式进行介绍,具体的,目标资源选择窗口包括以下两种情况:
情况一:目标资源选择窗口为一个
在一实施例中,上述步骤11包括:
将n+T RX_on与n+T1中的最大值作为所述目标资源选择窗口的前沿,将n+T2作为所述目标资源选择窗口的后沿;其中,n+T RX_on为n时刻后第二终端的第一个on-duration的前沿,n为所述数据包的到达时刻或者资源重选时刻,n+T1为已确定的资源选择窗口的前沿,n+T2为已确定的资源选择窗口的后沿。
如图7中,n+T RX_on时刻比n+T1时刻大,则所述目标资源选择窗口为n+T RX_on至n+T2时间段,其中,n+T RX_end小于n+T2。
如图8中,n+T RX_on时刻比n+T1时刻小,则所述目标资源选择窗口为n+T1至n+T2时间段,其中,n+T RX_end小于n+T2。
在情况一下,上述步骤12包括以下两种方式:
方式1:如图9中,步骤12包括步骤121a和步骤122a
步骤121a:通过执行资源感知,从所述目标资源选择窗口中获取所有可用的候选单时隙资源的集合;
步骤122a:在所述所有可用的候选单时隙资源的集合中的,时域位置处于所述目标时段的候选单时隙资源中,随机选择所述数据包的前M次传输资源;
其中,所述目标时段的前沿为n+T RX_on与n+T1中的最大值,所述目标时段的后沿为n+T RX_end,n+T RX_end为n时刻后第二终端的第一个on-duration的后沿,n+T RX_end小于n+T2。
具体的,该步骤121a可以包括:
a1:初始化S A为目标资源选择窗口中所有候选单时隙资源的集合,S A中候选资源的总数分别为M total
a2:排除S A中skip slot对应的候选资源以及与接收到SCI中预留资源重叠且RSRP高于门限值的候选资源,得到所有可用的候选单时隙资源的集合。
其中,如果S A中剩余的资源(所有可用的候选单时隙资源的集合中的资源)小于X×M total,则将Th(p i,p j)均提升3dB并返回步骤a;X由高层参数配置;
所述Th(p i,p j)指示高层参数sl-ThresPSSCH-RSRP-List-r16中的第i个RSRP域,i=p i+(p j-1)×8,p i表示接收到SCI中指示的优先级,p j表示发送UE传输的优先级,p j=prio TX
进一步的,将所有可用的候选单时隙资源的集合和目标资源选择窗口的前沿上报给高层;所述目标资源选择窗口的前沿为目标资源选择窗口的起始时刻,即n+T1或n+T RX_on时刻。
基于上述方式1,步骤12还包括:
在所述所有可用的候选单时隙资源的集合中为所述数据包选择N-M个传输资源;或者
在所述所有可用的候选单时隙资源的集合中的,时域位置处于所述目标时段的后沿至n+T2时间段的候选单时隙资源中为所述数据包选择N-M个传输资源。
其中,目标时段的后沿为n+T RX_end,n+T RX_end为n时刻后第二终端的第一个on-duration的后沿,n+T RX_end小于n+T2。
需要说明的是,在所述所有可用的候选单时隙资源的集合中为所述数据包选择N-M个传输资源时,需要排除在时域位置处于所述目标时段的候选单时隙资源中已为所述数据包选择的前M次传输资源。
进一步的,需要指出,当接收UE支持基于HARQ反馈的重传时,发送UE需在满足HARQ RTT的约束条件下,在所有可用的候选单时隙资源的集合中为当前数据包随机选择重传资源。
方式2:
在所述所有可用的候选单时隙资源的集合中,为所述数据包随机选择N个传输资源,直至确定所述N个传输资源中的前M个传输资源处于所述目标时段中时,完成资源选择;
其中,所述目标时段的前沿为n+T RX_on与n+T1中的最大值,所述目标时段的后沿为n+T RX_end,n+T RX_end为n时刻后第二终端的第一个on-duration 的后沿,n+T RX_end小于n+T2。
该方式2具体包括:在所有可用的候选单时隙资源的集合中的任意位置为当前数据包随机选择N个传输资源,包括1个初传资源和N-1个重传资源;判断N个资源中是否有至少M个资源的时域位置处于目标资源选择窗口的前沿到n+T RX_end时间段中,若是,则完成资源选择,若否,则重复执行此步骤直至完成资源选择。其中,N为当前数据包的总传输次数,M为整数,满足M≥1且M≤N。
需要指出,当第二终端支持基于HARQ反馈的重传时,第一终端需在满足HARQ RTT的约束条件下,在所有可用的候选单时隙资源的集合中为当前数据包随机选择重传资源。
示例性的,以M为1为例,图10中示出了在所述所有可用的候选单时隙资源的集合中,为所述数据包随机选择N个传输资源,其中,初传资源处于所述目标时段中的示意图。
情况二:目标资源选择窗口包括第一资源选择窗口和第二资源选择窗口,所述第二资源选择窗口与所述目标时段对应。
上述步骤11包括:
将n+T RX_on与n+T1中的最大值作为所述第一资源选择窗口的前沿,将n+T2作为所述第一资源选择窗口的后沿;或者将n+T RX_end作为所述第一资源选择窗口的前沿,将n+T2作为所述第一资源选择窗口的后沿;
将n+T RX_on与n+T1中的最大值作为所述第二资源选择窗口的前沿,将n+T RX_end作为所述第二资源选择窗口的后沿;
其中,n+T RX_on为n时刻后第二终端的第一个on-duration的前沿,n+T RX_end为n时刻后第二终端的第一个on-duration的后沿,n为所述数据包的到达时刻或者资源重选时刻,n+T1为已确定的资源选择窗口的前沿,n+T2为已确定的资源选择窗口的后沿,n+T RX_end小于n+T2。
如图7中,n+T RX_on时刻比n+T1时刻大,则第一资源选择窗口为n+T RX_on至n+T2时段;或者第一资源选择窗口为n+T RX_end至n+T2时间段;第二资源选择窗口为n+T RX_on至n+T RX_end时段,其中,n+T RX_end小于n+T2。
如图8中,n+T RX_on时刻比n+T1时刻小,则第一资源选择窗口为n+T1 至n+T2时段;或者第一资源选择窗口为n+T RX_end至n+T2时间段;第二资源选择窗口为n+T1至n+T RX_end时段,其中,n+T RX_end小于n+T2。
在情况二下,如图11中,上述步骤12包括:
步骤121b:通过执行资源感知,从所述第一资源选择窗口中,获取第一可用候选单时隙资源集合,从所述第二资源选择窗口中,获取第二可用候选单时隙资源集合;
步骤122b:在所述第二可用候选单时隙资源集合中,为所述数据包的前M次传输选择传输资源;在所述第一可用候选单时隙资源集合中,为所述数据包的N-M次传输选择传输资源,N≥M≥1。
示例性的,以M为1为例,如图12中其示出了在第二资源选择窗口中选择了一个初传资源,在第一资源选择窗口中选择重传资源。
示例性的,上述步骤121b和122b的具体流程可以参见图13所示。
如图13中,步骤121b可以包括:
b1:初始化S A为第一资源选择窗口中所有候选单时隙资源的集合,S B为第二资源选择窗口中所有候选单时隙资源的集合,S A和S B中候选资源的总数分别为M total_1和M total_2
b2:排除S A和S B中skip slot对应的候选资源以及与接收到SCI中预留资源重叠且RSRP高于门限值的候选资源,分别得到第一可用候选单时隙资源集合和第二可用候选单时隙资源集合;
b3:判断是否满足:S A中剩余的资源(第一可用候选单时隙资源的集合中的资源)小于X 1×M total_1,和/或,S B中剩余的资源(第二可用候选单时隙资源的集合中的资源)小于X 2×M total_2,若是,则将Th(p i,pj)均提升3dB并返回步骤b1;X 1和X 2由高层参数配置;若否,则进行步骤b4;
所述Th(p i,p j)指示高层参数sl-ThresPSSCH-RSRP-List-r16中的第i个RSRP(Reference Signal Receiving Power,参考信号接收功率)域,i=p i+(p j-1)×8,p i表示接收到SCI中指示的业务优先级,p j表示发送UE(第一终端)传输的优先级,p j=prio TX
具体的,步骤122b,包括:
b4:将第一可用候选单时隙资源集合和第二可用候选单时隙资源集合上 报给高层;
b5:高层在第二可用候选单时隙资源集合中为当前数据包随机选择至少M个资源,包括1个初传资源和M-1个重传资源;在第一可用候选单时隙资源集合中为当前数据包随机选择(N-M)个重传资源,所述N为当前数据包的总传输次数,M为整数,满足M≥1且M≤N。
进一步的,需要指出,当第二终端支持基于HARQ反馈的重传时,第一终端需在满足HARQ RTT的约束条件下,为当前数据包随机选择重传资源。即,当第二终端支持基于HARQ的反馈时,第一终端在执行上述资源选择过程时,选择的相邻两个资源的间隔需满足L≥HARQ RTT。如图14中,HARQ RTT为第二终端解码信息以及进行基于HARQ反馈所需的往返时延,也就是第一终端连续两次数据包发送的最小时间间隔。当第二终端不支持基于HARQ的反馈时,第一终端在执行上述资源选择过程时,可在初传资源后的任意位置选择重传资源。
进一步的,步骤12之前,还包括:获取第二终端的DRX配置;其中,所述第二终端的DRX配置至少包括:所述第二终端监听直通链路的持续时间和DRX的周期。
在一实施例中,所述获取第二终端的DRX配置,包括:发送配置获取请求至网络侧设备;接收所述网络侧设备根据所述配置获取请求反馈的所述第二终端的DRX配置。
在另一实施例中,所述获取第二终端的DRX配置,包括:接收所述第二终端发送的所述第二终端的DRX配置,其中,所述第二终端为与所述第一终端预先建立连接的终端。
下面对第二终端的非连续接收DRX过程进行介绍。
第二终端在on-duration期间进行PSCCH和PSSCH的监听,当接收到第一终端的初传数据包后,第二终端的DRX过程可分为以下几种:
过程一:
在接收到发送端发送的数据包后,若成功解码所述数据包或者接收到发送端发送的传输结束指示,则在DRX持续时间定时器超时后进入休眠状态,直至DRX持续时间定时器再次启动。
该过程一中,所述传输结束指示为第一终端在最后一次传输时发送给第二终端的指示信息,指示当前数据包的传输结束,即使第二终端即使未能解码成功,也无需继续等待重传数据包。
如图15所示,其示出了初传数据包被成功解码。第二终端无需继续监听重传,在drx-onDurationTimer超时后即可进入睡眠。
其中如果接收UE支持基于HARQ ACK/NACK反馈的重传,则在成功解码数据包后,向发送UE反馈ACK。
过程二:
在接收到第一终端发送的初传数据包后,若未成功解码所述初传数据包,则激活DRX非活动定时器,或者根据所述初传数据包指示的重传数据包的传输资源位置,进行重传数据包的监听;
具体的,过程二进一步可以包括以情况:
情况1:数据包支持资源抢占且所述接收端不支持基于HARQ的重传;
该情况中,如图16所示,由于第一终端的初传SCI指示的重传资源可能被其他终端抢占,第二终端不能根据该SCI指示确定重传数据包的传输位置,则第二终端的DRX过程可以包括:
1-1:激活drx-inactivityTimer,进行所述后续数据包的监听;
1-2:在drx-inactivityTimer启动时期持续进行PSCCH和PSSCH的监听;
1-3:当drx-inactivityTimer超时但第二终端仍未能成功接收当前数据包时,再次激活drx-inactivityTimer并重复执行1-2。
1-4:在成功解码数据包后或收到第一终端的传输结束指示,且drx-onDurationTimer超时后进入睡眠,直至drx-onDurationTimer再次启动。
情况2:数据包支持资源抢占且所述接收端支持基于HARQ反馈的重传;
该情况中,如图17所示,由于第一终端的初传SCI指示的重传资源可能被其他终端抢占,第二终端不能根据该指示确定重传数据包的传输位置,并且,由于第一终端相邻两次传输之间需满足HARQ RTT的传输间隔,因此在drx-onDurationTimer超时后,第二终端每次接收重传数据包后可以进入睡眠,持续时间等于HARQ RTT,则第二终端的DRX过程可以包括:
2-1:激活drx-inactivityTimer,并向发送UE反馈NACK;
2-2:在drx-inactivityTimer启动时期进行PSCCH和PSSCH的监听,在接收到重传数据包但未能成功解码时,向第一终端反馈NACK;若反馈NACK后drx-onDurationTimer已超时则第二终端进入睡眠,并在间隔HARQ RTT时间段后醒来,继续进行PSCCH和PSSCH的监听;
2-3:当drx-inactivityTimer超时但第二终端仍未能成功接收当前数据包时,再次激活drx-inactivit Timer并重复执行2-2。
2-4:第二终端在成功解码数据包后或收到第一终端的传输结束指示,且drx-onDurationTimer超时后进入睡眠,直至drx-onDurationTimer再次启动。
情况3:数据包不支持资源抢占;
该情况中,如图18所示,由于初传SCI指示的资源不会被抢占,第二终端可根据初传SCI的指示确定重传数据包的传输位置,无需启动drx-inactivityTimer,第二终端的DRX过程可以包括:
3-1:第二终端记录解码初传SCI所得重传数据包的传输位置,其中如果支持基于HARQ反馈的重传则向发送UE反馈NACK;
3-2:第二终端在drx-onDurationTimer超时后进入睡眠,并在相应重传数据包的传输位置启动,进行重传数据包的监听;其中如果支持基于HARQ的重传,则在接收到重传数据包但未能成功解码时,向发送UE反馈NACK;
3-3:第二终端在成功解码数据包后或收到第一终端的传输结束指示,且drx-onDurationTimer超时后进入睡眠,直至drx-onDurationTimer再次启动;其中如果支持基于HARQ ACK/NACK反馈的重传,则在成功解码数据包后,向发送UE反馈ACK。
下面对本公开的第一终端的数据传输方法和第二终端的非连续接收过程进行示例性介绍。如图19中,可以包括以下步骤:
步骤191:第一终端从网络侧或自身内存中获取第二终端的DRX配置。
步骤192:第一终端根据第二终端的DRX配置,设置当前数据包的第一资源选择窗口以及第二资源选择窗口。
所述第一资源选择窗口为n+T1到n+T2时间段,其中n为当前数据包生成时刻,0≤T1≤Tproc,1,Tproc,1表示终端的发送处理时延,T2min≤T2≤remaining PDB,T2min为高层配置的T2的最小值,remaining PDB为数据包 剩余延迟预算。
所述第二资源选择窗口为n+T1到n+T RX_end时间段,n+T RX_end为第二终端当前DRX-On Duration的后沿。
步骤193:第一终端根据感知结果,为当前数据包选择初传和重传资源。
步骤194:第二终端在收到初传数据包后,激活drx-inactivityTimer,进行重传数据包的监听。
步骤195:第二终端在成功解码数据包后进入睡眠状态,直至drx-onDurationTimer再次启动。
上述方案中,第一终端根据第二终端的DRX配置,设置目标资源选择窗口,或者设置第一资源选择窗口以及第二资源选择窗口。第一终端根据感知结果为当前数据包选择初传和重传资源时,保证至少有一个资源落在与第二终端的DRX-on duration对应的时间段内。第二终端在收到初传数据包后,激活drx-inactivityTimer,或者,根据初传SCI的指示进行重传数据包的监听。第二终端在成功解码数据包后或收到第一终端的传输结束指示时,进入睡眠,直至drx-onDurationTimer再次启动。通过使第一终端根据第二终端的DRX参数设置资源选择窗口、进行初传和重传资源的选择,使得第二终端可以在减少功耗的同时保证业务的可靠接收,更适用于直通链路两端终端UE的资源选择和非连续接收。
第二实施例
如图20所示,本公开实施例提供一种数据传输装置2000,应用于第一终端,包括:
确定模块2001,用于根据第二终端的非连续接收DRX配置,确定目标资源选择窗口;
资源选择模块2002,用于在所述目标资源选择窗口中,为数据包选择传输资源;其中,所述数据包的至少前M次传输资源处于目标时段内,所述目标时段为所述目标资源选择窗口与所述DRX配置的接收时段相重叠的时段,N≥M≥1,N为数据包的总传输次数;
传输模块2003,用于在所述传输资源上向所述第二终端传输所述数据包。
可选的,确定模块2001包括:
第一确定子模块,用于将n+T RX_on与n+T1中的最大值作为所述目标资源选择窗口的前沿,将n+T2作为所述目标资源选择窗口的后沿;
其中,n+T RX_on为n时刻后第二终端的第一个on-duration的前沿,n为所述数据包的到达时刻或者资源重选时刻,n+T1为已确定的资源选择窗口的前沿,n+T2为已确定的资源选择窗口的后沿。
可选的,资源选择模块2002包括:
第一选择子模块,用于通过执行资源感知,从所述目标资源选择窗口中获取所有可用的候选单时隙资源的集合;
第二选择子模块,用于在所述所有可用的候选单时隙资源的集合中的,时域位置处于所述目标时段的候选单时隙资源中,随机选择所述数据包的前M次传输资源;
其中,所述目标时段的前沿为n+T RX_on与n+T1中的最大值,所述目标时段的后沿为n+T RX_end,n+T RX_end为n时刻后第二终端的第一个on-duration的后沿,n+T RX_end小于n+T2。
可选的,资源选择模块2002还包括:
第三选择子模块,用于在所述所有可用的候选单时隙资源的集合中为所述数据包选择N-M个传输资源;
或者
第四选择子模块,用于在所述所有可用的候选单时隙资源的集合中的,时域位置处于所述目标时段的后沿至n+T2时间段的候选单时隙资源中为所述数据包选择N-M个传输资源。
可选的,资源选择模块2002包括:
第五选择子模块,用于在所述所有可用的候选单时隙资源的集合中,为所述数据包随机选择N个传输资源,直至确定所述N个传输资源中的前M个传输资源处于所述目标时段中时,完成资源选择;
其中,所述目标时段的前沿为n+T RX_on与n+T1中的最大值,所述目标时段的后沿为n+T RX_end,n+T RX_end为n时刻后第二终端的第一个on-duration的后沿,n+T RX_end小于n+T2。
可选的,所述目标资源选择窗口包括第一资源选择窗口和第二资源选择 窗口,所述第二资源选择窗口与所述目标时段对应;确定模块2001包括:
第二确定子模块,用于将n+T RX_on与n+T1中的最大值作为所述第一资源选择窗口的前沿,将n+T2作为所述第一资源选择窗口的后沿;或者将n+T RX_end作为所述第一资源选择窗口的前沿,将n+T2作为所述第一资源选择窗口的后沿;
第三确定子模块,用于将n+T RX_on与n+T1中的最大值作为所述第二资源选择窗口的前沿,将n+T RX_end作为所述第二资源选择窗口的后沿;
其中,n+T RX_on为n时刻后第二终端的第一个on-duration的前沿,n+T RX_end为n时刻后第二终端的第一个on-duration的后沿,n为所述数据包的到达时刻或者资源重选时刻,n+T1为已确定的资源选择窗口的前沿,n+T2为已确定的资源选择窗口的后沿,n+T RX_end小于n+T2。
可选的,资源选择模块2002包括:
第六选择子模块,用于通过执行资源感知,从所述第一资源选择窗口中,获取第一可用候选单时隙资源集合,从所述第二资源选择窗口中,获取第二可用候选单时隙资源集合;
第七选择子模块,用于在所述第二可用候选单时隙资源集合中,为所述数据包的前M次传输选择传输资源;
第八选择子模块,用于在所述第一可用候选单时隙资源集合中,为所述数据包的N-M次传输选择传输资源,N≥M≥1。
可选的,上述装置2000还包括:
获取模块,用于获取第二终端的DRX配置;其中,所述第二终端的DRX配置至少包括:所述第二终端监听直通链路的持续时间和DRX的周期。
本公开的第二实施例是与上述第一实施例的方法对应的,上述第一实施例中的所有实现手段均适用于该数据传输装置的实施例中,也能达到相同的技术效果。
第三实施例
为了更好的实现上述目的,如图21所示,本公开还提供了一种终端,该终端具体为第一终端,包括:处理器2100;以及通过总线接口与所述处理器2100相连接的存储器2120,所述存储器2120用于存储所述处理器2100在执 行操作时所使用的程序和数据,处理器2100调用并执行所述存储器2120中所存储的程序和数据。
其中,收发机2110与总线接口连接,用于在处理器2100的控制下接收和发送数据;处理器2100用于读取存储器2120中的程序执行以下步骤:
根据第二终端的非连续接收DRX配置,确定目标资源选择窗口;
在所述目标资源选择窗口中,为数据包选择传输资源;其中,所述数据包的至少前M次传输资源处于目标时段内,所述目标时段为所述目标资源选择窗口与所述DRX配置的接收时段相重叠的时段,N≥M≥1,N为数据包的总传输次数;
在所述传输资源上向所述第二终端传输所述数据包。
其中,在图21中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器2100代表的一个或多个处理器和存储器2120代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机2110可以是多个元件,即包括发送机和收发机,提供用于在传输介质上与各种其他装置通信的单元。针对不同的终端,用户接口2130还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。处理器2100负责管理总线架构和通常的处理,存储器2120可以存储处理器2100在执行操作时所使用的数据。
可选的,所述处理器2100在根据第二终端的非连续接收DRX配置,确定目标资源选择窗口时,具体用于:
将n+T RX_on与n+T1中的最大值作为所述目标资源选择窗口的前沿,将n+T2作为所述目标资源选择窗口的后沿;
其中,n+T RX_on为n时刻后第二终端的第一个on-duration的前沿,n为所述数据包的到达时刻或者资源重选时刻,n+T1为已确定的资源选择窗口的前沿,n+T2为已确定的资源选择窗口的后沿。
可选的,所述处理器2100在所述目标资源选择窗口中,为数据包选择传输资源时,具体用于:
通过执行资源感知,从所述目标资源选择窗口中获取所有可用的候选单时隙资源的集合;
在所述所有可用的候选单时隙资源的集合中的,时域位置处于所述目标时段的候选单时隙资源中,随机选择所述数据包的前M次传输资源;
其中,所述目标时段的前沿为n+T RX_on与n+T1中的最大值,所述目标时段的后沿为n+T RX_end,n+T RX_end为n时刻后第二终端的第一个on-duration的后沿,n+T RX_end小于n+T2。
可选的,所述处理器2100在在所述目标资源选择窗口中,为数据包选择传输资源时,还具体用于:
在所述所有可用的候选单时隙资源的集合中为所述数据包选择N-M个传输资源;
或者
在所述所有可用的候选单时隙资源的集合中的,时域位置处于所述目标时段的后沿至n+T2时间段的候选单时隙资源中为所述数据包选择N-M个传输资源。
可选的,所述处理器2100在在所述目标资源选择窗口中,为数据包选择传输资源时,具体用于:
在所述所有可用的候选单时隙资源的集合中,为所述数据包随机选择N个传输资源,直至确定所述N个传输资源中的前M个传输资源处于所述目标时段中时,完成资源选择;
其中,所述目标时段的前沿为n+T RX_on与n+T1中的最大值,所述目标时段的后沿为n+T RX_end,n+T RX_end为n时刻后第二终端的第一个on-duration的后沿,n+T RX_end小于n+T2。
可选的,目标资源选择窗口包括第一资源选择窗口和第二资源选择窗口,所述第二资源选择窗口与所述目标时段对应;
所述处理器2100在根据第二终端的非连续接收DRX配置,确定目标资源选择窗口时,具体用于:
将n+T RX_on与n+T1中的最大值作为所述第一资源选择窗口的前沿,将n+T2作为所述第一资源选择窗口的后沿;或者将n+T RX_end作为所述第一资源 选择窗口的前沿,将n+T2作为所述第一资源选择窗口的后沿;
将n+T RX_on与n+T1中的最大值作为所述第二资源选择窗口的前沿,将n+T RX_end作为所述第二资源选择窗口的后沿;
其中,n+T RX_on为n时刻后第二终端的第一个on-duration的前沿,n+T RX_end为n时刻后第二终端的第一个on-duration的后沿,n为所述数据包的到达时刻或者资源重选时刻,n+T1为已确定的资源选择窗口的前沿,n+T2为已确定的资源选择窗口的后沿,n+T RX_end小于n+T2。
可选的,所述处理器2100在在所述目标资源选择窗口中,为数据包选择传输资源时,具体用于:
通过执行资源感知,从所述第一资源选择窗口中,获取第一可用候选单时隙资源集合,从所述第二资源选择窗口中,获取第二可用候选单时隙资源集合;
在所述第二可用候选单时隙资源集合中,为所述数据包的前M次传输选择传输资源;
在所述第一可用候选单时隙资源集合中,为所述数据包的N-M次传输选择传输资源,N≥M≥1。
可选的,所述处理器2100在根据第二终端的非连续接收DRX配置,确定目标资源选择窗口之前,还用于:
获取第二终端的DRX配置;其中,所述第二终端的DRX配置至少包括:所述第二终端监听直通链路的持续时间和DRX的周期。
本公开提供的终端,根据第二终端的非连续接收DRX配置,确定目标资源选择窗口;并在所述目标资源选择窗口中,为数据包选择传输资源;将数据包的至少前M次传输资源处于目标时段内,其中目标时段为所述目标资源选择窗口与所述DRX配置的接收时段相重叠的时段,N≥M≥1,N为数据包的总传输次数;进一步在所述传输资源上向所述第二终端传输所述数据包。这样,充分考虑了第二终端的DRX配置对第一终端的初传和重传资源选择的影响,能够保证至少前M次选择的传输资源对应于第二终端的接收时间段对应,从而使第二终端能够在减少功耗的同时保证业务的可靠接收。
本领域技术人员可以理解,实现上述实施例的全部或者部分步骤可以通 过硬件来完成,也可以通过计算机程序来指示相关的硬件来完成,所述计算机程序包括执行上述方法的部分或者全部步骤的指令;且该计算机程序可以存储于一可读存储介质中,存储介质可以是任何形式的存储介质。
另外,本公开具体实施例还提供一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现上述的第一实施例中的方法的步骤。且能达到相同的技术效果,为避免重复,这里不再赘述。
此外,需要指出的是,在本公开的装置和方法中,显然,各部件或各步骤是可以分解和/或重新组合的。这些分解和/或重新组合应视为本公开的等效方案。并且,执行上述系列处理的步骤可以自然地按照说明的顺序按时间顺序执行,但是并不需要一定按照时间顺序执行,某些步骤可以并行或彼此独立地执行。对本领域的普通技术人员而言,能够理解本公开的方法和装置的全部或者任何步骤或者部件,可以在任何计算装置(包括处理器、存储介质等)或者计算装置的网络中,以硬件、固件、软件或者它们的组合加以实现,这是本领域普通技术人员在阅读了本公开的说明的情况下运用他们的基本编程技能就能实现的。
因此,本公开的目的还可以通过在任何计算装置上运行一个程序或者一组程序来实现。所述计算装置可以是公知的通用装置。因此,本公开的目的也可以仅仅通过提供包含实现所述方法或者装置的程序代码的程序产品来实现。也就是说,这样的程序产品也构成本公开,并且存储有这样的程序产品的存储介质也构成本公开。显然,所述存储介质可以是任何公知的存储介质或者将来所开发出来的任何存储介质。还需要指出的是,在本公开的装置和方法中,显然,各部件或各步骤是可以分解和/或重新组合的。这些分解和/或重新组合应视为本公开的等效方案。并且,执行上述系列处理的步骤可以自然地按照说明的顺序按时间顺序执行,但是并不需要一定按照时间顺序执行。某些步骤可以并行或彼此独立地执行。
以上所述是本公开的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本公开所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本公开的保护范围。

Claims (11)

  1. 一种数据传输方法,应用于第一终端,包括:
    根据第二终端的非连续接收DRX配置,确定目标资源选择窗口;
    在所述目标资源选择窗口中,为数据包选择传输资源;其中,所述数据包的至少前M次传输资源处于目标时段内,所述目标时段为所述目标资源选择窗口与所述DRX配置的接收时段相重叠的时段,N≥M≥1,N为数据包的总传输次数;
    在所述传输资源上向所述第二终端传输所述数据包。
  2. 根据权利要求1所述的数据传输方法,其中,所述根据第二终端的非连续接收DRX配置,确定目标资源选择窗口,包括:
    将n+T RX_on与n+T1中的最大值作为所述目标资源选择窗口的前沿,将n+T2作为所述目标资源选择窗口的后沿;
    其中,n+T RX_on为n时刻后第二终端的第一个on-duration的前沿,n为所述数据包的到达时刻或者资源重选时刻,n+T1为已确定的资源选择窗口的前沿,n+T2为已确定的资源选择窗口的后沿。
  3. 根据权利要求2所述的数据传输方法,其中,所述在所述目标资源选择窗口中,为数据包选择传输资源,包括:
    通过执行资源感知,从所述目标资源选择窗口中获取所有可用的候选单时隙资源的集合;
    在所述所有可用的候选单时隙资源的集合中的,时域位置处于所述目标时段的候选单时隙资源中,随机选择所述数据包的前M次传输资源;
    其中,所述目标时段的前沿为n+T RX_on与n+T1中的最大值,所述目标时段的后沿为n+T RX_end,n+T RX_end为n时刻后第二终端的第一个on-duration的后沿,n+T RX_end小于n+T2。
  4. 根据权利要求3所述的数据传输方法,其中,所述在所述目标资源选择窗口中,为数据包选择传输资源,还包括:
    在所述所有可用的候选单时隙资源的集合中为所述数据包选择N-M个传输资源;
    或者
    在所述所有可用的候选单时隙资源的集合中的,时域位置处于所述目标时段的后沿至n+T2时间段的候选单时隙资源中为所述数据包选择N-M个传输资源。
  5. 根据权利要求3所述的数据传输方法,其中,所述在所述目标资源选择窗口中,为数据包选择传输资源,还包括:
    在所述所有可用的候选单时隙资源的集合中,为所述数据包随机选择N个传输资源,直至确定所述N个传输资源中的前M个传输资源处于所述目标时段中时,完成资源选择;
    其中,所述目标时段的前沿为n+T RX_on与n+T1中的最大值,所述目标时段的后沿为n+T RX_end,n+T RX_end为n时刻后第二终端的第一个on-duration的后沿,n+T RX_end小于n+T2。
  6. 根据权利要求1所述的数据传输方法,其中,所述目标资源选择窗口包括第一资源选择窗口和第二资源选择窗口,所述第二资源选择窗口与所述目标时段对应;
    所述根据第二终端的非连续接收DRX配置,确定目标资源选择窗口,包括:
    将n+T RX_on与n+T1中的最大值作为所述第一资源选择窗口的前沿,将n+T2作为所述第一资源选择窗口的后沿;或者将n+T RX_end作为所述第一资源选择窗口的前沿,将n+T2作为所述第一资源选择窗口的后沿;
    将n+T RX_on与n+T1中的最大值作为所述第二资源选择窗口的前沿,将n+T RX_end作为所述第二资源选择窗口的后沿;
    其中,n+T RX_on为n时刻后第二终端的第一个on-duration的前沿,n+T RX_end为n时刻后第二终端的第一个on-duration的后沿,n为所述数据包的到达时刻或者资源重选时刻,n+T1为已确定的资源选择窗口的前沿,n+T2为已确定的资源选择窗口的后沿,n+T RX_end小于n+T2。
  7. 根据权利要求6所述的数据传输方法,其中,所述在所述目标资源选择窗口中,为数据包选择传输资源,包括:
    通过执行资源感知,从所述第一资源选择窗口中,获取第一可用候选单 时隙资源集合,从所述第二资源选择窗口中,获取第二可用候选单时隙资源集合;
    在所述第二可用候选单时隙资源集合中,为所述数据包的前M次传输选择传输资源;
    在所述第一可用候选单时隙资源集合中,为所述数据包的N-M次传输选择传输资源,N≥M≥1。
  8. 根据权利要求1所述的数据传输方法,其中,所述根据第二终端的非连续接收DRX配置,确定目标资源选择窗口之前,还包括:
    获取第二终端的DRX配置;其中,所述第二终端的DRX配置至少包括:所述第二终端监听直通链路的持续时间和DRX的周期。
  9. 一种终端,所述终端为第一终端,包括:收发机、存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其中,所述处理器执行所述计算机程序时实现如权利要求1至8中任一项所述的数据传输方法的步骤。
  10. 一种数据传输装置,应用于第一终端,包括:
    确定模块,用于根据第二终端的非连续接收DRX配置,确定目标资源选择窗口;
    资源选择模块,用于在所述目标资源选择窗口中,为数据包选择传输资源;其中,所述数据包的至少前M次传输资源处于目标时段内,所述目标时段为所述目标资源选择窗口与所述DRX配置的接收时段相重叠的时段,N≥M≥1,N为数据包的总传输次数;
    传输模块,用于在所述传输资源上向所述第二终端传输所述数据包。
  11. 一种计算机可读存储介质,其上存储有计算机程序,其中,该计算机程序被处理器执行时实现如权利要求1至8中任一项所述的数据传输方法的步骤。
PCT/CN2021/125903 2020-10-22 2021-10-22 一种数据传输方法、装置及终端 WO2022083769A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US18/249,951 US20230403681A1 (en) 2020-10-22 2021-10-22 Data transmission method, device and terminal
JP2023522929A JP7458558B2 (ja) 2020-10-22 2021-10-22 データ伝送方法、装置及び端末
KR1020237012917A KR20230067671A (ko) 2020-10-22 2021-10-22 데이터 전송 방법, 장치 및 단말
EP21882181.7A EP4236477A4 (en) 2020-10-22 2021-10-22 DATA TRANSMISSION METHOD AND APPARATUS, AND TERMINAL

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011140957.8 2020-10-22
CN202011140957.8A CN112272397B (zh) 2020-10-22 2020-10-22 一种数据传输方法、装置及终端

Publications (1)

Publication Number Publication Date
WO2022083769A1 true WO2022083769A1 (zh) 2022-04-28

Family

ID=74341789

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/125903 WO2022083769A1 (zh) 2020-10-22 2021-10-22 一种数据传输方法、装置及终端

Country Status (6)

Country Link
US (1) US20230403681A1 (zh)
EP (1) EP4236477A4 (zh)
JP (1) JP7458558B2 (zh)
KR (1) KR20230067671A (zh)
CN (1) CN112272397B (zh)
WO (1) WO2022083769A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115426070A (zh) * 2022-11-02 2022-12-02 浙江国利信安科技有限公司 用于进行时钟再同步的方法、设备和存储介质
JP2023529731A (ja) * 2021-01-12 2023-07-11 エルジー エレクトロニクス インコーポレイティド Nr v2xにおける資源割当モード2動作ベースのsl drxタイマー動作方法及び装置
WO2024096986A1 (en) * 2022-11-04 2024-05-10 Dell Products, L.P. Network resource allocation for energy-constrained devices

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112272397B (zh) * 2020-10-22 2022-09-27 大唐高鸿智联科技(重庆)有限公司 一种数据传输方法、装置及终端
US20240114486A1 (en) * 2020-12-24 2024-04-04 Beijing Xiaomi Mobile Software Co., Ltd. Method for selecting transmission resource, communication device, and storage medium
WO2022165843A1 (zh) * 2021-02-08 2022-08-11 Oppo广东移动通信有限公司 侧行传输方法和终端
EP4247088A4 (en) * 2021-03-11 2023-11-22 Guangdong Oppo Mobile Telecommunications Corp., Ltd. METHOD AND APPARATUS FOR SENDING INFORMATION, METHOD AND APPARATUS FOR RECEIVING INFORMATION, TERMINAL, AND STORAGE MEDIUM
CN115134879A (zh) * 2021-03-29 2022-09-30 大唐移动通信设备有限公司 一种传输处理方法、装置及终端
CN115150775A (zh) * 2021-03-30 2022-10-04 大唐高鸿智联科技(重庆)有限公司 车联网中的传输资源选择方法、装置及终端
CN115150899A (zh) * 2021-03-30 2022-10-04 维沃移动通信有限公司 旁链路资源处理、指示方法、装置、终端及网络侧设备
CN113099471A (zh) * 2021-04-01 2021-07-09 之江实验室 一种直连通信中候选资源集的确定方法
CN113099479B (zh) * 2021-04-01 2022-04-29 之江实验室 一种直连通信中确定感知时刻的方法
CN113099413B (zh) * 2021-04-02 2023-04-07 之江实验室 一种用于确定感知时隙的周期值的选取方法
CN115190652A (zh) * 2021-04-02 2022-10-14 大唐移动通信设备有限公司 资源感知方法、装置及存储介质
WO2022233048A1 (zh) * 2021-05-07 2022-11-10 Oppo广东移动通信有限公司 资源选择方法、装置、设备及存储介质
WO2022236633A1 (zh) * 2021-05-10 2022-11-17 富士通株式会社 边链路资源的重选方法及装置
WO2022252213A1 (zh) 2021-06-04 2022-12-08 Oppo广东移动通信有限公司 无线通信方法及设备
WO2022261899A1 (zh) * 2021-06-17 2022-12-22 Oppo广东移动通信有限公司 侧行链路的资源选择方法、装置、设备及存储介质
CN115550890B (zh) * 2021-06-29 2024-09-03 维沃移动通信有限公司 传输方法、装置、设备及介质
CN115604775A (zh) * 2021-07-09 2023-01-13 维沃移动通信有限公司(Cn) Sl处理方法、装置、终端及可读存储介质
CN115942273A (zh) * 2021-08-16 2023-04-07 大唐移动通信设备有限公司 资源感知方法、终端及计算机可读存储介质
CN116210332A (zh) * 2021-09-30 2023-06-02 北京小米移动软件有限公司 一种随机接入响应窗口的确定方法及其装置
CN118056458A (zh) * 2021-12-15 2024-05-17 Oppo广东移动通信有限公司 确定侧行传输资源的方法及相关装置
CN117880963A (zh) * 2022-09-30 2024-04-12 维沃移动通信有限公司 Sl资源分配方法、装置及终端

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101483891A (zh) * 2008-01-08 2009-07-15 株式会社Ntt都科摩 对用户设备设置激活期起始点的方法及装置
CN105379406A (zh) * 2014-05-21 2016-03-02 华为技术有限公司 一种设备到设备d2d通信中的信号传输方法及装置
CN107306423A (zh) * 2016-04-25 2017-10-31 电信科学技术研究院 一种进行业务传输的方法和终端
WO2018064477A1 (en) * 2016-09-30 2018-04-05 Intel IP Corporation Systems and methods for discontinuous reception in device-to-device communication
CN112272397A (zh) * 2020-10-22 2021-01-26 大唐高鸿数据网络技术股份有限公司 一种数据传输方法、装置及终端

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015143722A1 (zh) * 2014-03-28 2015-10-01 华为技术有限公司 信道接入控制方法、装置及相关设备
CN110972102B (zh) * 2018-09-28 2022-02-22 维沃移动通信有限公司 资源选择方法及终端
CN110972273B (zh) * 2018-09-28 2022-03-25 北京紫光展锐通信技术有限公司 传输资源配置选择方法、装置及终端
CN111586722B (zh) * 2019-02-15 2024-01-26 中信科智联科技有限公司 一种资源选择方法及终端
CN111757540B (zh) * 2019-03-29 2022-01-28 大唐高鸿智联科技(重庆)有限公司 一种触发资源重选的方法及终端
US20210227604A1 (en) 2020-01-21 2021-07-22 Asustek Computer Inc. Method and apparatus for monitoring device-to-device sidelink control signal in a wireless communication system
CN111480391B (zh) * 2020-03-13 2023-11-07 北京小米移动软件有限公司 直连链路数据传输方法、装置及存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101483891A (zh) * 2008-01-08 2009-07-15 株式会社Ntt都科摩 对用户设备设置激活期起始点的方法及装置
CN105379406A (zh) * 2014-05-21 2016-03-02 华为技术有限公司 一种设备到设备d2d通信中的信号传输方法及装置
CN107306423A (zh) * 2016-04-25 2017-10-31 电信科学技术研究院 一种进行业务传输的方法和终端
WO2018064477A1 (en) * 2016-09-30 2018-04-05 Intel IP Corporation Systems and methods for discontinuous reception in device-to-device communication
CN112272397A (zh) * 2020-10-22 2021-01-26 大唐高鸿数据网络技术股份有限公司 一种数据传输方法、装置及终端

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP4236477A4 *
VIVO: "Resource allocation for sidelink power saving", 3GPP DRAFT; R1-2005403, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20200817 - 20200828, 8 August 2020 (2020-08-08), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051917428 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023529731A (ja) * 2021-01-12 2023-07-11 エルジー エレクトロニクス インコーポレイティド Nr v2xにおける資源割当モード2動作ベースのsl drxタイマー動作方法及び装置
CN115426070A (zh) * 2022-11-02 2022-12-02 浙江国利信安科技有限公司 用于进行时钟再同步的方法、设备和存储介质
CN115426070B (zh) * 2022-11-02 2023-03-10 浙江国利信安科技有限公司 用于进行时钟再同步的方法、设备和存储介质
WO2024096986A1 (en) * 2022-11-04 2024-05-10 Dell Products, L.P. Network resource allocation for energy-constrained devices

Also Published As

Publication number Publication date
KR20230067671A (ko) 2023-05-16
EP4236477A1 (en) 2023-08-30
CN112272397A (zh) 2021-01-26
US20230403681A1 (en) 2023-12-14
EP4236477A4 (en) 2024-05-08
JP7458558B2 (ja) 2024-03-29
JP2023545194A (ja) 2023-10-26
CN112272397B (zh) 2022-09-27

Similar Documents

Publication Publication Date Title
WO2022083769A1 (zh) 一种数据传输方法、装置及终端
JP6575783B2 (ja) ユーザ端末の方法及びユーザ端末
US20220183075A1 (en) Method and apparatus for receiving target downlink signal, and device and system
CN102761942B (zh) 状态切换方法、非激活定时器启动方法和用户设备
US10342063B2 (en) Activation of DRX parameters
WO2021052057A1 (zh) 非连续接收drx数据传输方法、装置及存储介质
WO2013020417A1 (zh) 一种非连续接收方法及系统
WO2021244501A1 (zh) 通信方法及装置
WO2022148288A1 (zh) 直接通信接口的定时器维护方法、装置及可读存储介质
US20230074206A1 (en) Communication method, apparatus, and system
WO2020181943A1 (zh) 一种请求系统信息的方法及设备
EP4319283A1 (en) Communication method for sidelink interface, terminal device, and storage medium
CN104284348A (zh) 一种动态tdd配置的获取方法、基站及终端
WO2022152073A1 (zh) 省电处理方法、装置及设备
WO2022205174A1 (zh) 一种控制定时器的方法及装置、终端设备
CN115134943A (zh) 一种直通链路激活状态的处理方法及终端
WO2023088301A1 (zh) 一种资源选择方法、装置及终端
WO2022206665A1 (zh) 车联网中的传输资源选择方法、装置及终端
EP4274295A1 (en) Sidelink discontinuous reception configuration method and apparatus, device, and readable storage medium
EP4380281A1 (en) Method and apparatus for information transmission
CN116471574A (zh) 一种直通链路资源选择方法、装置及基站

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21882181

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023522929

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20237012917

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021882181

Country of ref document: EP

Effective date: 20230522