WO2022083719A1 - 手术机器人系统、调整方法、存储介质及终端 - Google Patents

手术机器人系统、调整方法、存储介质及终端 Download PDF

Info

Publication number
WO2022083719A1
WO2022083719A1 PCT/CN2021/125524 CN2021125524W WO2022083719A1 WO 2022083719 A1 WO2022083719 A1 WO 2022083719A1 CN 2021125524 W CN2021125524 W CN 2021125524W WO 2022083719 A1 WO2022083719 A1 WO 2022083719A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
adjustment
module
movement
joint
Prior art date
Application number
PCT/CN2021/125524
Other languages
English (en)
French (fr)
Inventor
郑阿勇
江磊
何超
Original Assignee
上海微创医疗机器人(集团)股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海微创医疗机器人(集团)股份有限公司 filed Critical 上海微创医疗机器人(集团)股份有限公司
Publication of WO2022083719A1 publication Critical patent/WO2022083719A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery

Definitions

  • the present application relates to the technical field of medical devices, and in particular, to a surgical robot system, an adjustment method, a storage medium and a terminal.
  • robotic surgery system for micro-invasive surgery not only reduces the trauma of the patient, but also reduces the postoperative recovery and wound infection. At the same time, it reduces the difficulty and fatigue of the doctor's operation and enhances the doctor's experience.
  • the purpose of the present application is to provide a surgical robot system, an adjustment method, a storage medium and a terminal, so as to avoid the problem that the movement space of the mechanical arm cannot meet the surgical requirements, and to expand the operating space range of surgical instruments.
  • the present application provides a surgical robot system, including a detection unit, an action unit, and a control unit connected to the detection unit and the action unit, the action unit including a carrier module and an adjustment module connected to each other, and the adjustment module is used for connecting Surgical instruments that act on the target object;
  • the detection unit detects movement information of any one of the carrying module, the adjustment module and the surgical instrument, and sends the detected movement information to the control unit;
  • the movement information of the surgical instrument includes pre-movement position information;
  • the control unit generates the adjusted position information of the carrying module according to the movement information of the carrying module and the pre-movement position information of the surgical instrument, so as to drive the carrying module
  • the module adjusts the carrying orientation
  • the control unit generates a control instruction according to the movement information of the adjustment module to drive at least one of the carrying module and the adjustment module to move, so as to adjust at least one of the position or posture of the surgical instrument, Then, the fixed point is located at a desired position; wherein, the fixed point is a virtual intervention point defined on the body surface of the target object after the surgical instrument acts on the target object.
  • the beneficial effect of the surgical robot system of the present application is that: the control unit generates the adjustment position information of the carrying module according to the movement information of the carrying module and the position information before the movement of the surgical instrument, so as to drive the carrying module
  • the module adjusts the carrying orientation, and then performs motion path traversal and optimal path screening according to the movement information of the adjustment module combined with the pose adjustment control information, and judges according to the result of the optimal path screening combined with the constraint convergence information Whether it can converge to drive the adjustment module to drive the surgical instrument to adjust to a desired position, avoid the problem that the movement space of the robotic arm cannot meet the surgical needs, and expand the operating space range of the surgical instrument.
  • the surgical robot system further includes a storage unit for storing pose adjustment control information and constraint convergence information; the control unit combines the pose adjustment control information according to the movement information of the adjustment module with the pose adjustment control information.
  • the motion path traversal and optimal path screening are performed, and whether the result of the optimal path screening is converged is judged according to the constraint convergence information, so as to drive the adjustment module to drive the surgical instrument to adjust to a desired position.
  • the adjustment module includes a plurality of joints and a plurality of joint motors corresponding to the plurality of joints; when the control unit determines that the result of the optimal path screening is non-convergence, the The plurality of joint motors drive the plurality of joints to perform joint adjustment; the detection unit detects the adjusted movement information of the plurality of joints and sends it to the control unit; The movement information of the plurality of joints is combined with the pose adjustment control information to perform the motion path traversal and the optimal path screening until the result of the optimal path screening is determined to be convergence according to the constraint convergence information.
  • control unit performs the motion path traversal by combining at least one of limit recognition, collision detection, fixed fixed point and the posture of the surgical instrument, and performs the motion path traversal according to the movement of the plurality of joint motors.
  • the angle information establishes a heuristic function and a cost function to screen the optimal path.
  • the storage unit is further configured to store heuristic function weight information, and the control unit obtains a convergence judgment function according to the heuristic function, the cost function and the heuristic function weight information, so as to obtain a convergence judgment function according to the convergence The judgment function judges whether the result of the optimal path screening is convergent.
  • control unit includes a comparison module, the comparison module generates the desired position information of the fixed point according to the position information of the fixed point before moving, and according to the adjusted position information of the carrier module and the positive position information.
  • the kinematics principle obtains the fixed point position information adjusted by the carrier module from the position information of each joint of the adjustment module, and then according to the expected position information of the fixed point and the fixed point adjusted by the carrier module The position information generates position deviation information of the fixed point.
  • the comparison module converts the pre-movement position information of the fixed point into the desired position information of the fixed point according to the coordinate transformation rule, so that the pre-movement position information of the fixed point and The desired position information of the fixed point is located in the same reference coordinate system.
  • control unit further includes a planning module, the planning module obtains the position deviation information of the fixed point and the movement information of the carrying module, and according to the position deviation information of the fixed point and The movement information of the carrying module generates adjustment position information of the carrying module, so as to drive the carrying module to adjust the carrying orientation.
  • the adjustment module further includes a plurality of robotic arms, and a plurality of joints of the adjustment module are arranged on the multiple robotic arms, and the planning module converges the information according to the constraint and the fixed point.
  • the position deviation information of the adjustment module, the movement information of the multiple joints of the adjustment module, and the distance information between the adjacent robotic arms construct the cost function, so that the movement change value of the end of the surgical instrument is within the desired range, And the adjusted position information of the fixed point is consistent with the expected position information of the fixed point.
  • the planning module constructs the cost function according to the position deviation function of the fixed point, the end joint attitude deviation function, the distance function and the limit function.
  • the constraint convergence information includes a first adjustment factor
  • the planning module constructs a position deviation function of the fixed point according to the first adjustment factor and the position deviation information of the fixed point.
  • the constraint convergence information includes a second adjustment factor
  • the movement information of the plurality of joints includes position deviation information of the end joints
  • the planning module is based on the second adjustment factor and the end joints.
  • the position deviation information constructs the end joint attitude deviation function.
  • the robotic arm includes an adjustment arm having an adjustment motor
  • the constraint convergence information includes vector information between adjacent adjustment arms and connections between adjacent adjustment motors of the same robot arm.
  • the vector information of the line, the planning module constructs the distance function according to the vector information of the adjacent adjustment arms and the vector information of the connection lines of the adjacent adjustment motors of the same robot arm, so as to prevent adjacent adjustment Collision between arms.
  • the constraint convergence information includes a third adjustment factor
  • the movement information of the plurality of joints includes a full range of motion deviation of each joint
  • the planning module is based on the third adjustment factor and the each joint.
  • the full range of motion deviation of each joint constructs the limit function.
  • the movement information of each joint includes maximum movement position information of each joint
  • the movement information of the multiple joints includes the full range of motion of each joint and the adjusted position information of the multiple joints
  • the adjusted position information of each joint includes the upper limit threshold of the limit range of each joint
  • the planning module calculates the upper limit threshold of the limit range of each joint according to the maximum movement position information of each joint and the full range of motion .
  • the movement information of each joint includes the minimum movement position information of each joint
  • the adjusted position information of the multiple joints further includes the lower limit threshold of the limit range of each joint
  • the planning module is based on the The minimum moving position information of each joint and the full range of motion calculate the lower limit threshold of the limit range of each joint.
  • the storage unit is further configured to store weight information
  • the movement information of the multiple joints includes the current position information and expected position information of the multiple joints
  • the planning module is based on the weight information
  • the heuristic function is constructed from the current position information and expected position information of the plurality of joints, and the position deviation information of the fixed point.
  • the surgical robot system further includes an interventional device disposed on the target object, the surgical instrument acts on the target object through the interventional device, and the detection unit further detects the surgical instrument
  • the end position information of the surgical instrument and the end position information of the interventional device are sent to the comparison module, the comparison module stores a reference threshold, and the comparison module is based on the end position information of the surgical instrument and the end of the intervention device.
  • the position information calculates the end deviation, and judges whether to drive the carrier module to change the working position according to the reference threshold.
  • the present application also provides a method for adjusting the surgical robot system, including:
  • the movement information of the surgical instrument includes pre-movement position information
  • a control command is generated according to the movement information of the adjustment module to drive at least one of the carrying module and the adjustment module to move, so as to adjust at least one of the position or posture of the surgical instrument, so as to prevent the
  • the moving point is located at a desired position; wherein, the fixed point is a virtual intervention point defined on the body surface of the target object after the surgical instrument acts on the target object.
  • the adjustment position information of the carrying module is generated by the control unit according to the movement information of the carrying module, the position information before the movement of the surgical instrument and the carrying adjustment information, so as to drive the
  • the carrying module adjusts the carrying orientation to drive the adjusting module to drive the surgical instrument to adjust to a desired position, which avoids the problem that the movement space of the robotic arm cannot meet the surgical requirements, and expands the operating space of the surgical instrument.
  • control command is generated according to the movement information of the adjustment module, so as to drive at least one of the carrying module and the adjustment module to move, so as to adjust the position or posture of the surgical instrument. at least one of , so that the fixed point is located at the desired position, including:
  • the constraint convergence information it is determined whether the result of the optimal path screening is converged, so as to drive the adjustment module to drive the surgical instrument to adjust to a desired position.
  • the adjustment module includes a plurality of joints and a plurality of joint motors corresponding to the plurality of joints;
  • the determining whether the result of the optimal path screening is converged according to the constraint convergence information includes:
  • the plurality of joints are driven by the plurality of joint motors to perform joint adjustment;
  • the motion path traversal and the optimal path screening are performed according to the adjusted movement information of the plurality of joints in combination with the pose adjustment control information, until the optimal path screening result is determined according to the constraint convergence information for convergence.
  • the present application also provides a storage medium on which a computer program is stored, wherein when the computer program is executed by a processor, the adjustment method described in the above embodiments is implemented.
  • the present application also provides a terminal, including a processor and a memory;
  • the memory is used to store computer programs
  • the processor is configured to execute the computer program to implement the adjustment method as described in the above embodiments.
  • FIG. 1a is a schematic diagram of a working state of a surgical robot system according to an embodiment of the application
  • Fig. 1b is a schematic diagram of the operation flow of the surgical robot system according to the embodiment of the application;
  • Figure 2a is a schematic view of the working state of the patient operating platform shown in Figure 1a;
  • Fig. 2b is a schematic diagram of the working state of the robotic arm and the surgical instrument shown in Fig. 2a;
  • FIG. 3 is a schematic diagram of a working state of a patient operating platform according to other embodiments of the present application.
  • Fig. 4a is a schematic diagram of a working state of the surgical instrument shown in Fig. 2a;
  • Fig. 4b is a schematic diagram of another working state of the surgical instrument shown in Fig. 2a;
  • Fig. 5 is a flowchart of the compensation algorithm of the robotic arms other than the robotic arm where the restricted joint is located after the surgical robot system shown in Fig. 1a calculates the adjustment path of the base of the trolley;
  • FIG. 6 is a structural block diagram of a surgical robot system according to an embodiment of the application.
  • FIG. 7 is a schematic diagram of the working state of the robotic arm and the surgical instrument according to some embodiments of the present application.
  • the embodiment of the present application provides a surgical robot system, which can automatically follow after the operator adjusts the trolley to adjust the base of the surgical robot, and control the mechanical arm to follow, thereby expanding the range of surgical instruments. accessible operating space.
  • FIG. 1a is a schematic diagram of a working state of a surgical robot system according to some embodiments of the present application.
  • the surgical robot system 1 includes a doctor console 11 , a patient surgical platform 12 and an image section 13 .
  • the doctor console 11 is the operation end of the surgical robot system 1 .
  • the patient operating platform 12 is a specific execution platform of the surgical robot system 1 to act on the target object 15 defined on the operating table 14 , such as a patient.
  • the image section 13 is used to display images inside the target subject during surgery.
  • FIG. 1b is a schematic diagram of an operation flow of a surgical robot system according to some embodiments of the present application. 1a and 1b, the operation flow of the surgical robot system 1 includes:
  • the doctor remotely operates the patient operating platform 12 through the doctor console 11 to perform a doctor operation on the target object 15, so as to perform a doctor operation on the target object 15 through the surgical instrument (not marked in the figure) connected to the end of the patient operating platform 12.
  • the target subject 15 undergoes surgery.
  • the doctor's console 11 and/or the image unit 13 interactively prompt to prompt the doctor whether to adjust.
  • the patient operating platform 12 enters the joint adjustment preparation stage, and the surgical robot system 1 performs joint information detection on the patient operating platform 12 to obtain the position information of each joint.
  • the doctor may choose whether to use the interactive prompt to make adjustments before the operation is performed.
  • the surgical robot system 1 performs motion path traversal according to the position information of each joint, and performs optimal path screening in combination with pose adjustment control information; Filter out the corresponding adjustment path.
  • each joint of the patient operating platform 12 enters the adjustment end stage, that is, after the convergence, after the joint movement is completed, the adjustment end stage is entered.
  • the doctor performs interactive feedback through the doctor console 11 and/or the image unit 13 for further confirmation, thereby completing the adjustment of each joint of the patient operating platform 12 .
  • the surgical robot system 1 sends motion commands of each joint to control the motors of each joint, and the motors of each joint perform joint adjustment according to the corresponding motion commands and then repeatedly perform joint information detection, motion path traversal and The optimal path is screened until it is judged that convergence can be performed according to the results of the optimal path screening combined with the constraints. That is, the surgical robot system calculates the solution path, and after convergence according to the calculation result, sends the final command to the motor for execution.
  • the surgical robot system 1 performs path planning by combining various elements of limit recognition, collision detection, fixed fixed point, and surgical instrument posture, and establishes a heuristic function according to the motor angles of each joint of the robot and cost function, so as to achieve a more accurate and safe joint adjustment scheme. Further, on the basis of the heuristic function and the cost function, the information including the weight relationship is further combined to realize optimal path planning.
  • the fixed fixed point is a virtual fixed point selected in space according to the surgical environment and other factors, and is not actually limited to the robotic arm or the surgical instrument. During the actual surgical operation, the fixed fixed point needs to coincide with the position of the wound on the target object, so as to avoid secondary injury to the patient.
  • the adjustment scheme focuses on or preferably adjusts/restricted The range of change of the joint to ensure the safety of the operation; if it is judged that the limited joint in the movement process is close to the target position to which the joint needs to be adjusted, the adjustment plan focuses on or preferably avoids collisions and fixed points between the robotic arms on the path The posture of the end of the surgical instrument remains unchanged to ensure the speed and safety of the adjustment process.
  • the doctor console 11 includes a main operator (not shown in the figure), and the doctor remotely controls the operation of the surgical instrument by operating the main operator.
  • the patient operating platform 12 includes a robotic arm (as in the robotic arm 24 in Figure 2a below) mounted on a carrier module.
  • the carrying module is a trolley (the trolley 23 in Fig. 2a below).
  • FIG. 2a is a schematic diagram of the working state of the patient operating platform shown in FIG. 1a.
  • FIG. 2b is a schematic view of the working state of the robotic arm and the surgical instrument shown in FIG. 2a.
  • the patient operating platform 12 includes a plurality of robotic arms 21 mounted on a trolley 23 and a surgical instrument 22 mounted on the end of the robotic arm 21 , and the surgical instrument 22 acts on the body of the target object 15 the lesion area.
  • the robotic arm 21 includes a tool arm 24 and an adjustment arm 25 that are connected to each other, and the surgical instrument 22 is mounted or detachably connected to the end of the tool arm 24 .
  • the number of robotic arms provided on the trolley 23 is at least two.
  • the trolley 23 has at least two degrees of freedom.
  • the trolley 23 can move horizontally and vertically.
  • the direction of the horizontal movement is a direction close to or away from the operating table 14
  • the direction of the vertical movement is parallel to the extending direction of the operating table, that is, the height direction of the operating table.
  • the cart 23 can also be rotated, and the direction of the rotation is the pitch and yaw directions relative to the horizontal plane where the operating table 14 is located.
  • the patient surgical platform 12 includes a plurality of sub-patient surgical platforms.
  • the sub-patient surgical platform includes a sub-carrying module, and more specifically, the sub-carrying module includes an independent cart. That is, in some real-time examples, there are multiple patient operating tables, and each patient operating table is provided with a robotic arm.
  • the tool arm 24 has a predetermined mapping relationship with the master operator (not shown in the figure) disposed on the control end 11, thereby forming a master-slave relationship, and the tool arm 24 operates according to the master
  • the surgical instrument 22 can be moved around the fixed point by the movement of the hand (not shown in the figure), so as to perform the relevant surgical operation on the lesion area.
  • the surgical instrument 22 is used to perform specific surgical operations, such as operations such as clipping, cutting, and shearing.
  • the adjustment arm 25 includes at least three joints for controlling the surgical instrument 22 to pass through the fixed point.
  • the tool arm 24 includes at least three joints for controlling the position and posture of the end of the surgical instrument 22 .
  • the tool arm 24 includes a first joint 241, a second joint 242, a third joint 243 and a fourth joint 244 connected in sequence, and the fourth joint 244 is used for hanging
  • the surgical instrument 22 is loaded, and the surgical instrument 22 can move along the fourth joint 244 .
  • the adjusting arm 25 includes a first rotating joint 251 , a second rotating joint 252 , a third rotating joint 253 and a fourth rotating joint 254 connected in sequence, and the first joint 241 can be opposite to the fourth rotating joint 254 rotate.
  • Each joint of the adjusting arm 25 also includes an adjusting motor (not marked in the figure) for driving the joint movement of each adjusting arm.
  • the joints of the tool arm 24 and the connecting arms between adjacent joints form a parallelogram structure, so as to constrain the movement of the surgical instrument 22 around the fixed point, so that the fixed point will not be affected by the tool arm, and
  • the position of the fixed point can be adjusted by adjusting the arm.
  • the fixed point is constrained here because the fixed point needs not to be affected by the tool arm, but it can be adjusted by adjusting the arm, so the fixed point position needs to be adjusted with the adjusting arm, and the tool arm does not affect the fixed point position.
  • FIG. 3 is a schematic diagram of a working state of a patient operating platform according to other embodiments of the present application.
  • Each of the sub-patient operating platforms 31 includes an independent trolley 311 and a robotic arm 21 disposed on the independent trolley 311 .
  • the surgical robot system 1 further includes an intervention device, and the surgical instrument 22 acts on the target object through the intervention device, such as the stamp 42 in FIG. 4 a .
  • Fig. 4a is a schematic diagram of a working state of the surgical instrument shown in Fig. 2a.
  • Fig. 4b is a schematic diagram of another working state of the surgical instrument shown in Fig. 2a.
  • the surgical instrument 22 acts on the first lesion area through the stamp 42 set on the body surface 41 of the target object 43 , the tool arm 24 drives the surgical instrument 22 to move within the body of the target object 15 in the first operation space 45 , so as to realize the treatment of the first lesion area 43 .
  • Figure 5 is a flowchart of the compensation algorithm of the robotic arm except the robotic arm where the restricted joint is located after the surgical robot system shown in Figure 1a calculates the base adjustment path of the trolley. Since the adjustment of the restricted joint focuses on adjusting the movement of the joint The range may affect the motion space of other arms or joints during the adjustment process, so other arms need compensation algorithms to compensate for the influence caused by the adjustment of restricted joints. That is, the adjustment of restricted joints focuses on adjusting the range of motion of the joints, which may affect the motion space of other robotic arms or joints during the adjustment process, so other robotic arms need compensation algorithms to compensate for the effects caused by adjusting the restricted joints.
  • the surgical robot system 1 records the position of the current fixed point and the position of each joint of the robotic arm 21, and then iteratively calculates the step length to Obtain the desired step size information of each adjustment motor used to drive the adjustment arm 25 and the tool arm 24, and calculate the movement information of each joint according to the desired step size information; then combine the constraints of the joint and the mechanical arm according to the above information
  • the convergence information calculates the cost function, heuristic function and weight function, and further obtains the convergence judgment function; according to the convergence judgment function, it is judged whether each joint of the adjustment arm 25 can reach the target position, so as to promote the surgical instrument to reach the target operation area or lesion area.
  • constraint convergence information here is mainly aimed at constraining all the robotic arms and joints of the robot.
  • each adjustment command is sent to the adjustment motor of each adjustment arm 25 to drive the joint adjustment; when it is judged that the target position cannot be reached, the expected movement information of each joint is recalculated until the machine is judged according to the constructed convergence judgment function.
  • Each joint of the arm 25 can reach the target position. Therefore, through the compensation algorithm flow shown in FIG. 5 , the fixed point of the current manipulator can be moved to the desired position, that is, the original fixed point position, so as to adjust the posture of the fixed point to the original state.
  • FIG. 6 is a structural block diagram of a surgical robot system according to some embodiments of the present application.
  • the surgical robot system 6 includes a detection unit 61 , a storage unit 62 , a control unit 63 and an action unit 64 .
  • the control unit 63 includes a comparison module 631 and a planning module 632 .
  • the action unit 64 includes a carrier module and an adjustment module connected in sequence, and the free end of the adjustment module is connected with the surgical instrument 22 to drive the surgical instrument 22 to act on the target object.
  • the carrier module includes the trolley 23
  • the adjustment module includes the adjustment arm 25 and the tool arm 24 .
  • the detection unit 61 includes an encoder, which is arranged in each joint of the patient operating platform 12 to detect motion information of each joint.
  • the control unit 63 is arranged in the doctor console 11 and is connected to the detection unit 61 , the storage unit 62 and the action unit 64 in communication. In some embodiments, the control unit 63 is disposed in the trolley, or partially disposed in the trolley and partially disposed in the doctor's console, which is not limited in this application.
  • control unit 63 is a computer, configured to receive the motion information of each joint obtained by the detection unit 61, and control the execution of the motion of each joint according to the constraint convergence information.
  • the surgical robot system performing the adjustment process includes: acquiring the adjustment position information of the carrier module through the detection unit 61 , starting to follow the adjustment instruction, and driving the carrier module and the adjustment through the control unit 63 according to the instruction. At least one of the modules moves; the detection unit 61 acquires the movement information of any one of the carrier module, the adjustment module and the surgical instrument 22, and feeds it back to the control unit 63; The movement information of the surgical instrument 22 includes the pre-movement position information of the surgical instrument 22, and the storage unit 62 stores constraint convergence information; the control unit 63 according to at least one of the carrying module and the adjustment module The movement information and the pre-movement position information of the surgical instrument 22 generate the adjustment position information of the carrier module to drive the carrier module to adjust the carrier orientation, and then according to the adjustment motion information of the carrier module, the operation The movement information of at least one of the module, the adjustment module, and the constraint convergence information generate adjustment position information of the adjustment module, thereby driving the adjustment module to drive the surgical instrument 22 to adjust to a desired position.
  • the operator generates the adjustment position information of the trolley 23 through the control unit 63 to adjust the base of the trolley 23 and adjust the carrying orientation of the surgical instrument.
  • the control unit 63 According to the adjustment position information of the trolley 23, the adjustment arm 25 and the tool arm 24 are controlled to follow, so as to control the spatial position of the fixed point to remain unchanged, and at the same time expand the operable space of the restricted joint to allow The distal end of surgical instrument 22 is moved to a desired position, eg, to a target lesion area.
  • whether the surgical instrument 22 needs to be retracted from the stamp 42 or the surgical instrument 22 needs to be removed can be determined by the operator according to the actual situation. choose.
  • the surgical instrument 22 in order to avoid undesired contact between the end of the surgical instrument 22 and the organ tissue, the surgical instrument 22 is retracted to the poke 42 or removed, and the adjustment is completed before the surgical instrument 22 is adjusted.
  • the control unit 63 controls the surgical instrument 22 to extend out of the stamping card 42 and move to a desired position.
  • the adjustment arm is driven by the control unit 63 Before each joint movement of the tool arm 25 and the tool arm 24, the control unit 63 detects and judges the surgical instrument 22 and the stamping card 42 to confirm that the surgical instrument 22 is recovered into the stamping card 42, Prevent secondary damage to the target object 15 due to the movement of the trolley 23 .
  • detection and judgment specifically include:
  • the detection unit 61 collects the end position information of the surgical instrument 22 and the end position information of the stamp card 42 and sends them to the comparison module 631;
  • the comparison module 631 calculates the end deviation of the surgical instrument 22 and the stamp 41 from the expected position according to the end position information of the surgical instrument 22 and the end position information of the stamp 42;
  • the comparison module 631 compares the end deviation with the reference threshold stored in the storage unit 62 to determine whether the end deviation is smaller than the reference threshold;
  • the comparison module 631 determines that the end deviation is greater than or equal to the reference threshold, once the operator tries to move the trolley 23, the trolley 23 cannot move, and the comparison module 631 passes the The image unit 13 prompts the operator to check the status of the stamp 42 and the surgical instrument 24 and collect them into the stamp 42 by prompting the operator with the information "whether to move the cart or not".
  • the adjustment of the surgical robot is performed while the surgical instrument 22 remains in the mode of staying in the body.
  • the movement information of the surgical instrument 22 acquired by the control unit 63 includes the surgical instrument The position information before the movement of the surgical instrument 22 and the position information after the movement of the surgical instrument 22.
  • the pre-movement position information of the surgical instrument 22 includes the pre-move position information of the fixed point and the end position and posture information of the surgical instrument 22 before the movement.
  • the post-movement position information of the surgical instrument 22 is obtained by calculating the post-movement position information of the fixed point and the post-movement position and posture information of the surgical instrument through the adjustment position information of the trolley base obtained by the control unit 63 .
  • the center of the second lesion area 46 can be used as the position of the target point after the movement of the surgical instrument 22 .
  • the post-movement position of the surgical instrument 22 can be specified by the operator through the interactive interface, and the control unit 63 sets the movement direction of the end of the surgical instrument 22 as: the surgical The line connecting the end position of the instrument 22 before the movement and the target point designated by the operator can display the recommended adjustment path on the display device.
  • those skilled in the art can also define the distance and direction of the adjusted instrument end of the surgical instrument 22 relative to the current surgical instrument end as the recommended path.
  • the comparison module 631 generates the expected position information of the fixed point according to the position information of the fixed point before moving, and the expected position information of the fixed point is generated according to the adjusted position information of the carrier module and the principle of positive kinematics.
  • the position of each joint of the adjustment module is calculated to obtain the fixed point position adjusted by the carrier module, and then the fixed point position after adjustment by the carrier module is generated according to the expected position information of the fixed point and the position of the fixed point after adjustment by the carrier module.
  • the deviation information of the moving point is used to ensure the accurate positioning of the fixed point position.
  • the comparison module 631 converts the pre-movement position information of the fixed point into the expected position information of the fixed point in the coordinate system of the operating table 14 according to the coordinate transformation rule, so that the fixed point is not moved.
  • the pre-movement position information of the point and the expected position information of the fixed point are consistent with respect to the same reference coordinate system.
  • the same reference coordinate system is based on the operating table 14 .
  • the planning module 632 obtains the position deviation information of the fixed point and the movement information of the carrying module, and obtains the position deviation information of the fixed point and the movement information of the carrying module according to the position deviation information of the fixed point and the movement information of the carrying module.
  • the adjustment position information of the carrying module is generated to drive the carrying module to adjust the carrying orientation.
  • the working position is changed by the control unit 63
  • the detection unit 61 collects the movement information of the trolley 23 and sends it to the comparison module 631 and the planning module 632
  • the movement information of the trolley 23 is At least one of horizontal movement information, vertical movement information and rotation information of the base of the trolley 23 relative to the operating table 14 is included.
  • the comparison module 631 obtains the position change of the fixed point (not marked in the figure) relative to the operating table 14 according to the movement information of the trolley 23, and generates the deviation between the current position of the fixed point and the desired position. information and sent to the planning module 632 .
  • the planning module 632 acquires the position deviation information of the fixed point and the movement information of the trolley 23, and according to the position deviation information of the fixed point and the position deviation information of the trolley 23 The movement information generates adjustment position information of the trolley 23 to drive the trolley 23 to adjust the carrying orientation.
  • the planning module 632 drives the drive motor of the trolley 23 to adjust the base of the trolley 23 with a fixed adjustment range as the target.
  • the carrying adjustment information includes the expected step size information S of each carrying motor.
  • Expected step size information Specifically, the comparison module 631 calculates the expected step size information S of each carrying motor according to formula 1.
  • Formula 1 is specifically:
  • P r is the motion range of each base joint
  • counts is the adjusted cadence of each base joint stored in the storage unit 62 .
  • counts is not less than 100.
  • the fixed point is ensured. While the position remains unchanged, the position and posture changes of the end of the surgical instrument 22 are kept within a small range, so as to ensure the safety of the operation.
  • the first rotation joint 251 , the second rotation joint 252 , the first rotation joint 252 , and the first rotation joint 252 of the adjustment arm 25 are adjusted in sequence according to the degrees of freedom of each mechanical arm of the adjustment arm 25 .
  • the adjustment distance that needs to be compensated between the three rotating joints 253 and the fourth rotating joint 254 is to ensure that the change of the posture of the end of the surgical instrument 22 is within a small range through the tool arm 24, and at the same time to ensure the fixed point position constant.
  • control The unit 63 performs iterative adjustment of the next joint until the adjustment requirements are met.
  • the base motors that drive the trolley 23 are the first base motor B1 and the second base motor B2 in sequence
  • the adjustment motors that drive the adjustment arm 25 are the first suspension motor Z1 and the second base motor B2 in sequence.
  • the second suspension motor Z2 and the third suspension motor Z3, the motors for driving the joints of the tool arm 24 are the first motor T1, the second motor T2, the third motor T3 and the fourth motor T4 in sequence.
  • the surgical instrument 22 cannot be guaranteed to reach the target operation area
  • the first base motor B1 maintains the current position
  • the first base motor Adjust the second base motor B2 on the basis of the current position information of the motor B1, and traverse the path of the adjustment arm 25 and the working arm 24 according to the different degrees of reversal of the second base motor B2, until It is ensured that the surgical instrument 22 can reach the target operation area; for example, after adjusting the second base motor B2 to a set position (eg, one step), it is still not guaranteed that the surgical instrument 22 can reach the target operation area, and the second base motor B2 cannot be guaranteed to reach the target operation area.
  • the base motor B2 maintains the current position, and the first suspension motor Z1 is adjusted based on the current position information of both the first base motor B1 and the second base motor B2.
  • the number of robotic arms carried by each trolley is at least 2.
  • the adjustment distance between adjacent adjustment arms and working arms also needs to be considered to prevent collision.
  • the movement information of the adjustment module includes the movement information of the plurality of joints and the distance information between adjacent adjustment arms
  • the planning module 632 determines that after the trolley 23 is adjusted, it converges the information according to the constraint , the position deviation information of the fixed point, the movement information of the multiple joints, and the distance information between the adjacent adjustment arms to construct a cost function, which is accurate through position judgment, collision detection and fixed fixed points.
  • the trajectory is planned so that the movement change value of the end of the surgical instrument 22 is within a desired range, and the adjusted position information of the fixed point is consistent with the expected position information of the fixed point.
  • the constraint convergence information includes a first adjustment factor
  • the planning module 632 constructs a position deviation function of the fixed point according to the first adjustment factor and the position deviation information of the fixed point .
  • the planning module 632 calculates the position deviation function ⁇ i of the fixed point according to formula 2 .
  • the formula 2 is specifically:
  • ⁇ j is the positional deviation of the fixed point
  • ⁇ ⁇ is the first adjustment factor
  • j is the number of robotic arms loaded on the trolley 23 .
  • the convergence constraint information includes a fixed point related threshold.
  • the first adjustment factor is assigned as: 0; the planning module 632 assigns the value of the first adjustment factor to 1 after judging that the positional deviation of the fixed point is less than the fixed point related threshold.
  • the constraint convergence information includes a second adjustment factor
  • the movement information of the multiple joints includes position deviation information of the end joints
  • the planning module 632 according to the second adjustment factor and the end The position deviation information of the joints constructs the end joint attitude deviation function.
  • the planning module 632 calculates the terminal attitude deviation function ⁇ i according to formula 3.
  • the formula 3 is specifically:
  • ⁇ j is the end attitude deviation of the tool arm 24
  • ⁇ ⁇ is the second adjustment factor
  • the constraint convergence information includes a first attitude-related threshold.
  • the second adjustment factor is assigned a value of 0, and the planning module judges that the end posture deviation is less than the After the first attitude-related threshold, the second adjustment factor is assigned a value of 1.
  • the constraint convergence information includes vector information between adjacent adjustment arms and vector information of the connection between adjacent adjustment motors of the same manipulator, and the planning module 632 is based on the vector information of the adjacent adjustment arms.
  • the information and the vector information of the wires of the different adjustment motors construct a distance function to prevent collisions between adjacent adjustment arms.
  • the planning module 122 uses formula 5 to construct the distance function ⁇ i .
  • the formula 5 is specifically:
  • ⁇ j is the collision condition parameter between adjacent manipulators, preferably the distance between adjacent manipulators, specifically
  • the base frame is a coordinate system with the operating table 14 as a reference.
  • the convergence constraint information further includes a third adjustment factor
  • the movement information of the multiple joints includes the deviation of the full range of motion of each joint
  • the planning module is based on the third adjustment factor and the The limit function is constructed based on the deviation of the full range of motion of each joint.
  • the planning module 122 calculates the limit function ⁇ i according to formula 4.
  • the formula 4 is specifically:
  • v j is the deviation of the full motion range of each joint
  • ⁇ ⁇ is the third adjustment factor
  • m is the number of motors provided in the robotic arm.
  • the constraint convergence information includes a second attitude-related threshold.
  • the third The adjustment factor is assigned a value of 0, and the planning module assigns a value of 1 to the third adjustment factor after judging that the deviation of the full range of motion of each joint is less than the second attitude-related threshold.
  • the movement information of each joint includes the maximum movement position information of each joint
  • the movement information of the multiple joints includes the full range of motion of each joint
  • the adjusted position information of the multiple joints includes the The upper limit threshold of the limit range of each joint
  • the planning module calculates the upper limit threshold of the limit range of each joint according to the maximum movement position information of each joint and the full range of motion.
  • the upper threshold of the limit range of the single kinematic joint is P max -20% ⁇ Pr , where P max is the maximum movement position of the single kinematic joint, and Pr is the full motion range of the single kinematic joint.
  • the movement information of each joint includes the minimum movement position information of each joint
  • the adjusted position information of the multiple joints also includes the lower limit threshold of the limit range of each joint
  • the planning module The lower limit threshold of the limit range of each joint is calculated according to the minimum moving position information of each joint and the full range of motion.
  • the lower limit threshold of the limit range of the single kinematic joint is P min +20% ⁇ Pr
  • P min is the minimum moving position of the single kinematic joint.
  • P max is 80
  • P min is -80
  • Pr is 160
  • the planning module 632 constructs a cost function according to the position deviation function of the fixed point, the end joint attitude deviation function, the distance function and the limit function.
  • the planning module 632 constructs the cost function g(n) by formula 6.
  • the formula 6 is specifically:
  • n is the number of the actuators.
  • the constraint convergence information further includes weight information
  • the movement information of the multiple joints includes current position information and expected position information of the multiple joints
  • the planning module 632 according to the weight information , the current position information and expected position information of the plurality of joints, and the position deviation information of the fixed point to construct a heuristic function.
  • the constraint convergence information further includes the weight information of the heuristic function
  • the planning module 632 constructs a convergence judgment function according to the cost function, the heuristic function and the weight information of the heuristic function to judge whether to
  • the adjustment driving part sends a convergence instruction, so as to drive the plurality of joints to drive the surgical instrument 22 to adjust to a desired position.
  • the planning module 122 calculates the heuristic function h(n) by formula 7.
  • the formula 7 is specifically:
  • is the weight information
  • ⁇ c is the current position information of each joint of the robotic arm
  • ⁇ t is the desired position information of each joint of the robotic arm
  • ⁇ j is the position deviation of the fixed point.
  • the constraint convergence information includes weight information of the heuristic function.
  • the planning module 632 establishes the convergence judgment function according to the cost function, the heuristic function, and the weight information of the heuristic function.
  • the planning module 632 calculates the convergence judgment function f(n) by formula 8.
  • the formula 8 is specifically:
  • ⁇ (n) is the weight information of the heuristic function.
  • the constraint convergence information includes a range of the position change of each joint of the robotic arm and a fixed point related threshold.
  • the planning module 632 determines, according to the convergence judgment function, that the range of the position change of each joint is within the range of the range of the position change of each joint, and the position deviation of the fixed point is smaller than that of the fixed point. After the correlation threshold is reached, the convergence judgment is completed and the convergence command is sent to the base of the trolley 23 .
  • the variation range of each joint position of the actuator is 40%-60%.
  • the constraint convergence information includes the limit range of a single motion joint, and after the planning module 632 completes the convergence judgment, it also determines that the current position of each joint of the actuator is within the limit range of the single motion joint, The convergence command is then sent to the base of the trolley 23 .
  • the planning module 632 judges the The range of position change of each joint is not within the range of the range of position change of each joint, the position deviation of the fixed point is greater than or equal to the relevant threshold of the fixed point, and the current position of each joint is not within the limit range of the single motion joint
  • a readjustment instruction is sent to the comparison module 631 to avoid the change of the fixed point position or the change of the position and posture of the end of the surgical instrument 22 due to the change of the position of the trolley 23, thereby making the application If the operation area changes, it is easy to cause secondary damage to the target object.
  • the comparison module 631 repeatedly executes the readjustment instruction until the planning module 632 judges that the position change range of each joint is within the range of the position change range of each joint according to the convergence judgment function, and the motion The positional deviation of the point is less than the fixed point correlation threshold.
  • the fixed point includes any one of an algorithmic fixed point, a structural fixed point, and a passive fixed point.
  • FIG. 7 is a schematic diagram of the working states of the robotic arm and the surgical instrument according to some embodiments of the present application.
  • the serial robotic arm 71 does not contain an adjustment arm, and the surgical instrument 22 is provided at the end.
  • the fixed point is specifically an algorithm fixed point (not marked in the figure), and the algorithm fixed point (not shown in the figure) marked) is the intervention point where the surgical instrument 22 acts on the body of the target object (not marked in the figure).
  • the tandem robotic arm 71 has at least 4 joints to drive the surgical instrument 22 around the algorithmic fixed point.
  • the application also provides a method for adjusting the surgical robot system, comprising the following steps:
  • the movement of at least one of the carrier module and the adjustment module is driven according to the movement information of the adjustment module, so as to adjust at least one of the position or posture of the surgical instrument, thereby ensuring that the fixed point is at the desired position
  • the present application also provides a storage medium on which a computer program is stored, and when the computer program is executed by a processor, the above-mentioned method is implemented.
  • the application further provides a terminal, including a processor and a memory;
  • the processor is used to execute the above-mentioned computer program.
  • the processor is connected to the memory for executing a computer program stored in the memory, so that the terminal executes the above-mentioned method.
  • the memory includes: ROM, RAM, magnetic disk, U disk, memory card or optical disk and other media that can store program codes.
  • the processor may be a general-purpose processor, including a central processing unit (Central Processing Unit, referred to as CPU), a network processor (Network Processor, referred to as NP), etc.; it may also be a digital signal processor (Digital Signal Processor, DSP for short), Application Specific Integrated Circuit (ASIC), Field Programmable Gate Array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, and discrete hardware components.
  • CPU Central Processing Unit
  • NP Network Processor
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Robotics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Manipulator (AREA)

Abstract

一种手术机器人系统、调整方法、存储介质及终端,手术机器人系统包括检测单元(61)、动作单元(64)和控制单元(63),动作单元(64)包括运载模块和调节模块,调节模块用于连接对目标对象进行作用的手术器械(22)。控制单元(63)根据运载模块的移动信息和手术器械(22)的移动前位置信息生成运载模块的调整位置信息,以驱动运载模块进行运载方位调整,然后根据调节模块的移动信息结合位姿调整控制信息进行运动路径遍历和最优路径筛选,并根据最优路径筛选的结果结合约束收敛信息判断是否能够收敛,避免机械臂(21)的运动空间无法满足手术需求的问题,并扩大手术器械(22)的操作空间范围。

Description

手术机器人系统、调整方法、存储介质及终端
本申请要求于2020年10月23日提交中国专利局,申请号为202011147293.8,申请名称为“手术机器人系统、调整方法、存储介质及终端”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及医疗器械技术领域,尤其涉及手术机器人系统、调整方法、存储介质及终端。
背景技术
采用机器人手术系统来进行微创伤外科手术,不仅患者创伤小,术后恢复快,伤口感染小,同时降低医生操作难度和手术疲劳程度,并且加强医生的体验感。
在使用手术机器人进行微创手术时,重要的一步在于在术前将手术机器人的各个机械臂及各个关节摆放至合理位置,确保在接下来的手术中机械臂的运动能有充足的范围。但是,由于术前判断的病灶位置与实际病灶位置有时会存在差异,需要术中进行调整。
现有技术中,通过移动机器人的方法来改变病人与机械臂之间的相对位置,能够间接改善手术机器人的运动空间。然而,采用上述调整方法调整后由于不动点位置的变化,可能需要针对患者进行重新打孔,对患者目标对象造成二次伤害。
因此,有必要提供一种新型的手术机器人系统、存储介质及终端,以解决现有技术中存在的上述问题。
发明内容
本申请的目的在于提供一种手术机器人系统、调整方法、存储介质及终端,以避免机械臂的运动空间无法满足手术需求的问题,并扩大手术器械的操作空间范围。
本申请提供一种手术机器人系统,包括检测单元、动作单元和与所述检测单元及动作单元连接的控制单元,所述动作单元包括互相连接的运载模块和调节模块,所述调节模块用于连接对目标对象进行作用的手术器械;
所述检测单元检测所述运载模块、所述调节模块和所述手术器械中任意一者的移动信息,并将所检测的移动信息发送至所述控制单元;
所述手术器械的移动信息包括移动前位置信息;所述控制单元根据所述运载模块的移动信息和所述手术器械的移动前位置信息生成所述运载模块的调整位置信息,以驱动所述运载模块进行运载方位调整;
所述控制单元根据所述调节模块的移动信息生成控制指令以驱动所述运载模块和所述调节模块中的至少一者进行运动,以调整所述手术器械的位置或者姿态中的至少一者,进而使不动点位于期望位置;其中,所述不动点为所述手术器械作用于所述目标对象后在所述目标对象体表限定的虚拟介入点。
本申请的所述手术机器人系统的有益效果在于:所述控制单元根据所述运载模块的移动信息和所述手术器械的移动前位置信息生成所述运载模块的调整位置信息,以驱动所述运载模块进行运载方位调整,然后根据所述调节模块的移动信息结合所述位姿调整控制信息进行运动路径遍历和最优路径筛选,并根据所述最优路径筛选的结果结合所述约束收敛信息判断是否能够收敛,以驱动所述调节模块带动所述手术器械调整至期望位置,避免了机械臂的运动空间无法满足手术需求的问题,并扩大手术器械的操作空间范围。
在一实施例中,所述手术机器人系统,还包括存储单元,用于存储位姿调整控制信息和约束收敛信息;所述控制单元根据所述调节模块的移动信息结合所述位姿调整控制信息进行运动路径遍历和最优路径筛选,并根据所述约束收敛信息判断所述最优路径筛选的结果是否收敛,以驱动所述调节模块带动所述手术器械调整至期望位置。
在一实施例中,所述调节模块包括多个关节以及与所述多个关节相对应设置的多个关节电机;当所述控制单元确定所述最优路径筛选的结果为非收敛时,通过所述多个关节电机驱动所述多个关节进行关节调整;所述检测单元检测调整后的所述多个关节的移动信息并将其发送至所述控制单元;所述控制单元根据调整后的所述多个关节的移动信息结合所述位姿调整控制信息进行所述运动路径遍历和所述最优路径筛选,直至根据所述约束收敛信息确定所述最优路径筛选的结果为收敛。
在一实施例中,所述控制单元通过结合限位识别、碰撞检测、固定不动点以及手术器械的姿态中至少一者的方式进行所述运动路径遍历,并根据所述多个关节电机的角度信息建立启发函数和代价函数进行所述最优路径筛选。
在一实施例中,所述存储单元还用于存储启发函数权重信息,所述控制单元根据所述启发函数、所述代价函数和所述启发函数权重信息得到收敛判断函数,以根据所述收敛判断函数判断所述最优路径筛选的结果是否收敛。
在一实施例中,所述控制单元包括比较模块,所述比较模块根据所述不动点的移动前位置信息生成所述不动点的期望位置信息,根据所述运载模块的调整位置信息和正运动学原理由所述调节模块的各个关节的位置信息获得所述运载模块调整后的不动点位置信息,然后根据所述不动点的期望位置信息和所述运载模块调整后的不动点位置信息生成所述不动点的位置偏差信息。
在一实施例中,所述比较模块根据坐标变换规则将所述不动点的移动前位置信息转换为所述不动点的期望位置信息,以使所述不动点的移动前位置信息和所述不动点的期望位置信息位于同一参考坐标系下。
在一实施例中,所述控制单元还包括规划模块,所述规划模块获取所述不动点的位置偏差信息和所述运载模块的移动信息,并根据所述不动点的位置偏差信息和所述运载模块的移动信息生成所述运载模块的调整位置信息,以驱动所述运载模块进行所述运载方位调整。
在一实施例中,所述调节模块还包括多个机械臂,所述调节模块的多个关节设置于所述多个机械臂,所述规划模块根据所述约束收敛信息、所述不动点的位置偏差信息、所述调节模块的多个关节的移动信息以及相邻的机械臂之间的距离信息构建所述代价函数,以使所述手术器械的末端的运动变化值在期望范围内,且所述不动点的调整后位置信息与所述不动点的期望位置信息一致。
在一实施例中,所述规划模块根据所述不动点的位置偏差函数、末端关节姿态偏差函数、距离函数以及限位函数构建所述代价函数。
在一实施例中,所述约束收敛信息包括第一调整因子,所述规划模块根据所述第一调 整因子和所述不动点的位置偏差信息构建所述不动点的位置偏差函数。
在一实施例中,所述约束收敛信息包括第二调整因子,所述多个关节的移动信息包括末端关节的位置偏差信息,所述规划模块根据所述第二调整因子和所述末端关节的位置偏差信息构建所述末端关节姿态偏差函数。
在一实施例中,所述机械臂包括调整臂,所述调整臂具有调整电机,所述约束收敛信息包括相邻的调整臂之间的向量信息和同一机械臂的相邻的调整电机的连线的向量信息,所述规划模块根据所述相邻的调整臂的向量信息和所述同一机械臂的相邻的调整电机的连线的向量信息构建所述距离函数,以防止相邻的调整臂之间发生碰撞。
在一实施例中,所述约束收敛信息包括第三调整因子,所述多个关节的移动信息包括每个关节的全程运动范围偏差,所述规划模块根据所述第三调整因子和所述每个关节的全程运动范围偏差构建所述限位函数。
在一实施例中,每个关节的移动信息包括每个关节的最大移动位置信息,所述多个关节的移动信息包括每个关节的全程运动范围和多个关节的调整位置信息,所述多个关节的调整位置信息包括每个关节的限位范围上限阈值,所述规划模块根据所述每个关节的最大移动位置信息和所述全程运动范围计算所述每个关节的限位范围上限阈值。
在一实施例中,每个关节的移动信息包括每个关节的最小移动位置信息,所述多个关节的调整位置信息还包括每个关节的限位范围下限阈值,所述规划模块根据所述每个关节的最小移动位置信息和所述全程运动范围计算所述每个关节的限位范围下限阈值。
在一实施例中,所述存储单元还用于存储权重信息,所述多个关节的移动信息包括所述多个关节的当前位置信息和期望位置信息,所述规划模块根据所述权重信息、所述多个关节的当前位置信息和期望位置信息,以及所述不动点的位置偏差信息构建所述启发函数。
在一实施例中,所述手术机器人系统,还包括设置于所述目标对象的介入装置,所述手术器械通过所述介入装置作用于所述目标对象,所述检测单元还检测所述手术器械的末端位置信息和所述介入装置的末端位置信息并发送至所述比较模块,所述比较模块存储有参考阈值,所述比较模块根据所述手术器械的末端位置信息和所述介入装置的末端位置信息计算末端偏差,并根据所述参考阈值判断是否驱动所述运载模块改变工作位置。
本申请还提供一种手术机器人系统的调整方法,包括:
检测运载模块、调节模块和对目标对象进行作用的手术器械中任意一者的移动信息,其中所述手术器械的移动信息包括移动前位置信息;
根据所述运载模块的移动信息和所述手术器械的移动前位置信息生成所述运载模块的调整位置信息,以驱动所述运载模块进行运载方位调整;
根据所述调节模块的移动信息生成控制指令,以驱动所述运载模块和所述调节模块中的至少一者进行运动,以调整所述手术器械的位置或者姿态中的至少一者,进而使不动点位于期望位置;其中,所述不动点为所述手术器械作用于所述目标对象后在所述目标对象体表限定的虚拟介入点。
本方法的有益效果在于:通过所述控制单元根据所述运载模块的移动信息、所述手术器械的移动前位置信息和所述运载调整信息生成所述运载模块的调整位置信息,以驱动所述运载模块进行运载方位调整,以驱动所述调节模块带动所述手术器械调整至期望位置,避免了机械臂的运动空间无法满足手术需求的问题,并扩大手术器械的操作空间范围。
在一实施例中,所述根据所述调节模块的移动信息生成控制指令,以驱动所述运载模 块和所述调节模块中的至少一者进行运动,以调整所述手术器械的位置或者姿态中的至少一者,进而使不动点位于期望位置,包括:
存储位姿调整控制信息和约束收敛信息;
根据所述调节模块的移动信息结合所述位姿调整控制信息进行运动路径遍历和最优路径筛选;
根据所述约束收敛信息判断所述最优路径筛选的结果是否收敛,以驱动所述调节模块带动所述手术器械调整至期望位置。
在一实施例中,所述调节模块包括多个关节以及与所述多个关节相对应设置的多个关节电机;
所述根据所述约束收敛信息判断所述最优路径筛选的结果是否收敛,包括:
当确定所述最优路径筛选的结果为非收敛时,通过所述多个关节电机驱动所述多个关节进行关节调整;
检测调整后的所述多个关节的移动信息;
根据调整后的所述多个关节的移动信息结合所述位姿调整控制信息进行所述运动路径遍历和所述最优路径筛选,直至根据所述约束收敛信息确定所述最优路径筛选的结果为收敛。
本申请还提供一种存储介质,其上存储有计算机程序,其中,所述计算机程序被处理器执行时实现如上实施例所述的调整方法。
本申请还提供一种终端,包括处理器及存储器;
所述存储器用于存储计算机程序;
所述处理器被配置为执行所述计算机程序以实现如上实施例所述的调整方法。
附图说明
图1a为本申请实施例的手术机器人系统的工作状态示意图;
图1b为本申请实施例的手术机器人系统的操作流程示意图;
图2a为图1a所示的患者手术平台的工作状态示意图;
图2b为图2a所示的机械臂和手术器械的工作状态示意图;
图3为本申请另一些实施例的患者手术平台的工作状态示意图。
图4a为图2a所示的手术器械的一种工作状态示意图;
图4b为图2a所示的手术器械的另一种工作状态示意图;
图5为图1a所示的手术机器人系统计算出台车的底座调整路径后,除受限关节所在机械臂外的其他机械臂的补偿算法流程图;
图6为本申请实施例的手术机器人系统的结构框图;
图7为本申请一些实施例的机械臂和手术器械的工作状态示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面结合附图对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而 不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。除非另外定义,此处使用的技术术语或者科学术语应当为本申请所属领域内具有一般技能的人士所理解的通常意义。本文中使用的“包括”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。
针对现有技术存在的问题,本申请实施例提供了一种手术机器人系统,以在操作者调整台车后能够自动跟随以调整手术机器人的底座,并控制机械臂随动,从而扩大手术器械的可达操作空间。
图1a为本申请一些实施例的手术机器人系统的工作状态示意图。
参照图1a,手术机器人系统1包括医生控制台11、患者手术平台12和图像部13。所述医生控制台11为所述手术机器人系统1的操作端。所述患者手术平台12为所述手术机器人系统1的具体执行平台,以作用于限定在手术台14上的目标对象15,例如患者。所述图像部13用于显示手术过程中目标对象体内的图像。
图1b为本申请一些实施例的手术机器人系统的操作流程示意图。参照图1a和图1b,所述手术机器人系统1的操作流程包括:
手术开始后,医生通过所述医生控制台11远程操作所述患者手术平台12对所述目标对象15进行医生操作,以通过所述患者手术平台12末端连接的手术器械(图中未标示)对所述目标对象15进行手术。
当所述患者手术平台12的某个关节发生关节限位,所述医生控制台11和/或图像部13进行交互提示,以提示医生是否进行调整。医生确认进行调整后,所述患者手术平台12进入关节调整准备阶段,所述手术机器人系统1对所述患者手术平台12进行关节信息检测,以获取各个关节的位置信息。本申请一些实施例中,医生可以在手术进行前选择是否采用交互提示进行调整。
所述手术机器人系统1依据各个关节的位置信息进行运动路径遍历,并结合位姿调整控制信息进行最优路径筛选;并根据约束条件判断所述最优路径筛选出的结果是否收敛,即判断是否筛选出有对应的调整路径。
需要说明的是,在本技术方案中,判断收敛的意义在于最优路径筛选出的结果有对应的调整路径。
当判断能够进行收敛,在患者手术平台12上的各个关节动作完成之后,所述患者手术平台12的各关节进入调整结束阶段,即收敛后,各关节动作完成后,进入调整结束阶段。医生通过所述医生控制台11和/或图像部13进行交互反馈以进行进一步的确认,从而结束对所述患者手术平台12各关节的调整。
当判断不能够进行收敛,所述手术机器人系统1发出各关节的运动指令对各关节的电机进行控制,各关节的电机根据对应的运动指令进行关节调整后重复执行关节信息检测、运动路径遍历和最优路径筛选直至根据最优路径筛选出的结果结合约束条件判断能够进行收敛为止。即,手术机器人系统计算求解路径,当根据计算结果收敛后,将最终的指令发送给电机进行执行。
本申请一些实施例中,所述手术机器人系统1通过结合限位识别、碰撞检测、固定不动点以及手术器械姿态各种要素的方式进行路径规划,并根据机器人的各关节电机角度建立启发函数和代价函数,从而实现更加准确安全的关节调整方案。进一步的,在所述启发函数和所述代价函数的基础上进一步结合包括权重关系的信息实现最优路径规划。所述固定不动点是根据手术环境及其它因素而在空间上所选定的虚拟不动点,并不实际限定于所 述机械臂或所述手术器械。在实际手术操作时,所述固定不动点需与目标对象身上的创口位置相重合,避免对患者造成二次伤害。
具体的,在实现最优路径规划的过程中,若判断运动过程受限关节与该关节需要调整到的目标位置之间的距离较远时,所述调整方案侧重于或优选调节/约束受限关节的变化范围,以确保手术安全;若判断运动过程受限关节距离该关节需要调整到的目标位置接近时,所述调整方案侧重于或优选避免路径上机械臂之间的碰撞以及不动点与所述手术器械末端姿态不变,以确保调整过程的快速性和安全性。
本申请一些实施例中,所述医生控制台11包含主操作手(图中未图示),医生通过操作所述主操作手来远程控制手术器械的运行。所述患者手术平台12包含安装于运载模块的机械臂(如下图2a中的机械臂24)。具体的,所述运载模块为台车(如下图2a的台车23)。
图2a为图1a所示的患者手术平台的工作状态示意图。图2b为图2a所示的机械臂和手术器械的工作状态示意图。
参照图2a,所述患者手术平台12包含安装于台车23的多个机械臂21以及挂载于所述机械臂21末端的手术器械22,所述手术器械22作用于所述目标对象15体内的病灶区。进一步的,所述机械臂21包括相互连接的工具臂24和调整臂25,所述手术器械22挂载或者可拆卸的连接于所述工具臂24的末端。
本申请一些实施例中,所述台车23设置的机械臂的数目至少为2。
本申请一些实施例中,所述台车23具有至少两个自由度。
具体的,所述台车23能够进行水平移动和竖直移动。所述水平移动的方向为靠近或远离所述手术台14的方向,所述竖直移动的方向为平行于所述手术台的延伸方向,即所述手术台的高度方向。
本申请一些实施例中,所述台车23还能够进行转动,所述转动的方向为相对于所述手术台14所在的水平面的俯仰和偏摆方向。
本申请一些实施例中,所述患者手术平台12包含多个子患者手术平台。具体的,所述子患者手术平台包括子运载模块,更具体的,所述子运载模块包括独立台车。即在一些实时例中,所述患者手术台为多个,各患者手术台上设有机械臂。
参照图1a和图2a,所述工具臂24与设置于所述控制端11的主操作手(图中未标示)具有预定的映射关系,从而形成主从关系,所述工具臂24依据主操作手(图中未标示)的运动来操控所述手术器械22能够围绕不动点运动,从而对病灶区进行相关的手术操作。
具体的,所述手术器械22用于执行具体的手术操作,如夹、切、剪等操作。
本申请一些实施例中,所述调整臂25至少包括3个关节,用于控制所述手术器械22通过所述不动点。
本申请一些实施例中,所述工具臂24至少包括3个关节,用于控制所述手术器械22末端的位置和姿态。
具体的,参照图2a和图2b,所述工具臂24包括顺次相接的第一关节241、第二关节242、第三关节243和第四关节244,所述第四关节244用于挂载所述手术器械22,所述手术器械22可沿所述第四关节244进行移动。所述调整臂25包括顺次相接的第一旋转关节251、第二旋转关节252、第三旋转关节253以及第四旋转关节254,所述第一关节241可相对所述第四旋转关节254旋转。所述调整臂25的各关节内还包括用于驱动各调整臂关节运动的调整电机(图中未标示)。
本申请一些实施例中,所述工具臂24的关节以及相邻关节间的连接臂形成平行四边形结构,从而约束手术器械22绕不动点运动,使得不动点不会被工具臂影响,并可以通过调整臂来调整不动点的位置。此处不动点被约束是因为不动点需要不被工具臂影响,但是可以通过调整臂来调整,因此需要用调整臂调整不动点位置,工具臂不影响不动点位置。
图3为本申请另一些实施例的患者手术平台的工作状态示意图。
参照图3,四个子患者手术平台31构成了所述患者手术平台。每个所述子患者手术平台31包括独立台车311,以及设置于所述独立台车311的机械臂21。
本申请一些实施例中,操作中,所述手术机器人系统1还包括介入装置,所述手术器械22通过所述介入装置,如图4a中的戳卡42作用于目标对象。
图4a为图2a所示的手术器械的一种工作状态示意图。图4b为图2a所示的手术器械的另一种工作状态示意图。
参照图2a、图4a和图4b,当所述台车23位于所述目标对象15身体的一侧,所述手术器械22通过设置于目标对象体表41的戳卡42作用于第一病灶区43,所述工具臂24带动所述手术器械22在所述目标对象15体内于第一操作空间45内运动,以实现对所述第一病灶区43的处理。
进一步的,在手术过程中,当需要对第二病灶区46进行处理,但至少一个所述工具臂24的关节运动空间到达极限,导致所述手术器械22无法到达所述第二病灶区46时,需要对所述患者手术平台12进行调整,以使所述手术器械22能够到达第二病灶区46的同时,保证所述不动点(图中戳卡所限定的位置处)的位置不变,以完成相应手术操作。
图5为图1a所示的手术机器人系统计算出台车的底座调整路径后,除受限关节所在机械臂外的其他机械臂的补偿算法流程图,由于受限关节的调整侧重于调整关节的运动范围,在调整过程中可能会影响其他臂或者关节的运动空间,因此其他臂需要补偿算法来补偿因调整受限关节造成的影响。即,受限关节的调整侧重于调整关节运动范围,在调整过程中可能会影响其他机械臂或者关节的运动空间,所以其他机械臂需要补偿算法来补偿因调整受限关节所造成的影响。
参照图2a和图5,所述手术机器人系统1计算出所述台车23的底座调整路径后,记录当前不动点的位置以及所述机械臂21各关节位置,然后迭代计算步长,以获取用于驱动所述调整臂25和工具臂24的每个调整电机的期望步长信息,并根据所述期望步长信息计算各关节的移动信息;然后根据上述信息结合关节以及机械臂的约束收敛信息计算代价函数、启发函数和权重函数,并进一步得到收敛判断函数;根据收敛判断函数判断所述调整臂25的各关节是否能够到达目标位置,以促使手术器械达到目标操作区域或病灶区。
需要说明的是,此处的约束收敛信息主要针对的是机器人的所有机械臂及关节进行约束。
当判断能够到达目标位置,向每个调整臂25的调整电机发送调整指令以驱动关节调整;当判断不能到达目标位置,重新计算各关节预期移动信息,直至根据构建的收敛判断函数判断所述机械臂25的各关节能够到达目标位置为止。因此,经图5所示的补偿算法流程能够使当前机械臂的不动点移动到期望位置,即原先的不动点位置,以调节不动点的姿态至原来的状态。
图6为本申请一些实施例的手术机器人系统的结构框图。
参照图6,所述手术机器人系统6包括检测单元61、存储单元62、控制单元63和动作单元64。所述控制单元63包括比较模块631和规划模块632。
本申请一些实施例中,所述动作单元64包括顺次连接的如上所述运载模块和调节模块,所述调节模块的自由端与所述手术器械22连接以带动所述手术器械22作用于目标对象。
具体的,参照图2a,所述运载模块包括所述台车23,所述调节模块包括所述调整臂25和所述工具臂24。
具体的,所述检测单元61包括编码器,设置于所述患者手术平台12的各个关节内,以检测各关节的运动信息。所述控制单元63设置于所述医生控制台11内,并与所述检测单元61、存储单元62、动作单元64通信连接。在一些实施方式中,所述控制单元63设置在所述台车内,或者部分设置于所述台车内并且部分设置于所述医生控制台内,本申请对此不作限制。
更具体的,所述控制单元63为计算机,用于接收所述检测单元61获得的各关节的运动信息,并根据所述约束收敛信息控制执行各关节的运动。
所述手术机器人系统执行所述调整过程包括:通过检测单元61获取所述运载模块的调整位置信息,启动跟随调整指令并通过所述控制单元63根据所述指令驱动所述运载模块和所述调节模块的至少一者运动;通过所述检测单元61获取所述运载模块、所述调节模块和所述手术器械22中的任意一种的移动信息,并反馈至所述控制单元63;其中,所述手术器械22的移动信息包括所述手术器械22的移动前位置信息,所述存储单元62存储有约束收敛信息;所述控制单元63根据所述运载模块、所述调节模块中的至少一者的移动信息和所述手术器械22的移动前位置信息生成所述运载模块的调整位置信息,以驱动所述运载模块进行运载方位调整,然后再根据所述运载模块的调整运动信息、所述运作模块、调节模块中的至少一者的移动信息以及所述约束收敛信息生成所述调节模块的调整位置信息,从而驱动所述调节模块带动所述手术器械22调整至期望位置。
参照图1a和图2a,操作者通过所述控制单元63生成所述台车23的调整位置信息,以调整所述台车23的底座并进行手术器械的运载方位的调整,所述控制单元63根据所述台车23的调整位置信息,控制所述调整臂25和所述工具臂24随动,从而控制实现不动点的空间位置不变,同时扩大受限关节的可操作空间,以允许手术器械22的末端运动至期望位置,例如达到目标病灶区。
本申请一些实施例中,在触发所述手术机器人系统的调整模式时,对应是否需要将所述手术器械22收回所述戳卡42或取下所述手术器械22,可由操作者根据实际情况进行选择。
本申请一些实施例中,为避免所述手术器械22末端与脏器组织发生不期望的接触,将所述手术器械22收回至所述戳卡42或移除,待完成调整后再由所述控制单元63控制所述手术器械22伸出所述戳卡42并运动至期望位置。
具体的,参照图2a、图4a和图6,手术进行的过程中,当需要从所述第一病灶区43移动至所述第二病灶区46,通过所述控制单元63驱动所述调整臂25和所述工具臂24的各关节运动之前,所述控制单元63对所述手术器械22和所述戳卡42进行检测判断,以确认所述手术器械22回收至所述戳卡42内,防止因所述台车23的移动对所述目标对象15再次二次伤害。
进一步的,所述检测判断具体包括:
S11:所述检测单元61采集所述手术器械22的末端位置信息和所述戳卡42的末端位置信息并发送至所述比较模块631;
S12:所述比较模块631根据所述手术器械22的末端位置信息和所述戳卡42的末端 位置信息计算所述手术器械22和所述戳卡41的与预期位置的末端偏差;
S13:所述比较模块631将所述末端偏差与所述存储单元62存储的参考阈值进行比较以判断所述末端偏差是否小于所述参考阈值;
S14:当所述比较模块631判断所述末端偏差小于所述参考阈值,发送移动指令以允许驱动所述台车23以改变所述工作位置。
进一步的,当所述比较模块631判断所述末端偏差大于等于所述参考阈值,一旦操作者尝试移动所述台车23,所述台车23则无法移动,且所述比较模块631通过所述图像部13向操作者提示“是否移动台车”的信息,以提示操作者检查所述戳卡42和所述手术器械24的状态并回收至所述戳卡42内。
本申请另一些实施例中,在所述手术器械22仍保持在停留在体内的模式下,进行手术机器人的调整。
由于调整系统有两种选择模式,包括主动调整模式和被动调整模式两种,在操作者选择合适的调整模式后,所述控制单元63获取的所述手术器械22的移动信息包括所述手术器械22的移动前位置信息和所述手术器械22的移动后位置信息。所述手术器械22的移动前位置信息包括不动点的移动前位置信息和所述手术器械22移动前的末端位置和姿态信息。
具体的,所述手术器械22的移动后位置信息通过所述控制单元63获取的台车底座调整位置信息计算获得的不动点移动后位置信息及移动后手术器械末端位置和姿态信息。
本申请一些实施例中,参照图4b,所述第二病灶区46的中心可以作为所述手术器械22的移动后目标点位置。
本申请的一些实施例中,所述手术器械22的移动后位置可由操作者在交互界面输入指定目标点位置,所述控制单元63设定所述手术器械22末端的移动方向为:所述手术器械22移动前的末端位置与操作者指定目标点的连线,并可在显示装置上显示推荐调整路径。
进一步的,调整过程中,本领域技术人员还可以限定所述手术器械22调整后的器械末端相对于当前手术器械末端的距离及方向作为推荐路径。
本申请一些实施例中,所述比较模块631根据所述不动点的移动前位置信息生成所述不动点的期望位置信息,根据所述运载模块的调整位置信息及正运动学原理由所述调节模块的各关节位置计算获得所述运载模块调整后的不动点位置,然后根据所述不动点的期望位置信息和所述运载模块调整后所述不动点的位置生成所述不动点的偏差信息,以确保所述不动点位置的准确定位。
具体的,所述比较模块631根据坐标变换规则将所述不动点的移动前位置信息转换为所述手术台14坐标系下的所述不动点的期望位置信息,以使所述不动点的移动前位置信息和所述不动点的期望位置信息相对同一参考坐标系一致。
更具体的,所述同一参考坐标系以所述手术台14为参照。
本申请一些实施例中,所述规划模块632获取所述不动点的位置偏差信息和所述运载模块的移动信息,并根据所述不动点的位置偏差信息和所述运载模块的移动信息生成所述运载模块的调整位置信息,以驱动所述运载模块进行所述运载方位调整。
具体的,通过所述控制单元63改变工作位置,所述检测单元61采集所述台车23的移动信息并发送至所述比较模块631和所述规划模块632,所述台车23的移动信息包括所述台车23底座相对于所述手术台14的水平移动信息、竖直移动信息和转动信息中的至 少一种。
进一步的,所述比较模块631根据所述台车23的移动信息,获得不动点(图中未标示)相对于所述手术台14的位置变化,生成不动点当前位置与期望位置的偏差信息,并发送至所述规划模块632。
本申请一些实施例中,所述规划模块632获取所述不动点的位置偏差信息和所述台车23的移动信息,并根据所述不动点的位置偏差信息和所述台车23的移动信息生成所述台车23的调整位置信息,以驱动所述台车23进行所述运载方位调整。
具体的,所述规划模块632驱动所述台车23的驱动电机以一个固定的调整范围为目标调整所述台车23的底座。
更具体的,所述运载调整信息包括每个运载电机的期望步长信息S,所述比较模块631根据设置于所述台车23的运载电机所驱动的底座关节的运动范围计算对应运载电机的期望步长信息。具体的,所述比较模块631根据公式1计算每个运载电机的期望步长信息S。公式1具体为:
Figure PCTCN2021125524-appb-000001
其中,P r为各底座关节运动范围,counts为各存储于所述存储单元62的底座关节的调整步频。
本申请一些实施例中,counts不低于100。
本申请一些实施例中,进行手术机器人调整时,尤其是所述手术器械22保持在目标对象体内的调整模式时,所述台车23及所述机械臂21调整过程中,在确保不动点位置不变的同时,所述手术器械22末端的位置和姿态变化保持在较小范围内,以保障手术安全。
具体的,参照图2b和图6,根据所述调整臂25的各机械臂自由度顺次调整所述调整臂25的所述第一旋转关节251、所述第二旋转关节252、所述第三旋转关节253以及所述第四旋转关节254之间需要补偿的调整距离,以通过所述工具臂24确保所述手术器械22末端姿态的变化在一个较小范围内,同时保证不动点位置不变。
当调整所述台车23的底座、所述调整臂25的某一关节和所述工具臂24中的某一关节的任意一种无法保证所述手术器械22到达目标操作区域时,所述控制单元63进行下一关节的迭代调整,直至满足调整需求。
本申请一些实施例中,驱动所述台车23的底座电机顺次为第一底座电机B1和第二底座电机B2,驱动所述调整臂25的调整电机顺次为第一悬吊电机Z1和第二悬吊电机Z2、第三悬吊电机Z3,驱动所述工具臂24各关节的电机顺次为第一电机T1、第二电机T2、第三电机T3和第四电机T4。
当调整所述第一底座电机B1至设定位置(如一个步长)后仍无法保证所述手术器械22到达目标操作区域,所述第一底座电机B1保持当前位置,在所述第一底座电机B1的当前位置信息的基础上调整所述第二底座电机B2,并根据所述第二底座电机B2反转的不同程度沿所述调整臂25和所述工作臂24的路径进行遍历,直至保证所述手术器械22能够到达目标操作区域;如调整所述第二底座电机B2至设定位置(如一个步长)后,仍无 法保证所述手术器械22到达目标操作区域,所述第二底座电机B2保持当前位置,在所述第一底座电机B1和所述第二底座电机B2两者的当前位置信息的基础上调整所述第一悬吊电机Z1。对所述第一悬吊电机Z1、所述第二悬吊电机Z2、所述第一电机T1、所述第二电机T2、所述第三电机T3和所述第四电机T4的调整策略请参见前述所述第一底座电机B1和所述第二底座电机B2的调整策略,在此不做赘述。
本申请一些实施例中,每台台车所搭载的机械臂数目至少为2,在进行手术机器人系统调整时,还需要考虑相邻调整臂和工作臂之间的调整距离以防止碰撞。
具体的,所述调节模块的移动信息包括所述多个关节的移动信息和相邻调整臂之间的距离信息,所述规划模块632判断所述台车23调整后,根据所述约束收敛信息、所述不动点的位置偏差信息、所述多个关节的移动信息以及所述相邻调整臂之间的距离信息构建代价函数,以通过位置判断、碰撞检测与固定不动点的方式精确规划轨迹,从而使所述手术器械22末端的运动变化值在期望范围内,且所述不动点的调整后位置信息与所述不动点的期望位置信息一致。
本申请一些实施例中,所述约束收敛信息包括第一调整因子,所述规划模块632根据所述第一调整因子和所述不动点的位置偏差信息构建所述不动点的位置偏差函数。
具体的,所述规划模块632根据公式2计算所述不动点的位置偏差函数β i。所述公式2具体为:
Figure PCTCN2021125524-appb-000002
其中,λ j为所述不动点的位置偏差,η β为所述第一调整因子,j为所述台车23装载的机械臂的数目。
更具体的,所述收敛约束信息包括不动点相关阈值,所述规划模块632判断所述不动点的位置偏差大于等于所述不动点相关阈值后,将所述第一调整因子赋值为0;所述规划模块632判断所述不动点的位置偏差小于所述不动点相关阈值后,将所述第一调整因子赋值为1。
本申请一些实施例中,所述约束收敛信息包括第二调整因子,所述多个关节的移动信息包括末端关节的位置偏差信息,所述规划模块632根据所述第二调整因子和所述末端关节的位置偏差信息构建末端关节姿态偏差函数。
具体的,所述规划模块632根据公式3计算所述末端姿态偏差函数γ i。所述公式3具体为:
Figure PCTCN2021125524-appb-000003
其中,μ j为所述工具臂24的末端姿态偏差,η γ为所述第二调整因子。
更具体的,所述约束收敛信息包括第一姿态相关阈值。所述规划模块632判断所述工具臂24的末端姿态偏差大于等于所述第一姿态相关阈值后,将所述第二调整因子赋值为0,所述规划模块判断所述末端姿态偏差小于所述第一姿态相关阈值后,将所述第二调整因子赋值为1。
本申请一些实施例中,所述约束收敛信息包括相邻调整臂间的向量信息和同一机械臂的相邻调整电机连线的向量信息,所述规划模块632根据所述相邻调整臂的向量信息和所述不同调整电机连线的向量信息构建距离函数,以防止相邻调整臂之间发生碰撞。
具体的,所述规划模块122通过公式5构建距离函数α i。所述公式5具体为:
Figure PCTCN2021125524-appb-000004
其中,ι j为相邻机械臂之间的碰撞条件参数,优选为相邻机械臂间的距离,具体为
Figure PCTCN2021125524-appb-000005
其中
Figure PCTCN2021125524-appb-000006
为其中一个机械臂的所在直线的单位向量,
Figure PCTCN2021125524-appb-000007
为与其中一个机械臂相邻的另一个机械臂所在直线的单位向量。
Figure PCTCN2021125524-appb-000008
为两个调整电机的连线的向量。上述三个向量可以通过将点转换到基座标系获得。所述基座标系为以所述手术台14为参照的坐标系。
本申请一些实施例中,所述收敛约束信息还包括第三调整因子,所述多个关节的移动信息包括每个关节的全程运动范围偏差,所述规划模块根据所述第三调整因子和所述每个关节的全程运动范围偏差构建限位函数。
具体的,所述规划模块122根据公式4计算所述限位函数δ i。所述公式4具体为:
Figure PCTCN2021125524-appb-000009
其中,v j为每个关节的全程运动范围偏差,η δ为所述第三调整因子,m为设置于所述机械臂的电机数量。
具体的,所述约束收敛信息包括第二姿态相关阈值,所述步骤S4中,所述规划模块 判断每个关节的全程运动范围偏差大于等于所述第二姿态相关阈值后,将所述第三调整因子赋值为0,所述规划模块判断所述每个关节的全程运动范围偏差小于所述第二姿态相关阈值后,将所述第三调整因子赋值为1。
进一步的,每个关节的移动信息包括每个关节的最大移动位置信息,所述多个关节的移动信息包括所述每个关节的全程运动范围,所述多个关节的调整位置信息包括所述每个关节的限位范围上限阈值,所述规划模块根据所述每个关节的最大移动位置信息和所述全程运动范围计算所述每个关节的限位范围上限阈值。
具体的,所述单个运动关节限位范围的上限阈值为P max-20%×P r,P max为单个运动关节的最大移动位置,Pr为单个运动关节的全程运动范围。
进一步的,所述每个关节的移动信息包括所述每个关节的最小移动位置信息,所述多个关节的调整位置信息还包括所述每个关节的限位范围下限阈值,所述规划模块根据所述每个关节的最小移动位置信息和所述全程运动范围计算所述每个关节的限位范围下限阈值。
具体的,所述单个运动关节限位范围的下限阈值为P min+20%×P r,P min为单个运动关节的最小移动位置。
本申请一些具体的实施例中,P max为80,P min为-80,则P r为160。
本申请一些实施例中,所述规划模块632根据所述不动点的位置偏差函数、所述末端关节姿态偏差函数、所述距离函数以及所述限位函数构建代价函数。
具体的,所述规划模块632通过公式6构建代价函数g(n)。所述公式6具体为:
Figure PCTCN2021125524-appb-000010
其中,n为所述执行机构的个数。
本申请一些实施例中,所述约束收敛信息还包括权重信息,所述多个关节的移动信息包括所述多个关节的当前位置信息和期望位置信息,所述规划模块632根据所述权重信息、所述多个关节的当前位置信息和期望位置信息,以及所述不动点的位置偏差信息构建启发函数。
具体的,所述约束收敛信息还包括所述启发函数的权重信息,所述规划模块632根据所述代价函数、所述启发函数以及所述启发函数的权重信息构建收敛判断函数,以判断是否向所述调整驱动部发送收敛指令,从而驱动所述多个关节带动所述手术器械22调整至期望位置。
具体的,所述规划模块122通过公式7计算启发函数h(n)。所述公式7具体为:
h(n)=σ*abs(θ ct)+(1-σ)*abs(λ j)
其中,σ为所述权重信息,θ c为所述机械臂的各关节当前位置信息,θ t为所述机械臂的各关节期望位置信息,λ j为所述不动点的位置偏差。
本申请一些实施例中,所述约束收敛信息包括所述启发函数的权重信息。
本申请一些实施例的所述步骤S4中,所述规划模块632根据所述代价函数、所述启发函数以及所述启发函数的权重信息建立所述收敛判断函数。
具体的,所述规划模块632通过公式8计算所述收敛判断函数f(n)。所述公式8具体为:
g(n)=g(n)+ω(n)*h(n)
其中,ω(n)为所述启发函数的权重信息。
本申请一些实施例中,所述约束收敛信息包括所述机械臂的各关节位置变化幅度范围和不动点相关阈值。
本申请一些实施例中,所述规划模块632根据所述收敛判断函数判断所述各关节位置变化幅度在所述各关节位置变化幅度范围,且所述不动点的位置偏差小于所述不动点相关阈值后,以完成收敛判断并向所述台车23底座发送所述收敛指令。
具体的,所述执行机构的各关节位置变化幅度为40%-60%。
进一步的,所述约束收敛信息包括单个运动关节限位范围,所述规划模块632完成所述收敛判断后,还判断所述执行机构的各关节当前位置位于所述单个运动关节限位范围内,然后向所述台车23的底座发送所述收敛指令。
本申请一些实施例中,尤其是当需要对所述手术机器人进行调整,但所述手术器械22仍需要留在患者体内的调整模式下,所述规划模块632根据所述收敛判断函数判断所述各关节位置变化幅度不在所述各关节位置变化幅度范围,所述不动点的位置偏差大于等于所述不动点相关阈值和所述各关节当前位置不在所述单个运动关节限位范围内中的至少一种后,向所述比较模块631发送重新调整指令,避免由于所述台车23位置变化造成不动点位置的变化或者造成所述手术器械22末端位置和姿态的变化,进而使得施术区域发生变化,容易对目标对象造成二次伤害的问题。
进一步的,所述比较模块631重复执行所述重新调整指令直至所述规划模块632根据所述收敛判断函数判断所述各关节位置变化幅度在所述各关节位置变化幅度范围,且所述不动点的位置偏差小于所述不动点相关阈值。
本申请一些实施例中,所述不动点包括算法不动点、结构不动点和被动不动点中的任意一种。
以算法不动点为例,图7为本申请一些实施例的机械臂与手术器械的工作状态示意图。
参照图7,串联机械臂71不含有调整臂,且末端设置所述手术器械22,所述不动点具体为算法不动点(图中未标示),所述算法不动点(图中未标示)为所述手术器械22作用于目标对象(图中未标示)身体的介入点。串联机械臂71具有至少4个关节,以驱 动所述手术器械22绕所述算法不动点运动。
本申请还提供了一种手术机器人系统的调整方法,包括如下步骤:
根据控制指令驱动运载模块或调节模块运动;
获取所述运载模块、所述调节模块和手术器械中的任意一者的移动信息;
根据所述运载模块的移动信息和所述手术器械的移动前位置信息生成所述运载模块的调整位置信息,以驱动所述运载模块进行运载方位调整;
根据所述调节模块的移动信息驱动所述运载模块和所述调节模块的至少一者的运动,以调整所述手术器械的位置或者姿态的至少一种,进而确保不动点在期望位置
本申请还提供了一种存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现上述的方法。
本申请进一步提供了一种终端,包括处理器及存储器;
所述处理器用于执行上述计算机程序。
所述处理器与所述存储器相连,用于执行所述存储器存储的计算机程序,以使所述终端执行上述的方法。
优选地,所述存储器包括:ROM、RAM、磁碟、U盘、存储卡或者光盘等各种可以存储程序代码的介质。
优选地,所述处理器可以是通用处理器,包括中央处理器(Central Processing Unit,简称CPU)、网络处理器(Network Processor,简称NP)等;还可以是数字信号处理器(Digital Signal Processor,简称DSP)、专用集成电路(Application Specific Integrated Circuit,简称ASIC)、现场可编程门阵列(Field Programmable Gate Array,简称FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。
虽然在上文中详细说明了本申请的实施方式,但是对于本领域的技术人员来说显而易见的是,能够对这些实施方式进行各种修改和变化。但是,应理解,这种修改和变化都属于权利要求书中所述的本申请的范围和精神之内。而且,在此说明的本申请可有其它的实施方式,并且可通过多种方式实施或实现。

Claims (23)

  1. 一种手术机器人系统,包括检测单元、动作单元和与所述检测单元及动作单元连接的控制单元,所述动作单元包括互相连接的运载模块和调节模块,所述调节模块用于连接对目标对象进行作用的手术器械;
    所述检测单元用于检测所述运载模块、所述调节模块和所述手术器械中任意一者的移动信息,并将所检测的移动信息发送至所述控制单元;
    所述手术器械的移动信息包括移动前位置信息;所述控制单元根据所述运载模块的移动信息和所述手术器械的移动前位置信息生成所述运载模块的调整位置信息,以驱动所述运载模块进行运载方位调整;
    所述控制单元根据所述调节模块的移动信息生成控制指令以驱动所述运载模块和所述调节模块中的至少一者进行运动,以调整所述手术器械的位置或者姿态中的至少一者,进而使不动点位于期望位置;其中,所述不动点为所述手术器械作用于所述目标对象后在所述目标对象体表限定的虚拟介入点。
  2. 根据权利要求1所述的手术机器人系统,还包括存储单元,用于存储位姿调整控制信息和约束收敛信息;所述控制单元根据所述调节模块的移动信息结合所述位姿调整控制信息进行运动路径遍历和最优路径筛选,并根据所述约束收敛信息判断所述最优路径筛选的结果是否收敛,以驱动所述调节模块带动所述手术器械调整至期望位置。
  3. 根据权利要求2所述的手术机器人系统,其中,所述调节模块包括多个关节以及与所述多个关节相对应设置的多个关节电机;当所述控制单元确定所述最优路径筛选的结果为非收敛时,通过所述多个关节电机驱动所述多个关节进行关节调整;所述检测单元检测调整后的所述多个关节的移动信息并将其发送至所述控制单元;所述控制单元根据调整后的所述多个关节的移动信息结合所述位姿调整控制信息进行所述运动路径遍历和所述最优路径筛选,直至根据所述约束收敛信息确定所述最优路径筛选的结果为收敛。
  4. 根据权利要求3所述的手术机器人系统,其中,所述控制单元通过结合限位识别、碰撞检测、固定不动点以及手术器械的姿态中至少一者的方式进行所述运动路径遍历,并根据所述多个关节电机的角度信息建立启发函数和代价函数进行所述最优路径筛选。
  5. 根据权利要求4所述的手术机器人系统,其中,所述存储单元还用于存储启发函数权重信息,所述控制单元根据所述启发函数、所述代价函数和所述启发函数权重信息得到收敛判断函数,以根据所述收敛判断函数判断所述最优路径筛选的结果是否收敛。
  6. 根据权利要求3所述的手术机器人系统,其中,所述控制单元包括比较模块,所述比较模块根据所述不动点的移动前位置信息生成所述不动点的期望位置信息,根据所述运载模块的调整位置信息和正运动学原理由所述调节模块的各个关节的位置信息获得所述运载模块调整后的不动点位置信息,然后根据所述不动点的期望位置信息和所述运载模块调整后的不动点位置信息生成所述不动点的位置偏差信息。
  7. 根据权利要求6所述的手术机器人系统,其中,所述比较模块根据坐标变换规则将所述不动点的移动前位置信息转换为所述不动点的期望位置信息,以使所述不动点的移动前位置信息和所述不动点的期望位置信息位于同一参考坐标系下。
  8. 根据权利要求6所述的手术机器人系统,其中,所述控制单元还包括规划模块, 所述规划模块获取所述不动点的位置偏差信息和所述运载模块的移动信息,并根据所述不动点的位置偏差信息和所述运载模块的移动信息生成所述运载模块的调整位置信息,以驱动所述运载模块进行所述运载方位调整。
  9. 根据权利要求8所述的手术机器人系统,其中,所述调节模块还包括多个机械臂,所述调节模块的多个关节设置于所述多个机械臂,所述规划模块根据所述约束收敛信息、所述不动点的位置偏差信息、所述调节模块的多个关节的移动信息以及相邻的机械臂之间的距离信息构建所述代价函数,以使所述手术器械的末端的运动变化值在期望范围内,且所述不动点的调整后位置信息与所述不动点的期望位置信息一致。
  10. 根据权利要求9所述的手术机器人系统,其中,所述规划模块根据所述不动点的位置偏差函数、末端关节姿态偏差函数、距离函数以及限位函数构建所述代价函数。
  11. 根据权利要求10所述的手术机器人系统,其中,所述约束收敛信息包括第一调整因子,所述规划模块根据所述第一调整因子和所述不动点的位置偏差信息构建所述不动点的位置偏差函数。
  12. 根据权利要求10所述的手术机器人系统,其中,所述约束收敛信息包括第二调整因子,所述多个关节的移动信息包括末端关节的位置偏差信息,所述规划模块根据所述第二调整因子和所述末端关节的位置偏差信息构建所述末端关节姿态偏差函数。
  13. 根据权利要求10所述的手术机器人系统,其中,所述机械臂包括调整臂,所述调整臂具有调整电机,所述约束收敛信息包括相邻的调整臂之间的向量信息和同一机械臂的相邻的调整电机的连线的向量信息,所述规划模块根据所述相邻的调整臂的向量信息和所述同一机械臂的相邻的调整电机的连线的向量信息构建所述距离函数,以防止相邻的调整臂之间发生碰撞。
  14. 根据权利要求10所述的手术机器人系统,其中,所述约束收敛信息包括第三调整因子,所述多个关节的移动信息包括每个关节的全程运动范围偏差,所述规划模块根据所述第三调整因子和所述每个关节的全程运动范围偏差构建所述限位函数。
  15. 根据权利要求12所述的手术机器人系统,其中,每个关节的移动信息包括每个关节的最大移动位置信息,所述多个关节的移动信息包括每个关节的全程运动范围和多个关节的调整位置信息,所述多个关节的调整位置信息包括每个关节的限位范围上限阈值,所述规划模块根据所述每个关节的最大移动位置信息和所述全程运动范围计算所述每个关节的限位范围上限阈值。
  16. 根据权利要求15所述的手术机器人系统,其中,每个关节的移动信息包括每个关节的最小移动位置信息,所述多个关节的调整位置信息还包括每个关节的限位范围下限阈值,所述规划模块根据所述每个关节的最小移动位置信息和所述全程运动范围计算所述每个关节的限位范围下限阈值。
  17. 根据权利要求8所述的手术机器人系统,其中,所述存储单元还用于存储权重信息,所述多个关节的移动信息包括所述多个关节的当前位置信息和期望位置信息,所述规划模块根据所述权重信息、所述多个关节的当前位置信息和期望位置信息,以及所述不动 点的位置偏差信息构建所述启发函数。
  18. 根据权利要求6所述的手术机器人系统,还包括设置于所述目标对象的介入装置,所述手术器械通过所述介入装置作用于所述目标对象,所述检测单元还检测所述手术器械的末端位置信息和所述介入装置的末端位置信息并发送至所述比较模块,所述比较模块存储有参考阈值,所述比较模块根据所述手术器械的末端位置信息和所述介入装置的末端位置信息计算末端偏差,并根据所述参考阈值判断是否驱动所述运载模块改变工作位置。
  19. 一种手术机器人系统的调整方法,包括:
    检测运载模块、调节模块和对目标对象进行作用的手术器械中任意一者的移动信息,其中所述手术器械的移动信息包括移动前位置信息;
    根据所述运载模块的移动信息和所述手术器械的移动前位置信息生成所述运载模块的调整位置信息,以驱动所述运载模块进行运载方位调整;
    根据所述调节模块的移动信息生成控制指令,以驱动所述运载模块和所述调节模块中的至少一者进行运动,以调整所述手术器械的位置或者姿态中的至少一者,进而使不动点位于期望位置;其中,所述不动点为所述手术器械作用于所述目标对象后在所述目标对象体表限定的虚拟介入点。
  20. 根据权利要求19所述的调整方法,其中,所述根据所述调节模块的移动信息生成控制指令,以驱动所述运载模块和所述调节模块中的至少一者进行运动,以调整所述手术器械的位置或者姿态中的至少一者,进而使不动点位于期望位置,包括:
    存储位姿调整控制信息和约束收敛信息;
    根据所述调节模块的移动信息结合所述位姿调整控制信息进行运动路径遍历和最优路径筛选;
    根据所述约束收敛信息判断所述最优路径筛选的结果是否收敛,以驱动所述调节模块带动所述手术器械调整至期望位置。
  21. 根据权利要求20所述的调整方法,其中,所述调节模块包括多个关节以及与所述多个关节相对应设置的多个关节电机;
    所述根据所述约束收敛信息判断所述最优路径筛选的结果是否收敛,包括:
    当确定所述最优路径筛选的结果为非收敛时,通过所述多个关节电机驱动所述多个关节进行关节调整;
    检测调整后的所述多个关节的移动信息;
    根据调整后的所述多个关节的移动信息结合所述位姿调整控制信息进行所述运动路径遍历和所述最优路径筛选,直至根据所述约束收敛信息确定所述最优路径筛选的结果为收敛。
  22. 一种存储介质,其上存储有计算机程序,其中,所述计算机程序被处理器执行时实现如权利要求19-21中任一项所述的调整方法。
  23. 一种终端,包括处理器及存储器;
    所述存储器用于存储计算机程序;
    所述处理器被配置为执行所述计算机程序以实现如权利要求19-21中任一项所述的调整方法。
PCT/CN2021/125524 2020-10-23 2021-10-22 手术机器人系统、调整方法、存储介质及终端 WO2022083719A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011147293.8 2020-10-23
CN202011147293.8A CN112245011B (zh) 2020-10-23 2020-10-23 手术机器人系统、调整方法、存储介质及终端

Publications (1)

Publication Number Publication Date
WO2022083719A1 true WO2022083719A1 (zh) 2022-04-28

Family

ID=74264294

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/125524 WO2022083719A1 (zh) 2020-10-23 2021-10-22 手术机器人系统、调整方法、存储介质及终端

Country Status (2)

Country Link
CN (1) CN112245011B (zh)
WO (1) WO2022083719A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116690585A (zh) * 2023-07-25 2023-09-05 上海汇丰医疗器械股份有限公司 一种基于自动机械臂的无影灯路径规划方法和装置
CN116849727A (zh) * 2023-06-19 2023-10-10 北京纳通医用机器人科技有限公司 手术机器人的状态监控系统、方法、设备和存储介质
CN117506965A (zh) * 2024-01-08 2024-02-06 武汉联影智融医疗科技有限公司 手术机器人的摆位系统、方法、计算机设备和存储介质

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112245011B (zh) * 2020-10-23 2022-02-01 上海微创医疗机器人(集团)股份有限公司 手术机器人系统、调整方法、存储介质及终端
CN114851185B (zh) * 2021-02-04 2023-11-21 武汉联影智融医疗科技有限公司 机械臂摆位优化方法、装置、计算机设备和存储介质
CN115120348A (zh) * 2021-03-24 2022-09-30 上海微创医疗机器人(集团)股份有限公司 一种计算机可读存储介质、电子设备及手术机器人系统
CN113274136B (zh) * 2021-05-17 2023-02-10 上海微创医疗机器人(集团)股份有限公司 位姿调整方法、手术机器人系统和存储介质
CN113349933A (zh) * 2021-07-08 2021-09-07 杭州柳叶刀机器人有限公司 一种机器人系统
CN113768625B (zh) * 2021-08-03 2023-03-14 武汉联影智融医疗科技有限公司 手术机器人系统的机械臂构型确定方法、装置和设备
CN113729940B (zh) * 2021-09-23 2023-05-23 上海卓昕医疗科技有限公司 手术辅助定位系统及其控制方法
CN114098954B (zh) * 2021-11-11 2023-06-16 深圳市精锋医疗科技股份有限公司 机械臂、从操作设备、手术机器人
CN115153855B (zh) * 2022-07-29 2023-05-05 中欧智薇(上海)机器人有限公司 一种微型机械臂的定位对准方法、装置及电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2340781A1 (fr) * 2010-01-05 2011-07-06 EDAP TMS France Procédé et appareil de localisation et de visualisation d'une cible par rapport à un point focal d'un système de traitement
CN108210070A (zh) * 2017-12-29 2018-06-29 微创(上海)医疗机器人有限公司 机械臂及其工作方法与手术机器人
CN109288591A (zh) * 2018-12-07 2019-02-01 微创(上海)医疗机器人有限公司 手术机器人系统
CN110974426A (zh) * 2019-12-24 2020-04-10 上海龙慧医疗科技有限公司 骨科关节置换手术机器人系统
CN112245011A (zh) * 2020-10-23 2021-01-22 微创(上海)医疗机器人有限公司 手术机器人系统、调整方法、存储介质及终端

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080065104A1 (en) * 2006-06-13 2008-03-13 Intuitive Surgical, Inc. Minimally invasive surgical instrument advancement
EP2879608B1 (en) * 2012-08-03 2020-03-18 Stryker Corporation Systems for robotic surgery
KR102188100B1 (ko) * 2013-03-15 2020-12-07 삼성전자주식회사 로봇 및 그 제어방법
DE102015109371A1 (de) * 2015-06-12 2016-12-15 avateramedical GmBH Vorrichtung und Verfahren zur robotergestützten Chirurgie
CN105232155B (zh) * 2015-09-08 2018-11-09 微创(上海)医疗机器人有限公司 手术机器人调整系统
CN107427328B (zh) * 2016-01-22 2020-03-20 奥林巴斯株式会社 医疗用机械手系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2340781A1 (fr) * 2010-01-05 2011-07-06 EDAP TMS France Procédé et appareil de localisation et de visualisation d'une cible par rapport à un point focal d'un système de traitement
CN108210070A (zh) * 2017-12-29 2018-06-29 微创(上海)医疗机器人有限公司 机械臂及其工作方法与手术机器人
CN109288591A (zh) * 2018-12-07 2019-02-01 微创(上海)医疗机器人有限公司 手术机器人系统
CN110974426A (zh) * 2019-12-24 2020-04-10 上海龙慧医疗科技有限公司 骨科关节置换手术机器人系统
CN112245011A (zh) * 2020-10-23 2021-01-22 微创(上海)医疗机器人有限公司 手术机器人系统、调整方法、存储介质及终端

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116849727A (zh) * 2023-06-19 2023-10-10 北京纳通医用机器人科技有限公司 手术机器人的状态监控系统、方法、设备和存储介质
CN116849727B (zh) * 2023-06-19 2024-05-14 北京纳通医用机器人科技有限公司 手术机器人的状态监控系统、方法、设备和存储介质
CN116690585A (zh) * 2023-07-25 2023-09-05 上海汇丰医疗器械股份有限公司 一种基于自动机械臂的无影灯路径规划方法和装置
CN116690585B (zh) * 2023-07-25 2024-01-12 上海汇丰医疗器械股份有限公司 一种基于自动机械臂的无影灯路径规划方法和装置
CN117506965A (zh) * 2024-01-08 2024-02-06 武汉联影智融医疗科技有限公司 手术机器人的摆位系统、方法、计算机设备和存储介质
CN117506965B (zh) * 2024-01-08 2024-04-12 武汉联影智融医疗科技有限公司 手术机器人的摆位系统、方法、计算机设备和存储介质

Also Published As

Publication number Publication date
CN112245011A (zh) 2021-01-22
CN112245011B (zh) 2022-02-01

Similar Documents

Publication Publication Date Title
WO2022083719A1 (zh) 手术机器人系统、调整方法、存储介质及终端
JP6919007B2 (ja) 手術台に対して位置合わせをするシステム及び方法
US11602840B2 (en) System and methods for managing multiple null-space objectives and SLI behaviors
US10939969B2 (en) Command shaping to dampen vibrations in mode transitions
US9844415B2 (en) Systems and methods for facilitating access to edges of cartesian-coordinate space using the null space
JP6676060B2 (ja) 器具外乱補償のためのシステム及び方法
KR102655083B1 (ko) 브레이크 해제가 능동적으로 제어되는 의료 장치
JP6660302B2 (ja) 基準目標に合わせるシステム及び方法
JP2022159460A (ja) 反応動作中に制御点を監視するためのシステム及び方法
JP2015502768A (ja) ロボット搭載手術台
WO2022002155A1 (zh) 主从运动的控制方法、机器人系统、设备及存储介质
US20220061936A1 (en) Control of an endoscope by a surgical robot
WO2023083078A1 (zh) 机械臂、从操作设备和手术机器人
WO2023083077A1 (zh) 保持rc点不变的方法、机械臂、设备、机器人和介质
US11918312B2 (en) Regulating joint space velocity of a surgical robotic arm
CN114098955A (zh) 机械臂、从操作设备以及手术机器人
WO2023083076A1 (zh) 机械臂、从操作设备以及手术机器人
JP7064190B2 (ja) 手術用器具制御装置および手術用器具制御方法
CN114098951A (zh) 机械臂、从操作设备以及手术机器人
CN115429432A (zh) 可读存储介质、手术机器人系统和调整系统
CN114098956A (zh) 机械臂、从操作设备以及手术机器人
EP4313508A1 (en) Systems and methods for controlling a robotic manipulator or associated tool
CN117770967A (zh) 手术机器人系统运动控制装置、方法及计算机可读取介质
CN115847385A (zh) 调整臂控制方法、装置、系统、计算机设备
CN114098992A (zh) 机械臂、从操作设备以及手术机器人

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21882133

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21882133

Country of ref document: EP

Kind code of ref document: A1