WO2022083327A1 - 调度数据传输的方法和通信装置 - Google Patents

调度数据传输的方法和通信装置 Download PDF

Info

Publication number
WO2022083327A1
WO2022083327A1 PCT/CN2021/116858 CN2021116858W WO2022083327A1 WO 2022083327 A1 WO2022083327 A1 WO 2022083327A1 CN 2021116858 W CN2021116858 W CN 2021116858W WO 2022083327 A1 WO2022083327 A1 WO 2022083327A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
transmission
card
srs
network device
Prior art date
Application number
PCT/CN2021/116858
Other languages
English (en)
French (fr)
Inventor
丁仁天
赵辰
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2022083327A1 publication Critical patent/WO2022083327A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0426Power distribution
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0473Wireless resource allocation based on the type of the allocated resource the resource being transmission power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the field of communication, and more particularly, to a method and a communication device for scheduling data transmission.
  • the multi-input multi-output (MIMO) technology uses multiple transmit antennas (transmitter, Tx) and multiple receive antennas (receiver, Rx) at the transmitter and receiver respectively to transmit and receive signals.
  • the terminal equipment user equipment, UE
  • the terminal equipment can support the following configurations of the number of Tx antennas and Rx antennas, such as 1T2R, 2T4R, 1T4R, 2TR, 4T4R, etc.
  • the terminal device includes multiple Tx antennas or multiple Rx antennas, and accordingly, the terminal device can support multi-stream data concurrency.
  • the terminal device will report the number of receiving antennas and the number of transmitting antennas supported by the terminal device to the network device.
  • the network device schedules no more than the number of receiving antennas and the number of transmitting antennas reported by the terminal device for receiving and sending.
  • the terminal equipment reports the 2T sending capability and 4R receiving capability to the network equipment, then the network equipment can schedule the terminal equipment to send data at 1T or 2T, and schedule the terminal equipment to receive data at 1R, 2R, 3R or 4R. data.
  • the network device will schedule rank 1 (rank1) (the corresponding number of transmission layers is 1) or rank 2 (rank2) (the corresponding number of transmission layers is 2) for transmission, or schedule rank 1 (rank1) (the corresponding number of transmission layers is 2) for transmission. is 1), rank 2 (rank2) (corresponding to the number of transmission layers is 2), rank 3 (rank3) (corresponding to the number of transmission layers is 3) or rank 4 (rank4) (corresponding to the number of transmission layers is 4) to receive.
  • the terminal device expects to transmit with a lower number of transmission layers (layers), for example, the terminal device needs to save power consumption, or the terminal device includes two subscriber identity module (SIM) cards (SIM cards for short) ), there is a radio frequency resource conflict when the two SIM cards transmit data at the same time.
  • SIM subscriber identity module
  • the terminal device can re-connect to the network and report the supported MIMO capability so that the network device can only schedule a lower number of layers, or forcibly disable the transmit/receive diversity so that the network device can adaptively adjust the number of layers to be scheduled.
  • the above method will interrupt the current service or cause continuous bit errors, affecting the user experience.
  • the present application provides a method and a communication device for scheduling data transmission, which can enable a terminal device to quickly roll back the number of transmission layers, reduce or avoid bit errors, and improve user experience.
  • a method for scheduling data transmission including: a terminal device performs data transmission using a first transmission layer number; when a first preset condition is satisfied, the terminal device performs a first action; After the device performs the first action, the terminal device receives the first scheduling information sent by the network device, where the first scheduling information is used to instruct the terminal device to use the second transmission layer number for data transmission, and the second The number of transmission layers is less than the first number of transmission layers; wherein, performing the first action includes at least one of the following: reducing the transmission power of the sounding reference signal SRS; reducing the transmission power of the uplink physical shared channel PUSCH; at least one antenna port among the multiple antenna ports of the PUSCH; close at least one antenna port among the multiple antenna ports used for transmitting PUSCH; or send a first assistance information message to the network device.
  • the network device when the terminal device wants to transmit with a lower number of transmission layers, by performing the first action, the network device can quickly respond to perform scheduling adjustment. This does not affect the terminal equipment's ability to report uplink and downlink MIMO, and can turn off transmit or receive diversity to reduce or avoid bit errors without interrupting services and affecting experience.
  • the first preset condition includes at least one of the following: the reference signal received power RSRP detected by the terminal device is greater than a first threshold;
  • the data service belongs to the first preset service type; the application layer data flow of the data service processed by the terminal device is less than the second threshold; the temperature of the terminal device is greater than the third threshold; the power of the terminal device is less than the fourth threshold;
  • the terminal device carries a first subscriber identity module SIM card and a second SIM card, wherein the first SIM card uses the first transmission layer number to process the first data service, and the second SIM card is in an idle state A request for a second data service is received in the next step.
  • the terminal device When the reference signal received power RSRP detected by the terminal device is greater than the first threshold, it can be considered that the terminal device is in a position with good signal quality. End devices can transmit using a lower number of transport layers to save power consumption.
  • the first preset service type includes a short message service, a textual web page browsing service, an instant messaging service, and a fragmented content transmission service.
  • the services in the first preset service type are generally small-traffic services.
  • the terminal device can use a lower number of transmission layers for transmission to meet the requirements and save power. consumption.
  • the terminal device can use a lower number of transmission layers for transmission to save power consumption.
  • the temperature of the terminal device is greater than the third threshold, the temperature of the terminal device is relatively high, and the terminal device needs to use a lower number of transmission layers for transmission to reduce power consumption.
  • the power of the terminal device is less than the fourth threshold, the power of the terminal device is small, and the terminal device can use a lower number of transmission layers for transmission, so as to reduce power consumption and save power.
  • the terminal device In the case where the terminal device carries the first SIM card and the second SIM card, the first SIM card and the second SIM card jointly use the radio frequency resources of the terminal device. When the first SIM card and the second SIM card process services, there may be a conflict in the use of radio frequency resources. In this case, the terminal device can reduce the number of transmission layers of one of the SIM cards, thereby releasing some or all of the radio frequency resources for the other SIM card. Card processing business.
  • the first scheduling information is a downlink control indicator (downlink control indicator, DCI).
  • DCI downlink control indicator
  • the first scheduling information is DCI, which can also be described as being carried in the DCI.
  • the first auxiliary information message is an overheating indication message.
  • the overheating indication message may also be described as an overheating assistance information message in some embodiments.
  • the first assistance information message is a terminal assistance information (UE AssistanceInformation) message specified in a standard protocol.
  • UE AssistanceInformation terminal assistance information
  • the terminal device triggers the network device to schedule and adjust the number of transmission layers through standard signaling.
  • the signaling interaction process is fast, and the network device can respond in time.
  • the first auxiliary information message includes a second maximum number of transmission layers, the second maximum number of transmission layers is smaller than the first maximum number of transmission layers, and the first maximum number of transmission layers is The number of transmission layers is equal to the maximum number of transmission layers that can be scheduled by the network device before the terminal device performs the first action.
  • the second maximum number of transmission layers included in the first auxiliary information message is smaller than the maximum number of transmission layers that can be scheduled by the network device before the terminal device performs the first action, so that the network device can subsequently configure the maximum number of transmission layers for the terminal device. is the second maximum number of transmission layers, after which the network device can only schedule the terminal device within the second maximum number of transmission layers.
  • the first transmission layer number and the second transmission layer number are used for uplink data transmission; or, the first transmission layer number and the second transmission layer number The number of layers is used for downstream data transmission.
  • the terminal device includes multiple antenna ports for sending SRS, and the reducing the transmit power of the sounding reference signal SRS includes: reducing the multiple antenna ports for sending SRS SRS transmit power corresponding to at least one of the antenna ports of the SRS.
  • the terminal device may reduce the transmit power of the SRS in a stepwise, incrementally, or descending manner, or directly reduce the transmit power of the SRS to a threshold value.
  • the terminal device By reducing the transmit power of the SRS, the terminal device reduces the received power of the SRS detected by the network device, which is equivalent to constructing a similar scenario where the terminal device is at a far point, so that the network device schedules a lower number of transmission layers.
  • the terminal device includes multiple antenna ports for transmitting PUSCH
  • the reducing the transmit power of the uplink physical shared channel PUSCH includes: reducing the multiple antenna ports for transmitting PUSCH
  • the PUSCH transmit power corresponding to at least one of the antenna ports on which the PUSCH is transmitted.
  • the terminal device may reduce the transmit power of the PUSCH in a stepwise, incrementally, or descending manner, or directly reduce the transmit power of the PUSCH to a threshold value.
  • the terminal device By reducing the transmit power of the PUSCH, the terminal device reduces the received power of the PUSCH detected by the network device, which is equivalent to constructing a similar scenario where the terminal device is at a far point, so that the network device schedules a lower number of transmission layers.
  • the multiple antenna ports used for sending SRS include a first port group, where the first port group is used for sending SRS used for antenna switching AS, the The terminal device performs downlink data transmission, and the closing at least one antenna port in the multiple antenna ports used for sending the SRS includes: closing at least one port in the first port group.
  • the first port group includes a plurality of antenna ports.
  • the terminal device can enable the network device to obtain the terminal device status in time, so as to quickly adjust the scheduling.
  • the network device can adjust the scheduling of the number of downlink transmission layers of the terminal device according to the number of antenna ports for sending AS SRS.
  • the multiple antenna ports used for sending SRS include a second port group, and the second port group is used for sending SRS used for codebook CB, the The terminal device performs uplink data transmission, and the closing at least one antenna port in the multiple antenna ports used for sending the SRS includes: closing at least one port in the second port group.
  • the second port group includes a plurality of antenna ports.
  • the terminal device can enable the network device to obtain the terminal device status in time, so as to quickly adjust the scheduling.
  • the network device can adjust the scheduling of the number of uplink transmission layers of the terminal device according to the number of antenna ports for sending CB SRS.
  • the first preset condition includes that the terminal device carries a first user identity module SIM card and a second SIM card, wherein the first SIM card uses all The first transmission layer number processes the first data service, the second SIM card receives a request for the second data service in an idle state, and the method further includes: the terminal device starts a timer; if the timer After the terminal device times out after receiving the first scheduling information, the second SIM card uses the third transport layer number to process the second data service, and the first SIM uses the second transport layer number to process the data service the first data service; if the timer times out before the terminal device receives the first scheduling information, the second SIM card uses the third transport layer number to process the second data service, the The first SIM card enters an idle state.
  • the first SIM card can be made to quickly roll back the number of transmission layers without the service of the first SIM card being interrupted, instead of being adaptively scheduled and adjusted by the network device. Therefore, the use experience of the service of the first SIM card is not affected, and the second SIM card can also be made to enter the connection state for processing when the service request needs to be processed. In addition, it does not affect the terminal equipment to report the highest number of uplink transmission layers, so the peak uplink throughput will not be reduced.
  • the second SIM card can first put the second SIM card in a waiting state, and suspend the processing of the second data service, so as to roll back the number of transmission layers of the first SIMA card. Allow time.
  • the first SIM card When the timer expires, the first SIM card directly enters the idle state, and the second SIM card uses the transmission channel to process the service request. In this case, since the first SIM card enters the idle state, the network device side can quickly perceive the state of the first SIM card, so as to quickly perform scheduling adjustment, which can reduce the occurrence of bit errors.
  • the timer may be located on the side of the first SIM card or on the side of the second SIM card.
  • the terminal device uses the first transmission layer number for data transmission, which can be understood as the first SIM card using the first transmission layer number to process the first data service.
  • the method before the terminal device starts the timer, the method further includes: the terminal device, according to the type of the first data service and the type of the second data service, Determine the duration of the timer.
  • the timer duration is determined according to the service types of the first SIM card and the second SIM card, which can be flexibly applied to various service combination scenarios.
  • the method before the terminal device performs the first action, the method further includes: according to the type of the first data service and the type of the second data service by the terminal device , determine the first action.
  • the service type combinations of the first SIM card and the second SIM card are different, and the terminal device can perform different first actions, such as fast fallback or slow fallback, which can be flexibly applied to various service combination scenarios.
  • the sum of the second transmission layer number and the third transmission layer number is less than or equal to the network device after the terminal device performs the first action The maximum number of transport layers that can be scheduled.
  • the number of the second transmission layer used by the first SIM card and the number of third transmission layers used by the second SIM card should be less than or equal to The maximum number of transport layers that can be scheduled after an action. In this way, the first SIM card and the second SIM card coordinately use the radio frequency resources of the terminal device to process their respective data services.
  • the first SIM card uses the first transmission layer number to process the first data service, including: the first SIM card uses all uplinks of the terminal device
  • the radio frequency resource processes the first data service.
  • the maximum value of the number of uplink transmission layers reported by the first SIM card is 2, and the maximum value of the number of uplink transmission layers reported by the second SIM card is 1.
  • the terminal device includes one transmit antenna and two receive antennas; or, the terminal device includes two transmit antennas and four receive antennas.
  • the method further includes: the terminal device uses the second transmission layer number to perform data transmission; when a second preset condition is satisfied, the terminal device performs a second action ; After the terminal device performs the second action, the terminal device receives the second scheduling information sent by the network device, where the second scheduling information is used to instruct the terminal device to use the fourth transmission layer number to perform In data transmission, the number of the fourth transmission layer is greater than the number of the second transmission layer; wherein, performing the second action includes at least one of the following: increasing the transmission power of the sounding reference signal SRS; increasing the transmission of the uplink physical shared channel PUSCH power; turn on at least one antenna port among the multiple antenna ports that are turned off for sending SRS; turn on at least one antenna port among the multiple antenna ports that are turned off for sending PUSCH; or send the first antenna port to the network device Two auxiliary information messages.
  • the network device can quickly respond to schedule adjustment. This does not affect the terminal equipment's ability to report uplink and downlink MIMO, and can enable transmit or receive diversity to improve spectrum utilization without interrupting services and affecting experience.
  • the second preset condition includes at least one of the following: the reference signal received power RSRP detected by the terminal device is less than a fifth threshold;
  • the data service belongs to the second preset service type; the application layer data flow of the data service processed by the terminal device is greater than the sixth threshold; the temperature of the terminal device is less than the seventh threshold; the power of the terminal device is greater than the eighth threshold;
  • the terminal device carries a first SIM card and a second SIM card, wherein the first SIM card is in an idle state or uses the second transmission layer to process the first data service, and the second SIM card ends the second SIM card.
  • the processing of the data service enters the idle state from the service connection state.
  • the terminal device When the reference signal received power RSRP detected by the terminal device is less than the fifth threshold, it can be considered that the terminal device is in a position with poor signal quality. End devices can use a higher number of transport layers for transmission to ensure throughput.
  • the second preset service type includes a call service, a picture web browsing service, a video service, a game service, and the like.
  • the services in the second preset service type are generally high-traffic services.
  • the terminal device needs to use a higher number of transmission layers for transmission to ensure throughput.
  • the data service When the application layer data flow of the data service processed by the terminal device is greater than the sixth threshold, the data service requires a large application layer data flow, so the terminal device needs to use a higher number of transmission layers for transmission to ensure throughput.
  • the temperature of the terminal device is lower than the seventh threshold, the temperature of the terminal device is relatively low, and the terminal device can use a higher number of transmission layers for transmission to improve spectrum utilization.
  • the power of the terminal device is greater than the eighth threshold, the power of the terminal device is relatively large, and the terminal device can use a higher number of transmission layers for transmission to improve spectrum utilization.
  • the terminal device In the case where the terminal device carries the first SIM card and the second SIM card, the first SIM card and the second SIM card jointly use the radio frequency resources of the terminal device. When the first SIM card and the second SIM card process services, there may be a conflict in the use of radio frequency resources. In this case, the terminal device can reduce the number of transmission layers of one of the SIM cards, thereby releasing some or all of the radio frequency resources for the other SIM card. Card processing business.
  • the terminal device carries the first SIM card and the second SIM card
  • the first SIM card and the second SIM card jointly use the radio frequency resources of the terminal device.
  • part of the radio frequency resources can be released for the other SIM card to process services, so the other SIM card can use a higher number of transmission layers for transmission.
  • the fifth threshold is equal to the first threshold; alternatively, the sixth threshold is equal to the second threshold; or the seventh threshold is equal to the third threshold; or the eighth threshold is equal to the fourth threshold.
  • the number of the fourth transmission layers is equal to the number of the first transmission layers.
  • the network device schedules the terminal device to resume transmission using the number of transmission layers before performing the first action.
  • a method for scheduling data transmission comprising: a network device determining, according to a sounding reference signal SRS sent by a terminal device, the number of antenna ports on the terminal device for sending the SRS; The number of antenna ports, adjust the number of transmission layers for scheduling the terminal equipment.
  • the network device can determine the number of layers for scheduling the terminal device to perform data transmission, which facilitates scheduling adjustment.
  • the terminal device includes multiple antenna ports for sending SRS, the multiple antenna ports for sending SRS includes a first port group, the first port group The port group is used to send the SRS used for the antenna switching AS, the terminal device performs downlink data transmission, and the determining the number of antenna ports on the terminal device used for sending the SRS includes: The SRS of the antenna switching AS is determined, and the number of antenna ports for transmitting the SRS of the antenna switching AS in the first port group is determined; the adjusting and scheduling the transmission layer number of the terminal device includes: according to the transmitting antennas in the first port group Switch the number of antenna ports of the SRS of the AS to determine and adjust the number of downlink transmission layers of the terminal equipment.
  • the terminal device includes multiple antenna ports for sending SRS, the multiple antenna ports for sending SRS includes a second port group, the second The port group is used to send the SRS used for the codebook CB, the terminal device performs uplink data transmission, and the determining the number of antenna ports on the terminal device for sending the SRS includes: The SRS of the codebook CB, determining the number of antenna ports in the second port group for sending the SRS for the codebook CB; the adjusting and scheduling the number of transmission layers of the terminal device includes: according to the second port group The number of antenna ports for sending SRS for codebook CB determines the number of uplink transmission layers for adjusting and scheduling terminal equipment.
  • a terminal device including a module or a unit for executing the method in the first aspect or any possible implementation manner of the first aspect.
  • the module or unit may be a hardware circuit, or software, or a hardware circuit combined with software implementation.
  • a network device including a module or unit for performing the method in the second aspect or any of the possible implementation manners of the second aspect.
  • the module or unit may be a hardware circuit, or software, or a hardware circuit combined with software implementation.
  • a communication apparatus comprising one or more processors and one or more memories, the one or more memories storing one or more computer programs, the one or more computer programs comprising instructions , when the instructions are executed by the one or more processors, the instructions cause the communication apparatus to execute the method in the first aspect or any one of the possible implementations of the first aspect.
  • the communication device further includes a transceiver.
  • a communication apparatus comprising one or more processors and one or more memories, the one or more memories storing one or more computer programs, the one or more computer programs comprising instructions , when the instructions are executed by the one or more processors, the instructions cause the communication apparatus to perform the method in the second aspect or any of the possible implementation manners of the second aspect.
  • the communication device further includes a transceiver.
  • a communication apparatus may be a terminal device or a chip in the terminal device.
  • the communication device may include a processing unit and a transceiving unit.
  • the processing unit may be a processor, and the transceiver unit may be a transceiver;
  • the terminal device may further include a storage unit, and the storage unit may be a memory; the storage unit For storing instructions, the processing unit executes the instructions stored in the storage unit, so that the terminal device executes the method in the first aspect or any possible implementation manner of the first aspect.
  • the processing unit may be a processor, the transceiver unit may be an input/output interface, a pin or a circuit, etc.; the processing unit executes the instructions stored in the storage unit,
  • the storage unit may be a storage unit (for example, a register, a cache, etc.) in the chip, or a A storage unit (eg, read-only memory, random access memory, etc.) in the terminal device located outside the chip.
  • a communication apparatus may be a network device or a chip in the network device.
  • the communication device may include a processing unit and a transceiving unit.
  • the processing unit may be a processor, and the transceiver unit may be a transceiver;
  • the network device may further include a storage unit, and the storage unit may be a memory; the storage unit For storing instructions, the processing unit executes the instructions stored in the storage unit, so that the network device executes the method in the second aspect or any possible implementation manner of the second aspect.
  • the processing unit may be a processor, the transceiver unit may be an input/output interface, a pin or a circuit, etc.; the processing unit executes the instructions stored in the storage unit,
  • the storage unit may be a storage unit (for example, a register, a cache, etc.) in the chip, or may be a A storage unit (eg, read only memory, random access memory, etc.) within the network device that is external to the chip.
  • a chip system comprising at least one processor, and when program instructions are executed in the at least one processor, the at least one processor causes the at least one processor to execute the above-mentioned first aspect or the second aspect, and the first A method of any possible implementation of the aspect or the second aspect.
  • a computer program product comprising: computer program code, when the computer program code is run on a computer, causing the computer to perform the methods in the above aspects.
  • the above computer program code may be stored in whole or in part on the first storage medium, where the first storage medium may be packaged with the processor or separately packaged with the processor, which is not implemented in this embodiment of the present application. Specific restrictions.
  • a computer-readable medium stores program codes, which, when executed on a computer, cause the computer to execute the methods in the above-mentioned aspects.
  • FIG. 1 is a schematic diagram of a communication system to which an embodiment of the present application is applicable;
  • FIG. 2 is a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • Figure 3 is a schematic diagram of hardware supporting 2T4R antenna switching on a terminal device
  • Figure 4 is a schematic diagram of hardware supporting 1T4R and 2T4R antenna switching on a terminal device
  • FIG. 5 is a schematic diagram of an uplink processing flow at the physical layer of a terminal device
  • FIG. 6 is a schematic flowchart of a terminal device capability reporting process and a data transmission scheduling process
  • FIG. 7 is a schematic flowchart of a method for scheduling data transmission provided by an embodiment of the present application.
  • FIG. 8 is a schematic flowchart of another method for scheduling data transmission provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of the use of an uplink transmission channel of a terminal device with dual-card dual-standby and single-pass;
  • Figure 10 is a schematic diagram of the use of the uplink transmission channel of the terminal equipment with dual-card dual-standby and dual-pass;
  • FIG. 11 is a schematic flowchart of a method for scheduling data transmission provided by an embodiment of the present application.
  • FIG. 12 is a schematic flowchart of another method for scheduling data transmission provided by an embodiment of the present application.
  • FIG. 13 is a schematic flowchart of a method for scheduling data transmission provided by an embodiment of the present application.
  • FIG. 14 is a schematic flowchart of a method for scheduling data transmission provided by an embodiment of the present application.
  • FIG. 15 is a schematic flowchart of a method for scheduling data transmission provided by an embodiment of the present application.
  • 16 is a schematic flowchart of a terminal device capability reporting process and a data transmission scheduling process provided by an embodiment of the present application;
  • FIG. 17 is a schematic flowchart of a method for scheduling data transmission provided by an embodiment of the present application.
  • FIG. 18 is a schematic flowchart of another method for scheduling data transmission provided by an embodiment of the present application.
  • FIG. 19 is a schematic flowchart of a method for scheduling data transmission provided by an embodiment of the present application.
  • FIG. 20 is a schematic flowchart of a method for scheduling data transmission provided by an embodiment of the present application.
  • 21 is a schematic diagram of SRS resource configuration, multiplexing mode, and fallback mode of a terminal device provided by an embodiment of the present application;
  • 22 is a schematic diagram of SRS resource configuration, multiplexing mode, and fallback mode of a terminal device provided by an embodiment of the present application;
  • FIG. 23 is a schematic diagram of a communication device provided by an embodiment of the present application.
  • FIG. 24 is a schematic diagram of a terminal device provided by an embodiment of the present application.
  • GSM global system for mobile communications
  • CDMA code division multiple access
  • WCDMA wideband code Wideband code division multiple access
  • GPRS general packet radio service
  • LTE long term evolution
  • LTE frequency division duplex FDD
  • TDD LTE time division duplex
  • UMTS universal mobile telecommunication system
  • WiMAX worldwide interoperability for microwave access
  • 5G fifth generation
  • 5G 5G mobile communication system or new radio (NR) system
  • NB-IoT narrow band internet of things
  • eMTC enhanced machine type communication
  • eMTC enhanced machine-type communication
  • LTE-Machine-to-machine LTE-machine-to-machine, LTE-M
  • future sixth-generation mobile communication systems etc.
  • transmission may include sending or receiving.
  • the transmission may be uplink transmission, for example, the terminal device may send a signal to the network device; the transmission may also be downlink transmission, for example, the network device may send a signal to the terminal device.
  • FIG. 1 shows a schematic diagram of a communication system to which this embodiment of the present application is applicable.
  • the communication system 100 may include a network device 110 and a terminal device 120 .
  • the network device 110 may be a device for communicating with the terminal device 120, such as a base station for connecting the terminal device 120 to a radio access network (RAN).
  • RAN radio access network
  • a base station may also sometimes be referred to as an access network device or an access network node. It can be understood that, in systems using different wireless access technologies, the names of devices with base station functions may be different. For the convenience of description, the embodiments of the present application will collectively refer to a device that provides a wireless communication access function for a terminal device as a base station.
  • the network device 110 includes but is not limited to: an evolved node B (evolved node B, eNB or eNodeB) in LTE, a radio network controller (radio network controller, RNC), a node B (node B, NB) ), base station controller (BSC), base transceiver station (base transceiver station, BTS), home base station (home evolved nodeB, or home node B, HNB), base band unit (base band unit, BBU), wireless Access point (AP), wireless relay node, wireless backhaul node, transmission point (TP) or transmission and reception point (TRP) in wireless fidelity (WIFI) system ), etc., can also be the next generation node basestation (gNB) or transmission point (TRP or TP) in the 5G system, one or a group (including multiple antenna panels) antenna panels of the base station in the 5G system , network nodes that constitute gNBs or transmission points, such as baseband units (BBUs) or
  • a gNB may include a centralized unit (CU) and a distributed unit (DU).
  • the gNB may also include a radio unit (RU).
  • the CU implements some functions of the gNB, and the DU implements some functions of the gNB.
  • CU implements functions of radio resource control (radio resource control, RRC) and packet data convergence protocol (PDCP) layer
  • PDCP packet data convergence protocol
  • DU implements radio link control (radio link control, RLC) layer
  • media access Control media access control, MAC
  • physical (physical, PHY) layer functions for example, CU implements functions of radio resource control (radio resource control, RRC) and packet data convergence protocol (PDCP) layer
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • DU implements radio link control (radio link control, RLC) layer
  • media access Control media access control, MAC
  • physical (physical, PHY) layer functions physical (physical, PHY)
  • the high-level signaling such as the RRC layer signaling can also be considered to be sent by the DU. Or sent by DU+CU.
  • the network device 110 may be a CU node, or a DU node, or a device including a CU node and a DU node.
  • the CU can be divided into network devices in an access network (radio access network, RAN), and can also be divided into network devices in a core network (core network, CN), which is not limited in this application.
  • the apparatus for implementing the function of the network device may be the network device, or may be an apparatus capable of supporting the network device to implement the function, such as a chip system.
  • the technical solutions of the embodiments of the present application are described by taking the device for realizing the function of the network device as a network device, and taking the network device as a base station as an example.
  • the terminal device 120 may be any device with a wireless transceiver function.
  • Terminal equipment 120 may also be referred to as user equipment (UE), access terminal, terminal, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, wireless network device, User Agent or User Device.
  • the terminal device 120 includes but is not limited to: a cellular phone (cellular phone), a cordless phone, a session initiation protocol (session initiation protocol, SIP) phone, a smart phone (smart phone), and a wireless local loop (wireless local loop).
  • the terminal device 120 may also be a virtual reality (VR) terminal device, an augmented reality (AR) terminal device, a terminal device in industrial control (industrial control), and a terminal device in self driving (self driving).
  • VR virtual reality
  • AR augmented reality
  • terminal equipment in telemedicine remote medical
  • terminal equipment in smart grid smart grid
  • terminal equipment in smart city smart city
  • terminal equipment in smart home smart home
  • the apparatus for implementing the function of the terminal device may be the terminal device, or may be an apparatus capable of supporting the terminal device to implement the function, such as a chip system.
  • the system-on-chip may consist of chips, or may include chips and other discrete devices.
  • the device for implementing the functions of the terminal device is a terminal device, and the terminal device is a UE as an example to describe the technical solutions provided by the embodiments of the present application.
  • the network device 110 and the terminal device 120 may be communication devices in an independent networking (standalone, SA) architecture, or may be communication devices in a non-standalone (non-standalone, NSA) architecture, which is not limited in this embodiment of the present application .
  • SA independent networking
  • non-standalone non-standalone
  • FIG. 1 is only a simplified schematic diagram for easy understanding, and the communication system 100 may further include other network devices or may also include other terminal devices, which are not shown in FIG. 1 .
  • Communication between the network device 110 and the terminal device 120 may be through a wireless link.
  • the transmission link from the network device 110 to the terminal device 120 may be referred to as a downlink or a downlink channel for transmitting downlink signals.
  • the transmission link from the terminal device 120 to the network device 110 may be referred to as an uplink or an uplink channel for transmitting uplink signals.
  • the network device 110 may send a downlink reference signal to the terminal device 120 through a downlink channel, such as a cell-specific reference signal (cell-specific reference signal, CRS), a UE-specific reference signal (UE-specific reference signal), to It is used for channel state information measurement, data demodulation, beam training, time-frequency parameter tracking, etc.
  • a cell-specific reference signal cell-specific reference signal
  • UE-specific reference signal UE-specific reference signal
  • the terminal device 120 may send an uplink reference signal, such as a sounding reference signal (SRS) and a demodulation reference signal (DMRS), to the network device 110 through an uplink channel, so as to be used for uplink and downlink channel measurement and data demodulation. Tune and so on. Downlink data transmission may also be performed between the network device 110 and the terminal device 120 through a downlink channel, and uplink data transmission may be performed through an uplink channel.
  • SRS sounding reference signal
  • DMRS demodulation reference signal
  • the network device 110 provides services for a cell, and the terminal device 110 communicates with the network device 110 through transmission resources (eg, frequency domain resources, or spectrum resources) used by the cell, such as the cell 130 shown in FIG. 1 . communication.
  • the network device 110 may be a macro base station, a micro base station, a relay station, an access point, or the like.
  • the cell 130 may belong to a macro base station or a base station corresponding to a small cell.
  • the small cells here may include: urban cells (metro cells), micro cells (micro cells), pico cells (pico cells), femto cells (femto cells), and the like.
  • a small cell is relative to a macro cell.
  • a macro cell generally has a relatively large coverage (for example, a radius of more than 500 meters) and high transmit power, while a small cell has a small coverage (for example, a radius of several tens of meters), The characteristics of low transmit power are suitable for providing high-speed data transmission services.
  • a carrier in an LTE system or a 5G system can have multiple cells working on the same frequency at the same time.
  • the concepts of the above-mentioned carrier and cell can also be considered equivalent.
  • CA carrier aggregation
  • the carrier index of the secondary carrier and the cell identification (Cell ID) of the secondary cell operating on the secondary carrier will be carried at the same time.
  • the concepts of the carrier and the cell are equivalent, for example, the UE accessing a carrier is equivalent to accessing a cell.
  • the terminal device 120 After the terminal device 120 is powered on or reselection, it needs to perform an initial cell search process to search for a suitable cell and camp on it. After the terminal device 120 completes camping in a certain cell, such as the cell 130, the terminal device 120 enters an idle state (idle) when a preset condition (eg, no service, etc.) is satisfied.
  • the radio resource control (radio resource control, RRC) connection of the terminal device in the idle state is not established, so the terminal device 120 may also be referred to as the terminal device in the RRC idle state.
  • RRC radio resource control
  • the transmit power of the network device 110 and the terminal device 120 is adjusted as required.
  • Power control includes uplink power control and downlink power control, and the uplink and downlink power control can be performed independently.
  • uplink power control the output power of the terminal device 120 needs to be adjusted so that the network device 110 can obtain stable received signal strength, so as to reduce interference to the same adjacent frequency and reduce the power consumption of the terminal device 120 .
  • downlink power control the output power of the network device 110 needs to be adjusted so that the terminal device 120 can obtain stable received signal strength, reduce co-adjacent frequency interference, and reduce the power consumption of the network device 110 .
  • the embodiments of the present application mainly take the power control on the terminal device side as an example for description.
  • the power control mechanism of the terminal device generally has two modes, one is open-loop power control, and the other is closed-loop power control.
  • the terminal device 120 determines the transmission power through its own power setting algorithm, wherein the input data of the power setting algorithm are all from the internal setting data or measurement data of the terminal device, and there is no data from the network device.
  • the open-loop power control process is generally applied before the two communicating parties establish a connection.
  • the initial physical random access channel (PRACH) power control is the open-loop power control process.
  • PRACH physical random access channel
  • the terminal device 120 controls the transmission power according to the feedback information sent by the network device.
  • the specific process is as follows: the terminal device sends a signal to the network device; the network device measures the power of the signal from the transmitter; if the power detected by the network device is too low, the network device will send an "increase power" command (for example, transmit power control (transmit power). control, TPC) command), if the measured power is too high, the network device will send a "reduce power” command.
  • the transmitter of the terminal device 120 can dynamically change the output power according to the feedback from the receiving end.
  • the closed-loop power control mechanism is based on the fact that both parties in the communication have established a connection.
  • the uplink physical uplink shared channel (PUSCH) power control of the terminal device and the physical uplink control channel (PUCCH) Power control is the closed-loop power control process.
  • closed-loop power control may also be referred to as "command-based power control.”
  • a signal needs to be sent to the network device 110 for cell search. Since the terminal device 120 has not established a connection with the network device 110 and cannot perform power control by exchanging commands, the terminal device 120 needs to determine the appropriate transmit power through its own parameters, where the transmit power level can enable the signal sent by the terminal device 120 to be The network device 110 decodes correctly and at the same time cannot interfere with the communication between other terminal devices and the network device. That is, before the terminal device 120 establishes the connection with the network device 110, a power control method of open-loop control may be adopted.
  • the network device 110 can control the transmit power of the terminal device 120 through signaling. For example, when the terminal device 120 is located near the network device 110, if the network device 110 detects that the power of the terminal device 120 is too large, the network device 110 may notify the terminal device 120 to reduce the power. When the terminal device 120 is located at a distant point of the network device 110, if the network device 110 detects that the power of the terminal device 120 is low, it can notify the terminal device 120 to increase the power. That is, after the terminal device 120 establishes the connection with the network device 110, a power control method of closed-loop control may be adopted.
  • the near point and the far point (hereinafter referred to as the far point) of the network device are relative concepts.
  • a point that is relatively far away from a network device may be called a far point.
  • the near point and the far point may be determined with reference to the quality of the signal received by the network device, for example, according to the reference signal receiving power (RSRP) detected by the network device, the received signal
  • RSRP reference signal receiving power
  • One or more of parameters such as received signal strength indication (RSSI), reference signal receiving quality (RSRQ), and signal noise ratio (SNR) determine the near point and the far point.
  • RSSI received signal strength indication
  • RSRQ reference signal receiving quality
  • SNR signal noise ratio
  • the network device 110 or the terminal device 120 may be configured with multiple antennas (ANT) for communication.
  • the plurality of antennas may include at least one transmit antenna (transmitter, Tx) for transmitting signals and at least one receive antenna (receiver, Rx) for receiving signals.
  • the network device 110 or the terminal device 120 additionally includes a transmitter chain and a receiver chain, and those of ordinary skill in the art can understand that both of them may include multiple components (eg, processors, modulators) related to signal transmission and reception. , multiplexer, demodulator, demultiplexer or antenna, etc.).
  • FIG. 2 shows a schematic structural diagram of a terminal device.
  • the terminal device 200 shown in FIG. 2 may be a specific example of the terminal device 120 in FIG. 1 .
  • the terminal device 200 may include a baseband processor 210, a radio frequency processing unit 220, a power amplifier (PA) 230, a low noise amplifier (LNA) 280, a transmit filter 240, a receive filter 270, duplexer 250, antenna 260, etc.
  • PA power amplifier
  • LNA low noise amplifier
  • Antenna 260 is used to receive and transmit radio frequency signals.
  • Duplexer 250 is used to separate transmit and receive signals.
  • the power amplifier 230 is located on the transmission path for amplifying the signal to be transmitted.
  • a low noise amplifier 280 is located on the receive path for amplifying the signal received by the antenna.
  • the radio frequency processing unit 220 is used for processing radio frequency signals, for example, performing frequency mixing and demodulation processing on the received radio frequency signals, or converting the transmitted data signals into radio frequency signals.
  • the baseband processor 210 is used for receiving baseband signals and performing demodulation, interleaving, decryption, channel decoding, etc., or for encoding, interleaving, encrypting, and modulating data to be sent to form baseband signals.
  • the antenna 260 converts the high-frequency electromagnetic wave sent by the network device, such as the base station, into a high-frequency signal current, which is sent to the duplexer 250 .
  • the duplexer 250 has different frequency bands, can filter the frequencies of the transmission signal (ie, the transmission signal) and the received signal at the same time, and has the function of preventing the transmission circuit (ie, the transmission circuit) from flowing to the receiving circuit.
  • the duplexer 250 is mainly used to isolate the transmit signal from the receive signal, so as to ensure that the receive and transmit can work normally at the same time.
  • the received signal passing through the duplexer 250 is sent to the receiving filter 270, and the receiving filter 270 can allow the radio frequency signal of the receiving frequency band to enter the receiving circuit and suppress the signals of other frequency bands.
  • the radio frequency signal obtained after being processed by the receiving filter 270 is sent to the low noise amplifier 280, and the low noise amplifier 280 can amplify the weak radio frequency signal to improve the signal-to-noise ratio of the receiver.
  • the amplified radio frequency signal is sent to the radio frequency processing unit 220 for processing to obtain a baseband signal.
  • the baseband signal is sent to the baseband processor 210 for processing, such as demodulating and decoding the baseband signal, and transmitting the decoded digital signal to the upper-layer system.
  • the receiver chain of the terminal device 200 may include an antenna 260, a duplexer 250, a receive filter 270, a low noise amplifier 280, a radio frequency processing unit 220, a baseband processor 210, and the like.
  • the process of transmitting a signal is the opposite of the process of receiving a signal.
  • the baseband processor 210 processes the data signal to be sent to obtain a baseband signal, and sends the baseband signal to the radio frequency processing unit 220 .
  • the radio frequency processing unit 220 converts the baseband signals into radio frequency signals and sends them to the power amplifier 230 .
  • the power amplifier 230 can amplify the weak radio frequency signal to meet the transmission power requirement.
  • the transmitter chain of the terminal device 200 may include a baseband processor 210, a radio frequency processing unit 220, a power amplifier 230, a transmit filter 240, a duplexer 250, an antenna 260, and the like.
  • the transmitter chain or receiver chain of the terminal device may further include other components, such as an antenna matching circuit, a multiplexer, a demultiplexer, and the like, which are not limited in this embodiment of the present application.
  • the network device 110 and the terminal device 120 can communicate through a multiple input multiple output (multi input multiple output, MIMO) technology (also referred to as a multi-antenna technology).
  • MIMO multiple input multiple output
  • the transmitter and receiver use multiple transmit antennas and multiple receive antennas to transmit and receive signals, respectively.
  • the terminal device can support the following configurations of the number of Tx antennas and Rx antennas, including 1T2R, 2T4R, 1T4R, 2TR, 4T4R, and so on.
  • T represents the transmitting antenna
  • R represents the receiving antenna
  • 1T2R represents that the terminal device has one transmitting antenna and two receiving antennas
  • the rest antennas are configured by analogy.
  • the terminal device can support uplink MIMO; correspondingly, when the number of receive antennas of the terminal device is more than one, the terminal device can support downlink MIMO.
  • SRS Sounding reference signal
  • the sounding reference signal SRS is a reference signal used to measure the uplink channel.
  • the network device may estimate the channel state of the uplink channel based on the SRS sent by the terminal, so as to schedule the terminal device to transmit the PUSCH.
  • SRS can also be used by network equipment to estimate the channel state of the downlink channel.
  • Antenna port is a logical concept that refers to the logical port used for transmission. There is no one-to-one correspondence between antenna ports and physical antennas.
  • An antenna port can be a physical transmit antenna or a combination of multiple physical transmit antennas. In both cases, the receiver usually does not decompose the signal from the same antenna port, because from the receiver's point of view, it does not matter whether the signal is formed by a single physical transmit antenna or by multiple physical The transmit antennas are combined, and the reference signal (RS) corresponding to the antenna port defines the antenna port.
  • RS reference signal
  • the concept of an antenna port is defined from the perspective of the receiving end (the receiving end is a terminal device in the downlink, and the network device is the receiving end in the uplink), and a port is an independent antenna channel for the receiving end.
  • the network device can obtain the channel estimation of the antenna port according to the SRS sent by the terminal device.
  • one SRS resource set includes one or more SRS resources for transmitting SRS.
  • various functions are configured for the SRS.
  • the resources for transmitting SRSs with different functions are usually configured based on the above-mentioned SRS resource set and the framework of the SRS resources. Due to the different requirements of each function on the SRS, the SRS resource set and the configuration of the SRS resources are also different.
  • the functions of the SRS usually include: determining the transmission mode of the PUSCH based on the codebook (code book, CB) (that is, for the base station to realize the detection of the uplink channel), determining the transmission mode based on the non-codebook (non code book, NCB) PUSCH transmission mode (that is, support non-codebook transmission), antenna switching (antenna switching, AS) function (that is, downlink beamforming), used for beam management (Beam management, BM) (that is, uplink beam management ), and SRS transmission on multiple carriers, etc.
  • the SRS for CB may be multiplexed with the SRS for AS, that is, the same transmission on the same antenna, but the usage is different.
  • the antenna switching function of SRS is used in TDD that the number of antennas (or “transmitting antennas") of the transmitter (transmitter, Tx) of the terminal equipment is less than that of the receiver (receiver, Rx) (or “receiving antennas")
  • the uplink transmission channel of the terminal device is limited. Since the number of transmit antennas of the terminal device is less than the number of receive antennas, when the network device measures the channel state of the downlink channel corresponding to the receive antenna through the SRS, the terminal device needs to switch the antenna (or called antenna rotation) through the transmit antenna.
  • the SRS corresponding to the receiving antennas is sent to the network device, so that the network device can estimate the channel states corresponding to all the receiving antennas. That is, for the SRS resources in the SRS resource set used for antenna switching, the Tx channel that can be sent is sent through one SRS resource at a time, and then switched to another Rx channel, and the SRS resources of the remaining Rx channels are sent. These SRS resources are in different It is transmitted on orthogonal frequency division multiplexing (OFDM) symbols. Through the rotation of SRS resources on different antennas, the base station can obtain the channel state information of all Rx channels.
  • OFDM orthogonal frequency division multiplexing
  • the following takes 1T2R terminal equipment, 2T4R terminal equipment, and 1T4R terminal equipment as examples to introduce the SRS resource set with the "antenna switching" function and the configuration method of the SRS resources.
  • the SRS resource set configured by the network device for the terminal device includes two SRS resources, and each SRS resource corresponds to one antenna port.
  • the terminal device polls one Rx antenna each time, and sends the SRS corresponding to the Rx antenna on the Tx antenna. In this way, the terminal device needs to finish sending the SRS corresponding to the two Rx antennas in the above two SRS resources, so that the network device can obtain the channel state of the channel corresponding to the two Rx antennas.
  • the SRS resource set configured by the network device for the terminal device includes two SRS resources, and each SRS resource corresponds to two antenna ports.
  • the terminal device can poll two Rx antennas each time, and for the same SRS resource, it can correspond to different antenna ports, and the SRS resource is sent on both Tx.
  • the terminal device needs to send the SRS corresponding to the four Rx antennas on the two SRS resources, so that the network device can obtain the channel state of the channel corresponding to the four Rx antennas.
  • the SRS used for CB and the SRS used for AS can be multiplexed, in one AS SRS period, the SRS sent by the two Rx antennas polled for the first time is the multiplexed SRS.
  • the network device configures an SRS resource set for the terminal device, the SRS resource set includes 4 SRS resources, and each SRS resource corresponds to 4 antenna ports respectively.
  • the terminal equipment polls one Rx antenna each time, and the terminal equipment sends SRS on the SRS resource corresponding to the Rx antenna through one Tx antenna.
  • the terminal device needs to finish sending the SRS resources corresponding to the four Rx antennas on the four SRS resources, so that the network device can obtain the channel states of the channels corresponding to the four Rx antennas.
  • the SRS used for CB and the SRS used for AS can be multiplexed
  • the SRS sent by one Rx antenna polled for the first time is the multiplexed SRS.
  • Manner 2 For aperiodic SRS, there are two polling modes: 1. The network device configures two SRS resource sets for the terminal device, and each SRS resource set has two SRS resources. 2. The network device configures two SRS resource sets for the terminal device, wherein one SRS resource set has one SRS resource, and the other SRS resource set has three SRS resources.
  • the terminal equipment polls the SRS sent by different receiving antennas, a period of time needs to be reserved between the SRS resources for the terminal equipment to poll the next receiving antenna, that is, a certain protection needs to be reserved between the SRS resources. interval.
  • the SRS for the CB and the SRS for the AS may be transmitted between two polls.
  • SRS antenna switching is mainly used to evaluate downlink channel quality.
  • the SA architecture of independent networking supports 2T4R the supplementary uplink (SUL) in SA can support 1T2R
  • the NSA architecture of non-independent networking supports 1T2R the SA architecture of non-independent networking supports 1T2R.
  • FIG. 3 shows a schematic diagram of hardware supporting 2T4R antenna switching
  • FIG. 4 shows a schematic diagram of hardware supporting 1T4R and 2T4R antenna switching.
  • the terminal device includes two transmit antennas and four receive antennas 331 , 332 , 333 and 334 , wherein two of the receive antennas are multiplexed into transmit antennas.
  • the terminal device includes two transmit channels 311, 312 and four receive channels 311, 312, 321, 322, wherein the transmit channels 311 and 312 are multiplexed into receive channels.
  • the terminal equipment can poll different receiving antennas through the antenna switches 341 and 342 .
  • the antenna switch is a switch for sending and receiving signals, and can complete the switching of sending and receiving, and the switching between frequency bands under the control of software support.
  • the antenna switch may also be referred to as a combiner, a duplex filter, or the like.
  • the antenna switches 341 and 342 may be double pole double throw switches (double pole double throw, DPDT).
  • the terminal device includes 2 transmit antennas and 4 receive antennas, and accordingly, the terminal device includes 2 transmit channels and 4 receive channels.
  • the hardware diagram of antenna switching shown in FIG. 4 also includes another level of switch 343 . In this way, the terminal device corresponding to FIG. 4 can support not only 2T4R antenna switching, but also 1T4R antenna switching.
  • the hardware structure of the terminal device is described above with reference to FIGS. 2 to 4 , and the processing flow of the terminal device is described below with reference to FIGS. 5 to 6 .
  • FIG. 5 shows a schematic diagram of an uplink processing flow at the physical layer of a terminal device.
  • the physical layer (PHY) processing starts from the transport block transmitted by the media access control (MAC) layer, and ends at generating a baseband orthogonal frequency division multiplexing (OFDM) signal, and then Converted into radio frequency signals and transmitted through the antenna port.
  • MAC media access control
  • OFDM orthogonal frequency division multiplexing
  • Transport block (TB) 1. Transport block (TB)
  • a TB is the number of bits before coding contained in a subframe or a transmission time interval (TTI).
  • Codeword codeword, CW
  • the codeword refers to the data after channel coding is performed on the service stream from the upper layer.
  • a TB is called a codeword after channel coding.
  • Different codewords distinguish different data streams, and the purpose is to transmit multiple data through MIMO to realize spatial multiplexing.
  • MCW Multiple code word
  • the number of layers represents the data streams that can be independently transmitted in parallel.
  • the number of layers is determined by the rank of the channel matrix. In LTE, the number of layers is equal to the rank of the channel matrix. If the terminal device supports at most two antennas, the maximum rank can only be 2, and the terminal can support two-stream parallel transmission, and the maximum number of layers used by the terminal device for data transmission is 2.
  • Layer mapping is to remap the codeword stream to one or more layers (new data streams) according to certain rules, where the number of layers is less than the number of antenna ports used for physical channel transmission.
  • Precoding is used to match the layer-mapped data to the antenna ports, and at the same time reduce or control the interference between spatially multiplexed data streams and reduce system overhead.
  • the uplink processing process of the physical layer of the terminal equipment is mainly to encode the data from the upper layer to form a codeword. Scrambling and modulating different codewords to generate modulation symbols. The modulation symbol combinations of different codewords are layer-mapped together. The layer-mapped data is converted, pre-coded and pre-coded, and then mapped to the antenna port through resource mapping and single-carrier frequency-division multiple access (SC-FDMA) symbols are generated for transmission.
  • SC-FDMA resource mapping and single-carrier frequency-division multiple access
  • layer mapping and precoding are actually two sub-processes of the process of "mapping codewords to transmit antennas", which can solve the problem of input-output mismatch.
  • layer mapping and precoding work together to complete the MIMO function.
  • codewords are used to distinguish spatially multiplexed streams
  • layers are used to rearrange codeword data
  • antenna ports determine precoding antenna mapping.
  • the downlink processing flow of the physical layer of the terminal equipment is similar to the uplink processing flow, and only the physical layer uplink processing flow of the terminal equipment is used as an example for description.
  • NR SA With the deployment of NR SA, currently all terminal devices can support uplink 2T transmission capability and downlink 4R reception capability.
  • 2T transmission can support higher uplink throughput rate and achieve greater coverage performance
  • 4R reception can support higher downlink throughput rate and downlink coverage performance.
  • 2T means that the terminal device includes two transmit antennas, and the two transmit antennas can send the same data stream or different data streams when both are working. That is to say, the terminal device can support upstream two-stream transmission.
  • the maximum number of upstream transmission layers that can be scheduled by the network device is 2 (or the maximum number of upstream transmission layers is 2, and the maximum number of upstream transmission layers is 2, or The maximum number of upstream transmission layers is 2).
  • the terminal device can use 1T to send, or use 2T to send the same data stream; when the number of uplink transmission layers scheduled by the network device is 2, the terminal device uses 2T to send, and the two Each transmit antenna transmits different data streams.
  • the network device may, according to the reference signal receiving power (reference signal receiving power, RSRP), signal to interference plus noise ratio (signal to interference plus noise ratio, SINR) of the uplink reference signal SRS and the demodulation reference signal DMRS sent by the terminal device ), and factors such as the block error rate (BLER) of PUSCH determine the number of uplink transmission layers to be scheduled.
  • RSRP reference signal receiving power
  • SINR signal to interference plus noise ratio
  • BLER block error rate
  • the network device will schedule a larger number of uplink transmission layers in most scenarios (for example, the number of uplink layers is 2). In order to ensure coverage at the far point, most network devices will schedule a smaller number of uplink transmission layers (for example, the number of uplink layers is 1).
  • 4R indicates that the terminal equipment includes 4 receiving antennas, and the 4 transmitting antennas can transmit different data streams when all working. That is to say, the terminal device can support downlink four-stream transmission. Accordingly, the maximum number of downlink transmission layers that can be scheduled by the network device is 4 (or the maximum number of downlink transmission layers is 4, and the maximum number of downlink transmission layers is 4, or The maximum number of downlink transport layers is 4). Specifically, the network device may calculate the MIMO weight according to the SRS round-robin signaling, and determine the number of downlink transmission layers to be scheduled.
  • network equipment will prioritize the scheduling of larger downlink transmission layers (for example, the number of downlink transmission layers is 4 or 3) at the near point, and the smaller number of downlink transmission layers (for example, the number of downlink transmission layers) at the far point ( For example, the number of downlink transmission layers is 1 or 2).
  • 2T means that the terminal device includes two transmit antennas (corresponding to two transmit channels), and the terminal device supports the uplink 2T transmission capability, that is, the terminal device can use the two transmit antennas to transmit different data streams at the same time.
  • the maximum number of uplink transmission layers that can be scheduled by the network device is 2.
  • the terminal device uses two transmit antennas to send different data streams.
  • this situation is also referred to as network equipment scheduling rank2 (ie, dual streams, which may also be referred to as uplink dual streams in the uplink transmission process), and the terminal equipment performs uplink transmission in dual stream mode according to the scheduling of the network equipment.
  • network equipment scheduling rank2 ie, dual streams, which may also be referred to as uplink dual streams in the uplink transmission process
  • the terminal equipment performs uplink transmission in dual stream mode according to the scheduling of the network equipment.
  • the terminal device uses two transmit antennas to send the same data stream or use the two transmit antennas to transmit the same data stream. One of the transmit antennas transmits the data stream.
  • this situation is also referred to as network device scheduling rank1 (that is, a single stream, which may also be referred to as an upstream single stream in the uplink transmission process), and the terminal device performs uplink transmission in a single stream mode according to the scheduling of the network device. .
  • 4R indicates that the terminal device includes four receiving antennas (corresponding to four receiving channels), and the terminal device supports downlink 4R receiving capability, that is, the terminal device can use the four receiving antennas to simultaneously receive different data streams.
  • the maximum number of downlink transmission layers that can be scheduled by the network device is 4.
  • the number of downlink transmission layers scheduled by the network device is 1/2/3/4, that is, the network device schedules rank1/rank2/rank3/rank4 respectively, and the terminal device schedules the single-stream mode/dual-stream mode/ Three-stream mode/four-stream mode for downstream reception.
  • the number of transmission layers is equal to the rank of the channel matrix.
  • the rank of the channel matrix 2 as an example, it means that the transmission capability of the terminal device can transmit rank2.
  • the network device can schedule the number of transmission layers of the terminal device to be 2 (ie scheduling rank2) or the number of transport layers is 1 (ie scheduling rank1).
  • the number of transmission layers scheduled by the network device can be obtained according to any one of the expressions.
  • the number of transmission layers scheduled by the network equipment is 2, the network equipment scheduling rank 2 (rank2), the network equipment scheduling terminal equipment upstream dual-stream transmission mode, etc.
  • the transmission mode of the terminal device in this embodiment of the present application includes a transmission mode and a reception mode.
  • the transmission modes include sending in single-stream mode (the number of scheduling uplink transmission layers is 1, that is, uplink rank1), and sending in dual-stream mode (the number of scheduling uplink transmission layers is 2, that is, uplink rank2).
  • the receiving mode includes receiving in single-stream mode (the number of scheduling downlink transmission layers is 1, that is, downlink rank1), receiving in dual-stream mode (the number of scheduling downlink transmission layers is 2, that is, downlink rank2), and receiving in three-stream mode (scheduling the number of downlink transmission layers) is 3, that is, downlink rank3), and is received in a four-stream mode (the number of scheduling downlink transmission layers is 4, that is, downlink rank4).
  • the network device needs to know the capabilities of the terminal device (UE capability) first, so that it can make correct scheduling when making various event judgments or executing various algorithms.
  • UE capability is a set of parameters, including UE category (UE category), PDCP parameters, RLC parameters, physical layer parameters, RF parameters, parameters for whether to support overheating indication, etc.
  • UE category UE category
  • PDCP parameters PDCP parameters
  • RLC parameters physical layer parameters
  • RF parameters parameters for whether to support overheating indication, etc.
  • the network device schedules the terminal device to perform data transmission in the embodiment of the present application, that is, before the network device schedules the number of transmission layers (that is, the number of layers) of the terminal device, it is necessary to know the maximum number of transmission layers (also called the number of layers) supported by the terminal device.
  • the maximum number of transmission layers, the maximum number of layers, and the maximum number of layers that is, it is necessary to know how many concurrent streams of data the terminal device supports.
  • the number of transmission layers here includes the number of uplink transmission layers and the number of downlink transmission layers. Accordingly, the maximum number of transmission layers supported by the terminal device includes the maximum number of uplink transmission layers and the maximum number of downlink transmission layers.
  • FIG. 6 shows a schematic flowchart of a terminal device capability reporting process and a data transmission scheduling process.
  • the network device is taken as an example of a base station
  • the terminal device is taken as an example of a UE for description.
  • the process of the UE reporting capability information is performed after the UE establishes an RRC connection with the base station.
  • the UE reports the UE capability.
  • the base station when the base station needs the UE to report the UE capability, in step S410, the base station sends a UE capability query message (for example, a UE Capability Enquiry message) to the UE for querying the UE capability.
  • a UE capability query message for example, a UE Capability Enquiry message
  • the base station needs to know the maximum number of layers of uplink and downlink transmission supported by the UE. Therefore, the UE capability query message includes the maximum number of uplink transmission layers and the maximum number of downlink transmission layers of the query UE.
  • step S420 the UE sends a UE capability information message (for example, a UE Capability Information message) to the base station for reporting the UE capability information to the base station.
  • a UE capability information message for example, a UE Capability Information message
  • the UE capability information message includes the maximum number of uplink transmission layers and the maximum number of downlink transmission layers of the UE.
  • the maximum number of uplink transmission layers reported by the UE may be less than or equal to the maximum number of uplink transmission layers that the UE can actually support, and the maximum number of downlink transmission layers reported by the UE may be less than or equal to the maximum number of downlink transmission layers that the UE can actually support.
  • the UE supports the 2T transmission capability.
  • the UE can report the 2T transmission capability (for example, the maximum number of uplink transmission layers is 2), or the 1T transmission capability (for example, the maximum uplink transmission layer number is 1).
  • the maximum number of uplink transmission layers and the maximum number of downlink transmission layers reported by the UE are the maximum number of uplink transmission layers and the maximum number of downlink transmission layers supported by the UE.
  • the base station can only operate within the maximum number of uplink/downlink transmission layers reported by the UE. Schedule. For example, when the UE reports the 2T transmission capability, the base station can schedule the UE to perform 2T transmission (that is, dual-stream transmission, and the number of scheduling layers is 2) or 1T transmission (that is, single-stream transmission, and the number of scheduling layers is 1). If the UE can support the 2T transmission capability, but the UE reports the 1T transmission capability, the base station can only schedule the UE to perform 1T transmission.
  • the UE reports to the base station the process of the maximum number of uplink transmission layers and the maximum number of downlink transmission layers, that is, the process of the UE reporting the supported MIMO capability.
  • the maximum number of uplink transmission layers reported by the UE is the uplink MIMO capability supported by the UE
  • the maximum number of downlink transmission layers reported by the UE is the downlink MIMO capability supported by the UE.
  • the content reported by the terminal device may include the MIMO capability of each cell or carrier aggregation (CA), for example, in the cell corresponding to the A1 frequency band, the number of receiving channels of the terminal device is: 2.
  • CA carrier aggregation
  • supportedMOMO-CapabilityDL-r16:twoLayers(0,0x0) indicates that the number of layers supporting multiple input and multiple output under band 3 is 2;
  • supportedMOMO-CapabilityDL-r16:fourLayers(0,0x0) indicates that the number of layers that support multiple input and multiple output in the current frequency band is 4.
  • the number of layers is the number of receiving channels of the corresponding terminal device.
  • the base station determines the UE's transmission mode according to the UE capability and information detected by the base station.
  • the base station sends scheduling information (for example, a downlink control indicator (DCI)) to the UE to indicate the number of transmission layers of the UE.
  • DCI downlink control indicator
  • the scheduling information includes the number of uplink transmission layers, the precoding matrix, etc.; when the base station schedules the UE to perform downlink data transmission, the scheduling information includes the number of downlink transmission layers and the precoding matrix. Wait.
  • step S440 the UE performs data transmission according to the information indicated in the scheduling information.
  • the terminal device In order to increase the peak uplink and downlink throughput, the terminal device generally reports the highest uplink and downlink MIMO capability, and the network device performs scheduling within the maximum number of uplink/downlink transmission layers reported by the terminal device.
  • the network equipment is mainly responsible for scheduling and adjustment according to the actual situation. For example, in consideration of throughput, coverage, and spectrum efficiency, network devices mostly schedule a larger number of uplink and downlink transmission layers at near points, and a smaller number of uplink and downlink transmission layers at far points.
  • the terminal device can use a smaller number of transmission layers for transmission to meet the requirements, but when the network device side schedules a larger number of transmission layers, the terminal device has to use the number of transmission layers scheduled by the network device to work. This undoubtedly results in a waste of power consumption.
  • the terminal device can meet the requirements by using a lower number of transmission layers, but the network device still schedules a higher number of transmission layers at the near point, which makes the terminal device have to use a larger number of transmission layers.
  • the number of transport layers works, resulting in higher power consumption.
  • the terminal device hopes to reduce the number of transmission layers, which can not only meet the transmission requirements, but also reduce power consumption.
  • the terminal device also hopes to reduce the number of transmission layers to solve the problem of conflict in the use of radio frequency resources.
  • the terminal device side cannot realize the adjustment of the number of transmission layers scheduling.
  • the network device can only reconfigure the maximum number of transmission layers of the terminal device by reducing the MIMO capability supported by the report, thereby reducing the number of scheduled transmission layers, or the terminal device forcibly shuts down the transmission.
  • /Receive diversity enables the network device to adaptively adjust the scheduling of the number of transmission layers of the terminal device, so as to reduce the number of scheduled transmission layers.
  • the network device after the maximum number of transmission layers is reconfigured, the network device can only schedule a lower number of transmission layers, which will lead to a decrease in the peak value of uplink and downlink.
  • the terminal device forcibly turns off the transmit/receive diversity the network device cannot respond in time, which will cause continuous bit errors and affect the user experience.
  • FIG. 7 shows a schematic flowchart of a method for scheduling data transmission provided by an embodiment of the present application.
  • the method 500 shown in FIG. 7 may be performed by a terminal device, such as the terminal device 120 shown in FIG. 1 .
  • the method 500 includes steps S510 to S530.
  • step S510 the terminal device performs data transmission using the first transmission layer number.
  • data transmission includes uplink transmission and downlink transmission.
  • the number of first transmission layers includes the number of uplink transmission layers and the number of downlink transmission layers.
  • the number of first transmission layers is, for example, the number of layers mentioned above, that is, the number or value of layers.
  • the first transmission layer number corresponds to the number of uplink transmission layers
  • the first transmission layer number corresponds to the number of downlink transmission layers
  • the terminal device simultaneously When performing uplink and downlink data transmission the first number of transmission layers includes the number of uplink transmission layers used for uplink data transmission and the number of downlink transmission layers used for downlink data transmission.
  • the terminal device uses the first transmission layer number for data transmission, which can also be understood as the terminal device using the rank corresponding to the first transmission layer number for data transmission, or the terminal device uses the radio frequency corresponding to the first transmission layer number.
  • the number of channels for data transmission can also be understood as the terminal device using the rank corresponding to the first transmission layer number for data transmission, or the terminal device uses the radio frequency corresponding to the first transmission layer number. The number of channels for data transmission.
  • the antenna configuration mode of the terminal device is 2T4R. If the terminal device performs uplink data transmission, the first transmission layer number may be 2; if the terminal device performs downlink data transmission, the first transmission layer number may be 2 or 3. or 4.
  • the antenna configuration mode of the terminal device is 1T2R, and if the terminal device performs downlink data transmission, the number of first transmission layers may be 2.
  • the antenna configuration mode of the terminal device is 1T4R, and if the terminal device performs downlink data transmission, the number of first transmission layers may be 2, 3 or 4.
  • step S520 when the first preset condition is satisfied, the terminal device performs the first action.
  • the terminal device performs the first action.
  • the terminal device performing the first action includes reducing the transmit power of the sounding reference signal SRS.
  • the terminal device includes multiple antenna ports for sending SRS, and the terminal device can reduce the SRS transmit power corresponding to at least one antenna port in the multiple antenna ports for sending SRS.
  • the terminal device may reduce the transmit power of the SRS according to the first preset rule.
  • the terminal device may reduce the SRS transmit power stepwise, that is, reduce the SRS transmit power according to a constant value.
  • the terminal equipment reduces the transmission power of the SRS for several times in a row, and each time the reduction value of the transmission power of the SRS is equal, for example, 5 decibels (decibel, db), 10 db, or 20 db.
  • the initial SRS transmit power of one of the antenna ports is 50db
  • the SRS transmit power of the antenna port is sequentially reduced to 40db, 30db, 20db, ..., and so on.
  • the SRS transmit power corresponding to the antenna port decreases by 10db each time.
  • the reduction may not be continued, and the SRS signal can be continuously transmitted with the transmit power corresponding to the threshold value.
  • the terminal device may decrease the transmit power of the SRS in an incremental or descending manner, that is, the decrease values of the transmit power of the SRS are not equal, and may show an increasing trend or a decreasing trend.
  • the terminal equipment reduces the transmit power of the SRS several times in a row, and the decrease value of the transmit power of the SRS is an arithmetic sequence, a proportional sequence, an irregular increasing trend, an irregular decreasing trend, and the like.
  • the initial SRS transmit power of one of the antenna ports is 60db, when the terminal device performs the first action, the SRS transmit power of the antenna port is sequentially reduced to 40db, 25db, 15db, ..., and so on.
  • the drop values of the SRS transmit power corresponding to the antenna port are 20db, 15db, 10db, . . . in an arithmetic progression.
  • the reduction may not be continued, and the SRS signal can be continuously transmitted with the transmission power corresponding to the threshold value.
  • the terminal device reduces the SRS transmit power stepwise, which is not limited in this embodiment of the present application.
  • the terminal device may directly reduce the transmit power of the SRS to the threshold value, and then continue to transmit the SRS signal at the transmit power corresponding to the threshold value.
  • the terminal device when the terminal device performs the first action, if the terminal device reduces the transmit power of the SRS corresponding to at least two antenna ports in the multiple antenna ports used for transmitting SRS, the SRS of different antenna ports transmits the SRS.
  • the strategies can be the same or different. Specifically, taking reducing the SRS transmit power corresponding to the two antenna ports as an example, the terminal device can use the same rule to reduce the SRS transmit power of the two antenna ports, or can use different rules to reduce the SRS of the two antenna ports.
  • the transmit power for example, reduces the SRS transmit power of one of the antenna ports in a stepwise manner, and decreases the SRS transmit power of the other antenna port in a stepwise manner.
  • the SRS transmit power of the at least two antenna ports may be reduced synchronously or may be reduced in steps, which is implemented in this application.
  • the example does not limit this.
  • the terminal device may control the SRS transmit power of each antenna port through the power amplifier corresponding to the antenna port.
  • a similar scenario where the terminal device is located at the far point can be constructed, so that the network device can schedule and adjust the number of transmission layers according to the far point scenario, and schedule a lower number of transmission layers.
  • the terminal device performing the first action includes reducing the transmit power of the uplink physical shared channel PUSCH.
  • the terminal device includes multiple antenna ports for sending PUSCH, and the terminal device can reduce the SRS transmit power corresponding to at least one antenna port in the multiple antenna ports for sending PUSCH.
  • the terminal device may reduce the transmit power of the PUSCH according to the second preset rule.
  • the second preset rule adopted by the terminal device may be the same as the above-mentioned first preset rule, that is, the terminal device may reduce the reflected power of the PUSCH in a manner similar to the above-mentioned reduction of the transmit power of the SRS. It is concise and will not be repeated here.
  • the terminal device may control the PUSCH transmit power of each antenna port through the power amplifier corresponding to the antenna port.
  • a similar scenario in which the terminal device is located at the far point can be constructed, so that the network device can schedule and adjust the number of transmission layers according to the far point scenario, and schedule a lower number of transmission layers.
  • the terminal device performing the first action includes turning off at least one antenna port of the plurality of antenna ports used for transmitting the SRS.
  • the power amplifier corresponding to the at least one antenna port may be closed, or the SRS transmit power corresponding to the at least one antenna port may be set to 0 , or the SRS transmit power corresponding to the at least one antenna port is set to a level that cannot be detected by the network device, so from the perspective of the network device, it is equivalent to turning off the at least one antenna port.
  • closing the antenna port for sending SRS can be understood that the antenna port does not send SRS. But this antenna port can be used to send other signals.
  • the multiple antenna ports used for sending the SRS include a first port group, and the first port group is used for sending the SRS used for the antenna switching AS.
  • the terminal device performs downlink data transmission, the terminal device performs the first action. Specifically, at least one port in the first port group may be closed.
  • the terminal device closes at least one of the antenna ports used for sending ASSRS, the network device can detect that the port is closed, and accordingly, the network device can adjust and schedule the number of downlink transmission layers of the terminal device.
  • the multiple antenna ports used to send the SRS include a second port group, and the second port group is used to send the SRS used for the codebook CB.
  • the terminal device performs uplink data transmission, the terminal device performs the first action. Specifically, at least one port in the second port group may be closed.
  • the terminal device closes at least one of the antenna ports used for sending the CB SRS, the network device can detect that the port is closed, and accordingly, the network device can adjust and schedule the number of uplink transmission layers of the terminal device.
  • first port group and the second port group may include the same antenna ports.
  • the same antenna port is used to transmit both SRS for CB and SRS for AS.
  • the number of ports closed by the terminal device has an associated relationship with the number of transmission layers adjusted and scheduled by the network device. For example, the more ports that are closed by the terminal device, the less the number of ports that transmit SRS detected by the network device, and the lower the adjusted number of transport layers.
  • the terminal device includes 2 antenna ports for sending ASSRS, the terminal device closes one of the ports, and the network device can detect one port for sending ASSRS signals. If the number of uplink transmission layers scheduled by the network device before scheduling is adjusted to 2, the number of uplink transmission layers scheduled after the network device adjusts the scheduling may be 1.
  • the terminal device includes 4 antenna ports for sending CB SRS, the terminal device closes one of the ports, and the network device can detect 3 ports for sending CB SRS signals. If the number of downlink transmission layers scheduled by the network device before scheduling is adjusted, If it is 4, the number of downlink transmission layers scheduled after the network device adjusts the scheduling can be 3. Or, if the terminal device closes three of the ports, and the network device can detect one port that sends the CB SRS signal, the number of downlink transmission layers scheduled after the network device adjusts and schedules can be 1.
  • the terminal device performing the first action includes turning off at least one antenna port of the plurality of antenna ports used for transmitting the PUSCH.
  • the power amplifier corresponding to the at least one antenna port may be closed, or the PUSCH transmit power corresponding to the at least one antenna port may be set to 0 , or the PUSCH transmit power corresponding to the at least one antenna port is set to a level that cannot be detected by the network device, so from the perspective of the network device, it is equivalent to turning off the at least one antenna port.
  • closing the antenna port for sending PUSCH can be understood that the antenna port does not send PUSCH. But this antenna port can be used to send other signals.
  • the number of ports closed by the terminal device has an associated relationship with the number of transmission layers adjusted and scheduled by the network device. For example, the greater the number of ports closed by the terminal device, the less the number of ports that transmit PUSCH detected by the network device, and the lower the adjusted number of transport layers is determined. For a specific example, reference may be made to the above description about closing the antenna port for sending SRS, which is not repeated here for brevity.
  • the terminal device performing the first action includes sending a first assistance information message to the network device.
  • the first assistance information message may be a terminal assistance information (UE AssistanceInformation) message defined by a standard protocol.
  • the terminal assistance information message is generally used by the terminal device to notify the network device of, for example, overheating assistance information, the maximum aggregated bandwidth that the UE prefers for power saving, and the maximum MIMO layer that the UE prefers for power saving.
  • the UE shall submit the UE AssistanceInforamation message to lower layers for transmission.
  • the first auxiliary information message is an overheating indication message.
  • the overheating indication message may be an overheating indication message defined by a standard protocol, and may also be referred to as an overheating assistance information message in some embodiments.
  • the overheating indication message is sent to the network device when the terminal device experiences internal overheating, and the overheating indication message may include the maximum number of MIMO layers.
  • the overheating indication message does not include the maximum number of MIMO layers.
  • the overheating indication message is not limited to being sent to the network device when the terminal device is overheated. As long as the first preset condition is satisfied, the terminal device can send the overheating indication message to the network device. Therefore, when the terminal device wants the network device to adjust the scheduling of the number of transmission layers, it can send an instruction to the network device by using an existing standard message, so that the network device can respond in time.
  • the first auxiliary information message includes a second maximum transmission layer number, the second maximum transmission layer number is smaller than the first maximum transmission layer number, wherein the first maximum transmission layer number is equal to the network device performing the first action on the terminal device.
  • the first auxiliary information message sent to the network device includes the second maximum transmission layer number, and the second maximum transmission layer number is smaller than the first maximum transmission layer number.
  • the first auxiliary information message is used to instruct or request the network device to configure the maximum number of transmission layers of the terminal device as the second maximum number of transmission layers. In this way, the maximum number of transmission layers that can be scheduled by the network device is reduced.
  • the second maximum number of transmission layers includes the maximum number of uplink transmission layers and the maximum number of downlink transmission layers.
  • the second maximum number of transmission layers is the maximum number of layers that the network device can schedule.
  • the second maximum number of transmission layers corresponds to the maximum number of uplink transmission layers
  • the second maximum number of transmission layers corresponds to the maximum number of downlink transmission layers
  • the terminal equipment When performing uplink and downlink data transmission at the same time the second maximum number of transmission layers includes the maximum number of uplink transmission layers used for uplink data transmission and the maximum number of downlink transmission layers used for downlink data transmission.
  • the understanding of the first maximum number of transmission layers is similar and will not be repeated here.
  • the terminal device when the first preset condition is satisfied, the terminal device sends a terminal assistance information message to the network device, where the terminal assistance information message may be used to instruct the network device to reduce the maximum number of transmission layers of the terminal device.
  • the network In subsequent scheduling, the device reduces the maximum number of transmission layers that can be scheduled.
  • the manner in which the terminal device performs the first action may be one or more combinations of the foregoing implementation manners. That is, the terminal device performing the first action includes at least one of the following:
  • a first assistance information message is sent to the network device.
  • the method of reducing the transmission power of SRS and/or PUSCH and the method of closing at least one antenna port among the multiple antenna ports used for transmitting SRS and/or PUSCH can be understood as the terminal device instructing the network device to adjust the scheduling by means of implicit information .
  • the network device needs to know the intention of the terminal device only after detecting the transmit power of the SRS and/or the PUSCH, or by detecting the number of antenna ports that transmit the SRS and/or the PUSCH. These methods can be considered as slow fallback methods for the number of transport layers.
  • the manner of sending the first auxiliary information message to the network device can be understood as that the terminal device instructs the network device to adjust the schedule by means of explicit information.
  • the network device can respond quickly after receiving the first auxiliary information message, so this mode can be considered as a fast fallback mode for the number of transport layers.
  • the terminal device may determine to adopt the slow fallback method of the number of transport layers and/or the fast fallback method of the number of transport layers according to the type of data service to be processed, so as to be flexibly applied to various scenarios.
  • the first preset condition includes at least one of the following preset conditions 1 to 6, which are described as follows.
  • Preset condition 1 the reference signal received power RSRP detected by the terminal device is greater than the first threshold.
  • the preset condition 1 When the preset condition 1 is satisfied, it can be considered that the signal quality of the location where the terminal device is located is better. Generally, the signal quality of a terminal device at a close point of the network device is better than that at a distant point of the network device. Therefore, the preset condition 1 can be used for the terminal device to determine whether it is located in the near point.
  • the first threshold can be determined according to actual needs, which is not specifically limited here.
  • the terminal device can also judge whether it is in a short distance of the network device through the value of RSRQ, RSSI or SNR.
  • the terminal device When the terminal device is in a position with better signal quality, the terminal device can use a lower number of transmission layers for transmission to save power consumption.
  • Preset condition 2 The data service processed by the terminal device belongs to the first preset service type.
  • the first preset service type may include a short message service, a textual web page browsing service, an instant messaging service, a fragmented content transmission service, and the like.
  • the services in the first preset service type are generally small-traffic services.
  • the terminal device can use a lower number of transmission layers for transmission to meet the requirements, so as to save power. consumption.
  • the preset condition 3 is that the data traffic of the application layer of the data service processed by the terminal device is less than the second threshold.
  • the application layer data flow of the data service processed by the terminal device is less than the second threshold, the application layer data flow required by the data service is small, so the terminal device can use a lower number of transmission layers for transmission to save power consumption.
  • the second threshold can be determined according to actual needs, which is not specifically limited here.
  • Preset condition 4 the temperature of the terminal device is greater than the third threshold.
  • the third threshold When the temperature of the terminal device is greater than the third threshold, the temperature of the terminal device is relatively high, and the terminal device needs to use a lower number of transmission layers for transmission to reduce power consumption.
  • the third threshold can be determined according to actual needs, which is not specifically limited here.
  • the preset condition 5 is that the power of the terminal device is less than the fourth threshold.
  • the fourth threshold When the power of the terminal device is less than the fourth threshold, the power of the terminal device is small, and the terminal device can use a lower number of transmission layers for transmission, so as to reduce power consumption and save power.
  • the fourth threshold can be determined according to actual needs, which is not specifically limited here.
  • the terminal device carries the first user identity module SIM card and the second SIM card, wherein the first SIM card uses the first transmission layer to process the first data service, and the second SIM card receives the first data service in the idle state.
  • the Data service request is the first user identity module SIM card and the second SIM card, wherein the first SIM card uses the first transmission layer to process the first data service, and the second SIM card receives the first data service in the idle state.
  • the terminal device In the case where the terminal device carries the first SIM card and the second SIM card, the first SIM card and the second SIM card jointly use the radio frequency resources of the terminal device. When the first SIM card and the second SIM card process services, there may be a conflict in the use of radio frequency resources. In this case, the terminal device can reduce the number of transmission layers of one of the SIM cards, thereby releasing some or all of the radio frequency resources for the other SIM card. Card processing business.
  • step 530 after the terminal device performs the first action, the terminal device receives the first scheduling information sent by the network device, where the first scheduling information is used to instruct the terminal device to use the second transmission layer number for data transmission, and the second transmission layer number less than the first transport layer number.
  • the network device After the terminal device performs the first action, the network device is made to adjust the scheduling of the terminal device, and the terminal device is scheduled to use the second transmission layer number for data transmission. Since the number of the second transmission layer is smaller than the number of the first transmission layer, the terminal device can use fewer radio frequency channels to transmit data, which can save power consumption or release part of radio frequency resources.
  • the first scheduling information is a downlink control indicator (downlink control indicator, DCI).
  • DCI downlink control indicator
  • the number of the second transmission layers includes the number of uplink transmission layers and the number of downlink transmission layers.
  • the number of the second transmission layers is, for example, the number of layers mentioned above, that is, the number or value of layers.
  • the number of second transmission layers corresponds to the number of uplink transmission layers
  • the number of second transmission layers corresponds to the number of downlink transmission layers
  • the number of second transmission layers includes the number of uplink transmission layers used for uplink data transmission and the number of downlink transmission layers used for downlink data transmission.
  • the second transmission layer number and the first transmission layer number are used for uplink data transmission; or, the second transmission layer number and the first transmission layer number are used for downlink data transmission.
  • the method for scheduling data transmission can be applied to a single-card scenario or a multi-card scenario; can be applied to a scenario where a terminal device is overheated, or can be applied to a scenario where other terminal devices need to save power consumption.
  • the terminal device wants to transmit with a lower number of transmission layers, the terminal device can execute the above method 500, so that the network device can respond according to the action of the terminal device and reduce the number of scheduled transmission layers. Therefore, the terminal equipment can report the highest MIMO capability without affecting the services processed by the terminal equipment, and can also turn off transmit/receive diversity or release radio frequency resources to save power consumption or solve the problem of radio frequency resource use conflicts.
  • Method 500 also includes:
  • the terminal device starts the timer
  • the second SIM card uses the third transmission layer number to process the second data service, and the first SIM uses the second transmission layer number to process the first data service;
  • the second SIM card uses the third transport layer to process the second data service, and the first SIM card enters an idle state.
  • the terminal device further sets a timer. If the timer does not expire, after receiving the second data service request, the second SIM card can first put the second SIM card in a waiting state, and suspend the processing of the second data service, so as to roll back the number of transmission layers of the first SIMA card. Allow time.
  • the timer expires, the first SIM card directly enters the idle state, and the second SIM card uses the transmission channel to process the service request. In this case, since the first SIM card enters the idle state, the network device side can quickly perceive the state of the first SIM card, so as to quickly perform scheduling adjustment, which can reduce the occurrence of bit errors.
  • the sum of the second transmission layer number and the third transmission layer number is less than or equal to the maximum number of transmission layers that can be scheduled by the network device after the terminal device performs the first action.
  • the number of the second transmission layer used by the first SIM card and the number of third transmission layers used by the second SIM card should be less than or equal to The maximum number of transport layers that can be scheduled after an action. In this way, the first SIM card and the second SIM card coordinately use the radio frequency resources of the terminal device to process their respective data services.
  • the terminal device may determine the duration of the timer according to the type of the first data service and the type of the second data service.
  • the timer duration is determined according to the service types of the first SIM card and the second SIM card, which can be flexibly applied to various service combination scenarios.
  • the terminal device may determine the first action according to the type of the first data service and the type of the second data service.
  • the first action can be one or more of the implementation manners described above.
  • the service types of the first SIM card and the second SIM card are different in combination, and the terminal device can perform different first actions, such as implementing fast fallback or slow rollback. Fast fallback can be flexibly applied to various business combination scenarios.
  • the first SIM card uses all the uplink radio frequency resources of the terminal device to process the first data service.
  • the maximum value of the number of uplink transmission layers reported by the first SIM card is 2, and the maximum value of the number of uplink transmission layers reported by the second SIM card is 1.
  • the method 500 further includes steps S540 to S560, as shown in FIG. 8 .
  • step S510 the terminal device uses the second transmission layer number for data transmission.
  • step S550 when the second preset condition is satisfied, the terminal device performs the second action.
  • the terminal device performing the second action includes increasing the transmit power of the sounding reference signal SRS.
  • the terminal device includes multiple antenna ports for sending SRS, and the terminal device can increase the SRS transmit power corresponding to at least one antenna port in the multiple antenna ports for sending SRS.
  • the terminal device may increase the transmit power of the SRS according to the third preset rule.
  • the terminal device may increase the transmit power of the SRS in a stepwise manner, or increase the transmit power of the SRS in an incremental or descending manner, or the terminal device may directly increase the transmit power of the SRS to the maximum transmit power.
  • the rules for the terminal equipment to increase the transmit power of the SRS may be similar to the rules for reducing the transmit power of the SRS in step S520, except that in this step, the transmit power of the SRS is increased.
  • the terminal device when the terminal device performs the second action, if the terminal device increases the transmit power of the SRS corresponding to at least two antenna ports in the multiple antenna ports used to transmit the SRS, the SRS of the different antenna ports transmits the SRS.
  • the strategies can be the same or different. Specifically, taking increasing the SRS transmit power corresponding to the two antenna ports as an example, the terminal device may use the same rule to increase the SRS transmit power of the two antenna ports, or may use different rules to increase the SRS transmit power of the two antenna ports The transmit power, for example, increases the SRS transmit power of one of the antenna ports in a stepwise manner, and increases the SRS transmit power of the other antenna port incrementally.
  • the SRS transmit power of the at least two antenna ports may be increased synchronously or may be increased in steps, which is implemented in this application.
  • the example does not limit this.
  • the terminal device may control the SRS transmit power of each antenna port through the power amplifier corresponding to the antenna port.
  • the network device can schedule and adjust the number of transmission layers according to the near point scenario or the actual location of the terminal device.
  • the terminal device performing the second action includes increasing the transmit power of the uplink physical shared channel PUSCH.
  • the terminal device includes multiple antenna ports for sending PUSCH, and the terminal device can increase the PUSCH transmit power corresponding to at least one of the multiple antenna ports for sending PUSCH.
  • the terminal device may increase the transmit power of the PUSCH according to the fourth preset rule.
  • the fourth preset rule adopted by the terminal device may be the same as the above-mentioned third preset rule, that is, the terminal device may increase the reflected power of the PUSCH in a manner similar to the above-mentioned method of increasing the transmit power of the SRS. It is concise and will not be repeated here.
  • the terminal device may control the PUSCH transmit power of each antenna port through the power amplifier corresponding to the antenna port.
  • a similar scenario where the terminal device is in a near point can be constructed, or the actual PUSCH transmission level of the terminal device can be restored, so that the network device can schedule and adjust the number of transmission layers according to the near point scenario or the actual location of the terminal device.
  • the terminal device performing the second action includes turning on at least one antenna port among the plurality of antenna ports that are turned off for transmitting the SRS.
  • the power amplifier corresponding to the at least one antenna port may be turned on, or the SRS transmit power corresponding to the at least one antenna port may be turned on. It is set to the maximum value, or the SRS transmit power corresponding to the at least one antenna port is set to the level before step S520, which is not limited in this embodiment of the present application.
  • opening a closed antenna port for sending SRS can be understood as that the antenna port continues to send SRS.
  • the terminal device performing the second action includes turning on at least one antenna port among the plurality of antenna ports that are turned off for transmitting the PUSCH.
  • the power amplifier corresponding to the at least one antenna port may be turned on, or the PUSCH transmit power corresponding to the at least one antenna port may be turned on. It is set as the maximum value, or the PUSCH transmit power corresponding to the at least one antenna port is set as the level before step S520, which is not limited in this embodiment of the present application.
  • opening a closed antenna port for sending PUSCH can be understood as that the antenna port continues to send PUSCH.
  • the terminal device performing the second action includes sending a second assistance information message to the network device.
  • the second assistance information message may be a terminal assistance information (UE AssistanceInformation) message defined by a standard protocol.
  • UE AssistanceInformation terminal assistance information
  • the second auxiliary information message is an overheating indication message.
  • the terminal device when the second preset condition is satisfied, the terminal device sends a terminal assistance information message to the network device, and the terminal assistance information message may be used to instruct the network device to increase the maximum number of transmission layers of the terminal device.
  • the network In subsequent scheduling, the device can increase the maximum number of transmission layers that can be scheduled.
  • the manner in which the terminal device performs the second action may be one or more combinations of the foregoing implementation manners. That is, the terminal device performing the second action includes at least one of the following:
  • a second assistance information message is sent to the network device.
  • the second preset condition includes at least one of the following preset conditions 7 to 12, which are described as follows.
  • Preset condition 7 the reference signal received power RSRP detected by the terminal device is less than the fifth threshold.
  • the preset condition 7 When the preset condition 7 is satisfied, it can be considered that the signal quality of the location where the terminal device is located is poor. Terminal devices need to use a higher number of transport layers for transmission to ensure throughput.
  • Preset condition 8 The data service processed by the terminal device belongs to the second preset service type.
  • the second preset service type may include a call service, a picture web browsing service, a video service, a game service, and the like.
  • the services in the second preset service type are generally high-traffic services.
  • the terminal device needs to use a higher number of transmission layers for transmission to ensure throughput.
  • Preset condition 9 is that the data traffic of the application layer of the data service processed by the terminal device is greater than the sixth threshold.
  • the data service When the application layer data flow of the data service processed by the terminal device is greater than the sixth threshold, the data service requires a large application layer data flow, so the terminal device needs to use a higher number of transmission layers for transmission to ensure throughput.
  • the preset condition 10 is that the temperature of the terminal device is less than the seventh threshold.
  • the temperature of the terminal device is lower than the seventh threshold, the temperature of the terminal device is low, and the terminal device can use a higher number of transmission layers for transmission, so as to improve spectrum utilization.
  • the preset condition 11 is that the power of the terminal device is greater than the eighth threshold.
  • the power of the terminal device is greater than the eighth threshold, the power of the terminal device is relatively large, and the terminal device can use a higher number of transmission layers for transmission to improve spectrum utilization.
  • the terminal device carries the first SIM card and the second SIM card, wherein the first SIM card is in an idle state or uses the second transmission layer to process the first data service, and the second SIM card ends the processing of the second data service And enter the idle state from the business connection state.
  • the terminal device carries the first SIM card and the second SIM card
  • the first SIM card and the second SIM card jointly use the radio frequency resources of the terminal device.
  • part of the radio frequency resources can be released for the other SIM card to process services, so the other SIM card can use a higher number of transmission layers for transmission.
  • the fifth threshold may be equal to the first threshold
  • the sixth threshold may be equal to the second threshold
  • the seventh threshold may be equal to the third threshold
  • the eighth threshold may be equal to the fourth threshold.
  • the fifth threshold, the sixth threshold, the seventh threshold, and the eighth threshold may also be determined according to the actual situation, which are not specifically limited herein.
  • the preset conditions 7-12 correspond to the above-mentioned preset conditions 1-6, that is, when at least one of the preset conditions 1-6 is satisfied, the terminal device wishes to use a lower number of transmission layers. When at least one of conditions 7-12 is preset, the terminal device wishes to use a higher number of transmission layers.
  • the preset conditions 7-12 are opposite to the preset conditions 1-6. For details, reference may be made to the relevant description of the above step S520, which is not repeated here for brevity.
  • step 530 after the terminal device performs the second action, the terminal device receives second scheduling information sent by the network device, where the second scheduling information is used to instruct the terminal device to use the fourth transmission layer number for data transmission, and the fourth transmission layer number greater than the second transport layer number.
  • the network device After the terminal device performs the second action, the network device is made to adjust the scheduling of the terminal device, and the terminal device is scheduled to use the fourth transmission layer number for data transmission. Since the number of the fourth transmission layer is greater than the number of the second transmission layer, the terminal device can use a higher number of transmission layers to transmit data, which can improve spectrum utilization efficiency.
  • the fourth transport layer number is equal to the first transport layer number. That is, the network device schedules the terminal device to resume using the number of transmission layers before performing the first action for transmission.
  • the method for scheduling data transmission provided by the embodiments of the present application is described in more detail below with reference to specific application scenarios and examples.
  • the antenna configuration of the terminal device is described by taking 2T4R or 1T2R as an example, but the embodiments of the present application may also be applied to terminal devices of other antenna configuration types. It should also be understood that these examples are illustrative only and are not intended to limit the scope of the application.
  • the above preset condition 6 involves a scenario where the terminal device carries the first SIM card and the second SIM card, and the scenario is first described below by taking the terminal device carrying dual SIM cards as an example.
  • DSDS dual sim dual standby
  • SIM cards subscriber identity modules
  • Dual-SIM dual-standby is further divided into dual-SIM dual-standby single-pass and dual-SIM dual-standby dual-pass.
  • Dual-card dual-standby single-pass means that the terminal device can insert two SIM cards at the same time, supports two different network modes, and the two SIM cards can be standby at the same time.
  • the two SIM cards can be switched between the two networks of the two SIM cards through the underlying software and the control chip of the terminal device. When one of the SIM cards is on a call, the other SIM card is offline. The user must disconnect the call from the first SIM to establish a call on the second SIM.
  • Dual sim dual active means that the terminal device can insert two SIM cards at the same time, supports two different network modes, and the two SIM cards can be standby at the same time. Incoming calls from both SIM cards can be connected. That is, when one of the SIM cards is in a call state, there will be a prompt when the other SIM card has a call, and the user decides whether to answer it or not.
  • FIG. 9 shows a schematic diagram of the use of an uplink transmission channel of a terminal device with dual-card dual-standby and single-pass.
  • the two SIM cards that is, the first SIM card and the second SIM card
  • the primary card supports the 2T transmission capability.
  • the secondary card supports 1T sending capability.
  • the terminal equipment includes 2 uplink transmit channels TX1 and TX2.
  • both the primary card and the secondary card report the 1T transmission capability to the network device (that is, the maximum number of reported uplink transmission layers is 1), and the network device can only be the main The card and the secondary card schedule rank1 (that is, the scheduled uplink transmission layer number is 1).
  • the main card can perform uplink transmission through TX1 and/or TX2, and the secondary card is in the idle state.
  • the secondary card has a service request, such as an incoming call service, the secondary card enters the connected state. At this time, the secondary card preempts the transmission channel and performs uplink transmission through TX1 and/or TX2, while the primary card is in an idle state.
  • TX1 and TX2 should send the same data stream, so from the perspective of network equipment, the main or sub-card is still scheduled rank1.
  • the main card reports the 2T transmission capability to the network device (that is, the maximum number of reported uplink transmission layers is 2), and the secondary card reports the 1T transmission capability to the network device ( That is, the maximum number of layers of uplink transmission reported is 1).
  • the network device can schedule rank1 or rank2 for the master card.
  • the situation of the network device scheduling rank1 is the same as that of (a) in FIG.
  • the network device schedules rank1 for the secondary card.
  • the main card When the main card is in the connected state, the main card can perform uplink transmission through TX1 and TX2, where TX1 and TX2 send different data streams, and the secondary card is in an idle state.
  • the secondary card When the secondary card has a service request, such as an incoming call service, the secondary card enters the connected state. At this time, the secondary card preempts the transmission channel and performs uplink transmission through TX1 and/or TX2, while the primary card is in an idle state. It should be noted that when the secondary card performs uplink transmission through TX1 and TX2, TX1 and TX2 should send the same data stream, so from the perspective of network equipment, the secondary card is still scheduled rank1.
  • FIG. 10 shows a schematic diagram of the use of an uplink transmission channel of a terminal device with dual-card dual-standby and dual-pass.
  • both the primary card and the secondary card report the 1T transmission capability to the network device (that is, the maximum number of reported uplink transmission layers is 1), and the network device can only be the primary card.
  • the card and the secondary card schedule rank1 (that is, the scheduled uplink transmission layer number is 1).
  • the main card can perform uplink transmission through TX1
  • the secondary card is in the idle state.
  • the secondary card has a service request, such as an incoming call service
  • the secondary card enters the connected state, and the secondary card can perform uplink transmission through TX2 at this time, without affecting the main card service.
  • the main card reports the 2T transmission capability to the network device (that is, the maximum number of reported uplink transmission layers is 2), and the secondary card reports the 1T transmission capability to the network device ( That is, the maximum number of layers of uplink transmission reported is 1).
  • the network device can schedule rank1 or rank2 for the master card.
  • the situation of the network device scheduling rank1 is the same as the situation in (a) in Figure 10, and will not be described in detail here.
  • the network device schedules rank1 for the secondary card.
  • the main card When the main card is in the connected state, the main card can perform uplink transmission through TX1 and TX2, where TX1 and TX2 send different data streams, and the secondary card is in an idle state.
  • the secondary card When the secondary card has a service request, such as an incoming call, the secondary card enters the connected state from the idle state. At this time, the secondary card will preempt the uplink transmission channel, such as transmitting through TX2, while the main card can only transmit through TX1.
  • the first is to reduce the MIMO capability supported by the capability reporting. For example, although the main card can support the 2T transmission capability, it only reports the 1T transmission capability.
  • the second is that the main card still reports that it supports uplink MIMO, that is, the main card still reports that it supports 2T transmission.
  • the secondary card starts to work, the main card forcibly changes from 2T transmission to 1T transmission, waiting for the network equipment to adjust the adaptive scheduling to lower the rank.
  • the former will lead to a decrease in the peak value of uplink and downlink throughput.
  • the latter will require a long stabilization time for adaptive scheduling of network devices, such as more than 5s, and there will be intermittent continuous bit errors, which will affect the user experience of main card services, such as games. Wait for the application to freeze.
  • applying the scheduling data transmission method provided by the embodiment of the present application can enable the terminal device to quickly perform rank fallback without reducing the peak uplink and downlink throughput, ensure normal service processing, and improve user experience.
  • FIG. 11 shows a schematic flowchart of a method for scheduling data transmission provided by an embodiment of the present application.
  • the method may be performed by a terminal device carrying dual cards, and the terminal device may be, for example, the terminal device 120 shown in FIG. 1 .
  • the terminal device may be a terminal device supporting DSDA, and the terminal device includes a main card and a sub-card, wherein the main card supports the use of the first network, and the sub-card supports the use of the second network.
  • the first network and the second network may be the same, for example, both are LTE networks or both are NR networks; the first network and the second network may also be different, for example, one of them is an LTE network and the other is an NR network. This is not limited.
  • the primary card and the secondary card jointly use the radio frequency resources of the terminal device, wherein the radio frequency resources of the terminal device include the transmit channel, the receive channel, the transmit antenna, the receive antenna, etc. of the terminal device.
  • the primary card and the secondary card in the embodiments of the present application may be two independent SIM cards in the form of hardware, two virtual SIM cards (that is, SIM information in the form of software), or one hardware SIM card.
  • the two pieces of SIM information in the card are not limited in this embodiment of the present application.
  • the main card supports the upstream 2T transmission capability, and the maximum number of uplink transmission layers reported to the network device is 2; the secondary card supports the upstream 1T transmission capability, and the maximum uplink transmission layer number reported to the network device is 1 Take an example to illustrate.
  • the network device schedules rank2 for the main card, the main card is in the connected state (such as playing games, watching videos, and making calls), and performs uplink transmission in dual-stream mode, while the auxiliary card is in the idle state.
  • the secondary card When the secondary card has a service request (such as an incoming call, receiving a text message, TAU, etc.), the secondary card first sends a first request message to the primary card, which is used to request the primary card to roll back the number of transport layers.
  • the master card After receiving the first request message, the master card may perform the first action, and by performing the first action, the network device may schedule the upstream single flow.
  • the main card takes an active action to prompt the network device to recognize the intention of the main card to roll back the number of transport layers, so that the network device lowers the uplink rank. This process will be described below in conjunction with FIG. 13 to FIG. 16 , and will not be described in detail here.
  • the network device can schedule the master card to fall back to the upstream single stream, and the master card performs the upstream transmission in the single stream mode.
  • the network device can reduce the number of upstream transmission layers of the main card to 1 and reduce the scheduling rank, so that the main card can be changed from dual-stream mode transmission to single-stream mode transmission.
  • the primary card may send a first response message to the secondary card for notifying the secondary card that the rollback of the number of transmission layers is completed.
  • the uplink transmission channel is free, so the main card can notify the secondary card that the primary card has completed the rollback of the number of transmission layers, and the secondary card can use the idle transmission channel to process service requests. After that, the secondary card enters the connection state again to process the service request.
  • the rollback of the number of transmission layers in this embodiment of the present application can be understood as the network device reducing the number of transmission layers of the scheduling master card, for example, the network device scheduling the master card from dual-stream mode to single-stream mode for transmission, or the network device targeting the master card for transmission.
  • the scheduling rank2 falls back to rank1, or the network equipment for the master card schedules the number of uplink transmission layers to fall back to 2 to the number of uplink transmission layers to 1.
  • the terminal device can report the highest number of uplink transmission layers (the highest uplink MIMO capability), and when the main card has services that need to be processed, the main card can be made to quickly perform the transmission layer without interrupting the main card service.
  • the number of fallbacks is not adjusted by the network device adaptive scheduling. Therefore, the service experience of the primary card is not affected, and the secondary card can be made to enter the connection state for processing when the service request needs to be processed.
  • FIG. 12 shows a schematic flowchart of another method for scheduling data transmission provided by an embodiment of the present application.
  • the secondary card can enter an idle state and release the uplink transmission channel.
  • the secondary card may send a second request message to the primary card for requesting the primary card to restore the number of transmission layers.
  • the master card executes the second action, and by executing the second action, the network device schedules the dual-stream upstream.
  • the main card takes an active action to prompt the network device to recognize the intention of the main card to restore the number of transport layers, thereby enabling the network device to improve the uplink rank. This process will be described below in conjunction with FIG. 13 to FIG. 16 , and will not be described in detail here.
  • the network device can schedule the master card to restore to the dual-stream upstream, and the master card performs the upstream transmission in the dual-stream mode.
  • the restoration of the number of transmission layers in this embodiment of the present application can be understood as the network device increasing the number of transmission layers of the scheduling master card, for example, the network device scheduling the master card from a single-stream mode to a dual-stream mode for transmission, or the network device scheduling the master card for transmission.
  • rank1 is restored to rank2, or the number of upstream transmission layers scheduled by the network device for the master card is 1 and the number of upstream transmission layers is 2.
  • the primary card after the secondary card completes the processing of the service request, the primary card can be notified to restore the number of transmission layers instead of adaptive scheduling adjustment by the network device, so that the primary card can transmit in the upstream MIMO mode, improving user experience .
  • the main card can make the network device schedule the upstream single stream by performing the first action.
  • the main card can make the network device schedule the upstream dual stream by performing the second action.
  • the main card can trigger the network device to schedule the upstream single stream by constructing a far point scenario.
  • this implementation manner is abbreviated as Mode 1.
  • the master card performing the first action may include reducing the SRS transmission power and/or reducing the PUSCH transmission power.
  • the master card may reduce the SRS transmit power of at least one of the antenna ports used to transmit the SRS.
  • the master card may reduce the PUSCH transmit power of at least one of the antenna ports used to transmit the PUSCH.
  • the main card supports 2T transmission capability
  • the terminal device includes two antenna ports, such as port0 and port1.
  • the main card Before the main card performs the first action, if the main card performs uplink transmission in dual-stream mode, the main card will send SRS and PUSCH on both port0 and port1.
  • the master card may reduce the SRS transmission power and/or reduce the PUSCH transmission power.
  • the reducing the SRS power includes: reducing the SRS transmit power of port0 and/or port1.
  • Reducing the PUSCH transmit power includes: reducing the PUSCH transmit power of port0 and/or port1.
  • the main card may control the SRS transmit power and/or the PUSCH transmit power of each antenna port through the power amplifier corresponding to the antenna port.
  • the master card may reduce the SRS transmit power and/or reduce the PUSCH transmit power in a stepwise, incrementally, or descending manner, which is not limited in this embodiment of the present application.
  • the network device determines that the transmission mode of the master card is the single-stream mode.
  • the SRS received power may be the reference signal received power RSRP of the SRS.
  • the PUSCH signal quality may be the block error rate BLER of the PUSCH, or the signal noise ratio (signal noise ratio, SNR) of the reference signal of the PUSCH.
  • the network device schedules the rank1 single flow for the far point.
  • the main card reduces the transmit power of the SRS and/or PUSCH, so that the received power of the SRS detected by the network device is small and/or the signal quality of the PUSCH is poor, and a similar scenario is constructed in which the main card is in the far point. , which triggers the network device to schedule transmission in single-stream mode.
  • the secondary card after the secondary card has processed the service, it can request to resume the dual-stream mode transmission of the primary card.
  • the master card performing the second action may include restoring the SRS transmit power and/or restoring the PUSCH transmit power.
  • the master card may restore the SRS transmit power of at least one of the antenna ports used to transmit the SRS.
  • the master card may restore the PUSCH transmit power of at least one of the antenna ports used to transmit the PUSCH.
  • the master card may restore the SRS transmit power, and/or restore the PUSCH transmit power.
  • the restoring the SRS power includes: restoring the SRS transmit power of port0 and/or port1.
  • Restoring the PUSCH transmit power includes: restoring the PUSCH transmit power of port0 and/or port1.
  • restoring the transmit power can be understood as increasing the transmit power.
  • the network device determines that the transmission mode of the master card is the dual-stream mode.
  • the SRS received power may be the reference signal received power RSRP of the SRS.
  • the PUSCH signal quality may be the block error rate BLER of the PUSCH, or the SNR of the PUSCH.
  • the network device schedules rank2 dual streams for the near point.
  • the main card restores the transmit power of the SRS and/or PUSCH, so that the SRS received power detected by the network device is higher and/or the signal quality of the PUSCH is better, triggering the network
  • the device schedules dual-stream mode transmissions. In this way, when the secondary card is in an idle state, the primary card can still transmit at 2T, realizing uplink MIMO.
  • the master card may trigger the network device to schedule the upstream single stream by closing the antenna port for transmitting SRS and/or PUSCH.
  • this implementation manner is abbreviated as the second manner.
  • the master card performing the first action may include closing the first antenna port for sending SRS and/or closing the third antenna port for sending PUSCH.
  • the first antenna port and the third antenna port may be the same or different.
  • the main card supports 2T transmission capability
  • the terminal device includes two antenna ports, such as port0 and port1.
  • the main card Before the main card performs the first action, if the main card performs uplink transmission in dual-stream mode, the main card will send SRS and PUSCH on both port0 and port1.
  • the master card when the master card performs the first action, the master card may close the first antenna port for sending SRS, and/or close the third antenna port for sending PUSCH.
  • closing the first antenna port for sending SRS includes: closing port0 or port1 for sending SRS.
  • Closing the third antenna port for transmitting PUSCH includes: closing port0 or port1 for transmitting PUSCH.
  • the network device determines that the transmission mode of the master card is the single-stream mode.
  • the network device can determine whether the main card is in a discontinuous transmission (discontinuous transmission, DTX) state by detecting the number of antenna ports used for sending SRS and/or PUSCH. When it is detected that the main card is in the DTX state, the network device can be triggered to schedule single-stream mode transmission.
  • DTX discontinuous transmission
  • the secondary card after the secondary card has processed the service, it can request to resume the dual-stream mode transmission of the primary card.
  • the master card performing the second action may include opening the first antenna port for sending SRS and/or opening the third antenna port for sending PUSCH.
  • the open antenna port here is the antenna port closed when the master card performs the first action.
  • the network device determines that the transmission mode of the master card is dual-stream mode.
  • the network device when the network device detects that the main card is not in the DTX state, it can trigger the network device to schedule dual-stream mode transmission.
  • the main card triggers the network device to schedule dual-stream mode transmission by opening the previously closed antenna port for sending SRS and/or PUSCH, so that the main card detected by the network device is not in the DTX state.
  • the primary card can still transmit at 2T to realize uplink MIMO.
  • the master card can trigger the network device to schedule the uplink single stream by closing one antenna port for transmitting SRS and/or PUSCH, and reducing the SRS transmit power and/or PUSCH transmit power of another antenna port .
  • the master card triggers the network device to schedule dual-stream mode transmission by opening the previously closed antenna port for transmitting SRS and/or PUSCH and restoring the SRS transmit power and/or PUSCH transmit power of another antenna port.
  • the master card can trigger the network device scheduling adjustment by combining the above-mentioned methods 1 and 2.
  • performing the first action by the master card may include: turning off the first antenna port for sending SRS and/or turning off the third antenna port for sending PUSCH, while reducing SRS transmission on the second antenna port for sending SRS power, and/or reduce the PUSCH transmit power of the fourth antenna port used to transmit the PUSCH.
  • the master card performs the second action including: opening the first antenna port for sending SRS and/or opening the third antenna port for sending PUSCH, while increasing the SRS transmit power of the second antenna port for sending SRS, and/or Or increase the PUSCH transmit power of the fourth antenna port for transmitting PUSCH.
  • the network device can determine whether to schedule single-stream mode transmission or dual-stream mode transmission by detecting the received power of the SRS and/or the signal quality of the PUSCH, and detecting whether the master card is in the DTX state.
  • the master card may request the network equipment to schedule an upstream single stream by sending an overheating indication message to the network equipment.
  • this implementation manner is abbreviated as manner three.
  • the master card performing the first action may include: sending a first overheating indication message to the network device, where the first overheating indication message is used to request the network device Decrease the maximum number of upstream transmission layers of the main card.
  • the first overheat indication message may indicate that the maximum number of layers in uplink transmission is 1.
  • the first overheating indication message is an "overheating" message defined by a standard. In some embodiments, it may also be described as an overheating assistance information message.
  • the network device determines that the transmission mode of the master card is the single-stream mode according to the first overheating indication message. Then, a first RRC reconfiguration message is sent to the master card, where the first RRC reconfiguration message is used to indicate that the maximum number of layers in uplink transmission is 1.
  • the first overheat indication message sent by the master card triggers the network device to schedule single-stream mode transmission.
  • the master card triggers the network device to schedule transmission in the single-stream mode by sending an overheating indication message to the network device for requesting to reduce the maximum number of layers in uplink transmission.
  • the secondary card after the secondary card has processed the service, it can request to resume the dual-stream mode transmission of the primary card.
  • the master card performing the second action may include: sending a second overheating indication message to the network device, where the second overheating indication message is used to request the network device to restore the main The maximum number of layers for upstream transmission of the card.
  • the second overheat indication message may indicate that the maximum number of uplink transmission layers is 2.
  • the second overheating indication message is an "overheating" message defined by a standard. In some embodiments, it may also be described as an overheating assistance information message.
  • the network device determines that the transmission mode of the master card is the dual-stream mode according to the second overheating indication message. Then, a second RRC reconfiguration message is sent to the master card, where the second RRC reconfiguration message is used to indicate that the maximum number of layers in uplink transmission is 2.
  • the second overheat indication message sent by the master card triggers the network device to schedule transmission in dual-stream mode.
  • the master card triggers the network device to schedule dual-stream mode transmission by sending an overheating indication message to the network device for requesting to restore the maximum number of upstream transmission layers.
  • the primary card can still transmit at 2T to realize uplink MIMO.
  • This embodiment of the present application requests the network device to schedule the single-stream mode or the dual-stream mode by sending an overheating indication to the network device.
  • the network device needs to know whether the terminal device supports the overheat indication capability.
  • the overheat indication capability belongs to a type of UE capability, and is also reported to the network device in the process of the UE reporting capability information.
  • Fig. 16 shows a schematic flow chart of the process of the terminal device reporting capability and the process of the network device scheduling the transmission mode of the master card.
  • the network device is taken as an example of a base station
  • the terminal device is taken as an example of a UE for description.
  • the process of the UE reporting capability information is performed after the UE establishes an RRC connection with the base station.
  • the UE reports the UE capability.
  • the base station when the base station needs the UE to report the UE capability, in step S610, the base station sends a UE capability query message (for example, a UE Capability Enquiry message) to the UE for querying the UE capability.
  • a UE capability query message for example, a UE Capability Enquiry message
  • the base station needs to know whether the UE supports the overheat indication capability. Therefore, in this step, the UE capability query message includes information for querying whether the UE supports the overheating indication (overheatingInd) capability.
  • the current standard defines that the message that the UE can request the base station to reduce the maximum number of uplink transmission layers is an overheating message, which is generally reported when the UE consumes a lot of power and is overheated.
  • the overheating message can also be reported when the UE needs to reduce the maximum number of uplink transmission layers, including but not limited to the situation where power consumption needs to be reduced, and the primary and secondary cards have conflicting transmission channel usage in the dual-card scenario Condition.
  • the base station needs to know the maximum number of uplink and downlink transmission layers supported by the UE. Therefore, in this step, the UE capability query message includes the maximum number of uplink transmission layers and the maximum number of downlink transmission layers of the query UE. It should be understood that the embodiment of this application describes the interaction between the main card and the network device. Therefore, in step S620, the maximum number of uplink transmission layers reported by the UE is 2, which can be understood as the maximum uplink transmission layer of the main card reported by the UE. The number is 2.
  • step S620 the UE sends a UE capability information message (for example, a UE Capability Information message) to the base station for reporting the UE capability information to the base station. If the UE supports the overheat indication capability, in this step, the UE reports the support of the overheat indication capability in the capability information message.
  • a UE capability information message for example, a UE Capability Information message
  • step S630 the base station sends a third RRC reconfiguration message to the UE, where the third reconfiguration message is used to configure an overheat indication parameter of the UE.
  • the overheat indication parameter includes a timer setting.
  • the fields used for timer setting are as follows:
  • the third reconfiguration message is also used to configure the number of uplink transmission layers of the UE to be 2. That is, in this step, the base station schedules rank2. The UE transmits data in dual-stream mode.
  • step S640 the UE sends an RRC reconfiguration complete message to the base station.
  • the UE and the base station perform steps S650 to S660, as follows.
  • step S650 the UE sends a first overheating indication message (ie, a first overheating message) to the base station.
  • the first overheating indication message is used to request to reduce the maximum number of uplink transmission layers.
  • step S640 the UE transmits in an uplink dual-stream mode.
  • the first overheating indication message includes information that the maximum number of uplink transmission layers is 1.
  • step S660 the base station sends a first RRC reconfiguration message to the UE.
  • the first RRC reconfiguration message is used to indicate that the number of uplink transmission layers is 1.
  • the base station schedules the UE for single-stream mode transmission.
  • the UE and the base station perform steps S670 to S680, as follows.
  • step S670 the UE sends a second overheating indication message (ie, a second overheating message) to the base station.
  • the second overheat indication message is used to request to restore the maximum number of layers of uplink transmission.
  • step S640 the UE transmits in an uplink single-stream mode.
  • the second overheat indication message includes information that the maximum number of uplink transmission layers is 2.
  • step S680 the base station sends a second RRC reconfiguration message to the UE.
  • the second RRC reconfiguration message is used to indicate that the number of uplink transmission layers is 2.
  • the base station schedules the UE to perform dual-stream mode transmission.
  • the first overheating indication message and the second overheating indication message in this embodiment of the present application are standard messages.
  • an exemplary protocol field of the standard message is as follows:
  • the UE reports a value of 1 in the "reducedMIMO-layersFR1-UL" field in the first overheating indication message.
  • the UE When the base station needs to be triggered to schedule the uplink dual-stream, that is, when the number of uplink transmission layers needs to be restored to 2, the UE reports the value of 2 in the "reducedMIMO-layersFR1-UL" field in the second overheating indication message.
  • the master card directly instructs the network device to schedule an upstream single stream or an upstream dual stream by sending an overheating indication message to the network device, which can quickly reduce the rank of the base station scheduling.
  • the master card can trigger the network device scheduling adjustment by combining the above-mentioned methods 1 and 3, or triggering the network equipment scheduling adjustment by combining the above-mentioned methods 2 and 3, or using the above-mentioned methods 1 and 2. Combined with mode 3, the scheduling adjustment of network equipment is triggered.
  • the master card performing the first action includes sending a first overheating indication message to the network device, where the first overheating indication message is used to request the network device to reduce the maximum number of uplink transmission layers.
  • performing the first action by the master card further includes: reducing SRS transmit power and/or reducing PUSCH transmit power.
  • reducing SRS transmit power and/or reducing PUSCH transmit power refer to the above related description about the second manner, which is not repeated here for brevity.
  • performing the first action by the master card further includes: closing an antenna port for transmitting SRS and/or PUSCH.
  • closing an antenna port for transmitting SRS and/or PUSCH For details, refer to the above related description about the first mode, which is not repeated here for brevity.
  • the priority of mode three is higher than mode one and mode two. That is, as long as the network device receives the overheating indication message sent by the main card, it can directly perform scheduling adjustment according to the overheating indication message.
  • the master card can trigger the network device scheduling adjustment in at least one of the first, second, and third manners.
  • the first and second modes can be understood as the master card implicitly instructing the network device to perform scheduling adjustment
  • the third mode can be understood as the master card displaying and instructing the network device to perform scheduling adjustment. Since the signaling interaction process between the master card and the network device is faster than the signal measurement process between the master card and the network device, the third mode may also be referred to as fast rank fallback (or fast fallback) in this embodiment of the present application.
  • the first and second modes are referred to as slow rank fallback (or slow fallback) methods.
  • the primary card may select an appropriate rank fallback method according to the service scenarios of the primary card and the secondary card.
  • FIG. 17 shows a schematic flowchart of an uplink data transmission method provided by an embodiment of the present application.
  • the method 700 shown in FIG. 17 is executed by the terminal device, and the method 700 includes steps S701 to S714.
  • step S701 the main card is in a connected state (eg, playing games, watching videos, and making calls), and performs uplink transmission in a dual-stream mode, while the secondary card is in an idle state.
  • the secondary card has a service request (such as an incoming call, receiving a short message, TAU, etc.)
  • the secondary card enters a connected state from an idle state to process the service request.
  • step S701 after the secondary card receives the service request, if it is determined that there is a problem of using the transmission channel conflict, the secondary card enters a hold state.
  • the waiting state can be understood as that the secondary card receives a service request, but suspends processing the service request.
  • step S702 the secondary card sends a first notification message to the primary card.
  • the first notification message is used to notify the master card to start the timer.
  • the timer is located on the side of the main card.
  • step S703 the master card starts a timer.
  • step S704 the secondary card sends a request message to the primary card.
  • the request message is used to request the master card to perform transport layer rollback.
  • the request message may be the first request message described in FIG. 11 or FIG. 12 .
  • step S705 the master card causes the network device to schedule the upstream single flow by performing the first action.
  • the manner in which the master card performs the first action may be at least one of the manners described in FIG. 13 to FIG. 15 .
  • the related descriptions of FIGS. 13 to 15 which are not repeated here for brevity.
  • step S706 the network device sends the first scheduling information to the master card.
  • the first scheduling information is used to indicate that the number of uplink transmission layers is 1.
  • the network device schedules rank1.
  • step S707 the master card transmits in a single-stream mode according to the received first scheduling information.
  • step S708 the primary card sends a second notification message to the secondary card.
  • the second notification message is used to instruct the secondary card to complete the rollback of the number of transport layers.
  • the second notification message may be the first response message described in FIG. 11 or FIG. 12 .
  • step S709 the secondary card enters the connection state and processes the service request.
  • step S710 after the secondary card completes the processing of the service request, it enters an idle state.
  • the transmit channel is released.
  • step S711 the secondary card sends a third notification message to the primary card.
  • the third notification message is used to request the master card to restore the number of transport layers.
  • the third notification message may be the second request message described in FIG. 12 .
  • step S712 the master card triggers the network device to schedule the dual-stream upstream by performing the second action.
  • the mode of the second action performed by the master card may be at least one of the modes described in FIG. 13 to FIG. 15 .
  • the mode of the second action performed by the master card may be at least one of the modes described in FIG. 13 to FIG. 15 .
  • FIG. 13 to FIG. 15 For a detailed description, refer to the related descriptions of FIG. 13 to FIG. 15 , which will not be repeated here for brevity.
  • step S713 the network device sends the second scheduling information to the master card.
  • the second scheduling information is used to indicate that the number of uplink transmission layers is 2.
  • the network device schedules rank2.
  • step S714 the master card transmits in a dual-stream mode according to the received second scheduling information.
  • step S704 to S709 are executed when the timer has not timed out. If step S715 occurs after any one of steps S704 to S708 is executed, that is, the timer times out, the secondary card service can be guaranteed first, because the secondary card may be an incoming call at this time.
  • the primary card may directly execute step S716, that is, the primary card sends a fourth notification message to the secondary card, where the fourth notification message is used to instruct the secondary card to be released from the waiting state.
  • step S717 the master card enters an idle state.
  • step S718 the secondary card enters the connection state and processes the service request.
  • step S716 and step S717 may be performed simultaneously or sequentially, and the embodiment of the present application does not limit the sequence of performing the two steps.
  • step S702 and step S704 may be combined into one step. That is, in step S702 shown in FIG. 17 , the secondary card sends a first notification message to the primary card.
  • the first notification is used to notify the main card to start the timer, and is used to request the main card to roll back the number of transport layers.
  • the timer can also be set on the side of the secondary card. That is, after step S702 shown in FIG. 17 , the secondary card starts the timer.
  • the secondary card may start the timer immediately after sending the first notification message, or start the timer after a predetermined time, which is not limited in this embodiment of the present application.
  • the secondary card may send a notification message to the primary card to notify the primary card that the timer expires.
  • the main card can directly enter the idle state, while the secondary card enters the connected state to process service requests.
  • timers can be set for both the primary card and the secondary card. After step S702 shown in FIG. 17 , the primary card and the secondary card simultaneously start the timers. When the timers on the primary card and the secondary card expire, the primary card can directly enter the idle state, and the secondary card directly enters the connected state to process service requests. In this way, the master card does not need to perform step S716 shown in FIG. 17 .
  • the duration of the timer may be determined according to the type of service being processed by the primary card and the type of service to be initiated by the secondary card. For example, if the service type of the main card is an important type, such as a multimedia subsystem (internet protocol multimedia subsystem, IMS) voice service, real-time game service, etc., a longer waiting time can be set. It should be understood that the duration of the timer is the time left by the secondary card for the primary card to roll back the number of transport layers.
  • IMS Internet protocol multimedia subsystem
  • the primary card and the secondary card may communicate directly or indirectly.
  • the interactive message can be forwarded by additional modules or radio resource management (RRM).
  • RRM radio resource management
  • steps S710 to S714 may be continued to be performed to enable the primary card to resume dual-stream mode transmission.
  • the main card can also transmit directly in the single-stream mode, leaving a free transmission channel for the secondary card to use.
  • steps S710 to S714 may be continued to be performed to enable the primary card to resume dual-stream mode transmission.
  • the secondary card when the secondary card has a service, the secondary card is first placed in a waiting state, and after the primary card completes the rollback of the number of uplink transmission layers, the normal service of the secondary card is continued.
  • the waiting state of the secondary card can allow time for the upstream transmission layer number of the primary card to fall back.
  • FIG. 18 shows a schematic flowchart of another method for scheduling data transmission provided by an embodiment of the present application.
  • the difference between this method and the method shown in FIG. 11 is that after the primary card receives the first request message, the primary card determines a fallback policy according to the service types of the primary card and the secondary card.
  • Other processes are similar to the corresponding processes of the method shown in FIG. 11 , and reference may be made to the related description of FIG. 11 for details, and only the differences will be explained in detail here.
  • the fallback policy in this embodiment of the present application includes fast fallback and slow fallback.
  • the fast fallback includes the third mode described in FIG. 15 , that is, the main card triggers the network device to perform scheduling adjustment by sending an overheating indication message to the network device.
  • the slow fallback includes the first mode described in FIG. 13 and/or the second mode described in FIG. 14 , that is, the master card triggers the network device to perform scheduling adjustment in at least one of the following ways: reducing the SRS transmission power and/or reducing the PUSCH transmission power ; Close the antenna port for transmitting SRS and/or PUSCH.
  • the master card determines the fallback policy, which can be understood as determining the first action of the user triggering the network device to reduce the number of uplink transmission layers of the scheduling master card.
  • the fallback policy in the embodiment of the present application further includes the setting of the waiting time of the secondary card service, that is, the setting of the fallback time of the main card.
  • the terminal device can determine an appropriate fallback policy according to the service types or service scenarios of the primary card and the secondary card, and can normally process the secondary card service on the premise that the primary card service is not interrupted.
  • the dual-card concurrency mainly involves the primary card NR subsystem and the secondary card LTE sub-network. Dual-card concurrency means that both cards enter the service connection state. Starting from the dimensions of each subsystem, scenarios can be distinguished according to the dimension of service connection attributes in the embodiment of the present application.
  • the main card NR subsystem can be divided into the following four according to the service importance and duration. kind:
  • the main card NR is in the process of internet protocol multimedia subsystem (internet protocol multimedia subsystem, IMS) voice service (belonging to long-term important service);
  • IMS internet protocol multimedia subsystem
  • the main card NR is conducting real-time game business (belonging to long-term important business);
  • the main card NR is in the process of TAU update/ATTACH (belonging to short-term important business);
  • the main card NR is conducting other business (belonging to long-term non-important business).
  • the secondary card LTE when the dual cards enter concurrently, the secondary card LTE is the party that needs to wait for the primary card to roll back. Therefore, the secondary card LTE subsystem can be divided into the following four types according to the emergency nature of the business:
  • the secondary card LTE initiates paging of the called service (higher emergency level);
  • the secondary card LTE initiates the update process of TAU change (medium urgency);
  • the secondary card LTE initiates other services (low urgency).
  • the service type of the primary card or the secondary card is no longer distinguished, and it is unified into the combined scenario 17.
  • the current target hopes that when the main card adopts the slow rank fallback strategy, there is a 98% probability that the switch from dual-stream scheduling to single-stream scheduling can be realized within 5s under any base station. Therefore, this In the embodiment of the application, the longest waiting time of the secondary card is set to 5s, that is, the duration of the timer in FIG. 15 is set to 5s. Based on this, the fallback strategies in the above 17 combination scenarios are exemplarily described below. It should be understood that the longest waiting time for the secondary card service may be determined according to actual needs, which is not limited in this embodiment of the present application.
  • the scenario should be that when the primary card just receives the IMS call (the called information has not yet arrived at the AP), the user uses the secondary card to initiate the IMS calling service at the same time.
  • the fallback strategy should take into account the called party of the primary card and the calling party of the secondary card.
  • the caller of the secondary card needs to wait for a certain period of time. Therefore, it can be considered to wait for the maximum time of 5s (that is, the timer is set to 5s) to make the main card complete the rollback.
  • the main card reports an overheating indication message and requests the network device to reduce the maximum number of uplink transmission layers.
  • the primary card is an IMS voice scenario
  • the secondary card receives a paging trigger to establish an RRC connection. Since the main card is in the IMS voice process, in order to avoid interruption of the main card's voice, the secondary card needs to ensure that the main card rolls back a single stream before initiating services.
  • the main card reports an overheating indication message and requests the network device to reduce the maximum number of uplink transmission layers.
  • the primary card is an IMS voice scenario
  • the secondary card initiates TAU update.
  • the secondary card needs to ensure that the main card returns a single stream before initiating services.
  • the auxiliary card in order to ensure the normal processing of the voice service of the main card, the auxiliary card needs to wait up to 5s to ensure that the main card rolls back.
  • the TAU changed by the timing advance (TA) of the secondary card is synchronized to the network as soon as possible, it can be considered to perform fast rollback of a single flow through the third method shown in Figure 13. That is, the main card reports an overheating indication message and requests the network device to reduce the maximum number of uplink transmission layers.
  • the primary card is an IMS voice scenario
  • the secondary card initiates other services.
  • the secondary card needs to ensure that the main card returns a single stream before initiating services.
  • the auxiliary card In order to ensure the normal processing of the voice service of the main card, the auxiliary card needs to wait up to 5s to ensure that the main card is rolled back. In this scenario, it can be considered to perform slow fallback single flow through the first method shown in FIG. 11 or the second method shown in FIG. 12 .
  • the main card performs real-time game services, and the secondary card initiates IMS voice services.
  • the user interface of the terminal device will be switched to a dial-up application.
  • voice services should be prioritized over game services, and voice services should be considered more urgent. Therefore, it can be considered that the main card rollback waiting time is 1s (that is, the timer is set to 1s). If the time-out does not roll back successfully, it can be handled according to DSDS2.0, that is, the main card directly enters the idle state, and the secondary card uses the transmission channel to initiate services.
  • the primary card performs real-time game services
  • the secondary card receives a paging-triggered RRC connection establishment. Since the main card game is an important business, it is necessary to ensure that the main card game returns to a single stream before the secondary card initiates the business.
  • the main card reports an overheating indication message and requests the network device to reduce the maximum number of uplink transmission layers.
  • the main card performs real-time game business, and the secondary card initiates TAU update. It is necessary to ensure that after the main card's real-time game rollback is successful, the secondary card initiates TAU again.
  • the main card in order to ensure the normal processing of the main card game business, as in combination scenario 6, the main card needs to be reserved for a fallback time of 5s. In order to ensure that the TAU changed by the secondary card TA is synchronized to the network as soon as possible, it can be considered to perform a fast fallback single flow through the third method shown in FIG. 13 . That is, the main card reports an overheating indication message and requests the network device to reduce the maximum number of uplink transmission layers.
  • the main card performs real-time game services, and the secondary card initiates other services.
  • a rollback time of 5s needs to be set aside for the main card.
  • the method 3 shown in FIG. 13 can be used to quickly roll back a single stream.
  • the primary card performs the TAU update process, and the secondary card initiates IMS voice.
  • a 3s fallback time can be reserved for such a short-term process. If the time-out fails to roll back successfully, it will be processed according to DSDS2.0, the main card will directly enter the idle state, and the secondary card will use the transmission channel to initiate services. Since TAU/ATTACH has ended at this time, the secondary card IMS voice can obtain resources to preempt the primary card to initiate services.
  • the secondary card may be considered to wait for the end of the TAU within a certain time range, and then the secondary card initiates the IMS service.
  • the primary card performs the TAU update process
  • the secondary card receives the RRC connection establishment triggered by the paging.
  • a 2s rollback time can be reserved for the master card. If the time-out fails to roll back successfully, it will be processed according to DSDS2.0, the main card will directly enter the idle state, and the secondary card will use the transmission channel to initiate services. Since the TAU/ATTACH is likely to have ended at this time, the secondary card paging can preempt resources to initiate access. Therefore, in order to ensure the TAU service of the primary card, it may be considered to wait for the end of the TAU within a certain time range, and then the secondary card initiates the IMS service.
  • the main card reports an overheating indication message and requests the network device to reduce the maximum number of uplink transmission layers.
  • the primary card performs the TAU update process, and the secondary card initiates the TAU.
  • a 5s rollback time can be reserved for the master card.
  • the primary card performs the TAU update process, and the secondary card initiates other services.
  • a 5s rollback time can be reserved for the master card.
  • the primary card performs other services, and the secondary card initiates IMS voice.
  • a fallback time of 3s can be reserved for the primary card. If the rollback fails after the timeout, DSDS2.0 will be rolled back.
  • the main card may have IMS short message service (SMS) and other services at this time, after the rollback of DSDS2.0, the secondary card IMS voice also needs to wait for the main card IMS SMS and other services to end before it can obtain resources.
  • SMS IMS short message service
  • Combination scenario 14 (other services on the main card + paging and called on the secondary card)
  • the primary card performs other services, and the secondary card responds to paging and initiates RRC connection establishment.
  • the secondary card responds to paging and initiates RRC connection establishment.
  • a fallback time of 2s can be reserved for the primary card. If the rollback fails after the timeout, DSDS2.0 will be rolled back.
  • the secondary card's paging response also needs to wait for the end of the main card's IMS SMS and other services to obtain resources.
  • the primary card performs other services, and the secondary card initiates the TAU/ATTACH process.
  • a rollback time of 3s can be reserved for the master card. If the rollback fails after the timeout, DSDS2.0 will be rolled back.
  • Combination scenario 16 (other services of the main card + other services of the secondary card)
  • the primary and secondary cards are all other services.
  • a 5s rollback time can be reserved for the master card.
  • the secondary card initiates services first, and then the primary card initiates services, and the primary card can only use 1T for uplink services. Therefore, in theory, the base station will not schedule dual streams for the master card UE.
  • the primary card should consider triggering the base station to perform uplink dual-stream scheduling as soon as possible. For example, the master card can trigger the base station to perform scheduling adjustment by using the methods in FIG. 11 to FIG. 13 .
  • the SRS of the primary card returns to the normal reporting mode, and the base station can adaptively schedule the dual streams again.
  • FIG. 19 shows a schematic flowchart of a method for scheduling data transmission provided by an embodiment of the present application.
  • the method 800 shown in FIG. 19 may be a specific example of the method shown in FIG. 18 .
  • the method 800 includes steps S810 to S850.
  • step S810 when the secondary card initiates a service, the secondary card sends an RRM resource request message (eg, RRM_RESOURCE_REQ) to the RRM according to the dual-card working mode to apply for resources to the RRM.
  • RRM resource request message eg, RRM_RESOURCE_REQ
  • step S820 the RRM determines that the main card is in a service state at this time and currently supports a state of concurrent service, and the RRM sends a Tx fallback request (eg Tx_FALLBACK_REQ) to the main card.
  • a Tx fallback request eg Tx_FALLBACK_REQ
  • the RRM before the primary card replies to the Tx fallback request, the RRM considers that the current capability still supports service concurrency.
  • step S830 the master card determines a fallback policy, and performs fallback according to the fallback policy.
  • the fallback policy includes fast fallback and slow fallback.
  • the main card may send UE assistance information (UE assistance information), such as overheat indication information, to the network device to perform fast fallback.
  • UE assistance information such as overheat indication information
  • the master card can trigger the network device to perform uplink scheduling fallback for the master card by sending the physical layer SRS.
  • step S840 after the master card rolls back successfully, the master card replies with a fallback confirmation to the RRM, that is, the main card sends a Tx fallback confirmation (eg Tx_FALLBACK_CNF) to the RRM.
  • Tx_FALLBACK_CNF a Tx fallback confirmation
  • step S850 after the RRM receives the Tx rollback confirmation sent by the primary card, it considers that the dual cards can be concurrent at this time, and the RRM sends an RRM resource confirmation to the secondary card.
  • the secondary card that has received the confirmation of the RRM resource can enter the connected state and process the service request.
  • the RRM can be a dual-card dual-standby module, which can communicate with the primary card and also communicate with the secondary card.
  • the secondary card in order to ensure smooth rollback of the primary card service to a single stream, when the secondary card initiates a service, the secondary card requests the primary card to switch from dual-stream scheduling to single-stream scheduling through the process of requesting the primary card to perform Tx rollback.
  • the primary card determines the rollback strategy based on the current service type and the type of service to be initiated by the secondary card, and the secondary card allows time for the primary card to fall back from dual-stream to single-stream.
  • the technical solutions described above can be applied to a dual-SIM scenario.
  • the primary card When the secondary card is in an idle state, the primary card can still transmit at 2T to realize uplink MIMO.
  • the main card can be switched from dual-stream scheduling to single-stream scheduling without interrupting the service of the primary card, without affecting the user experience.
  • the use of 2T and 4R in the terminal device means higher power consumption.
  • a lower rank can meet the requirements, and then the terminal device can turn off redundant transmit or receive antennas to save power consumption.
  • network equipment schedules high ranks (for example, uplink scheduling rank2, downlink scheduling rank3/4), so that terminal equipment has to use 2T4R to work, resulting in waste of power consumption in scenarios such as near-point and small traffic. Therefore, not only can the base station be triggered to lower the rank when the primary and secondary cards have conflicting transmission channels, but also the base station can be triggered to lower the rank when the terminal device wants to save power consumption.
  • the prior art provides the following ways.
  • One is to reduce the ability of terminal equipment to report supporting MIMO, so that network equipment can only schedule low rank, but this will lead to a decrease in peak uplink and downlink throughput.
  • the second is that the terminal device still reports the maximum supported MIMO capability.
  • the terminal device forcibly changes from 2T transmission to 1T transmission, or from 4R reception to 2R/1R reception, waiting for the adaptive scheduling adjustment of the network device to reduce the rank . In this case, the terminal device forcibly turns off the transmit and receive diversity, which will cause continuous bit errors and affect the application experience.
  • the terminal device can actively re-initiate the initial registration process, but this will interrupt the current business.
  • the network device can be adaptively scheduled.
  • the problems described above exist in the currently provided solutions.
  • the method for scheduling data transmission provided by the embodiment of the present application enables the network device to respond quickly and adjust the scheduling when the terminal device wants the network device to schedule a low rank.
  • the transmit or receive diversity can be turned off to save power consumption without interrupting the service and affecting the experience.
  • the method for scheduling data transmission provided by the embodiments of the present application can be applied to any scenario where the terminal device wants the network device to reduce rank scheduling, and is not limited to DSDA scenarios, power saving scenarios, and the like.
  • FIG. 20 shows a schematic flowchart of a method for scheduling data transmission provided by an embodiment of the present application. This method can be applied to the communication system 100 shown in FIG. 1 , and the method 900 is executed by the terminal device and the network device exchanging information.
  • the 2T4R terminal device supports uplink and downlink MIMO capabilities.
  • the terminal device and the network device establish an RRC connection, and the terminal device completes the UE capability reporting.
  • the terminal equipment reports that the maximum number of layers for uplink transmission is 2, and the maximum number of layers for downlink transmission is 4.
  • step S910 the terminal device uses 2 transmitting antennas and 4 receiving antennas (ie 2T4R) to transmit and receive, wherein two antenna ports transmit SRS for CB (for convenience, hereinafter referred to as CB SRS), and use 2T4R to transmit SRS for AS SRS (for convenience, hereinafter referred to as AS SRS).
  • 2T4R 2 transmitting antennas and 4 receiving antennas
  • the maximum number of uplink transmission layers reported by the terminal equipment is 2, and the maximum number of downlink transmission layers is 4.
  • the network equipment is set to schedule the terminal equipment.
  • the number of uplink transmission layers is 2, and the number of downlink transmission layers is 2. is 4.
  • the network device schedules the number of downlink transmission layers to be 4 and the number of uplink transmission layers to be 2 according to the detected SRS.
  • the terminal equipment in the embodiments of the present application transmits and receives in 2T4R, which can be understood as the terminal equipment transmits or receives diversity in 2T4R, that is, the terminal equipment performs uplink and downlink data transmission according to the scheduling of the network equipment.
  • step S920 when the first preset condition is met, the terminal equipment still transmits and receives with 2T4R, but the terminal equipment closes one antenna port of the SRS resource, so that one antenna port is used for CB SRS transmission, and 1T2R is used to transmit ASS SRS.
  • the manner in which the terminal device turns off an antenna port of the SRS resource includes: the terminal device directly turns off the power amplifier corresponding to the antenna port, or configures the power of the power amplifier corresponding to the antenna port to the lowest value.
  • the action performed by the terminal device in this step is to allow the network device to recognize that the terminal device expects to work in a state where diversity is disabled.
  • the first preset condition includes at least one of the following:
  • the terminal device is currently in a position with good signal, such as a near point, wherein the position with good signal includes a position where the reference signal receiving power (reference signal receiving power, RSRP) is greater than the first threshold;
  • a position with good signal such as a near point
  • the position with good signal includes a position where the reference signal receiving power (reference signal receiving power, RSRP) is greater than the first threshold;
  • RSRP reference signal receiving power
  • the service currently processed by the terminal device belongs to a first preset service type, and the first preset service type includes a small-traffic service;
  • the service type currently processed by the terminal device is a small-traffic service, wherein the small-traffic service is a service whose application layer data traffic is less than the second threshold;
  • the current temperature of the terminal device is greater than the third threshold
  • the terminal device needs to enter a power saving state, for example, the power of the terminal device is less than the fourth threshold.
  • a low rank can meet the communication requirements; for example, the terminal device detects that the current temperature is high , or the terminal device detects that the current power is low, needs to enter a power saving state, and needs to schedule a low rank, the terminal device can perform certain actions, so that the network device recognizes the intention of the terminal device to work in a low rank.
  • step S930 the network device recognizes that some ports of the SRS are in a discontinuous transmission (DTX) state, and determines to reduce the number of downlink scheduling layers and the number of uplink scheduling layers.
  • DTX discontinuous transmission
  • the network device can identify that the terminal device has ports that do not send SRS signals, and can identify the number of ports that do not send SRS signals. In this case, the network device may consider that the terminal device expects to work in a state where diversity is turned off, and limit the rank of uplink and downlink scheduling.
  • the network device may schedule the number of downlink transmission layers to be 2 (ie, schedule the downlink rank2), and schedule the number of uplink transmission layers to be 1 (ie, schedule the uplink rank1).
  • step S940 the terminal device uses one transmit antenna and two receive antennas (ie, 1T2R) to transmit and receive according to the latest scheduling of the network device.
  • the terminal device turns off the transmit and receive diversity antennas, and is in a state of saving power consumption.
  • the terminal device still works according to the downlink rank4 and uplink rank2 before receiving the downlink rank2 and uplink rank1 scheduled by the network device, but only closes one antenna port for sending SRS resources, so in the scheduling adjustment process, the terminal device closes the diversity No bit errors will occur after that.
  • step S950 when the second preset condition is met, the terminal device transmits and receives with 2T4R, and opens the antenna ports of the previously closed SRS resources, wherein two antenna ports are used for CB SRS transmission, and 2T4R is used to transmit AS SRS.
  • the manner in which the terminal device turns on the antenna port of the SRS resource includes: the terminal device turns on the power amplifier corresponding to the antenna port, and restores the power of the power amplifier corresponding to the antenna port to a normal value.
  • the action performed by the terminal device in this step is to allow the network device to recognize that the terminal device expects to work in a state where diversity is turned on.
  • the second preset condition includes at least one of the following:
  • the terminal device is currently in a position with poor signal, such as a far point, wherein the position of poor signal includes a position where the reference signal receiving power (RSRP) is less than the fifth threshold;
  • RSRP reference signal receiving power
  • the service currently processed by the terminal device belongs to a second preset service type, and the second preset service type includes a large-traffic service;
  • the service type currently processed by the terminal device is a high-traffic service, wherein the high-traffic service is a service whose application layer data traffic is greater than the sixth threshold;
  • the current temperature of the terminal device is less than the seventh threshold
  • the terminal device needs to exit the power saving state, for example, the power of the terminal device is greater than the eighth threshold.
  • the terminal device when the second preset condition is met, for example, when the terminal device detects that it is currently in a location with poor signal and the current data volume is large, high-rank transmission is required, and for example, the terminal device detects that the current temperature is low, or The terminal equipment has sufficient power, which can achieve high rank scheduling.
  • the terminal equipment can turn on all antennas and resume the transmission of SRS signals, so that the network equipment can recognize the intention of the terminal equipment to work in a high rank.
  • step S960 the network device recognizes that the terminal device exits the discontinuous transmission (DTX) state of the SRS, and determines to restore the number of downlink scheduling layers and the number of uplink scheduling layers.
  • DTX discontinuous transmission
  • the network device can recognize that the terminal device has exited the DTX state of the SRS. In this case, the network device can consider that the terminal device expects to work in the state of enabling diversity, and remove the rank restriction on uplink and downlink scheduling.
  • the network device may schedule the number of downlink transmission layers to be 4 (ie, schedule the downlink rank4), and schedule the number of uplink transmission layers to be 2 (ie, schedule the uplink rank2).
  • step S970 the terminal device uses 2 transmit antennas and 4 receive antennas (ie, 2T4R) to transmit and receive according to the latest scheduling of the network device.
  • 2T4R 2 transmit antennas and 4 receive antennas
  • the terminal device turns on the transmit and receive diversity antennas and is in a normal working state.
  • the terminal device can adjust the antenna port for sending the SRS according to whether it needs to save power consumption, trigger the network device to perform scheduling adjustment, and does not interrupt or affect the current service.
  • the terminal equipment is a 2T4R terminal equipment
  • the SRS used for the CB and the SRS used for the AS are multiplexed as an example for description. Therefore, the actions performed by the terminal device in step S920 and step S950 simultaneously affect the network device scheduling the number of uplink layers and the number of downlink layers.
  • the terminal device may perform certain steps to trigger the network device to only perform scheduling adjustment of the number of uplink transmission layers or only perform scheduling adjustment of the number of downlink transmission layers.
  • the method provided by the embodiment of the present application can be used not only in a dual-card scenario, but also in a single-card scenario.
  • this method can be applied to the primary card or the secondary card.
  • the methods provided by the embodiments of the present application may also be applied to scenarios where the terminal device needs to save power consumption, which is not limited in the embodiments of the present application.
  • the terminal device may further trigger the network device to adjust the scheduling by reducing the transmission power of the SRS and/or PUSCH.
  • the specific implementation is similar to that shown in FIG. 13 .
  • the terminal device may notify the network device by means of an explicit indication that the terminal device desires to turn off receive or transmit diversity.
  • the terminal device may send an overheating indication to the network device, where the overheating indication includes the maximum number of uplink transmission layers and/or the maximum number of downlink transmission layers of the terminal device, wherein the maximum number of uplink transmission layers in the overheating indication is smaller than the current actual number of layers of the terminal device
  • the number of uplink transmission layers, the maximum number of downlink transmission layers in the overheating indication is less than the current actual number of downlink transmission layers of the terminal device. That is, the terminal device may notify the network device of the expected number of uplink transmission layers and/or the expected number of downlink transmission layers of the terminal device in the overheating indication, so as to trigger the network device to perform scheduling adjustment.
  • the manner in which the terminal device sends the overheating indication is similar to the manner in which the main card sends the overheating indication to the terminal device in FIG. 15 .
  • the terminal device sends the overheating indication is similar to the manner in which the main card sends the overheating indication to the terminal device in FIG. 15 .
  • the overheating indication sent by the terminal device may be a standard-defined "overheating" message.
  • the terminal device when the terminal device wants to trigger the base station to reduce the number of uplink transmission layers, the terminal device sets the value of the "reducedMIMO-layersFR1-UL" field in the overheat indication message to the desired uplink transmission. Layer value.
  • the actual number of transmission layers scheduled by the network device is less than or equal to the value corresponding to this field.
  • the terminal device wants to trigger the base station to reduce the number of downlink transmission layers, the terminal device sets the value of the "reducedMIMO-layersFR1-DL" field in the overheating indication message to the expected value of the downlink transmission layer. Accordingly, the actual downlink transmission scheduled by the network device The number of layers is less than or equal to the value corresponding to this field.
  • FIG. 21 shows a schematic diagram of SRS resource configuration, multiplexing mode, and fallback mode of a 2T4R terminal device.
  • the figure exemplarily shows the SRS resource transmission of the terminal device supporting 2T4R and the SRS resource transmission mode in the low power consumption state.
  • the terminal device includes 2 transmit antennas and 4 receive antennas.
  • the terminal device includes four antenna ports, namely port 0, port 1, port 2, and port 3.
  • the terminal device polls two receiving antennas each time, and for the same SRS resource, there are two antenna ports.
  • the SRS sent by the two Rx antennas polled by the terminal device for the first time is the multiplexed SRS, that is, the SRS sent on the port 0 and the port 1 is the multiplexed SRS.
  • the terminal device when the second preset condition is satisfied, performs antenna rotation in 2T4R.
  • the terminal device sends one of the SRS resources through port 0 and port 1 at time t0, and sends the other SRS resource through port 2 and port 3 at time t1.
  • the SRS sent by port 0 and port 1 are multiplexed SRS, that is, the terminal device sends SRS for CB through ports 0 and 1, and sends SRS for AS through port 0, port 1, port 2 and port 3.
  • the number of downlink transmission layers is scheduled.
  • the network device schedules the number of downlink transmission layers to be 4 (ie, downlink rank4) according to the SRS resource sending situation of the terminal device.
  • the terminal device may close two antenna ports, such as port 1 and port 3. In this way, the terminal device sends one of the SRS resources through port 0 at time t0, and sends the other SRS resource through port 2 at time t1.
  • the SRS sent by port 0 is a multiplexed SRS, that is, the terminal device sends SRS for CB through port 0, and sends SRS for AS through port 0 and port 2.
  • the network device schedules the number of downlink transmission layers to be 2 (that is, downlink rank2) according to the number of ports of the ASSRS sent by the terminal device.
  • the terminal device may close three antenna ports, such as port 1, port 2 and port 3. In this way, the terminal device sends one of the SRS resources through port 0 at time t0.
  • the SRS sent by the port 0 is a multiplexed SRS, that is, the terminal device sends the SRS for the CB through the port 0, and sends the SRS for the AS through the port 0.
  • the network device schedules the number of downlink transmission layers to be 1 (ie, downlink rank1) according to the number of ports of the ASSRS sent by the terminal device.
  • the terminal device may instruct the network device to schedule the number of downlink transmission layers by sending the number of ports of the ASSRS.
  • the second preset condition may include at least one of the following:
  • the received power of the reference signal detected by the terminal device is less than the threshold A1; or,
  • the received quality of the reference signal detected by the terminal device is less than the threshold B1; or,
  • the application layer data traffic in the service currently processed by the terminal device is greater than the threshold C1; or,
  • the current temperature of the terminal device is less than the threshold D1; or,
  • the current power of the terminal device is greater than the threshold K1.
  • the first preset condition may include at least one of the following:
  • the received power of the reference signal detected by the terminal device is greater than the threshold A1 and less than the threshold A2; or,
  • the received quality of the reference signal detected by the terminal device is greater than the threshold B1 and less than the threshold B2; or,
  • the application layer data traffic in the service currently processed by the terminal device is less than the threshold C1 and greater than the threshold C2; or,
  • the current temperature of the terminal device is greater than the threshold D1 and less than the threshold D2; or,
  • the current power of the terminal device is less than the threshold K1 and greater than the threshold K2.
  • the third preset condition may include at least one of the following:
  • the received power of the reference signal detected by the terminal device is greater than the threshold A2; or,
  • the received quality of the reference signal detected by the terminal device is greater than the threshold B2; or,
  • the application layer data traffic in the service currently processed by the terminal device is less than the threshold C3; or,
  • the current temperature of the terminal device is greater than the threshold D2; or,
  • the current power of the terminal device is less than the threshold K2.
  • the scheduling of the number of uplink transmission layers is similar to the scheduling of the number of downlink transmission layers, and the following is only an exemplary description.
  • the network device schedules the number of uplink transmission layers to be 2 (ie, downlink rank4) according to the SRS resource sending situation of the terminal device.
  • the terminal device may close one antenna port in the antenna ports used for sending CB SRS, such as port 1, so that the terminal device sends the multiplexed SRS through port 0 at time t0. That is, the terminal device sends SRS for CB through port 0.
  • the network device schedules the number of uplink transmission layers to be 1 (that is, downlink rank1) according to the number of ports of the CB SRS sent by the terminal device.
  • each SRS period of the terminal device is at two timeslot positions t0/t1, and each timeslot position uses two antennas for transmission.
  • each timeslot position uses two antennas for transmission.
  • only one port SRS signal is sent at each time slot position.
  • the network device will limit the scheduling of the maximum rank1 for the uplink and the maximum rank2 for the downlink.
  • the network device may schedule and adjust the number of uplink transmission layers or the number of downlink transmission layers independently, or may simultaneously schedule and adjust the number of uplink transmission layers and the number of downlink transmission layers, which is not limited in this embodiment of the present application. .
  • FIG. 22 shows a schematic diagram of SRS resource configuration, multiplexing mode, and fallback mode of a 1T4R terminal device.
  • the figure exemplarily shows the SRS resource transmission of the terminal equipment supporting 1T4R and the SRS resource transmission mode in the low power consumption state.
  • the above method can still be used to reduce the downlink rank and turn off receive diversity to obtain power consumption benefits, but the difference from the terminal equipment that supports 2T4R lies in the location where the SRS resources are sent.
  • the terminal device includes one transmit antenna and four receive antennas.
  • the terminal device includes four antenna ports, namely port 0, port 1, port 2, and port 3.
  • the terminal device polls one receiving antenna each time.
  • the SRS sent by one Rx antenna polled by the terminal device for the first time is the multiplexed SRS, that is, the SRS sent on port 0 is the multiplexed SRS.
  • the terminal device Under the condition that the second preset condition is satisfied, the terminal device performs antenna rotation at 1T4R.
  • the terminal device sends SRS resources through port 0, port 1, port 2, and port 3 at times t0, t1, t2, and t3, respectively.
  • the SRS sent by the port 0 is a multiplexed SRS, that is, the terminal device sends the SRS for the CB through the port 0, and sends the SRS for the AS through the port 0, the port 1, the port 2 and the port 3.
  • the network device schedules the number of downlink transmission layers to be 4 (ie, downlink rank4) according to the number of ports through which the terminal device sends ASSRS.
  • the terminal device may close one antenna port, for example, port 1. In this way, the terminal device sends SRS resources through port 0, port 2, and port 3 at time t0, t2, and t3, respectively.
  • the SRS sent by port 0 is a multiplexed SRS, that is, the terminal device sends SRS for CB through port 0, and sends SRS for AS through port 0, port 2 and port 3.
  • the network device schedules the number of downlink transmission layers to be 3 (that is, downlink rank3) according to the port number of the ASSRS sent by the terminal device.
  • the terminal device may close two antenna ports, such as port 1 and port 3.
  • the terminal device sends SRS resources through port 0 and port 2 at time t0 and t2, respectively.
  • the SRS sent by port 0 is a multiplexed SRS, that is, the terminal device sends SRS for CB through port 0, and sends SRS for AS through port 0 and port 2.
  • the network device schedules the number of downlink transmission layers to be 2 (that is, downlink rank2) according to the number of ports of the ASSRS sent by the terminal device.
  • the terminal device may close three antenna ports, such as port 1, port 2 and port 3. In this way, the terminal device sends SRS resources through port 0 at time t0.
  • the SRS sent by the port 0 is a multiplexed SRS, that is, the terminal device sends the SRS for the CB through the port 0, and sends the SRS for the AS through the port 0.
  • the network device schedules the number of downlink transmission layers to be 1 (ie, downlink rank1) according to the number of ports of the ASSRS sent by the terminal device.
  • the terminal device may instruct the network device to schedule the number of downlink transmission layers by sending the number of ports of the ASSRS.
  • the second preset condition may include at least one of the following:
  • the received power of the reference signal detected by the terminal device is less than the threshold E1; or,
  • the received quality of the reference signal detected by the terminal device is less than the threshold F1; or,
  • the data traffic of the application layer in the service currently processed by the terminal device is greater than the threshold G1; or,
  • the current temperature of the terminal device is less than the threshold H1; or,
  • the current power of the terminal device is greater than the threshold L1.
  • the fourth preset condition may include at least one of the following:
  • the received power of the reference signal detected by the terminal device is greater than the threshold E1 and less than the threshold E2; or,
  • the received quality of the reference signal detected by the terminal device is greater than the threshold F1 and less than the threshold F2; or,
  • the application layer data traffic in the service currently processed by the terminal device is less than the threshold G1 and greater than the threshold G2; or,
  • the current temperature of the terminal device is greater than the threshold H1 and less than the threshold H2; or,
  • the current power of the terminal device is less than the threshold L1 and greater than the threshold L2.
  • the first preset condition may include at least one of the following:
  • the received power of the reference signal detected by the terminal device is greater than the threshold E2 and less than the threshold E3; or,
  • the received quality of the reference signal detected by the terminal device is greater than the threshold F2 and less than the threshold F3; or,
  • the application layer data traffic in the service currently processed by the terminal device is less than the threshold G2 and greater than the threshold G3; or,
  • the current temperature of the terminal device is greater than the threshold H2 and less than the threshold H1; or,
  • the current power level of the terminal device is less than the threshold L2 and greater than the threshold L3.
  • the third preset condition may include at least one of the following:
  • the received power of the reference signal detected by the terminal device is greater than the threshold E3; or,
  • the received quality of the reference signal detected by the terminal device is greater than the threshold F3; or,
  • the application layer data traffic in the service currently processed by the terminal device is less than the threshold G3; or,
  • the current temperature of the terminal device is greater than the threshold H3; or,
  • the current power level of the terminal device is less than the threshold L3.
  • each SRS cycle of the terminal device is at 4 timeslot positions t0/t1/t2/t3, and each timeslot position uses 1 antenna for transmission, while in the low power consumption state, 4 times If two of the slot positions are not sent, the base station will limit the scheduling downlink maximum rank2. When three of the four slot positions are not sent, the base station will limit the scheduling downlink maximum rank1.
  • the embodiments of the present application describe the method for scheduling data transmission provided by the embodiments of the present application using 2T4R or 1T4R terminal equipment, but it should be understood that the methods provided by the embodiments of the present application can also be applied to devices with other antenna configurations
  • the terminal device correspondingly, the data transmission mode that the terminal device triggers the network device scheduling also varies with the antenna configuration of the terminal device, not limited to scheduling dual-stream mode to single-stream mode, or scheduling four-stream mode to dual-stream mode, single-stream mode mode, etc.
  • embodiments of the present application also describe the methods for scheduling data transmission provided by the embodiments of the present application in a single-card scenario and a dual-card scenario, but it should be understood that the methods provided by the embodiments of the present application can also be applied to more than A dual-card scenario (referred to as a multi-card scenario).
  • FIG. 23 is a schematic diagram of a communication apparatus provided by an embodiment of the present application.
  • the communication apparatus 1000 in FIG. 23 may be the terminal device mentioned above, for example, may be a specific example of the terminal device 120 shown in FIG. 1 .
  • the communication apparatus 1000 can be used to implement the above steps performed by the terminal device, such as the method in FIG. 7 or FIG. 8 , and can also be used to specifically implement the embodiments shown in FIGS. 11 to 22 . To avoid redundancy, the description is not repeated.
  • the communication device 1000 shown in FIG. 23 includes a transmission module 1010 , an execution module 1020 , and a reception module 1030 .
  • the transmission module 1010 is configured to use the first transmission layer number to perform data transmission.
  • the execution module 1020 executes the first action when the first preset condition is satisfied.
  • the receiving module 1030 is configured to receive the first scheduling information sent by the network device after the executing module 1020 performs the first action, where the first scheduling information is used to instruct the communication apparatus to use the second transmission layer number to perform For data transmission, the number of the second transmission layers is smaller than the number of the first transmission layers.
  • the execution of the first action by the execution module 1020 includes at least one of the following:
  • a first assistance information message is sent to the network device.
  • the first preset condition includes at least one of the following: the reference signal received power RSRP detected by the communication device is greater than a first threshold; the data service processed by the communication device belongs to the first preset service type; The application layer data flow of the data service processed by the communication device is less than the second threshold; the temperature of the communication device is greater than the third threshold; the power of the communication device is less than the fourth threshold; or the communication device carries the first user identity
  • a module SIM card and a second SIM card are identified, wherein the first SIM card processes the first data service by using the first transmission layer number, and the second SIM card receives a request for the second data service in an idle state.
  • the first scheduling information is a downlink control indication DCI.
  • the first auxiliary information message is an overheating indication message.
  • the first auxiliary information message includes a second maximum number of transport layers, the second maximum number of transport layers is less than the first maximum number of transport layers, and the first maximum number of transport layers is equal to where the network device is located. The maximum value of the number of transmission layers that can be scheduled before the terminal device performs the first action.
  • the first transmission layer number and the second transmission layer number are used for uplink data transmission; or, the first transmission layer number and the second transmission layer number are used for downlink data transmission.
  • the communication device includes a plurality of antenna ports used for sending SRS, and the executing module 1020 is specifically configured to reduce the SRS transmission corresponding to at least one antenna port in the plurality of antenna ports used for sending SRS power.
  • the communication apparatus includes a plurality of antenna ports used for sending PUSCH
  • the execution module 1020 is specifically configured to reduce the PUSCH transmission corresponding to at least one antenna port in the plurality of antenna ports used for sending PUSCH power.
  • the multiple antenna ports used for sending the SRS include a first port group, and the first port group is used for sending the SRS used for the antenna switching AS, the communication device performs downlink data transmission, and the executing
  • the module 1020 is specifically configured to close at least one port in the first port group.
  • the multiple antenna ports used for sending the SRS include a second port group, and the second port group is used for sending the SRS used for the codebook CB, the communication device performs uplink data transmission, and the executing The module 1020 is specifically configured to close at least one port in the second port group.
  • the first preset condition includes that the communication device carries a first subscriber identity module SIM card and a second SIM card, wherein the first SIM card uses the first transmission layer to process the first data service, the second SIM card receives a request for a second data service in an idle state, and the communication device further includes:
  • the start module is used to start the timer.
  • the second SIM card uses the third transport layer to process the second data service, and the first SIM uses the second data service
  • the number of transport layers processes the first data service.
  • the second SIM card uses the third transport layer number to process the second data service, and the first SIM card enters the idle state state.
  • the communication apparatus further includes a determination module, which is configured to determine the duration of the timer according to the type of the first data service and the type of the second data service.
  • the determining module is further configured to determine the first action according to the type of the first data service and the type of the second data service.
  • the sum of the second transmission layer number and the third transmission layer number is less than or equal to the maximum number of transmission layers that can be scheduled by the network device after the terminal device performs the first action.
  • the first SIM card uses all uplink radio frequency resources of the terminal device to process the first data service.
  • the maximum value of the number of uplink transmission layers reported by the first SIM card is 2, and the maximum value of the number of uplink transmission layers reported by the second SIM card is 1.
  • the communication device includes one transmit antenna and two receive antennas; or, the communication device includes two transmit antennas and four receive antennas.
  • the transmission module 1010 is further configured to use the second transmission layer number to perform data transmission.
  • the execution module 1020 is further configured to execute the second action when the second preset condition is satisfied.
  • the receiving module 1030 is further configured to, after the executing module 1020 executes the second action, receive second scheduling information sent by the network device, where the second scheduling information is used to instruct the communication apparatus to use the fourth transmission
  • the number of layers is used for data transmission, and the number of the fourth transmission layer is greater than the number of the second transmission layer.
  • the execution of the second action by the execution module 1020 includes at least one of the following:
  • a second assistance information message is sent to the network device.
  • the second preset condition includes at least one of the following: the reference signal received power RSRP detected by the communication device is less than a fifth threshold; the data service processed by the communication device belongs to the second preset service type; The application layer data flow of the data service processed by the communication device is greater than the sixth threshold; the temperature of the communication device is less than the seventh threshold; the power of the communication device is greater than the eighth threshold; or the communication device carries the first SIM card and the second SIM card, wherein the first SIM card is in an idle state or uses the second transmission layer to process the first data service, and the second SIM card ends the processing of the second data service and enters the service connection state idle state.
  • the number of the fourth transmission layers is equal to the number of the first transmission layers.
  • FIG. 24 is a schematic structural diagram of a terminal device according to an embodiment of the present application.
  • the terminal device can be applied to the system shown in FIG. 1 to perform the functions of the terminal device in the foregoing method embodiments.
  • FIG. 24 shows only the main components of the terminal device.
  • the terminal device 1100 includes a processor, a memory, a control circuit, an antenna, and an input and output device.
  • the processor 1102 is mainly used to process communication protocols and communication data, control the entire terminal device, execute software programs, and process data of the software programs, for example, to support the terminal device to perform the actions described in the above method embodiments.
  • the memory is mainly used to store software programs and data.
  • the control circuit is mainly used for the conversion of the baseband signal and the radio frequency signal and the processing of the radio frequency signal.
  • the control circuit and the antenna together can also be called the transceiver 1101, and are mainly used for transmitting and receiving radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, and keyboards, are mainly used to receive data input by users and output data to users.
  • the processor can read the software program in the storage unit, interpret and execute the instructions of the software program, and process the data of the software program.
  • the processor performs baseband processing on the data to be sent, and outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and sends the radio frequency signal through the antenna in the form of electromagnetic waves.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, which converts the baseband signal into data and processes the data.
  • FIG. 24 only shows one memory and one processor. In an actual terminal device, there may be multiple processors and multiple memories.
  • the memory may also be referred to as a storage medium or a storage device, etc., which is not limited in this embodiment of the present application.
  • the processor may include a baseband processor and a central processing unit.
  • the baseband processor is mainly used to process communication protocols and communication data
  • the central processing unit is mainly used to control the entire terminal device, execute A software program that processes data from the software program.
  • the processor in FIG. 24 may integrate the functions of the baseband processor and the central processing unit.
  • the baseband processor and the central processing unit may also be independent processors, interconnected by technologies such as a bus.
  • a terminal device may include multiple baseband processors to adapt to different network standards, a terminal device may include multiple central processors to enhance its processing capability, and various components of the terminal device may be connected through various buses.
  • the baseband processor may also be expressed as a baseband processing circuit or a baseband processing chip.
  • the central processing unit can also be expressed as a central processing circuit or a central processing chip.
  • the function of processing the communication protocol and communication data may be built in the processor, or may be stored in the storage unit in the form of a software program, and the processor executes the software program to realize the baseband processing function.
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as independent products, may be stored in a computer-readable storage medium.
  • the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art or the part of the technical solution.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), magnetic disk or optical disk and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种调度数据传输的方法和通信装置。该方法包括:终端设备使用第一传输层数进行数据传输;在满足第一预设条件时,终端设备执行第一动作;在终端设备执行第一动作之后,终端设备接收网络设备发送的第一调度信息,第一调度信息用于指示终端设备使用第二传输层数进行数据传输,第二传输层数小于第一传输层数;其中,执行第一动作包括以下至少一种:降低探测参考信号SRS和/或PUSCH的发射功率;关闭用于发送SRS和/或PUSCH的多个天线端口中的至少一个天线端口;或向网络设备发送第一辅助信息消息。上述技术方案能够在不降低上下行吞吐峰值的前提下,使终端设备快速进行传输层数回退,减少或避免误码的产生。

Description

调度数据传输的方法和通信装置
本申请要求于2020年10月21日提交中国专利局、申请号为202011134432.3、申请名称为“调度数据传输的方法和通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且更具体地,涉及一种调度数据传输的方法和通信装置。
背景技术
多输入多输出(multi input multi output,MIMO)技术,是在发射端和接收端分别使用多个发射天线(transmitter,Tx)和多个接收天线(receiver,Rx)进行信号的发射和接收。根据终端设备(user equipment,UE)的能力,终端设备可以支持如下的Tx天线与Rx天线数量的配置,例如1T2R、2T4R、1T4R、2TR、4T4R等。终端设备包括多个Tx天线或多个Rx天线,相应地,终端设备可以支持多流数据并发。
在目前的通信协议中,终端设备会向网络设备上报终端设备支持的接收天线的数量以及发送天线的数量。在网络设备调度终端设备进行数据传输时,网络设备调度不多于终端设备所上报的接收天线数量以及发送天线数量进行接收和发送。以2T4R的终端设备为例,终端设备向网络设备上报2T的发送能力和4R的接收能力,则网络设备可以调度终端设备以1T或2T发送数据,调度终端设备以1R、2R、3R或4R接收数据。即,网络设备会调度秩1(rank1)(对应的传输层数为1)或秩2(rank2)(对应的传输层数为2)发送,或调度秩1(rank1)(对应的传输层数为1)、秩2(rank2)(对应的传输层数为2)、秩3(rank3)(对应的传输层数为3)或秩4(rank4)(对应的传输层数为4)接收。
在一些场景中,终端设备期望以较低传输层数(layer数)传输,例如终端设备需要节省功耗,或者终端设备包括两个用户身份识别模块(subscriber identity module,SIM)卡(简称SIM卡),该两个SIM卡同时传输数据时存在射频资源冲突等。终端设备可以通过重新接入网络并上报支持的MIMO能力使网络设备只能调度较低的layer数,或强行关闭发射/接收分集使网络设备自适应调整调度的layer数。但上述方式会中断当前业务或导致连续误码,影响用户的使用体验。
发明内容
本申请提供一种调度数据传输的方法和通信装置,能够使终端设备快速进行传输层数回退,减少或避免误码产生,提升用户体验。
第一方面,提供了一种调度数据传输的方法,包括:终端设备使用第一传输层数进行数据传输;在满足第一预设条件时,所述终端设备执行第一动作;在所述终端设备执行所述第一动作之后,所述终端设备接收网络设备发送的第一调度信息,所述第一调度信息用 于指示所述终端设备使用第二传输层数进行数据传输,所述第二传输层数小于所述第一传输层数;其中,所述执行第一动作包括以下至少一种:降低探测参考信号SRS的发射功率;降低上行物理共享信道PUSCH的发射功率;关闭用于发送SRS的多个天线端口中的至少一个天线端口;关闭用于发送PUSCH的多个天线端口中的至少一个天线端口;或向所述网络设备发送第一辅助信息消息。
本申请实施例中,当终端设备想要以较低的传输层数进行传输时,通过执行第一动作,可以使网络设备快速响应进行调度调整。这样既不影响终端设备上报上下行MIMO能力,并且可以在不打断业务且不影响体验的前提下,关闭发射或接收分集,减少或避免误码产生。
结合第一方面,在一种可能的实现方式中,所述第一预设条件包括以下至少一种:所述终端设备检测到的参考信号接收功率RSRP大于第一阈值;所述终端设备处理的数据业务属于第一预设业务类型;所述终端设备处理的数据业务的应用层数据流量小于第二阈值;所述终端设备的温度大于第三阈值;所述终端设备的电量小于第四阈值;或所述终端设备携带第一用户身份识别模块SIM卡和第二SIM卡,其中所述第一SIM卡使用所述第一传输层数处理第一数据业务,所述第二SIM卡在空闲态下接收到第二数据业务的请求。
终端设备检测到的参考信号接收功率RSRP大于第一阈值时,可以认为终端设备处于信号质量优良的位置。终端设备可以使用较低的传输层数进行传输,以节省功耗。
可选地,第一预设业务类型包括短信业务、文字性网页浏览业务、即时通讯业务、碎片式内容传输业务。第一预设业务类型中的业务一般为小流量业务,当终端设备处理的数据业务属于第一预设业务类型时,终端设备使用较低的传输层数进行传输就可以满足需求,可以节省功耗。
终端设备处理的数据业务的应用层数据流量小于第二阈值时,该数据业务需要的应用层数据流量较小,因此终端设备可以使用较低的传输层数进行传输,以节省功耗。
终端设备的温度大于第三阈值时,终端设备的温度较高,终端设备需要使用较低的传输层数进行传输,以降低功耗。
终端设备的电量小于第四阈值时,终端设备的电量较小,终端设备可以使用较低的传输层数进行传输,以降低功耗,节省电量。
在终端设备携带有第一SIM卡和第二SIM卡的情况下,由于第一SIM卡和第二SIM卡共同使用终端设备的射频资源。第一SIM卡和第二SIM卡在处理业务时可能会产生射频资源的使用冲突问题,此时终端设备可以降低其中一个SIM卡的传输层数,从而释放部分或全部的射频资源供另一个SIM卡处理业务。
结合第一方面,在一种可能的实现方式中,第一调度信息为下行控制指示(downlink control indicator,DCI)。
这里,第一调度信息为DCI,也可以描述为第一调度信息承载于DCI中。
结合第一方面,在一种可能的实现方式中,所述第一辅助信息消息为过热(overheating)指示消息。
该过热指示消息在一些实施例中也可以描述为过热辅助信息(overheating assistance information)消息。
可选地,所述第一辅助信息消息为标准协议规定的终端辅助信息(UE  AssistanceInformation)消息。
终端设备通过标准信令的方式触发网络设备进行传输层数的调度调整,信令交互过程快速,网络设备可及时响应。
结合第一方面,在一种可能的实现方式中,所述第一辅助信息消息包括第二最大传输层数,所述第二最大传输层数小于第一最大传输层数,所述第一最大传输层数等于所述网络设备在所述终端设备执行所述第一动作之前所能调度的传输层数的最大值。
第一辅助信息消息包括的第二最大传输层数小于网络设备在终端设备执行第一动作之前所能调度的传输层数的最大值,这样网络设备后续可以为终端设备配置传输层数的最大值为第二最大传输层数,之后网络设备只能在第二最大传输层数以内对终端设备进行调度。
结合第一方面,在一种可能的实现方式中,所述第一传输层数和所述第二传输层数用于上行数据传输;或者,所述第一传输层数和所述第二传输层数用于下行数据传输。
结合第一方面,在一种可能的实现方式中,所述终端设备包括多个用于发送SRS的天线端口,所述降低探测参考信号SRS的发射功率,包括:降低所述多个用于发送SRS的天线端口中的至少一个天线端口对应的SRS发射功率。
可选地,终端设备可以以步进式、递增式、或递减式降低SRS的发射功率,也可以将SRS的发射功率直接降低到门限值。
终端设备通过降低SRS的发射功率,使得网络设备检测到的SRS的接收功率较小,相当于构造终端设备处于远点的类似场景,使得网络设备调度较低的传输层数。
结合第一方面,在一种可能的实现方式中,所述终端设备包括多个用于发送PUSCH的天线端口,所述降低上行物理共享信道PUSCH的发射功率,包括:降低所述多个用于发送PUSCH的天线端口中的至少一个天线端口对应的PUSCH发射功率。
可选地,终端设备可以以步进式、递增式、或递减式降低PUSCH的发射功率,也可以将PUSCH的发射功率直接降低到门限值。
终端设备通过降低PUSCH的发射功率,使得网络设备检测到的PUSCH的接收功率较小,相当于构造终端设备处于远点的类似场景,使得网络设备调度较低的传输层数。
结合第一方面,在一种可能的实现方式中,所述用于发送SRS的多个天线端口包括第一端口组,所述第一端口组用于发送用于天线切换AS的SRS,所述终端设备进行下行数据传输,所述关闭用于发送SRS的多个天线端口中的至少一个天线端口,包括:关闭所述第一端口组中的至少一个端口。
该第一端口组包括多个天线端口。
终端设备通过关闭用于发送AS SRS的天线端口,可以使网络设备及时获得终端设备状态,从而快速进行调度调整。网络设备可以根据发送AS SRS的天线端口数量,调整终端设备的下行传输层数的调度。
结合第一方面,在一种可能的实现方式中,所述用于发送SRS的多个天线端口包括第二端口组,所述第二端口组用于发送用于码本CB的SRS,所述终端设备进行上行数据传输,所述关闭用于发送SRS的多个天线端口中的至少一个天线端口,包括:关闭所述第二端口组中的至少一个端口。
该第二端口组包括多个天线端口。
终端设备通过关闭用于发送CB SRS的天线端口,可以使网络设备及时获得终端设备状态,从而快速进行调度调整。网络设备可以根据发送CB SRS的天线端口数量,调整终端设备的上行传输层数的调度。
结合第一方面,在一种可能的实现方式中,所述第一预设条件包括所述终端设备携带第一用户身份识别模块SIM卡和第二SIM卡,其中所述第一SIM卡使用所述第一传输层数处理第一数据业务,所述第二SIM卡在空闲态下接收到第二数据业务的请求,所述方法还包括:所述终端设备启动定时器;若所述定时器在所述终端设备接收所述第一调度信息之后超时,所述第二SIM卡使用第三传输层数处理所述第二数据业务,所述第一SIM使用所述第二传输层数处理所述第一数据业务;若所述定时器在所述终端设备接收所述第一调度信息之前超时,所述第二SIM卡使用所述第三传输层数处理所述第二数据业务,所述第一SIM卡进入空闲态。
本申请实施例中,可以在不打断第一SIM卡业务的前提下,使第一SIM卡快速进行传输层数回退,而不是由网络设备自适应调度调整。因此,既不影响第一SIM卡业务的使用体验,也可以使第二SIM卡在需要处理业务请求的时候进入连接态,进行处理。另外,不影响终端设备上报最高上行传输层数,因此不会降低上行吞吐峰值。
定时器未超时的情况下,第二SIM卡接收到第二数据业务请求后可以先使第二SIM卡处于等待状态,暂缓处理第二数据业务,从而为第一SIMA卡的传输层数回退留出时间。
当定时器超时后,第一SIM卡直接进入空闲态,第二SIM卡使用发射通道处理业务请求。这种情况下,由于第一SIM卡进入空闲态,网络设备侧可以很快感知到第一SIM卡的状态,从而快速进行调度调整,可以减少误码的发生。
可选地,定时器可以位于第一SIM卡一侧,或者位于第二SIM卡一侧。
这里,终端设备使用第一传输层数进行数据传输,可以理解为第一SIM卡使用第一传输层数处理第一数据业务。
结合第一方面,在一种可能的实现方式中,在所述终端设备启动定时器之前,还包括:所述终端设备根据所述第一数据业务的类型和所述第二数据业务的类型,确定所述定时器的时长。
根据第一SIM卡和第二SIM卡的业务类型确定定时器时长,可以灵活应用于各种业务组合场景。
结合第一方面,在一种可能的实现方式中,在所述终端设备执行第一动作之前,还包括:所述终端设备根据所述第一数据业务的类型和所述第二数据业务的类型,确定所述第一动作。
第一SIM卡和第二SIM卡的业务类型组合不同,终端设备可以执行不同的第一动作,例如实现快速回退或慢速回退,可以灵活应用于各种业务组合场景。
结合第一方面,在一种可能的实现方式中,所述第二传输层数与所述第三传输层数之和小于或等于所述网络设备在所述终端设备执行所述第一动作之后所能调度的传输层数的最大值。
当第一SIM卡和第二SIM卡同时处理数据业务时,第一SIM卡使用的第二传输层数和第二SIM卡使用的第三传输层数应小于或等于网络设备在终端设备执行第一动作之后所能调度的传输层数的最大值。这样第一SIM卡和第二SIM卡协调使用终端设备的射频 资源处理各自数据业务。
结合第一方面,在一种可能的实现方式中,所述第一SIM卡使用所述第一传输层数处理第一数据业务,包括:所述第一SIM卡使用所述终端设备的全部上行射频资源处理所述第一数据业务。
结合第一方面,在一种可能的实现方式中,所述第一SIM卡上报的上行传输层数的最大值为2,所述第二SIM卡上报的上行传输层数的最大值为1。
结合第一方面,在一种可能的实现方式中,所述终端设备包括1个发射天线和2个接收天线;或者,所述终端设备包括2个发射天线和4个接收天线。
结合第一方面,在一种可能的实现方式中,还包括:所述终端设备使用所述第二传输层数进行数据传输;在满足第二预设条件时,所述终端设备执行第二动作;在所述终端设备执行所述第二动作之后,所述终端设备接收所述网络设备发送的第二调度信息,所述第二调度信息用于指示所述终端设备使用第四传输层数进行数据传输,所述第四传输层数大于所述第二传输层数;其中,所述执行第二动作包括以下至少一种:提高探测参考信号SRS的发射功率;提高上行物理共享信道PUSCH的发射功率;开启被关闭的用于发送SRS的多个天线端口中的至少一个天线端口;开启被关闭的用于发送PUSCH的多个天线端口中的至少一个天线端口;或向所述网络设备发送第二辅助信息消息。
当终端设备想要以较高的传输层数进行传输时,通过执行第二动作,可以使网络设备快速响应进行调度调整。这样既不影响终端设备上报上下行MIMO能力,并且可以在不打断业务且不影响体验的前提下,打开发射或接收分集,提升频谱利用率。
结合第一方面,在一种可能的实现方式中,所述第二预设条件包括以下至少一种:所述终端设备检测到的参考信号接收功率RSRP小于第五阈值;所述终端设备处理的数据业务属于第二预设业务类型;所述终端设备处理的数据业务的应用层数据流量大于第六阈值;所述终端设备的温度小于第七阈值;所述终端设备的电量大于第八阈值;或所述终端设备携带第一SIM卡和第二SIM卡,其中所述第一SIM卡处于空闲态或使用所述第二传输层数处理第一数据业务,所述第二SIM卡结束第二数据业务的处理并由业务连接态进入空闲态。
终端设备检测到的参考信号接收功率RSRP小于第五阈值时,可以认为终端设备处于信号质量较差的位置。终端设备可以使用较高的传输层数进行传输,以保证吞吐量。
可选地,第二预设业务类型包括通话业务、图片性网页浏览业务、视频业务、游戏业务等。第二预设业务类型中的业务一般为大流量业务,当终端设备处理的数据业务属于第二预设业务类型时,终端设备需要使用较高的传输层数进行传输,以保证吞吐量。
终端设备处理的数据业务的应用层数据流量大于第六阈值时,该数据业务需要的应用层数据流量较大,因此终端设备需要使用较高的传输层数进行传输,以保证吞吐量。
终端设备的温度小于第七阈值时,终端设备的温度较低,终端设备可以使用较高的传输层数进行传输,以提升频谱利用率。
终端设备的电量大于第八阈值时,终端设备的电量较多,终端设备可以使用较高的传输层数进行传输,以提升频谱利用率。
在终端设备携带有第一SIM卡和第二SIM卡的情况下,由于第一SIM卡和第二SIM卡共同使用终端设备的射频资源。第一SIM卡和第二SIM卡在处理业务时可能会产生射 频资源的使用冲突问题,此时终端设备可以降低其中一个SIM卡的传输层数,从而释放部分或全部的射频资源供另一个SIM卡处理业务。
在终端设备携带有第一SIM卡和第二SIM卡的情况下,由于第一SIM卡和第二SIM卡共同使用终端设备的射频资源。当其中一个SIM卡结束业务处理时,可以释放部分射频资源供另一个SIM卡处理业务,因此另一个SIM卡可以使用较高的传输层数进行传输。
可选地,第五阈值等于第一阈值;或者,第六阈值等于第二阈值;或者第七阈值等于第三阈值;或者第八阈值等于第四阈值。
结合第一方面,在一种可能的实现方式中,所述第四传输层数等于所述第一传输层数。
网络设备调度终端设备恢复使用执行第一动作之前的传输层数进行传输。
第二方面,提供了一种调度数据传输的方法,包括:网络设备根据终端设备发送的探测参考信号SRS,确定终端设备上用于发送所述SRS的天线端口数;所述网络设备根据所述天线端口数,调整调度所述终端设备的传输层数。
网络设备通过检测终端设备用于发送SRS的天线端口数量,可以确定调度终端设备进行数据传输的层数,便于进行调度调整。
结合第二方面,在一种可能的实现方式中,所述终端设备包括多个用于发送SRS的天线端口,所述用于发送SRS的多个天线端口包括第一端口组,所述第一端口组用于发送用于天线切换AS的SRS,所述终端设备进行下行数据传输,所述确定终端设备上用于发送所述SRS的天线端口数,包括:根据所述终端设备发送的用于天线切换AS的SRS,确定所述第一端口组中发送天线切换AS的SRS的天线端口数;所述调整调度所述终端设备的传输层数,包括:根据所述第一端口组中发送天线切换AS的SRS的天线端口数,确定调整调度终端设备的下行传输层数。
结合第二方面,在一种可能的实现方式中,所述终端设备包括多个用于发送SRS的天线端口,所述用于发送SRS的多个天线端口包括第二端口组,所述第二端口组用于发送用于码本CB的SRS,所述终端设备进行上行数据传输,所述确定终端设备上用于发送所述SRS的天线端口数,包括:根据所述终端设备发送的用于码本CB的SRS,确定所述第二端口组中发送用于码本CB的SRS的天线端口数;所述调整调度所述终端设备的传输层数,包括:根据所述第二端口组中发送用于码本CB的SRS的天线端口数,确定调整调度终端设备的上行传输层数。
第三方面,提供了一种终端设备,包括用于执行上述第一方面或第一方面中任一种可能实现方式中的方法的模块或单元。该模块或单元可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。
第四方面,提供了一种网络设备,包括用于执行上述第二方面或第二方面中任一种可能实现方式中的方法的模块或单元。该模块或单元可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。
第五方面,提供了一种通信装置,包括一个或多个处理器、一个或多个存储器,所述一个或多个存储器存储一个或多个计算机程序,所述一个或多个计算机程序包括指令,当所述指令被所述一个或多个处理器执行时,使得所述通信装置执行上述第一方面或第一方面中任一种可能实现方式中的方法。
可选地,所述通信装置还包括收发器。
第六方面,提供了一种通信装置,包括一个或多个处理器、一个或多个存储器,所述一个或多个存储器存储一个或多个计算机程序,所述一个或多个计算机程序包括指令,当所述指令被所述一个或多个处理器执行时,使得所述通信装置执行上述第二方面或第二方面中任一种可能实现方式中的方法。
可选地,所述通信装置还包括收发器。
第七方面,提供一种通信装置,所述通信装置可以是终端设备,也可以是终端设备内的芯片。所述通信装置可以包括处理单元和收发单元。当所述通信装置是终端设备时,所述处理单元可以是处理器,所述收发单元可以是收发器;所述终端设备还可以包括存储单元,所述存储单元可以是存储器;所述存储单元用于存储指令,所述处理单元执行所述存储单元所存储的指令,以使所述终端设备执行第一方面或第一方面中任一种可能实现方式中的方法。当所述装置是终端设备内的芯片时,所述处理单元可以是处理器,所述收发单元可以是输入/输出接口、管脚或电路等;所述处理单元执行存储单元所存储的指令,以使所述终端设备执行第一方面或第一方面中任一种可能实现方式中的方法,所述存储单元可以是所述芯片内的存储单元(例如,寄存器、缓存等),也可以是所述终端设备内的位于所述芯片外部的存储单元(例如,只读存储器、随机存取存储器等)。
第八方面,提供一种通信装置,所述通信装置可以是网络设备,也可以是网络设备内的芯片。所述通信装置可以包括处理单元和收发单元。当所述通信装置是网络设备时,所述处理单元可以是处理器,所述收发单元可以是收发器;所述网络设备还可以包括存储单元,所述存储单元可以是存储器;所述存储单元用于存储指令,所述处理单元执行所述存储单元所存储的指令,以使所述网络设备执行第二方面或第二方面中任一种可能实现方式中的方法。当所述装置是网络设备内的芯片时,所述处理单元可以是处理器,所述收发单元可以是输入/输出接口、管脚或电路等;所述处理单元执行存储单元所存储的指令,以使所述网络设备执行第二方面或第二方面中任一种可能实现方式中的方法,所述存储单元可以是所述芯片内的存储单元(例如,寄存器、缓存等),也可以是所述网络设备内的位于所述芯片外部的存储单元(例如,只读存储器、随机存取存储器等)。
第九方面,提供一种芯片系统,包括至少一个处理器,当程序指令在所述至少一个处理器中执行时,使得所述至少一个处理器执行上述第一方面或第二方面,以及第一方面或第二方面中任一种可能实现方式中的方法。
第十方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行上述各方面中的方法。
需要说明的是,上述计算机程序代码可以全部或者部分存储在第一存储介质上,其中第一存储介质可以与处理器封装在一起的,也可以与处理器单独封装,本申请实施例对此不作具体限定。
第十一方面,提供了一种计算机可读介质,所述计算机可读介质存储有程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行上述各方面中的方法。
附图说明
图1是本申请实施例适用的通信系统的示意图;
图2是本申请实施例提供的一种终端设备的示意性结构图;
图3是终端设备上支持2T4R天线切换的硬件示意图;
图4是终端设备上支持1T4R和2T4R天线切换的硬件示意图;
图5是终端设备物理层的上行处理流程示意图;
图6是终端设备能力上报过程和数据传输调度过程的示意性流程图;
图7是本申请实施例提供的一种调度数据传输的方法的示意性流程图;
图8是本申请实施例提供的另一种调度数据传输的方法的示意性流程图;
图9是双卡双待单通的终端设备上行发射通道使用示意图;
图10是双卡双待双通的终端设备上行发射通道使用示意图;
图11是本申请实施例提供的一种调度数据传输的方法的示意性流程图;
图12是本申请实施例提供的另一种调度数据传输的方法的示意性流程图;
图13是本申请实施例提供的一种调度数据传输的方法的示意性流程图;
图14是本申请实施例提供的一种调度数据传输的方法的示意性流程图;
图15是本申请实施例提供的一种调度数据传输的方法的示意性流程图;
图16是本申请实施例提供的终端设备能力上报过程和数据传输调度过程的示意性流程图;
图17是本申请实施例提供的一种调度数据传输的方法的示意性流程图;
图18是本申请实施例提供的另一种调度数据传输的方法的示意性流程图;
图19是本申请实施例提供的一种调度数据传输的方法的示意性流程图;
图20是本申请实施例提供的调度数据传输的方法的示意性流程图;
图21是本申请实施例提供的终端设备SRS资源配置、复用方式、回退方式的示意图;
图22是本申请实施例提供的终端设备SRS资源配置、复用方式、回退方式的示意图;
图23是本申请实施例提供的一种通信装置的示意图;
图24是本申请实施例提供的一种终端设备的示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,包括但不限于:全球移动通信(global system for mobile communications,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、第五代(5th generation,5G)移动通信系统或新无线(new radio,NR)系统、窄带物联网(narrow band internet of things,NB-IoT)系统、增强型机器类型通信(enhanced machine-type communication,eMTC)系统或LTE-机器到机器(LTE-machine-to-machine,LTE-M)系统以及未来的第六代移动通信系统等。
需要说明的是,在本申请实施例中,术语“通信”还可以描述为“数据传输”、“信号传输”、“信息传输”或“传输”等。在本申请实施例中,传输可以包括发送或接收。 示例性地,传输可以是上行传输,例如可以是终端设备向网络设备发送信号;传输也可以是下行传输,例如可以是网络设备向终端设备发送信号。
为便于理解本申请实施例,首先结合图1详细说明适用于本申请实施例的通信系统。图1示出了本申请实施例适用的通信系统的示意图。如图1所示,通信系统100可以包括网络设备110和终端设备120。
网络设备110可以是用于与终端设备120通信的设备,例如为用于将终端设备120接入无线接入网络(radio access network,RAN)的基站。基站有时也可称为接入网设备或接入网节点。可以理解的是,采用不同无线接入技术的系统中,具备基站功能的设备的名称可能会有所不同。为方便描述,本申请实施例将为终端设备提供无线通信接入功能的装置统称为基站。本申请实施例中,网络设备110包括但不限于:LTE中的演进型节点B(evolved node B,eNB或eNodeB)、无线网络控制器(radio network controller,RNC)、节点B(node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(home evolved nodeB,或home node B,HNB)、基带单元(base band unit,BBU),无线保真(wireless fidelity,WIFI)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)等,还可以为5G系统中的下一代基站节点(next generation node basestation,gNB)或传输点(TRP或TP),5G系统中的基站的一个或一组(包括多个天线面板)天线面板,构成gNB或传输点的网络节点,如基带单元(BBU)或分布式单元(distributed unit,DU),以及未来6G网络中的网络设备等。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU)。gNB还可以包括射频单元(radio unit,RU)。CU实现gNB的部分功能,DU实现gNB的部分功能。例如,CU实现无线资源控制(radio resource control,RRC)、分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能,DU实现无线链路控制(radio link control,RLC)层、媒体接入控制(media access control,MAC)层和物理(physical,PHY)层的功能。由于RRC层的信息最终会变成PHY层的信息,或者由PHY层的信息转变而来,因而,在这种架构下,高层信令如RRC层信令,也可以认为是由DU发送的,或者由DU+CU发送的。可以理解的是,网络设备110可以为CU节点、或DU节点、或包括CU节点和DU节点的设备。此外,CU可以划分为接入网(radio access network,RAN)中的网络设备,也可以划分为核心网(core network,CN)中的网络设备,本申请对此不作限定。
本申请实施例中,用于实现网络设备的功能的装置可以是网络设备,也可以是能够支持网络设备实现该功能的装置,例如芯片系统。在本申请实施例的技术方案中,以用于实现网络设备的功能的装置是网络设备,以网络设备是基站为例,描述本申请实施例提供的技术方案。
终端设备120可以是任意一种具有无线收发功能的设备。终端设备120也可以称为用户设备(user equipment,UE)、接入终端、终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、无线网络设备、用户代理或用户装置。本申请实施例中,终端设备120包括但不限于:蜂窝电话(cellular phone)、无绳电话、会话启动协议(session initiation protocol,SIP)电话、智能电话(smart phone)、无线本地环路 (wireless localloop,WLL)站、个人数字处理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它设备、车载设备、可穿戴设备、无人机设备、物联网或车联网中的终端设备,以及未来网络中的任意形态的终端、中继用户设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端等。终端设备120还可以是虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的终端设备、无人驾驶(self driving)中的终端设备、远程医疗(remote medical)中的终端设备、智能电网(smart grid)中的终端设备、智慧城市(smart city)中的终端设备、智慧家庭(smart home)中的终端设备等,本申请实施例对此并不限定。
本申请实施例中,用于实现终端设备的功能的装置可以是终端设备,也可以是能够支持终端设备实现该功能的装置,例如芯片系统。芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。本申请实施例的技术方案中,以用于实现终端设备的功能的装置是终端设备,以终端设备是UE为例,描述本申请实施例提供的技术方案。
网络设备110和终端设备120可以是独立组网(standalone,SA)架构中的通信设备,也可以是非独立组网(non-standalone,NSA)架构中的通信设备,本申请实施例对此不作限定。
应理解,图1仅为便于理解而示例的简化示意图,该通信系统100中还可以包括其他网络设备或者还可以包括其他终端设备,图1中未予以画出。
网络设备110与终端设备120之间可以通过无线链路通信。网络设备110到终端设备120的传输链路可以称为下行链路(downlink)或下行信道,用于传输下行信号。终端设备120到网络设备110的传输链路可以称为上行链路(uplink)或上行信道,用于传输上行信号。示例性的,网络设备110可以通过下行信道向终端设备120发送下行参考信号,例如小区特定的参考信号(cell-specific reference signal,CRS)、UE特定的参考信号(UE-specific reference signal),以用于信道状态信息的测量、数据解调、波束训练、时频参数跟踪等。终端设备120可以通过上行信道向网络设备110发送上行参考信号,例如探测参考信号(sounding reference signal,SRS)、解调参考信号(demodulation reference signal,DMRS),以用于上下行信道测量、数据解调等。网络设备110和终端设备120之间还可以通过下行信道进行下行数据传输,通过上行信道进行上行数据传输。
本申请实施例中,网络设备110为小区提供服务,终端设备110通过该小区例如图1所示的小区130使用的传输资源(例如,频域资源,或者说,频谱资源)与网络设备110进行通信。网络设备110可以是宏基站、微基站、中继站或接入点等。该小区130可以属于宏基站,或属于小小区(small cell)对应的基站。这里的小小区可以包括:城市小区(metro cell)、微小区(micro cell)、微微小区(pico cell)、毫微微小区(femto cell)等。小小区是相对于宏小区(macro cell)而言的,宏小区一般覆盖范围比较大(例如半径500米以上)、发射功率高,而小小区则具有覆盖范围小(例如半径几十米)、发射功率低的特点,适用于提供高速率的数据传输服务。
此外,LTE系统或5G系统中的载波上可以同时有多个小区同频工作,在某些特殊场景下,也可以认为上述载波与小区的概念等同。例如在载波聚合(carrier aggregation,CA)场景下,当为UE配置辅载波时,会同时携带辅载波的载波索引和工作在该辅载波的辅小 区的小区标识(cell indentification,Cell ID),在这种情况下,可以认为载波与小区的概念等同,比如UE接入一个载波和接入一个小区是等同的。
终端设备120开机或者重选后,需要执行小区的初始搜索过程,以搜索到一个合适的小区并驻留。当终端设备120在某个小区,例如小区130,完成了驻留之后,终端设备120在满足预设条件(例如,无业务等)下,进入了空闲态(idle)。处于空闲态的终端设备的无线资源控制(radio resource control,RRC)连接未建立,因此终端设备120也可称为处于RRC空闲态的终端设备。如果终端设备120后续又完成了随机接入过程,并和网络设备110建立了RRC连接,终端设备120则进入了连接态(connected)。处于连接态的终端设备的RRC连接建立,因此终端设备120也可称为处于RRC连接态的终端设备。
终端设备120与网络设备110之间进行通信时,为了降低干扰,需要在保证电平强度和信号质量的前提下,对终端设备120和网络设备110的功率进行控制。即根据需要调整网络设备110与终端设备120的发射功率。
功率控制(简称功控)包括上行功率控制和下行功率控制,上下行功率控制可独立进行。上行功控时,需要调整终端设备120的输出功率,使网络设备110获得稳定的接收信号强度,以减少对同邻频的干扰,降低终端设备120的功耗。下行功控时,需要调整网络设备110的输出功率,使终端设备120获得稳定的接收信号强度,减少同邻频干扰,降低网络设备110的功耗。本申请实施例主要以终端设备侧的功率控制为例进行说明。
终端设备的功率控制机制一般有两种方式,一种是开环功率控制,另一种是闭环功率控制。
在开环功控中,终端设备120是通过自身的功率设定算法确定传输功率的,其中功率设定算法的输入数据均来自于终端设备内部设置数据或测量数据,没有来自网络设备的数据。开环功控过程一般应用于通信双方建立连接之前,例如初始物理随机接入信道(physical random access channel,PRACH)功率控制即为开环功控过程。
在闭环功控中,终端设备120是根据网络设备发送的反馈信息对传输功率进行控制的。具体过程为:终端设备向网络设备发送信号;网络设备测量来自发射端的信号的功率;如果网络设备检测到的功率过低,网络设备将发送“增加功率”的命令(例如传输功率控制(transmit power control,TPC)命令),如果测量到的功率太大,网络设备将发送“降低功率”的命令。在闭环功控过程中,终端设备120的发射机可以根据接收端的反馈动态地改变输出功率。闭环功控机制是基于通信双方已经建立了连接,例如PRACH成功接入以后,终端设备的上行物理共享信道(physical uplink shared channel,PUSCH)功率控制和物理上行控制信道(physical uplink control channel,PUCCH)功率控制等即为闭环功控过程。在一些实施中,闭环功控也可以称为“基于命令的功率控制”。
为方便理解,下面参考图1举例说明。假设终端设备120刚刚开机,需要向网络设备110发送信号以进行小区搜索。由于终端设备120与网络设备110未建立连接,无法通过交换命令进行功率控制,因此终端设备120需要通过自身的参数确定适当的发射功率,其中该发射功率水平既能够使终端设备120发送的信号被网络设备110正确解码,同时不能干扰其他终端设备与网络设备之间的通信。即,终端设备120与网络设备110建立连接之前,可以采用开环控制的功率控制的方法。当终端设备120与网络设备110建立连接以后,网络设备110可以通过信令控制终端设备120的发射功率。例如终端设备120位于网络设 备110的近距离点时,若网络设备110检测到终端设备120的功率过大,则可以通知终端设备120降低功率。当终端设备120位于网络设备110的远距离点时,若网络设备110检测到终端设备120的功率较低,则可以通知终端设备120增大功率。即,终端设备120与网络设备110建立连接之后,可以采用闭环控制的功率控制的方法。
应理解,网络设备的近距离点(以下简称近点)和远距离点(以下简称远点)是相对的概念,本申请实施例中将距离网络设备相对近的点可以称为近点,将距离网络设备相对远的点可以称为远点。更为具体地,本申请实施例中可以参考网络设备接收到的信号的质量确定近点和远点,例如根据网络设备检测到的参考信号接收功率(reference signal receiving power,RSRP)、接收的信号强度指示(received signal strength indication,RSSI)、参考信号接收质量(reference signal receiving quality,RSRQ)、信噪比(signal noise ratio,SNR)等参数中的一项或多项确定近点和远点。示例性地,可以将网络设备检测到的RSRP大于一定阈值时对应的位置称为近点,将检测到的RSRP小于该一定阈值时对应的位置称为远点。
网络设备110或终端设备120,可以配置多个天线(antenna,ANT)进行通信。该多个天线可以包括至少一个用于发送信号的发射天线(transmitter,Tx)和至少一个用于接收信号的接收天线(receiver,Rx)。另外,网络设备110或终端设备120还附加地包括发射机链和接收机链,本领域普通技术人员可以理解,它们均可包括与信号发送和接收相关的多个部件(例如处理器、调制器、复用器、解调器、解复用器或天线等)。
为便于理解,图2示出了终端设备的一种示意性结构图。图2所示的终端设备200可以是图1中的终端设备120的一个具体的例子。如图2所示,终端设备200可以包括基带处理器210、射频处理单元220、功率放大器(power amplifier,PA)230、低噪声放大器(low noise amplifier,LNA)280、发射滤波器240、接收滤波器270、双工器250、天线260等。
天线260用于接收和发射射频信号。双工器250用于分开发射信号和接收信号。功率放大器230位于发送路径上,用于放大待发射的信号。低噪声放大器280位于接收路径上,用于放大天线接收的信号。射频处理单元220用于处理射频信号,例如将接收的射频信号进行混频和解调处理,或者将发送的数据信号变成射频信号。基带处理器210用于接收基带信号,并进行解调、交织、解密、信道解码等处理,或者用于将需要发送的数据进行编码、交织、加密、调制等处理形成基带信号。
在接收信号时,天线260将网络设备例如基站发送的高频电磁波转换为高频信号电流,送入双工器250。双工器250具有不同的频带,可以同时过滤传输信号(即发射信号)和接收信号的频率,并且具备防止传输电路(即发射电路)流向接收电路的功能。这里,双工器250主要用于将发射信号和接收信号相隔离,以保证接收和发射能够同时正常工作。经过双工器250的接收信号送入接收滤波器270,接收滤波器270可以允许接收频段的射频信号进入接收电路,而抑制其他频段的信号。经接收滤波器270处理后得到的射频信号送入低噪声放大器280,低噪声放大器280可以将微弱的射频信号进行放大,以提高接收机的信噪比。放大后的射频信号送入射频处理单元220进行处理,得到基带信号。基带信号送入基带处理器210中进行处理,例如对基带信号进行解调、解码以及将解码后的数字信号传输至上层系统等。相应地,终端设备200的接收机链可以包括天线260、双工 器250、接收滤波器270、低噪声放大器280、射频处理单元220、基带处理器210等。
发射信号的过程与接收信号的过程相反。在发射信号时,基带处理器210将要发送的数据信号进行处理得到基带信号,并将基带信号送入射频处理单元220。射频处理单元220将基带信号转换成射频信号,并送入功率放大器230。功率放大器230可以将微弱的射频信号进行放大,以满足发送功率的要求。放大后的射频信号依次送入发射滤波器240、双工器250后,由天线260将射频信号辐射到空间中。相应地,终端设备200的发射机链可以包括基带处理器210、射频处理单元220、功率放大器230、发射滤波器240、双工器250、天线260等。
应理解,终端设备的发射机链或接收机链还可以包括其他部件例如天线匹配电路、复用器、解复用器等,本申请实施例对此不作限定。
在网络设备110和终端设备120配置多个天线的条件下,网络设备110与终端设备120可通过多输入多输出(multi input multi output,MIMO)技术(也称多天线技术)通信。MIMO技术中,发射端和接收端分别使用多个发射天线和多个接收天线传送和接收信号。例如在NR中,根据终端设备的能力,终端设备可以支持如下的Tx天线和Rx天线数量的配置,包括1T2R、2T4R、1T4R、2TR、4T4R等。其中T表示发送天线,R表示接收天线,1T2R表示终端设备有1个发射天线,2个接收天线,其余天线配置方式依此类推。终端设备的发射天线数量多于一个时,终端设备可以支持上行MIMO;相应地,终端设备的接收天线多于一个时,终端设备可以支持下行MIMO。
为便于理解本申请实施例,首先对下文中涉及的几个概念做简单说明。
1、探测参考信号(sounding reference signal,SRS)
探测参考信号SRS是用于测量上行信道的一种参考信号。一方面,网络设备可以基于终端发送的SRS估计上行信道的信道状态,以调度终端设备传输PUSCH。另一方面,对于具有信道互易性的通信系统而言,例如时分双工(time division duplexing,TDD)系统,基于信道互易性,SRS也可被网络设备用于估计下行信道的信道状态。
2、天线端口(antenna port)
天线端口是逻辑上的概念,指用于传输的逻辑端口。天线端口与物理天线不存在定义上的一一对应关系,一个天线端口可以是一个物理发射天线,也可以是多个物理发射天线的合并。在这两种情况下,接收机(receiver)通常不会去分解来自同一个天线端口的信号,因为从接收机的角度来看,不管信号是由单个物理发射天线形成的,还是由多个物理发射天线合并而成的,这个天线端口对应的参考信号(reference signal,RS)就定义了这个天线端口。换句话说,天线端口的概念是从接收端(下行时接收端是终端设备,上行时接收端是网络设备)的角度来定义的,一个端口对于接收端来说就是一个独立的天线信道。上述RS为SRS时,网络设备可以根据终端设备发送的SRS得到这个天线端口的信道估计。
3、SRS资源(resource)以及SRS资源集(resource set)
通常一个SRS资源集中包含用于传输SRS的一个或多个SRS资源。
目前通信协议(例如,NR协议)中,为SRS配置了多种功能。传输具有不同功能的SRS的资源,通常是基于上述SRS资源集以及SRS资源的框架进行资源配置的。由于各个功能对SRS的需求不同,导致SRS资源集以及SRS资源的配置也有所差异。
具体而言,SRS的功能通常包括:确定基于码本(code book,CB)的PUSCH的传输 方式(也即用于基站实现上行信道的探测),确定基于非码本(non code book,NCB)的PUSCH的传输方式(也即支持非码本的传输),天线切换(antenna switching,AS)功能(也即下行波束赋形),用于管理波束(Beam management,BM)(也即上行波束管理),以及多载波上的SRS发送等。用于CB的SRS可能与用于AS的SRS复用,即同一个天线上同一次发射,但是用途不一样。
SRS的天线切换功能用于TDD中终端设备的发射机(transmitter,Tx)的天线(或称“发射天线”)的数量少于接收机(receiver,Rx)的天线(或称“接收天线”)的数量的场景,比如说终端设备的射频(radio frequency,RF)通道造价高,导致终端设备的上行发送通道是受限的。由于终端设备的发射天线的数量少于接收天线的数量,在网络设备通过SRS测量接收天线对应的下行信道的信道状态时,终端设备需要以天线切换(或称天线轮发)的方式通过发射天线向网络设备发送接收天线对应的SRS,以便网络设备可以估计所有接收天线对应的信道状态。即对于用于天线切换的SRS资源集中的SRS资源,每次通过一个SRS资源发送能发送的Tx通道,然后切换到另外的Rx通道,发送剩下Rx通道的SRS资源,这些SRS资源在不同的正交频分复用(orthogonal frequency division multiplexing,OFDM)符号上发送。通过SRS资源在不同天线上的轮发,使基站获取所有Rx通道的信道状态信息。
下文分别以1T2R的终端设备、2T4R的终端设备以及1T4R的终端设备为例,介绍具有“天线切换”功能的SRS资源集以及SRS资源的配置方式。
对于1T2R的终端设备而言,有1个发射天线和2个接收天线。网络设备为终端设备所配置的SRS资源集内包含2个SRS资源,每个SRS资源对应一个天线端口。终端设备每次轮询一个Rx天线,在该Tx天线上发送该Rx天线对应的SRS。如此,终端设备需要在上述两个SRS资源把2个Rx天线对应的SRS发完,网络设备才能获取到2个Rx天线对应的信道的信道状态。
对于2T4R的终端设备而言,有2个发射天线和4个接收天线,网络设备为终端设备配置的SRS资源集内包含2个SRS资源,每个SRS资源对应2个天线端口。终端设备每次可以轮询2个Rx天线,对于同一个SRS资源,可对应不同的天线端口,2个Tx上均发送该SRS资源。终端设备需要在2个SRS资源上发完4个Rx天线对应的SRS,才能使网络设备获取到4个Rx对应的信道的信道状态。在用于CB的SRS和用于AS的SRS可以复用的情况下,在一个AS SRS周期内,第一次轮询的两个Rx天线发送的SRS为复用SRS。
对于1T4R的终端设备而言,可以有两种资源配置方式:
方式一,对于周期、半静态的SRS,网络设备为终端设备配置一个SRS资源集,该SRS资源集内有4个SRS资源,每个SRS资源分别对应4个天线端口。终端设备每次轮询一个Rx天线,终端设备通过一个Tx天线,在该Rx天线对应SRS资源上发送SRS。终端设备需要在4个SRS资源上将4个Rx天线对应的SRS资源发完,才能使网络设备获取到4个Rx对应的信道的信道状态。在用于CB的SRS和用于AS的SRS可以复用的情况下,在一个AS SRS周期内,第一次轮询的一个Rx天线发送的SRS为复用SRS。
方式二,对于非周期的SRS,有2种轮询方式:1、网络设备为终端设备配置2个SRS资源集,每个SRS资源集内有2个SRS资源。2、网络设备为终端设备配置2个SRS资 源集,其中,一个SRS资源集内有一个SRS资源,另一个SRS资源集内有3个SRS资源。
应理解,由于终端设备轮询不同接收天线所发送的SRS时,需要在SRS资源之间预留一段时间,供终端设备轮询到下一个接收天线,即SRS资源之间需要预留一定的保护间隔。在用于CB的SRS和用于AS的SRS不复用的情况下,可以在两次轮询之间发送用于CB的SRS。
SRS天线切换主要是为了做下行信道质量的评估,目前独立组网SA架构支持2T4R,SA中带补充的上行链路(supplementary uplink,SUL)可以支持1T2R,非独立组网NSA架构支持1T2R。
SRS天线切换和天线开关是强相关的,不同的硬件电路决定了不同的天线切换能力。图3示出了支持2T4R天线切换的硬件示意图,图4示出了支持1T4R和2T4R天线切换的硬件示意图。
如图3所示,终端设备包括2个发射天线和4个接收天线331、332、333、334,其中接收天线中的两个天线复用为发射天线。相应地,终端设备包括2个发射通道311、312和4个接收通道311、312、321、322,其中发射通道311和312复用为接收通道。在发送SRS时,可以通过天线开关341和342实现终端设备轮询到不同的接收天线。本申请实施例中,天线开关为收发信号切换开关,可以在软件支持控制下完成收发切换,以及完成各频段间的切换等工作。在一些实施例中,天线开关也可以称为合路器、双工滤波器等。本申请实施例中,天线开关341、342可以为双刀双掷开关(double pole double throw,DPDT)。
如图4所示,终端设备包括2个发射天线和4个接收天线,相应地,终端设备包括2个发射通道和4个接收通道。与图3所示的天线切换硬件图不同的是,图4所示的天线切换硬件图中还包括另一级开关343。这样图4对应的终端设备不仅可以支持2T4R天线切换,还能够支持1T4R天线切换。
上文结合图2至图4介绍了终端设备的硬件结构,下面结合图5至图6介绍终端设备处理流程。
图5示出了终端设备物理层的上行处理流程示意图。
物理层(physical layer,PHY)处理的起点为介质访问控制(media access control,MAC)层传输下来的传输块,终点是生成基带正交频分复用(orthogonal frequency division multiplexing,OFDM)信号,然后转换为射频信号通过天线端口发射出去。
为方便理解本申请实施例,下面对终端设备的上行处理流程中所涉及的相关概念作简要说明。
1、传输块(transport block,TB)
一个TB是一个子帧或一个传输时间间隔(transmission time interval,TTI)内含有的编码前的比特数。
2、码字(codeword,CW)
码字是指来自上层的业务流进行信道编码之后的数据。在LTE中,一个TB经过信道编码处理后就称为一个码字。
不同的码字区分不同的数据流,其目的是通过MIMO发送多路数据,实现空间复用。
多码字(multiple code word,MCW),即用于空间复用传输的多层数据来自于多个 不同的独立进行信道编码的数据。
3、层(layer)
层数表示能够独立并行传输的数据流。层数是由信道矩阵的秩(rank)确定,在LTE中,层数等于信道矩阵的秩。如果终端设备最多支持两天线,那么秩的最大值只能为2,终端能够支持两流并行传输,则终端设备进行数据传输时所使用的layer数最大值为2。
4、层映射(layer mapping)
层映射,是按照一定的规则将码字流重新映射到一个或多个层(新的数据流)中,其中层的数量小于物理信道传输所使用的天线端口数量。
5、预编码
预编码用于将层映射后的数据匹配到天线端口上,同时降低或者控制空间复用数据流之间的干扰,减少系统开销。
参考图5,终端设备物理层的上行处理过程主要为,对来自上层的数据进行编码,形成码字。对不同的码字进行加扰、调制,产生调制符号。对不同码字的调制符号组合一起进行层映射。对层映射后的数据进行转换预编码和预编码,然后通过资源映射、单载波频分多址(single-carrier frequency-division multiple access,SC-FDMA)符号产生后,映射到天线端口上发送。这里,层映射和预编码实际上是“映射码字到发送天线”过程的两个子过程,可以解决输入输出不匹配的问题。在LTE中,层映射和预编码共同完成MIMO功能。
这里,码字用于区分空间复用的流,层用于重排码字数据,天线端口决定预编码天线映射。在数量上存在以下关系:传输块个数(TB)=码字数(CW)≤层数(layer)=信道矩阵的秩(rank)≤天线端口数(port)≤天线物理端口数。
应理解,终端设备物理层下行处理流程与上行处理流程类似,在此仅以终端设备的物理层上行处理流程为例进行说明。
随着NR SA的部署,目前终端设备都可以支持上行2T发送能力,以及下行4R接收能力。2T发送可以支持更高的上行吞吐速率以及达到更大的覆盖性能,4R接收可以支持更高的下行吞吐速率及下行覆盖性能。
2T表示终端设备包括2个发射天线,该两个发射天线均工作时可以发送相同的数据流,也可以发送不同的数据流。也就是说,终端设备能够支持上行两流传输,相应地,网络设备可以调度的上行传输层数的最大值为2(或称上行传输最大层数为2,上行最大传输层数为2,或最大上行传输层数为2)。当网络设备调度的上行传输层数为1时,终端设备可以使用1T发送,或者使用2T发送相同的数据流;当网络设备调度的上行传输层数为2时,终端设备使用2T发送,且两个发射天线发送不同的数据流。具体地,网络设备可以根据终端设备发送的上行参考信号SRS和解调参考信号DMRS的参考信号接收功率(reference signal receiving power,RSRP)、信号与干扰加噪声比(signal to interference plus noise ratio,SINR),以及PUSCH的误块率(block error rate,BLER)等因素确定要调度的上行传输层数。
一般地,近点为了保证吞吐量,网络设备大多数场景下会调度较大的上行传输层数(例如上行layer数为2)。远点为了保证覆盖,网络设备多数会调度较小的上行传输层数(例如上行layer数为1)。
类似地,4R表示终端设备包括4个接收天线,该4个发射天线均工作时可以发送不 同的数据流。也就是说,终端设备能够支持下行四流传输,相应地,网络设备可以调度的下行传输层数的最大值为4(或称下行传输最大层数为4,下行最大传输层数为4,或最大下行传输层数为4)。具体地,网络设备可以根据SRS轮发信号计算MIMO权值,确定要调度的下行传输层数。
一般地,出于频谱效率考虑,网络设备在近点会优先调度较大的下行传输层数(例如下行传输层数为4或3),在远点会优先调度较小的下行传输层数(例如下行传输层数为1或2)。
为方便理解本申请,下面对几个概念之间的关系作简要说明。以2T4R的终端设备为例,2T表示终端设备包括2个发射天线(对应两个发射通道),则终端设备支持上行2T发送能力,即终端设备可以使用该两个发射天线同时发送不同数据流。相应地,网络设备可以调度的上行传输层数的最大值为2。一种情况下,网络设备调度的上行传输层数为2时,终端设备能够并发2层数据(即双流数据,或称两流数据),则终端设备使用2个发射天线发送不同的数据流。本申请实施例中,将这种情况也称为网络设备调度rank2(即双流,在上行传输过程中也可以称为上行双流),终端设备根据网络设备的调度按照双流模式进行上行传输。另一种情况下,网络设备调度的上行传输层数为1时,终端设备能够并发1层数据(即单流数据),则终端设备使用2个发射天线发送相同的数据流或使用该2个发射天线中的一个发射天线发送数据流。本申请实施例中,将这种情况也称为网络设备调度rank1(即单流,在上行传输过程中也可以称为上行单流),终端设备根据网络设备的调度按照单流模式进行上行传输。
类似地,4R表示终端设备包括4个接收天线(对应四个接收通道),则终端设备支持下行4R接收能力,即终端设备可以使用该4个接收天线同时接收不同数据流。相应地,网络设备可以调度的下行传输层数的最大值为4。当网络设备调度的下行传输层数分别为1/2/3/4时,即网络设备以分别调度rank1/rank2/rank3/rank4,终端设备按照网络设备的调度分别按照单流模式/双流模式/三流模式/四流模式进行下行接收。
上文提到传输层数(即layer数)与信道矩阵的秩(rank)相等。这里以信道矩阵的秩为2为例,表示终端设备的传输能力可以传输rank2,相应地,终端设备支持传输的最大层数为2,则网络设备能够调度终端设备的传输层数为2(即调度rank2)或传输层数为1(即调度rank1)。网络设备调度的传输层数和终端设备的传输模式具有一一对应的关系,在以下描述中,可以根据任意一种表述得到其他的表述方式。以终端设备包括2个发射天线为例,例如网络设备调度的传输层数为2、网络设备调度秩2(rank2)、网络设备调度终端设备上行双流的传输模式等几种表述方式可以认为表达相同的含义。
应理解,本申请实施例中终端设备的传输模式包括发送模式和接收模式。以2T4R的终端设备为例,发送模式包括以单流模式发送(调度上行传输层数为1,即上行rank1)、以双流模式发送(调度上行传输层数为2,即上行rank2)。接收模式包括以单流模式接收(调度下行传输层数为1,即下行rank1)、以双流模式接收(调度下行传输层数为2,即下行rank2)、以三流模式接收(调度下行传输层数为3,即下行rank3)、以四流模式(调度下行传输层数为4,即下行rank4)接收。
网络设备需要先知道终端设备的能力(UE capability),这样在做各种事件判决或执行各种算法时才能做出正确的调度。UE能力,是一堆参数集合,包括UE等级(UE  category)、PDCP参数、RLC参数、物理层参数、RF参数、是否支持过热指示的参数等等。例如本申请实施例中网络设备调度终端设备进行数据传输之前,即在网络设备调度终端设备的传输层数(即layer数)之前,需要先知道终端设备支持的传输层数的最大值(也称最大传输层数、最大层数、最大layer数),即需要知道终端设备支持几流数据的并发。这里传输层数包括上行传输层数和下行传输层数,相应地,终端设备支持的最大传输层数包括上行传输最大层数和下行传输最大层数。
图6示出了终端设备能力上报过程和数据传输调度过程的示意性流程图。图中以网络设备为基站为例,终端设备为UE为例进行描述。
参考图6,UE上报能力信息的过程是在UE与基站建立RRC连接之后进行。例如在UE第一次附着(attach)过程或跟踪区更新(tracking area update,TAU)过程中,UE与基站建立RRC连接之后,UE上报UE能力。
如图6所示,当基站需要UE上报UE能力时,在步骤S410,基站向UE发送UE能力查询消息(例如UE Capability Enquiry消息),用于查询UE能力。本申请实施例中,基站需要知道UE支持的上、下行传输的最大层数。因此该UE能力查询消息中包括查询UE的上行传输最大层数和下行传输最大层数。
在步骤S420,UE向基站发送UE能力信息消息(例如UE Capability Information消息),用于向基站报告UE能力信息。在该步骤中,UE能力信息消息中包括UE的上行传输最大层数和下行传输最大层数。
应理解,UE上报的上行传输最大层数可以小于或等于UE实际能够支持的上行传输最大层数,UE上报的下行传输最大层数可以小于或等于UE实际能够支持的下行传输最大层数。例如UE支持2T发送能力,在该步骤中UE可以上报2T发送能力(例如上报上行传输最大层数为2),也可以上报1T发送能力(例如上报上行传输最大层数为1)。在基站看来,UE上报的上行传输最大层数和下行传输最大层数就是UE支持的上行传输最大层数和下行传输最大层数,基站只能在UE上报的最大上/下行传输层数以内进行调度。例如UE上报2T发送能力,基站可以调度UE进行2T发送(即双流传输,调度layer数为2)或1T发送(即单流传输,调度layer数为1)。若UE能够支持2T发送能力,但UE上报1T发送能力,则基站只能调度UE进行1T发送。
若UE可以通过MIMO技术与基站通信,UE向基站上报上行传输最大层数和下行传输最大层数的过程,也就是UE上报支持的MIMO能力的过程。UE上报的上行传输最大层数即为UE支持的上行MIMO能力,UE上报的下行传输最大层数即为UE支持的下行MIMO能力。示例性的,在该步骤中终端设备上报的内容可以包括各小区或者载波聚合(carrier aggregation,CA)下的多输入多输出能力,例如在A1频段对应的小区下,终端设备的接收通道数量为2,在实现的时候,可以通过以下方式上报:
bandEUTRA-r16:3,0x26;
supportedMOMO-CapabilityDL-r16:twoLayers(0,0x0)标识的是,在band 3下支持多输入多输出的layer数量为2;
supportedMOMO-CapabilityDL-r16:fourLayers(0,0x0)标识的是,在当前频段下支持多输入多输出的layer数量为4。
在一些实施例中,layer数量为对应的终端设备的接收通道数量。
由于基站已经获知UE能力,当基站需要调度UE进行上行或下行数据传输时,基站根据UE能力以及基站检测到的信息等确定UE的传输模式。在步骤S430中,基站向UE发送调度信息(例如下行控制指示(downlink control indicator,DCI)),用于指示UE的传输层数。例如,当基站调度UE进行上行数据传输时,该调度信息中包括上行传输层数、预编码矩阵等;当基站调度UE进行下行数据传输时,该调度信息中包括下行传输层数、预编码矩阵等。
在步骤S440中,UE根据调度信息中指示的信息进行数据传输。
为了提高上下行吞吐峰值,终端设备一般会上报最高上下行MIMO能力,网络设备在终端设备上报的最大上/下行传输层数以内进行调度。目前主要是由网络设备根据实际情况自行进行调度调整。例如出于吞吐量、覆盖面、频谱效率等方面的考虑,网络设备在近点多数会调度较大的上下行传输层数,在远点多数会调度较小的上下行传输层数。
在一些场景下,终端设备使用较小的传输层数进行传输就可以满足需求,但网络设备侧调度较大的传输层数时,使得终端设备不得不使用网络设备调度的传输层数进行工作,这无疑造成了功耗的浪费。例如在近点、用户流量不大的场景下,终端设备使用较低传输层数就可以满足要求,但网络设备仍在该近点调度较高传输层数,这使得终端设备不得不使用较大的传输层数工作,产生了更高的功耗。在这些场景下,终端设备希望能够降低传输层数,既可以满足传输要求,还可以降低功耗。而在另一些场景下,终端设备的射频资源的使用存在冲突时,终端设备也希望能够降低传输层数,以解决射频资源使用冲突问题。
目前终端设备侧不能实现传输层数调度的调整,只能通过降低上报支持的MIMO能力使网络设备重配置终端设备的最大传输层数,从而实现降低调度的传输层数,或者终端设备强行关闭发射/接收分集使网络设备自适应调整终端设备的传输层数的调度,实现降低调度的传输层数。前一种方式中,最大传输层数重配置后,网络设备只能调度较低的传输层数,这样会导致上下行峰值的下降。后一种方式中,终端设备强行关闭发射/接收分集后,网络设备无法及时响应,会导致连续的误码,影响用户的使用体验。
因此,需要提供一种调度数据传输的方法,能够使终端设备在需要降低传输层数时,网络设备可以快速响应,进行调度调整。
图7示出了本申请实施例提供的一种调度数据传输的方法的示意性流程图。图7所示的方法500可以由终端设备执行,例如图1所示的终端设备120。该方法500包括步骤S510至步骤S530。
在步骤S510,终端设备使用第一传输层数进行数据传输。
这里,数据传输包括上行传输和下行传输,相应地,第一传输层数包括上行传输层数和下行传输层数。第一传输层数例如为上文所提及的layer数,即layer的数量或值。
应理解,本申请实施中终端设备进行上行数据传输时,第一传输层数对应为上行传输层数;终端设备进行下行数据传输时,第一传输层数对应为下行传输层数;终端设备同时进行上下行数据传输时,第一传输层数包括用于上行数据传输的上行传输层数和用于下行数据传输的下行传输层数。
还应理解,终端设备使用第一传输层数进行数据传输,还可以理解为终端设备使用与第一传输层数对应的秩rank进行数据传输,或者终端设备使用与第一传输层数对应的射频通道数进行数据传输。
示例性的,终端设备的天线配置方式为2T4R,若终端设备进行上行数据传输,则第一传输层数可以为2;若终端设备进行下行数据传输,则第一传输层数可以为2、3或4。
示例性的,终端设备的天线配置方式为1T2R,若终端设备进行下行数据传输,则第一传输层数可以为2。
示例性的,终端设备的天线配置方式为1T4R,若终端设备进行下行数据传输,则第一传输层数可以为2、3或4。
在步骤S520,在满足第一预设条件时,终端设备执行第一动作。
终端设备执行第一动作的方式有多种。
在一种实现方式中,终端设备执行第一动作包括降低探测参考信号SRS的发射功率。
示例性的,终端设备包括多个用于发送SRS的天线端口,终端设备可以降低该多个用于发送SRS的天线端口中的至少一个天线端口对应的SRS发射功率。
可选地,终端设备可以按照第一预设规则降低SRS的发射功率。
具体地,以降低其中一个天线端口对应的SRS发射功率为例,终端设备可以步进式降低SRS的发射功率,即按照恒定值降低SRS发射功率。例如终端设备连续多次降低SRS的发射功率,每次SRS发射功率的下降值相等,如均为5分贝(decibel,db)、10db或20db等。为方便理解,举例说明,例如其中一个天线端口的初始SRS发射功率为50db,终端设备执行第一动作时,将该天线端口的SRS发射功率依次降低至40db,30db,20db,……,依次类推,该天线端口对应的SRS发射功率每次均下降10db。当然,当天线端口的SRS发射功率降低至门限值时,可以不再继续降低,持续以该门限值对应的发射功率发射SRS信号。
或者,终端设备可以递增式或递减式降低SRS的发射功率,即SRS发射功率的下降值不相等,可以呈递增趋势或呈递减趋势。例如终端设备连续多次降低SRS的发射功率,SRS发射功率的下降值呈等差数列、等比数列或呈不规律的递增趋势、不规律的递减趋势等。为方便理解,举例说明,例如其中一个天线端口的初始SRS发射功率为60db,终端设备执行第一动作时,将该天线端口的SRS发射功率依次降低至40db,25db,15db,……,依次类推,该天线端口对应的SRS发射功率的下降值20db、15db、10db,……,呈等差数列。当然,当天线端口的SRS发射功率降低至门限值时,可以不再继续降低,持续以该门限值对应的发射功率发射SRS信号。或者,当天线端口的SRS发射功率降低至门限值时,终端设备步进式降低SRS发射功率,本申请实施例对此不作限定。
或者,终端设备可以直接将SRS的发射功率降低至门限值,然后持续以门限值对应的发射功率发射SRS信号。
在一些实施例中,在终端设备执行第一动作时,若终端设备降低多个用于发送SRS的天线端口中的至少两个天线端口对应的SRS的发射功率,则不同的天线端口的SRS发射策略可以相同,也可以不同。具体地,以降低其中两个天线端口对应的SRS发射功率为例,终端设备可以采用相同的规则降低该两个天线端口的SRS发射功率,也可以采用不同的规则降低该两个天线端口的SRS发射功率,例如步进式降低其中一个天线端口的SRS发射功率,递减式降低另一个天线端口的SRS发射功率。
终端设备降低多个用于发送SRS的天线端口中的至少两个天线端口对应的SRS的发射功率时,该至少两个天线端口的SRS发射功率可以同步降低,也可以分步降低,本申 请实施例对此不作限定。
可选地,终端设备可以通过每个天线端口对应的功率放大器控制该天线端口的SRS发射功率。
通过降低SRS发射功率,可以构造终端设备处于远点的类似场景,使网络设备按照远点场景进行传输层数的调度调整,调度较低的传输层数。
在一种实现方式中,终端设备执行第一动作包括降低上行物理共享信道PUSCH的发射功率。
示例性的,终端设备包括多个用于发送PUSCH的天线端口,终端设备可以降低该多个用于发送PUSCH的天线端口中的至少一个天线端口对应的SRS发射功率。
可选地,终端设备可以按照第二预设规则降低PUSCH的发射功率。这里,终端设备采用的第二预设规则可以与上述第一预设规则相同,即终端设备可以按照类似于上述降低SRS的发射功率的方式降低PUSCH的反射功率,具体参考上文相关描述,为简洁,在此不再赘述。
可选地,终端设备可以通过每个天线端口对应的功率放大器控制该天线端口的PUSCH发射功率。
通过降低PUSCH发射功率,可以构造终端设备处于远点的类似场景,使网络设备按照远点场景进行传输层数的调度调整,调度较低的传输层数。
在另一种实现方式中,终端设备执行第一动作包括关闭用于发送SRS的多个天线端口中的至少一个天线端口。
这里,终端设备关闭用于发送SRS的多个天线端口中的至少一个天线端口时,可以将该至少一个天线端口对应的功率放大器关闭,或者将该至少一个天线端口对应的SRS发射功率设为0,或者将该至少一个天线端口对应的SRS发射功率设为网络设备检测不到的水平,这样在网络设备角度看,相当于该至少一个天线端口关闭。
应理解,关闭用于发送SRS的天线端口,可以理解为该天线端口不发送SRS。但该天线端口可以用于发送其他信号。
可选地,用于发送SRS的多个天线端口包括第一端口组,该第一端口组用于发送用于天线切换AS的SRS,当终端设备进行下行数据传输时,终端设备执行第一动作具体可以为关闭第一端口组中的至少一个端口。
终端设备关闭用于发送AS SRS的天线端口中的至少一个天线端口,网络设备可以检测到端口关闭,相应地,网络设备可以调整调度终端设备的下行传输层数。
可选地,用于发送SRS的多个天线端口包括第二端口组,该第二端口组用于发送用于码本CB的SRS,当终端设备进行上行数据传输时,终端设备执行第一动作具体可以为关闭第二端口组中的至少一个端口。
终端设备关闭用于发送CB SRS的天线端口中的至少一个天线端口,网络设备可以检测到端口关闭,相应地,网络设备可以调整调度终端设备的上行传输层数。
应理解,第一端口组和第二端口组可以包括相同的天线端口。例如,在用于CB的SRS和用于AS的SRS复用的情况下,同一个天线端口既用于发送用于CB的SRS,也用于发送用于AS的SRS。
可选地,终端设备关闭的端口数与网络设备调整调度后的传输层数具有关联关系。例 如终端设备关闭的端口数越多,网络设备检测到的发射SRS的端口数越少,确定调整后的传输层数越低。例如,终端设备包括2个用于发送AS SRS的天线端口,终端设备关闭其中一个端口,网络设备能够检测到1个发送AS SRS信号的端口,若调整调度前网络设备调度的上行传输层数为2,则网络设备调整调度后调度的上行传输层数可以为1。再如,终端设备包括4个用于发送CB SRS的天线端口,终端设备关闭其中一个端口,网络设备能够检测到3个发送CB SRS信号的端口,若调整调度前网络设备调度的下行传输层数为4,则网络设备调整调度后调度的下行传输层数可以为3。或者,终端设备关闭其中3个端口,网络设备能够检测到1个发送CB SRS信号的端口,则网络设备调整调度后调度的下行传输层数可以为1。
在另一种实现方式中,终端设备执行第一动作包括关闭用于发送PUSCH的多个天线端口中的至少一个天线端口。
这里,终端设备关闭用于发送PUSCH的多个天线端口中的至少一个天线端口时,可以将该至少一个天线端口对应的功率放大器关闭,或者将该至少一个天线端口对应的PUSCH发射功率设为0,或者将该至少一个天线端口对应的PUSCH发射功率设为网络设备检测不到的水平,这样在网络设备角度看,相当于该至少一个天线端口关闭。
应理解,关闭用于发送PUSCH的天线端口,可以理解为该天线端口不发送PUSCH。但该天线端口可以用于发送其他信号。
可选地,终端设备关闭的端口数与网络设备调整调度后的传输层数具有关联关系。例如终端设备关闭的端口数越多,网络设备检测到的发射PUSCH的端口数越少,确定调整后的传输层数越低。具体示例可以参考上文关于关闭用于发送SRS的天线端口的相关描述,为简洁,在此不再赘述。
在又一种实现方式中,终端设备执行第一动作包括向网络设备发送第一辅助信息消息。
第一辅助信息消息可以为标准协议定义的终端辅助信息(UE AssistanceInformation)消息。该终端辅助信息消息一般用于终端设备向网络设备通知例如过热辅助信息(overheating assistance information)、UE为省电所偏好的最大聚合带宽(maximum aggregated bandwidth)、UE为省电所偏好的最大MIMO层数(maximum number of MIMO layers)、UE为省电所偏好的跨时隙调度的最小调度偏移(minimum scheduling offset for cross-slot scheduling)以及其他的为省电所偏好的参数信息。
协议中关于终端设备的UE AssistanceInformation消息的描述如下:
1.if the UE prefers a configuration primarily optimized for power saving:
2>set powerPrefindication to lowPowerConsumption;
2.else
2>start or restart T340 with the timerval UE set to the PowerprefindicationTimer
2>set PowerprefindicationTimer to normal;
The UE shall submit the UE AssistanceInforamation message to lower layers for transmission.
可选地,该第一辅助信息消息为过热指示消息。该过热指示消息可以为标准协议定义的过热(overheating)指示消息,在一些实施例中也可以称为过热辅助信息(overheating  assistance information)消息。
协议中关于终端设备的overheating assistance information消息的描述如下:
1>if transmission of the UEAssistanceInformation message is initiated to provide overheating assistance information;
2>if the UE experiences internal overheating:
3>if the UE prefers to temporarily reduce the number of maximum MIMO layers of each serving cell operating on FR1:
4>include reducedMaxMIMO-LayersFR1 in the OverheatingAssistance IE;
4>set reducedMIMO-LayersFR1-DL to the number of maximum MIMO layers of each serving cell operating on FR1 the UE prefers to be temporarily configured in downlink;
4>set reducedMIMO-LayersFR1-UL to the number of maximum MIMO layers of each serving cell operating on FR1 the UE prefers to be temporarily configured in uplink;
3>if the UE prefers to temporarily reduce the number of maximum MIMO layers of each serving cell operating on FR2:
4>include reducedMaxMIMO-LayersFR2 in the OverheatingAssistance IE;
4>set reducedMIMO-LayersFR2-DL to the number of maximum MIMO layers of each serving cell operating on FR2 the UE prefers to be temporarily configured in downlink;
4>set reducedMIMO-LayersFR2-UL to the number of maximum MIMO layers of each serving cell operating on FR2 the UE prefers to be temporarily configured in uplink;
2>else(if the UE no longer experiences an overheating condition):
3>do not include reducedMaxCCs,reducedMaxBW-FR1,reducedMaxBW-FR2,reducedMaxMIMO-LayersFR1 and reducedMaxMIMO-LayersFR2 in OverheatingAssistance IE.
目前的标准协议中,过热指示消息是在终端设备出现内部过热的情况下向网络设备发送的,该过热指示消息中可以包括最大MIMO层数。在终端设备不再出现过热情况时,过热指示消息则不包括最大MIMO层数。
本申请实施例中过热指示消息不限于在终端设备过热的情况下向网络设备发送,只要满足第一预设条件,终端设备均可以向网络设备发送过热指示消息。因此,在终端设备想要网络设备调整传输层数调度时,可以利用现有的标准消息向网络设备发送指示,以使网络设备能够及时响应。
可选地,第一辅助信息消息包括第二最大传输层数,该第二最大传输层数小于第一最大传输层数,其中该第一最大传输层数等于网络设备在终端设备执行第一动作之前所能调度的传输层数的最大值。换句话说,终端设备在执行第一动作之前,网络设备能够调度的最大传输层数为第一最大传输层数。终端设备执行第一动作时,向网络设备发送的第一辅助信息消息中包括第二最大传输层数,第二最大传输层数小于第一最大传输层数。该第一 辅助信息消息用于指示或请求网络设备将终端设备的最大传输层数配置为第二最大传输层数。这样网络设备能够调度的传输层数的最大值降低。
应理解,第二最大传输层数包括上行传输最大层数和下行传输最大层数。第二最大传输层数为网络设备能够调度的layer数的最大值。本申请实施中终端设备进行上行数据传输时,第二最大传输层数对应为上行传输最大层数;终端设备进行下行数据传输时,第二最大传输层数对应为下行传输最大层数;终端设备同时进行上下行数据传输时,第二最大传输层数包括用于上行数据传输的上行传输最大层数和用于下行数据传输的下行传输最大层数。对于第一最大传输层数的理解类似,不再赘述。
本申请实施例中在满足第一预设条件时终端设备向网络设备发送终端辅助信息消息,该终端辅助信息消息可以用于指示网络设备降低终端设备的传输层数的最大值,相应地,网络设备在后续调度中,能够调度的最大传输层数降低。
应理解,终端设备执行第一动作的方式可以是上述几种实现方式中的一种或多种组合。即终端设备执行第一动作包括以下至少一种:
降低探测参考信号SRS的发射功率;
降低上行物理共享信道PUSCH的发射功率;
关闭用于发送SRS的多个天线端口中的至少一个天线端口;
关闭用于发送PUSCH的多个天线端口中的至少一个天线端口;或
向网络设备发送第一辅助信息消息。
降低SRS和/或PUSCH发射功率的方式和关闭用于发送SRS和/或PUSCH的多个天线端口中的至少一个天线端口的方式,可以理解为是终端设备通过隐性信息方式指示网络设备调整调度。这几种方式中网络设备需要通过检测SRS和/或PUSCH的发射功率,或者检测发送SRS和/或PUSCH的天线端口数后,才能获知终端设备的意图。这几种方式可以认为是传输层数慢速回退方式。
向网络设备发送第一辅助信息消息的方式,可以理解为是终端设备通过显性信息方式指示网络设备调整调度。这种方式中,网络设备接收到该第一辅助信息消息后就可以快速响应,因此该中方式可以认为是传输层数快速回退方式。
在实际应用中,终端设备可以根据处理的数据业务类型确定采用传输层数慢速回退方式和/或传输层数快速回退方式,从而灵活应用于各种场景。
本申请实施例中,第一预设条件包括以下预设条件1至预设条件6中的至少一种,说明如下。
预设条件1,终端设备检测到的参考信号接收功率RSRP大于第一阈值。
在满足预设条件1时,可以认为终端设备所处位置的信号质量较好。一般地,终端设备处于网络设备的近距离点时的信号质量要比处于网络设备的远距离点时的信号质量好。因此,预设条件1可以用于终端设备判断是否位于近点。该第一阈值可以根据实际需要相应确定,在此不作具体限定。
在一些其他实施例中,终端设备也可以通过RSRQ、RSSI或SNR的值判断是否处于网络设备的近距离点。
当终端设备处于信号质量较好的位置时,终端设备可以使用较低的传输层数进行传输,以节省功耗。
预设条件2,终端设备处理的数据业务属于第一预设业务类型。
本申请实施例中,第一预设业务类型可以包括短信业务、文字性网页浏览业务、即时通讯业务、碎片式内容传输业务等。
第一预设业务类型中的业务一般为小流量业务,当终端设备处理的数据业务属于第一预设业务类型时,终端设备使用较低的传输层数进行传输就可以满足需求,以节省功耗。
预设条件3,终端设备处理的数据业务的应用层数据流量小于第二阈值。
当终端设备处理的数据业务的应用层数据流量小于第二阈值时,该数据业务需要的应用层数据流量较小,因此终端设备可以使用较低的传输层数进行传输,以节省功耗。该第二阈值可以根据实际需要相应确定,在此不作具体限定。
预设条件4,终端设备的温度大于第三阈值。
当终端设备的温度大于第三阈值时,终端设备的温度较高,终端设备需要使用较低的传输层数进行传输,以降低功耗。该第三阈值可以根据实际需要相应确定,在此不作具体限定。
预设条件5,终端设备的电量小于第四阈值。
当终端设备的电量小于第四阈值时,终端设备的电量较小,终端设备可以使用较低的传输层数进行传输,以降低功耗,节省电量。该第四阈值可以根据实际需要相应确定,在此不作具体限定。
预设条件6,终端设备携带第一用户身份识别模块SIM卡和第二SIM卡,其中第一SIM卡使用第一传输层数处理第一数据业务,第二SIM卡在空闲态下接收到第二数据业务的请求。
在终端设备携带有第一SIM卡和第二SIM卡的情况下,由于第一SIM卡和第二SIM卡共同使用终端设备的射频资源。第一SIM卡和第二SIM卡在处理业务时可能会产生射频资源的使用冲突问题,此时终端设备可以降低其中一个SIM卡的传输层数,从而释放部分或全部的射频资源供另一个SIM卡处理业务。
在步骤530,在终端设备执行第一动作之后,终端设备接收网络设备发送的第一调度信息,该第一调度信息用于指示终端设备使用第二传输层数进行数据传输,第二传输层数小于第一传输层数。
终端设备执行第一动作之后,使得网络设备对终端设备的调度进行调整,调度终端设备使用第二传输层数进行数据传输。由于第二传输层数小于第一传输层数,终端设备可以使用更少的射频通道传输数据,可以节省功耗,或者释放部分的射频资源。
可选地,该第一调度信息为下行控制指示(downlink control indicator,DCI)。
应理解,第二传输层数包括上行传输层数和下行传输层数。第二传输层数例如为上文所提及的layer数,即layer的数量或值。
应理解,本申请实施中终端设备进行上行数据传输时,第二传输层数对应为上行传输层数;终端设备进行下行数据传输时,第二传输层数对应为下行传输层数;终端设备同时进行上下行数据传输时,第二传输层数包括用于上行数据传输的上行传输层数和用于下行数据传输的下行传输层数。
可选地,第二传输层数与第一传输层数用于上行数据传输;或者,第二传输层数与第一传输层数用于下行数据传输。
本申请实施例提供的调度数据传输的方法可以应用于单卡场景,也可以应用于多卡场景;可以应用于终端设备过热场景,也可以应用于其他终端设备需要节省功耗的场景。在终端设备想要以较低的传输层数进行传输时,终端设备可以执行上述方法500,使得网络设备能够根据终端设备的动作进行响应,降低调度的传输层数。从而能够在终端设备上报最高MIMO能力的同时,既不影响终端设备的处理的业务,还能够关闭发送/接收分集、或者释放射频资源,以节省功耗或解决射频资源使用冲突问题。
当第一预设条件包括上述预设条件6时,即终端设备携带第一用户身份识别模块SIM卡和第二SIM卡,其中第一SIM卡使用第一传输层数处理第一数据业务,第二SIM卡在空闲态下接收到第二数据业务的请求。方法500还包括:
终端设备启动定时器;
若定时器在终端设备接收第一调度信息之后超时,第二SIM卡使用第三传输层数处理第二数据业务,第一SIM使用第二传输层数处理第一数据业务;
若定时器在终端设备接收第一调度信息之前超时,第二SIM卡使用第三传输层数处理第二数据业务,第一SIM卡进入空闲态。
本申请实施例中,终端设备还设置定时器。定时器未超时的情况下,第二SIM卡接收到第二数据业务请求后可以先使第二SIM卡处于等待状态,暂缓处理第二数据业务,从而为第一SIMA卡的传输层数回退留出时间。当定时器超时后,第一SIM卡直接进入空闲态,第二SIM卡使用发射通道处理业务请求。这种情况下,由于第一SIM卡进入空闲态,网络设备侧可以很快感知到第一SIM卡的状态,从而快速进行调度调整,可以减少误码的发生。
可选地,第二传输层数与第三传输层数之和小于或等于网络设备在终端设备执行第一动作之后所能调度的传输层数的最大值。
当第一SIM卡和第二SIM卡同时处理数据业务时,第一SIM卡使用的第二传输层数和第二SIM卡使用的第三传输层数应小于或等于网络设备在终端设备执行第一动作之后所能调度的传输层数的最大值。这样第一SIM卡和第二SIM卡协调使用终端设备的射频资源处理各自数据业务。
可选地,在终端设备启动定时器之前,终端设备可以根据第一数据业务的类型和第二数据业务的类型,确定定时器的时长。
根据第一SIM卡和第二SIM卡的业务类型确定定时器时长,可以灵活应用于各种业务组合场景。
可选地,在终端设备执行第一动作之前,终端设备可以根据第一数据业务的类型和第二数据业务的类型,确定第一动作。
第一动作可以上文描述的实现方式中的一种或多种,第一SIM卡和第二SIM卡的业务类型组合不同,终端设备可以执行不同的第一动作,例如实现快速回退或慢速回退,可以灵活应用于各种业务组合场景。
可选地,在终端设备执行第一动作之前,第一SIM卡使用终端设备的全部上行射频资源处理第一数据业务。
可选地,第一SIM卡上报的上行传输层数的最大值为2,第二SIM卡上报的上行传输层数的最大值为1。
可选地,方法500还包括步骤S540至步骤S560,参考图8所示。
在步骤S510,终端设备使用第二传输层数进行数据传输。
在步骤S550,在满足第二预设条件时,终端设备执行第二动作。
终端设备执行第二动作的方式有多种。
在一种实现方式中,终端设备执行第二动作包括提高探测参考信号SRS的发射功率。
示例性的,终端设备包括多个用于发送SRS的天线端口,终端设备可以提高该多个用于发送SRS的天线端口中的至少一个天线端口对应的SRS发射功率。
可选地,终端设备可以按照第三预设规则提高SRS的发射功率。
具体地,终端设备可以步进式提高SRS的发射功率,或者递增式或递减式提高SRS的发射功率,或者终端设备可以直接将SRS的发射功率提高至最大发射功率。这里终端设备提高SRS的发射功率的规则可以与步骤S520中降低SRS发射功率的规则类似,只是在该步骤中是提高SRS的发射功率,具体参考上文相关描述,为简洁,在此不再赘述。
在一些实施例中,在终端设备执行第二动作时,若终端设备提高多个用于发送SRS的天线端口中的至少两个天线端口对应的SRS的发射功率,则不同的天线端口的SRS发射策略可以相同,也可以不同。具体地,以提高其中两个天线端口对应的SRS发射功率为例,终端设备可以采用相同的规则提高该两个天线端口的SRS发射功率,也可以采用不同的规则提高该两个天线端口的SRS发射功率,例如步进式提高其中一个天线端口的SRS发射功率,递增式提高另一个天线端口的SRS发射功率。
终端设备提高多个用于发送SRS的天线端口中的至少两个天线端口对应的SRS的发射功率时,该至少两个天线端口的SRS发射功率可以同步提高,也可以分步提高,本申请实施例对此不作限定。
可选地,终端设备可以通过每个天线端口对应的功率放大器控制该天线端口的SRS发射功率。
通过提高SRS发射功率,可以构造终端设备处于近点的类似场景,或恢复终端设备实际的SRS发射水平,使网络设备按照近点场景或终端设备实际位置进行传输层数的调度调整。
在一种实现方式中,终端设备执行第二动作包括提高上行物理共享信道PUSCH的发射功率。
示例性的,终端设备包括多个用于发送PUSCH的天线端口,终端设备可以提高该多个用于发送PUSCH的天线端口中的至少一个天线端口对应的PUSCH发射功率。
可选地,终端设备可以按照第四预设规则提高PUSCH的发射功率。这里,终端设备采用的第四预设规则可以与上述第三预设规则相同,即终端设备可以按照类似于上述提高SRS的发射功率的方式提高PUSCH的反射功率,具体参考上文相关描述,为简洁,在此不再赘述。
可选地,终端设备可以通过每个天线端口对应的功率放大器控制该天线端口的PUSCH发射功率。
通过提高PUSCH发射功率,可以构造终端设备处于近点的类似场景,或恢复终端设备实际的PUSCH发射水平,使网络设备按照近点场景或终端设备的实际位置,进行传输层数的调度调整。
在另一种实现方式中,终端设备执行第二动作包括开启被关闭的用于发送SRS的多个天线端口中的至少一个天线端口。
这里,终端设备开启被关闭的用于发送SRS的多个天线端口中的至少一个天线端口时,可以将该至少一个天线端口对应的功率放大器开启,或者将该至少一个天线端口对应的SRS发射功率设为最大值,或者将该至少一个天线端口对应的SRS发射功率设为步骤S520之前的水平,本申请实施例对此不作限定。
应理解,打开被关闭的用于发送SRS的天线端口,可以理解为该天线端口继续发送SRS。
在另一种实现方式中,终端设备执行第二动作包括开启被关闭的用于发送PUSCH的多个天线端口中的至少一个天线端口。
这里,终端设备开启被关闭的用于发送PUSCH的多个天线端口中的至少一个天线端口时,可以将该至少一个天线端口对应的功率放大器开启,或者将该至少一个天线端口对应的PUSCH发射功率设为最大值,或者将该至少一个天线端口对应的PUSCH发射功率设为步骤S520之前的水平,本申请实施例对此不作限定。
应理解,打开被关闭的用于发送PUSCH的天线端口,可以理解为该天线端口继续发送PUSCH。
在又一种实现方式中,终端设备执行第二动作包括向网络设备发送第二辅助信息消息。
第二辅助信息消息可以为标准协议定义的终端辅助信息(UE AssistanceInformation)消息。
可选地,该第二辅助信息消息为过热指示消息。
本申请实施例中在满足第二预设条件时终端设备向网络设备发送终端辅助信息消息,该终端辅助信息消息可以用于指示网络设备提高终端设备的传输层数的最大值,相应地,网络设备在后续调度中,能够调度的最大传输层数提高。
应理解,终端设备执行第二动作的方式可以是上述几种实现方式中的一种或多种组合。即终端设备执行第二动作包括以下至少一种:
提高探测参考信号SRS的发射功率;
提高上行物理共享信道PUSCH的发射功率;
开启被关闭的用于发送SRS的多个天线端口中的至少一个天线端口;
开启被关闭的用于发送PUSCH的多个天线端口中的至少一个天线端口;或
向网络设备发送第二辅助信息消息。
本申请实施例中,第二预设条件包括以下预设条件7至预设条件12中的至少一种,说明如下。
预设条件7,终端设备检测到的参考信号接收功率RSRP小于第五阈值。
在满足预设条件7时,可以认为终端设备所处位置的信号质量较差。终端设备需要使用较高的传输层数进行传输,以保证吞吐量。
预设条件8,终端设备处理的数据业务属于第二预设业务类型。
本申请实施例中,第二预设业务类型可以包括通话业务、图片性网页浏览业务、视频业务、游戏业务等。
第二预设业务类型中的业务一般为大流量业务,当终端设备处理的数据业务属于第二预设业务类型时,终端设备需要使用较高的传输层数进行传输,以保证吞吐量。
预设条件9,终端设备处理的数据业务的应用层数据流量大于第六阈值。
当终端设备处理的数据业务的应用层数据流量大于第六阈值,该数据业务需要的应用层数据流量较大,因此终端设备需要使用较高的传输层数进行传输,以保证吞吐量。
预设条件10,终端设备的温度小于第七阈值。
当终端设备的温度小于第七阈值时,终端设备的温度较低,终端设备可以使用较高的传输层数进行传输,以提升频谱利用率。
预设条件11,终端设备的电量大于第八阈值。
当终端设备的电量大于第八阈值时,终端设备的电量较多,终端设备可以使用较高的传输层数进行传输,以提升频谱利用率。
预设条件12,终端设备携带第一SIM卡和第二SIM卡,其中第一SIM卡处于空闲态或使用第二传输层数处理第一数据业务,第二SIM卡结束第二数据业务的处理并由业务连接态进入空闲态。
在终端设备携带有第一SIM卡和第二SIM卡的情况下,由于第一SIM卡和第二SIM卡共同使用终端设备的射频资源。当其中一个SIM卡结束业务处理时,可以释放部分射频资源供另一个SIM卡处理业务,因此另一个SIM卡可以使用较高的传输层数进行传输。
可选地,上述第五阈值可以与第一阈值相等,第六阈值可以与第二阈值相等,第七阈值可以与第三阈值相等,第八阈值可以与第四阈值相等。第五阈值、第六阈值、第七阈值、第八阈值也可以根据实际相应确定,在此不做具体限定。
应理解,预设条件7-12与上述预设条件1-6是相对应的,即在满足预设条件1-6中至少一项时,终端设备希望使用较低的传输层数,在满足预设条件7-12中至少一项时,终端设备希望使用较高的传输层数。预设条件7-12与预设条件1-6条件相反,详细可参考上述步骤S520的相关描述,为简洁,在此不再赘述。
在步骤530,在终端设备执行第二动作之后,终端设备接收网络设备发送的第二调度信息,该第二调度信息用于指示终端设备使用第四传输层数进行数据传输,第四传输层数大于第二传输层数。
终端设备执行第二动作之后,使得网络设备对终端设备的调度进行调整,调度终端设备使用第四传输层数进行数据传输。由于第四传输层数大于第二传输层数,终端设备可以使用更高的传输层数传输数据,可以提高频谱利用效率。
可选地,第四传输层数等于第一传输层数。即网络设备调度终端设备恢复使用执行第一动作之前的传输层数进行传输。
为了进一步理解本申请,下面结合具体的应用场景和例子更加详细地描述本申请实施例提供的调度数据传输的方法。以下示例中终端设备的天线配置方式是以2T4R或1T2R为例进行描述的,但是本申请实施例也可以应用于其他天线配置类型的终端设备。还应理解,这些例子只是示例性的,而非意图限制本申请的范围。
上述预设条件6中涉及终端设备携带有第一SIM卡和第二SIM卡的场景,下面以终端设备携带双卡为例先描述该场景。
目前很多终端设备都支持双卡双待(dual sim dual standy,DSDS),即同一个终端设 备上包括两个用户身份识别模块(subscriber identity module,SIM)(简称SIM卡),两张SIM卡可以同时待机。双卡双待又分为双卡双待单通和双卡双待双通。
双卡双待单通,是指终端设备可以同时插入两张SIM卡,支持两种不同的网络模式,两张SIM卡可同时待机。两张SIM卡通过终端设备的底层软件和控制芯片可以实现在两张SIM卡的两个网络间切换。当其中一个SIM卡处于通话状态时,另一个SIM卡是处于离线状态的。用户必须断开第一个SIM卡的通话才能建立第二个SIM卡的通话。
双卡双通(dual sim dual active,DSDA),是指终端设备可以同时插入两张SIM卡,支持两种不同的网络模式,两张SIM卡可同时待机。两张SIM卡的来电都可处于接通状态。即当其中一个SIM卡处于通话状态时,另一个SIM卡有电话打入时会有提示,由用户决定是否接听。
目前因为成本的原因,大多数终端设备上行发射通道只有2个。对于单卡的终端设备来说,终端设备上的发射通道都可以为一个SIM卡业务服务。但对于双卡的终端设备来说,终端设备上的发射通道需要被两个SIM卡上的业务协调使用。
图9示出了双卡双待单通的终端设备上行发射通道使用示意图。
为方便理解,本申请实施例以及下文描述中将终端设备上插入的两张SIM卡(即第一SIM卡和第二SIM卡)分别称为主卡和副卡,其中主卡支持2T发送能力,副卡支持1T发送能力。终端设备包括2个上行发射通道TX1和TX2。
参考图9中的(a)所示,假设在上报UE能力时,主卡和副卡向网络设备均上报1T发送能力(即上报的上行传输最大层数为1),网络设备只能为主卡和副卡调度rank1(即调度的上行传输层数为1)。当主卡处于连接态时,主卡可以通过TX1和/或TX2进行上行传输,副卡则处于空闲态。当副卡有业务请求例如来电业务时,副卡进入连接态,此时副卡抢占发射通道,通过TX1和/或TX2进行上行传输,主卡则处于空闲态。需要说明的是,这里主卡或副卡通过TX1和TX2进行上行传输时,TX1和TX2应发送相同的数据流,这样从网络设备的角度来看,主卡或副卡仍是调度的rank1。
参考图9中的(b)所示,假设在上报UE能力时,主卡向网络设备上报2T发送能力(即上报的上行传输最大层数为2),副卡向网络设备上报1T发送能力(即上报的上行传输最大层数为1)。当主卡需要上行传输时,网络设备可以为主卡调度rank1或rank2,网络设备调度rank1的情形与图9中的(a)情形相同,不再详述,这里假设网络设备为主卡调度rank2。当副卡需要上行传输时,网络设备为副卡调度rank1。当主卡处于连接态时,主卡可以通过TX1和TX2进行上行传输,其中TX1和TX2发送不同的数据流,副卡则处于空闲态。当副卡有业务请求例如来电业务时,副卡进入连接态,此时副卡抢占发射通道,通过TX1和/或TX2进行上行传输,主卡则处于空闲态。需要说明的是,这里副卡通过TX1和TX2进行上行传输时,TX1和TX2应发送相同的数据流,这样从网络设备的角度来看,副卡仍是调度的rank1。
双卡双待单通的终端设备,主卡和副卡只能有一个处于连接态,另一个则处于空闲态。一般不会出现射频资源使用冲突的问题。
图10示出了双卡双待双通的终端设备上行发射通道使用示意图。
参考图10中的(a)所示,假设在上报UE能力时,主卡和副卡向网络设备均上报1T发送能力(即上报的上行传输最大层数为1),网络设备只能为主卡和副卡调度rank1(即 调度的上行传输层数为1)。当主卡处于连接态时,主卡可以通过TX1进行上行传输,副卡则处于空闲态。当副卡有业务请求例如来电业务时,副卡进入连接态,此时副卡可以通过TX2进行上行传输,不影响主卡业务。
参考图10中的(b)所示,假设在上报UE能力时,主卡向网络设备上报2T发送能力(即上报的上行传输最大层数为2),副卡向网络设备上报1T发送能力(即上报的上行传输最大层数为1)。当主卡需要上行传输时,网络设备可以为主卡调度rank1或rank2,网络设备调度rank1的情形与图10中的(a)情形相同,不再详述,这里假设网络设备为主卡调度rank2。当副卡需要上行传输时,网络设备为副卡调度rank1。当主卡处于连接态时,主卡可以通过TX1和TX2进行上行传输,其中TX1和TX2发送不同的数据流,副卡则处于空闲态。当副卡有业务请求例如来电业务时,副卡由空闲态进入连接态,此时副卡会抢占上行发射通道,例如通过TX2进行传输,主卡则只能通过TX1进行传输。
由于目前上行调度采用的是单码字多流,一个码字会映射到两流中,如果有一流无法解码,将导致整个码字误码。在图10中的(b)所示的情况下,副卡抢占主卡的一个发射通道后,主卡只能通过一个发射通道进行上行发送。此时网络设备侧并不能及时获知主卡只有一个发射通道,若网络设备后续继续调度rank2,但主卡不能用2T进行发射,必然会导致误码。
目前有两种方式可以解决上述问题。一是降低能力上报支持的MIMO能力,例如主卡虽然可以支持2T发送能力,但只上报1T发送能力。二是主卡仍然上报支持上行MIMO,即主卡仍上报支持2T发送能力,当副卡起来工作时,主卡强行从2T发送变成1T发送,等待网络设备自适应调度调整降低rank。前者会导致上下行吞吐峰值的下降,后者网络设备的自适应调度调整需要较长的稳时间,例如5s以上,同时会有间歇性的连续误码,影响主卡业务的用户体验,例如游戏等应用会有卡顿。
因此,在这种场景下应用本申请实施例提供的调度数据传输方法,能够在不降低上下行吞吐峰值的前提下,使终端设备快速进行秩(rank)回退,保证业务的正常处理,提升用户体验。
图11示出了本申请实施例提供的一种调度数据传输的方法的示意性流程图。该方法可以由携带双卡的终端设备执行,该终端设备例如可以是图1所示的终端设备120。
应理解,终端设备可以为支持DSDA的终端设备,终端设备包括主卡和副卡,其中主卡支持使用第一网络,副卡支持使用第二网络。第一网络和第二网络可以相同,例如均为LTE网络或均为NR网络;第一网络和第二网络也可以不同,例如其中一个为LTE网络,另一个为NR网络,本申请实施例对此不作限定。主卡和副卡共同使用终端设备的射频资源,其中终端设备的射频资源包括终端设备的发射通道、接收通道、发射天线、接收天线等。
还应理解,本申请实施例中的主卡和副卡可以是两个独立的硬件形式的SIM卡,也可以是两个虚拟SIM卡(即软件形式的SIM信息),还可以是一个硬件SIM卡内的两份SIM信息,本申请实施例对此不作限定。
本申请实施例中,以主卡支持上行2T发送能力,且向网络设备上报的上行传输最大层数为2;副卡支持上行1T发送能力,且向网络设备上报的上行传输最大层数为1为例进行说明。
当只有主卡处理业务请求时,网络设备针对主卡调度rank2,主卡处于连接态(例如玩游戏、看视频、打电话),并以双流模式进行上行传输,副卡则处于空闲态。
当副卡有业务请求(例如被叫来电、收短信、TAU等)时,副卡先向主卡发送第一请求消息,用于请求主卡进行传输层数回退。主卡接收第一请求消息后可以执行第一动作,通过执行第一动作使得网络设备调度上行单流。这里,主卡采取主动动作,促使网络设备识别主卡进行传输层数回退的意图,从而使网络设备降低上行rank。该过程在下文将结合图13至图16描述,在此暂不详述。
相应地,网络设备可以调度主卡回退至上行单流,主卡则以单流模式进行上行传输。这里,网络设备可以通过降低主卡上行传输层数为1,降低调度rank,实现主卡由双流模式传输改为单流模式传输。
在主卡完成双流模式到单流模式的转换后,主卡可以向副卡发送第一响应消息,用于通知副卡传输层数回退完成。在主卡完成传输层数回退后,上行发射通道有空闲,因此主卡可以通知副卡该主卡已完成传输层数回退,副卡可以使用空闲的发射通道处理业务请求。之后,副卡再进入连接态,处理业务请求。
应理解,本申请实施例中的传输层数回退可以理解为网络设备降低调度主卡的传输层数,例如网络设备调度主卡由双流模式变成单流模式传输,或者网络设备针对主卡调度rank2回退至rank1,或者网络设备针对主卡调度的上行传输层数为2回退至上行传输层数为1。
本申请实施例中,终端设备可以上报最高上行传输层数(最高上行MIMO能力),在主卡有业务需要处理时,可以在不打断主卡业务的前提下,使主卡快速进行传输层数回退,而不是由网络设备自适应调度调整。因此,既不影响主卡业务的使用体验,也可以使副卡在需要处理业务请求的时候进入连接态,进行处理。
图12示出了本申请实施例提供的另一种调度数据传输的方法的示意性流程图。
该方法与图11所示的方法不同的是,当副卡完成业务请求的处理后,副卡可以进入空闲态,释放上行发射通道。在副卡进入空闲态后,副卡可以向主卡发送第二请求消息,用于请求主卡进行传输层数恢复。主卡接收到第二请求消息后执行第二动作,通过执行第二动作使得网络设备调度上行双流。这里,主卡采取主动动作,促使网络设备识别主卡进行传输层数恢复的意图,从而使网络设备提高上行rank。该过程在下文将结合图13至图16描述,在此暂不详述。
相应地,网络设备可以调度主卡恢复至上行双流,主卡则以双流模式进行上行传输。
应理解,本申请实施例中的传输层数恢复可以理解为网络设备提高调度主卡的传输层数,例如网络设备调度主卡由单流模式变成双流模式传输,或者网络设备针对主卡调度rank1恢复至rank2,或者网络设备针对主卡调度的上行传输层数为1恢复至上行传输层数为2。
本申请实施例中,在副卡完成业务请求的处理后,能够通知主卡进行传输层数恢复,而不是由网络设备自适应调度调整,能够使主卡以上行MIMO方式进行传输,提升用户体验。
图11所示的方法中,主卡可以通过执行第一动作使网络设备调度上行单流,图12所示的方法中,主卡可以通过执行第二动作使网络设备调度上行双流。本申请实施例中,主 卡触发网络设备调度上行单流的方式和触发网络设备调度上行双流的方式可以有多种,下面结合图13至图16详细描述。
在一种可能的实现方式中,主卡可以通过构造远点场景触发网络设备调度上行单流,为方便描述,该种实现方式简记为方式一。
参考图13所示,在网络设备调度上行单流的过程中,主卡执行第一动作可以包括降低SRS发射功率和/或降低PUSCH发射功率。
可选地,主卡可以降低用于发送SRS的天线端口中至少一个天线端口的SRS发射功率。
可选地,主卡可以降低用于发送PUSCH的天线端口中至少一个天线端口的PUSCH发射功率。
本申请实施例中,主卡支持2T发送能力,终端设备包括两个天线端口,例如port0和port1。在主卡执行第一动作之前,主卡以双流模式进行上行传输,则主卡在port0和port1上均会发送SRS和PUSCH。
示例性地,在主卡执行第一动作时,主卡可以降低SRS发射功率,和/或降低PUSCH发射功率。其中降低SRS功率包括:降低port0和/或port1的SRS发射功率。降低PUSCH发射功率包括:降低port0和/或port1的PUSCH发射功率。
可选地,主卡可以通过每个天线端口对应的功率放大器控制该天线端口的SRS发射功率,和/或PUSCH发射功率。
在一些实施例中,主卡可以按照步进式、递增式或递减式降低SRS发射功率和/或降低PUSCH发射功率,本申请实施例对此不作限定。
相应地,若网络设备检测到SRS接收功率小于第一门限值,和/或,检测到PUSCH信号质量小于第二门限值,则确定主卡的传输模式为单流模式。
可选地,SRS接收功率可以为SRS的参考信号接收功率RSRP。
可选地,PUSCH信号质量可以为PUSCH的误块率BLER,或者为PUSCH的参考信号的信噪比(signal noise ratio,SNR)。
一般地,网络设备为远点调度rank1单流。本申请实施例中,主卡通过降低SRS和/或PUSCH的发射功率,使得网络设备检测到的SRS的接收功率较小和/或PUSCH的信号质量较差,构造主卡处于远点的类似场景,触发网络设备调度单流模式传输。
相应地,在副卡处理完业务后,可以请求恢复主卡的双流模式传输。
仍参考图13,在网络设备调度上行双流的过程中,主卡执行第二动作可以包括恢复SRS发射功率和/或恢复PUSCH发射功率。
可选地,主卡可以恢复用于发送SRS的天线端口中至少一个天线端口的SRS发射功率。
可选地,主卡可以恢复用于发送PUSCH的天线端口中至少一个天线端口的PUSCH发射功率。
示例性地,主卡可以恢复SRS发射功率,和/或恢复PUSCH发射功率。其中恢复SRS功率包括:恢复port0和/或port1的SRS发射功率。恢复PUSCH发射功率包括:恢复port0和/或port1的PUSCH发射功率。
这里,恢复发射功率可以理解为提高发射功率。
相应地,若网络设备检测到SRS接收功率大于第一门限值,和/或,检测到PUSCH信号质量大于第二门限值,则确定主卡的传输模式为双流模式。
可选地,SRS接收功率可以为SRS的参考信号接收功率RSRP。
可选地,PUSCH信号质量可以为PUSCH的误块率BLER,或者为PUSCH的SNR。
一般地,网络设备为近点调度rank2双流。本申请实施例中,之前主卡以单流模式传输,主卡通过恢复SRS和/或PUSCH的发射功率,使得网络设备检测到的SRS接收功率较大和/或PUSCH的信号质量较优,触发网络设备调度双流模式传输。这样当副卡空闲态时,主卡仍然可以2T发射,实现上行MIMO。
在另一种实现方式中,主卡可以通过关闭用于发射SRS和/或PUSCH的天线端口触发网络设备调度上行单流,为方便描述,该种实现方式简记为方式二。
参考图14所示,在网络设备调度上行单流的过程中,主卡执行第一动作可以包括关闭用于发送SRS的第一天线端口和/或关闭用于发送PUSCH的第三天线端口。
第一天线端口和第三天线端口可以相同,也可以不同。
本申请实施例中,主卡支持2T发送能力,终端设备包括两个天线端口,例如port0和port1。在主卡执行第一动作之前,主卡以双流模式进行上行传输,则主卡在port0和port1上均会发送SRS和PUSCH。
示例性地,在主卡执行第一动作时,主卡可以关闭用于发送SRS的第一天线端口,和/或关闭用于发送PUSCH的第三天线端口。其中关闭用于发送SRS的第一天线端口包括:关闭用于发送SRS的port0或port1。关闭用于发送PUSCH的第三天线端口包括:关闭用于发送PUSCH的port0或port1。
相应地,若网络设备检测到用于发送SRS的天线端口数小于2,和/或,检测到用于发送PUSCH的天线端口数小于2,则确定主卡的传输模式为单流模式。
一般地,网络设备通过检测用于发送SRS和/或PUSCH的天线端口数量,可以判断主卡是否处于非连续发送(discontinuous transmission,DTX)状态。当检测到主卡处于DTX状态时,可以触发网络设备调度单流模式传输。
相应地,在副卡处理完业务后,可以请求恢复主卡的双流模式传输。
仍参考图14,在网络设备调度上行双流的过程中,主卡执行第二动作可以包括开启用于发送SRS的第一天线端口和/或开启用于发送PUSCH的第三天线端口。
应理解,这里开启的天线端口即为主卡执行第一动作时关闭的天线端口。
相应地,若网络设备检测到用于发送SRS的天线端口数等于2,和/或,检测到用于发送PUSCH的天线端口数等于2,则确定主卡的传输模式为双流模式。
该过程中,网络设备检测到主卡没有处于DTX状态时,可以触发网络设备调度双流模式传输。
本申请实施例中,主卡通过开启此前关闭的用于发送SRS和/或PUSCH的天线端口,使得网络设备检测到的主卡未处于DTX状态,触发网络设备调度双流模式传输。这样,当副卡空闲态时,主卡仍然可以2T发射,实现上行MIMO。
在另一种实现方式中,主卡可以通过关闭用于发射SRS和/或PUSCH的一个天线端口,并降低另一个天线端口的SRS发射功率和/或PUSCH发射功率,触发网络设备调度上行单流。相应地,主卡通过开启此前关闭的用于发射SRS和/或PUSCH的天线端口, 并恢复另一个天线端口的SRS发射功率和/或PUSCH发射功率,触发网络设备调度双流模式传输。换句话说,主卡可以通过结合上述方式一和方式二来触发网络设备调度调整。
具体地,主卡执行第一动作可以包括:关闭用于发送SRS的第一天线端口和/或关闭用于发送PUSCH的第三天线端口,同时降低用于发送SRS的第二天线端口的SRS发射功率,和/或降低用于发送PUSCH的第四天线端口的PUSCH发射功率。
主卡执行第二动作包括:开启用于发送SRS的第一天线端口和/或开启用于发送PUSCH的第三天线端口,同时提高用于发送SRS的第二天线端口的SRS发射功率,和/或提高用于发送PUSCH的第四天线端口的PUSCH发射功率。
相应地,网络设备可以通过检测SRS的接收功率和/或PUSCH的信号质量,以及检测主卡是否处于DTX状态,确定调度单流模式传输还是双流模式传输。
在又一种实现方式中,主卡可以通过向网络设备发送过热指示消息,请求网络设备调度上行单流,为方便描述,该种实现方式简记为方式三。
参考图15所示,在网络设备调度上行单流的过程中,主卡执行第一动作可以包括:向网络设备发送第一过热(overheating)指示消息,该第一过热指示消息用于请求网络设备降低主卡的上行传输最大层数。
可选地,该第一过热指示消息可以指示上行传输最大层数为1。
可选地,该第一过热指示消息为标准定义的“overheating”消息。在一些实施例中,也可以描述为过热辅助信息(overheating assistance information)消息。
相应地,网络设备根据第一过热指示消息,确定主卡的传输模式为单流模式。然后向主卡发送第一RRC重配置消息,该第一RRC重配置消息用于指示上行传输最大层数为1。
这里,主卡发送的第一过热指示消息触发网络设备调度单流模式传输。
本申请实施例中,主卡通过向网络设备发送用于请求降低上行传输最大层数的过热指示消息,触发网络设备调度单流模式传输。
相应地,在副卡处理完业务后,可以请求恢复主卡的双流模式传输。
仍参考图15,在网络设备调度上行双流的过程中,主卡执行第二动作可以包括:向网络设备发送第二过热(overheating)指示消息,该第二过热指示消息用于请求网络设备恢复主卡的上行传输最大层数。
可选地,该第二过热指示消息可以指示上行传输最大层数为2。
可选地,该第二过热指示消息为标准定义的“overheating”消息。在一些实施例中,也可以描述为过热辅助信息(overheating assistance information)消息。
相应地,网络设备根据第二过热指示消息,确定主卡的传输模式为双流模式。然后向主卡发送第二RRC重配置消息,该第二RRC重配置消息用于指示上行传输最大层数为2。
这里,主卡发送的第二过热指示消息触发网络设备调度双流模式传输。
本申请实施例中,主卡通过向网络设备发送用于请求恢复上行传输最大层数的过热指示消息,触发网络设备调度双流模式传输。通过标准信令的方式,当副卡空闲态时,主卡仍然可以2T发射,实现上行MIMO。
本申请实施例通过向网络设备发送过热指示以请求网络设备调度单流模式或双流模式。在此之前,网络设备需要先知道终端设备是否支持过热指示能力。该过热指示能力属于UE能力的一种,也是在UE上报能力信息的过程上报给网络设备。图16示出了终端设 备上报能力过程和网络设备调度主卡传输模式过程的示意性流程图。图中以网络设备为基站为例,终端设备为UE为例进行描述。
参考图16,UE上报能力信息的过程是在UE与基站建立RRC连接之后进行。例如在UE第一次附着(attach)过程或跟踪区更新(tracking area update,TAU)过程中,UE与基站建立RRC连接之后,UE上报UE能力。
如图16所示,当基站需要UE上报UE能力时,在步骤S610,基站向UE发送UE能力查询消息(例如UE Capability Enquiry消息),用于查询UE能力。本申请实施例中,基站需要知道UE是否支持过热指示能力。因此在该步骤中UE能力查询消息中包括查询UE是否支持过热指示(overheatingInd)能力的信息。
示例性的,目前标准定义,UE可以请求基站降低最大上行传输层数的消息为过热指示(overheating)消息,该过热指示消息一般在UE功耗较大、过热的时候上报。本申请实施例中,该过热消息也可以在UE需要降低最大上行传输层数的情况下上报,包括但不限于需要降低功耗的情况,以及双卡场景下主副卡存在发射通道使用冲突的情况。
本申请实施例中,基站需要知道UE支持的上、下行传输最大层数。因此在该步骤中UE能力查询消息中包括查询UE的上行传输最大层数和下行传输最大层数。应理解,本申请实施例中描述的是主卡与网络设备之间的交互,因此步骤S620中,UE上报的上行传输最大层数为2,可以理解为UE上报的主卡的上行传输最大层数为2。
在步骤S620,UE向基站发送UE能力信息消息(例如UE Capability Information消息),用于向基站报告UE能力信息。若UE支持过热指示能力,则在该步骤中,UE在能力信息消息中上报支持过热指示能力。
在步骤S630,基站向UE发送第三RRC重配置消息,该第三重配置消息用于配置UE的过热指示参数。
可选地,该过热指示参数包括定时器设置。
示例性的,该第三重配置消息中,用于定时器设置的字段如下:
Figure PCTCN2021116858-appb-000001
该第三重配置消息还用于配置UE的上行传输层数为2。即在该步骤中,基站调度rank2。UE以双流模式发送数据。
在步骤S640,UE向基站发送RRC重配置完成消息。
当需要触发基站调度上行单流时,UE和基站执行步骤S650至步骤S660,如下。
在步骤S650,UE向基站发送第一过热指示消息(即第一overheating消息)。该第一过热指示消息用于请求降低上行传输最大层数。
应理解,在步骤S640之前,UE按照上行双流模式传输。
可选地,该第一过热指示消息包括上行传输最大层数为1的信息。
在步骤S660,基站向UE发送第一RRC重配置消息。该第一RRC重配置消息用于指示上行传输层数为1。
换句话说,在该步骤中,基站调度UE进行单流模式传输。
当需要触发基站调度上行双流时,UE和基站执行步骤S670至步骤S680,如下。
在步骤S670,UE向基站发送第二过热指示消息(即第二overheating消息)。该第二过热指示消息用于请求恢复上行传输最大层数。
应理解,在步骤S640之前,UE按照上行单流模式传输。
可选地,该第二过热指示消息包括上行传输最大层数为2的信息。
在步骤S680,基站向UE发送第二RRC重配置消息。该第二RRC重配置消息用于指示上行传输层数为2。
换句话说,在该步骤中,基站调度UE进行双流模式传输。
可选地,该本申请实施例中的第一过热指示消息和第二过热指示消息为标准消息。假设UE工作在FR1(即0-6GHz)频段,该标准消息的一种示例性协议字段如下:
Figure PCTCN2021116858-appb-000002
则当需要触发基站调度上行单流时,即需要降低上行传输层数为1时,UE在第一过热指示消息中的“reducedMIMO-layersFRl-UL”字段上报值为1。
当需要触发基站调度上行双流时,即需要恢复上行传输层数为2时,UE在第二过热指示消息中的“reducedMIMO-layersFRl-UL”字段上报值为2。
本申请实施例中,主卡通过向网络设备发送过热指示消息,直接指示网络设备调度上行单流或上行双流,能够快速降低基站调度的rank。
在又一种实现方式中,主卡可以通过上述方式一和方式三结合,触发网络设备调度调整,或者通过上述方式二和方式三结合,触发网络设备调度调整,或者通过上述方式一、方式二和方式三结合,触发网络设备调度调整。
换句话说,主卡执行第一动作包括:向网络设备发送第一过热(overheating)指示消息,该第一过热指示消息用于请求网络设备降低上行传输最大层数。详细内容参考上文关于方式三的相关描述,为简洁,在此不再赘述。
可选地,主卡执行第一动作还包括:降低SRS发射功率和/或降低PUSCH发射功率。详细内容参考上文关于方式二的相关描述,为简洁,在此不再赘述。
可选地,主卡执行第一动作还包括:关闭用于发射SRS和/或PUSCH的天线端口。详细内容参考上文关于方式一的相关描述,为简洁,在此不再赘述。
可选地,方式三的优先级高于方式一和方式二。即只要网络设备接收到主卡发送的过热指示消息,则可以直接根据过热指示消息进行调度调整。
综上,主卡可以通过上述方式一、方式二、方式三的至少一种方式来触发网络设备调度调整。其中方式一和方式二可以理解为主卡隐性指示网络设备进行调度调整,方式三可以理解为主卡显示指示网络设备进行调度调整。由于主卡与网络设备之间的信令交互过程要比主卡与网络设备之间的信号测量过程快速,因此本申请实施例中也可以将方式三称为快速秩回退(或称快速回退)方式,将方式一和方式二称为慢速秩回退(或称慢速回退)方式。
可选地,主卡可以根据主卡和副卡的业务场景,选择合适的秩回退方式。
图17示出了本申请实施例提供的上行数据传输方法的示意性流程图。图17所示的方法700由终端设备执行,该方法700包括步骤S701至步骤S714。
应理解,在步骤S701之前,主卡处于连接态(例如玩游戏、看视频、打电话),并以双流模式进行上行传输,副卡则处于空闲态。当副卡有业务请求(例如被叫来电、收短信、TAU等),副卡由空闲态进入连接态,以处理业务请求。
在步骤S701,副卡接收到业务请求后,若判断存在发射通道使用冲突问题,副卡进入等待(hold)状态。
应理解,等待状态可以理解为副卡接收到业务请求,但暂缓处理该业务请求。
在步骤S702,副卡向主卡发送第一通知消息。该第一通知消息用于通知主卡启动定时器。
本申请实施例中,定时器位于主卡一侧。
在步骤S703,主卡启动定时器。
在步骤S704,副卡向主卡发送请求消息。该请求消息用于请求主卡进行传输层数回退。
示例性的,该请求消息可以为图11或图12中所述的第一请求消息。
在步骤S705,主卡通过执行第一动作,使得网络设备调度上行单流。
这里主卡所执行第一动作的方式可以为图13至图15中所述的至少一种方式,详述说明参见图13至图15的相关描述,为简洁,在此不再赘述。
在步骤S706,网络设备向主卡发送第一调度信息。该第一调度信息用于指示上行传输层数为1。
换句话说,在该步骤中,网络设备调度rank1。
在步骤S707,主卡根据接收到的第一调度信息,按照单流模式传输。
在步骤S708,主卡向副卡发送第二通知消息。该第二通知消息用于指示副卡传输层数回退完成。
示例性的,该第二通知消息可以为图11或图12中所述的第一响应消息。
在步骤S709,副卡进入连接态,处理业务请求。
在步骤S710,当副卡完成业务请求的处理后,进入空闲态。
副卡进入空闲态后,释放发射通道。
在步骤S711,副卡向主卡发送第三通知消息。该第三通知消息用于请求主卡进行传输层数恢复。
示例性的,该第三通知消息可以为图12中所述的第二请求消息。
在步骤S712,主卡通过执行第二动作,触发网络设备调度上行双流。
这里主卡所执行的第二动作的方式可以为图13至图15中所述的至少一种方式,详述说明参见图13至图15的相关描述,为简洁,在此不再赘述。
在步骤S713,网络设备向主卡发送第二调度信息。该第二调度信息用于指示上行传输层数为2。
换句话说,在该步骤中,网络设备调度rank2。
在步骤S714,主卡根据接收到的第二调度信息,按照双流模式传输。
上述步骤S704至步骤S709是在定时器未超时的情况下执行的。若步骤S704至步骤S708中的任意一个步骤执行后发生了步骤S715,即定时器超时,可以优先保证副卡业务,因为此时副卡可能是来电。主卡可以直接执行步骤S716,即主卡向副卡发送第四通知消息,该第四通知消息用于指示解除副卡等待状态。
相应地,在步骤S717,主卡进入空闲态。
在步骤S718,副卡进入连接态,处理业务请求。
应理解,步骤S716和步骤S717可以同时进行,也可以先后执行,本申请实施例对于该两个步骤执行的先后顺序不作限定。
在一些实施例中,步骤S702和步骤S704可以合并为一个步骤。即在图17所示的步骤S702中,副卡向主卡发送第一通知消息。该第一通知用于通知主卡启动定时器,并用于请求主卡进行传输层数回退。
在一些实施例中,定时器也可以设置在副卡一侧。即在图17所示的步骤S702之后,副卡启动定时器。副卡可以在发送完第一通知消息后立即启动定时器,或在预定时间后启动定时后,本申请实施例对此不作限定。
这种情况下,在定时器超时后,副卡可以向主卡发送通知消息,用于通知主卡定时器超时。主卡可以直接进入空闲态,而副卡进入连接态,处理业务请求。
在一些实施例中,主卡和副卡均可以设置定时器。在图17所示的步骤S702之后,主卡和副卡同时开启定时器。当主卡和副卡上定时器超时后,主卡可以直接进入空闲态,副卡直接进入连接态,处理业务请求。这样主卡无需执行图17所示的步骤S716。
本申请实施例中,定时器的时长可以根据主卡正在处理的业务类型和副卡将要发起的业务类型确定。例如,若主卡的业务类型为重要类型例如多媒体子系统(internet protocol  multimedia subsystem,IMS)语音业务、实时游戏业务等,可以设置较长的等待时间。应理解,定时器的时长即为副卡留给主卡进行传输层数回退的时间。
本申请实施例中,主卡和副卡可以直接进行通信,也可以间接通信。在间接通信的情况下,主卡和副卡之间可以通过额外的模块或无线资源管理(radio resource management(RRM)转发交互消息。应理解,主卡和副卡共用终端设备的硬件资源,因此,主卡和副卡之间的通信可以是终端设备的相关硬件单元或模块控制的。
图17所示的调度数据传输的方法中,当定时器超时后,主卡直接进入空闲态,副卡使用发射通道处理业务请求。这种情况下,由于主卡进入空闲态,网络设备侧可以很快感知到主卡的状态,从而快速进行调度调整,可以减少误码的发生。当然在副卡处理完业务请求后,还可以继续执行步骤S710至步骤S714,使主卡恢复双流模式传输。
可选地,当定时器超时后,主卡也可以直接按照单流模式传输,空余出发射通道供副卡使用。当然在副卡处理完业务请求后,还可以继续执行步骤S710至步骤S714,使主卡恢复双流模式传输。
本申请实施例提供的方法中,当副卡有业务时,先使副卡处于等待状态,待主卡完成上行传输层数回退之后,再继续副卡正常业务。副卡的等待状态可以为主卡的上行传输层数回退留出时间。
图18示出了本申请实施例提供的另一种调度数据传输的方法的示意性流程图。
该方法与图11所示的方法不同的是,在主卡接收到第一请求消息后,主卡根据和副卡的业务类型,确定回退策略。其他过程与图11所示的方法的相应过程类似,详细内容可参考图11的相关描述,在此仅对不同之处作详细解释。
本申请实施例中的回退策略包括快速回退和慢速回退。快速回退包括图15中描述的方式三,即主卡通过向网络设备发送过热指示消息,触发网络设备进行调度调整。慢速回退包括图13中描述的方式一和/或图14中描述的方式二,即主卡通过以下至少一种方式触发网络设备进行调度调整:降低SRS发射功率和/或降低PUSCH发射功率;关闭用于发射SRS和/或PUSCH的天线端口。这里主卡确定回退策略,可以理解为确定用户触发网络设备降低调度主卡上行传输层数的第一动作。
本申请实施例中回退策略还包括副卡业务的等待时间的设置,也即主卡回退时间的设置。
本申请实施例中,终端设备可以根据主卡和副卡的业务类型或业务场景确定合适的回退策略,能够在保证主卡业务不中断的前提下,正常处理副卡业务。
为方便理解,下面介绍一些主副卡业务类型的组合场景,以及相应的回退策略的具体例子。应理解,根据主副卡业务类型的不同组合,可以有不同的回退策略,本申请实施例不限于以下具体示例。
这里,以主卡支持使用NR网络,副卡支持使用LTE网络为例,则双卡并发主要涉及主卡NR子系统和副卡LTE子网络。双卡并发意味着双卡都进入业务连接态,本申请实施例从各个子系统维度出发,可以按照业务连接属性维度对场景进行区分。
对于主卡NR来说,在双卡进入并发时,主卡NR是需要执行上行传输层数回退的一方,因此,可以将主卡NR子系统按照业务重要性与持续时间长度分为如下4种:
主卡NR正在进行网际互连协议多媒体子系统(internet protocol multimedia subsystem, IMS)语音业务(属于长时重要业务);
主卡NR正在进行实时游戏业务(属于长时重要业务);
主卡NR正在进行TAU更新/ATTACH过程(属于短时重要业务);
主卡NR正在进行其他业务(属于长时非重要业务)。
对于副卡LTE来说,在双卡进入并发时,副卡LTE是需要等待主卡回退的一方,因此,可以将副卡LTE子系统按照业务紧急性质分为如下4种:
副卡LTE发起IMS主叫业务(中等紧急程度);
副卡LTE发起寻呼(paging)被叫业务(高等紧急程度);
副卡LTE发起TAU变更的更新过程(中等紧急程度);
副卡LTE发起其他业务(低等紧急程度)。
基于上述对主副卡业务类型的分类,当双卡业务进入并发状态时,若主卡先发起业务,副卡后发起业务,则可以产生表1所示的16种组合场景。
表1
  副卡IMS主叫 副卡寻呼被叫 副卡TAU变更 副卡其他业务
主卡IMS语音 组合场景1 组合场景2 组合场景3 组合场景4
主卡实时游戏 组合场景5 组合场景6 组合场景7 组合场景8
主卡TAU更新 组合场景9 组合场景10 组合场景11 组合场景12
主卡其他业务 组合场景13 组合场景14 组合场景15 组合场景16
若副卡先发起业务,而主卡后发起业务,则不再区分主卡或副卡业务类型,统一归为组合场景17。
本申请实施例中,对于主卡的回退,当前目标希望主卡采用慢速秩回退策略时能够有98%的概率在任何基站下5s内实现双流调度到单流调度的切换,因此本申请实施例设置副卡最长等待时间为5s,即图15中的定时器时长设置为5s。基于此,下面对上述17种组合场景下的回退策略进行示例性描述。应理解,副卡业务的最长等待时间可以根据实际需要确定,本申请实施例对此不作限定。
组合场景1(主卡IMS语音+副卡IMS主叫)
由于当前产品不支持语音双通,因此该场景应是主卡正好接收到IMS被叫(被叫信息还未到AP)时,用户同时使用副卡发起IMS主叫业务。此时回退策略应兼顾主卡被叫与副卡主叫。
在该组合场景下,为了保证主卡被叫,需要让副卡主叫等待一定时间。因此可考虑等最长时间5s(即定时器设置为5s)使得主卡完成回退。为了尽量缩短副卡等待时间,可以考虑通过图13所示的方式三进行快速回退单流。即主卡上报过热指示消息,请求网络设备降低上行传输最大层数。
组合场景2(主卡IMS语音+副卡寻呼被叫)
在该组合场景下,主卡为IMS语音场景,副卡收到寻呼触发的RRC连接建立。由于主卡正在IMS语音过程中,为了避免主卡语音中断,副卡需要确保主卡回退单流后才发起业务。
因此,本场景中为了保证主卡语音业务的正常处理,即使副卡寻呼响应为被叫语音, 也需要最长等待5s(即定时器设置为5s),确保主卡完成回退。为了尽量缩短副卡等待时间,可以考虑通过图13所示的方式三进行快速回退单流。即主卡上报过热指示消息,请求网络设备降低上行传输最大层数。
组合场景3(主卡IMS语音+副卡TAU变更)
在该组合场景下,主卡为IMS语音场景,副卡发起TAU更新。为了避免主卡语音中断,副卡需要确保主卡回退单流后才发起业务。
因此,本场景中为了保证主卡语音业务的正常处理,副卡需要最长等待5s,确保主卡回退。为了保证副卡时间提前量(timing adavance,TA)变更的TAU尽快同步到网络,可以考虑通过图13所示的方式三进行快速回退单流。即主卡上报过热指示消息,请求网络设备降低上行传输最大层数。
组合场景4(主卡IMS语音+副卡其他业务)
在该组合场景下,主卡为IMS语音场景,副卡发起其他业务。为了避免主卡语音中断,副卡需要确保主卡回退单流后才发起业务。
为了保证主卡语音业务的正常处理,副卡需要最长等待5s,确保主卡回退。本场景中可考虑通过图11所示的方式一或图12所示的方式二进行慢速回退单流。
组合场景5(主卡实时游戏+副卡IMS主叫)
在该组合场景下,主卡进行实时游戏业务,副卡发起IMS语音业务,此时终端设备的用户界面会切换为拨号应用。从用户使用习惯来看,语音业务应优先于游戏业务,语音业务应该认为较紧急,因此可考虑主卡回退等待时间为1s(即定时器设置为1s)。若超时未回退成功,可以按照DSDS2.0处理,即主卡直接进入空闲态,副卡使用发射通道发起业务。
为了避免双卡进入DSDS2.0,可以考虑通过图13所示的方式三进行快速回退单流。即主卡上报过热指示消息,请求网络设备降低上行最大层数。
组合场景6(主卡实时游戏+副卡寻呼被叫)
在该组合场景下,主卡进行实时游戏业务,副卡收到寻呼触发的RRC连接建立。由于主卡游戏属于重要业务,因此需要确保主卡游戏回退单流后副卡才发起业务。
本场景下为了保证主卡游戏业务的正常处理,即使副卡寻呼响应为被叫语音,也需要最长等待5s,确保主卡完成回退。为了尽量缩短副卡等待时间,可以考虑通过图13所示的方式三进行快速回退单流。即主卡上报过热指示消息,请求网络设备降低上行传输最大层数。
组合场景7(主卡实时游戏+副卡TAU变更)
在该组合场景下,主卡进行实时游戏业务,副卡发起TAU更新,需要保证主卡实时游戏回退成功后,副卡再发起TAU。
本场景下为了保证主卡游戏业务的正常处理,同组合场景6一样,需要给主卡保留5s的回退时间。为了保证副卡TA变更的TAU尽快同步到网络,可以考虑通过图13所示的方式三进行快速回退单流。即主卡上报过热指示消息,请求网络设备降低上行传输最大层数。
组合场景8(主卡实时游戏+副卡其他业务)
在该组合场景下,主卡进行实时游戏业务,副卡发起其他业务。本场景下需要给主卡 留出5s的回退时间。本场景中可考虑通过图13所示的方式三进行快速回退单流。
组合场景9(主卡TAU更新+副卡IMS主叫)
在该组合场景下,主卡进行TAU更新过程,副卡发起IMS语音。本场景下为了保证主卡TAU业务,同时考虑TAU/ATTACH为短时业务,可以为此类短时过程保留3s的回退时间。若超时未回退成功,则按照DSDS2.0处理,主卡直接进入空闲态,副卡使用发射通道发起业务。由于此时TAU/ATTACH已经结束,副卡IMS语音可获得资源抢占主卡发起业务。
因此,为了保证主卡TAU业务,可以考虑在一定时间范围内等待TAU结束,副卡再发起IMS业务。
组合场景10(主卡TAU更新+副卡寻呼被叫)
在该组合场景下,主卡进行TAU更新过程,副卡收到寻呼触发的RRC连接建立。本场景下可以考虑为主卡保留2s的回退时间。若超时未回退成功,则按照DSDS2.0处理,主卡直接进入空闲态,副卡使用发射通道发起业务。由于此时TAU/ATTACH大概率已经结束,副卡寻呼可抢占资源发起接入。因此,为了保证主卡TAU业务,可以考虑在一定时间范围内等待TAU结束,副卡再发起IMS业务。
为了尽量缩短副卡等待时间,可以考虑通过图13所示的方式三进行快速回退单流。即主卡上报过热指示消息,请求网络设备降低上行传输最大层数。
组合场景11(主卡TAU更新+副卡TAU变更)
在该组合场景下,主卡进行TAU更新过程,副卡发起TAU。本场景可以考虑为主卡保留5s的回退时间。
组合场景12(主卡TAU更新+副卡其他业务)
在该组合场景下,主卡进行TAU更新过程,副卡发起其他业务。本场景可以考虑为主卡保留5s的回退时间。
组合场景13(主卡其他业务+副卡IMS主叫)
在该组合场景下,主卡进行其他业务,副卡发起IMS语音。为了保证副卡语音业务尽快发起,可以为给主卡保留3s的回退时间。若超时未回退成功,回退DSDS2.0。
考虑此时主卡可能存在IMS短信息服务(short message service,SMS)等业务,因此回退DSDS2.0后副卡IMS语音也需要等待主卡IMS SMS之类的业务结束才能获得资源。
组合场景14(主卡其他业务+副卡寻呼被叫)
在该组合场景下,主卡进行其他业务,副卡寻呼响应发起RRC连接建立。为了保证副卡被叫业务尽快发起,可以给主卡保留2s的回退时间。若超时未回退成功,回退DSDS2.0。
考虑此时主卡可能存在IMS SMS此类业务,回退DSDS2.0后副卡寻呼响应也需要等待主卡IMS SMS之类业务结束才能获得资源。
组合场景15(主卡其他业务+副卡TAU变更)
在该组合场景下,主卡进行其他业务,副卡发起TAU/ATTACH过程。本场景下可以为主卡保留3s的回退时间。若超时未回退成功,回退DSDS2.0。
考虑此时主卡可能存在IMS SMS此类业务,回退DSDS2.0后副卡IMS语音也需要等待主卡IMS SMS之类业务结束才能获得资源。
组合场景16(主卡其他业务+副卡其他业务)
在该组合场景下,主副卡都是其他业务。本场景可以为主卡保留5s的回退时间。
组合场景17
在该组合场景下,副卡先发起业务,主卡后发起业务,主卡业务上行只能使用1T。因此,理论上基站不会对主卡UE上行调度双流。副卡业务释放后,主卡应考虑尽快触发基站进行上行双流调度。例如主卡可以通过图11至图13中的方法触发基站进行调度调整。或者,副卡业务释放后,主卡的SRS恢复正常方式上报,基站可以自适应再次调度双流。
图19示出了本申请实施例提供的一种调度数据传输的方法的示意性流程图。图19所示的方法800可以为图18所示的方法的一个具体的例子。该方法800包括步骤S810至步骤S850。
在步骤S810,当副卡发起业务时,副卡按照双卡工作模式向RRM发送RRM资源请求消息(例如RRM_RESOURCE_REQ),用于向RRM申请资源。
在步骤S820,RRM判断此时主卡处于业务态,且当前支持业务并发的状态,RRM向主卡发送Tx回退请求(例如Tx_FALLBACK_REQ)。
本申请实施例中,在主卡回复Tx回退请求之前,RRM认为当前能力依然支持业务并发。
在步骤S830,主卡确定回退策略,并根据回退策略进行回退。
本申请实施例中,回退策略包括快速回退和慢速回退。在快速回退方式中,主卡可以向网络设备发送UE辅助信息(UE assistance information),例如过热指示信息,以进行快速回退。在慢速回退方式中,主卡可以通过物理层SRS的发送触发网络设备针对主卡进行上行调度回退。
在步骤S840,主卡回退成功后,主卡向RRM回复回退确认,即主卡向RRM发送Tx回退确认(例如Tx_FALLBACK_CNF)。该Tx回退确认中携带有主卡回退成功标记。
在步骤S850,RRM接收到主卡发送的Tx回退确认后,认为此时双卡可以并发,RRM向副卡发送RRM资源确认。
接收到RRM资源确认的副卡可以进入连接态,处理业务请求。
可选地,RRM可以为双卡双待模块,该模块可以与主卡进行通信,也可以与副卡进行通信。
本申请实施例中,为了保证主卡业务平滑回退单流,副卡发起业务时,通过请求主卡进行Tx回退的流程,请求主卡从双流调度到单流调度的切换。主卡根据当前业务类型与副卡要发起的业务类型决定回退的策略,副卡为主卡双流到单流回退留出时间。
上文描述的技术方案可以应用于双卡场景。当副卡处于空闲态时,主卡仍然可以2T发射,实现上行MIMO。当副卡需要由空闲态进入连接态时,可以在不打断主卡业务的前提下,完成主卡从双流调度到单流调度的切换,不影响用户体验。
上文讨论了终端设备携带双卡的场景,但从功耗的角度考虑,不论是单卡场景还是双卡场景,终端设备使用2T、4R意味着更高的耗电。在用户流量不大的情况下,通常使用较低rank就可以满足要求,那么此时终端设备可以关闭多余的发射或接收天线,以节省功耗。但网络设备调度高rank(例如上行调度rank2,下行调度rank3/4),使得终端设备不得不使用2T4R进行工作,在近点、小流量等场景下造成功耗的浪费。因此,不仅可以 在主副卡存在发射通道冲突的情况下,触发基站降低rank,还可以在终端设备想要节省功耗的情况下,触发基站降低rank。
为了节省功耗,现有技术提供以下几种方式。一是降低终端设备上报支持MIMO能力,这样网络设备只能调度低rank,但是这样会导致上下行吞吐峰值的下降。二是终端设备仍然上报最大的支持MIMO能力,在需要降低功耗时,终端设备强行从2T发射变成1T发射,或者由4R接收变为2R/1R接收,等待网络设备自适应调度调整降低rank。这种情况下,终端设备强行关闭发送、接收分集,会导致连续的误码,影响应用的使用体验。三是在需要降低功耗时,终端设备可以主动重新发起初始注册流程,但这样会打断当前的业务。
总而言之,目前如果终端设备想要网络设备调度低rank,或者是通过降低上报支持的MIMO能力的方式,或者是终端设备强行关闭发射/接收分集,使网络设备自适应调度的方式。目前提供的解决方案中存在上文描述的问题。本申请实施例提供的调度数据传输的方法,能够使终端设备想要网络设备调度低rank时,网络设备可以快速响应,进行调度调整。并且,能够在终端设备上报上下行MIMO能力的同时,在不打断业务且不影响体验的前提下,关闭发射或接收分集达到省功耗的目的。
需要说明的是,本申请实施例提供的调度数据传输的方法,可以应用于终端设备想要网络设备降低rank调度的任何场景,不限于DSDA场景、节省功耗场景等。
图20示出了本申请实施例提供的调度数据传输的方法的示意性流程图。该方法可以应用于图1所示的通信系统100中,由终端设备和网络设备交互信息以执行方法900。
本申请实施例中,以终端设备为2T4R的终端设备为例,2T4R终端设备支持上下行MIMO能力。在执行方法900之前,终端设备和网络设备建立了RRC连接,终端设备完成了UE能力上报。在UE能力上报中,终端设备上报上行传输最大层数为2,下行传输最大层数为4。
在步骤S910,终端设备使用2根发送天线、4根接收天线(即2T4R)进行收发,其中两个天线端口发送用于CB的SRS(为方便,以下简称CB SRS),使用2T4R发送用于AS的SRS(为方便,以下简称AS SRS)。
应理解,终端设备上报的上行传输最大层数为2、下行传输最大层数为4,在执行本申请提供的方法前,设定网络设备调度终端设备上行传输层数为2,下行传输层数为4。
相应地,网络设备根据检测到的SRS,调度下行传输层数为4,上行传输层数为2。
应理解,本申请实施例中所述的终端设备以2T4R进行收发,可以理解为终端设备以2T4R发送或接收分集,即终端设备按照网络设备的调度进行上下行数据传输。
在步骤S920,当满足第一预设条件时,终端设备仍以2T4R进行收发,但终端设备关闭SRS资源的一个天线端口,使得一个天线端口发送用于CB SRS,使用1T2R发送AS SRS。
终端设备关闭SRS资源的一个天线端口的方式包括:终端设备直接关闭天线端口对应的功率放大器,或者将天线端口对应的功率放大器的功率配置为最低值。
当满足第一预设条件时,终端设备在该步骤中所执行的动作是为了让网络设备识别到终端设备期望工作在关闭分集的状态。其中,第一预设条件包括以下至少一种:
终端设备当前处于信号优良的位置例如近点,其中信号优良的位置包括参考信号接收 功率(reference signal receiving power,RSRP)大于第一阈值的位置;
终端设备当前处理的业务属于第一预设业务类型,第一预设业务类型包括小流量业务;
终端设备当前处理的业务类型为小流量业务,其中小流量业务为应用层数据流量小于第二阈值的业务;
终端设备当前的温度大于第三阈值;
终端设备需要进入省功耗状态,例如终端设备的电量小于第四阈值。
换句话说,当满足第一预设条件时,例如终端设备检测到当前处于信号很好的位置、当前数据量很小时,低rank就能满足通信需求;再例如终端设备检测到当前温度较高,或者终端设备检测到当前的电量较低,需要进入省功耗状态,需要调度低rank,终端设备可以执行一定动作,使网络设备识别到终端设备要工作在低rank的意图。
在步骤S930,网络设备识别到SRS的部分端口处于非连续发送(DTX)状态,则确定降低下行调度层数和上行调度层数。
该步骤中,网络设备可以识别到终端设备存在没有发送SRS信号的端口,并且可以识别到有没有发送SRS信号的端口数量。这种情况下,网络设备可以认为终端设备期望工作在关闭分集的状态,则限制上下行调度的rank。
相应地,网络设备可以调度下行传输层数为2(即调度下行rank2),调度上行传输层数为1(即调度上行rank1)。
在步骤S940,终端设备根据网络设备最新的调度,使用1根发射天线、2根接收天线(即1T2R)进行收发。
在该步骤中,终端设备关闭发送、接收分集天线,处于节省功耗的状态。
由于终端设备在接收到网络设备调度下行rank2和上行rank1之前,仍按照下行rank4和上行rank2进行工作,只是关闭了用于发送SRS资源的一个天线端口,这样在调度调整过程中,终端设备关闭分集后不会发生误码。
在步骤S950,当满足第二预设条件时,终端设备以2T4R进行收发,并打开之前关闭的SRS资源的天线端口,其中两个天线端口发送用于CB SRS,使用2T4R发送AS SRS。
终端设备打开SRS资源的天线端口的方式包括:终端设备打开天线端口对应的功率放大器,并且将该天线端口对应的功率放大器的功率恢复为正常值。
当满足第二预设条件时,终端设备在该步骤中所执行的动作是为了让网络设备识别到终端设备期望工作在打开分集的状态。其中,第二预设条件包括以下至少一种:
终端设备当前处于信号差的位置例如远点,其中信号差的位置包括参考信号接收功率(reference signal receiving power,RSRP)小于第五阈值的位置;
终端设备当前处理的业务属于第二预设业务类型,第二预设业务类型包括大流量业务;
终端设备当前处理的业务类型为大流量业务,其中大流量业务为应用层数据流量大于第六阈值的业务;
终端设备当前的温度小于第七阈值;
终端设备需要退出省功耗状态,例如终端设备的电量大于第八阈值。
换句话说,当满足第二预设条件时,例如终端设备检测到当前处于信号较差的位置、 当前数据量很大时,需要高rank传输,再例如终端设备检测到当前温度较低,或者终端设备的电量较足,可以实现调度高rank,终端设备可以打开所有天线,并恢复SRS的信号的发送,使网络设备识别到终端设备要工作在高rank的意图。
在步骤S960,网络设备识别到终端设备退出SRS的非连续发送(DTX)状态,则确定恢复下行调度层数和上行调度层数。
该步骤中,网络设备可以识别到终端设备退出了SRS的DTX状态,这种情况下,网络设备可以认为终端设备期望工作在打开分集的状态,则解除对上下行调度的rank限制。
相应地,网络设备可以调度下行传输层数为4(即调度下行rank4),调度上行传输层数为2(即调度上行rank2)。
在步骤S970,终端设备根据网络设备最新的调度,使用2根发射天线、4根接收天线(即2T4R)进行收发。
在该步骤中,终端设备打开发送、接收分集天线,处于正常工作的状态。
本申请实施例提供的方法中,终端设备可以根据自身是否需要节省功耗,调整发送SRS的天线端口,触发网络设备进行调度调整,并且不中断和影响当前业务。
应理解,图20所示的方法中,是以终端设备为2T4R的终端设备,且用于CB的SRS和用于AS的SRS复用为例进行的说明。因此终端设备在步骤S920和步骤S950中的执行的动作同时影响网络设备调度上行层数和下行层数。在一些其他实施例中,终端设备可以通过执行一定步骤,触发网络设备只进行上行传输层数的调度调整或只进行下行传输层数的调度调整。
还应理解,本申请实施例提供的方法不仅可以用于双卡场景,还可以用于单卡场景。在双卡场景下,当副卡也支持2T时,该方法可以应用于主卡,也可以应用于副卡。另外,本申请实施例提供的方法还可以应用于终端设备需要节省功耗的场景,本申请实施例对此不作限定。
在一些实施例中,当满足第一预设条件时,终端设备还可以通过降低SRS和/或PUSCH发射功率的方式,触发网络设备调整调度。具体实现方式与图13所示的方式类似。
在一些实施例中,当满足第一预设条件时,终端设备可以采用显性指示的方式通知网络设备,终端设备期望关闭接收或发送分集。
例如,终端设备可以向网络设备发送过热指示,该过热指示中包括终端设备上行传输最大层数和/或下行传输最大层数,其中该过热指示中的上行传输最大层数小于终端设备当前的实际上行传输层数,该过热指示中的下行传输最大层数小于终端设备当前的实际下行传输层数。也就是说,终端设备可以在过热指示中向网络设备通知终端设备期望的上行传输层数和/或期望的下行传输层数,以触发网络设备进行调度调整。
终端设备发送过热指示的方式与图15中主卡向终端设备发送过热指示的方式类似,详细说明可参考上文相关描述。
这里,终端设备发送的过热指示可以为标准定义的“overheating”消息。仍以图13中所列举的协议字段为例,当终端设备要触发基站降低上行传输层数时,则终端设备将过热指示消息中的“reducedMIMO-layersFRl-UL”字段值设置为期望的上行传输层数值,相应地,网络设备调度的实际上行传输层数小于或等于该字段对应的值。当终端设备要触发基站降低下行传输层数时,则终端设备将过热指示消息中的“reducedMIMO-layersFRl-DL”字段值 设置为期望的下行传输层数值,相应地,网络设备调度的实际下行传输层数小于或等于该字段对应的值。
为便于理解,下面结合附图21和22更加详细地描述本申请实施例的一些具体的非限制性的例子。本申请实施例以2T4R和1T4R的终端设备为例进行说明,但如上所述,本申请实施例提供的方法同样可以具有其他数量发送天线和接收天线的终端设备。
图21示出了2T4R的终端设备SRS资源配置、复用方式、回退方式的示意图。该图示例性示出支持2T4R的终端设备的SRS资源发送以及低功耗状态时SRS资源发送方式。
如图21所示,终端设备包括2个发射天线和4个接收天线。终端设备包括四个天线端口,分别为端口0、端口1、端口2、端口3。对于2T4R的终端设备来说,在天线切换过程中,终端设备每次轮询2个接收天线,对于同一个SRS资源,对应两个天线端口。终端设备第一次轮询的两个Rx天线发送的SRS为复用SRS,也即端口0和端口1上发送的SRS为复用SRS。
本申请实施例中,在满足第二预设条件的情况下,终端设备以2T4R进行天线轮发。终端设备在t0时刻通过端口0和端口1发送其中一个SRS资源,在t1时刻通过端口2和端口3发送另一个SRS资源。端口0和端口1发送的SRS为复用SRS,即终端设备通过端口0和1发送用于CB的SRS,通过端口0、端口1、端口2和端口3发送用于AS的SRS。
以下行传输层数调度为例,网络设备根据终端设备SRS资源发送情况,调度下行传输层数为4(即下行rank4)。
在满足第一预设条件的情况下,终端设备可以关闭2个天线端口,例如端口1和端口3。这样终端设备在t0时刻通过端口0发送其中一个SRS资源,在t1时刻通过端口2上发送另一个SRS资源。端口0发送的SRS为复用SRS,即终端设备通过端口0发送用于CB的SRS,通过端口0和端口2发送用于AS的SRS。
相应地,网络设备根据终端设备发送的AS SRS的端口数,调度下行传输层数为2(即下行rank2)。
在满足第三预设条件的情况下,终端设备可以关闭3个天线端口,例如端口1、端口2和端口3。这样终端设备在t0时刻通过端口0上发送其中一个SRS资源。端口0发送的SRS为复用SRS,即终端设备通过端口0发送用于CB的SRS,通过端口0发送用于AS的SRS。
相应地,网络设备根据终端设备发送的AS SRS的端口数,调度下行传输层数为1(即下行rank1)。
本申请实施例中,终端设备可以通过发送AS SRS的端口数来指示网络设备调度下行传输层数。
第二预设条件可以包括以下至少一种:
终端设备检测到的参考信号接收功率小于阈值A1;或者,
终端设备检测到的参考信号接收质量小于阈值B1;或者,
终端设备当前处理的业务中应用层数据流量大于阈值C1;或者,
终端设备当前的温度小于阈值D1;或者,
终端设备当前的电量大于阈值K1。
第一预设条件可以包括以下至少一种:
终端设备检测到的参考信号接收功率大于阈值A1,且小于阈值A2;或者,
终端设备检测到的参考信号接收质量大于阈值B1,且小于阈值B2;或者,
终端设备当前处理的业务中应用层数据流量小于阈值C1,且大于阈值C2;或者,
终端设备当前的温度大于阈值D1,且小于阈值D2;或者,
终端设备当前的电量小于阈值K1,且大于阈值K2。
第三预设条件可以包括以下至少一种:
终端设备检测到的参考信号接收功率大于阈值A2;或者,
终端设备检测到的参考信号接收质量大于阈值B2;或者,
终端设备当前处理的业务中应用层数据流量小于阈值C3;或者,
终端设备当前的温度大于阈值D2;或者,
终端设备当前的电量小于阈值K2。
上述阈值中,A1<A2,B1<B2,C1>C2,D1<D2,K1>K2。
应理解,上述阈值可以根据实际需要相应设定数值,本申请实施例不作限定。
上行传输层数调度情形与下行传输层数调度类似,下面仅做示例性说明。
在满足第二预设条件时,网络设备根据终端设备SRS资源发送情况,调度上行传输层数为2(即下行rank4)。
在满足第一预设条件的情况下,终端设备可以关闭用于发送CB SRS的天线端口中的1个天线端口,例如端口1,这样终端设备在t0时刻通过端口0上发送复用SRS。即终端设备通过端口0发送用于CB的SRS。
相应地,网络设备根据终端设备发送的CB SRS的端口数,调度上行传输层数为1(即下行rank1)。
简单理解,正常状态下,终端设备每个SRS周期在两个时隙位置t0/t1,每个时隙位置使用2个天线进行发送。而在低功耗状态下,每个时隙位置只发送1个端口的SRS信号,此时网络设备即会限制调度上行最大rank1,下行最大rank2。
应理解,本申请实施例中网络设备可以单独对上行传输层数或下行传输层数进行调度调整,也可以同时对上行传输层数和下行传输层数调度调整,本申请实施例对此不作限定。
图22示出了1T4R的终端设备SRS资源配置、复用方式、回退方式的示意图。该图示例性示出支持1T4R的终端设备的SRS资源发送以及低功耗状态时SRS资源发送方式。对于只支持1T4R的终端设备,仍可使用上述方法降低下行rank,关闭接收分集获得功耗收益,只是与支持2T4R的终端设备的区别在于SRS资源发送的位置不同。
如图22所示,终端设备包括1个发射天线和4个接收天线。终端设备包括四个天线端口,分别为端口0、端口1、端口2、端口3。对于1T4R的终端设备来说,在天线切换过程中,终端设备每次轮询1个接收天线。终端设备第一次轮询的1个Rx天线发送的SRS为复用SRS,也即端口0上发送的SRS为复用SRS。
以下以下行传输层数调度为例进行说明。
在满足第二预设条件的情况下,终端设备以1T4R进行天线轮发。终端设备在t0、t1、t2、t3时刻分别通过端口0、端口1、端口2和端口3发送SRS资源。端口0发送的SRS为复用SRS,即终端设备通过端口0发送用于CB的SRS,通过端口0、端口1、端口2 和端口3发送用于AS的SRS。
相应地,网络设备根据终端设备发送AS SRS的端口数,调度下行传输层数为4(即下行rank4)。
在满足第四预设条件的情况下,终端设备可以关闭1个天线端口,例如端口1。这样终端设备在t0、t2、t3时刻分别通过端口0、端口2和端口3发送SRS资源。端口0发送的SRS为复用SRS,即终端设备通过端口0发送用于CB的SRS,通过端口0、端口2和端口3发送用于AS的SRS。
相应地,网络设备根据终端设备发送的AS SRS的端口数,调度下行传输层数为3(即下行rank3)。
在满足第一预设条件的情况下,终端设备可以关闭2个天线端口,例如端口1和端口3。终端设备在t0、t2时刻分别通过端口0、端口2发送SRS资源。端口0发送的SRS为复用SRS,即终端设备通过端口0发送用于CB的SRS,通过端口0和端口2发送用于AS的SRS。
相应地,网络设备根据终端设备发送的AS SRS的端口数,调度下行传输层数为2(即下行rank2)。
在满足第三预设条件的情况下,终端设备可以关闭3个天线端口,例如端口1、端口2和端口3。这样终端设备在t0时刻通过端口0上发送SRS资源。端口0发送的SRS为复用SRS,即终端设备通过端口0发送用于CB的SRS,通过端口0发送用于AS的SRS。
相应地,网络设备根据终端设备发送的AS SRS的端口数,调度下行传输层数为1(即下行rank1)。
本申请实施例中,终端设备可以通过发送AS SRS的端口数来指示网络设备调度下行传输层数。
第二预设条件可以包括以下至少一种:
终端设备检测到的参考信号接收功率小于阈值E1;或者,
终端设备检测到的参考信号接收质量小于阈值F1;或者,
终端设备当前处理的业务中应用层数据流量大于阈值G1;或者,
终端设备当前的温度小于阈值H1;或者,
终端设备当前的电量大于阈值L1。
第四预设条件可以包括以下至少一种:
终端设备检测到的参考信号接收功率大于阈值E1,且小于阈值E2;或者,
终端设备检测到的参考信号接收质量大于阈值F1,且小于阈值F2;或者,
终端设备当前处理的业务中应用层数据流量小于阈值G1,且大于阈值G2;或者,
终端设备当前的温度大于阈值H1,且小于阈值H2;或者,
终端设备当前的电量小于阈值L1,且大于阈值L2。
第一预设条件可以包括以下至少一种:
终端设备检测到的参考信号接收功率大于阈值E2,且小于阈值E3;或者,
终端设备检测到的参考信号接收质量大于阈值F2,且小于阈值F3;或者,
终端设备当前处理的业务中应用层数据流量小于阈值G2,且大于阈值G3;或者,
终端设备当前的温度大于阈值H2,且小于阈值H1;或者,
终端设备当前的电量小于阈值L2,且大于阈值L3。
第三预设条件可以包括以下至少一种:
终端设备检测到的参考信号接收功率大于阈值E3;或者,
终端设备检测到的参考信号接收质量大于阈值F3;或者,
终端设备当前处理的业务中应用层数据流量小于阈值G3;或者,
终端设备当前的温度大于阈值H3;或者,
终端设备当前的电量小于阈值L3。
上述阈值中,E1<E2<E3,F1<F2<F3,G1>G2>G3,H1<H2<H3,L1>L2>L3。
应理解,上述阈值可以根据实际需要相应设定数值,本申请实施例不作限定。
简单理解,正常状态下,终端设备每个SRS周期在4个时隙位置t0/t1/t2/t3,每个时隙位置使用1个天线进行发送,而在低功耗状态下,4个时隙位置中的2个不发送,基站即会限制调度下行最大rank2,当4个时隙位置中的3个不发送,基站机会限制调度下行最大rank1。
需要说明的是,本申请实施例是以2T4R或1T4R的终端设备描述本申请实施例提供的调度数据传输的方法,但应理解,本申请实施例提供的方法还可以应用于具有其他天线配置的终端设备,相应地,终端设备触发网络设备调度的数据传输模式也随着终端设备天线配置不同而有所不同,不限于调度双流模式到单流模式,或者调度四流模式到双流模式、单流模式等。
还需要说明的是,本申请实施例还以单卡场景和双卡场景描述了本申请实施例提供的调度数据传输的方法,但应理解,本申请实施例提供的方法还可以应用于多于双卡的场景(简称多卡场景)。
上文结合图1至图22详细的描述了本申请实施例的方法实施例,下面结合图23和图24,详细描述本申请实施例的装置实施例。应理解,方法实施例的描述与装置实施例的描述相互对应,因此,未详细描述的部分可以参见前面方法实施例。
图23是本申请实施例提供的通信装置的示意图,图23的通信装置1000可以是上文提及的终端设备,例如可以是图1所示的终端设备120的一个具体的例子。通信装置1000可用于实现上文中的由终端设备执行的步骤,例如图7或图8的方法,还可以用于具体实现图11至图22所示的实施例。为避免冗余,不再重复描述。
图23所示的通信装置1000包括传输模块1010、执行模块1020、接收模块1030。
传输模块1010,用于使用第一传输层数进行数据传输。
执行模块1020,在满足第一预设条件时,执行第一动作。
接收模块1030,用于在所述执行模块1020执行所述第一动作之后,接收网络设备发送的第一调度信息,所述第一调度信息用于指示所述通信装置使用第二传输层数进行数据传输,所述第二传输层数小于所述第一传输层数。
其中,执行模块1020执行第一动作包括以下至少一种:
降低探测参考信号SRS的发射功率;
降低上行物理共享信道PUSCH的发射功率;
关闭用于发送SRS的多个天线端口中的至少一个天线端口;
关闭用于发送PUSCH的多个天线端口中的至少一个天线端口;或
向所述网络设备发送第一辅助信息消息。
可选地,所述第一预设条件包括以下至少一种:所述通信装置检测到的参考信号接收功率RSRP大于第一阈值;所述通信装置处理的数据业务属于第一预设业务类型;所述通信装置处理的数据业务的应用层数据流量小于第二阈值;所述通信装置的温度大于第三阈值;所述通信装置的电量小于第四阈值;或所述通信装置携带第一用户身份识别模块SIM卡和第二SIM卡,其中所述第一SIM卡使用所述第一传输层数处理第一数据业务,所述第二SIM卡在空闲态下接收到第二数据业务的请求。
可选地,所述第一调度信息为下行控制指示DCI。
可选地,所述第一辅助信息消息为过热指示消息。
可选地,所述第一辅助信息消息包括第二最大传输层数,所述第二最大传输层数小于第一最大传输层数,所述第一最大传输层数等于所述网络设备在所述终端设备执行所述第一动作之前所能调度的传输层数的最大值。
可选地,所述第一传输层数和所述第二传输层数用于上行数据传输;或者,所述第一传输层数和所述第二传输层数用于下行数据传输。
可选地,所述通信装置包括多个用于发送SRS的天线端口,所述执行模块1020具体用于,降低所述多个用于发送SRS的天线端口中的至少一个天线端口对应的SRS发射功率。
可选地,所述通信装置包括多个用于发送PUSCH的天线端口,所述执行模块1020具体用于,降低所述多个用于发送PUSCH的天线端口中的至少一个天线端口对应的PUSCH发射功率。
可选地,所述用于发送SRS的多个天线端口包括第一端口组,所述第一端口组用于发送用于天线切换AS的SRS,所述通信装置进行下行数据传输,所述执行模块1020具体用于,关闭所述第一端口组中的至少一个端口。
可选地,所述用于发送SRS的多个天线端口包括第二端口组,所述第二端口组用于发送用于码本CB的SRS,所述通信装置进行上行数据传输,所述执行模块1020具体用于,关闭所述第二端口组中的至少一个端口。
可选地,所述第一预设条件包括所述通信装置携带第一用户身份识别模块SIM卡和第二SIM卡,其中所述第一SIM卡使用所述第一传输层数处理第一数据业务,所述第二SIM卡在空闲态下接收到第二数据业务的请求,所述通信装置还包括:
启动模块,用于启动定时器。
若所述定时器在所述通信装置接收所述第一调度信息之后超时,所述第二SIM卡使用第三传输层数处理所述第二数据业务,所述第一SIM使用所述第二传输层数处理所述第一数据业务。
若所述定时器在所述通信装置接收所述第一调度信息之前超时,所述第二SIM卡使用所述第三传输层数处理所述第二数据业务,所述第一SIM卡进入空闲态。
可选地,所述通信装置还包括确定模块,所述确定模块用于根据所述第一数据业务的类型和所述第二数据业务的类型,确定所述定时器的时长。
可选地,在执行模块执行第一动作之前,所述确定模块还用于根据所述第一数据业务的类型和所述第二数据业务的类型,确定所述第一动作。
可选地,所述第二传输层数与所述第三传输层数之和小于或等于所述网络设备在所述终端设备执行所述第一动作之后所能调度的传输层数的最大值。
可选地,所述第一SIM卡使用所述终端设备的全部上行射频资源处理所述第一数据业务。
可选地,所述第一SIM卡上报的上行传输层数的最大值为2,所述第二SIM卡上报的上行传输层数的最大值为1。
可选地,所述通信装置包括1个发射天线和2个接收天线;或者,所述通信装置包括2个发射天线和4个接收天线。
可选地,所述传输模块1010还用于使用所述第二传输层数进行数据传输。
执行模块1020,还用于在满足第二预设条件时,执行第二动作。
接收模块1030,还用于在所述执行模块1020执行所述第二动作之后,接收所述网络设备发送的第二调度信息,所述第二调度信息用于指示所述通信装置使用第四传输层数进行数据传输,所述第四传输层数大于所述第二传输层数。
其中,所述执行模块1020执行第二动作包括以下至少一种:
提高探测参考信号SRS的发射功率;
提高上行物理共享信道PUSCH的发射功率;
开启被关闭的用于发送SRS的多个天线端口中的至少一个天线端口;
开启被关闭的用于发送PUSCH的多个天线端口中的至少一个天线端口;或
向所述网络设备发送第二辅助信息消息。
可选地,所述第二预设条件包括以下至少一种:所述通信装置检测到的参考信号接收功率RSRP小于第五阈值;所述通信装置处理的数据业务属于第二预设业务类型;所述通信装置处理的数据业务的应用层数据流量大于第六阈值;所述通信装置的温度小于第七阈值;所述通信装置的电量大于第八阈值;或所述通信装置携带第一SIM卡和第二SIM卡,其中所述第一SIM卡处于空闲态或使用所述第二传输层数处理第一数据业务,所述第二SIM卡结束第二数据业务的处理并由业务连接态进入空闲态。
可选地,所述第四传输层数等于所述第一传输层数。
图24是本申请实施例的一种终端设备的结构示意图。该终端设备可适用于图1所示出的系统中,执行上述方法实施例中终端设备的功能。为了便于说明,图24仅示出了终端设备的主要部件。如图24所示,终端设备1100包括处理器、存储器、控制电路、天线以及输入输出装置。处理器1102主要用于对通信协议以及通信数据进行处理,以及对整个终端设备进行控制,执行软件程序,处理软件程序的数据,例如用于支持终端设备执行上述方法实施例中所描述的动作。存储器主要用于存储软件程序和数据。控制电路主要用于基带信号与射频信号的转换以及对射频信号的处理。控制电路和天线一起也可以叫做收发器1101,主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。
当终端设备开机后,处理器可以读取存储单元中的软件程序,解释并执行软件程序的指令,处理软件程序的数据。当需要通过无线发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到 射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。
本领域技术人员可以理解,为了便于说明,图24仅示出了一个存储器和一个处理器。在实际的终端设备中,可以存在多个处理器和多个存储器。存储器也可以称为存储介质或者存储设备等,本申请实施例对此不作限定。
作为一种可选的实现方式,处理器可以包括基带处理器和中央处理器,基带处理器主要用于对通信协议以及通信数据进行处理,中央处理器主要用于对整个终端设备进行控制,执行软件程序,处理软件程序的数据。图24中的处理器可以集成基带处理器和中央处理器的功能,本领域技术人员可以理解,基带处理器和中央处理器也可以是各自独立的处理器,通过总线等技术互联。本领域技术人员可以理解,终端设备可以包括多个基带处理器以适应不同的网络制式,终端设备可以包括多个中央处理器以增强其处理能力,终端设备的各个部件可以通过各种总线连接。所述基带处理器也可以表述为基带处理电路或者基带处理芯片。所述中央处理器也可以表述为中央处理电路或者中央处理芯片。对通信协议以及通信数据进行处理的功能可以内置在处理器中,也可以以软件程序的形式存储在存储单元中,由处理器执行软件程序以实现基带处理功能。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机 存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (23)

  1. 一种调度数据传输的方法,其特征在于,包括:
    终端设备使用第一传输层数进行数据传输;
    在满足第一预设条件时,所述终端设备执行第一动作;
    在所述终端设备执行所述第一动作之后,所述终端设备接收网络设备发送的第一调度信息,所述第一调度信息用于指示所述终端设备使用第二传输层数进行数据传输,所述第二传输层数小于所述第一传输层数;
    其中,所述执行第一动作包括以下至少一种:
    降低探测参考信号SRS的发射功率;
    降低上行物理共享信道PUSCH的发射功率;
    关闭用于发送SRS的多个天线端口中的至少一个天线端口;
    关闭用于发送PUSCH的多个天线端口中的至少一个天线端口;或
    向所述网络设备发送第一辅助信息消息。
  2. 根据权利要求1所述的方法,其特征在于,所述第一预设条件包括以下至少一种:
    所述终端设备检测到的参考信号接收功率RSRP大于第一阈值;
    所述终端设备处理的数据业务属于第一预设业务类型;
    所述终端设备处理的数据业务的应用层数据流量小于第二阈值;
    所述终端设备的温度大于第三阈值;
    所述终端设备的电量小于第四阈值;或
    所述终端设备携带第一用户身份识别模块SIM卡和第二SIM卡,其中所述第一SIM卡使用所述第一传输层数处理第一数据业务,所述第二SIM卡在空闲态下接收到第二数据业务的请求。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一调度信息为下行控制指示DCI。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述第一辅助信息消息为过热指示消息。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述第一辅助信息消息包括第二最大传输层数,所述第二最大传输层数小于第一最大传输层数,所述第一最大传输层数等于所述网络设备在所述终端设备执行所述第一动作之前所能调度的传输层数的最大值。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,
    所述第一传输层数和所述第二传输层数用于上行数据传输;或者,
    所述第一传输层数和所述第二传输层数用于下行数据传输。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,所述终端设备包括多个用于发送SRS的天线端口,
    所述降低探测参考信号SRS的发射功率,包括:
    降低所述多个用于发送SRS的天线端口中的至少一个天线端口对应的SRS发射功率。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,所述终端设备包括多个用于发送PUSCH的天线端口,
    所述降低上行物理共享信道PUSCH的发射功率,包括:
    降低所述多个用于发送PUSCH的天线端口中的至少一个天线端口对应的PUSCH发射功率。
  9. 根据权利要求1至8中任一项所述的方法,其特征在于,所述用于发送SRS的多个天线端口包括第一端口组,所述第一端口组用于发送用于天线切换AS的SRS,所述终端设备进行下行数据传输,
    所述关闭用于发送SRS的多个天线端口中的至少一个天线端口,包括:
    关闭所述第一端口组中的至少一个端口。
  10. 根据权利要求1至9中任一项所述的方法,其特征在于,所述用于发送SRS的多个天线端口包括第二端口组,所述第二端口组用于发送用于码本CB的SRS,所述终端设备进行上行数据传输,
    所述关闭用于发送SRS的多个天线端口中的至少一个天线端口,包括:
    关闭所述第二端口组中的至少一个端口。
  11. 根据权利要求1至10中任一项所述的方法,其特征在于,所述第一预设条件包括所述终端设备携带第一用户身份识别模块SIM卡和第二SIM卡,其中所述第一SIM卡使用所述第一传输层数处理第一数据业务,所述第二SIM卡在空闲态下接收到第二数据业务的请求,所述方法还包括:
    所述终端设备启动定时器;
    若所述定时器在所述终端设备接收所述第一调度信息之后超时,所述第二SIM卡使用第三传输层数处理所述第二数据业务,所述第一SIM使用所述第二传输层数处理所述第一数据业务;
    若所述定时器在所述终端设备接收所述第一调度信息之前超时,所述第二SIM卡使用所述第三传输层数处理所述第二数据业务,所述第一SIM卡进入空闲态。
  12. 根据权利要求11所述的方法,其特征在于,在所述终端设备启动定时器之前,还包括:
    所述终端设备根据所述第一数据业务的类型和所述第二数据业务的类型,确定所述定时器的时长。
  13. 根据权利要求11或12所述的方法,其特征在于,在所述终端设备执行第一动作之前,还包括:
    所述终端设备根据所述第一数据业务的类型和所述第二数据业务的类型,确定所述第一动作。
  14. 根据权利要求11至13中任一项所述的方法,其特征在于,所述第二传输层数与所述第三传输层数之和小于或等于所述网络设备在所述终端设备执行所述第一动作之后所能调度的传输层数的最大值。
  15. 根据权利要求2至14中任一项所述的方法,其特征在于,所述第一SIM卡使用所述第一传输层数处理第一数据业务,包括:
    所述第一SIM卡使用所述终端设备的全部上行射频资源处理所述第一数据业务。
  16. 根据权利要求2至15中任一项所述的方法,其特征在于,所述第一SIM卡上报的上行传输层数的最大值为2,所述第二SIM卡上报的上行传输层数的最大值为1。
  17. 根据权利要求1至16中任一项所述的方法,其特征在于,
    所述终端设备包括1个发射天线和2个接收天线;或者,
    所述终端设备包括2个发射天线和4个接收天线。
  18. 根据权利要求1至17中任一项所述的方法,其特征在于,还包括:
    所述终端设备使用所述第二传输层数进行数据传输;
    在满足第二预设条件时,所述终端设备执行第二动作;
    在所述终端设备执行所述第二动作之后,所述终端设备接收所述网络设备发送的第二调度信息,所述第二调度信息用于指示所述终端设备使用第四传输层数进行数据传输,所述第四传输层数大于所述第二传输层数;
    其中,所述执行第二动作包括以下至少一种:
    提高探测参考信号SRS的发射功率;
    提高上行物理共享信道PUSCH的发射功率;
    开启被关闭的用于发送SRS的多个天线端口中的至少一个天线端口;
    开启被关闭的用于发送PUSCH的多个天线端口中的至少一个天线端口;或
    向所述网络设备发送第二辅助信息消息。
  19. 根据权利要求18所述的方法,其特征在于,所述第二预设条件包括以下至少一种:
    所述终端设备检测到的参考信号接收功率RSRP小于第五阈值;
    所述终端设备处理的数据业务属于第二预设业务类型;
    所述终端设备处理的数据业务的应用层数据流量大于第六阈值;
    所述终端设备的温度小于第七阈值;
    所述终端设备的电量大于第八阈值;或
    所述终端设备携带第一SIM卡和第二SIM卡,其中所述第一SIM卡处于空闲态或使用所述第二传输层数处理第一数据业务,所述第二SIM卡结束第二数据业务的处理并由业务连接态进入空闲态。
  20. 根据权利要求18或19所述的方法,其特征在于,所述第四传输层数等于所述第一传输层数。
  21. 一种通信装置,其特征在于,包括:
    一个或多个处理器;
    一个或多个存储器;
    所述一个或多个存储器存储一个或多个计算机程序,所述一个或多个计算机程序包括指令,当所述指令被所述一个或多个处理器执行时,使得所述通信装置执行如权利要求1至20中任一项所述的方法。
  22. 一种芯片系统,其特征在于,包括至少一个处理器,当程序指令在所述至少一个处理器中执行时,使得所述至少一个处理器执行如权利要求1至20中任一项所述的方法。
  23. 一种计算机可读存储介质,其特征在于,存储有计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1至20中任一项所述的方法。
PCT/CN2021/116858 2020-10-21 2021-09-07 调度数据传输的方法和通信装置 WO2022083327A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011134432.3 2020-10-21
CN202011134432.3A CN114389651B (zh) 2020-10-21 2020-10-21 调度数据传输的方法和通信装置

Publications (1)

Publication Number Publication Date
WO2022083327A1 true WO2022083327A1 (zh) 2022-04-28

Family

ID=81193622

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/116858 WO2022083327A1 (zh) 2020-10-21 2021-09-07 调度数据传输的方法和通信装置

Country Status (2)

Country Link
CN (1) CN114389651B (zh)
WO (1) WO2022083327A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220217042A1 (en) * 2021-01-06 2022-07-07 Qualcomm Incorporated Techniques for providing assistance information for reduced mimo layers
WO2022251802A1 (en) * 2021-05-24 2022-12-01 Qualcomm Incorporated At least partial disablement of transmission port based on thermal condition and associated capability indication
EP4312463A1 (en) * 2022-07-29 2024-01-31 Beijing Xiaomi Mobile Software Co., Ltd. Data transmission methods and apparatus, terminal device, network-side device and non-transitory computer readable storage medium

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024007785A1 (en) * 2022-07-04 2024-01-11 Mediatek Inc. Method and user equipment for reporting assistance information

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018130115A1 (zh) * 2017-01-13 2018-07-19 华为技术有限公司 一种调整无线资源配置的方法、装置及系统
WO2019095334A1 (zh) * 2017-11-17 2019-05-23 华为技术有限公司 一种下行控制信息的发送方法、终端设备和网络设备
CN110324884A (zh) * 2018-03-30 2019-10-11 维沃移动通信有限公司 传输模式确定方法及设备
CN111586874A (zh) * 2019-02-15 2020-08-25 华为技术有限公司 一种天线参数调整的方法以及相关装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8270359B2 (en) * 2010-03-15 2012-09-18 Motorola Mobility Llc Antenna port information signaling in wireless communication system
CN109565855B (zh) * 2017-03-20 2020-12-29 Oppo广东移动通信有限公司 上行传输的方法、终端设备和网络设备
CN110650485B (zh) * 2018-06-26 2021-02-19 维沃移动通信有限公司 用于srs的天线切换传输方式指示方法、终端设备和网络设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018130115A1 (zh) * 2017-01-13 2018-07-19 华为技术有限公司 一种调整无线资源配置的方法、装置及系统
WO2019095334A1 (zh) * 2017-11-17 2019-05-23 华为技术有限公司 一种下行控制信息的发送方法、终端设备和网络设备
CN110324884A (zh) * 2018-03-30 2019-10-11 维沃移动通信有限公司 传输模式确定方法及设备
CN111586874A (zh) * 2019-02-15 2020-08-25 华为技术有限公司 一种天线参数调整的方法以及相关装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220217042A1 (en) * 2021-01-06 2022-07-07 Qualcomm Incorporated Techniques for providing assistance information for reduced mimo layers
WO2022251802A1 (en) * 2021-05-24 2022-12-01 Qualcomm Incorporated At least partial disablement of transmission port based on thermal condition and associated capability indication
US11683761B2 (en) 2021-05-24 2023-06-20 Qualcomm Incorporated At least partial disablement of transmission port based on thermal condition and associated capability indication
EP4312463A1 (en) * 2022-07-29 2024-01-31 Beijing Xiaomi Mobile Software Co., Ltd. Data transmission methods and apparatus, terminal device, network-side device and non-transitory computer readable storage medium

Also Published As

Publication number Publication date
CN114389651A (zh) 2022-04-22
CN114389651B (zh) 2023-06-23

Similar Documents

Publication Publication Date Title
WO2022083327A1 (zh) 调度数据传输的方法和通信装置
CN111345050B (zh) 对无线通信设备能力的临时处理
US9930561B2 (en) Spatial multiplexing power save learning mode
JP5782664B2 (ja) 通信モードを設定するための方法およびWi−Fiデバイス
KR101824782B1 (ko) 무선 통신 네트워크에서 불연속 동작을 개시하는 사용자 장비
EP3513602B1 (en) Method and apparatus for transmission resource allocation in mobile communications
US10182445B2 (en) Methods and devices for controlling resource usage
EP2898607B1 (en) Antenna resource management for multi-antenna structure
US20190380135A1 (en) Time-division multiplexing for cellular dual connectivity
US11923918B2 (en) System and method for multi-antenna communications
US11425727B2 (en) Techniques for reporting user equipment (UE) panel-related information
CN118216097A (zh) 用于减少连接到通信网络的电子装置中的电流消耗的电子装置和方法
US20210099990A1 (en) Radio communication method, network device, and terminal device
WO2021160150A1 (zh) Iab网络的复用调度方法和iab节点
US11812438B2 (en) Specifying a transmission-time limit for uplink multi-user communication
US11395330B2 (en) Method and apparatus for adaptive scheduling and transmission
US11350447B2 (en) Method and apparatus for operations in different frequency bands within a radio device
KR20200049545A (ko) 무선 통신 시스템에서 측정 동작을 제어하기 위한 장치 및 방법
US20240163822A1 (en) Device-controlled adaptive delay diversity
WO2023202350A1 (zh) 数据传输的方法和装置
WO2023065096A1 (zh) 信号发送的控制方法、装置和系统
WO2023201747A1 (en) Method, device, and system for power saving in wireless networks
WO2023150959A1 (en) Discontinuous reception (drx) implementation based on user equipment (ue) scenario
WO2024065541A1 (zh) 信息指示方法、转发器和网络设备
US11108508B2 (en) Applying more robust transmission procedure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21881746

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21881746

Country of ref document: EP

Kind code of ref document: A1