WO2022082959A1 - 阵列天线以及移动终端 - Google Patents

阵列天线以及移动终端 Download PDF

Info

Publication number
WO2022082959A1
WO2022082959A1 PCT/CN2020/134928 CN2020134928W WO2022082959A1 WO 2022082959 A1 WO2022082959 A1 WO 2022082959A1 CN 2020134928 W CN2020134928 W CN 2020134928W WO 2022082959 A1 WO2022082959 A1 WO 2022082959A1
Authority
WO
WIPO (PCT)
Prior art keywords
array
antenna
array antenna
corner
dielectric layer
Prior art date
Application number
PCT/CN2020/134928
Other languages
English (en)
French (fr)
Inventor
邢红娟
蔡海
Original Assignee
Tcl通讯(宁波)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tcl通讯(宁波)有限公司 filed Critical Tcl通讯(宁波)有限公司
Priority to EP20958534.8A priority Critical patent/EP4231449A1/en
Priority to US18/249,544 priority patent/US20230395991A1/en
Publication of WO2022082959A1 publication Critical patent/WO2022082959A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/065Patch antenna array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/20Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements characterised by the operating wavebands
    • H01Q5/28Arrangements for establishing polarisation or beam width over two or more different wavebands
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/50Feeding or matching arrangements for broad-band or multi-band operation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/045Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular feeding means
    • H01Q9/0457Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular feeding means electromagnetically coupled to the feed line

Definitions

  • the present application belongs to the field of antenna equipment, and in particular, relates to an array antenna and a mobile terminal.
  • millimeter wave technology has become the main means to achieve 5G ultra-high data transmission rates due to its advantages of high transmission frequency, large bandwidth, and high communication system capacity.
  • the current array antenna in the prior art has a large decrease in the maximum gain of the antenna under the maximum scanning angle, and because the number of array elements is small, the array gain is low.
  • the input power of each array element is increased.
  • the heat dissipation of the signal chip is concentrated, making it work at a higher temperature, thereby reducing the efficiency of the entire system.
  • Embodiments of the present application provide an array antenna and a mobile terminal, so as to solve the problem that the maximum antenna gain of the array antenna decreases greatly under the maximum scanning angle and the array gain is low due to the small number of array elements.
  • the input power of each array element which causes the heat dissipation of the chip to be concentrated, the operating temperature of the chip is high, and the efficiency of the entire system is reduced.
  • the present application provides an array antenna, comprising: a first dielectric layer; a ground layer disposed on the first dielectric layer; a second dielectric layer disposed on the ground layer; and a conductive patch layer , set on the second dielectric layer, the conductive patch layer is provided with an M*N linear antenna array, where M, N are positive integers greater than or equal to 2, and each array element in the linear antenna array includes a Rectangular conductive patch and two feed nets.
  • the first dielectric layer is provided with a plurality of first feed lines and a plurality of second feed lines, and the arrangement directions of the first feed lines and the second feed lines are perpendicular to each other.
  • the ground layer is provided with a plurality of first slits and a plurality of second slits, and the arrangement directions of the first slits and the second slits are perpendicular to each other.
  • the arrangement direction of the first slot is perpendicular to the arrangement direction of the first feeder
  • the arrangement direction of the second slot is perpendicular to the arrangement direction of the second feeder
  • the first slot and the first The projection of the feeder on the first dielectric layer intersects, and the projection of the second slot and the second feeder on the first dielectric layer intersects.
  • two opposite corners of the rectangular conductive patch are provided with a square cutout.
  • the two feeding networks of the first array element are in one-to-one correspondence with the two adjacent sides of the first corner of the rectangular conductive slice
  • the two feeding networks of the second array element are Adjacent two sides of the second corner of the rectangular conductive slice are in one-to-one correspondence, wherein the first corner is the corner corresponding to the square cutout, and the second corner is the adjacent corner of the first corner.
  • each of the array elements of the linear antenna array receives or transmits a horizontally polarized signal and a vertically polarized signal; or the first array element of the linear antenna array receives or transmits a horizontally polarized signal, and the first array element of the linear antenna array receives or transmits a horizontally polarized signal.
  • Two array elements receive or transmit vertically polarized signals; or the first array element of the linear antenna array receives or transmits vertically polarized signals, and the second array element receives or transmits horizontally polarized signals.
  • the feeding mode of the array antenna includes coupling feeding.
  • the working frequency bands of each of the feeder networks include a 28GHz frequency band and a 39GHz frequency band.
  • the present application provides a mobile terminal including the above-mentioned array antenna.
  • Embodiments of the present application provide an array antenna and a mobile terminal.
  • the number of array elements is increased, so that the maximum gain reduction of the array antenna in the maximum scanning area is reduced, and by setting each feeding network Both support 28GHz frequency band and 39GHz frequency band, realize the differentiated communication of 2*2MIMO signals for each array element, so that the array antenna supports dual-frequency dual-polarization signals, and at the same time can automatically adjust the antenna array form according to the strength of the signal, reducing the input power , thereby improving the energy efficiency of the system and dynamically adjusting the operating temperature of the chip.
  • FIG. 1 is a schematic structural diagram of an array antenna provided by an embodiment of the present application.
  • FIG. 2 is a top view of an array antenna provided by an embodiment of the present application.
  • FIG. 3 is a top view of another array antenna provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a mobile terminal provided by an embodiment of the present application.
  • the present application provides an array antenna (in which FIG. 1 only shows a part of the structure of the array antenna), which includes a first dielectric layer 110 , a first feeder 111 , a second feeder 112 , a ground layer 120 , a first A slit 121 , a second slit 122 , a second matrix layer 130 , and a conductive patch layer 140 .
  • the array antenna is suitable for mobile phones, customer premise equipment (CPE), computers, extended reality equipment and TV equipment.
  • the first dielectric layer 110 includes a plurality of first feed lines 111 and a plurality of second feed lines 112, and the arrangement directions of the first feed lines 111 and the second feed lines 112 are perpendicular to each other.
  • the first dielectric layer 110 is preferably a dielectric material with low loss and high radiation efficiency.
  • the first dielectric layer 110 is a dielectric substrate Rogers 4350B.
  • the ground layer 120 is disposed on the first dielectric layer 110 .
  • the ground layer 120 is provided with a plurality of first slits 121 and a plurality of second slits 122 , and the arrangement directions of the first slits 121 and the second slits 122 are perpendicular to each other.
  • the arrangement direction of the first slot 121 is perpendicular to the arrangement direction of the first feeder 111
  • the arrangement direction of the second slot 122 is perpendicular to the arrangement direction of the second feeder 112
  • the projection of the first feed line 111 on the first dielectric layer 110 intersects
  • the projection of the second slot 122 and the second feed line 112 on the first dielectric layer 110 intersects.
  • the shapes of the first slit 121 and the second slit 122 may be oval, H-shaped, U-shaped, or L-shaped, etc. in addition to a rectangle, and the ground layer 120 is made of a metal material.
  • the second dielectric layer 130 is disposed on the ground layer 120 .
  • the second dielectric layer 130 is preferably a dielectric material with low loss and high radiation efficiency.
  • the second dielectric layer 130 is a dielectric substrate Rogers 4350B.
  • the conductive patch layer 140 is disposed on the second dielectric layer 130 .
  • the conductive patch layer 140 is provided with an M*N linear antenna array, where M and N are positive integers greater than or equal to 2, so that the form of the antenna array can be automatically adjusted according to the strength of the signal, so as to reduce the input power of each array element , and improve the working energy efficiency, and dynamically adjust the working temperature of the chip.
  • Each array element in the linear antenna array includes a rectangular conductive patch and two feeding networks.
  • the working frequency bands of each of the feed networks include a 28GHz frequency band and a 39GHz frequency band, and only two feeder networks are set for each array element to simplify signal feeding into the network and reduce coupling between the feeders.
  • the conductive patch layer 140 is provided with a 2*4 linear antenna array, and each array element 141 in the linear antenna array includes a rectangular conductive patch 1411 and two feed networks 1412.
  • the linear antenna array includes a first array element and a second array element.
  • the two feeding networks 1412 of the first array element are both adjacent to the first corner of the rectangular conductive slice 1411.
  • One-to-one correspondence, the two feeding networks 1412 of the second array element are in a one-to-one correspondence with the two adjacent sides of the second corner of the rectangular conductive slice 1411, the first corner and the second Corners are adjacent corners.
  • the dual-frequency operation of the microstrip antenna 10 can be realized under a single feed, which is beneficial to improve the radiation efficiency of the dual-frequency antenna , and reduce the difficulty of the production process.
  • the array antenna 100 can operate at two antenna operating frequencies when the second feeder 112 is fed, and the two antenna operating frequencies are the same as the two antenna operating frequencies of the array antenna 100 when the first feeder 111 is fed. same.
  • the linear antenna array includes a first array element and a second array element.
  • the two feeding networks 1412 of the first array element are both adjacent to the first corner of the rectangular conductive slice 1411.
  • the two feeding networks 1412 of the second array element are in a one-to-one correspondence with the two adjacent sides of the second corner of the rectangular conductive slice 1411 , wherein the first corner is the square
  • the corner corresponding to the cutout, the second corner is the adjacent corner of the first corner, so that the conductive patch has two sides of different lengths in the setting direction of the first feeder, which can be realized under a single feeder
  • the dual-frequency operation of the microstrip antenna can improve the radiation efficiency of the dual-frequency antenna and reduce the difficulty of the manufacturing process
  • the feeding mode of the array antenna includes coupling feeding. Specifically, the energy of the feeder (including the first feeder 111 and the second feeder 112 ) on the first dielectric layer 110 is coupled to the rectangular shape on the above-mentioned conductive patch layer 140 through the slot (including the first slot 121 and the second slot 122 ) The conductive patch 141 radiates energy.
  • the above arrangement can realize the operation of the two antennas of the array antenna.
  • Orthogonal polarization of frequencies that is, the array antenna supports dual-frequency dual-polarized signals.
  • the setting direction of the first feeder 111 is the horizontal direction
  • the setting direction of the second feeder 112 is the vertical direction, corresponding to the first feeder 111 and the
  • the second feed line 112 respectively feeds the above-mentioned rectangular conductive patch horizontally and vertically, so as to realize the horizontal polarization and vertical polarization of the two antenna operating frequencies (such as 28GHz and 39GHz) of the array antenna.
  • the isolation between each group of horizontally polarized and vertically polarized signals is below -30dB.
  • Each of the array elements 141 of the linear antenna array receives or transmits a horizontally polarized signal and a vertically polarized signal to realize a high-gain antenna.
  • the first array element of the linear antenna array receives or transmits horizontally polarized signals, and the second array element receives or transmits vertically polarized signals; or the first array element of the linear antenna array receives or transmits vertically polarized signals signal, the second array element receives or transmits horizontally polarized signals to implement a low-gain antenna.
  • This working mode can improve the coupling between the array elements, thereby increasing the antenna gain.
  • the abscissa is frequency/GHz
  • the ordinate is S-parameter gain/dB (dB).
  • the size of the array antenna is 23.2mm ⁇ 8.4mm ⁇ 1.06mm ( length ⁇ width ⁇ height)
  • the operating frequencies are 28GHz and 39GHz respectively
  • the reflection coefficient of the antenna is less than -10dB, so as to ensure high radiation efficiency of the antenna.
  • the gain of the 2*4 line array in the 28GHz band is about 1dB higher than that of the 1*4 line array; the gain of the 2*4 line array in the 39GHz band is about 3dB higher than that of the 1*4 line array.
  • the array antenna works in the 39GHz frequency band, at the maximum scanning angle of ⁇ 45°, the gain of the 1*4 linear array decreases by 3.7dB, but the gain of the 2*4 linear array only decreases by 1.9dB.
  • the number of array elements is increased through the setting of multiple array elements, thereby reducing the maximum gain reduction of the array antenna in the maximum scanning area. Yuan's 2*2 MIMO signal differentiated communication, so that the array antenna supports dual-frequency dual-polarized signals, and at the same time can automatically adjust the antenna array form according to the strength of the signal, reduce the input power, thus improve the energy efficiency of the system, and dynamically adjust the chip Operating temperature.
  • Mobile terminal 500 including an array antenna 100 .
  • Mobile terminals include various 5G millimeter wave communication mobile terminal products, such as mobile phones, Customer Premise Equipment (CPE), and computers.
  • CPE Customer Premise Equipment

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本申请提供一种阵列天线以及移动终端。本申请通过多列阵元的设置,增加阵元数量,从而使阵列天线在最大扫描区域的最大增益减小量下降,并通过设置每一馈电网络均支持28GHz频段和39GHz频段,实现每一阵元的2*2 MIMO信号差异化通讯,从而实现阵列天线支持双频双极化信号,同时能够根据信号的强弱自动调整天线阵列形式,减小输入功率,进而提升系统工作能效,以及动态调节芯片工作温度。

Description

阵列天线以及移动终端
本申请要求于2020年10月19日提交中国专利局、申请号为202011120353.7、发明名称为“阵列天线以及移动终端”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请属于天线设备领域,尤其涉及一种阵列天线以及移动终端。
背景技术
随着第五代移动通信(5G)的到来,毫米波技术因其具有传输频率高、带宽大以及通信系统容量高等优点,已成为实现5G超高数据传输速率的主要手段。
但是现在现有技术中的阵列天线在最大扫描角度下,天线最大增益下降较大,且由于阵元数量较少,阵列增益较低,为满足通讯网络要求,每个阵元输入功率增大,导致信号芯片散热集中,使其工作温度较高,从而降低整个系统的效率。
技术问题
本申请实施例提供一种阵列天线以及移动终端,以解决阵列天线在最大扫描角度下,天线最大增益下降较大的问题以及由于阵元数量较少,阵列增益较低,为满足通讯网络要求,而不得不增大每个阵元输入功率所导致的芯片散热集中,芯片工作温度较高,以及降低整个系统的效率的问题。
技术解决方案
本申请提供一种阵列天线,包括:一第一介质层;一接地层,设于所述第一介质层上;一第二介质层,设于所述接地层上;以及一导电贴片层,设于所述第二介质层上,所述导电贴片层设有M*N直线天线阵列,其中M,N为大于等于2的正整数,所述直线天线阵列中的每一阵元包括一矩形导电贴片以及两个馈电网络。
进一步地,所述第一介质层设有多个第一馈线和多个第二馈线,所述第一馈线与所述第二馈线的设置方向相互垂直。
进一步地,所述接地层设有多个第一缝隙和多个第二缝隙,所述第一缝隙和所述第二缝隙的设置方向相互垂直。
进一步地,所述第一缝隙的设置方向垂直于所述第一馈线的设置方向,所述第二缝隙的设置方向垂直于所述第二馈线的设置方向,且所述第一缝隙和第一馈线在所述第一介质层上的投影相交,所述第二缝隙和第二馈线在所述第一介质层上的投影相交。
进一步地,所述矩形导电贴片的两个相对角均设有一正方形切口。
进一步地,第一列阵元的两个所述馈电网络均与所述矩形导电切片的第一角相邻的两边一一对应,第二列阵元的两个所述馈电网络均与所述矩形导电切片的第二角相邻的两边一一对应,其中所述第一角为所述正方形切口对应的角,所述第二角为所述第一角的相邻角。
进一步地,所述直线天线阵列的每一所述阵元均接收或发送水平极化信号以及垂直极化信号;或者所述直线天线阵列的第一列阵元接收或发送水平极化信号,第二列阵元接收或发送垂直极化信号;或者所述直线天线阵列的第一列阵元接收或发送垂直极化信号,第二列阵元接收或发送水平极化信号。
进一步地,所述阵列天线的馈电方式包括耦合馈电。
进一步地,每一所述馈电网络的工作频段均包括28GHz频段和39GHz频段。
根据本申请的另一方面,本申请提供一种移动终端,包括如上述的阵列天线。
有益效果
本申请实施例提供一种阵列天线以及移动终端,通过多列阵元的设置,增加阵元数量,从而使阵列天线在最大扫描区域的最大增益减小量下降,并通过设置每一馈电网络均支持28GHz频段和39GHz频段,实现每一阵元的2*2MIMO信号差异化通讯,从而实现阵列天线支持双频双极化信号,同时能够根据信号的强弱自动调整天线阵列形式,减小输入功率,进而提升系统工作能效,以及动态调节芯片工作温度。
附图说明
下面结合附图,通过对本申请的具体实施方式详细描述,将使本申请的技术方案及其有益效果显而易见。
图1是本申请实施例提供的一种阵列天线的结构示意图。
图2是本申请实施例提供的一种阵列天线的俯视图。
图3是本申请实施例提供的另一种阵列天线的俯视图。
图4a-4h是本申请实施例提供的仿真图。
图5是本申请实施例提供的移动终端的结构示意图。
本发明的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
如图1所示,本申请提供一种阵列天线(其中图1仅示出该阵列天线的部分结构),包括第一介质层110、第一馈线111、第二馈线112、接地层120、第一缝隙121、第二缝隙122、第二基质层130、导电贴片层140。该阵列天线适用于手机、客户前置设备(Customer Premise Equipment,CPE)、电脑、拓展现实设备以及TV设备。
第一介质层110多个第一馈线111和多个第二馈线112,所述第一馈线111与所述第二馈线112的设置方向相互垂直。其中第一介质层110优选为低损耗且高辐射效率的介质材料。本实施例中,第一介质层110为介质基片Rogers 4350B。
接地层120设于所述第一介质层110上。所述接地层120设有多个第一缝隙121和多个第二缝隙122,所述第一缝隙121和所述第二缝隙122的设置方向相互垂直。所述第一缝隙121的设置方向垂直于所述第一馈线111的设置方向,所述第二缝隙122的设置方向垂直于所述第二馈线112的设置方向,且所述第一缝隙121和第一馈线111在所述第一介质层110上的投影相交,所述第二缝隙122和第二馈线112在所述第一介质层110上的投影相交。其中,第一缝隙121和第二缝隙122的形状除了矩形之外,还可以为椭圆形、H字形、U 字形或L字形等,所述接地层120为金属材料。
第二介质层130设于所述接地层120上。其中第二介质层130优选为低损耗且高辐射效率的介质材料。本实施例中,第二介质层130为介质基片Rogers 4350B。
导电贴片层140设于所述第二介质层130上。所述导电贴片层140设有M*N直线天线阵列,其中M,N为大于等于2的正整数,从而可以根据信号的强弱自动调整天线阵列形式,实现减小每一阵元的输入功率,并且提升工作能效,以及动态调节芯片工作温度。所述直线天线阵列中的每一阵元包括一矩形导电贴片以及两个馈电网络。每一所述馈电网络的工作频段均包括28GHz频段和39GHz频段,且每一阵元仅设两个馈电网络,以简化信号馈入网络以及减小各个馈电之间的耦合。
结合图2,在一实施例中,所述导电贴片层140设有2*4直线天线阵列,所述直线天线阵列中的每一阵元141包括一矩形导电贴片1411以及两个馈电网络1412。所述直线天线阵列包括第一列阵元和第二列阵元,所述第一列阵元的两个所述馈电网络1412均与所述矩形导电切片1411的第一角相邻的两边一一对应,所述第二列阵元的两个所述馈电网络1412均与所述矩形导电切片1411的第二角相邻的两边一一对应,所述第一角和所述第二角为相邻角。通过利用矩形导电贴片1411在第一馈线111的设置方向上具有的两种不同长度的边,能够在单一馈电下实现微带天线10的双频工作,有利于提高双频天线的辐射效率,并降低制作工艺的难度。对应上述阵列天线100在第二馈线112馈电时能够工作于两个天线工作频率,且这两个天线工作频率与该阵列天线100在上述第一馈线111馈电时具有的两个天线工作频率相同。
结合图3,在另一实施例中,所述矩形导电贴片1411的两个相对角均设有一正方形切口。所述直线天线阵列包括第一列阵元和第二列阵元,所述第一列阵元的两个所述馈电网络1412均与所述矩形导电切片1411的第一角相邻的两边一一对应,所述第二列阵元的两个所述馈电网络1412均与所述矩形导电切片1411的第二角相邻的两边一一对应,其中所述第一角为所述正方形切口对应的角,所述第二角为所述第一角的相邻角,这样使得导电贴片在第一馈线的设置方向上具有两种不同长度的边,进而能够在单一馈电下实现微带天线的 双频工作,以提高双频天线的辐射效率,并降低制作工艺的难度
所述阵列天线的馈电方式包括耦合馈电。具体的,第一介质层110上的馈线(包括第一馈线111和第二馈线112)的能量通过缝隙(包括第一缝隙121和第二缝隙122)耦合至上述导电贴片层140上的矩形导电贴片141,从而将能量辐射出去。
由于所述第一馈线121与所述第二馈线122的设置方向相互垂直,且每一阵元141的两个馈电网络1412正交设计,因此,通过上述设置能够实现阵列天线的两个天线工作频率的正交极化,也即实现阵列天线支持双频双极化信号,譬如,第一馈线111的设置方向为水平方向,第二馈线112的设置方向为垂直方向,对应第一馈线111和第二馈线112分别对上述矩形导电贴片进行水平馈电和垂直馈电,进而能够实现阵列天线的两个天线工作频率(比如28GHz和39GHz)的水平极化和垂直极化,并且,由于正交馈电,每组水平极化与垂直极化信号间的隔离在-30dB以下。
所述直线天线阵列的每一所述阵元141均接收或发送水平极化信号以及垂直极化信号,以实现高增益天线。所述直线天线阵列的第一列阵元接收或发送水平极化信号,第二列阵元接收或发送垂直极化信号;或者所述直线天线阵列的第一列阵元接收或发送垂直极化信号,第二列阵元接收或发送水平极化信号,以实现低增益天线。该工作方式可改善阵元之间的耦合,从而提升天线增益。
参阅图4a至4h,其中横坐标为频率/吉赫(Frequency/GHz),纵坐标为S参数增益/分贝(dB)具体举例而言,阵列天线的尺寸为23.2mm×8.4mm×1.06mm(长×宽×高),其工作频率分别为28GHz和39GHz,当阵列天线10采用上述缝隙耦合馈电方式,且利用上述第一馈线111(设置方向为水平方向)和第二馈线112(设置方向为垂直方向)对每一矩形导电贴片131进行同时馈电时,天线反射系数小于-10dB,以确保天线高的辐射效率。
如下表所示:
Figure PCTCN2020134928-appb-000001
28GHz频段2*4线阵比1*4线阵增益提升约1dB;39GHz频段2*4线阵比1*4线阵增益提升约3dB。当阵列天线工作在39GHz频段时,在最大扫描角度±45°,1*4线阵增益下降了3.7dB,但是2*4线阵增益只下降了1.9dB。
本申请通过多列阵元的设置,增加阵元数量,从而使阵列天线在最大扫描区域的最大增益减小量下降,并通过设置每一馈电网络均支持28GHz频段和39GHz频段,实现每一阵元的2*2MIMO信号差异化通讯,从而实现阵列天线支持双频双极化信号,同时能够根据信号的强弱自动调整天线阵列形式,减小输入功率,进而提升系统工作能效,以及动态调节芯片工作温度。
如图5所示,本申请提供一种移动终端500,包括阵列天线100。移动终端包括各类5G毫米波通讯移动终端产品,例如手机、客户前置设备(Customer Premise Equipment,CPE)和电脑等设备。
以上对本申请实施例所提供的一种阵列天线以及移动终端进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (10)

  1. 一种阵列天线,其包括:
    一第一介质层;
    一接地层,设于所述第一介质层上;
    一第二介质层,设于所述接地层上;以及
    一导电贴片层,设于所述第二介质层上,所述导电贴片层设有M*N直线天线阵列,其中M,N均为大于等于2的正整数,所述直线天线阵列中的每一阵元包括一矩形导电贴片以及两个馈电网络。
  2. 根据权利要求1所述的阵列天线,其中所述第一介质层设有多个第一馈线和多个第二馈线,所述第一馈线与所述第二馈线的设置方向相互垂直。
  3. 根据权利要求2所述的阵列天线,其中所述接地层设有多个第一缝隙和多个第二缝隙,所述第一缝隙和所述第二缝隙的设置方向相互垂直。
  4. 根据权利要求3所述的阵列天线,其中所述第一缝隙的设置方向垂直于所述第一馈线的设置方向,所述第二缝隙的设置方向垂直于所述第二馈线的设置方向,且所述第一缝隙和第一馈线在所述第一介质层上的投影相交,所述第二缝隙和第二馈线在所述第一介质层上的投影相交。
  5. 根据权利要求1所述的阵列天线,其中所述矩形导电贴片的两个相对角均设有一正方形切口。
  6. 根据权利要求5所述的阵列天线,其中所述直线天线阵列包括第一列阵元和第二列阵元,所述第一列阵元的两个所述馈电网络均与所述矩形导电切片的第一角相邻的两边一一对应,所述第二列阵元的两个所述馈电网络均与所述矩形导电切片的第二角相邻的两边一一对应,其中所述第一角为所述正方形切口对应的角,所述第二角为所述第一角的相邻角。
  7. 根据权利要求6所述的阵列天线,其中
    所述直线天线阵列的每一所述阵元均接收或发送水平极化信号以及垂直极化信号;或者
    所述直线天线阵列的第一列阵元接收或发送水平极化信号,第二列阵元接收或发送垂直极化信号;或者
    所述直线天线阵列的第一列阵元接收或发送垂直极化信号,第二列阵元接 收或发送水平极化信号。
  8. 根据权利要求1所述的阵列天线,其中所述阵列天线的馈电方式包括耦合馈电。
  9. 根据权利要求1所述的阵列天线,其中每一所述馈电网络的工作频段均包括28GHz频段和39GHz频段。
  10. 一种移动终端,其包括如权利要求1所述的阵列天线。
PCT/CN2020/134928 2020-10-19 2020-12-09 阵列天线以及移动终端 WO2022082959A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20958534.8A EP4231449A1 (en) 2020-10-19 2020-12-09 Array antenna and mobile terminal
US18/249,544 US20230395991A1 (en) 2020-10-19 2020-12-09 Array antenna and mobile terminal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011120353.7 2020-10-19
CN202011120353.7A CN112271449A (zh) 2020-10-19 2020-10-19 阵列天线以及移动终端

Publications (1)

Publication Number Publication Date
WO2022082959A1 true WO2022082959A1 (zh) 2022-04-28

Family

ID=74337619

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/134928 WO2022082959A1 (zh) 2020-10-19 2020-12-09 阵列天线以及移动终端

Country Status (4)

Country Link
US (1) US20230395991A1 (zh)
EP (1) EP4231449A1 (zh)
CN (1) CN112271449A (zh)
WO (1) WO2022082959A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116154478A (zh) * 2023-04-19 2023-05-23 湖南大学 小型化mimo天线
WO2024040765A1 (zh) * 2022-08-23 2024-02-29 成都天锐星通科技有限公司 一种微带天线及通信设备

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230395981A1 (en) * 2022-06-02 2023-12-07 Argo Semiconductors SA Multilayer printed antenna arrangements

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201536151U (zh) * 2009-08-14 2010-07-28 南京理工大学 X波段双极化低互耦微带天线
CN105514611A (zh) * 2015-12-28 2016-04-20 中国科学院国家空间科学中心 一种口径耦合微带反射阵单元及反射阵天线
US20170279197A1 (en) * 2014-05-30 2017-09-28 King Fahd University Of Petroleum And Minerals Switched beam antenna system and hand held electronic device
CN110061353A (zh) * 2019-04-22 2019-07-26 东南大学 一种小型化Ku全频段卫星天线阵列
CN110137672A (zh) * 2019-04-01 2019-08-16 华为技术有限公司 一种集边射和端射于一体的波束扫描天线阵列
CN110600869A (zh) * 2019-09-27 2019-12-20 Tcl移动通信科技(宁波)有限公司 一种微带天线及移动终端

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN211480293U (zh) * 2020-03-16 2020-09-11 成都天锐星通科技有限公司 一种多层微带天线阵元及天线阵面

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201536151U (zh) * 2009-08-14 2010-07-28 南京理工大学 X波段双极化低互耦微带天线
US20170279197A1 (en) * 2014-05-30 2017-09-28 King Fahd University Of Petroleum And Minerals Switched beam antenna system and hand held electronic device
CN105514611A (zh) * 2015-12-28 2016-04-20 中国科学院国家空间科学中心 一种口径耦合微带反射阵单元及反射阵天线
CN110137672A (zh) * 2019-04-01 2019-08-16 华为技术有限公司 一种集边射和端射于一体的波束扫描天线阵列
CN110061353A (zh) * 2019-04-22 2019-07-26 东南大学 一种小型化Ku全频段卫星天线阵列
CN110600869A (zh) * 2019-09-27 2019-12-20 Tcl移动通信科技(宁波)有限公司 一种微带天线及移动终端

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024040765A1 (zh) * 2022-08-23 2024-02-29 成都天锐星通科技有限公司 一种微带天线及通信设备
CN116154478A (zh) * 2023-04-19 2023-05-23 湖南大学 小型化mimo天线
CN116154478B (zh) * 2023-04-19 2023-06-20 湖南大学 小型化mimo天线

Also Published As

Publication number Publication date
US20230395991A1 (en) 2023-12-07
EP4231449A1 (en) 2023-08-23
CN112271449A (zh) 2021-01-26

Similar Documents

Publication Publication Date Title
WO2022082959A1 (zh) 阵列天线以及移动终端
US20220173495A1 (en) Antenna module and electronic device
CN104103906A (zh) 一种多层pcb工艺的低成本微波毫米波圆极化天线
CN106299727B (zh) 低互耦4单元超宽带mimo天线
CN109742536B (zh) 一种wlan/毫米波大频率比三频陶瓷天线
US20210313695A1 (en) 5g mmw dual-polarized antenna module and handheld device
CN208690490U (zh) 一种基于共面波导的对地开槽的圆极化天线
CN206585077U (zh) 一种宽带双极化天线阵列
WO2021139016A1 (zh) 一种 5g 毫米波双极化天线模组及终端设备
WO2021104191A1 (zh) 天线单元及电子设备
CN114976665B (zh) 一种加载频率选择表面辐射稳定的宽带双极化偶极子天线
WO2023088026A1 (zh) 一种多频段缝隙耦合天线
WO2021083214A1 (zh) 天线单元及电子设备
CN110676579A (zh) 一种平面扩频宽带基站天线
CN111864379A (zh) 一种缝隙耦合的宽带单馈圆极化微带天线
CN108539400B (zh) 一种宽频带水平极化全向天线
CN111244604B (zh) 一种用于移动终端的双极化毫米波介质谐振器天线
WO2022063280A1 (zh) 天线单元、阵列、装置及终端
CN212303918U (zh) 一种缝隙耦合的宽带单馈圆极化微带天线
CN212380557U (zh) 一种低剖面塑料振子及5g基站天线
CN115579611B (zh) 一种金属±45°双极化天线
WO2021139014A1 (zh) 5g 双极化天线模组及终端设备
CN110676571A (zh) 一种5G制式4.9GHz宽带小型双极化振子
CN113036404B (zh) 低剖面超宽带双极化天线振子、天线阵列及基站设备
CN110600869A (zh) 一种微带天线及移动终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20958534

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020958534

Country of ref document: EP

Effective date: 20230519