WO2022082510A1 - 通信方法及装置 - Google Patents
通信方法及装置 Download PDFInfo
- Publication number
- WO2022082510A1 WO2022082510A1 PCT/CN2020/122516 CN2020122516W WO2022082510A1 WO 2022082510 A1 WO2022082510 A1 WO 2022082510A1 CN 2020122516 W CN2020122516 W CN 2020122516W WO 2022082510 A1 WO2022082510 A1 WO 2022082510A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- harq process
- authorization
- data
- information
- grant
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
Definitions
- the embodiments of the present application relate to the field of communication technologies, and in particular, to a communication method and apparatus.
- a significant feature of the fifth generation (5th generation, 5G) mobile communication system compared with the fourth generation (4th generation, 4G) mobile communication system is the increase of ultra-reliable and low-latency communication (ultra-reliable and low-latency communication).
- communications, URLLC URLLC
- URLLC's business types include many, typical use cases include industrial control, autonomous driving, telesurgery, and smart grids.
- a typical requirement is that the reliability of sending 32 bytes of data within 1 millisecond (millisecond, ms) should reach 99.999%. It should be pointed out that the above performance indicators are only examples. Different URLLC services may have different requirements for reliability. For example, in some extremely demanding industrial control application scenarios, the success probability of URLLC service data transmission needs to be within 0.25ms. to 99.9999999%.
- the present application provides a communication method and apparatus to reduce transmission delay.
- the present application provides a communication method, where the execution body of the method is a terminal device or a chip or module in the terminal device.
- the terminal device is used as the execution subject as an example for description.
- the terminal device sends the information of the first HARQ process to the network device, where the first authorization is the first configuration authorization;
- the terminal device receives an uplink grant from the network device, and the above uplink grant is associated with the first HARQ process; the above-mentioned first data is transmitted through the above-mentioned uplink grant.
- the terminal device can send the information of the first HARQ process to the network device , the first data is transmitted with the uplink grant allocated by the network device for the above-mentioned first HARQ process without waiting for the configuration grant, thereby reducing the delay of data transmission.
- the sending the information of the first HARQ process to the network device includes: sending the information of the first HARQ process to the network device through a second authorization, where the second authorization is a configuration Authorization or dynamic authorization.
- the second authorization is a configuration authorization
- the second authorization can also be called a second configuration authorization
- the second authorization can also be called a second dynamic authorization.
- the terminal device when the second authorization is a configuration authorization, the information of the first HARQ process is carried in the uplink control information; or, when the second authorization is a configuration authorization, the above-mentioned second authorization is a configuration authorization.
- the information of the first HARQ process is carried in second data, the second data is newly transmitted data, and the second data is different from the first data.
- the second authorization is a dynamic authorization
- the information of the first HARQ process is carried in second data
- the second data is newly transmitted data
- the second The data is different from the above-mentioned first data.
- the information of the first HARQ process when the first grant and the second grant are located in different cells, the information of the first HARQ process further includes a cell identifier of the cell where the first grant is located.
- the terminal device can send the information of the first HARQ process to the network device through the second authorization, and notify the network device to allocate the uplink of the cell where the first authorization is located for the first HARQ process through the cell identifier of the cell where the first authorization is located. authorized.
- the above-mentioned information of the first HARQ process includes an identifier of the first HARQ process.
- the information of the above-mentioned first HARQ process is a bitmap, and the bits corresponding to the first HARQ process in the above-mentioned bitmap are used to indicate that there is untransmitted data in the above-mentioned first HARQ process .
- the untransmitted first data in the buffer of the first HARQ process associated with the first grant includes: the first grant and the third grant overlap in the time domain , the priority of the first authorization is lower than the priority of the third authorization; or, the channel corresponding to the first authorization is not idle.
- the present application provides a communication method, where the execution body of the method is a network device or a chip or module in the network device.
- a network device is used as the execution subject for description.
- the method described in the second aspect is a method on the network side corresponding to the method described in the first aspect, so the beneficial effects that can be achieved in the first aspect can also be achieved.
- the above-mentioned receiving the information of the HARQ process of the first HARQ process from the terminal device includes: receiving the information of the first HARQ process sent by the terminal device through the second authorization, the above-mentioned
- the second authorization is configuration authorization or dynamic authorization.
- the second grant is a configuration grant
- the information of the first HARQ process is carried in the uplink control information; or, when the second grant is a configuration grant, the above
- the information of the first HARQ process is carried in second data, the second data is newly transmitted data, and the second data is different from the first data.
- the second authorization is a dynamic authorization
- the information of the first HARQ process is carried in the second data
- the second data is newly transmitted data
- the second The data is different from the above-mentioned first data.
- the information of the first HARQ process when the first grant and the second grant are located in different cells, the information of the first HARQ process further includes a cell identifier.
- the above-mentioned information of the first HARQ process includes an identifier of the first HARQ process.
- the information of the first HARQ process is a bitmap, and the bits corresponding to the first HARQ process in the bitmap are used to indicate that there is untransmitted data in the first HARQ process .
- the untransmitted first data in the cache of the first HARQ process includes: the first authorization and the third authorization overlap in the time domain, and the first authorization
- the priority of the above-mentioned third authorization is lower than that of the above-mentioned third authorization; or, the channel corresponding to the above-mentioned first authorization is not idle.
- the present application provides a communication device, including functional modules for implementing the method in the first aspect or any possible implementation manner of the first aspect.
- the present application provides a communication apparatus, including functional modules for implementing the method in the second aspect or any possible implementation manner of the second aspect.
- the present application provides a communication device, the device may include: a processor and a memory, the processor is coupled to the memory, and the processor is configured to implement the method provided in the first aspect.
- a sixth aspect provides a communication device, the device may include: a processor and a memory, the processor is coupled to the memory, and the processor is configured to implement the method provided in the second aspect.
- the present application provides a communication device, which includes: a processor and an interface circuit, where the interface circuit is configured to receive signals from other communication devices other than the above communication device and transmit to the above processor or transfer signals from the above
- the signal of the processor is sent to other communication devices other than the above-mentioned communication device, and the above-mentioned processor is used to implement the method provided in the above-mentioned first aspect by means of a logic circuit or executing code instructions.
- the present application provides a communication device, which includes: a processor and an interface circuit, where the interface circuit is configured to receive signals from other communication devices other than the above communication device and transmit to the above processor or transfer signals from the above
- the signal of the processor is sent to other communication devices other than the above-mentioned communication device, and the above-mentioned processor is used to implement the method provided in the second aspect above by using a logic circuit or executing code instructions.
- the present application provides a computer-readable storage medium for storing a computer program, the computer program causing a computer to execute the method according to any one of the first aspect or the second aspect.
- Tenth aspect The present application provides a computer program product, wherein the computer program product includes instructions, and when the instructions are executed by a computer, the method as described in any one of the first aspect or the second aspect is implemented.
- a computer program includes codes or instructions, when the codes or instructions are executed, the methods in any possible implementation manners of the foregoing first and second aspects are implemented.
- a twelfth aspect provides a chip system, where the chip system includes a processor, and may further include a memory, for implementing at least one of the methods described in the first and second aspects.
- the chip system can be composed of chips, and can also include chips and other discrete devices.
- the present application provides a communication system, comprising the communication device as described in any one of the third, fifth, and seventh aspects, and the communication as described in any one of the fourth, sixth, and eighth aspects device.
- FIG. 1 is a schematic structural diagram of a communication system to which an embodiment of the present application is applied;
- FIG. 2 is a schematic flowchart of a communication method provided by an embodiment of the present application.
- FIG. 3 is a schematic diagram of an identifier used for sending information of a first HARQ process according to an embodiment of the present application
- FIG. 4 is a schematic diagram of a bitmap used for sending information of a first HARQ process according to an embodiment of the present application
- 5 to 6 are schematic structural diagrams of possible communication apparatuses provided by embodiments of the present application.
- LTE long term evolution
- 5th generation 5th generation
- WiFi Wireless Fidelity
- future communication system a system that integrates multiple communication systems, etc.
- NR new radio
- eMBB enhanced mobile broadband
- ultra-reliable and low-latency communication ultra-reliable and low-latency communication
- URLLC ultra-reliable low-latency communication
- MTC machine type communication
- mMTC massive machine type communication
- D2D device-to-device
- V2X vehicle to vehicle
- IoT Internet of things
- Communication between communication devices may include: communication between a network device and a terminal device, communication between a network device and a network device, and/or communication between a terminal device and a terminal device.
- the term “communication” may also be described as "transmission”, “information transmission”, or “signal transmission”, or the like. Transmission can include sending and/or receiving.
- the technical solution is described by taking the communication between the network device and the terminal device as an example. Those skilled in the art can also use the technical solution for communication between other scheduling entities and subordinate entities, such as a macro base station and a micro base station.
- Air interface resources include one or more of the following resources: time domain resources, frequency domain resources, code resources and space resources.
- the multiple types may be two, three, four or more types, which are not limited in the embodiments of the present application.
- the communication between the network device and the terminal device includes: the network device sends downlink signals/information to the terminal device, and/or the terminal device sends uplink signals/information to the network device.
- "/" may indicate that the objects associated before and after are an "or” relationship, for example, A/B may indicate A or B; “and/or” may be used to describe that there are three types of associated objects A relationship, eg, A and/or B, can mean that A exists alone, A and B exist simultaneously, and B exists alone. where A and B can be singular or plural.
- words such as “first” and “second” may be used to distinguish technical features with the same or similar functions. The words “first”, “second” and the like do not limit the quantity and execution order, and the words “first”, “second” and the like do not limit the difference.
- words such as “exemplary” or “for example” are used to represent examples, illustrations or illustrations, and the embodiments or designs described as “exemplary” or “for example” should not be construed as More preferred or advantageous over other embodiments or designs.
- the use of words such as “exemplary” or “such as” is intended to present the relevant concepts in a specific manner to facilitate understanding.
- FIG. 1 is a schematic structural diagram of a mobile communication system to which an embodiment of the present application is applied.
- the mobile communication system includes a core network device 110 , a radio access network device 120 and at least one terminal device (such as the terminal device 130 and the terminal device 140 in FIG. 1 ).
- the terminal device is connected with the wireless access network device in a wireless manner
- the wireless access network device is connected with the core network device in a wireless or wired manner.
- the core network device and the radio access network device can be independent and different physical devices, or the functions of the core network device and the logical functions of the radio access network device can be integrated on the same physical device, or they can be one physical device. It integrates the functions of some core network equipment and some functions of the wireless access network equipment.
- Terminal equipment can be fixed or movable.
- FIG. 1 is just a schematic diagram, and the communication system may also include other network devices, such as wireless relay devices and wireless backhaul devices, which are not shown in FIG. 1 .
- the embodiments of the present application do not limit the number of core network devices, wireless access network devices, and terminal devices included in the mobile communication system.
- a wireless access network device is an access device that a terminal device wirelessly accesses to the mobile communication system, which can be a base station (base station), an evolved base station (evolved NodeB, eNodeB), a transmission reception point (transmission reception point, TRP), the next generation NodeB (gNB) in the 5G mobile communication system, the base station in the future mobile communication system or the access node in the WiFi system, etc.; it can also be a module or unit that completes some functions of the base station, such as , which can be a centralized unit (central unit, CU) or a distributed unit (distributed unit, DU).
- the embodiments of the present application do not limit the specific technology and specific device form adopted by the wireless access network device.
- the wireless access network device is referred to as the network device for short, and unless otherwise specified, the network device refers to the wireless access network device.
- the device for implementing the function of the network device may be a network device; it may also be a device capable of supporting the network device to realize the function, such as a chip system, and the device may be installed in the network device or connected to the network device. equipment matching.
- the technical solutions provided by the embodiments of the present application are described by taking the device for realizing the function of the network device being a network device as an example.
- the terminal equipment involved in the embodiments of the present application may also be referred to as a terminal terminal, a user equipment (user equipment, UE), a mobile station (mobile station, MS), a mobile terminal (mobile terminal, MT), and the like.
- the terminal equipment can be mobile phone, tablet computer, computer with wireless transceiver function, virtual reality terminal equipment, augmented reality terminal equipment, wireless terminal in industrial control, wireless terminal in unmanned driving, wireless terminal in remote surgery, smart grid Wireless terminals in smart cities, wireless terminals in transportation security, wireless terminals in smart cities, wireless terminals in smart homes, and so on.
- the embodiments of the present application do not limit the specific technology and specific device form adopted by the terminal device.
- the device for implementing the function of the terminal device may be the terminal device; it may also be a device capable of supporting the terminal device to realize the function, such as a chip system, and the device may be installed in the terminal device or integrated with the terminal device. equipment matching.
- the chip system may be composed of chips, or may include chips and other discrete devices.
- Network equipment and terminal equipment can be deployed on land, including indoor or outdoor, handheld or vehicle; can be deployed on water; or, can be deployed in the air on aircraft, balloons or satellites.
- the embodiments of the present application do not limit the application scenarios of the network device and the terminal device.
- terminal equipment can access network equipment and communicate with network equipment.
- one network device may manage one or more (eg, 3 or 6, etc.) cells, and the terminal device may access the network device in at least one of the one or more cells, and the terminal device may access the network device in at least one of the one or more cells. It communicates with the network device in the cell where it is located.
- at least one may be one, two, three or more, which is not limited in the embodiment of the present application.
- the terminal device can transmit data to the network device through uplink transmission resources, so as to realize the uplink communication between the terminal device and the network device.
- a terminal device Before transmitting data, a terminal device needs to obtain uplink transmission resources through an uplink grant to transmit data through the uplink transmission resource.
- the uplink grant includes: a configured grant (CG) and a dynamic grant (DG).
- Dynamic authorization means that the terminal device needs to request the network device to allocate uplink transmission resources before each data transmission.
- the network device dynamically allocates the uplink transmission resources required for this transmission to the terminal device.
- the resources obtained through dynamic authorization can be called dynamic.
- Authorized resources; and configuration authorization means that the network device sends the allocated uplink transmission resources to the terminal device in advance.
- the terminal device When the terminal device wants to send uplink data, it can select the uplink transmission resource for this transmission from the pre-allocated uplink transmission resources. It is necessary to request uplink transmission resources from the network device, and the resources obtained through configuration authorization may be referred to as configuration authorization resources.
- Communication between network equipment and terminal equipment can be performed through licensed spectrum and unlicensed spectrum.
- LBT listen before talk
- the above channel access process can include two types: the first type is energy detection based on a fixed duration.
- the terminal device can detect the signal strength on the unlicensed spectrum. If the signal strength is greater than the preset threshold, it is considered that the channel is not idle, otherwise it is considered that the channel is not idle. Channel is idle.
- the second type is energy detection based on a fallback mechanism. The terminal device randomly selects the value A from the preset window. After detecting at least A idle energy detection time slots, the channel is considered to be idle, otherwise, the channel is considered to be busy.
- the terminal device When the terminal device performs data transmission with the network device on the unlicensed spectrum, the terminal device can avoid the loss of configuration authorization packets through the automatic retransmission method.
- the main steps may include: first, when a configuration authorization resource CG1 arrives, the terminal equipment Among the multiple hybrid automatic repeat request (HARQ) processes pre-allocated by the device, select the HARQ process associated with the configuration authorization resource CG1; then, the terminal device will form the data to be transmitted into data packets to save to the association In the cache of the HARQ process, so that the HARQ process transmits the data packet on the configuration authorization resource CG1; when the HARQ process does not transmit the data packet on the configuration authorization resource CG1, the terminal device can wait for subsequent arrivals
- the configuration authorization resource CG2 is associated with the HARQ process, so that the HARQ process transmits the data packet on the configuration authorization resource CG2. In this implementation manner, the terminal device needs to wait for the configuration authorization that arrives later, and then sends the data packets that have not
- an embodiment of the present application provides a communication method.
- the terminal device sends the information of the first HARQ process to the network device.
- the terminal device can transmit the first data through the uplink grant. In this way, it is not necessary to transmit the first data through the configuration authorization that arrives later, thereby reducing the delay of data transmission.
- FIG. 2 is a schematic flowchart of a communication method provided by an embodiment of the present application. This embodiment relates to a specific process of data transmission between a network device and a terminal device. As shown in FIG. 2, the method may include: S201, S202 and S203.
- the terminal device When there is untransmitted first data in the cache of the first HARQ process associated with the first authorization, the terminal device sends information of the first HARQ process to the network device, where the first authorization is the first configuration authorized. Correspondingly, the network device receives the information of the first HARQ process of the HARQ process from the terminal device.
- the first configuration authorization can be divided into the following two types.
- the network device configures the transmission parameters of the CG for the terminal device through the parameters in the RRC message (for example, ConfiguredGrantConfig), for example, configure one or more of the following parameters: period, open-loop power control related parameters, waveform, redundancy Version, redundancy version sequence, number of repetitions, frequency hopping mode, resource allocation type, number of HARQ processes, parameters related to demodulation reference signal (DMRS), modulation and coding scheme (MCS) table, resources Block group (resource block group, RBG) size, time domain resource location, frequency domain resource location.
- DMRS demodulation reference signal
- MCS modulation and coding scheme
- the network device configures some or all of the transmission parameters to the terminal device through the Radio Resource Control (RRC) message, for example, configure one or more of the following parameters: the period of time domain resources, open-loop power control Related parameters, waveform, redundancy version, redundancy version sequence, number of repetitions, frequency hopping mode, resource allocation type, MCS table, DMRS related parameters, and number of HARQ processes; and, the network device sends physical layer signaling to the terminal device, For example, downlink control information (DCI), to activate the second type of CG.
- DCI downlink control information
- the DCI may also be used to configure some transmission parameters, such as configuring one or more of the following parameters: time-domain resource location, frequency-domain resource location, DMRS-related parameters, and MCS.
- the DCI may be carried through a physical downlink control channel (physical downlink control channel, PDCCH).
- the terminal device can directly use the CG pre-configured by the network device to send uplink data to the network device without sending a Scheduling Request (SR) to the network device and waiting for the network device dynamic authorization.
- SR Scheduling Request
- the second type of CG needs to be activated by physical layer signaling before it can be used by the terminal device.
- the first HARQ process is the HARQ process associated with the first configuration authorization.
- the terminal device sends the information of the first HARQ process to the network device.
- the information of the first HARQ process may include an identifier of the first HARQ process.
- the terminal device when there are multiple first HARQ processes, the terminal device sends information about the multiple first HARQ processes to the network device.
- the data that has been stored in the cache of the HARQ process but not transmitted is called the first data, wherein the first data may be controlled by a Medium Access Control (MAC) protocol. It exists in the form of a unit (Protocol Data Unit, PDU).
- the configuration authorization is periodic. When the first authorization arrives, it can be understood that the first authorization can be used at the current time. At this time, the terminal device will form a MAC PDU with the data to be sent, and store the MAC PDU in the HARQ process. In the buffer, but in the following cases 1 and 2, the MAC PDU is not sent.
- Case 1 The first authorization and the third authorization overlap in the time domain, and the priority of the first authorization is lower than the priority of the third authorization.
- the third authorization may be dynamic authorization or configuration authorization.
- the data to be transmitted on the third authorization is transmitted, wherein the data to be transmitted on the third authorization is the MAC PDU stored in the cache of the HARQ process associated with the third authorization.
- the priority of the above-mentioned first authorization can be determined by the data in the MAC PDU in the cache of the first HARQ process associated with the first authorization, and the specific priority is determined by one of the following information: the logical channel (logical channel, The priority of the LCH), the priority of the MAC control unit included in the data, and the quality of service (quality of service, QoS) information of the data.
- the logical channel logical channel, The priority of the LCH
- QoS quality of service
- the above-mentioned quality of service information may include, but is not limited to, delay, packet loss rate, bit error rate, and reliability. Since the value of the quality of service information is usually continuous and the priority is usually discontinuous, the quality of service information can be mapped to the priority according to the value range. For example, for the quality of service information of the forward parameter, you can refer to the following formula: Quality of service information is mapped to priority:
- P is the priority
- the priority is divided into three P1, P2 and P3, and P1 is lower than P2, P2 is lower than P3, QOS is the service quality information, QOS1, QOS2 are two fixed service quality information values, And QOS1 ⁇ QOS2.
- the number of priorities in the above formula is 3.
- the formula can be flexibly adjusted according to the number of priorities, which is not limited in this embodiment of the present application.
- Whether the channel is idle can be detected through the aforementioned LBT mechanism, and details are not described herein again in this embodiment of the present application.
- the terminal may send the information of the first HARQ process to the network device. Specifically, the terminal device sends the information of the first HARQ process to the network device through the second authorization.
- the second authorization may be dynamic authorization or configuration authorization.
- the second authorization may be the same as or different from the third authorization.
- the second grant and the first grant are located in the same or different cells.
- the information of the first HARQ process further includes a cell identifier of the cell where the first grant is located.
- the network device can dynamically schedule the uplink grant for the terminal device on the cell where the first grant is located according to the cell identifier, and associate the uplink grant with the first HARQ process.
- the network device may schedule an uplink grant on the cell where the second grant is located by default, and assign the uplink grant to the cell where the second grant is located. The grant is associated with the first HARQ process.
- the data bearing the information of the first HARQ process may be determined according to the type of the second authorization, where the type of the second authorization includes: configuration authorization and dynamic Authorize both.
- the second grant is a configuration grant
- the information of the first HARQ process is carried in the uplink control information; or, when the second grant is a configuration grant, the information of the first HARQ process It is carried in the second data, the second data is newly transmitted data, and the second data is different from the first data.
- the second authorization is a dynamic authorization
- the information of the first HARQ process is carried in the second data
- the second data is newly transmitted data
- the second data is the same as the first data. Data is different.
- the second authorization can transmit user data, so that the information of the first HARQ process can be carried in the user data, and the user data can be referred to as second data.
- the second data is the data newly uploaded by the second authorization. It can be understood that the information of the first HARQ process may be located in a MAC control element (control element, CE) or a MAC service data unit (service data unit, SDU).
- CE control element
- SDU service data unit
- the second grant and the third grant may be the same uplink grant, so that the first grant with a lower priority and the third grant with a higher priority are in the time domain.
- the uplink grant of the second cell may be used as the second grant for transmitting the information of the first HARQ process, and the second cell may be the cell where the first grant is located, It may also be a neighboring cell of the cell where the first authorization is located.
- the second grant is a configuration grant
- the second authorization is a dynamic authorization
- the information of the first HARQ process may be in the following form 1 and form 2:
- the information of the first HARQ process includes an identifier of the first HARQ process.
- the information of the first HARQ process is a bitmap, and the bits in the bitmap corresponding to the first HARQ process are used to indicate that there is untransmitted data in the first HARQ process.
- the information of the first HARQ process can be used as a field of UCI or MAC CE or MAC SDU, and this field can correspond to a fixed number of bits or an unfixed number of bits.
- a first fixed number of bits may be used to represent the identifier of the first HARQ process. For example, if the total number of HARQ processes is 16, the first fixed number of bits may be 4, so that 16 HARQ processes can be represented by a total of 16 values of 0000-1111. In this way, when there is a first HARQ process, a first fixed number of bits may be sent to represent the identifier of the first HARQ process.
- the MAC CE or MAC SDU transmits N*the first fixed number of bits, while the UCI can transmit N*the first fixed number of bits, and can also transmit an unfixed number of bits.
- the terminal device may transmit the identifier of the first HARQ process when there is a first HARQ process with untransmitted first data in the buffer , when there is no first HARQ process with untransmitted first data in the cache, the identifier of the first HARQ process is not transmitted, so that the network device can determine whether there is information about the first HARQ process in the UCI according to the length of the received UCI , if the length of the UCI is the first preset length, it is determined that the identifier of the first HARQ process does not exist in the UCI, and if the length of the UCI is the second preset length, it is determined that the identifier of the first HARQ process exists in the UCI, and ( The value of the second preset length-first preset length)/the first fixed number of bits is the number of identifiers of the first HARQ process, so that the identifier
- the terminal device may carry one or more third fixed bit numbers in the UCI when the first HARQ process exists or does not exist
- UCI also carries other information, for example, UCI also carries shared information channel occupation time, new data indication, redundancy version, etc.
- Each third fixed number of bits the first fixed number of bits + 1, the extra bit is used to indicate whether the field corresponding to the third fixed number of bits is the identifier of the first HARQ process, and this bit can be called an indication bit, Therefore, the network device can judge whether there is the first HARQ process according to the bit.
- the third fixed number of bits is 5. If the first bit in the field of the third fixed number of bits is an indicator bit, 1 means that the field corresponding to the third fixed number of bits includes the first bit.
- An identifier of a HARQ process 0 represents that the field corresponding to the third fixed number of bits does not include the identifier of the first HARQ process, then according to the field of the third fixed number of bits: the first bit "1" in "10001" determines the bit "0001" is the identification of the first HARQ process; according to the first bit "0" in the field "00001" of the third fixed bit number, it is determined that the bit "0001" is not the identification of the first HARQ process, the third fixed bit The identifier of the first HARQ process does not exist in the number field.
- the UCI or MAC CE or MAC SDU can carry the bitmap, and the bitmap has a second fixed number of bits, and the second fixed number of bits can be the total number of HARQ processes , when the bit is 1, it means that the HARQ process corresponding to this bit has untransmitted data, that is, the HARQ process corresponding to this bit is the first HARQ process; when the bit is 0, it means that the corresponding HARQ process There is no untransmitted data in the HARQ process, that is, the HARQ process corresponding to this bit is not the first HARQ process.
- each bit of the bitmap is 0, and when all processes are In the first HARQ process, each bit of the bitmap is 1.
- the bits of the HARQ process are arranged in the following order: HARQ15, HARQ14, HARQ13, .
- the bit may also be set to 0 to indicate that the HARQ process corresponding to the bit has untransmitted data, and the bit to be set to 1 to indicate that the HARQ process corresponding to the bit has no untransmitted data.
- the mapping relationship between each bit in the bitmap and the HARQ process can be preset, so that the network device can determine the identifier of the first HARQ process according to the bits in the bitmap.
- the information form of the first HARQ process may be flexibly selected in different scenarios, which is not limited in this embodiment of the present application.
- the bitmap can be used as the information of the first HARQ process; in the scenario of few HARQ retransmissions, the identifier of the first HARQ process can be used as the information of the first HARQ process.
- the network device sends an uplink grant to the terminal device, where the uplink grant is associated with the first HARQ process.
- the terminal device receives the uplink grant from the network device.
- the network device allocates an uplink grant to the first HARQ process according to the information of the first HARQ process. Since the uplink grant is dynamically allocated according to the information of the first HARQ process sent by the terminal device, the uplink grant can also be called a dynamic grant .
- the network device may send the time domain location of the uplink grant to the terminal device, so that the terminal device uses the uplink grant according to the time domain location.
- parameters such as the MCS can also be sent to the terminal device together, so that the terminal device can use the MCS preset by the uplink grant to perform data transmission.
- the network device may send parameters such as the time domain location and MCS of the uplink grant to the terminal device through an independent message; and may also add the time domain location, MCS and other parameters of the uplink grant to the terminal device. in the DCI, and send the DCI to the terminal device.
- the terminal device transmits the first data through the uplink authorization.
- the network device receives the first data from the terminal device.
- the terminal device transmits the first data in the buffer of the first HARQ process to the network device through the uplink grant allocated by the network device in S202.
- the network device and the terminal device include corresponding hardware structures and/or software modules for performing each function.
- the units and method steps of each example described in conjunction with the embodiments disclosed in the present application can be implemented in the form of hardware, software, or a combination of hardware and software. Whether a function is performed by hardware, software, or computer software-driven hardware depends on the specific application scenarios and design constraints of the technical solution.
- the communication device may be the terminal device 130 or the terminal device 140 as shown in FIG. 1 , or may be the wireless access network device 120 as shown in FIG. 1 , or may be applied to the terminal device or a module (such as a chip) of a network device.
- the communication device 300 includes a sending unit 310 and a receiving unit 320 .
- the communication apparatus 300 is configured to implement the functions of the terminal device or the network device in the method embodiment shown in FIG. 2 above.
- the sending unit 310 is used for when there is an unresolved HARQ process in the cache of the first HARQ process associated with the first authorization.
- the information of the first HARQ process is sent to the network device, and the first authorization is the first configuration authorization;
- the receiving unit 320 is configured to receive an uplink authorization from the network device, and the uplink authorization is associated with the first HARQ process;
- the sending unit 310 is further configured to transmit the first data through the uplink grant.
- the receiving unit 320 is configured to receive the information of the first HARQ process of the HARQ request from the terminal device, the first HARQ There is untransmitted first data in the cache of the process, the first HARQ process is associated with the first authorization, and the first authorization is the first configuration authorization; the sending unit 310 is used to send the uplink authorization to the terminal device, and the uplink authorization is associated with the first authorization. HARQ process; the receiving unit 320 is further configured to receive the first data from the terminal device.
- the communication apparatus 400 includes a processor 410 and an interface circuit 420 .
- the processor 410 and the interface circuit 420 are coupled to each other. It can be understood that the interface circuit 420 is configured to receive signals from other communication devices other than the communication device 400 and transmit to the processor 410 or send signals from the processor 410 to other communication devices other than the communication device 400
- the above-mentioned processor 410 is used to implement the method shown in the above-mentioned FIG. 2 by using a logic circuit or executing code instructions.
- the interface circuit 420 is used to implement the functions of the above-mentioned sending unit 310 and receiving unit 320 .
- the communication apparatus 400 may further include a memory 430 for storing instructions executed by the processor 410 or input data required by the processor 410 to execute the instructions or data generated after the processor 410 executes the instructions.
- the terminal device chip When the above communication device is a chip applied to a terminal device, the terminal device chip implements the functions of the terminal device in the above method embodiments.
- the terminal device chip receives information from other modules (such as a radio frequency module or an antenna) in the terminal device, and the information is sent by the network device to the terminal device; or, the terminal device chip sends information to other modules (such as a radio frequency module or an antenna) in the terminal device antenna) to send information, the information is sent by the terminal equipment to the network equipment.
- modules such as a radio frequency module or an antenna
- the network device chip When the above communication device is a chip applied to a network device, the network device chip implements the functions of the network device in the above method embodiments.
- the network device chip receives information from other modules (such as a radio frequency module or an antenna) in the network device, and the information is sent by the terminal device to the network device; or, the network device chip sends information to other modules in the network device (such as a radio frequency module or an antenna). antenna) to send information, the information is sent by the network equipment to the terminal equipment.
- modules such as a radio frequency module or an antenna
- the processor in the embodiments of the present application may be a central processing unit (Central Processing Unit, CPU), and may also be other general-purpose processors, digital signal processors (Digital Signal Processor, DSP), application-specific integrated circuits (Application Specific Integrated Circuit, ASIC), Field Programmable Gate Array (Field Programmable Gate Array, FPGA) or other programmable logic devices, transistor logic devices, hardware components or any combination thereof.
- a general-purpose processor may be a microprocessor or any conventional processor.
- the processor may be a random access memory (Random Access Memory, RAM), a flash memory, a read-only memory (Read-Only Memory, ROM), a programmable read-only memory (Programmable ROM, PROM), an erasable memory
- RAM Random Access Memory
- ROM read-only memory
- PROM programmable read-only memory
- PROM Programmable ROM
- EEPROM Electrically erasable programmable read-only memory
- registers hard disk, removable hard disk, CD-ROM or any other form of storage medium known in the art middle.
- An exemplary storage medium is coupled to the processor, such that the processor can read information from, and write information to, the storage medium.
- the storage medium can also be an integral part of the processor.
- the processor and storage medium may reside in an ASIC.
- the ASIC may be located in a network device or in an end device.
- the processor and the storage medium may also exist in the network device or the terminal device as discrete components.
- the computer program product includes one or more computer programs or instructions.
- the computer may be a general purpose computer, a special purpose computer, a computer network, a network device, a terminal device, or other programmable devices.
- the computer program or instructions may be stored in or transmitted over a computer-readable storage medium.
- the computer-readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server that integrates one or more available media.
- the usable media can be magnetic media, such as floppy disks, hard disks, magnetic tapes; optical media, such as DVD; and semiconductor media, such as solid state disks (SSD).
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本申请提供一种通信方法及装置,所述方法包括:当第一授权关联的第一混合自动重传请求HARQ进程的缓存中存在未传输的第一数据时,向网络设备发送第一HARQ进程的信息,该第一授权为第一配置授权;接收来自网络设备的上行授权,该上行授权关联第一HARQ进程;通过该上行授权传输该第一数据,从而降低了第一数据的传输时延。
Description
本申请实施例涉及通信技术领域,尤其涉及一种通信方法及装置。
第五代(5th generation,5G)移动通信系统与第四代(4th generation,4G)移动通信系统相比的一大显著特征就是增加了对超可靠低时延通信(ultra-reliable and low-latency communications,URLLC)业务的支持。URLLC的业务种类包括很多种,典型的用例包括工业控制、无人驾驶、远程手术和智能电网等。对于URLLC业务,一个典型需求是在1毫秒(millisecond,ms)内发送32字节的数据的可靠性要达到99.999%。需要指出的是,上述性能指标仅是个示例,不同的URLLC业务可能对可靠性有不同的需求,比如在某些极端苛刻的工业控制应用场景中,URLLC业务数据的传输成功概率需要在0.25ms内达到99.9999999%。
发明内容
有鉴于此,本申请提供一种通信方法及装置,以降低传输时延。
第一方面本申请提供一种通信方法,该方法的执行主体为终端设备或终端设备中的芯片或模块。这里以终端设备为执行主体为例进行描述。当第一授权关联的第一混合自动重传请求HARQ进程的缓存中存在未传输的第一数据时,终端设备向网络设备发送第一HARQ进程的信息,上述第一授权为第一配置授权;终端设备接收来自网络设备的上行授权,上述上行授权关联第一HARQ进程;通过上述上行授权传输上述第一数据。
通过实施第一方面所描述的方法,终端设备在第一授权关联的第一混合自动重传请求HARQ进程的缓存中存在未传输的第一数据时,可以向网络设备发送第一HARQ进程的信息,以通过网络设备为上述第一HARQ进程分配的上行授权对第一数据进行传输,而不需要等待配置授权,从而降低了数据传输的时延。
在第一方面的一种可能的实现方式中,上述向网络设备发送上述第一HARQ进程的信息,包括:通过第二授权向网络设备发送上述第一HARQ进程的信息,上述第二授权为配置授权或者动态授权,当上述第二授权为配置授权时,上述第二授权也可称为第二配置授权;当第二授权为动态授权时,上述第二授权也可称为第二动态授权。
在第一方面的一种可能的实现方式中,当上述第二授权为配置授权时,上述第一HARQ进程的信息承载在上行控制信息中;或者,当上述第二授权为配置授权时,上述第一HARQ进程的信息承载在第二数据中,上述第二数据是新传的数据,上述第二数据与上述第一数据不同。通过实施该方法,终端设备在第二授权为配置授权时,可 以通过上行控制信息或第二数据携带第一HARQ进程的信息,提高了发送第一HARQ进程的信息的方式的多样性。
在第一方面的一种可能的实现方式中,当上述第二授权为动态授权时,上述第一HARQ进程的信息承载在第二数据中,上述第二数据是新传的数据,上述第二数据与上述第一数据不同。
在第一方面的一种可能的实现方式中,当上述第一授权和上述第二授权位于不同小区时,上述第一HARQ进程的信息还包括上述第一授权所在小区的小区标识。通过实施该方法,终端设备可以通过第二授权将第一HARQ进程的信息发送给网络设备,并通过第一授权所在小区的小区标识通知网络设备为第一HARQ进程分配第一授权所在小区的上行授权。
在第一方面的一种可能的实现方式中,上述第一HARQ进程的信息包括第一HARQ进程的标识。
在第一方面的一种可能的实现方式中,上述第一HARQ进程的信息为位图,上述位图中与第一HARQ进程对应的比特位用于指示上述第一HARQ进程存在未传输的数据。
在第一方面的一种可能的实现方式中,上述第一授权关联的第一HARQ进程的缓存中在未传输的第一数据,包括:上述第一授权和第三授权在时域上有重叠,上述第一授权的优先级低于上述第三授权的优先级;或者,上述第一授权对应的信道非空闲。
第二方面本申请提供一种通信方法,该方法的执行主体为网络设备或网络设备中的芯片或模块。这里以网络设备为执行主体为例进行描述。接收来自终端设备的第一混合自动重传请求HARQ进程的信息,上述第一HARQ进程的缓存中存在未传输的第一数据,上述第一HARQ进程与第一授权关联,上述第一授权为第一配置授权;向终端设备发送上行授权,上述上行授权关联上述第一HARQ进程;接收来自上述终端设备的上述第一数据。
第二方面所描述的方法是与第一方面所描述的方法相对应的网络侧的方法,因此也能实现第一方面所能达到的有益效果。
在第二方面的一种可能的实现方式中,上述接收来自终端设备的第一混合自动重传请求HARQ进程的信息,包括:接收终端设备通过第二授权发送的第一HARQ进程的信息,上述第二授权为配置授权或者动态授权。
在第二方面的一种可能的实现方式中,当上述第二授权为配置授权时,上述第一HARQ进程的信息承载在上行控制信息中;或者,当上述第二授权为配置授权时,上述第一HARQ进程的信息承载在第二数据中,上述第二数据是新传的数据,上述第二数据与上述第一数据不同。
在第二方面的一种可能的实现方式中,当上述第二授权为动态授权时,上述第一HARQ进程的信息承载在第二数据中,上述第二数据是新传的数据,上述第二数据与上述第一数据不同。
在第二方面的一种可能的实现方式中,当上述第一授权和上述第二授权位于不同小区时,上述第一HARQ进程的信息还包括小区标识。
在第二方面的一种可能的实现方式中,上述第一HARQ进程的信息包括第一 HARQ进程的标识。
在第二方面的一种可能的实现方式中,上述第一HARQ进程的信息为位图,上述位图中与第一HARQ进程对应的比特位用于指示上述第一HARQ进程存在未传输的数据。
在第二方面的一种可能的实现方式中,上述第一HARQ进程的缓存中在未传输的第一数据,包括:上述第一授权和第三授权在时域上有重叠,上述第一授权的优先级低于上述第三授权的优先级;或者,上述第一授权对应的信道非空闲。
第三方面本申请提供一种通信装置,包括用于实现上述第一方面、或第一方面的任意可能的实现方式中的方法的功能模块。
第四方面本申请提供一种通信装置,包括用于实现上述第二方面、或第二方面的任意可能的实现方式中的方法的功能模块。
第五方面本申请提供一种通信装置,该装置可以包括:处理器和存储器,上述处理器和上述存储器耦合,上述处理器用于实现上述第一方面所提供的方法。
第六方面本申请提供一种通信装置,该装置可以包括:处理器和存储器,上述处理器和上述存储器耦合,上述处理器用于实现上述第二方面所提供的方法。
第七个方面本申请提供一种通信装置,该装置包括:处理器和接口电路,上述接口电路用于接收来自上述通信装置之外的其它通信装置的信号并传输至上述处理器或将来自上述处理器的信号发送给上述通信装置之外的其它通信装置,上述处理器通过逻辑电路或执行代码指令用于实现如上述第一方面所提供的方法。
第八个方面本申请提供一种通信装置,该装置包括:处理器和接口电路,上述接口电路用于接收来自上述通信装置之外的其它通信装置的信号并传输至上述处理器或将来自上述处理器的信号发送给上述通信装置之外的其它通信装置,上述处理器通过逻辑电路或执行代码指令用于实现如上述第二方面所提供的方法。
第九个方面本申请提供一种计算机可读存储介质,用于存储计算机程序,上述计算机程序使得计算机执行如第一方面或第二方面中任一项上述的方法。
第十个方面本申请提供一种计算机程序产品,上述计算机程序产品包括指令,当上述指令被计算机运行时,实现如第一方面或第二方面中任一项上述的方法。
第十一方面,提供了一种计算机程序,该计算机程序包括代码或指令,当该代码或指令被运行时,实现前述第一方面、第二方面的任意可能的实现方式中的方法。
第十二方面,提供一种芯片系统,该芯片系统包括处理器,还可以包括存储器,用于实现前述第一方面、第二方面描述的至少一种方法。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
第十三个方面本申请提供一种通信系统,包括如第三、第五、第七方面中任一项上述的通信装置,和第四、第六、第八方面中任一项上述的通信装置。
图1为本申请实施例应用的通信系统的架构示意图;
图2为本申请实施例提供的一种通信方法的流程示意图;
图3为本申请实施例提供的一种发送第一HARQ进程的信息所采用的标识示意图;
图4为本申请实施例提供的一种发送第一HARQ进程的信息所采用的位图示意图;
图5至6为本申请的实施例提供的可能的通信装置的结构示意图。
本申请实施例提供的技术方案可以应用于各种通信系统,例如:长期演进(long term evolution,LTE)系统、第五代(5th generation,5G)移动通信系统、WiFi系统、未来的通信系统、或者多种通信系统融合的系统等,本申请实施例不做限定。其中,5G还可以称为新无线(new radio,NR)。
本申请实施例提供的技术方案可以应用于各种通信场景,例如可以应用于以下通信场景中的一种或多种:增强移动宽带(enhanced mobile broadband,eMBB)、超可靠低时延通信(ultra-reliable low-latency communication,URLLC)、机器类型通信(machine type communication,MTC)、大规模机器类型通信(massive machine type communications,mMTC)、设备到设备(device-to-device,D2D)、车辆外联(vehicle to everything,V2X)、车辆到车辆(vehicle to vehicle,V2V)、和物联网(internet of things,IoT)等。
本申请实施例提供的技术方案可以应用于通信设备间的通信。通信设备间的通信可以包括:网络设备和终端设备间的通信、网络设备和网络设备间的通信、和/或终端设备和终端设备间的通信。在本申请实施例中,术语“通信”还可以描述为“传输”、“信息传输”、或“信号传输”等。传输可以包括发送和/或接收。本申请实施例中,以网络设备和终端设备间的通信为例描述技术方案,本领域技术人员也可以将该技术方案用于进行其它调度实体和从属实体间的通信,例如宏基站和微基站之间的通信,例如第一终端设备和第二终端设备间的通信。其中,调度实体可以为从属实体分配空口资源。空口资源包括以下资源中的一种或多种:时域资源、频域资源、码资源和空间资源。在本申请实施例中,多种可以是两种、三种、四种或者更多种,本申请实施例不做限制。
在本申请实施例中,网络设备和终端设备间的通信包括:网络设备向终端设备发送下行信号/信息,和/或终端设备向网络设备发送上行信号/信息。
在本申请实施例中,“/”可以表示前后关联的对象是一种“或”的关系,例如,A/B可以表示A或B;“和/或”可以用于描述关联对象存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。其中A,B可以是单数或者复数。在本申请实施例中,可以采用“第一”、“第二”等字样对功能相同或相似的技术特征进行区分。该“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。在本申请实施例中,“示例性的”或者“例如”等词用于表示例子、例证或说明,被描述为“示例性的”或者“例如”的实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念,便于理解。
图1是本申请的实施例应用的移动通信系统的架构示意图。如图1所示,该移动通信系统包括核心网设备110、无线接入网设备120和至少一个终端设备(如图1中的终端设备130和终端设备140)。终端设备通过无线的方式与无线接入网设备相连, 无线接入网设备通过无线或有线方式与核心网设备连接。核心网设备与无线接入网设备可以是独立的不同的物理设备,也可以是将核心网设备的功能与无线接入网设备的逻辑功能集成在同一个物理设备上,还可以是一个物理设备上集成了部分核心网设备的功能和部分的无线接入网设备的功能。终端设备可以是固定位置的,也可以是可移动的。图1只是示意图,该通信系统中还可以包括其它网络设备,如还可以包括无线中继设备和无线回传设备,在图1中未画出。本申请的实施例对该移动通信系统中包括的核心网设备、无线接入网设备和终端设备的数量不做限定。
无线接入网设备是终端设备通过无线方式接入到该移动通信系统中的接入设备,可以是基站(base station)、演进型基站(evolved NodeB,eNodeB)、发送接收点(transmission reception point,TRP)、5G移动通信系统中的下一代基站(next generation NodeB,gNB)、未来移动通信系统中的基站或WiFi系统中的接入节点等;也可以是完成基站部分功能的模块或单元,例如,可以是集中式单元(central unit,CU),也可以是分布式单元(distributed unit,DU)。本申请的实施例对无线接入网设备所采用的具体技术和具体设备形态不做限定。在本申请实施例中,无线接入网设备简称网络设备,如果无特殊说明,网络设备均指无线接入网设备。
在本申请实施例中,用于实现网络设备的功能的装置可以是网络设备;也可以是能够支持网络设备实现该功能的装置,例如芯片系统,该装置可以被安装在网络设备中或者和网络设备匹配使用。在本申请实施例提供的技术方案中,以用于实现网络设备的功能的装置是网络设备为例,描述本申请实施例提供的技术方案。
本申请实施例涉及到的终端设备也可以称为终端Terminal、用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等。终端设备可以是手机、平板电脑、带无线收发功能的电脑、虚拟现实终端设备、增强现实终端设备、工业控制中的无线终端、无人驾驶中的无线终端、远程手术中的无线终端、智能电网中的无线终端、运输安全中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭中的无线终端等等。本申请的实施例对终端设备所采用的具体技术和具体设备形态不做限定。
在本申请实施例中,用于实现终端设备的功能的装置可以是终端设备;也可以是能够支持终端设备实现该功能的装置,例如芯片系统,该装置可以被安装在终端设备中或者和终端设备匹配使用。本申请实施例中,芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。本申请实施例提供的技术方案中,以用于实现终端设备的功能的装置是终端设备为例,描述本申请实施例提供的技术方案。
网络设备和终端设备可以部署在陆地上,包括室内或室外、手持或车载;可以部署在水面上;或者,可以部署在空中的飞机、气球或人造卫星上。本申请的实施例对网络设备和终端设备的应用场景不做限定。
通信系统中,终端设备可以接入网络设备,并和网络设备进行通信。示例性地,一个网络设备可以管理一个或多个(例如3个或6个等)小区,终端设备可以在该一个或多个小区中的至少一个小区中接入网络设备,并在该终端设备所在的小区中和网络设备进行通信。在本申请实施例中,至少一个可以是1个、2个、3个或者更多个,本申请实施例不做限制。
在如图1所示的移动通信系统中,终端设备可以通过上行传输资源向网络设备传输数据,以实现终端设备与网络设备之间的上行通信。在传输数据之前,终端设备需要通过上行授权获取上行传输资源,以通过该上行传输资源传输数据,上行授权包括:配置授权(configured grant,CG)和动态授权(dynamic grant,DG)。动态授权是指终端设备每次传输数据之前,均需要向网络设备请求分配上行传输资源,网络设备动态为终端设备分配本次传输所需的上行传输资源,通过动态授权获取的资源可以称为动态授权资源;而配置授权是指网络设备预先将分配的上行传输资源发送给终端设备,终端设备要发送上行数据时,从预先分配的上行传输资源中选择本次传输的上行传输资源即可,不需要向网络设备请求上行传输资源,通过配置授权获取到的资源可以称为配置授权资源。
网络设备和终端设备之间可以通过授权频谱进行通信,可以通过非授权频谱
(unlicensed spectrum)进行通信。对于非授权频谱,由于是共享的频谱资源,从而其存在很多不同空口技术,例如,Wi-Fi,长期演进(long term evolution,LTE)授权频谱辅助接入(License Assisted Access,LAA)等。为了保证不同空口技术在非授权频谱上共存,需要通过先听后说(listen before talk,LBT)机制避免冲突。LBT可以理解的是一个信道接入过程,终端设备在进行数据传输之前需要进行信道接入过程,如果信道接入过程通过,则可以进行数据传输;如果信道接入过程未通过,则不可以进行数据传输。
上述信道接入过程可以包括两类:第一类是基于固定时长的能量检测,终端设备可以检测非授权频谱上的信号强度,如果信号强度大于预设门限,则认为信道非空闲,否则就认为信道空闲。第二类是基于回退机制的能量检测,终端设备从预设窗口中随机选取数值A,在检测到至少A个空闲的能量检测的时隙之后,认为信道空闲,否则,认为信道忙碌。
当终端设备在非授权频谱上与网络设备进行数据传输时,终端设备可以通过自动重传方法避免配置授权丢包,主要步骤可以包括:首先,在一个配置授权资源CG1到达时,终端设备从网络设备预先分配的多个混合自动重传请求(hybrid automatic repeat request,HARQ)进程中,选取该配置授权资源CG1关联的HARQ进程;然后,终端设备将待传输数据组成数据包,以保存到该关联的HARQ进程的缓存中,以使该HARQ进程将该数据包在配置授权资源CG1上传输出去;当该HARQ进程未将该数据包在配置授权资源CG1上传输出去时,终端设备可以等待后续到达的配置授权资源CG2,从而将配置授权资源CG2与该HARQ进程关联,使得该HARQ进程将该数据包在配置授权资源CG2上传输出去。在这种实现方式中,终端设备需要等待后续到达的配置授权,进而在该配置授权上发送未传输成功的数据包,增加了数据传输的时延。
为了解决上述技术问题,本申请实施例提供了一种通信方法,当配置授权关联的第一HARQ进程中缓存的第一数据未传输时,终端设备将该第一HARQ进程的信息发送网络设备,以使终端设备根据该第一HARQ进程的信息为该第一HARQ进程分配上行授权,终端设备可以通过该上行授权传输该第一数据。如此,不需要通过后续到达的配置授权对该第一数据进行传输,从而降低了数据传输的时延。
下面通过一些实施例对本申请的技术方案进行详细说明。图2为本申请实施例提 供的一种通信方法的流程示意图,本实施例涉及的是网络设备和终端设备之间进行数据传输的具体过程。如图2所示,该方法可以包括:S201、S202和S203。
S201、当第一授权关联的第一混合自动重传请求HARQ进程的缓存中存在未传输的第一数据时,终端设备向网络设备发送第一HARQ进程的信息,该第一授权为第一配置授权。对应的,网络设备接收来自终端设备的第一混合自动重传请求HARQ进程的信息。
其中,第一配置授权可以分为以下两种类型。
第一类:网络设备通过RRC消息中的参数(例如ConfiguredGrantConfig)为终端设备配置CG的传输参数,例如配置以下参数中的一种或多种:周期、开环功控相关参数、波形、冗余版本、冗余版本序列、重复次数、跳频模式、资源分配类型、HARQ进程数、解调参考信号(demodulation reference signal,DMRS)相关参数、调制编码方案(modulation and coding scheme,MCS)表格、资源块组(resource block group,RBG)大小、时域资源位置、频域资源位置。
第二类:网络设备通过无线资源控制(Radio Resource Control,RRC)消息向终端设备配置部分或全部传输参数,例如配置以下参数中的一种或多种:时域资源的周期、开环功控相关参数、波形、冗余版本、冗余版本序列、重复次数、跳频模式、资源分配类型、MCS表格、DMRS相关参数、和HARQ进程数;并且,网络设备向终端设备发送物理层信令,例如下行控制信息(downlink control information,DCI),来激活该第二类CG。可选地,该DCI还可以用于配置部分传输参数,例如配置以下参数中的一种或多种:时域资源位置、频域资源位置、DMRS相关参数、和MCS。该DCI可以是通过物理下行控制信道(physical downlink control channel,PDCCH)携带的。
当终端设备使用上述两类CG进行上行传输时,终端设备可以直接使用网络设备预先配置的CG向网络设备发送上行数据,而不需要向网络设备发送调度请求(Scheduling Request,SR)并等待网络设备的动态授权。需要说明的是,该第二类CG需要被物理层信令激活后才能被终端设备使用。
第一HARQ进程是该第一配置授权关联的HARQ进程,当该第一HARQ进程的缓存中存在未传输的数据时,终端设备向网络设备发送该第一HARQ进程的信息。在本申请实施例中,第一HARQ进程的信息可以包括第一HARQ进程的标识。
可选地,当存在多个上述第一HARQ进程时,终端设备向网络设备发送多个第一HARQ进程的信息。
在本申请实施例中,将已经存储到HARQ进程的缓存中的数据但未传输的数据称为第一数据,其中,该第一数据可以是以媒介控制协议(Medium Access Control,MAC)协议控制单元(Protocol Data Unit,PDU)的形式存在。配置授权是周期性的,当第一授权到达时,可以理解为该第一授权在当前时间可以被使用,此时终端设备会将待发送数据组成MAC PDU,并将MAC PDU存储至HARQ进程的缓存中,但在如下情况1和情况2下,该MAC PDU未被发送。
情况1、第一授权和第三授权在时域上有重叠,且,第一授权的优先级低于第三授权的优先级。其中,该第三授权可以为动态授权或配置授权。
可以理解的是,第一授权和第三授权在时域上有重叠也可以理解为第一授权和第三授权在时域上冲突,当第一授权满足上述情况1时,终端设备优先将第三授权上的待传输数据进行传输,其中,第三授权上的待传输数据为存储到第三授权关联的HARQ进程的缓存中的MAC PDU。
上述第一授权的优先级可以通过第一授权关联的第一HARQ进程的缓存中的MAC PDU中的数据确定,具体优先级由如下其中一种信息确定:承载该数据的逻辑信道(logical channel,LCH)的优先级、该数据包括的MAC控制单元的优先级和该数据的服务质量(quality of service,QoS)信息。
上述服务质量信息可以包括但不限于:时延、丢包率、误码率、可靠性。由于服务质量信息的取值通常是连续的,优先级通常是非连续的,从而可以将服务质量信息按照取值范围与优先级映射,例如,对于正向参数的服务质量信息,可以参照如下公式将服务质量信息映射为优先级:
其中,P为优先级,优先级分为三个P1、P2和P3,并且P1低于P2,P2低于P3,QOS为服务质量信息,QOS1、QOS2为两个固定的服务质量信息取值,并且QOS1<QOS2。
可以理解的是,上述公式中的优先级个数为3个,在实际应用中,公式可以根据优先级个数灵活调整,本申请实施例对其不加限制。
情况2、第一授权对应的信道非空闲。
信道是否空闲可以通过前述LBT机制检测,本申请实施例在此不再赘述。
在上述两种情况下,终端可以将第一HARQ进程的信息发送给网络设备。具体地,终端设备通过第二授权向网络设备发送第一HARQ进程的信息。
可选地,第二授权可以为动态授权或配置授权。可选地,第二授权可以与第三授权相同或不同。
可选地,第二授权和第一授权位于相同或不同的小区。当第二授权和第一授权位于不同的小区时,第一HARQ进程的信息还包括第一授权所在小区的小区标识。此时,网络设备可以根据该小区标识在第一授权所在小区上为终端设备动态调度上行授权,并将该上行授权与第一HARQ进程关联。当第一HARQ进程消息没有携带小区标识时,网络设备在接收到终端设备通过第二授权发送的第一HARQ进程的信息时,可以默认在第二授权所在小区上调度上行授权,并将该上行授权与第一HARQ进程关联。
通过上述第二授权向网络设备发送第一HARQ进程的信息的过程中,可以根据第二授权的类型确定承载第一HARQ进程的信息的数据,其中,第二授权的类型包括:配置授权和动态授权两种。
在本申请实施例的一种示例中,当第二授权为配置授权时,第一HARQ进程的信息承载在上行控制信息中;或者,当第二授权为配置授权时,第一HARQ进程的信息承载在第二数据中,该第二数据是新传的数据,第二数据与第一数据不同。
在本申请实施例的另一种示例中,当第二授权为动态授权时,第一HARQ进程的信息承载在第二数据中,该第二数据是新传的数据,第二数据与第一数据不同。
此外,无论第二授权为动态授权还是配置授权,第二授权均可以传输用户数据,从而可以将第一HARQ进程的信息可以承载在该用户数据中,该用户数据可以称为第二数据。第二数据是第二授权上新传的数据。可以理解的是,第一HARQ进程的信息可以位于MAC控制单元(control element,CE)或MAC业务数据单元(service data unit,SDU)中。
可以理解的是,在上述情况1中,第二授权和第三授权可以是同一个上行授权,从而实现了在优先级较低的第一授权和优先级较高的第三授权在时域上冲突的情况下,将第三授权关联的HARQ进程缓存的MAC PDU(第二数据)发送给网络设备,并且在第三授权发送的MAC PDU关联的上行控制信息或第三授权发送的MAC PDU中携带第一HARQ进程的信息。
在上述情况2中,当第一授权对应的信道非空闲时,可以将第二小区的上行授权作为传输第一HARQ进程的信息的第二授权,第二小区可以是第一授权所在的小区,也可以是第一授权所在的小区的相邻小区。当第二授权为配置授权时,将第二授权关联的HARQ进程缓存的MAC PDU发送给网络设备,并且在第二授权的上行控制信息或第二授权发送的MAC PDU中携带第一HARQ进程的信息;当第二授权为动态授权时,将第二授权关联的HARQ进程缓存的MAC PDU发送给网络设备,并且在第二授权发送的MAC PDU中携带第一HARQ进程的信息。
在上述UCI或第二数据中,第一HARQ进程的信息可以是如下形式1和形式2:
形式1、第一HARQ进程的信息包括第一HARQ进程的标识。
形式2、第一HARQ进程的信息为位图,该位图中与第一HARQ进程对应的比特位用于指示第一HARQ进程存在未传输的数据。
可以理解的是,第一HARQ进程的信息可以作为UCI或MAC CE或MAC SDU的一个字段,该字段可以对应固定比特数或不固定比特数。
当第一HARQ进程的信息包括第一HARQ进程的标识时,可以采用第一固定比特数表示第一HARQ进程的标识。例如,若HARQ进程的总数目为16,则第一固定比特数可以为4,以用0000-1111共16种取值代表16个HARQ进程。如此,在存在一个第一HARQ进程时,可以发送第一固定比特数的比特,以代表该第一HARQ进程的标识。
此外,还可以固定传输N个第一固定比特数的比特,用于一次传输N个第一HARQ进程的标识,N为正整数。若实际上第一HARQ进程的数目小于N,则可以将N个第一固定比特数的比特中的剩余比特填充为无效取值。例如,当N为2,第一固定比特数为4,从而可以传输8个比特用于表示两个第一HARQ进程的信息,当N=2时,如图3所示,需要发送两个字段:HARQID0和HARQID1,分别表示两个第一HARQ进程的信息,并且两者连续用2*第一固定比特数个比特。
需要说明的是,MAC CE或MAC SDU传输N*第一固定比特数个比特,而UCI可以传输N*第一固定比特数个比特,还可以传输不固定数目的比特。
在本申请实施例的一种示例中,当采用UCI承载第一HARQ进程的标识时,终端设备可以在存在缓存中有未传输的第一数据的第一HARQ进程时传输第一HARQ进程的标识,在不存在缓存中有未传输的第一数据的第一HARQ进程时不传输第一HARQ 进程的标识,从而网络设备可以根据接收到的UCI的长度确定UCI中是否存在第一HARQ进程的信息,若UCI的长度为第一预设长度,则确定UCI中不存在第一HARQ进程的标识,若UCI的长度为第二预设长度,则确定UCI中存在第一HARQ进程的标识,并且(第二预设长度-第一预设长度)/第一固定比特数的值,为第一HARQ进程的标识的数目,从而可以根据该数目从第一预设位置中获取第一HARQ进程的标识,其中第一预设长度小于第二预设长度,第一预设长度可以是UCI不包含第一HARQ进程时的固定长度,第二预设长度是UCI包含第一HARQ进程的可变长度。
在本申请实施例的一种示例中,当采用UCI承载第一HARQ进程的标识时,终端设备可以在存在或不存在第一HARQ进程时均在UCI中携带一个或多个第三固定比特数的字段,此外,UCI还会携带其余信息,例如,UCI中还携带共享信息信道占用时间、新数据指示、冗余版本等。每个第三固定比特数=第一固定比特数+1,多出来的一个比特用于表示该第三固定比特数对应的字段是否为第一HARQ进程的标识,该比特可以称为指示比特,从而网络设备可以根据该比特判断是否存在第一HARQ进程。例如,当第一固定比特数为4时,第三固定比特数为5,若第三固定比特数的字段中第一个比特为指示比特,1代表第三固定比特数对应的字段中包括第一HARQ进程的标识,0代表第三固定比特数对应的字段中不包括第一HARQ进程的标识,则根据第三固定比特数的字段:“10001”中的第一个比特“1”确定比特“0001”为第一HARQ进程的标识;根据第三固定比特数的字段“00001”中的第一个比特“0”确定比特“0001”不为第一HARQ进程的标识,该第三固定比特数的字段中不存在第一HARQ进程的标识。
当第一HARQ进程的信息为位图时,UCI或MAC CE或MAC SDU均可以携带该位图,该位图中存在第二固定比特数的比特,第二固定比特数可以是HARQ进程的总数,当比特位为1时,表示该比特位对应的HARQ进程存在未传输的数据,也就是该比特位对应的HARQ进程为第一HARQ进程;当比特位为0时,表示该比特位对应的HARQ进程不存在未传输的数据,也就是该比特位对应的HARQ进程不为第一HARQ进程,如此,当不存在第一HARQ进程时位图的各比特位均为0,当所有进程均为第一HARQ进程时位图的各比特位均为1。例如,若HARQ进程的总数为16,则第二固定比特数为16,如图4所示的位图格式,一种可能的方式,但不做限定,HARQ进程的比特位按照如下顺序排列:HARQ15、HARQ14、HARQ13、…、HARQ0,当HARQ15和HARQ13为第一HARQ进程时,可以得到位图的具体取值为:1010000000000000。当然,还可以将比特位为0设定为表示该比特位对应的HARQ进程存在未传输的数据,将比特位为1设定为表示该比特位对应的HARQ进程不存在未传输的数据。可以预先设定位图中的每个比特位与HARQ进程的映射关系,从而网络设备可以根据位图中的比特位确定第一HARQ进程的标识。
可以看出,采用位图表示第一HARQ进程的信息时,UCI或MAC CE或MAC SDU中会多出第二固定比特数个比特,在第一HARQ进程较少时,采用第一HARQ进程的标识作为第一HARQ进程的信息占用较少字节数;在第一HARQ进程较多时,采用位图作为第一HARQ进程的信息占用较少字节数。在实际应用中,可以在不同场景下灵活选取第一HARQ进程的信息形式,本申请实施例对其不加以限制。例如,在重传 HARQ频发的场景下,可以采用位图作为第一HARQ进程的信息;在重传HARQ较少的场景下,可以采用第一HARQ进程的标识作为第一HARQ进程的信息。
S202、网络设备向终端设备发送上行授权,该上行授权关联第一HARQ进程。对应的,终端设备接收来自网络设备的上行授权。
网络设备根据第一HARQ进程的信息为该第一HARQ进程分配一个上行授权,由于该上行授权是根据终端设备发送的第一HARQ进程的信息动态分配的,从而该上行授权也可以称为动态授权。
网络设备在分配上行授权之后,可以将上行授权的时域位置发送给终端设备,以使终端设备根据该时域位置使用该上行授权。此外,还可以将MCS等参数也一同发送给终端设备,以使终端设备可以采用该上行授权预设的MCS进行数据传输。
在本申请实施例的一种示例中,网络设备可以将上行授权的时域位置、MCS等参数通过一个独立的消息发送给终端设备;还可以将上行授权的时域位置、MCS等参数添加到DCI中,并将DCI发送给终端设备。
S203、终端设备通过上行授权传输第一数据。对应的,网络设备接收来自终端设备的第一数据。
具体地,终端设备将第一HARQ进程的缓存中的第一数据通过S202中网络设备分配的上行授权传输给网络设备。
可以理解的是,为了实现上述实施例中功能,网络设备和终端设备包括了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本申请中所公开的实施例描述的各示例的单元及方法步骤,本申请能够以硬件、软件、或硬件和软件相结合的形式来实现。某个功能究竟以硬件、软件、或是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用场景和设计约束条件。
图5至图6为本申请的实施例提供的可能的通信装置的结构示意图。这些通信装置可以用于实现上述方法实施例中终端设备或网络设备的功能,因此也能实现上述方法实施例所具备的有益效果。在本申请的实施例中,该通信装置可以是如图1所示的终端设备130或终端设备140,也可以是如图1所示的无线接入网设备120,还可以是应用于终端设备或网络设备的模块(如芯片)。
如图5所示,通信装置300包括发送单元310和接收单元320。通信装置300用于实现上述图2中所示的方法实施例中终端设备或网络设备的功能。
当通信装置300用于实现上述图2所示的方法实施例中终端设备的功能时,该发送单元310,用于当第一授权关联的第一混合自动重传请求HARQ进程的缓存中存在未传输的第一数据时,向网络设备发送第一HARQ进程的信息,第一授权为第一配置授权;该接收单元320,用于接收来自网络设备的上行授权,上行授权关联第一HARQ进程;该发送单元310,还用于通过上行授权传输第一数据。
当通信装置300用于实现上述图2所示的方法实施例中网络设备的功能时,该接收单元320,用于接收来自终端设备的第一混合自动重传请求HARQ进程的信息,第一HARQ进程的缓存中存在未传输的第一数据,第一HARQ进程与第一授权关联,第一授权为第一配置授权;该发送单元310,用于向终端设备发送上行授权,上行授权关联第一HARQ进程;该接收单元320,还用于接收来自终端设备的第一数据。
有关上述发送单元310、接收单元320,更详细的描述可以直接参考图2所示的方法实施例中相关描述直接得到,这里不加赘述。
如图6所示,通信装置400包括处理器410和接口电路420。处理器410和接口电路420之间相互耦合。可以理解的是,接口电路420用于接收来自上述通信装置400之外的其它通信装置的信号并传输至上述处理器410或将来自上述处理器410的信号发送给上述通信装置400之外的其它通信装置,上述处理器410通过逻辑电路或执行代码指令用于实现如上述图2所示的方法。当通信装置400用于实现图2所示的方法时,接口电路420用于实现上述发送单元310、接收单元320的功能。
可选的,通信装置400还可以包括存储器430,用于存储处理器410执行的指令或存储处理器410运行指令所需要的输入数据或存储处理器410运行指令后产生的数据。
当上述通信装置为应用于终端设备的芯片时,该终端设备芯片实现上述方法实施例中终端设备的功能。该终端设备芯片从终端设备中的其它模块(如射频模块或天线)接收信息,该信息是网络设备发送给终端设备的;或者,该终端设备芯片向终端设备中的其它模块(如射频模块或天线)发送信息,该信息是终端设备发送给网络设备的。
当上述通信装置为应用于网络设备的芯片时,该网络设备芯片实现上述方法实施例中网络设备的功能。该网络设备芯片从网络设备中的其它模块(如射频模块或天线)接收信息,该信息是终端设备发送给网络设备的;或者,该网络设备芯片向网络设备中的其它模块(如射频模块或天线)发送信息,该信息是网络设备发送给终端设备的。
可以理解的是,本申请的实施例中的处理器可以是中央处理单元(Central Processing Unit,CPU),还可以是其它通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其它可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。通用处理器可以是微处理器,也可以是任何常规的处理器。
本申请的实施例中处理器可以是随机存取存储器(Random Access Memory,RAM)、闪存、只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于网络设备或终端设备中。当然,处理器和存储介质也可以作为分立组件存在于网络设备或终端设备中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序或指令。在计算机上加载和执行所述计算机程序或指令时,全部或部分地执行本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、网络设备、终端设备、或者其它可编程装置。 所述计算机程序或指令可以存储在计算机可读存储介质中,或者通过所述计算机可读存储介质进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是集成一个或多个可用介质的服务器等数据存储设备。所述可用介质可以是磁性介质,例如,软盘、硬盘、磁带;也可以是光介质,例如,DVD;还可以是半导体介质,例如,固态硬盘(solid state disk,SSD)。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
可以理解的是,在本申请的实施例中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请的实施例的范围。上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定。
Claims (25)
- 一种通信方法,其特征在于,所述方法应用于终端设备或终端设备中的芯片,所述方法包括:当第一授权关联的第一混合自动重传请求HARQ进程的缓存中存在未传输的第一数据时,向网络设备发送所述第一HARQ进程的信息,所述第一授权为第一配置授权;接收来自所述网络设备的上行授权,所述上行授权关联所述第一HARQ进程;通过所述上行授权传输所述第一数据。
- 根据权利要求1所述的方法,其特征在于,所述向网络设备发送所述第一HARQ进程的信息,包括:通过第二授权向所述网络设备发送所述第一HARQ进程的信息,所述第二授权为配置授权或者动态授权。
- 根据权利要求2所述的方法,其特征在于,当所述第二授权为配置授权时,所述第一HARQ进程的信息承载在上行控制信息中;或者,当所述第二授权为配置授权时,所述第一HARQ进程的信息承载在第二数据中,所述第二数据是新传的数据,所述第二数据与所述第一数据不同。
- 根据权利要求2所述的方法,其特征在于,当所述第二授权为动态授权时,所述第一HARQ进程的信息承载在第二数据中,所述第二数据是新传的数据,所述第二数据与所述第一数据不同。
- 根据权利要求2至4中任一项所述的方法,其特征在于,当所述第一授权和所述第二授权位于不同小区时,所述第一HARQ进程的信息还包括所述第一授权所在小区的小区标识。
- 根据权利要求1至5任一项所述的方法,其特征在于,所述第一HARQ进程的信息包括第一HARQ进程的标识。
- 根据权利要求1至5任一项所述的方法,其特征在于,所述第一HARQ进程的信息为位图,所述位图中与第一HARQ进程对应的比特位用于指示所述第一HARQ进程存在未传输的数据。
- 根据权利要求1至7任一项所述的方法,其特征在于,所述第一授权关联的第一HARQ进程的缓存中在未传输的第一数据,包括:所述第一授权和第三授权在时域上有重叠,所述第一授权的优先级低于所述第三授权的优先级;或者,所述第一授权对应的信道非空闲。
- 一种通信方法,其特征在于,所述方法应用于网络设备或网络设备中的芯片,所述方法包括:接收来自终端设备的第一混合自动重传请求HARQ进程的信息,所述第一HARQ进程的缓存中存在未传输的第一数据,所述第一HARQ进程与第一授权关联,所述第一授权为第一配置授权;向所述终端设备发送上行授权,所述上行授权关联所述第一HARQ进程;接收来自所述终端设备的所述第一数据。
- 根据权利要求9所述的方法,其特征在于,所述接收来自终端设备的第一混 合自动重传请求HARQ进程的信息,包括:接收所述终端设备通过第二授权发送的所述第一HARQ进程的信息,所述第二授权为配置授权或者动态授权。
- 根据权利要求10所述的方法,其特征在于,当所述第二授权为配置授权时,所述第一HARQ进程的信息承载在上行控制信息中;或者,当所述第二授权为配置授权时,所述第一HARQ进程的信息承载在第二数据中,所述第二数据是新传的数据,所述第二数据与所述第一数据不同。
- 根据权利要求10所述的方法,其特征在于,当所述第二授权为动态授权时,所述第一HARQ进程的信息承载在第二数据中,所述第二数据是新传的数据,所述第二数据与所述第一数据不同。
- 根据权利要求10至12任一项所述的方法,其特征在于,当所述第一授权和所述第二授权位于不同小区时,所述第一HARQ进程的信息还包括小区标识。
- 根据权利要求9至13任一项所述的方法,其特征在于,所述第一HARQ进程的信息包括第一HARQ进程的标识。
- 根据权利要求9至13任一项所述的方法,其特征在于,所述第一HARQ进程的信息为位图,所述位图中与第一HARQ进程对应的比特位用于指示所述第一HARQ进程存在未传输的数据。
- 根据权利要求9至15任一项所述的方法,其特征在于,所述第一HARQ进程的缓存中在未传输的第一数据,包括:所述第一授权和第三授权在时域上有重叠,所述第一授权的优先级低于所述第三授权的优先级;或者,所述第一授权对应的信道非空闲。
- 一种通信装置,包括用于执行如权利要求1至8中任一项所述方法的模块。
- 一种通信装置,包括用于执行如权利要求9至16中任一项所述方法的模块。
- 一种通信装置,其特征在于,包括处理器和存储器,所述处理器和所述存储器耦合,所述处理器用于实现如权利要求1至8中任一项所述的方法。
- 一种通信装置,其特征在于,包括处理器和存储器,所述处理器和所述存储器耦合,所述处理器用于实现如权利要求9至16中任一项所述的方法。
- 一种通信装置,其特征在于,包括处理器和接口电路,所述接口电路用于接收来自所述通信装置之外的其它通信装置的信号并传输至所述处理器或将来自所述处理器的信号发送给所述通信装置之外的其它通信装置,所述处理器通过逻辑电路或执行代码指令用于实现如权利要求1至8中任一项所述的方法。
- 一种通信装置,其特征在于,包括处理器和接口电路,所述接口电路用于接收来自所述通信装置之外的其它通信装置的信号并传输至所述处理器或将来自所述处理器的信号发送给所述通信装置之外的其它通信装置,所述处理器通过逻辑电路或执行代码指令用于实现如权利要求9至16中任一项所述的方法。
- 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至8或9至16中任一项所述的方法。
- 一种计算机程序产品,其特征在于,所述计算机程序产品包括指令,当所述指令被计算机运行时,实现如权利要求1至8或9至16中任一项所述的方法。
- 一种通信系统,其特征在于,包括如权利要求17、19、21中任一项所述的通信装置,和权利要求18、20、22中任一项所述的通信装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2020/122516 WO2022082510A1 (zh) | 2020-10-21 | 2020-10-21 | 通信方法及装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2020/122516 WO2022082510A1 (zh) | 2020-10-21 | 2020-10-21 | 通信方法及装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022082510A1 true WO2022082510A1 (zh) | 2022-04-28 |
Family
ID=81291397
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/122516 WO2022082510A1 (zh) | 2020-10-21 | 2020-10-21 | 通信方法及装置 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2022082510A1 (zh) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20190150184A1 (en) * | 2017-11-16 | 2019-05-16 | Lenovo (Singapore) Pte. Ltd. | Determining transport block generation timing of an uplink transmission |
CN110557835A (zh) * | 2018-06-04 | 2019-12-10 | 华为技术有限公司 | 数据传输方法、通信装置及存储介质 |
CN111600682A (zh) * | 2019-02-21 | 2020-08-28 | 华硕电脑股份有限公司 | 无线通信系统改进侧链路通信的重新传送调度方法和设备 |
US20200314887A1 (en) * | 2019-03-29 | 2020-10-01 | Charter Communications Operating, Llc | Enhancement of configured grant communications in a wireless network |
-
2020
- 2020-10-21 WO PCT/CN2020/122516 patent/WO2022082510A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20190150184A1 (en) * | 2017-11-16 | 2019-05-16 | Lenovo (Singapore) Pte. Ltd. | Determining transport block generation timing of an uplink transmission |
CN110557835A (zh) * | 2018-06-04 | 2019-12-10 | 华为技术有限公司 | 数据传输方法、通信装置及存储介质 |
CN111600682A (zh) * | 2019-02-21 | 2020-08-28 | 华硕电脑股份有限公司 | 无线通信系统改进侧链路通信的重新传送调度方法和设备 |
US20200314887A1 (en) * | 2019-03-29 | 2020-10-01 | Charter Communications Operating, Llc | Enhancement of configured grant communications in a wireless network |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7514916B2 (ja) | データ送信方法と装置 | |
WO2019157947A1 (zh) | 数据发送的方法和通信设备 | |
US11343802B2 (en) | Semi-persistent scheduling method and apparatus | |
US10231267B2 (en) | Access control method and apparatus based on service level | |
JP6708744B2 (ja) | データ伝送方法 | |
WO2018141244A1 (zh) | 一种资源调度方法、装置及系统 | |
US12082185B2 (en) | Pending SR cancellation method and apparatus | |
WO2022042489A1 (zh) | 资源指示、资源选择方法及装置 | |
WO2021233217A1 (zh) | 能力信息上报方法及其装置 | |
US20230189323A1 (en) | Prioritization method and device for plurality of collision resources | |
US20230269036A1 (en) | Communication method and apparatus | |
EP4002914A1 (en) | Device and method for allocating resource in wireless communication system | |
CN112188637B (zh) | 无线通信方法、用户设备和网络设备 | |
US20230034266A1 (en) | Data transmission method and apparatus | |
WO2022082510A1 (zh) | 通信方法及装置 | |
US20220295552A1 (en) | Method and device for sidelink resource allocation in wireless communication system | |
CN112913308A (zh) | 在通信系统中使用非授权频段的方法和装置 | |
WO2022077396A1 (zh) | 一种上行控制信息的发送方法、接收方法及通信装置 | |
CN113939019A (zh) | 通信方法及通信设备 | |
WO2021197059A1 (zh) | 上行数据传输的方法和装置 | |
CN111586847A (zh) | 通信方法、装置及存储介质 | |
WO2024001843A1 (zh) | 一种数据传输方法及通信装置 | |
WO2022267606A1 (zh) | 资源选择方法及装置 | |
WO2024087746A1 (en) | Configured grant transmission | |
WO2023232038A1 (zh) | 通信方法与装置、终端设备、网络设备和芯片 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20958093 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20958093 Country of ref document: EP Kind code of ref document: A1 |