WO2022080354A1 - Thermoplastic polyester elastomer resin composition and method for producing same - Google Patents

Thermoplastic polyester elastomer resin composition and method for producing same Download PDF

Info

Publication number
WO2022080354A1
WO2022080354A1 PCT/JP2021/037681 JP2021037681W WO2022080354A1 WO 2022080354 A1 WO2022080354 A1 WO 2022080354A1 JP 2021037681 W JP2021037681 W JP 2021037681W WO 2022080354 A1 WO2022080354 A1 WO 2022080354A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
polyester elastomer
thermoplastic polyester
mass
aliphatic
Prior art date
Application number
PCT/JP2021/037681
Other languages
French (fr)
Japanese (ja)
Inventor
恵梨 森尾
卓也 赤石
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to JP2022515588A priority Critical patent/JPWO2022080354A1/ja
Publication of WO2022080354A1 publication Critical patent/WO2022080354A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/205Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase
    • C08J3/21Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase the polymer being premixed with a liquid phase
    • C08J3/215Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase the polymer being premixed with a liquid phase at least one additive being also premixed with a liquid phase
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/02Cellulose; Modified cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers

Definitions

  • the present invention relates to a thermoplastic polyester elastomer resin composition having excellent mechanical properties, fatigue properties, wear properties, and surface properties while maintaining the performance as an elastomer.
  • Thermoplastic polyester elastomer is excellent in injection moldability and extrusion moldability, has high mechanical strength, has rubber properties such as elastic recovery, impact resistance, and flexibility, and is a material with excellent cold resistance. It is used in applications such as electronic parts, textiles, films, and sports parts.
  • thermoplastic polyester elastomer alone may have insufficient surface properties, fatigue properties, etc., and a composite of the elastomer and various inorganic materials is used.
  • a resin composition in which a thermoplastic elastomer is reinforced with an inorganic filler such as glass fiber, carbon fiber, talc, or clay has a high specific gravity or the filler itself becomes a defect, which deteriorates the performance as an elastomer. There is a problem.
  • cellulose has been attracting attention as a new reinforcing material for resins.
  • Cellulose is known to have a high elastic modulus and a low coefficient of linear expansion as its elemental properties, and due to its excellent properties, high functionality of the resin can be expected even with a small amount of addition.
  • the true density is 1.6 g / cm 3 , which is lower than that of glass fiber (density 2.3 to 2.6 g / cm 3 ) and talc (density 2.7 g / cm 3 ), and is suitable for weight reduction. It is a material.
  • Patent Document 1 proposes modified nanocellulose in which a hydroxyl group in nanocellulose is substituted with a specific substituent, and a resin composition containing this and a resin is proposed.
  • a resin composition showing high tensile strength and elastic modulus can be obtained, but surface characteristics and fatigue characteristics are not mentioned.
  • Patent Document 2 describes that when the cellulose raw material is kneaded in the presence of a resin solution while removing the solvent by heating, the cellulose nanofibers having a high content can be uniformly dispersed in the resin. Similar to Document 1, the reference is limited to mechanical properties.
  • Patent Document 3 describes a resin composition having excellent moldability and mechanical properties by combining cellulose fibers having different ratios of fiber diameter to fiber length.
  • the cellulose properties themselves in the resin composition are resins. No mention is made of its effect on the properties of the composition.
  • Patent Documents 1 to 3 refer to the improvement of the dispersibility of cellulose and the improvement of the physical properties of general thermoplastic resins, suitable cellulose properties, surface properties, and fatigue in the elastomer resin composition are mentioned. No mention is made of its effect on the properties.
  • the present invention has been made in view of the current state of the prior art, and an object of the present invention is to provide a thermoplastic polyester elastomer resin composition which is lightweight and has excellent surface characteristics, fatigue characteristics and wear characteristics, and a molded product made of the same. There is something in it.
  • the present inventor has diligently studied the formulation of the thermoplastic polyester elastomer and the cellulose fiber in order to achieve the above object.
  • the characteristics of the elastomer can be improved by containing a specific amount of cellulose fibers with respect to the thermoplastic polyester elastomer and controlling the average fiber length and average fiber diameter of the cellulose fibers in the resin composition within a specific range. It has been found that excellent surface characteristics, fatigue characteristics and wear characteristics can be obtained while retaining the properties.
  • a hard segment made of a polyester composed of an aromatic dicarboxylic acid and an aliphatic and / or alicyclic diol, and at least one selected from an aliphatic polyether, an aliphatic polyester, and an aliphatic polycarbonate. It is a thermoplastic polyester elastomer resin composition containing 0.1 to 30 parts by mass of cellulose fibers (B) with respect to 100 parts by mass of the thermoplastic polyester elastomer (A) to which soft segments are bonded, and cellulose in the resin composition.
  • the fiber (B) is a thermoplastic polyester elastomer resin composition having an average fiber length of 100 to 2000 ⁇ m and an average fiber diameter of 0.5 to 50 ⁇ m.
  • the content of the cellulose fiber (B) is 1 to 10 parts by mass, the average fiber length of the cellulose fiber in the resin composition is 100 to 800 ⁇ m, and the average fiber diameter is 1 to 30 ⁇ m [1].
  • thermoplastic polyester elastomer resin composition according to any one of [1] to [3], which further contains a dispersant (C).
  • C a dispersant
  • thermoplastic polyester elastomer resin composition according to any one of [1] to [4] wherein the tensile elongation measured according to JIS K6251 of the resin composition is 300% or more.
  • thermoplastic polyester elastomer according to any one of [1] to [5] wherein the cellulose fiber (B) is dispersed in the thermoplastic polyester elastomer (A) using a twin-screw kneader.
  • a method for producing a resin composition [7] A molded product made of the thermoplastic polyester elastomer resin composition according to any one of [1] to [5].
  • thermoplastic polyester elastomer resin composition of the present invention and a molded product made of the same can exhibit lightweight and excellent surface characteristics, fatigue characteristics and wear characteristics. Furthermore, by uniformly dispersing the cellulose fibers, excellent performance can be exhibited even with a small amount of addition, and the moldability is also excellent.
  • A is an optical micrograph of the press sheet in Example 2
  • B is an optical micrograph of the press sheet in Comparative Example 3.
  • thermoplastic Polyester Elastomer (A) The thermoplastic polyester elastomer (A) used in the present invention is formed by bonding a hard segment and a soft segment.
  • the hard segment consists of polyester.
  • an ordinary aromatic dicarboxylic acid is widely used and is not particularly limited, but the main aromatic dicarboxylic acid is terephthalic acid or naphthalenedicarboxylic acid (among isomers). 2,6-naphthalenedicarboxylic acid is preferable).
  • the content of these aromatic dicarboxylic acids is preferably 70 mol% or more, more preferably 80 mol% or more, based on the total dicarboxylic acids constituting the polyester of the hard segment.
  • dicarboxylic acid components include aromatic dicarboxylic acids such as diphenyldicarboxylic acid, isophthalic acid, and 5-sodium sulfoisophthalic acid, alicyclic dicarboxylic acids such as cyclohexanedicarboxylic acid and tetrahydrohydride phthalic acid, succinic acid, and glutaric acid.
  • Examples thereof include aliphatic dicarboxylic acids such as adipic acid, azelaic acid, sebacic acid, dodecanedioic acid, dimer acid and hydrogenated dimer acid. These can be used within a range that does not significantly lower the melting point of the resin, and the amount thereof is 30 mol% or less, preferably 20 mol% or less of the total acid component.
  • thermoplastic polyester elastomer (A) used in the present invention as the aliphatic or alicyclic diol constituting the polyester of the hard segment, a general aliphatic or alicyclic diol is widely used and is not particularly limited. However, it is desirable that it is mainly an alkylene glycol having 2 to 8 carbon atoms. Specific examples thereof include ethylene glycol, 1,3-propylene glycol, 1,4-butanediol, 1,6-hexanediol, and 1,4-cyclohexanedimethanol. Among these, ethylene glycol or 1,4-butanediol is preferable.
  • the components constituting the above-mentioned hard segment polyester include butylene terephthalate unit (unit consisting of terephthalic acid and 1,4-butanediol) or butylene naphthalate unit (2,6-naphthalenedicarboxylic acid and 1,4-butanediol).
  • a unit consisting of (a unit consisting of) is preferable from the viewpoint of physical properties, moldability, and cost performance.
  • the aromatic polyester suitable as a polyester constituting a hard segment in the thermoplastic polyester elastomer (A) used in the present invention is produced in advance and then copolymerized with a soft segment component, the aromatic polyester is usually used. It can be easily obtained according to the polyester manufacturing method of. Further, it is desirable that the polyester has a number average molecular weight of 10,000 to 40,000.
  • the soft segment of the thermoplastic polyester elastomer (A) used in the present invention is at least one selected from aliphatic polyethers, aliphatic polyesters, and aliphatic polycarbonates.
  • Examples of the aliphatic polyether include poly (ethylene oxide) glycol, poly (propylene oxide) glycol, poly (tetramethylene oxide) glycol, poly (hexamethylene oxide) glycol, poly (trimethylethylene oxide) glycol, and both ethylene oxide and propylene oxide.
  • Examples thereof include a polymer, an ethylene oxide adduct of poly (propylene oxide) glycol, and a copolymer of ethylene oxide and tetrahydrofuran.
  • ethylene oxide adducts of poly (tetramethylene oxide) glycol and poly (propylene oxide) glycol are preferable from the viewpoint of elastic properties.
  • Examples of the aliphatic polyester include poly ( ⁇ -caprolactone), polyenant lactone, polycaprilolactone, and polybutylene adipate.
  • poly ( ⁇ -caprolactone) and polybutylene adipate are preferable from the viewpoint of elastic properties.
  • the aliphatic polycarbonate is preferably composed mainly of aliphatic diol residues having 2 to 12 carbon atoms.
  • these aliphatic diols include ethylene glycol, 1,3-propylene glycol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,8-octanediol, and 2, 2-Diol-1,3-propanediol, 3-methyl-1,5-pentanediol, 2,4-diol-1,5-pentanediol, 1,9-nonanediol, 2-methyl-1,8- Examples include octanediol.
  • thermoplastic polyester elastomer an aliphatic diol having 5 to 12 carbon atoms is preferable from the viewpoint of the flexibility and low temperature characteristics of the obtained thermoplastic polyester elastomer.
  • these components may be used alone or in combination of two or more, if necessary, based on the cases described below.
  • an aliphatic polycarbonate diol having good low temperature characteristics which constitutes the soft segment of the thermoplastic polyester elastomer (A) used in the present invention
  • one having a low melting point for example, 70 ° C. or lower
  • a low glass transition temperature is used.
  • an aliphatic polycarbonate diol composed of 1,6-hexanediol used for forming a soft segment of a thermoplastic polyester elastomer has a low glass transition temperature of about -60 ° C and a melting point of about 50 ° C. Good low temperature characteristics.
  • the aliphatic polycarbonate diol obtained by copolymerizing the above aliphatic polycarbonate diol with an appropriate amount of, for example, 3-methyl-1,5-pentanediol has a glass transition point with respect to the original aliphatic polycarbonate diol.
  • the melting point is lowered or becomes amorphous, it corresponds to an aliphatic polycarbonate diol having good low temperature characteristics.
  • the aliphatic polycarbonate diol composed of 1,9-nonane diol and 2-methyl-1,8-octane diol has a melting point of about 30 ° C. and a glass transition temperature of about ⁇ 70 ° C., which are sufficiently low.
  • Aliphatic polyether is preferable as the soft segment of the thermoplastic polyester elastomer (A) used in the present invention.
  • thermoplastic polyester elastomer (A) used in the present invention is preferably a copolymer containing terephthalic acid, 1,4-butanediol, and poly (tetramethylene oxide) glycol as main components.
  • terephthalic acid is preferably 40 mol% or more, more preferably 70 mol% or more, still more preferably 80 mol% or more. It is particularly preferably 90 mol% or more.
  • the total of 1,4-butanediol and poly (tetramethylene oxide) glycol is preferably 40 mol% or more, more preferably 70 mol% or more. It is more preferably 80 mol% or more, and particularly preferably 90 mol% or more.
  • the number average molecular weight of the poly (tetramethylene oxide) glycol is preferably 500 to 4000. If the number average molecular weight is less than 500, it may be difficult to develop elastomeric properties. On the other hand, when the number average molecular weight exceeds 4000, the compatibility with the hard segment component is lowered, and it may be difficult to copolymerize in a block shape.
  • the number average molecular weight of the poly (tetramethylene oxide) glycol is more preferably 800 or more and 3000 or less, and further preferably 1000 or more and 2500 or less.
  • thermoplastic polyester elastomer (A) used in the present invention can be produced by a known method. For example, a method of transesterifying a lower alcohol diester of a dicarboxylic acid, an excess amount of low molecular weight glycol, and a soft segment component in the presence of a catalyst to polycondensate the resulting reaction product, a dicarboxylic acid and an excess amount of glycol and soft. A method in which the segment components are esterified in the presence of a catalyst and the obtained reaction product is polycondensed. A hard segment polyester is prepared in advance, and the soft segment component is added to the polyester to be randomized by a transesterification reaction.
  • Any method may be used, such as a method of connecting the hard segment and the soft segment with a chain binder, and a method of adding ⁇ -caprolactone monomer to the hard segment when poly ( ⁇ -caprolactone) is used for the soft segment. ..
  • the cellulose fiber (B) used in the present invention is obtained by mechanically or chemically defibrating the fiber as a raw material.
  • the fiber as a raw material is not particularly limited, but one or more can be selected and used from among plant-derived fibers, animal-derived fibers, microorganism-derived fibers and the like.
  • the cellulose fiber (B) may have at least a part of functional groups or reactive groups modified or unmodified.
  • Examples of the denaturation treatment include esterification and etherification.
  • an acyl group such as an acetyl group is introduced as a substituent by an esterifying agent.
  • the esterifying agent include carboxylic acid, carboxylic acid anhydride, and carboxylic acid halide, and acetic acid, propionic acid, butyric acid, acrylic acid, methacrylic acid, and derivatives thereof are preferable.
  • etherification examples include alkyl etherification and silyl etherification.
  • alkyl etherifying agent alkyl halides such as methyl chloride and ethyl chloride, dialkyl carbonates such as dimethyl carbonate and diethyl carbonate, and alkylene oxides such as ethylene oxide and propylene oxide are preferable.
  • silyl etherifying agent examples include alkoxysilanes such as n-butoxytrimethylsilane, tert-butoxytrimethylsilane, sec-butoxytrimethylsilane, isobutoxytrimethylsilane, ethoxytriethylsilane, octyldimethylethoxysilane, and cyclohexyloxytrimethylsilane, and butoxypoly.
  • alkoxysilanes such as n-butoxytrimethylsilane, tert-butoxytrimethylsilane, sec-butoxytrimethylsilane, isobutoxytrimethylsilane, ethoxytriethylsilane, octyldimethylethoxysilane, and cyclohexyloxytrimethylsilane, and butoxypoly.
  • Alkoxysiloxanes such as dimethylsiloxane, disilazans such as hexamethyldisilazane, tetramethyldisilazane, diphenyltetramethyldisilazane, silylhalides such as trimethylsilylchloride and diphenylbutylchloride, and silyltrifluoromethanes such as tert-butyldimethylsilyltrifluoromethanesulfonate. Examples include sulfonate.
  • the cellulose fiber (B) may contain a dispersant (C).
  • the dispersant (C) may have, for example, a functional group capable of binding to a hydroxy group of a cellulose fiber, a cationic group such as ammonium, phosphonium or sulfonium, or a carboxyl group, a phosphoric acid group, a sulfonic acid group or the like. It may have an anionic group of.
  • the ratio of the dispersant (C) is, for example, 1 part by mass or less, preferably 0.5 part by mass or less, more preferably 0.1 part by mass or less, and particularly preferably 0.1 part by mass or less with respect to 100 parts by mass of the cellulose fiber (B). It is 0.01 to 0.1 parts by mass.
  • the cellulose fiber (B) As a method for producing the cellulose fiber (B), if it is a method by mechanical shearing, for example, pulp or the like is treated with hot water of 100 ° C. or higher, the hemicellulose portion is hydrolyzed to make it fragile, and then a high-pressure homogenizer is used. There is a method of defibrating by a crushing method such as a microfluidizer, a ball mill or a disc mill.
  • Examples of the chemical treatment method include the N-methylmorpholine-N-oxide (NMMO) method, the copper ammonia solution method, and the ionic liquid method.
  • NMMO N-methylmorpholine-N-oxide
  • the present invention exhibits excellent surface properties and fatigue properties by forming a network of cellulose fibers (B) in the thermoplastic polyester elastomer (A).
  • the cellulose fiber (B) is 0.1 to 30 parts by mass, preferably 0.5 to 25 parts by mass, and more preferably 1 to 20 parts by mass with respect to 100 parts by mass of the thermoplastic polyester elastomer (A) in the present invention. It is more preferably 1 to 10 parts by mass.
  • the amount of the cellulose fiber (B) is less than 0.1 parts by mass, the cellulose network is not formed, the effect of improving the surface characteristics, the fatigue characteristics and the wear characteristics cannot be obtained, and the cellulose fiber (B) is more than 30 parts by mass. If there are too many, the desired dispersion form will not be obtained, and there is a concern that the physical properties will deteriorate due to the aggregation of cellulose fibers.
  • the resin composition of the present invention includes antioxidants such as aromatic amine-based, hindered phenol-based, sulfur-based, and phosphorus-based, hindered amine-based, benzotriazole-based, benzophenone-based, benzoate-based, triazole-based, nickel-based, and salicyl. It is preferable to add a light stabilizer such as a system. These may be used in combination of two or more.
  • the blending (content) amount of each of the above-mentioned antioxidants and / or light stabilizers is preferably 0.01 to 3 parts by mass, more preferably 0, with respect to 100 parts by mass of the thermoplastic polyester elastomer (A). It is 05 to 2 parts by mass, more preferably 0.1 to 1 part by mass.
  • the upper limit of the total content is preferably 5 parts by mass.
  • a cross-linking agent may be added to the thermoplastic polyester elastomer (A) as long as the effect of the present invention is not impaired.
  • the cross-linking agent is not particularly limited as long as it is a cross-linking agent that reacts with the hydroxyl group or carboxyl group of the thermoplastic polyester elastomer (A), and for example, an epoxy-based cross-linking agent, a carbodiimide-based cross-linking agent, an isocyanate-based cross-linking agent, and the like.
  • Examples thereof include an acid anhydride-based cross-linking agent, a silanol-based cross-linking agent, a melamine resin-based cross-linking agent, a metal salt-based cross-linking agent, a metal chelate-based cross-linking agent, and an amino resin-based cross-linking agent.
  • the cross-linking agent may be used alone or in combination of two or more.
  • the epoxy-based cross-linking agent is not particularly limited as long as it is a polyfunctional epoxy compound having two or more epoxy groups (glycidyl groups) in the molecule, and specifically, 1,6-dihydroxynaphthalene having two epoxy groups.
  • a polyfunctional epoxy compound having heat resistance in the skeleton is preferable.
  • a bifunctional or tetrafunctional epoxy compound having a naphthalene structure as a skeleton, or a trifunctional epoxy compound having a triazine structure as a skeleton is preferable.
  • the degree of increase in the solution viscosity of the thermoplastic polyester elastomer (A) the effect of efficiently lowering the acid value of the thermoplastic polyester elastomer (A), and the degree of gelation due to the aggregation and solidification of the epoxy itself.
  • a bifunctional or trifunctional epoxy compound is preferable.
  • epoxy-based cross-linking agents for example, sorbitol polyglycidyl ether type, polyglycerol polyglycidyl ether type, diglycerol polyglycidyl ether type, polyethylene glycol diglycidyl ether type and the like can be used. ..
  • Diepoxy / polyepoxy compounds manufactured by Sakamoto Yakuhin Kogyo Co., Ltd. SR-EG, SR-8EG, SR-GLG, etc.
  • Epoxy cross-linking agent "EPICLON” EM-85 manufactured by Dainippon Ink Industry Co., Ltd. -75W, CR-5L and the like can be mentioned.
  • a vinyl aromatic monomer containing two or more glycidyl groups per molecule having a weight average molecular weight of 4000 to 25000, (X) 20 to 99% by mass, and (Y) 1 to 80% by mass glycidyl (Y).
  • Examples thereof include a styrene-based polymer composed of a (meth) acrylate and a (Z) vinyl group-containing monomer other than (X) which does not contain 0 to 79% by mass of an epoxy group. More preferably, the copolymer is composed of 20 to 99% by mass of (X), 1 to 80% by mass of (Y), and 0 to 40% by mass of (Z), and more preferably 25 to 90% by mass of (X).
  • (Y) 10 to 75% by mass It is a copolymer composed of% by mass, (Y) 10 to 75% by mass, and (Z) 0 to 35% by mass.
  • (X) vinyl aromatic monomer include styrene and ⁇ -methylstyrene.
  • Examples of the (Y) glycidylalkyl (meth) acrylate include glycidyl (meth) acrylic acid, (meth) acrylic acid ester having a cyclohexene oxide structure, (meth) acrylic glycidyl ether, and the like. Glycidyl (meth) acrylate is preferable because of its high reactivity.
  • Examples of the (Z) other vinyl group-containing monomer include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, and 2-ethylhexyl (meth) acrylate.
  • Acid alkyl ester (meth) acrylic acid polyalkylene glycol ester, (meth) acrylic acid alkoxyalkyl ester, (meth) acrylic acid hydroxyalkyl ester, (meth) acrylic acid dialkylaminoalkyl ester, (meth) acrylic acid benzyl ester, Examples thereof include (meth) acrylic acid phenoxyalkyl ester, (meth) acrylic acid isobornyl ester, and (meth) acrylic acid alkoxysilylalkyl ester.
  • vinyl esters such as (meth) acrylamide, (meth) acrylic dialkylamide and vinyl acetate, vinyl ethers, aromatic vinyl-based monomers such as (meth) allyl ethers, and ⁇ -olefin monomers such as ethylene and propylene. Etc. can also be used as the above-mentioned (Z) and other vinyl group-containing monomers.
  • the weight average molecular weight of the copolymer is preferably 4000 to 25000.
  • the weight average molecular weight is more preferably 5000 to 15000.
  • the epoxy value of the copolymer is preferably 400 to 2500 equivalents / 1 ⁇ 10 6 g, more preferably 500 to 1500 equivalents / 1 ⁇ 10 6 g, still more preferably 600 to 1000 equivalents / 1 ⁇ 10 6 g. g.
  • an epoxy-based cross-linking agent satisfying such conditions a styrene / glycidyl acrylate copolymer (trade name: UG series of ARUFON) manufactured by Toagosei Co., Ltd. can be used.
  • the polycarbodiimide compound can be obtained, for example, by a decarbonization reaction of the diisocyanate compound.
  • the diisocyanate compound that can be used here include 4,4'-diphenylmethane diisocyanate, 4,4'-diphenyldimethylmethane diisocyanate, 1,3-phenylenediocyanate, 1,4-phenylenediocyanate, and 2,4-tolylene diisocyanate.
  • 2,6-Toluene diisocyanate 1,5-naphthylene diisocyanate, hexamethylene diisocyanate, dicyclohexylmethane diisocyanate, cyclohexane-1,4-diisocyanate, xylylene diisocyanate, isophorone diisocyanate, methylcyclohexane diisocyanate, tetramethylxylylene diisocyanate, Examples thereof include 1,3,5-triisopropylphenylene-2,4-diisocyanate. Only one of these may be used, or two or more thereof may be copolymerized and used.
  • a branched structure may be introduced, or a functional group other than a carbodiimide group or an isocyanate group may be introduced by copolymerization.
  • the terminal isocyanate can be used as it is, the degree of polymerization may be controlled by reacting the terminal isocyanate, or a part of the terminal isocyanate may be blocked.
  • polycarbodiimide compound alicyclic polycarbodiimide derived from dicyclohexylmethane diisocyanate, cyclohexane-1,4-diisocyanate, isophorone diisocyanate and the like is particularly preferable, and polycarbodiimide derived from dicyclohexylmethane diisocyanate and isophorone diisocyanate is particularly preferable.
  • the polycarbodiimide compound preferably contains 2 to 50 carbodiimide groups per molecule in terms of stability and handleability. More preferably, each molecule contains 5 to 30 carbodiimide groups.
  • the number of carbodiimides in the polycarbodiimide molecule corresponds to the degree of polymerization if the polycarbodiimide is obtained from a diisocyanate compound. For example, the degree of polymerization of polycarbodiimide obtained by connecting 21 diisocyanate compounds in a chain is 20 and the number of carbodiimide groups in the molecular chain is 20.
  • a polycarbodiimide compound is a mixture of molecules of various lengths, and the number of carbodiimide groups is represented by an average value. If it has a carbodiimide group in the above range and is solid near room temperature, it can be powdered, so that it has excellent workability and compatibility when mixed with the thermoplastic polyester elastomer (A), and has uniform reactivity and bleed-out resistance. It is also preferable in terms of.
  • the number of carbodiimide groups can be measured, for example, by using a conventional method (a method of dissolving with an amine and performing back titration with hydrochloric acid).
  • the polycarbodiimide compound has an isocyanate group at the terminal, and the isocyanate group content is preferably 0.5 to 4% by mass, which is preferable from the viewpoint of stability and handleability. More preferably, the isocyanate group content is 1 to 3% by mass. In particular, it is preferable that the polycarbodiimide derived from dicyclohexylmethane diisocyanate or isophorone diisocyanate has an isocyanate group content in the above range.
  • the isocyanate group content can be measured by using a conventional method (a method of dissolving with amine and performing back titration with hydrochloric acid).
  • Examples of the isocyanate-based cross-linking agent include the above-mentioned polycarbodiimide compound containing an isocyanate group and the isocyanate compound which is a raw material of the above-mentioned polycarbodiimide compound.
  • anhydride-based cross-linking agent a compound containing 2 to 4 anhydrides per molecule is preferable in terms of stability and handleability.
  • examples of such a compound include phthalic acid anhydride, trimellitic acid anhydride, pyromellitic acid anhydride and the like.
  • the amount (content) of the cross-linking agent used is appropriately adjusted depending on the extrusion conditions and the like, and is, for example, 0.1 to 4.5 parts by mass with respect to 100 parts by mass of the thermoplastic polyester elastomer (A). It is preferably 0.1 to 4 parts by mass, and even more preferably 0.1 to 3 parts by mass.
  • thermoplastic polyester elastomer (A) used in the present invention can be added to the thermoplastic polyester elastomer (A) used in the present invention depending on the purpose.
  • the type of such an additive is not particularly limited, and various additives can be used.
  • additives lubricants, fillers, flame retardants, flame retardant aids, mold release agents, antistatic agents, molecular modifiers such as peroxides, metal deactivators, organic and inorganic nuclei.
  • the content thereof is preferably 30% by mass or less, more preferably 20% by mass or less, still more preferably 20% by mass or less in the resin composition. Is 10% by mass or less, particularly preferably 5% by mass or less.
  • composition and composition ratio of the polyester elastomer resin composition used in the present invention it is also possible to calculate from the proton integral ratio of 1 H-NMR measured by dissolving the sample in a solvent such as deuterated chloroform. be.
  • the polyester elastomer resin composition of the present invention is characterized by having a tensile elongation of 300% or more as described in the section of Examples described later.
  • the tensile elongation is the elongation at the time of cutting measured according to JIS K6251 as described in the section of Examples.
  • thermoplastic polyester elastomer resin composition examples include a method of melt-kneading each component by a conventionally known method. It is not particularly limited as long as the thermoplastic polyester elastomer (A) and the cellulose fiber (B) can be kneaded at least in a state where the thermoplastic polyester elastomer (A) is melted, and for example, a mixing roller, a kneader, an extruder and the like can be used.
  • a kneader, an extruder or the like capable of applying a particularly high shearing force is preferable, and a twin-screw extruder is more preferable.
  • the average fiber length of the cellulose fiber (B) in the resin composition is 100 to 2000 ⁇ m, preferably 100 to 800 ⁇ m, more preferably 200 to 600 ⁇ m, and further preferably 400 to 600 ⁇ m. If it is less than 100 ⁇ m, sufficient surface characteristics, fatigue characteristics and wear characteristics cannot be exhibited, and if it exceeds 2000 ⁇ m, fibers are likely to be entangled with each other and large aggregates are likely to be generated.
  • the average fiber length is a number average fiber length measured by the method described in the section of Examples described later.
  • the average fiber diameter of the cellulose fibers in the resin composition is 0.5 to 50 ⁇ m, preferably 1 to 30 ⁇ m, more preferably 1 to 20 ⁇ m, still more preferably 5 to 15 ⁇ m, and particularly preferably. It is 6 to 10 ⁇ m. If the average fiber diameter is less than 0.5 ⁇ m, the fibers are likely to be entangled with each other and aggregates are likely to be generated. On the other hand, if it exceeds 50 ⁇ m, the elongation tends to decrease and defects in the resin composition tend to occur.
  • the average fiber diameter is a number average fiber diameter measured by the method described in the section of Examples described later.
  • thermoplastic polyester elastomer resin composition of the present invention suppresses the aggregation of cellulose and maintains the performance as an elastomer by setting the average fiber diameter and the average fiber length of the cellulose fibers in the resin composition within a specific range.
  • the surface characteristics, fatigue characteristics and wear characteristics can be improved.
  • thermoplastic polyester elastomer resin composition of the present invention can be made into a molded product by a known molding method.
  • the molding method is not specified, and can be suitably used in injection molding, blow molding, extrusion molding, foam molding, malformed molding, calendar molding, and various other molding methods. Of these, injection molding is preferable.
  • Thermoplastic Polyester Elastomer (A) (Polyester Elastomer A-1) According to the method described in JP-A-9-59491, dimethyl terephthalate, 1,4-butanediol, and poly (tetramethylene oxide) glycol having a number average molecular weight of 1000 are used as raw materials, and the soft segment content is 44% by mass.
  • the thermoplastic polyester elastomer of No. 1 was produced and used as Polyester Elastomer A-1.
  • Cellulose fiber (B) Cellulose fiber (B-1)
  • the pulp is heated with hot water at 120 ° C. or higher for 3 hours, and the purified pulp from which the hemicellulose portion has been removed is squeezed and beaten into heavy water so that the solid content ratio becomes 1.5% by mass.
  • defibrated cellulose having an average fiber diameter of 10 ⁇ m and an average fiber length of 1000 ⁇ m was obtained by defibrating with a high-pressure homogenizer at the same concentration.
  • Cellulose fiber B-2 By using a high-pressure homogenizer in the same manner as the cellulose fiber B-1 and changing the beating blade and the beating time, defibrated cellulose having an average fiber diameter of 10 ⁇ m and an average fiber length of 2800 ⁇ m was obtained.
  • Cellulose fiber B-3 By using a high-pressure homogenizer in the same manner as the cellulose fiber B-1 and changing the beating blade and the beating time to be used, defibrated cellulose having an average fiber diameter of 200 nm and an average fiber length of 250 ⁇ m was obtained.
  • Cellulose fiber B-4 By using a high-pressure homogenizer in the same manner as the cellulose fiber B-1 and changing the beating blade and the beating time, defibrated cellulose having an average fiber diameter of 100 ⁇ m and an average fiber length of 1500 ⁇ m was obtained.
  • the cellulose component was made into a pure water suspension at a concentration of 1% by mass, the aqueous dispersion dispersed with a high shear homogenizer was diluted with pure water to 0.1 to 0.5% by mass, cast, and air-dried and scanned. It was taken with an electron microscope. Cellulose fibers were image-processed, the diameters and fiber lengths of 50 fibers were measured using analysis software, and the average values were calculated. The fiber diameter was measured at the thickest part of one fiber. The fiber length of the non-straight fiber was measured by dividing the length at multiple points.
  • Examples 1 to 6 Comparative Examples 1 to 7 Cellulose fibers were kneaded with 100 parts by mass of a thermoplastic polyester elastomer using a twin-screw extruder according to the compounding composition shown in Table 1, and then pelletized. The length and diameter of the cellulose fibers were adjusted according to the ejection speed and the number of revolutions at the time of extrusion. Comparative Example 4 was produced by repeating kneading with a twin-screw screw extruder three times. The following evaluation was performed using the pellets of this polyester elastomer resin composition. The results are shown in Table 1.
  • a sheet having a width of 100 mm, a length of 100 mm, and a thickness of 50 ⁇ m was prepared from pellets by heat pressing, the cellulose fibers in the resin composition photographed by an optical microscope were image-processed, and 50 fiber diameters and fiber lengths were processed using analysis software. Was measured, and the average value was calculated.
  • the fiber diameter was measured at the thickest part of one fiber.
  • the fiber length of the non-straight fiber was measured by dividing the length at multiple points.
  • a sheet having a width of 100 mm, a length of 100 mm, and a thickness of 50 ⁇ m was prepared from the pellets by heat pressing, and aggregates on the sheet surface were observed.
  • the diameter of the agglomerate was 100 ⁇ m to 300 ⁇ m: ⁇
  • the diameter of the agglomerate was more than 300 ⁇ m: ⁇ .
  • the largest agglomerate was evaluated.
  • Test piece used was an injection-molded product having a width of 100 mm, a length of 100 mm, and a thickness of 2.0 mm, punched into a JIS No. 3 dumbbell shape parallel to the flow direction of the resin.
  • Comparative Example 3 in which the number of portions of the cellulose fibers added is large, Comparative Example 5 in which the fiber length is long, and Comparative Example 6 in which the fiber diameter is small, although excellent wear characteristics and fatigue characteristics are exhibited, the cellulose fibers are aggregated and dispersible. Inferior. Further, in Comparative Example 7 having a large fiber diameter, the elongation was lowered, and the fatigue characteristics were also inferior to those in Example 2.
  • Example 2 the press sheets obtained from Example 2 and Comparative Example 3 were observed with an optical electron microscope.
  • a photograph of Example 2 is shown in FIG. 1A
  • a photograph of Comparative Example 3 is shown in FIG. 1B. From FIGS. 1A and 1B, in Example 2, the cellulose fibers were uniformly dispersed to form a network in the resin, whereas in Comparative Example 3, agglomerates having a size of 300 ⁇ m or more were observed and dispersed. Is found to be non-uniform.
  • thermoplastic polyester elastomer resin composition of the present invention and a molded product made of the same can exhibit lightweight and excellent surface characteristics, fatigue characteristics and wear characteristics. Furthermore, by uniformly dispersing the cellulose fibers, excellent performance can be exhibited even with a small amount of addition, and the moldability is also excellent.

Abstract

The present invention provides a thermoplastic polyester elastomer resin composition which is lightweight and has excellent surface characteristics, fatigue characteristics and wear characteristics. This thermoplastic polyester elastomer resin composition contains from 0.1 part by mass to 30 parts by mass of (B) cellulose fibers relative to 100 parts by mass of (A) a thermoplastic polyester elastomer wherein a hard segment, which is composed of a polyester that comprises an aromatic dicarboxylic acid and an aliphatic and/or alicyclic diol as constituents, and at least one soft segment, which is selected from among an aliphatic polyether, an aliphatic polyester and an aliphatic polycarbonate, are bonded with each other; and the cellulose fibers (B) in this resin composition have an average fiber length of from 100 μm to 2,000 μm, while having an average fiber diameter of from 0.5 μm to 50 μm.

Description

熱可塑性ポリエステルエラストマー樹脂組成物及びその製造方法Thermoplastic polyester elastomer resin composition and its manufacturing method
 本発明は、エラストマーとしての性能を保持しつつ、機械的特性や疲労特性、摩耗特性、表面特性に優れた熱可塑性ポリエステルエラストマー樹脂組成物に関するものである。 The present invention relates to a thermoplastic polyester elastomer resin composition having excellent mechanical properties, fatigue properties, wear properties, and surface properties while maintaining the performance as an elastomer.
 熱可塑性ポリエステルエラストマーは、射出成形性、押出成形性に優れ、機械的強度が高く、弾性回復性、耐衝撃性、柔軟性などのゴム的性質、耐寒性に優れる材料として、自動車部品、電気・電子部品、繊維、フィルム、スポーツ部品などの用途に使用されている。 Thermoplastic polyester elastomer is excellent in injection moldability and extrusion moldability, has high mechanical strength, has rubber properties such as elastic recovery, impact resistance, and flexibility, and is a material with excellent cold resistance. It is used in applications such as electronic parts, textiles, films, and sports parts.
 しかしながら、熱可塑性ポリエステルエラストマー単体では、表面特性、疲労特性等が不十分であることがあり、エラストマーと各種無機材料をコンポジットしたものが用いられる。一方で、熱可塑性エラストマーをガラス繊維、炭素繊維、タルク、クレイなどの無機充填材で強化した樹脂組成物は、比重が高くなったり、充填材自身が欠陥となり、エラストマーとしての性能を低下させるなどの課題がある。 However, the thermoplastic polyester elastomer alone may have insufficient surface properties, fatigue properties, etc., and a composite of the elastomer and various inorganic materials is used. On the other hand, a resin composition in which a thermoplastic elastomer is reinforced with an inorganic filler such as glass fiber, carbon fiber, talc, or clay has a high specific gravity or the filler itself becomes a defect, which deteriorates the performance as an elastomer. There is a problem.
 近年、樹脂の新たな強化材として、セルロースが注目されている。セルロースはその単体特性として高い弾性率と低い線膨張係数を有することが知られており、その優れた特性から少量の添加でも樹脂の高機能化が期待できる。また、真密度が1.6g/cmであり、ガラス繊維(密度2.3~2.6g/cm)やタルク(密度2.7g/cm)と比較して低く、軽量化に適した材料である。 In recent years, cellulose has been attracting attention as a new reinforcing material for resins. Cellulose is known to have a high elastic modulus and a low coefficient of linear expansion as its elemental properties, and due to its excellent properties, high functionality of the resin can be expected even with a small amount of addition. In addition, the true density is 1.6 g / cm 3 , which is lower than that of glass fiber (density 2.3 to 2.6 g / cm 3 ) and talc (density 2.7 g / cm 3 ), and is suitable for weight reduction. It is a material.
 例えば、特許文献1には、ナノセルロース中の水酸基を特定の置換基で置換してなる変性ナノセルロースが提案されており、これと樹脂とを含む樹脂組成物が提案されている。上記文献では高い引張強度や弾性率を示す樹脂組成物を得ることができるが、表面特性や疲労特性については言及されていない。 For example, Patent Document 1 proposes modified nanocellulose in which a hydroxyl group in nanocellulose is substituted with a specific substituent, and a resin composition containing this and a resin is proposed. In the above document, a resin composition showing high tensile strength and elastic modulus can be obtained, but surface characteristics and fatigue characteristics are not mentioned.
 また、特許文献2においては樹脂溶液の存在下、加熱して溶媒を除去しながらセルロース原料を混錬すると、高含有量のセルロースナノ繊維を樹脂に均一に分散できることが記載されているが、特許文献1と同様に機械的特性の言及にとどまっている。 Further, Patent Document 2 describes that when the cellulose raw material is kneaded in the presence of a resin solution while removing the solvent by heating, the cellulose nanofibers having a high content can be uniformly dispersed in the resin. Similar to Document 1, the reference is limited to mechanical properties.
 特許文献3には、繊維径と繊維長の比の異なるセルロースファイバーを組み合わせることで、成形性および機械特性に優れた樹脂組成物について記載されているが、樹脂組成物中のセルロース特性自体が樹脂組成物の特性に与える影響については言及していない。 Patent Document 3 describes a resin composition having excellent moldability and mechanical properties by combining cellulose fibers having different ratios of fiber diameter to fiber length. However, the cellulose properties themselves in the resin composition are resins. No mention is made of its effect on the properties of the composition.
 また、特許文献1~3のいずれもセルロースの分散性の向上および一般的な熱可塑性樹脂の物性向上については言及しているが、エラストマー樹脂組成物中における適したセルロース特性や、表面特性、疲労特性への影響については言及されていない。 Further, although all of Patent Documents 1 to 3 refer to the improvement of the dispersibility of cellulose and the improvement of the physical properties of general thermoplastic resins, suitable cellulose properties, surface properties, and fatigue in the elastomer resin composition are mentioned. No mention is made of its effect on the properties.
特許第6120590号公報Japanese Patent No. 6120590 特許第6684371号公報Japanese Patent No. 6648371 特許第6419276号公報Japanese Patent No. 6419276
 本発明は、上記従来技術の現状に鑑みなされたものであり、その目的は、軽量かつ表面特性、疲労特性及び摩耗特性に優れた熱可塑性ポリエステルエラストマー樹脂組成物、及びそれからなる成形体を提供することにある。 The present invention has been made in view of the current state of the prior art, and an object of the present invention is to provide a thermoplastic polyester elastomer resin composition which is lightweight and has excellent surface characteristics, fatigue characteristics and wear characteristics, and a molded product made of the same. There is something in it.
 本発明者は、上記目的を達成するため、熱可塑性ポリエステルエラストマーとセルロースファイバーの配合について鋭意検討した。その結果、熱可塑性ポリエステルエラストマーに対し、特定量のセルロース繊維を含有し、かつ樹脂組成物中におけるセルロース繊維の平均繊維長および平均繊維径を特定の範囲に制御にすることで、エラストマーの特性を保持しながら優れた表面特性、疲労特性及び摩耗特性が得られることを見出した。 The present inventor has diligently studied the formulation of the thermoplastic polyester elastomer and the cellulose fiber in order to achieve the above object. As a result, the characteristics of the elastomer can be improved by containing a specific amount of cellulose fibers with respect to the thermoplastic polyester elastomer and controlling the average fiber length and average fiber diameter of the cellulose fibers in the resin composition within a specific range. It has been found that excellent surface characteristics, fatigue characteristics and wear characteristics can be obtained while retaining the properties.
 即ち、本発明は、次の[1]~[5]を構成するものである。
[1] 芳香族ジカルボン酸と脂肪族及び/又は脂環族ジオールとを構成成分とするポリエステルからなるハードセグメントと、脂肪族ポリエーテル、脂肪族ポリエステル、及び脂肪族ポリカーボネートから選ばれる少なくとも1種のソフトセグメントが結合された熱可塑性ポリエステルエラストマー(A)100質量部に対し、セルロース繊維(B)0.1~30質量部を含有する熱可塑性ポリエステルエラストマー樹脂組成物であり、樹脂組成物中におけるセルロース繊維(B)は、平均繊維長が100~2000μm、かつ平均繊維径が0.5~50μmであることを特徴とする熱可塑性ポリエステルエラストマー樹脂組成物。
[2] 前記セルロース繊維(B)の含有量が1~10質量部であり、樹脂組成物中のセルロース繊維の平均繊維長が100~800μm、平均繊維径が1~30μmである[1]に記載の熱可塑性ポリエステルエラストマー樹脂組成物。
[3] 前記セルロース繊維(B)が変性されているセルロース繊維である[1]または[2]に記載の熱可塑性ポリエステルエラストマー樹脂組成物。
[4] さらに分散剤(C)を含有する[1]~[3]のいずれかに記載の熱可塑性ポリエステルエラストマー樹脂組成物。
[5] 前記樹脂組成物のJIS K6251に準拠して測定された引張伸度が300%以上である[1]~[4]のいずれかに記載の熱可塑性ポリエステルエラストマー樹脂組成物。
[6] 二軸混錬機を用いてセルロース繊維(B)を熱可塑性ポリエステルエラストマー(A)中に分散させることを特徴とする[1]~[5]のいずれかに記載の熱可塑性ポリエステルエラストマー樹脂組成物の製造方法。
[7] [1]~[5]のいずれかに記載の熱可塑性ポリエステルエラストマー樹脂組成物からなる成形体。
That is, the present invention constitutes the following [1] to [5].
[1] A hard segment made of a polyester composed of an aromatic dicarboxylic acid and an aliphatic and / or alicyclic diol, and at least one selected from an aliphatic polyether, an aliphatic polyester, and an aliphatic polycarbonate. It is a thermoplastic polyester elastomer resin composition containing 0.1 to 30 parts by mass of cellulose fibers (B) with respect to 100 parts by mass of the thermoplastic polyester elastomer (A) to which soft segments are bonded, and cellulose in the resin composition. The fiber (B) is a thermoplastic polyester elastomer resin composition having an average fiber length of 100 to 2000 μm and an average fiber diameter of 0.5 to 50 μm.
[2] The content of the cellulose fiber (B) is 1 to 10 parts by mass, the average fiber length of the cellulose fiber in the resin composition is 100 to 800 μm, and the average fiber diameter is 1 to 30 μm [1]. The thermoplastic polyester elastomer resin composition according to the above.
[3] The thermoplastic polyester elastomer resin composition according to [1] or [2], which is a cellulose fiber in which the cellulose fiber (B) is modified.
[4] The thermoplastic polyester elastomer resin composition according to any one of [1] to [3], which further contains a dispersant (C).
[5] The thermoplastic polyester elastomer resin composition according to any one of [1] to [4], wherein the tensile elongation measured according to JIS K6251 of the resin composition is 300% or more.
[6] The thermoplastic polyester elastomer according to any one of [1] to [5], wherein the cellulose fiber (B) is dispersed in the thermoplastic polyester elastomer (A) using a twin-screw kneader. A method for producing a resin composition.
[7] A molded product made of the thermoplastic polyester elastomer resin composition according to any one of [1] to [5].
 本発明の熱可塑性ポリエステルエラストマー樹脂組成物、及びそれからなる成形体は、軽量かつ優れた表面特性、疲労特性及び摩耗特性を発現することが出来る。さらに、均一にセルロース繊維を分散させることで、少量添加でも優れた性能を発現することができ、成形性にも優れる。 The thermoplastic polyester elastomer resin composition of the present invention and a molded product made of the same can exhibit lightweight and excellent surface characteristics, fatigue characteristics and wear characteristics. Furthermore, by uniformly dispersing the cellulose fibers, excellent performance can be exhibited even with a small amount of addition, and the moldability is also excellent.
Aは実施例2におけるプレスシートの光学顕微鏡写真であり、Bは比較例3におけるプレスシートの光学顕微鏡写真である。A is an optical micrograph of the press sheet in Example 2, and B is an optical micrograph of the press sheet in Comparative Example 3.
[熱可塑性ポリエステルエラストマー(A)]
 本発明で使用する熱可塑性ポリエステルエラストマー(A)は、ハードセグメントとソフトセグメントが結合してなる。ハードセグメントは、ポリエステルからなる。ハードセグメントのポリエステルを構成する芳香族ジカルボン酸としては、通常の芳香族ジカルボン酸が広く用いられ、特に限定されないが、主たる芳香族ジカルボン酸としては、テレフタル酸又はナフタレンジカルボン酸(異性体の中では2,6-ナフタレンジカルボン酸が好ましい)であることが望ましい。これらの芳香族ジカルボン酸の含有量は、ハードセグメントのポリエステルを構成する全ジカルボン酸中、70モル%以上であることが好ましく、80モル%以上であることがより好ましい。その他のジカルボン酸成分としては、ジフェニルジカルボン酸、イソフタル酸、5-ナトリウムスルホイソフタル酸などの芳香族ジカルボン酸、シクロヘキサンジカルボン酸、テトラヒドロ無水フタル酸などの脂環族ジカルボン酸、コハク酸、グルタル酸、アジピン酸、アゼライン酸、セバシン酸、ドデカン二酸、ダイマー酸、水添ダイマー酸などの脂肪族ジカルボン酸などが挙げられる。これらは、樹脂の融点を大きく低下させない範囲で用いられることができ、その量は全酸成分の30モル%以下、好ましくは20モル%以下である。
[Thermoplastic Polyester Elastomer (A)]
The thermoplastic polyester elastomer (A) used in the present invention is formed by bonding a hard segment and a soft segment. The hard segment consists of polyester. As the aromatic dicarboxylic acid constituting the hard segment polyester, an ordinary aromatic dicarboxylic acid is widely used and is not particularly limited, but the main aromatic dicarboxylic acid is terephthalic acid or naphthalenedicarboxylic acid (among isomers). 2,6-naphthalenedicarboxylic acid is preferable). The content of these aromatic dicarboxylic acids is preferably 70 mol% or more, more preferably 80 mol% or more, based on the total dicarboxylic acids constituting the polyester of the hard segment. Examples of other dicarboxylic acid components include aromatic dicarboxylic acids such as diphenyldicarboxylic acid, isophthalic acid, and 5-sodium sulfoisophthalic acid, alicyclic dicarboxylic acids such as cyclohexanedicarboxylic acid and tetrahydrohydride phthalic acid, succinic acid, and glutaric acid. Examples thereof include aliphatic dicarboxylic acids such as adipic acid, azelaic acid, sebacic acid, dodecanedioic acid, dimer acid and hydrogenated dimer acid. These can be used within a range that does not significantly lower the melting point of the resin, and the amount thereof is 30 mol% or less, preferably 20 mol% or less of the total acid component.
 また、本発明で使用する熱可塑性ポリエステルエラストマー(A)において、ハードセグメントのポリエステルを構成する脂肪族又は脂環族ジオールとしては、一般の脂肪族又は脂環族ジオールが広く用いられ、特に限定されないが、主として炭素数2~8のアルキレングリコール類であることが望ましい。具体的には、エチレングリコール、1,3-プロピレングリコール、1,4-ブタンジオール、1,6-ヘキサンジオール、1,4-シクロヘキサンジメタノールなどが挙げられる。これらの中でも、エチレングリコール、1,4-ブタンジオールのいずれかであることが好ましい。 Further, in the thermoplastic polyester elastomer (A) used in the present invention, as the aliphatic or alicyclic diol constituting the polyester of the hard segment, a general aliphatic or alicyclic diol is widely used and is not particularly limited. However, it is desirable that it is mainly an alkylene glycol having 2 to 8 carbon atoms. Specific examples thereof include ethylene glycol, 1,3-propylene glycol, 1,4-butanediol, 1,6-hexanediol, and 1,4-cyclohexanedimethanol. Among these, ethylene glycol or 1,4-butanediol is preferable.
 上記のハードセグメントのポリエステルを構成する成分としては、ブチレンテレフタレート単位(テレフタル酸と1,4-ブタンジオールからなる単位)あるいはブチレンナフタレート単位(2,6-ナフタレンジカルボン酸と1,4-ブタンジオールからなる単位)よりなるものが、物性、成形性、コストパフォーマンスの点から好ましい。 The components constituting the above-mentioned hard segment polyester include butylene terephthalate unit (unit consisting of terephthalic acid and 1,4-butanediol) or butylene naphthalate unit (2,6-naphthalenedicarboxylic acid and 1,4-butanediol). A unit consisting of (a unit consisting of) is preferable from the viewpoint of physical properties, moldability, and cost performance.
 また、本発明で使用する熱可塑性ポリエステルエラストマー(A)におけるハードセグメントを構成するポリエステルとして好適な芳香族ポリエステルを事前に製造し、その後ソフトセグメント成分と共重合させる場合、該芳香族ポリエステルは、通常のポリエステルの製造法に従って容易に得ることができる。また、かかるポリエステルは、数平均分子量10000~40000を有しているものが望ましい。 Further, when an aromatic polyester suitable as a polyester constituting a hard segment in the thermoplastic polyester elastomer (A) used in the present invention is produced in advance and then copolymerized with a soft segment component, the aromatic polyester is usually used. It can be easily obtained according to the polyester manufacturing method of. Further, it is desirable that the polyester has a number average molecular weight of 10,000 to 40,000.
 本発明で使用する熱可塑性ポリエステルエラストマー(A)のソフトセグメントは、脂肪族ポリエーテル、脂肪族ポリエステル、及び脂肪族ポリカーボネートから選ばれる少なくとも1種である。 The soft segment of the thermoplastic polyester elastomer (A) used in the present invention is at least one selected from aliphatic polyethers, aliphatic polyesters, and aliphatic polycarbonates.
 脂肪族ポリエーテルとしては、ポリ(エチレンオキシド)グリコール、ポリ(プロピレンオキシド)グリコール、ポリ(テトラメチレンオキシド)グリコール、ポリ(ヘキサメチレンオキシド)グリコール、ポリ(トリメチレンオキシド)グリコール、エチレンオキシドとプロピレンオキシドの共重合体、ポリ(プロピレンオキシド)グリコールのエチレンオキシド付加物、エチレンオキシドとテトラヒドロフランの共重合体などが挙げられる。これらの中でも、弾性特性の点から、ポリ(テトラメチレンオキシド)グリコール、ポリ(プロピレンオキシド)グリコールのエチレンオキシド付加物が好ましい。 Examples of the aliphatic polyether include poly (ethylene oxide) glycol, poly (propylene oxide) glycol, poly (tetramethylene oxide) glycol, poly (hexamethylene oxide) glycol, poly (trimethylethylene oxide) glycol, and both ethylene oxide and propylene oxide. Examples thereof include a polymer, an ethylene oxide adduct of poly (propylene oxide) glycol, and a copolymer of ethylene oxide and tetrahydrofuran. Among these, ethylene oxide adducts of poly (tetramethylene oxide) glycol and poly (propylene oxide) glycol are preferable from the viewpoint of elastic properties.
 脂肪族ポリエステルとしては、ポリ(ε-カプロラクトン)、ポリエナントラクトン、ポリカプリロラクトン、ポリブチレンアジペートなどが挙げられる。これらの中でも、弾性特性の点から、ポリ(ε-カプロラクトン)、ポリブチレンアジペートが好ましい。 Examples of the aliphatic polyester include poly (ε-caprolactone), polyenant lactone, polycaprilolactone, and polybutylene adipate. Among these, poly (ε-caprolactone) and polybutylene adipate are preferable from the viewpoint of elastic properties.
 脂肪族ポリカーボネートは、主として炭素数2~12の脂肪族ジオール残基からなるものであることが好ましい。これらの脂肪族ジオールとしては、例えば、エチレングリコール、1,3-プロピレングリコール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,8-オクタンジオール、2,2-ジメチル-1,3-プロパンジオール、3-メチル-1,5-ペンタンジオール、2,4-ジエチル-1,5-ペンタンジオール、1,9-ノナンジオール、2-メチル-1,8-オクタンジオールなどが挙げられる。特に、得られる熱可塑性ポリエステルエラストマーの柔軟性や低温特性の点から、炭素数5~12の脂肪族ジオールが好ましい。これらの成分は、以下に説明する事例に基づき、単独で用いてもよいし、必要に応じて2種以上を併用してもよい。 The aliphatic polycarbonate is preferably composed mainly of aliphatic diol residues having 2 to 12 carbon atoms. Examples of these aliphatic diols include ethylene glycol, 1,3-propylene glycol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,8-octanediol, and 2, 2-Diol-1,3-propanediol, 3-methyl-1,5-pentanediol, 2,4-diol-1,5-pentanediol, 1,9-nonanediol, 2-methyl-1,8- Examples include octanediol. In particular, an aliphatic diol having 5 to 12 carbon atoms is preferable from the viewpoint of the flexibility and low temperature characteristics of the obtained thermoplastic polyester elastomer. These components may be used alone or in combination of two or more, if necessary, based on the cases described below.
 本発明で使用する熱可塑性ポリエステルエラストマー(A)のソフトセグメントを構成する、低温特性が良好な脂肪族ポリカーボネートジオールとしては、融点が低く(例えば、70℃以下)かつ、ガラス転移温度が低いものが好ましい。一般に、熱可塑性ポリエステルエラストマーのソフトセグメントを形成するのに用いられる1,6-ヘキサンジオールからなる脂肪族ポリカーボネートジオールは、ガラス転移温度が-60℃前後と低く、融点も50℃前後となるため、低温特性が良好なものとなる。その他にも、上記脂肪族ポリカーボネートジオールに、例えば、3-メチル-1,5-ペンタンジオールを適当量共重合して得られる脂肪族ポリカーボネートジオールは、元の脂肪族ポリカーボネートジオールに対してガラス転移点が若干高くなるものの、融点が低下もしくは非晶性となるため、低温特性が良好な脂肪族ポリカーボネートジオールに相当する。また、また、例えば、1,9-ノナンジオールと2-メチル-1,8-オクタンジオールからなる脂肪族ポリカーボネートジオールは、融点が30℃程度、ガラス転移温度が-70℃前後と十分に低いため、低温特性が良好な脂肪族ポリカーボネートジオールに相当する。 As the aliphatic polycarbonate diol having good low temperature characteristics, which constitutes the soft segment of the thermoplastic polyester elastomer (A) used in the present invention, one having a low melting point (for example, 70 ° C. or lower) and a low glass transition temperature is used. preferable. Generally, an aliphatic polycarbonate diol composed of 1,6-hexanediol used for forming a soft segment of a thermoplastic polyester elastomer has a low glass transition temperature of about -60 ° C and a melting point of about 50 ° C. Good low temperature characteristics. In addition, the aliphatic polycarbonate diol obtained by copolymerizing the above aliphatic polycarbonate diol with an appropriate amount of, for example, 3-methyl-1,5-pentanediol has a glass transition point with respect to the original aliphatic polycarbonate diol. However, since the melting point is lowered or becomes amorphous, it corresponds to an aliphatic polycarbonate diol having good low temperature characteristics. Further, for example, the aliphatic polycarbonate diol composed of 1,9-nonane diol and 2-methyl-1,8-octane diol has a melting point of about 30 ° C. and a glass transition temperature of about −70 ° C., which are sufficiently low. , Corresponds to an aliphatic polycarbonate diol having good low temperature characteristics.
 本発明で使用する熱可塑性ポリエステルエラストマー(A)のソフトセグメントとしては、脂肪族ポリエーテルが好ましい。 Aliphatic polyether is preferable as the soft segment of the thermoplastic polyester elastomer (A) used in the present invention.
 本発明で使用する熱可塑性ポリエステルエラストマー(A)は、テレフタル酸、1,4-ブタンジオール、及びポリ(テトラメチレンオキシド)グリコールを主たる成分とする共重合体であることが好ましい。熱可塑性ポリエステルエラストマー(A)を構成するジカルボン酸成分中、テレフタル酸が40モル%以上であることが好ましく、70モル%以上であることがより好ましく、80モル%以上であることがさらに好ましく、90モル%以上であることが特に好ましい。熱可塑性ポリエステルエラストマー(A)を構成するグリコール成分中、1,4-ブタンジオールとポリ(テトラメチレンオキシド)グリコールの合計が40モル%以上であることが好ましく、70モル%以上であることがより好ましく、80モル%以上であることがさらに好ましく、90モル%以上であることが特に好ましい。 The thermoplastic polyester elastomer (A) used in the present invention is preferably a copolymer containing terephthalic acid, 1,4-butanediol, and poly (tetramethylene oxide) glycol as main components. Among the dicarboxylic acid components constituting the thermoplastic polyester elastomer (A), terephthalic acid is preferably 40 mol% or more, more preferably 70 mol% or more, still more preferably 80 mol% or more. It is particularly preferably 90 mol% or more. Among the glycol components constituting the thermoplastic polyester elastomer (A), the total of 1,4-butanediol and poly (tetramethylene oxide) glycol is preferably 40 mol% or more, more preferably 70 mol% or more. It is more preferably 80 mol% or more, and particularly preferably 90 mol% or more.
 前記ポリ(テトラメチレンオキシド)グリコールの数平均分子量は、500~4000であることが好ましい。数平均分子量が500未満であると、エラストマー特性を発現しにくい場合がある。一方、数平均分子量が4000を超えると、ハードセグメント成分との相溶性が低下し、ブロック状に共重合することが難しくなる場合がある。ポリ(テトラメチレンオキシド)グリコールの数平均分子量は、800以上3000以下であることがより好ましく、1000以上2500以下であることがさらに好ましい。 The number average molecular weight of the poly (tetramethylene oxide) glycol is preferably 500 to 4000. If the number average molecular weight is less than 500, it may be difficult to develop elastomeric properties. On the other hand, when the number average molecular weight exceeds 4000, the compatibility with the hard segment component is lowered, and it may be difficult to copolymerize in a block shape. The number average molecular weight of the poly (tetramethylene oxide) glycol is more preferably 800 or more and 3000 or less, and further preferably 1000 or more and 2500 or less.
 本発明で使用する熱可塑性ポリエステルエラストマー(A)は、公知の方法で製造することができる。例えば、ジカルボン酸の低級アルコールジエステル、過剰量の低分子量グリコール、およびソフトセグメント成分を触媒の存在下エステル交換反応させ、得られる反応生成物を重縮合する方法、ジカルボン酸と過剰量のグリコールおよびソフトセグメント成分を触媒の存在下でエステル化反応させ、得られる反応生成物を重縮合する方法、あらかじめハードセグメントのポリエステルを作っておき、これにソフトセグメント成分を添加してエステル交換反応によりランダム化させる方法、ハードセグメントとソフトセグメントを鎖連結剤でつなぐ方法、さらにポリ(ε-カプロラクトン)をソフトセグメントに用いる場合は、ハードセグメントにε-カプロラクトンモノマーを付加反応させる方法などのいずれの方法をとってもよい。 The thermoplastic polyester elastomer (A) used in the present invention can be produced by a known method. For example, a method of transesterifying a lower alcohol diester of a dicarboxylic acid, an excess amount of low molecular weight glycol, and a soft segment component in the presence of a catalyst to polycondensate the resulting reaction product, a dicarboxylic acid and an excess amount of glycol and soft. A method in which the segment components are esterified in the presence of a catalyst and the obtained reaction product is polycondensed. A hard segment polyester is prepared in advance, and the soft segment component is added to the polyester to be randomized by a transesterification reaction. Any method may be used, such as a method of connecting the hard segment and the soft segment with a chain binder, and a method of adding ε-caprolactone monomer to the hard segment when poly (ε-caprolactone) is used for the soft segment. ..
[セルロース繊維(B)]
 本発明で使用するセルロース繊維(B)は、原料となる繊維を機械的または化学的に解繊して得られる。原料となる繊維としては特に限定されないが、植物由来の繊維、動物由来の繊維、微生物由来の繊維などの中から1種または2種以上を選択して使用することができる。
[Cellulose fiber (B)]
The cellulose fiber (B) used in the present invention is obtained by mechanically or chemically defibrating the fiber as a raw material. The fiber as a raw material is not particularly limited, but one or more can be selected and used from among plant-derived fibers, animal-derived fibers, microorganism-derived fibers and the like.
 前記セルロース繊維(B)は、少なくとも一部の官能基または反応性基が変性されていてもよく、未変性であってもよい。変性処理としては、例えばエステル化やエーテル化などが挙げられる。 The cellulose fiber (B) may have at least a part of functional groups or reactive groups modified or unmodified. Examples of the denaturation treatment include esterification and etherification.
 エステル化では、エステル化剤により置換基として、アセチル基などのアシル基が導入される。エステル化剤としては、カルボン酸、カルボン酸無水物、カルボン酸ハロゲン化物などが挙げられ、酢酸、プロピオン酸、酪酸、アクリル酸、メタクリル酸およびこれらの誘導体が好ましい。 In esterification, an acyl group such as an acetyl group is introduced as a substituent by an esterifying agent. Examples of the esterifying agent include carboxylic acid, carboxylic acid anhydride, and carboxylic acid halide, and acetic acid, propionic acid, butyric acid, acrylic acid, methacrylic acid, and derivatives thereof are preferable.
 エーテル化としては、アルキルエーテル化、シリルエーテル化などが挙げられる。アルキルエーテル化剤としては、メチルクロライド、エチルクロライドなどのハロゲン化アルキル、炭酸ジメチル、炭酸ジエチルなどの炭酸ジアルキル、エチレンオキサイド、プロピレンオキサイドなどのアルキレンオキサイドなどが好ましい。シリルエーテル化剤としては、n-ブトキシトリメチルシラン、tert-ブトキシトリメチルシラン、sec-ブトキシトリメチルシラン、イソブトキシトリメチルシラン、エトキシトリエチルシラン、オクチルジメチルエトキシシラン、シクロヘキシルオキシトリメチルシラン等のアルコキシシラン、ブトキシポリジメチルシロキサン等のアルコキシシロキサン、ヘキサメチルジシラザン、テトラメチルジシラザン、ジフェニルテトラメチルジシラザン等のジシラザン、トリメチルシリルクロライド、ジフェニルブチルクロライド等のシリルハライド、tert-ブチルジメチルシリルトリフルオロメタンスルホネート等のシリルトリフルオロメタンスルホネートなどが挙げられる。 Examples of etherification include alkyl etherification and silyl etherification. As the alkyl etherifying agent, alkyl halides such as methyl chloride and ethyl chloride, dialkyl carbonates such as dimethyl carbonate and diethyl carbonate, and alkylene oxides such as ethylene oxide and propylene oxide are preferable. Examples of the silyl etherifying agent include alkoxysilanes such as n-butoxytrimethylsilane, tert-butoxytrimethylsilane, sec-butoxytrimethylsilane, isobutoxytrimethylsilane, ethoxytriethylsilane, octyldimethylethoxysilane, and cyclohexyloxytrimethylsilane, and butoxypoly. Alkoxysiloxanes such as dimethylsiloxane, disilazans such as hexamethyldisilazane, tetramethyldisilazane, diphenyltetramethyldisilazane, silylhalides such as trimethylsilylchloride and diphenylbutylchloride, and silyltrifluoromethanes such as tert-butyldimethylsilyltrifluoromethanesulfonate. Examples include sulfonate.
 また、前記セルロース繊維(B)は、分散剤(C)を含有していてもよい。分散剤(C)は例えば、セルロース繊維のヒドロキシ基と結合可能な官能基を有していてもよく、アンモニウム、ホスホニウム、スルホニウムなどのカチオン性基、またはカルボキシル基、リン酸基、スルホン酸基などのアニオン性基を有していてもよい。 Further, the cellulose fiber (B) may contain a dispersant (C). The dispersant (C) may have, for example, a functional group capable of binding to a hydroxy group of a cellulose fiber, a cationic group such as ammonium, phosphonium or sulfonium, or a carboxyl group, a phosphoric acid group, a sulfonic acid group or the like. It may have an anionic group of.
 分散剤(C)の割合は例えば、セルロース繊維(B)100質量部に対して1質量部以下、好ましくは0.5質量部以下、さらに好ましくは0.1質量部以下であり、特に好ましくは0.01~0.1質量部である。 The ratio of the dispersant (C) is, for example, 1 part by mass or less, preferably 0.5 part by mass or less, more preferably 0.1 part by mass or less, and particularly preferably 0.1 part by mass or less with respect to 100 parts by mass of the cellulose fiber (B). It is 0.01 to 0.1 parts by mass.
 セルロース繊維(B)の製造法としては、機械的せん断による方法であれば、例えばパルプ等を100℃以上の熱水等で処理し、ヘミセルロース部分を加水分解して脆弱化したのち、高圧ホモジナイザー、マイクロフリュイダイザー、ボールミルやディスクミルといった粉砕法により解繊する方法がある。 As a method for producing the cellulose fiber (B), if it is a method by mechanical shearing, for example, pulp or the like is treated with hot water of 100 ° C. or higher, the hemicellulose portion is hydrolyzed to make it fragile, and then a high-pressure homogenizer is used. There is a method of defibrating by a crushing method such as a microfluidizer, a ball mill or a disc mill.
 化学的処理による方法であれば、N-メチルモルフォリン-N-オキシド(NMMO)法、銅アンモニア溶液法、イオン液体法などが挙げられる。 Examples of the chemical treatment method include the N-methylmorpholine-N-oxide (NMMO) method, the copper ammonia solution method, and the ionic liquid method.
 本発明は、熱可塑性ポリエステルエラストマー(A)中にセルロース繊維(B)がネットワークを形成することにより、優れた表面特性および疲労特性を発現する。本発明における熱可塑性ポリエステルエラストマー(A)100質量部に対するセルロース繊維(B)は0.1~30質量部であり、好ましくは0.5~25質量部であり、より好ましくは1~20質量部であり、さらに好ましくは1~10質量部である。セルロース繊維(B)が0.1質量部よりも少ない場合、セルロースのネットワークが形成されず、表面特性、疲労特性及び摩耗特性の向上効果が得られず、セルロース繊維(B)が30質量部よりも多いと狙いとする分散形態にならず、セルロース繊維の凝集による物性低下が懸念される。 The present invention exhibits excellent surface properties and fatigue properties by forming a network of cellulose fibers (B) in the thermoplastic polyester elastomer (A). The cellulose fiber (B) is 0.1 to 30 parts by mass, preferably 0.5 to 25 parts by mass, and more preferably 1 to 20 parts by mass with respect to 100 parts by mass of the thermoplastic polyester elastomer (A) in the present invention. It is more preferably 1 to 10 parts by mass. When the amount of the cellulose fiber (B) is less than 0.1 parts by mass, the cellulose network is not formed, the effect of improving the surface characteristics, the fatigue characteristics and the wear characteristics cannot be obtained, and the cellulose fiber (B) is more than 30 parts by mass. If there are too many, the desired dispersion form will not be obtained, and there is a concern that the physical properties will deteriorate due to the aggregation of cellulose fibers.
[その他の成分]
 本発明の樹脂組成物には、芳香族アミン系、ヒンダードフェノール系、イオウ系、リン系などの酸化防止剤やヒンダードアミン系、ベンゾトリアゾール系、ベンゾフェノン系、ベンゾエート系、トリアゾール系、ニッケル系、サリチル系などの光安定剤を配合することが好ましい。これらは2種以上を併用してもよい。
[Other ingredients]
The resin composition of the present invention includes antioxidants such as aromatic amine-based, hindered phenol-based, sulfur-based, and phosphorus-based, hindered amine-based, benzotriazole-based, benzophenone-based, benzoate-based, triazole-based, nickel-based, and salicyl. It is preferable to add a light stabilizer such as a system. These may be used in combination of two or more.
 上記の各酸化防止剤及び/又は光安定剤の配合(含有)量は、いずれも熱可塑性ポリエステルエラストマー(A)100質量部に対して0.01~3質量部が好ましく、より好ましくは0.05~2質量部、さらに好ましくは0.1~1質量部である。酸化防止剤及び/又は光安定剤を2種以上配合する場合、合計の含有量上限は5質量部であることが好ましい。 The blending (content) amount of each of the above-mentioned antioxidants and / or light stabilizers is preferably 0.01 to 3 parts by mass, more preferably 0, with respect to 100 parts by mass of the thermoplastic polyester elastomer (A). It is 05 to 2 parts by mass, more preferably 0.1 to 1 part by mass. When two or more kinds of antioxidants and / or light stabilizers are blended, the upper limit of the total content is preferably 5 parts by mass.
 熱可塑性ポリエステルエラストマー(A)に、本発明の効果を阻害しない範囲で、必要に応じて架橋剤を配合してもよい。このような架橋剤としては、熱可塑性ポリエステルエラストマー(A)の持つ水酸基やカルボキシル基と反応する架橋剤である限り特に限定されず、例えばエポキシ系架橋剤、カルボジイミド系架橋剤、イソシアネート系架橋剤、酸無水物系架橋剤、シラノール系架橋剤、メラミン樹脂系架橋剤、金属塩系架橋剤、金属キレート系架橋剤、アミノ樹脂系架橋剤などが挙げられる。なお、架橋剤は、単独で又は2種以上を組み合わせて用いることができる。 If necessary, a cross-linking agent may be added to the thermoplastic polyester elastomer (A) as long as the effect of the present invention is not impaired. The cross-linking agent is not particularly limited as long as it is a cross-linking agent that reacts with the hydroxyl group or carboxyl group of the thermoplastic polyester elastomer (A), and for example, an epoxy-based cross-linking agent, a carbodiimide-based cross-linking agent, an isocyanate-based cross-linking agent, and the like. Examples thereof include an acid anhydride-based cross-linking agent, a silanol-based cross-linking agent, a melamine resin-based cross-linking agent, a metal salt-based cross-linking agent, a metal chelate-based cross-linking agent, and an amino resin-based cross-linking agent. The cross-linking agent may be used alone or in combination of two or more.
 エポキシ系架橋剤としては、分子中に2つ以上のエポキシ基(グリシジル基)を持つ多官能エポキシ化合物なら特に制限されず、具体的には、2つのエポキシ基を持つ1,6-ジハイドロキシナフタレンジグリシジルエーテルや1,3-ビス(オキシラニルメトキシ)ベンゼン、3つのエポキシ基を持つ1,3,5-トリス(2,3-エポキシプロピル)-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオンやジグリセロールトリグリシジルエーテル、4つのエポキシ基を持つ1-クロロ-2,3-エポキシプロパン・ホルムアルデヒド・2,7-ナフタレンジオール重縮合物やペンタエリスリトールポリグリシジルエーテルが挙げられる。中でも、骨格に耐熱性を保有した多官能のエポキシ化合物であることが好ましい。特に、ナフタレン構造を骨格にもつ2官能、もしくは4官能のエポキシ化合物、またはトリアジン構造を骨格にもつ3官能のエポキシ化合物が好ましい。熱可塑性ポリエステルエラストマー(A)の溶液粘度上昇の程度や、熱可塑性ポリエステルエラストマー(A)の酸価を効率良く低下させることができる効果や、エポキシ自身の凝集・固化によるゲル化の発生程度を考慮すると、2官能または3官能のエポキシ化合物が好ましい。 The epoxy-based cross-linking agent is not particularly limited as long as it is a polyfunctional epoxy compound having two or more epoxy groups (glycidyl groups) in the molecule, and specifically, 1,6-dihydroxynaphthalene having two epoxy groups. Diglycidyl ether, 1,3-bis (oxylanylmethoxy) benzene, 1,3,5-tris (2,3-epoxidepropyl) -1,3,5-triazine-2,4 with three epoxy groups , 6 (1H, 3H, 5H) -trione and diglycerol triglycidyl ether, 1-chloro-2,3-epoxide propane, formaldehyde, 2,7-naphthalenediol polycondensate and pentaerythritol poly with four epoxy groups Examples include glycidyl ether. Above all, a polyfunctional epoxy compound having heat resistance in the skeleton is preferable. In particular, a bifunctional or tetrafunctional epoxy compound having a naphthalene structure as a skeleton, or a trifunctional epoxy compound having a triazine structure as a skeleton is preferable. Considering the degree of increase in the solution viscosity of the thermoplastic polyester elastomer (A), the effect of efficiently lowering the acid value of the thermoplastic polyester elastomer (A), and the degree of gelation due to the aggregation and solidification of the epoxy itself. Then, a bifunctional or trifunctional epoxy compound is preferable.
 商業的に入手しうるエポキシ系架橋剤の具体例としては、例えば、ソルビトールポリグリシジルエーテル系、ポリグリセロールポリグリシジルエーテル系、ジグリセロールポリグリシジルエーテル系、ポリエチレングリコールジグリシジルエーテル系などを用いることができる。例えば、ナガセケムテック株式会社製エポキシ化合物“デナコール”(EX-611、EX-614、EX-614B、EX-512、EX-521、EX-421、EX-313、EX-810、EX-830、EX-850など)、坂本薬品工業株式会社製のジエポキシ・ポリエポキシ系化合物(SR-EG、SR-8EG、SR-GLGなど)、大日本インキ工業株式会社製エポキシ架橋剤“EPICLON”EM-85-75W、あるいはCR-5L等が挙げられる。 As specific examples of commercially available epoxy-based cross-linking agents, for example, sorbitol polyglycidyl ether type, polyglycerol polyglycidyl ether type, diglycerol polyglycidyl ether type, polyethylene glycol diglycidyl ether type and the like can be used. .. For example, the epoxy compound "Denacol" manufactured by Nagase Chemtech Co., Ltd. (EX-611, EX-614, EX-614B, EX-512, EX-521, EX-421, EX-313, EX-810, EX-830, EX-850, etc.), Diepoxy / polyepoxy compounds manufactured by Sakamoto Yakuhin Kogyo Co., Ltd. (SR-EG, SR-8EG, SR-GLG, etc.), Epoxy cross-linking agent "EPICLON" EM-85 manufactured by Dainippon Ink Industry Co., Ltd. -75W, CR-5L and the like can be mentioned.
 その他にも、グリシジル基を1分子あたり2個以上含有し重量平均分子量が4000~25000であり、かつ(X)20~99質量%のビニル芳香族モノマー、(Y)1~80質量%グリシジル(メタ)アクリレート、および(Z)0~79質量%のエポキシ基を含有していない(X)以外のビニル基含有モノマーからなるスチレン系共重合体を挙げることができる。より好ましくは(X)が20~99質量%、(Y)が1~80質量%、(Z)が0~40質量%からなる共重合体であり、さらに好ましくは(X)が25~90質量%、(Y)が10~75質量%、(Z)が0~35質量%からなる共重合体である。前記(X)ビニル芳香族モノマーとしては、スチレン、α-メチルスチレン等が挙げられる。前記(Y)グリシジルアルキル(メタ)アクリレートとしては、例えば、(メタ)アクリル酸グリシジルやシクロヘキセンオキシド構造を有する(メタ)アクリル酸エステル、(メタ)アクリルグリシジルエーテル等が挙げられ、これらの中でも、反応性の高い点で(メタ)アクリル酸グリシジルが好ましい。前記(Z)その他のビニル基含有モノマーとしては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸ブチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸ステアリル、(メタ)アクリル酸メトキシエチル等の炭素数が1~22のアルキル基(アルキル基は直鎖、分岐鎖でもよい)を有する(メタ)アクリル酸アルキルエステル、(メタ)アクリル酸ポリアルキレングリコールエステル、(メタ)アクリル酸アルコキシアルキルエステル、(メタ)アクリル酸ヒドロキシアルキルエステル、(メタ)アクリル酸ジアルキルアミノアルキルエステル、(メタ)アクリル酸ベンジルエステル、(メタ)アクリル酸フェノキシアルキルエステル、(メタ)アクリル酸イソボルニルエステル、(メタ)アクリル酸アルコキシシリルアルキルエステル等が挙げられる。また(メタ)アクリルアミド、(メタ)アクリルジアルキルアミド、酢酸ビニル等のビニルエステル類、ビニルエーテル類、(メタ)アリルエーテル類等の芳香族系ビニル系単量体、エチレン、プロピレン等のα-オレフィンモノマーなども前記(Z)その他のビニル基含有モノマーとして使用可能である。
 前記共重合体の重量平均分子量は、4000~25000であることが好ましい。重量平均分子量は、より好ましくは5000~15000である。共重合体のエポキシ価は、400~2500当量/1×10gである事が好ましく、より好ましくは500~1500当量/1×10g、さらに好ましくは600~1000当量/1×10gである。
 このような条件を満たすエポキシ系架橋剤としては、東亜合成株式会社製のスチレン/グリシジルアクリレート共重合体(商品名:ARUFONのUGシリーズ)が使用可能である。
In addition, a vinyl aromatic monomer containing two or more glycidyl groups per molecule, having a weight average molecular weight of 4000 to 25000, (X) 20 to 99% by mass, and (Y) 1 to 80% by mass glycidyl (Y). Examples thereof include a styrene-based polymer composed of a (meth) acrylate and a (Z) vinyl group-containing monomer other than (X) which does not contain 0 to 79% by mass of an epoxy group. More preferably, the copolymer is composed of 20 to 99% by mass of (X), 1 to 80% by mass of (Y), and 0 to 40% by mass of (Z), and more preferably 25 to 90% by mass of (X). It is a copolymer composed of% by mass, (Y) 10 to 75% by mass, and (Z) 0 to 35% by mass. Examples of the (X) vinyl aromatic monomer include styrene and α-methylstyrene. Examples of the (Y) glycidylalkyl (meth) acrylate include glycidyl (meth) acrylic acid, (meth) acrylic acid ester having a cyclohexene oxide structure, (meth) acrylic glycidyl ether, and the like. Glycidyl (meth) acrylate is preferable because of its high reactivity. Examples of the (Z) other vinyl group-containing monomer include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, and 2-ethylhexyl (meth) acrylate. (Meta) acrylic having an alkyl group having 1 to 22 carbon atoms (the alkyl group may be a straight chain or a branched chain) such as cyclohexyl (meth) acrylate, stearyl (meth) acrylate, and methoxyethyl (meth) acrylate. Acid alkyl ester, (meth) acrylic acid polyalkylene glycol ester, (meth) acrylic acid alkoxyalkyl ester, (meth) acrylic acid hydroxyalkyl ester, (meth) acrylic acid dialkylaminoalkyl ester, (meth) acrylic acid benzyl ester, Examples thereof include (meth) acrylic acid phenoxyalkyl ester, (meth) acrylic acid isobornyl ester, and (meth) acrylic acid alkoxysilylalkyl ester. Further, vinyl esters such as (meth) acrylamide, (meth) acrylic dialkylamide and vinyl acetate, vinyl ethers, aromatic vinyl-based monomers such as (meth) allyl ethers, and α-olefin monomers such as ethylene and propylene. Etc. can also be used as the above-mentioned (Z) and other vinyl group-containing monomers.
The weight average molecular weight of the copolymer is preferably 4000 to 25000. The weight average molecular weight is more preferably 5000 to 15000. The epoxy value of the copolymer is preferably 400 to 2500 equivalents / 1 × 10 6 g, more preferably 500 to 1500 equivalents / 1 × 10 6 g, still more preferably 600 to 1000 equivalents / 1 × 10 6 g. g.
As an epoxy-based cross-linking agent satisfying such conditions, a styrene / glycidyl acrylate copolymer (trade name: UG series of ARUFON) manufactured by Toagosei Co., Ltd. can be used.
 カルボジイミド系架橋剤としては、1分子内にカルボジイミド基(-N=C=N-の構造)を2つ以上有するポリカルボジイミドであれば特に制限されず、例えば、脂肪族ポリカルボジイミド、脂環族ポリカルボジイミド、芳香族ポリカルボジイミドやこれらの共重合体などが挙げられる。好ましくは脂肪族ポリカルボジイミド化合物又は脂環族ポリカルボジイミド化合物である。 The carbodiimide-based cross-linking agent is not particularly limited as long as it is a polycarbodiimide having two or more carbodiimide groups (-N = C = N- structure) in one molecule, and is, for example, an aliphatic polycarbodiimide or an alicyclic poly. Examples include carbodiimide, aromatic polycarbodiimide and copolymers thereof. An aliphatic polycarbodiimide compound or an alicyclic polycarbodiimide compound is preferable.
 ポリカルボジイミド化合物としては、例えば、ジイソシアネート化合物の脱二酸化炭素反応により得ることができる。ここで使用できるジイソシアネート化合物としては、例えば、4,4’-ジフェニルメタンジイソシアネート、4,4’-ジフェニルジメチルメタンジイソシアネート、1,3-フェニレンジイソシアネート、1,4-フェニレンジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、1,5-ナフチレンジイソシアネート、ヘキサメチレンジイソシアネート、ジシクロヘキシルメタンジイソシアネート、シクロヘキサン-1,4-ジイソシアネート、キシリレンジイソシアネート、イソホロンジイソシアネート、メチルシクロヘキサンジイソシアネート、テトラメチルキシリレンジイソシアネート、1,3,5-トリイソプロピルフェニレン-2,4-ジイソシアネートなどが挙げられる。これらは1種のみを用いてもよいし、2種以上を共重合させて用いることもできる。また、分岐構造を導入したり、カルボジイミド基やイソシアネート基以外の官能基を共重合により導入したりしてもよい。さらに、末端のイソシアネートはそのままでも使用可能であるが、末端のイソシアネートを反応させることにより重合度を制御してもよいし、末端イソシアネートの一部を封鎖してもよい。 The polycarbodiimide compound can be obtained, for example, by a decarbonization reaction of the diisocyanate compound. Examples of the diisocyanate compound that can be used here include 4,4'-diphenylmethane diisocyanate, 4,4'-diphenyldimethylmethane diisocyanate, 1,3-phenylenediocyanate, 1,4-phenylenediocyanate, and 2,4-tolylene diisocyanate. , 2,6-Toluene diisocyanate, 1,5-naphthylene diisocyanate, hexamethylene diisocyanate, dicyclohexylmethane diisocyanate, cyclohexane-1,4-diisocyanate, xylylene diisocyanate, isophorone diisocyanate, methylcyclohexane diisocyanate, tetramethylxylylene diisocyanate, Examples thereof include 1,3,5-triisopropylphenylene-2,4-diisocyanate. Only one of these may be used, or two or more thereof may be copolymerized and used. Further, a branched structure may be introduced, or a functional group other than a carbodiimide group or an isocyanate group may be introduced by copolymerization. Further, although the terminal isocyanate can be used as it is, the degree of polymerization may be controlled by reacting the terminal isocyanate, or a part of the terminal isocyanate may be blocked.
 ポリカルボジイミド化合物としては、特に、ジシクロヘキシルメタンジイソシアネート、シクロヘキサン-1,4-ジイソシアネート、イソホロンジイソシアネートなどに由来する脂環族ポリカルボジイミドが好ましく、特に、ジシクロヘキシルメタンジイソシアネートやイソホロンジイソシアネートに由来するポリカルボジイミドがよい。 As the polycarbodiimide compound, alicyclic polycarbodiimide derived from dicyclohexylmethane diisocyanate, cyclohexane-1,4-diisocyanate, isophorone diisocyanate and the like is particularly preferable, and polycarbodiimide derived from dicyclohexylmethane diisocyanate and isophorone diisocyanate is particularly preferable.
 ポリカルボジイミド化合物は、1分子あたり2~50個のカルボジイミド基を含有することが、安定性と取り扱い性の点で好ましい。より好ましくは1分子あたりカルボジイミド基を5~30個含有するのがよい。ポリカルボジイミド分子中のカルボジイミドの個数(すなわちカルボジイミド基数)は、ジイソシアネート化合物から得られたポリカルボジイミドであれば、重合度に相当する。例えば、21個のジイソシアネート化合物が鎖状につながって得られたポリカルボジイミドの重合度は20であり、分子鎖中のカルボジイミド基数は20である。通常、ポリカルボジイミド化合物は、種々の長さの分子の混合物であり、カルボジイミド基数は、平均値で表される。前記範囲のカルボジイミド基数を有し、室温付近で固形であると、粉末化できるので、熱可塑性ポリエステルエラストマー(A)との混合時の作業性や相溶性に優れ、均一反応性、耐ブリードアウト性の点でも好ましい。なお、カルボジイミド基数は、例えば、常法(アミンで溶解して塩酸で逆滴定を行う方法)を用いて測定できる。 The polycarbodiimide compound preferably contains 2 to 50 carbodiimide groups per molecule in terms of stability and handleability. More preferably, each molecule contains 5 to 30 carbodiimide groups. The number of carbodiimides in the polycarbodiimide molecule (that is, the number of carbodiimide groups) corresponds to the degree of polymerization if the polycarbodiimide is obtained from a diisocyanate compound. For example, the degree of polymerization of polycarbodiimide obtained by connecting 21 diisocyanate compounds in a chain is 20 and the number of carbodiimide groups in the molecular chain is 20. Usually, a polycarbodiimide compound is a mixture of molecules of various lengths, and the number of carbodiimide groups is represented by an average value. If it has a carbodiimide group in the above range and is solid near room temperature, it can be powdered, so that it has excellent workability and compatibility when mixed with the thermoplastic polyester elastomer (A), and has uniform reactivity and bleed-out resistance. It is also preferable in terms of. The number of carbodiimide groups can be measured, for example, by using a conventional method (a method of dissolving with an amine and performing back titration with hydrochloric acid).
 ポリカルボジイミド化合物は、末端にイソシアネート基を有し、イソシアネート基含有率が0.5~4質量%であることが、安定性と取り扱い性の点で好ましい。より好ましくは、イソシアネート基含有率は1~3質量%である。特に、ジシクロヘキシルメタンジイソシアネートやイソホロンジイソシアネートに由来するポリカルボジイミドであって、前記範囲のイソシアネート基含有率を有することが好ましい。なお、イソシアネート基含有率は常法(アミンで溶解して塩酸で逆滴定を行う方法)を用いて測定できる。 The polycarbodiimide compound has an isocyanate group at the terminal, and the isocyanate group content is preferably 0.5 to 4% by mass, which is preferable from the viewpoint of stability and handleability. More preferably, the isocyanate group content is 1 to 3% by mass. In particular, it is preferable that the polycarbodiimide derived from dicyclohexylmethane diisocyanate or isophorone diisocyanate has an isocyanate group content in the above range. The isocyanate group content can be measured by using a conventional method (a method of dissolving with amine and performing back titration with hydrochloric acid).
 イソシアネート系架橋剤としては、上記したイソシアネート基を含有するポリカルボジイミド化合物や、上記したポリカルボジイミド化合物の原料となるイソシアネート化合物を挙げることができる。 Examples of the isocyanate-based cross-linking agent include the above-mentioned polycarbodiimide compound containing an isocyanate group and the isocyanate compound which is a raw material of the above-mentioned polycarbodiimide compound.
 酸無水物系架橋剤としては、1分子あたり、2~4個の無水物を含有する化合物が、安定性と取り扱い性の点で好ましい。このような化合物として例えば、フタル酸無水物や、トリメリット酸無水物、ピロメリット酸無水物などが挙げられる。 As the acid anhydride-based cross-linking agent, a compound containing 2 to 4 anhydrides per molecule is preferable in terms of stability and handleability. Examples of such a compound include phthalic acid anhydride, trimellitic acid anhydride, pyromellitic acid anhydride and the like.
 架橋剤の使用量(含有量)は、押出条件等によって適宜調整されるが、例えば、熱可塑性ポリエステルエラストマー(A)100質量部に対して、0.1~4.5質量部であることが好ましく、より好ましくは0.1~4質量部であり、さらに好ましくは0.1~3質量部である。 The amount (content) of the cross-linking agent used is appropriately adjusted depending on the extrusion conditions and the like, and is, for example, 0.1 to 4.5 parts by mass with respect to 100 parts by mass of the thermoplastic polyester elastomer (A). It is preferably 0.1 to 4 parts by mass, and even more preferably 0.1 to 3 parts by mass.
 さらに、本発明に用いる熱可塑性ポリエステルエラストマー(A)には、上記酸化防止剤や光安定剤、架橋剤以外にも、目的に応じて種々の添加剤を配合することができる。このような添加剤の種類は特に限定されず、各種添加剤を用いることができる。具体的には、添加剤として、滑剤、充填剤、難燃剤、難燃助剤、離型剤、帯電防止剤、過酸化物等の分子調整剤、金属不活性剤、有機および無機系の核剤、中和剤、制酸剤、防菌剤、蛍光増白剤、有機および無機系の顔料のほか、難燃性付与や熱安定性付与の目的で使用される有機および無機系の燐化合物などが挙げられる。添加剤を含有させる場合、その含有量(複数の添加剤を用いる場合には合計含有量)は、樹脂組成物中30質量%以下とするのが好ましく、より好ましくは20質量%以下、さらに好ましくは10質量%以下、特に好ましくは5質量%以下である。 Further, in addition to the above-mentioned antioxidant, light stabilizer, and cross-linking agent, various additives can be added to the thermoplastic polyester elastomer (A) used in the present invention depending on the purpose. The type of such an additive is not particularly limited, and various additives can be used. Specifically, as additives, lubricants, fillers, flame retardants, flame retardant aids, mold release agents, antistatic agents, molecular modifiers such as peroxides, metal deactivators, organic and inorganic nuclei. Agents, neutralizers, antioxidants, antibacterial agents, fluorescent whitening agents, organic and inorganic pigments, as well as organic and inorganic phosphorus compounds used for the purpose of imparting flame retardancy and thermal stability. And so on. When an additive is contained, the content thereof (total content when a plurality of additives are used) is preferably 30% by mass or less, more preferably 20% by mass or less, still more preferably 20% by mass or less in the resin composition. Is 10% by mass or less, particularly preferably 5% by mass or less.
 本発明に用いるポリエステルエラストマー樹脂組成物の組成、及び組成比を決定する方法としては、試料を重クロロホルム等の溶剤に溶解して測定するH-NMRのプロトン積分比から算出することも可能である。 As a method for determining the composition and composition ratio of the polyester elastomer resin composition used in the present invention, it is also possible to calculate from the proton integral ratio of 1 H-NMR measured by dissolving the sample in a solvent such as deuterated chloroform. be.
 本発明のポリエステルエラストマー樹脂組成物は、後記する実施例の項に記載の引張伸度が300%以上を有する特徴がある。引張伸度は、実施例の項に記載の通り、JIS K6251に準じて測定した切断時伸びである。 The polyester elastomer resin composition of the present invention is characterized by having a tensile elongation of 300% or more as described in the section of Examples described later. The tensile elongation is the elongation at the time of cutting measured according to JIS K6251 as described in the section of Examples.
[熱可塑性ポリエステルエラストマー樹脂組成物]
 本発明の熱可塑性ポリエステルエラストマー樹脂組成物の製造方法としては、従来から公知の方法で各成分を溶融混錬する方法が挙げられる。熱可塑性ポリエステルエラストマー(A)とセルロース繊維(B)とを少なくとも熱可塑性ポリエステルエラストマー(A)が溶融した状態で混錬できれば特に限定されず、例えば、ミキシングローラー、ニーダー、押出機などが利用できる。本発明においては、セルロース繊維(B)の分散性の点から、特に高いせん断力が作用可能なニーダー、押出機などが好ましく、二軸押出機がより好ましい。
[Thermoplastic Polyester Elastomer Resin Composition]
Examples of the method for producing the thermoplastic polyester elastomer resin composition of the present invention include a method of melt-kneading each component by a conventionally known method. It is not particularly limited as long as the thermoplastic polyester elastomer (A) and the cellulose fiber (B) can be kneaded at least in a state where the thermoplastic polyester elastomer (A) is melted, and for example, a mixing roller, a kneader, an extruder and the like can be used. In the present invention, from the viewpoint of dispersibility of the cellulose fiber (B), a kneader, an extruder or the like capable of applying a particularly high shearing force is preferable, and a twin-screw extruder is more preferable.
 前記樹脂組成物中のセルロース繊維(B)の平均繊維長は、100~2000μmであり、好ましくは100~800μmであり、より好ましくは200~600μmであり、さらに好ましくは400~600μmである。100μm未満であると十分な表面特性、疲労特性及び摩耗特性を発現することが出来ず、2000μmを超えると繊維同士が絡まりやすくなり、大きな凝集物が発生しやすくなる。平均繊維長は、後記する実施例の項に記載の方法で測定する数平均繊維長である。 The average fiber length of the cellulose fiber (B) in the resin composition is 100 to 2000 μm, preferably 100 to 800 μm, more preferably 200 to 600 μm, and further preferably 400 to 600 μm. If it is less than 100 μm, sufficient surface characteristics, fatigue characteristics and wear characteristics cannot be exhibited, and if it exceeds 2000 μm, fibers are likely to be entangled with each other and large aggregates are likely to be generated. The average fiber length is a number average fiber length measured by the method described in the section of Examples described later.
 前記樹脂組成物中のセルロース繊維の平均繊維径は0.5~50μmであり、好ましくは1~30μmであり、より好ましくは1~20μmであり、さらに好ましくは5~15μmであり、特に好ましくは6~10μmである。平均繊維径が0.5μm未満では繊維同士が絡まりやすくなり、凝集物が発生しやすくなる。一方、50μmを超えると、伸度低下や樹脂組成物中の欠陥になりやすくなる。平均繊維径は、後記する実施例の項に記載の方法で測定する数平均繊維径である。 The average fiber diameter of the cellulose fibers in the resin composition is 0.5 to 50 μm, preferably 1 to 30 μm, more preferably 1 to 20 μm, still more preferably 5 to 15 μm, and particularly preferably. It is 6 to 10 μm. If the average fiber diameter is less than 0.5 μm, the fibers are likely to be entangled with each other and aggregates are likely to be generated. On the other hand, if it exceeds 50 μm, the elongation tends to decrease and defects in the resin composition tend to occur. The average fiber diameter is a number average fiber diameter measured by the method described in the section of Examples described later.
 本発明の熱可塑性ポリエステルエラストマー樹脂組成物は、樹脂組成物中のセルロース繊維の平均繊維径および平均繊維長を特定の範囲にすることで、セルロースの凝集を抑制し、かつエラストマーとしての性能を保持ながら表面特性、疲労特性及び摩耗特性を向上させることができる。 The thermoplastic polyester elastomer resin composition of the present invention suppresses the aggregation of cellulose and maintains the performance as an elastomer by setting the average fiber diameter and the average fiber length of the cellulose fibers in the resin composition within a specific range. However, the surface characteristics, fatigue characteristics and wear characteristics can be improved.
 本発明の熱可塑性ポリエステルエラストマー樹脂組成物は、公知の成形方法により成形体とすることができる。成形方法は特定されるものではなく、射出成形、ブロー成形、押出成形、発泡成形、異形成形、カレンダー成形、その他各種成形方法において好適に使用できる。中でも射出成形が好ましい。 The thermoplastic polyester elastomer resin composition of the present invention can be made into a molded product by a known molding method. The molding method is not specified, and can be suitably used in injection molding, blow molding, extrusion molding, foam molding, malformed molding, calendar molding, and various other molding methods. Of these, injection molding is preferable.
 本発明の効果を実証するために以下に実施例を挙げるが、本発明はこれらの実施例によって何ら限定されるものではない。 Examples are given below in order to demonstrate the effects of the present invention, but the present invention is not limited to these examples.
 以下の実施例、比較例においては下記の原料を用いた。
[熱可塑性ポリエステルエラストマー(A)]
(ポリエステルエラストマーA―1)
 特開平9-59491号公報に記載の方法に準じて、ジメチルテレフタレート、1,4-ブタンジオール、及び数平均分子量1000のポリ(テトラメチレンオキシド)グリコールを原料として、ソフトセグメント含有量が44質量%の熱可塑性ポリエステルエラストマーを製造して、これをポリエステルエラストマーA-1とした。
The following raw materials were used in the following examples and comparative examples.
[Thermoplastic Polyester Elastomer (A)]
(Polyester Elastomer A-1)
According to the method described in JP-A-9-59491, dimethyl terephthalate, 1,4-butanediol, and poly (tetramethylene oxide) glycol having a number average molecular weight of 1000 are used as raw materials, and the soft segment content is 44% by mass. The thermoplastic polyester elastomer of No. 1 was produced and used as Polyester Elastomer A-1.
[セルロース繊維(B)]
(セルロース繊維B-1)
 オートクレーブを用いて、パルプを120℃以上の熱水で3時間加熱し、ヘミセルロース部分を除去した精製パルプを、圧搾、重水中に固形分率が1.5質量%になるように叩解処理により高度に短繊維化およびフィブリル化させた後、そのままの濃度で高圧ホモジナイザーにより解繊することで平均繊維径10μm、平均繊維長1000μmの解繊セルロースを得た。
(セルロース繊維B-2)
 上記セルロース繊維B-1と同様に高圧ホモジナイザーを用い、使用する叩解刃と叩解時間を変えることで、平均繊維径10μm、平均繊維長2800μmの解繊セルロースを得た。
(セルロース繊維B-3)
 上記セルロース繊維B-1と同様に高圧ホモジナイザーを用い、使用する叩解刃と叩解時間を変えることで、平均繊維径200nm、平均繊維長250μmの解繊セルロースを得た。
(セルロース繊維B-4)
 上記セルロース繊維B-1と同様に高圧ホモジナイザーを用い、使用する叩解刃と叩解時間を変えることで、平均繊維径100μm、平均繊維長1500μmの解繊セルロースを得た。
[Cellulose fiber (B)]
(Cellulose fiber B-1)
Using an autoclave, the pulp is heated with hot water at 120 ° C. or higher for 3 hours, and the purified pulp from which the hemicellulose portion has been removed is squeezed and beaten into heavy water so that the solid content ratio becomes 1.5% by mass. After shortening and fibrillation, defibrated cellulose having an average fiber diameter of 10 μm and an average fiber length of 1000 μm was obtained by defibrating with a high-pressure homogenizer at the same concentration.
(Cellulose fiber B-2)
By using a high-pressure homogenizer in the same manner as the cellulose fiber B-1 and changing the beating blade and the beating time, defibrated cellulose having an average fiber diameter of 10 μm and an average fiber length of 2800 μm was obtained.
(Cellulose fiber B-3)
By using a high-pressure homogenizer in the same manner as the cellulose fiber B-1 and changing the beating blade and the beating time to be used, defibrated cellulose having an average fiber diameter of 200 nm and an average fiber length of 250 μm was obtained.
(Cellulose fiber B-4)
By using a high-pressure homogenizer in the same manner as the cellulose fiber B-1 and changing the beating blade and the beating time, defibrated cellulose having an average fiber diameter of 100 μm and an average fiber length of 1500 μm was obtained.
[原料として用いたセルロース繊維の平均繊維径/平均繊維長]
 セルロース成分を、1質量%濃度で純水懸濁液とし、高せん断ホモジナイザーで分散させた水分散体を0.1~0.5質量%まで純水で希釈し、キャスト、風乾したものを走査電子顕微鏡により撮影した。セルロース繊維を画像処理し、解析ソフトを用いて50本の繊維径および繊維長を測定し、その平均値を算出した。なお、繊維径は一本の繊維中で最も太い個所を測定した。一直線でない繊維の繊維長は、多点で長さを区切って測定した。
[Average fiber diameter / average fiber length of cellulose fibers used as raw materials]
The cellulose component was made into a pure water suspension at a concentration of 1% by mass, the aqueous dispersion dispersed with a high shear homogenizer was diluted with pure water to 0.1 to 0.5% by mass, cast, and air-dried and scanned. It was taken with an electron microscope. Cellulose fibers were image-processed, the diameters and fiber lengths of 50 fibers were measured using analysis software, and the average values were calculated. The fiber diameter was measured at the thickest part of one fiber. The fiber length of the non-straight fiber was measured by dividing the length at multiple points.
実施例1~6、比較例1~7
 表1に記載の配合組成に従って熱可塑性ポリエステルエラストマー100質量部に対してセルロース繊維を、二軸スクリュー式押出機を用いて混練した後、ペレット化した。なお、セルロース繊維の長さおよび径においては、押出時の吐出と回転数によって調整した。なお、比較例4は二軸スクリュー式押出機での混錬を3回繰り返すことによって作製した。このポリエステルエラストマー樹脂組成物のペレットを用いて、下記の評価を行った。結果を表1に示す。
Examples 1 to 6, Comparative Examples 1 to 7
Cellulose fibers were kneaded with 100 parts by mass of a thermoplastic polyester elastomer using a twin-screw extruder according to the compounding composition shown in Table 1, and then pelletized. The length and diameter of the cellulose fibers were adjusted according to the ejection speed and the number of revolutions at the time of extrusion. Comparative Example 4 was produced by repeating kneading with a twin-screw screw extruder three times. The following evaluation was performed using the pellets of this polyester elastomer resin composition. The results are shown in Table 1.
[樹脂組成物中のセルロース繊維の平均繊維径/平均繊維長]
 ヒートプレスによりペレットから幅100mm、長さ100mm、厚み50μmのシートを作製し、光学顕微鏡により撮影した樹脂組成物中のセルロース繊維を画像処理し、解析ソフトを用いて50本の繊維径および繊維長を測定し、その平均値を算出した。なお、繊維径は一本の繊維中で最も太い個所を測定した。一直線でない繊維の繊維長は、多点で長さを区切って測定した。
[Average fiber diameter / average fiber length of cellulose fibers in resin composition]
A sheet having a width of 100 mm, a length of 100 mm, and a thickness of 50 μm was prepared from pellets by heat pressing, the cellulose fibers in the resin composition photographed by an optical microscope were image-processed, and 50 fiber diameters and fiber lengths were processed using analysis software. Was measured, and the average value was calculated. The fiber diameter was measured at the thickest part of one fiber. The fiber length of the non-straight fiber was measured by dividing the length at multiple points.
[分散性]
 ヒートプレスによりペレットから幅100mm、長さ100mm、厚み50μmのシートを作製し、シート表面の凝集物の観察を行った。凝集物が無い、もしくは凝集物の径が100μm未満の場合:〇、凝集物の径が100μm~300μmの場合:△、凝集物の径が300μm超の場合:×と評価した。凝集物が複数ある場合は、一番大きい凝集物で評価した。
[Dispersity]
A sheet having a width of 100 mm, a length of 100 mm, and a thickness of 50 μm was prepared from the pellets by heat pressing, and aggregates on the sheet surface were observed. When there was no agglomerate or the diameter of the agglomerate was less than 100 μm: 〇, when the diameter of the agglomerate was 100 μm to 300 μm: Δ, and when the diameter of the agglomerate was more than 300 μm: ×. When there were multiple agglomerates, the largest agglomerate was evaluated.
[引張伸度]
 JIS K6251に記載されている方法にて測定を実施した。試験片は幅100mm、長さ100mm、厚さ2.0mmの射出成形品から樹脂の流動方向に対して平行にJIS3号ダンベル形状に打ち抜いたものを使用した。
[Tensile elongation]
The measurement was carried out by the method described in JIS K6251. The test piece used was an injection-molded product having a width of 100 mm, a length of 100 mm, and a thickness of 2.0 mm, punched into a JIS No. 3 dumbbell shape parallel to the flow direction of the resin.
[スラスト摩耗性]
 幅50mm、長さ50mm、厚み2mmの射出成形品を外径20mm、内径14.2mm、長さ20mmのS-45C製の中空円筒相手材料の端面に接触させ、面圧1.0MPaとなるように一定荷重をかけ、15cm/sにて射出成形品を30分回転させた際の摩耗量を測定した。
[Thrust wear resistance]
An injection-molded product with a width of 50 mm, a length of 50 mm, and a thickness of 2 mm is brought into contact with the end face of a hollow cylindrical mating material made of S-45C having an outer diameter of 20 mm, an inner diameter of 14.2 mm, and a length of 20 mm so that the surface pressure becomes 1.0 MPa. A constant load was applied to the product, and the amount of wear when the injection-molded product was rotated at 15 cm / s for 30 minutes was measured.
[繰り返し疲労特性]
 幅100mm、長さ100mm、厚さ2.0mmの射出成形品から樹脂の流動方向に対して平行に、短冊状で長さ80mm、幅10mmの試験片を打ち抜いたものを使用した。島津製作所製の疲労・耐久試験機サーボパルサを用い、周波数30Hz、つかみ具間30mm、引張モードで荷重を繰り返し負荷し、振幅が±8mmになった時点を終点とした。繰り返し疲労回数が10以上となる荷重を測定した。
[Repeat fatigue characteristics]
An injection-molded article having a width of 100 mm, a length of 100 mm, and a thickness of 2.0 mm was punched out from a strip-shaped test piece having a length of 80 mm and a width of 10 mm in parallel with the flow direction of the resin. Using a fatigue / durability tester Servo Pulser manufactured by Shimadzu Corporation, the load was repeatedly applied in a frequency of 30 Hz, a grip distance of 30 mm, and a tension mode, and the end point was when the amplitude became ± 8 mm. The load at which the number of repeated fatigues was 107 or more was measured.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように、本発明の範囲内である実施例1~6はいずれも、セルロース繊維の含まない比較例1と比較して、エラストマーとしての引張伸度性能を保持しながら優れた表面特性および疲労特性を示し、かつ樹脂中のセルロース繊維の分散性に優れる。これに対し、樹脂中のセルロース繊維の添加部数の少ない比較例2、および繊維長の短い比較例4では、セルロースの分散性に優れるものの摩耗特性および疲労特性への効果が低い。セルロース繊維の添加部数の多い比較例3や繊維長の長い比較例5、繊維径の小さい比較例6では、優れた摩耗特性および疲労特性を示すものの、セルロース繊維同士が凝集してしまい分散性に劣る。また、繊維径の大きい比較例7では、伸度が低下する結果となり、疲労特性も実施例2と比較して劣る結果となった。 As is clear from Table 1, all of Examples 1 to 6 within the scope of the present invention are superior to Comparative Example 1 containing no cellulose fiber while maintaining the tensile elongation performance as an elastomer. It exhibits surface properties and fatigue properties, and has excellent dispersibility of cellulose fibers in the resin. On the other hand, in Comparative Example 2 in which the number of portions of the cellulose fiber added in the resin is small and Comparative Example 4 in which the fiber length is short, the dispersibility of the cellulose is excellent, but the effect on the wear property and the fatigue property is low. In Comparative Example 3 in which the number of portions of the cellulose fibers added is large, Comparative Example 5 in which the fiber length is long, and Comparative Example 6 in which the fiber diameter is small, although excellent wear characteristics and fatigue characteristics are exhibited, the cellulose fibers are aggregated and dispersible. Inferior. Further, in Comparative Example 7 having a large fiber diameter, the elongation was lowered, and the fatigue characteristics were also inferior to those in Example 2.
 また、実施例2及び比較例3より得られたプレスシートを光学電子顕微鏡により観察した。実施例2の写真を図1Aに示し、比較例3の写真を図1Bに示す。図1A及びBより、実施例2では、セルロース繊維が均一に分散し、樹脂中でネットワークを構成しているのに対し、比較例3では、300μm以上の大きさの凝集物が観察され、分散が不均一であることが分かる。 Further, the press sheets obtained from Example 2 and Comparative Example 3 were observed with an optical electron microscope. A photograph of Example 2 is shown in FIG. 1A, and a photograph of Comparative Example 3 is shown in FIG. 1B. From FIGS. 1A and 1B, in Example 2, the cellulose fibers were uniformly dispersed to form a network in the resin, whereas in Comparative Example 3, agglomerates having a size of 300 μm or more were observed and dispersed. Is found to be non-uniform.
産業上の利用の可能性Possibility of industrial use
 本発明の熱可塑性ポリエステルエラストマー樹脂組成物、及びそれからなる成形体は、軽量かつ優れた表面特性、疲労特性及び摩耗特性を発現することが出来る。さらに、均一にセルロース繊維を分散させることで、少量添加でも優れた性能を発現することができ、成形性にも優れる。
 
The thermoplastic polyester elastomer resin composition of the present invention and a molded product made of the same can exhibit lightweight and excellent surface characteristics, fatigue characteristics and wear characteristics. Furthermore, by uniformly dispersing the cellulose fibers, excellent performance can be exhibited even with a small amount of addition, and the moldability is also excellent.

Claims (7)

  1.  芳香族ジカルボン酸と脂肪族及び/又は脂環族ジオールとを構成成分とするポリエステルからなるハードセグメントと、脂肪族ポリエーテル、脂肪族ポリエステル、及び脂肪族ポリカーボネートから選ばれる少なくとも1種のソフトセグメントが結合された熱可塑性ポリエステルエラストマー(A)100質量部に対し、セルロース繊維(B)0.1~30質量部を含有する熱可塑性ポリエステルエラストマー樹脂組成物であり、樹脂組成物中におけるセルロース繊維(B)は、平均繊維長が100~2000μm、かつ平均繊維径が0.5~50μmであることを特徴とする熱可塑性ポリエステルエラストマー樹脂組成物。 A hard segment made of a polyester composed of an aromatic dicarboxylic acid and an aliphatic and / or alicyclic diol, and at least one soft segment selected from an aliphatic polyether, an aliphatic polyester, and an aliphatic polycarbonate are used. It is a thermoplastic polyester elastomer resin composition containing 0.1 to 30 parts by mass of a cellulose fiber (B) with respect to 100 parts by mass of the bonded thermoplastic polyester elastomer (A), and the cellulose fiber (B) in the resin composition. ) Is a thermoplastic polyester elastomer resin composition having an average fiber length of 100 to 2000 μm and an average fiber diameter of 0.5 to 50 μm.
  2.  前記セルロース繊維(B)の含有量が1~10質量部であり、樹脂組成物中のセルロース繊維の平均繊維長が100~800μm、平均繊維径が1~30μmである請求項1に記載の熱可塑性ポリエステルエラストマー樹脂組成物。 The heat according to claim 1, wherein the content of the cellulose fiber (B) is 1 to 10 parts by mass, the average fiber length of the cellulose fiber in the resin composition is 100 to 800 μm, and the average fiber diameter is 1 to 30 μm. Plastic polyester elastomer resin composition.
  3.  前記セルロース繊維(B)が変性されているセルロース繊維である請求項1または請求項2に記載の熱可塑性ポリエステルエラストマー樹脂組成物。 The thermoplastic polyester elastomer resin composition according to claim 1 or 2, wherein the cellulose fiber (B) is a modified cellulose fiber.
  4.  さらに分散剤(C)を含有する請求項1~3のいずれかに記載の熱可塑性ポリエステルエラストマー樹脂組成物。 The thermoplastic polyester elastomer resin composition according to any one of claims 1 to 3, further containing a dispersant (C).
  5.  前記樹脂組成物のJIS K6251に準拠して測定された引張伸度が300%以上である請求項1~4のいずれかに記載の熱可塑性ポリエステルエラストマー樹脂組成物。 The thermoplastic polyester elastomer resin composition according to any one of claims 1 to 4, wherein the tensile elongation measured in accordance with JIS K6251 of the resin composition is 300% or more.
  6.  二軸混錬機を用いてセルロース繊維(B)を熱可塑性ポリエステルエラストマー(A)中に分散させることを特徴とする請求項1~5のいずれかに記載の熱可塑性ポリエステルエラストマー樹脂組成物の製造方法。 The production of the thermoplastic polyester elastomer resin composition according to any one of claims 1 to 5, wherein the cellulose fiber (B) is dispersed in the thermoplastic polyester elastomer (A) using a twin-screw kneader. Method.
  7.  請求項1~5のいずれかに記載の熱可塑性ポリエステルエラストマー樹脂組成物からなる成形体。
     
    A molded product made of the thermoplastic polyester elastomer resin composition according to any one of claims 1 to 5.
PCT/JP2021/037681 2020-10-15 2021-10-12 Thermoplastic polyester elastomer resin composition and method for producing same WO2022080354A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022515588A JPWO2022080354A1 (en) 2020-10-15 2021-10-12

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020174169 2020-10-15
JP2020-174169 2020-10-15

Publications (1)

Publication Number Publication Date
WO2022080354A1 true WO2022080354A1 (en) 2022-04-21

Family

ID=81208239

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/037681 WO2022080354A1 (en) 2020-10-15 2021-10-12 Thermoplastic polyester elastomer resin composition and method for producing same

Country Status (2)

Country Link
JP (1) JPWO2022080354A1 (en)
WO (1) WO2022080354A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009293167A (en) * 2008-06-09 2009-12-17 Nobuo Shiraishi Method of producing nanofiber, nanofiber, mixed nanofiber, compositing method, composite material and molding
JP2010143992A (en) * 2008-12-17 2010-07-01 Konica Minolta Holdings Inc Fiber composite material and method for producing the same
JP2016527335A (en) * 2013-05-29 2016-09-08 ザ プロクター アンド ギャンブル カンパニー Liquid cleaning and / or cleansing composition
US20190119438A1 (en) * 2016-04-20 2019-04-25 Novamont S.P.A. Compositions containing new polyester
WO2020066537A1 (en) * 2018-09-26 2020-04-02 森 良平 Cellulose nanofiber (cnf) and method for producing composite material comprising same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009293167A (en) * 2008-06-09 2009-12-17 Nobuo Shiraishi Method of producing nanofiber, nanofiber, mixed nanofiber, compositing method, composite material and molding
JP2010143992A (en) * 2008-12-17 2010-07-01 Konica Minolta Holdings Inc Fiber composite material and method for producing the same
JP2016527335A (en) * 2013-05-29 2016-09-08 ザ プロクター アンド ギャンブル カンパニー Liquid cleaning and / or cleansing composition
US20190119438A1 (en) * 2016-04-20 2019-04-25 Novamont S.P.A. Compositions containing new polyester
WO2020066537A1 (en) * 2018-09-26 2020-04-02 森 良平 Cellulose nanofiber (cnf) and method for producing composite material comprising same

Also Published As

Publication number Publication date
JPWO2022080354A1 (en) 2022-04-21

Similar Documents

Publication Publication Date Title
JP5635406B2 (en) Polymer materials and methods for their production
JP6657662B2 (en) Inorganic reinforced thermoplastic polyester resin composition
WO2011122646A1 (en) Resin composition, molded article and housing for electric/electronic device
JP2015178596A (en) Thermoplastic elastomer resin composition and molded body
WO2022124332A1 (en) Resin composition, pellet, molded article and method for producing resin composition
WO2011111547A1 (en) Polybutylene terephthalate resin composition
WO2022080354A1 (en) Thermoplastic polyester elastomer resin composition and method for producing same
JP7367751B2 (en) Polybutylene terephthalate resin composition
JP4240373B2 (en) Polylactic acid resin composition and method for producing the same
JP6511852B2 (en) Thermoplastic resin composition excellent in barrier property
JP5290060B2 (en) Resin composition
JP6864161B1 (en) Polybutylene terephthalate resin composition
JP4977890B2 (en) Polylactic acid resin composition and method for producing the same
JP2009126906A (en) Polyester elastomer resin composition
JP2020045375A (en) Polybutylene terephthalate resin composition and molding
JP2005325220A (en) Thermoplastic elastomer resin composition
CN116761705A (en) Thermoplastic polyester elastomer resin composition and molded article thereof
JP2019006993A (en) Thermoplastic elastomer resin and molding thereof
JP7278529B2 (en) Polybutylene terephthalate resin composition for molded article for welding polyester elastomer and composite molded article
WO2022209605A1 (en) Thermoplastic polyester elastomer, resin composition containing said elastomer, and molded articles obtained from these
JP5309298B2 (en) Polylactic acid resin composition and method for producing the same
JP7400743B2 (en) Polybutylene terephthalate resin composition
WO2022215408A1 (en) Flame-retardant thermoplastic polyester elastomer resin composition and molded article obtained therefrom
JP7368976B2 (en) Flame retardant polybutylene terephthalate resin composition
JP6911383B2 (en) Polybutylene terephthalate resin composition for moldings and composite moldings for welding polyester elastomers

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022515588

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21880093

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21880093

Country of ref document: EP

Kind code of ref document: A1