WO2011122646A1 - Resin composition, molded article and housing for electric/electronic device - Google Patents

Resin composition, molded article and housing for electric/electronic device Download PDF

Info

Publication number
WO2011122646A1
WO2011122646A1 PCT/JP2011/057899 JP2011057899W WO2011122646A1 WO 2011122646 A1 WO2011122646 A1 WO 2011122646A1 JP 2011057899 W JP2011057899 W JP 2011057899W WO 2011122646 A1 WO2011122646 A1 WO 2011122646A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
plasticizer
composition according
resin
acid
Prior art date
Application number
PCT/JP2011/057899
Other languages
French (fr)
Japanese (ja)
Inventor
貴康 永井
大輔 澤井
正樹 野呂
寛 稲田
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2011122646A1 publication Critical patent/WO2011122646A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • C08L1/10Esters of organic acids, i.e. acylates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0016Plasticisers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/521Esters of phosphoric acids, e.g. of H3PO4

Definitions

  • the present invention relates to a resin composition, a molded body, and a housing for electric and electronic equipment.
  • PC Polycarbonate
  • ABS Acrylonitrile-butadiene-styrene resin
  • PC / ABS etc.
  • These resins are produced by reacting compounds obtained from petroleum as a raw material.
  • fossil resources such as oil, coal, and natural gas are mainly composed of carbon that has been fixed in the ground for many years.
  • Cellulose is gaining great attention as a biomass material that can be regenerated on the earth obtained from plants and as a biodegradable material in the environment.
  • Cellulose is not only used for paper, but cellulose derivatives, for example, cellulose acetate, cellulose acetate propionate, cellulose acetate butyrate, and cellulose acetate phthalate are used as film materials and the like.
  • Patent Document 2 in a resin composition containing cellulose ester, polylactic acid resin, aromatic polycarbonate resin, and condensed phosphate ester as a flame retardant, ethylene bislauric acid amide (molecular weight 425) or polyethylene / propylene glycol as a plasticizer It is described that a molded body is formed using (average molecular weight 8400).
  • Patent Document 3 discloses a cellulose acetate solution, a polystyrene resin as an additive having negative intrinsic refraction, triphenyl phosphate (molecular weight 326) as a plasticizer, and ethylphthalyl glycolate (molecular weight 280 as another plasticizer).
  • Patent Document 4 describes that a film is formed from a coating solution containing triphenyl phosphate (molecular weight 326) as a plasticizer and ditrimethylolpropane tetraacetate (molecular weight 305) as another plasticizer in a cellulose acetate solution.
  • triphenyl phosphate molecular weight 326
  • ditrimethylolpropane tetraacetate molecular weight 305
  • the resin composition of Patent Document 2 contains one type of plasticizer, but when the plasticizer has a higher molecular weight than the specific molecular weight range, the molded article obtained has poor moisture absorption resistance (moisture absorption rate). ) Rises. On the other hand, it was found that when the plasticizer has a relatively low molecular weight, the resulting molded article has poor impact resistance. Thus, the balance between impact strength and hygroscopicity has also been a problem with molded articles containing cellulose esters. In addition, in the cellulose ester films as described in Patent Documents 3 and 4, since there is a concern that transparency is lowered by phase separation, a high-molecular plasticizer is not usually used in many cases.
  • the present inventors have found that a cellulose ester, a thermoplastic resin having a specific structure, a low molecular plasticizer having a specific molecular weight, and a specific range
  • the present inventors have found that the above problems can be solved by a resin composition containing an oligomer plasticizer having a molecular weight and a phosphorus-based flame retardant having a specific range of molecular weight, and have completed the present invention. That is, the said subject can be achieved by the following means.
  • the total content of the (C1) low molecular plasticizer, the (C2) oligomer plasticizer and the (D) phosphorus flame retardant is 10% by mass to 40% by mass with respect to the total solid content of the resin composition.
  • the value of (C1) low molecular plasticizer content / ((C1) low molecular plasticizer content and (C2) oligomer plasticizer content) is 0.2 to 0.8.
  • the resin composition according to any one of 1 to 12. 14 ((C1) low molecular plasticizer content and (C2) oligomer plasticizer content) / ((C1) low molecular plasticizer, (C2) oligomer plasticizer and (D) phosphorus flame retardant 14.
  • a resin composition for injection molding comprising the resin composition according to any one of 1 to 17 above. 19.
  • the resin composition of the present invention is a resin composition from which a molded body excellent in all of moldability, flame retardancy, impact strength, and hygroscopic properties can be obtained, for example, the configuration of automobiles, home appliances, electrical and electronic devices, etc. It can be suitably used as parts, machine parts, housing / building materials, and the like. Moreover, since the resin composition of this invention uses the cellulose ester-type resin obtained from the cellulose which is resin derived from a plant, it can substitute for conventional petroleum-derived resin as a raw material which can contribute to global warming prevention.
  • the resin composition of the present invention comprises (A) a cellulose ester, (B) a thermoplastic resin having an aromatic ring in the main chain, (C1) a low molecular plasticizer comprising a compound having a molecular weight of 450 or less, and (C2) a molecular weight.
  • An oligomer plasticizer comprising a compound of 500 to 5000 and (D) a phosphorus flame retardant comprising a phosphorus-containing compound having a molecular weight of 400 to 800.
  • Cellulose ester The resin composition of the present invention contains a cellulose ester.
  • a cellulose ester There is no limitation in particular as a cellulose ester in this invention.
  • Cellulose esters are usually produced by esterifying cellulose such as wood pulp (conifer pulp, hardwood pulp) and cotton linter pulp.
  • the cellulose ester can be produced by a conventional esterification method in which cellulose is reacted with an acylating agent, and can be produced through a saponification or aging step as necessary.
  • Cellulose esters are usually prepared by activating pulp (cellulose) with an activating agent (activation step) and then preparing an ester (such as a triester) with an acylating agent using a catalyst such as sulfuric acid (acylation step). ), Saponification (hydrolysis) and aging to adjust the degree of esterification (saponification and aging step).
  • cellulose acetate it can be produced by a conventional method such as a sulfuric acid catalyst method, an acetic acid method, or a methylene chloride method.
  • the ratio of the acylating agent in the acylation step can be selected within a range that provides a desired degree of acylation (eg, degree of acetylation). For example, 230 to 300 parts by mass, preferably 240 parts per 100 parts by mass of pulp (cellulose). The amount is about 290 parts by mass, more preferably about 250-280 parts by mass. In the case of cellulose acetate, for example, acetic anhydride can be used as the acylating agent.
  • sulfuric acid is usually used as the acylation or aging catalyst.
  • the amount of sulfuric acid used is usually about 0.5 to 15 parts by mass, preferably about 5 to 15 parts by mass, and more preferably about 5 to 10 parts by mass with respect to 100 parts by mass of cellulose.
  • the saponification / ripening temperature can be selected from the range of 40 to 160 ° C., for example, about 50 to 70 ° C.
  • it may be treated with an alkali.
  • cellulose ester examples include organic acid esters [cellulose acetate (cellulose acetate), cellulose propionate, cellulose butyrate and the like, and a carboxylic acid ester having 2 to 6 carbon atoms, etc.], mixed esters (cellulose acetate propionate).
  • Organic acid esters cellulose acetate (cellulose acetate), cellulose propionate, cellulose butyrate and the like, and a carboxylic acid ester having 2 to 6 carbon atoms, etc.
  • mixed esters cellulose acetate propionate
  • Cellulose such as cellulose acetate butyrate and dicarboxylic acid esters having 2 to 6 carbon atoms, etc.
  • grafts polycaprolactone grafted cellulose acetate, etc.
  • inorganic acid esters cellulose nitrate, cellulose sulfate, cellulose phosphate, etc.
  • organic Examples include acid / inorganic acid mixed esters (such as cellulose nitrate acetate).
  • cellulose organic acid esters modified with an organic acid are preferable, and cellulose organic acid esters modified with an organic acid having 2 to 12 carbon atoms are more preferable.
  • cellulose diacetate, cellulose triacetate, cellulose propionate, cellulose acetate propionate, cellulose butyrate, cellulose acetate butyrate, cellulose propionate butyrate and the like are preferable, and cellulose diacetate and cellulose propionate are preferable.
  • cellulose diacetate, cellulose acetate propionate, and cellulose acetate butyrate are still more preferable.
  • cellulose diacetate is particularly preferable from the viewpoints of flame retardancy and easy shape control when it is compatible with a thermoplastic resin having an aromatic ring in the main chain (leading to improvement in impact strength).
  • the acyl substitution degree of the cellulose ester is preferably 2.7 or less, more preferably 2.65 or less, and even more preferably 2.6 or less from the viewpoint of impact resistance.
  • the acyl substitution degree is preferably 1 to 2.7, more preferably 1.3 to 2.65, and still more preferably 1.5 to 2.6.
  • cellulose acetate it can be selected from the range of an average degree of acetylation of about 30 to 62.5%. It is preferably 45 to 62.5% (average substitution degree 1.8 to 3), more preferably 48 to 62.5% (average substitution degree 2 to 3).
  • the polymerization degree of the cellulose ester is not particularly limited, and is a viscosity average polymerization degree of 200 to 400, preferably 250 to 400, and more preferably about 270 to 350.
  • the viscosity average degree of polymerization can be measured by the method described in JP-A-9-77801, [0018] to [0019].
  • the cellulose ester in the present invention can be produced by a known method. Moreover, a commercial item can also be used. For example, as cellulose acetate propionate, “482-20 (acetyl substitution degree: 0.1, propionyl substitution degree: 2.5, Mn: 73000, Mw: 234000)” manufactured by Eastman Chemical Co., Ltd. is cellulose acetate butyrate. Aldrich's “cellulose acetate butyrate (acetyl substitution degree: 0.4, butyrate substitution degree: 1.1, Mn: 70000)” is a cellulose diacetate, “L-70 (acetyl).
  • the content of the cellulose ester contained in the resin composition of the present invention is not particularly limited.
  • the cellulose ester is contained in an amount of 30 to 70% by mass, more preferably 40 to 65% by mass, and still more preferably 40 to 60% by mass with respect to the total solid content of the resin composition.
  • the molded object excellent in impact resistance, a flame retardance, and a moldability can be obtained.
  • Thermoplastic resin having an aromatic ring in the main chain contains a thermoplastic resin having an aromatic ring in the main chain. This is because the resin composition can be molded by imparting thermoplasticity, which cannot be obtained with cellulose alone, to impart impact strength and flame retardancy to the resulting molded article.
  • the thermoplastic resin having an aromatic ring in the main chain in the present invention is not particularly limited.
  • polycarbonate resin is excellent in balance of rigidity, impact resistance, heat resistance, moisture absorption resistance and moldability when used with cellulose ester. Preferred for reasons.
  • the number average molecular weight of the thermoplastic resin having an aromatic ring is preferably 15000 to 30000. This is because when the number average molecular weight is 15000 or more, impact strength and flame retardancy are further improved, and when the number average molecular weight is 30000 or less, moldability is further improved.
  • the value of the number average molecular weight is obtained, for example, using a converted molecular weight calibration curve obtained in advance from a constituent curve of standard monodisperse polystyrene using N-methylpyrrolidone as a solvent and using a polystyrene gel.
  • HLC-8220 GPC manufactured by Tosoh Corporation
  • the thermoplastic resin melt flow rate having an aromatic ring (MFR) is 2 ⁇ 40cm 3 / 10min is preferred. MFR tends to correlate with the molecular weight, with respect to the preferred range 15000-30000 of the number average molecular weight, is considered as a range to be correlated MFR2 ⁇ 40cm 3 / 10min.
  • MFR is an index of melt viscosity, and is obtained by applying a load (1.2 kg) to a resin melted at 300 ° C. in a cylinder and measuring the volume of the resin flowing out in 10 minutes.
  • thermoplastic resin having no aromatic ring such as polypropylene
  • thermoplastic resin having an aromatic ring only in the side chain such as polystyrene
  • polycarbonate resin examples include an aromatic polycarbonate resin and an aromatic-aliphatic polycarbonate resin.
  • aromatic polycarbonate resin examples include thermoplastic aromatic polycarbonate polymers or copolymers obtained by reacting an aromatic dihydroxy compound with phosgene or a carbonic acid diester.
  • Bisphenol A is preferable.
  • a compound in which one or more tetraalkylphosphonium sulfonates are bonded to the above aromatic dihydroxy compound, or a polymer or oligomer having a siloxane structure and containing both terminal phenolic OH groups is used. Can do.
  • the aromatic polycarbonate resin that can be used in the present invention is preferably a polycarbonate resin derived from 2,2-bis (4-hydroxyphenyl) propane, or 2,2-bis (4-hydroxyphenyl) propane and Examples thereof include polycarbonate copolymers derived from other aromatic dihydroxy compounds. Further, two or more kinds of polycarbonate resins may be used in combination.
  • Examples of the aromatic-aliphatic polycarbonate resin that can be used in the present invention include copolymers of the aromatic polycarbonate resin described above and the aliphatic polycarbonate resin described below.
  • the copolymerization ratio of the aromatic component and the aliphatic component is preferably 95/5 to 30/70, more preferably 90/10 to 50/50, for the reason of increasing the compatibility with the cellulose derivative.
  • the aliphatic polycarbonate resin that can be used for the copolymerization of the aromatic-aliphatic polycarbonate resin is preferably composed of an aliphatic diol residue having 2 to 12 carbon atoms.
  • Examples of these aliphatic diols include ethylene glycol, 1,3-propylene glycol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,8-octanediol, 2, 2-dimethyl-1,3-propanediol, 3-methyl-1,5-pentanediol, 2,4-diethyl-1,5-pentanediol, 1,9-nonanediol, 2-methyl-1,8- 5-membered ring diols such as octanediol, 1,2-cyclopentanediol, 1,3-cyclopentanediol, bis (hydroxymethyl) tricyclo- [5.2.1.0] decane, erythritan, isosorbide, etc.
  • the production method of the polycarbonate resin in the present invention is not limited, and it is produced by a phosgene method (interfacial polymerization method), a melting method (transesterification method), or a non-phosgene method using carbon dioxide as a raw material. Can do. Furthermore, the aromatic polycarbonate resin which adjusted the amount of OH groups of the terminal group manufactured by the melting method can be used.
  • aromatic polycarbonate resin not only virgin raw materials but also aromatic polycarbonate resins regenerated from used products, so-called material recycled aromatic polycarbonate resins can be used.
  • Used products include optical recording media such as optical discs, light guide plates, automobile window glass and automobile headlamp lenses, vehicle transparent members such as windshields, containers such as water bottles, eyeglass lenses, soundproof walls and glass windows, waves A building member such as a plate is preferred.
  • recycled aromatic polycarbonate resin non-conforming product, pulverized product obtained from sprue or runner or pellets obtained by melting them can be used.
  • a commercially available product can be used as the carbonate resin.
  • Panlite L1225L having a bisphenol A skeleton
  • the aromatic polyester referred to in the present invention is a polymer or copolymer obtained by a condensation reaction mainly comprising an aromatic dicarboxylic acid and a diol or an ester derivative thereof.
  • the aromatic dicarboxylic acid that is a raw material of the aromatic polyester in the present invention include terephthalic acid, isophthalic acid, orthophthalic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 4,4′-biphenyldicarboxylic acid, 4,4′-biphenyl ether dicarboxylic acid, 4,4′-biphenylmethane dicarboxylic acid, 4,4′-biphenylsulfone dicarboxylic acid, 4,4′-biphenylisopropylidenedicarboxylic acid, 1,2-bis (phenoxy) ethane Aromatic dicarboxylic acids such as -4,4'-dicarboxylic acid
  • Aromatic dicarboxylic acids may be used as a mixture of two or more. In addition, if it is a small amount, it is also possible to use a mixture of one or more aliphatic dicarboxylic acids such as adipic acid, azelaic acid, sebacic acid and dodecanediic acid, and alicyclic dicarboxylic acids such as cyclohexanedicarboxylic acid together with the dicarboxylic acid. .
  • diol that is a raw material constituting the aromatic polyester of the present invention examples include ethylene glycol, propylene glycol, butylene glycol, hexylene glycol, neopentyl glycol, 2-methyl-1,3-propanediol, diethylene glycol, and triethylene glycol.
  • Alicyclic diols such as 1,4-cyclohexanedimethanol, and mixtures thereof.
  • Specific aromatic polyesters include polyethylene terephthalate (PET), polypropylene terephthalate, polybutylene terephthalate (PBT), polyhexylene terephthalate, polyethylene naphthalate (PEN), polybutylene naphthalate (PBN), polyethylene-1,2
  • PET polyethylene terephthalate
  • PBT polypropylene terephthalate
  • PEN polyethylene naphthalate
  • PBN polybutylene naphthalate
  • copolyesters such as polyethylene isophthalate / terephthalate, polybutylene terephthalate / isophthalate, etc.
  • polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, and polybutylene naphthalate having a good balance of mechanical properties and the like can be preferably used, and polyethylene terephthalate and polybutylene terephthalate can be more preferably used. In the present invention, these may be used alone or in combination of two or more.
  • aromatic polyester commercially available products may be used, and examples thereof include polyethylene terephthalate resin (Mitsui PET J005, manufactured by Mitsui Pet Resin Co., Ltd.), polybutylene terephthalate resin (Juranex 2002, manufactured by Nippon Polyplastics Co., Ltd.), and the like. .
  • the dicarboxylic acid component and the diol component are polymerized while heating, and water produced as a by-product.
  • it is carried out by discharging lower alcohol out of the system.
  • polyphenylene ether used in the present invention refers to a homopolymer having the following general formula () as a repeating unit, a copolymer containing a repeating unit of the following general formula (a), or a modified polymer thereof.
  • R 2 , R 3 , R 4 and R 5 each independently represent a hydrogen atom, a primary or secondary lower alkyl group, or a phenyl group.
  • R 2 , R 3 , R 4 and R 5 are particularly preferably a hydrogen atom or a primary alkyl group having 1 to 3 carbon atoms.
  • n represents the number of repeating units.
  • a wide range of molecular weight polymers can be used as the polyphenylene ether, but the reduced viscosity (0.5 g / dl, chloroform solution, measured at 30 ° C.) is preferably in the range of 0.15 to 1.0 dl / g. Homopolymers and / or copolymers are used, and more preferred reduced viscosities are in the range of 0.20 to 0.70 dl / g, most preferably in the range of 0.40 to 0.60.
  • the polyphenylene ether a wide range of melt fluidity resins can be used depending on the purpose, and there is no particular limitation on melt fluidity.
  • melt index value measured in accordance with JIS K6730 and at 280 ° C. and a load of 10 kg is used.
  • a resin having a value of 6 (g / 10 min) or less, more preferably 5 (g / 10 min) or less, particularly preferably 4 (g / 10 min) or less is used.
  • polyphenylene ether homopolymers include poly (1,4-phenylene) ether, poly (2,6-dimethyl-1,4-phenylene) ether, poly (2,5-dimethyl-1,4- Phenylene) ether, poly (2-methyl-6-ethyl-1,4-phenylene) ether, poly (2,6-diethyl-1,4-phenylene) ether, poly (2,6-diphenyl-1,4-phenylene) Phenylene) ether, poly (2,3,6-trimethyl-1,4-phenylene) ether, and the like. Of these, poly (2,6-dimethyl-1,4-phenylene) ether is particularly preferred.
  • polyphenylene ether copolymer examples include 2,6-dimethylphenol and other phenols (for example, 2,3,6-trimethylphenol, 2,6-diphenylphenol or 2-methylphenol (o-cresol)). And a copolymer thereof.
  • poly (2,6-dimethyl-1,4-phenylene) ether, a copolymer of 2,6-dimethylphenol and 2,3,6-trimethylphenol are preferable, and Is particularly preferably poly (2,6-dimethyl-1,4-phenylene) ether.
  • the polyphenylene ether may be used as it is after the polymerization step, or may be melt kneaded in a nitrogen gas atmosphere or a non-nitrogen gas atmosphere under devolatilization or non-devolatilization using an extruder or the like. You may use it by pelletizing.
  • Polyphenylene ether also includes polyphenylene ether modified with dienophile compounds.
  • various dienophile compounds are used.
  • dienophile compounds include maleic anhydride, maleic acid, fumaric acid, phenylmaleimide, itaconic acid, acrylic acid, methacrylic acid, methyl allylate, methyl
  • the compound include methacrylate, glycidyl acrylate, glycidyl methacrylate, stearyl acrylate, and styrene.
  • an extruder or the like may be used in the presence or absence of a radical generator, and functionalization may be performed in a molten state under devolatilization or non-devolatilization. Alternatively, it may be functionalized in the non-molten state, that is, in the temperature range from room temperature to the melting point in the presence or absence of a radical generator.
  • the melting point of polyphenylene ether is defined by the peak top temperature of the peak observed in the temperature-heat flow graph obtained when the temperature is raised at 20 ° C./min in the differential thermal scanning calorimeter (DSC) measurement. If there are a plurality of peak top temperatures, the peak top temperature is defined as the highest temperature.
  • polyphenylene ether commercially available products can be used, for example, Asylon Chemicals Co., Ltd. Zylon (polymer alloy of thermoplastic polyphenylene ether and polystyrene resin), GE Plastics' Noryl PX9701 (Poly (2,6-dimethyl). -1,4-phenylene) ether).
  • Polyetherimide is a well-known resin, for example, what is marketed by GE Plastics under the trade name ULTEM.
  • Polyphenylene sulfide Polyphenylene sulfide
  • PPS Polyphenylene sulfide
  • examples thereof include those commercially available from Phillips Petroleum Co., Ltd., Tosoh Sustiel Co., Ltd., Toprene Co., Ltd., and Kureha Chemical Co., Ltd.
  • the content of the thermoplastic resin having an aromatic ring in the main chain contained in the resin composition of the present invention is not particularly limited.
  • the thermoplastic resin is contained in an amount of 30 to 70% by mass, more preferably 15 to 40% by mass, and still more preferably 20 to 40% by mass with respect to the total solid content of the resin composition. By setting it as this range, the strength of the molded body, in particular, the impact strength and flame retardancy will be more excellent.
  • Plasticizer The resin composition of the present invention includes a plasticizer comprising a compound having a molecular weight of 450 or less (also referred to as “low molecular plasticizer”) and a plasticizer comprising a compound having a molecular weight of 500 to 5000 (“oligomer plasticizer”). (Also referred to as “agent”). These plasticizers contribute to improving the moldability of the resin composition of the present invention. Furthermore, low molecular weight plasticizers can control the hygroscopicity of cellulose esters and impart moisture resistance, and oligomer plasticizers provide impact strength by supplementing the mechanical strength of molded articles containing cellulose esters. Can do.
  • the low molecular plasticizer is not particularly limited as long as it has a molecular weight of 450 or less, and is preferably a plasticizer having a molecular weight of 350 or more and 450 or less. Those commonly used for polymer molding can be used. Examples thereof include polyester plasticizers, glycerin plasticizers, polycarboxylic acid ester plasticizers, polyalkylene glycol plasticizers, and epoxy plasticizers.
  • the water-n-octanol partition coefficient (ClogP) of the low molecular plasticizer (C1) is preferably 2-6. By setting the value of ClogP within this range, the moisture absorption resistance can be further improved. Moreover, the flame retardance fall by addition of a plasticizer can be suppressed more by making ClogP into 6 or less.
  • the ClogP value which is a water-n-octanol partition coefficient, refers to a common logarithmic value of n-octanol / water partition coefficient P indicating the ratio between the equilibrium concentrations of the compound in n-octanol and in water. This ClogP value is determined by a fragment approach based on the chemical structure of the compound (A.
  • polyester plasticizer examples include acid components such as adipic acid, sebacic acid, terephthalic acid, isophthalic acid, naphthalenedicarboxylic acid, diphenyldicarboxylic acid, rosin, propylene glycol, 1,3-butanediol, 1,4 -Polyesters composed of diol components such as butanediol, 1,6-hexanediol, ethylene glycol and diethylene glycol, and polyesters composed of hydroxycarboxylic acids such as polycaprolactone. These polyesters may be end-capped with a monofunctional carboxylic acid or monofunctional alcohol, or may be end-capped with an epoxy compound or the like.
  • acid components such as adipic acid, sebacic acid, terephthalic acid, isophthalic acid, naphthalenedicarboxylic acid, diphenyldicarboxylic acid, rosin, propylene glycol, 1,3-butanediol, 1,4
  • glycerin plasticizer examples include glycerin monoacetomonolaurate, glycerin diacetomonolaurate, glycerin monoacetomonostearate, glycerin diacetomonooleate, and glycerin monoacetomonomontanate.
  • glycerin plasticizer glyceryl tribenzoate can be preferably used.
  • polycarboxylic acid plasticizers include phthalates such as dimethyl phthalate, diethyl phthalate, dibutyl phthalate, dioctyl phthalate, diheptyl phthalate, dibenzyl phthalate, butyl benzyl phthalate, and dicyclohexyl phthalate.
  • Trimellitic acid esters such as tributyl trimellitic acid, trioctyl trimellitic acid, trihexyl trimellitic acid, diisodecyl adipate, n-octyl-n-decyl adipate, methyl diglycol butyl diglycol adipate, benzyl methyl diadipate
  • Adipic acid esters such as glycol, benzylbutyl diglycol adipate, citrate esters such as triethyl acetylcitrate, tributyl acetylcitrate, and di-2-ethylhexyl azelate Line esters, dibutyl sebacate, and di-2-ethylhexyl sebacate, and the like.
  • polyalkylene glycol plasticizer examples include polyethylene glycol, polypropylene glycol, poly (ethylene oxide / propylene oxide) block and / or random copolymer, polytetramethylene glycol, ethylene oxide addition polymer of bisphenols, and bisphenols.
  • a polyalkylene glycol such as a propylene oxide addition polymer, a tetrahydrofuran addition polymer of bisphenol, or a terminal epoxy-modified compound thereof, a terminal ester-modified compound, a terminal ether-modified compound, and the like.
  • the epoxy plasticizer generally refers to an epoxy triglyceride composed of an alkyl epoxy stearate and soybean oil, but there are also so-called epoxy resins mainly made of bisphenol A and epichlorohydrin. Can be used.
  • plasticizers include benzoate esters of aliphatic polyols such as neopentyl glycol dibenzoate, diethylene glycol dibenzoate, triethylene glycol di-2-ethylbutyrate, fatty acid amides such as stearamide, oleic acid
  • aliphatic carboxylic acid esters such as butyl, oxy acid esters such as methyl acetylricinoleate and butyl acetylricinoleate, pentaerythritol, and various sorbitols.
  • a low molecular plasticizer may use only 1 type, and may mix and use 2 or more types.
  • the oligomer plasticizer is not particularly limited as long as it is a plasticizer having a mass average molecular weight of 500 to 5000, but is preferably a plasticizer having a mass average molecular weight of 600 to 1500.
  • the measurement of the mass average molecular weight of an oligomer plasticizer can be performed using gel permeation chromatography (GPC). Specifically, tetrahydrofuran (THF) is used as a solvent, polystyrene gel is used, and the molecular weight can be obtained using a conversion molecular weight calibration curve obtained in advance from a constituent curve of standard monodisperse polystyrene.
  • GPC gel permeation chromatography
  • HLC-8220 GPC manufactured by Tosoh Corporation
  • oligomer plasticizer those commonly used for molding a polymer can be used, and like the above-mentioned low molecular plasticizer, polyester plasticizer, glycerin plasticizer, polyvalent carboxylic ester plasticizer, polyalkylene. Examples include glycol plasticizers and epoxy plasticizers.
  • the water-n-octanol partition coefficient (ClogP) of the oligomer plasticizer (C2) is preferably 2-6. By setting the value of ClogP within this range, an increase in hygroscopicity can be further suppressed. Moreover, the fall of the flame retardance and impact strength by addition of a plasticizer can be suppressed more by making ClogP into 6 or less.
  • an oligomer plasticizer of this invention what has a repeating structural unit is more preferable.
  • a plasticizer reduces the flame retardancy and impact strength of a resin molded article.
  • a polymer having a repeating structural unit is added as a plasticizer, it is easy to suppress a decrease in flame retardancy and impact strength. Become. This effect is considered to be derived from the fact that the repeating structural units are polymerized, so that the molecules easily have a linear structure.
  • plasticizer containing a repeating structural unit for example, polyvinyl oligomers ((meth) acrylic oligomers, styrene oligomers, etc.), polyether oligomers, polyurethane oligomers, polyester oligomers, polycarbonate oligomers and the like can be preferably used. .
  • a polyester oligomer in which repeating units are connected to each other through an ester bond is preferable because it has an excellent balance of moldability, strength, and flame retardancy.
  • Specific examples of the polyester oligomer preferably include a divalent carboxylic acid, a divalent alcohol, and a hydroxy group-containing carboxylic acid as components.
  • divalent carboxylic acid examples include adipic acid, succinic acid, decanedicarboxylic acid, sebacic acid, phthalic acid, terephthalic acid, isophthalic acid, naphthalenedicarboxylic acid, diphenyldicarboxylic acid and the like. It is more preferable that the compatibility with the cellulose ester is high. Specifically, adipic acid, succinic acid, phthalic acid, terephthalic acid, and isophthalic acid are preferable.
  • dihydric alcohols examples include ethylene glycol, propylene glycol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, 1,6-hexanediol, diethylene glycol, polyethylene glycol, polypropylene And glycols.
  • the compatibility with the cellulose ester is high, and specific examples include ethylene glycol, propylene glycol, 1,3-propanediol, and 1,4-butanediol. .
  • Preferred examples of the hydroxy group-containing carboxylic acid include glycolic acid, lactic acid, 3-hydroxybutyric acid, 4-hydroxybutyric acid, 3-hydroxyvaleric acid, and 3-hydroxyhexanoic acid.
  • the compatibility with the cellulose ester is high.
  • glycolic acid, lactic acid, 3-hydroxybutyric acid, and 4-hydroxybutyric acid are preferable.
  • preferred examples include polyester oligomers using hydroxycarboxylic acids such as polycaprolactone and polylactic acid or cyclic lactones as raw materials.
  • polyester oligomers may remain OH residues without being sealed, or may be sealed, but they are end-capped from the viewpoint of moisture absorption resistance, and have hydroxyl groups and carboxyl groups. It is preferable not to contain.
  • Sealing can be performed by any method such as ester sealing or ether sealing.
  • ester sealing examples of monocarboxylic acids used for sealing include acetic acid, propionic acid, butanoic acid, 2-ethylhexanoic acid, benzoic acid, toluic acid, p-tert-butylbenzoic acid, naphthoic acid and the like. it can.
  • Examples of monoalcohols used for sealing include methanol, ethanol, propanol, isopropanol, butanol, and isobutanol. Only one kind of oligomer plasticizer may be used, or two or more kinds may be mixed and used.
  • the content of the plasticizer contained in the resin composition of the present invention is not particularly limited.
  • the total content of (C1) low molecular plasticizer and (C2) oligomer plasticizer is 5 to 30% by mass, more preferably 10 to 20% by mass, based on the total solid content of the resin composition. .
  • the moldability becomes more excellent, and bleeding out during kneading and molding processes can be suppressed.
  • the value of (C1) low molecular plasticizer content / ((C1) low molecular plasticizer content and (C2) oligomer plasticizer content) is 0.2 to 0.8. It is preferably 0.4 to 0.6. By setting it as this range, it is possible to obtain a better balance between moisture absorption resistance and impact strength of the molded article obtained.
  • the said content is a mass reference
  • the resin composition of the present invention contains a phosphorus flame retardant comprising a phosphorus-containing compound.
  • the molecular weight of the phosphorus-containing compound is 400 to 800, preferably 500 to 700. By setting the molecular weight within this range, flame retardancy can be imparted while maintaining the excellent impact strength of the molded article.
  • Phosphorus flame retardants are thermally decomposed when combined with resins or during molding, and generate hydrogen halide, compared to other flame retardants such as bromine flame retardants and chlorine flame retardants that are usually used. There is no possibility of corroding processing machines or molds or deteriorating the work environment, and halogens may be volatilized during incineration and disposal, which may adversely affect the environment due to the generation of harmful substances such as dioxins. There is an advantage that there are few. Moreover, compared with other flame retardants, such as a silicon containing flame retardant normally used, a nitrogen compound flame retardant, an inorganic flame retardant, there exists an advantage that the fall of a bending elastic modulus and impact resistance is suppressed.
  • the phosphorus-containing compound in the present invention is not particularly limited, and a commonly used one can be used.
  • organic phosphorus compounds such as phosphate esters, condensed phosphate esters, and polyphosphates may be mentioned. From the viewpoint of thermal stability, phosphate esters are preferred, and condensed phosphate esters (particularly phosphate esters in the molecule). A compound having two or more units) is more preferable.
  • phosphate esters include trimethyl phosphate, triethyl phosphate, tributyl phosphate, tri (2-ethylhexyl) phosphate, tributoxyethyl phosphate, triphenyl phosphate, tricresyl phosphate, trixylenyl phosphate, tris (isopropylphenyl) Phosphate, tris (phenylphenyl) phosphate, trinaphthyl phosphate, cresyl diphenyl phosphate, xylenyl diphenyl phosphate, diphenyl (2-ethylhexyl) phosphate, di (isopropylphenyl) phenyl phosphate, monoisodecyl phosphate, 2-acryloyloxyethyl Acid phosphate, 2-methacryloyloxyethyl acid phosphate, diphenyl -2-acryloyloxye
  • condensed phosphate ester examples include resorcinol polyphenyl phosphate, resorcinol poly (di-2,6-xylyl) phosphate, bisphenol A polycresyl phosphate, hydroquinone poly (2,6-xylyl) phosphate, and condensates thereof. And aromatic condensed phosphoric acid esters.
  • the molecular weight of these phosphate esters is preferably 500 to 700 from the viewpoint that volatilization during molding and bleeding out of the molded product can be suppressed.
  • polyphosphates composed of salts of phosphoric acid, polyphosphoric acid and metals of Groups 1 to 14 of the periodic table, ammonia, aliphatic amines, and aromatic amines can also be mentioned.
  • lithium salts, sodium salts, calcium salts, barium salts, iron (II) salts, iron (III) salts, aluminum salts and the like as metal salts, methylamine salts as aliphatic amine salts examples include ethylamine salts, diethylamine salts, triethylamine salts, ethylenediamine salts, piperazine salts, and examples of aromatic amine salts include pyridine salts and triazines.
  • halogen-containing phosphate esters such as trischloroethyl phosphate, trisdichloropropyl phosphate, tris ( ⁇ -chloropropyl) phosphate), and structures in which a phosphorus atom and a nitrogen atom are connected by a double bond Phosphazene compounds having phosphoric acid and phosphoric ester amides.
  • phosphorus-containing flame retardants may be used singly or in combination of two or more.
  • phosphorus flame retardants can be produced by a known method.
  • Commercially available products can also be used, for example, “PX-200, 1,3-phenylenebis (di-2,6-xylenyl phosphate) (manufactured by Daihachi Chemical)” “CR733S (manufactured by Daihachi Chemical). ) ",” FP-600 (manufactured by Adeka) ".
  • the total content of the low molecular plasticizer, the oligomer plasticizer, and the phosphorus flame retardant contained in the resin composition of the present invention is not particularly limited, but is preferably 10 with respect to the total solid content of the resin composition. -40% by mass, more preferably 20-30% by mass. By setting it as this range, it is preferable from the viewpoints of impact resistance, brittleness, combustibility, and the like. Further, volatilization during molding and bleed-out of the molded body can be further suppressed.
  • the value of (low molecular plasticizer content + oligomer plasticizer content) / (low molecular plasticizer content + oligomer plasticizer content + phosphorus flame retardant content) is 0.15 to It is preferably 0.7, and more preferably 0.3 to 0.5. By setting it as this range, it is possible to obtain a better balance between moisture absorption resistance, impact strength, and flame retardancy of the molded article obtained.
  • the said content is a mass reference
  • the resin composition of the present invention preferably further contains a compatibilizer.
  • the compatibilizing agent is used to compatibilize the cellulose ester and the thermoplastic resin in the present invention.
  • the compatibilizing agent includes a compound having a part having affinity for the cellulose ester and a part having affinity for the thermoplastic resin, and the two kinds described above. A compound having a functional group that reacts with any of these resins is preferred. As the former example, a block polymer or a graft polymer having portions having different polarities can be preferably used.
  • a carboxylic acid anhydride as a reactive group or an oligomer or polymer having at least one selected from an epoxy group, an isocyanate group, and an oxazoline group is preferable.
  • a compatibilizing agent is added to the resin composition of the present invention, the dispersibility of the cellulose ester with respect to the thermoplastic resin is further improved, and the properties such as the fluidity (molding processability) of the resin composition and the impact resistance of the molded product. Will be improved.
  • the compatibilizing agent is not particularly limited as long as it satisfies the above conditions, and specifically, Nippon Oil & Fats Modiper Series, Sumitomo Chemical Co., Ltd., Bond First, Bondine Series, Nippon Oil Commercially available products such as Lexpearl series manufactured by Co., Ltd., Reseda series manufactured by Toagosei Co., Ltd., Alfon series, and Epochros series manufactured by Nippon Shokubai Co., Ltd. are preferably used.
  • the compatibilizer is not limited to these, and the compatibilizer described in “Plastic compatibilizer development / evaluation / recycling” (CMC Publishing Co., Ltd.) can also be suitably used.
  • the content of the compatibilizing agent in the resin composition of the present invention is preferably from 0.1 to 30% by mass, more preferably from 0.5 to 20% by mass, based on the total solid content of the resin composition.
  • the resin composition of the present invention further contains a stabilizer.
  • a stabilizer Although it does not specifically limit as a stabilizer, hindered phenolic antioxidant, phosphorus antioxidant, amine antioxidant, sulfur antioxidant, light resistance agent, ultraviolet absorber, copper damage inhibitor, etc. Can be mentioned.
  • the content of the stabilizer in the resin composition of the present invention is preferably 0.05 to 30% by mass, more preferably 0.1 to 20% by mass, based on the total solid content of the resin composition.
  • Fluorine-based resin The resin composition of the present invention preferably further contains a fluorine-based resin. This is to prevent drip when the molded body burns and to obtain higher flame retardancy.
  • the fluororesin in the present invention is a resin containing fluorine in a substance molecule, specifically, polytetrafluoroethylene, polyhexafluoropropylene, tetrafluoroethylene / hexafluoropropylene copolymer, tetrafluoroethylene.
  • Perfluoroalkyl vinyl ether copolymer tetrafluoroethylene / ethylene copolymer, hexafluoropropylene / propylene copolymer, polyvinylidene fluoride, vinylidene fluoride / ethylene copolymer, etc., among which polytetrafluoro Ethylene, tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer, tetrafluoroethylene / hexafluoropropylene copolymer, tetrafluoroethylene / ethylene copolymer, polyvinylidene fluoride
  • polytetrafluoroethylene and tetrafluoroethylene / ethylene copolymers are preferred, and polytetrafluoroethylene is more preferred, and polytetrafluoroethylene-containing mixed powder comprising polytetrafluoroethylene particles and an organic polymer.
  • the body is also preferably used.
  • the molecular weight of the fluororesin such as polytetrafluoroethylene is preferably in the range of 100,000 to 10,000,000, more preferably in the range of 100,000 to 1,000,000, especially for the extrudability and flame retardancy of the present invention. effective.
  • Commercially available products of polytetrafluoroethylene include “Teflon (registered trademark)” 6-J, “Teflon (registered trademark)” 6C-J, and “Teflon (registered trademark)” 62 manufactured by Mitsui DuPont Fluorochemical Co., Ltd. -J, “Full-on” CD1 and CD076 manufactured by Asahi IC Fluoropolymers Co., Ltd.
  • a polytetrafluoroethylene-containing mixed powder composed of polytetrafluoroethylene particles and an organic polymer is excellent in handling properties and dispersibility, and is particularly preferably used.
  • the polytetrafluoroethylene-containing mixed powder composed of the polytetrafluoroethylene particles and the organic polymer is not limited, but polytetrafluoroethylene disclosed in Japanese Patent Application Laid-Open No. 2000-226523. Examples thereof include polytetrafluoroethylene-containing mixed powder composed of particles and an organic polymer.
  • the organic polymer include aromatic vinyl monomers, acrylate monomers, and vinyl cyanide.
  • An organic polymer containing 10% by mass or more of a monomer may be a mixture thereof.
  • the polytetrafluoroethylene content in the polytetrafluoroethylene-containing mixed powder is 0.1% by mass to 90% by mass. It is preferable that it is mass%.
  • the content of the fluororesin in the resin composition of the present invention is preferably 0.01 to 3% by mass, more preferably 0.02 to 2% by mass, based on the total solid content of the resin composition. More preferably, it is 0.03 to 1% by mass. By setting it as this range, a flame retardance can be improved more, suppressing the influence on a moldability.
  • Resin Composition and Molded Body may contain various additives such as a filler (reinforcing material) as necessary in addition to the above-described components.
  • the resin composition of the present invention may contain a filler (reinforcing material). By containing the filler, the mechanical properties of the molded body formed from the resin composition can be enhanced.
  • a filler A well-known thing can be used as a filler.
  • the shape of the filler may be any of fibrous, plate-like, granular, powdery and the like. Further, it may be inorganic or organic.
  • the inorganic filler glass fiber, carbon fiber, graphite fiber, metal fiber, potassium titanate whisker, aluminum borate whisker, magnesium whisker, silicon whisker, wollastonite, sepiolite, slag fiber, zonolite, Elastadite, gypsum fiber, silica fiber, silica-alumina fiber, zirconia fiber, boron nitride fiber, silicon nitride fiber and boron fiber, and other inorganic fillers; glass flakes, non-swellable mica, carbon black, graphite, metal foil , Ceramic beads, talc, clay, mica, sericite, zeolite, bentonite, dolomite, kaolin, fine silicate, feldspar, potassium titanate, shirasu balloon, calcium carbonate, magnesium carbonate, barium sulfate, calcium oxide Beam, aluminum oxide, titanium oxide, magnesium oxide, aluminum silicate, silicon oxide, aluminum hydroxide, magnesium hydroxide, gy
  • Organic fillers include synthetic fibers such as polyester fiber, nylon fiber, acrylic fiber, regenerated cellulose fiber, and acetate fiber, and natural fibers such as kenaf, ramie, cotton, jute, hemp, sisal, Manila hemp, flax, linen, silk, and wool. Examples thereof include fibrous organic fillers obtained from microcrystalline cellulose, sugar cane, wood pulp, paper waste, waste paper and the like, and granular organic fillers such as organic pigments.
  • the content is not limited, but is preferably 30% by mass or less, more preferably 5 to 10% by mass with respect to the total solid content of the resin composition.
  • the resin composition of the present invention may contain other components for the purpose of further improving various properties such as moldability and flame retardancy, as long as the object of the present invention is not impaired.
  • Other components include, for example, polymers other than the cellulose ester, ultraviolet absorbers, mold release agents (fatty acids, fatty acid metal salts, oxy fatty acids, fatty acid esters, aliphatic partially saponified esters, paraffins, low molecular weight polyolefins, fatty acid amides, Alkylene bis fatty acid amide, aliphatic ketone, fatty acid lower alcohol ester, fatty acid polyhydric alcohol ester, fatty acid polyglycol ester, modified silicone), antistatic agent, flame retardant aid, processing aid, antibacterial agent, antifungal agent, etc. Can be mentioned. Further, a coloring agent containing a dye or a pigment can be added.
  • thermoplastic polymer As the polymer other than the cellulose ester, either a thermoplastic polymer or a thermosetting polymer can be used, but a thermoplastic polymer is preferable from the viewpoint of moldability.
  • polymers other than cellulose esters include low density polyethylene, linear low density polyethylene, high density polyethylene, polypropylene, ethylene-propylene copolymer, ethylene-propylene-nonconjugated diene copolymer, ethylene-butene- 1 copolymer, polypropylene homopolymer, polypropylene copolymer (such as ethylene-propylene block copolymer), polyolefins such as polybutene-1 and poly-4-methylpentene-1, polybutylene terephthalate, polyethylene terephthalate and other aromatic polyesters, etc.
  • Polyamide such as polyester, nylon 6, nylon 46, nylon 66, nylon 610, nylon 612, nylon 6T, nylon 12, etc., polystyrene, high impact polystyrene, poly Tar (including homopolymers and copolymers), polyurethane, aromatic and aliphatic polyketones, polyphenylene sulfide, polyether ether ketone, thermoplastic starch resin, polymethyl methacrylate, methacrylate ester-acrylate ester copolymer, etc.
  • Acrylic resin AS resin (acrylonitrile-styrene copolymer), ABS resin, AES resin (ethylene rubber reinforced AS resin), ACS resin (chlorinated polyethylene reinforced AS resin), ASA resin (acrylic rubber reinforced AS resin) , Polyvinyl chloride, polyvinylidene chloride, vinyl ester resin, maleic anhydride-styrene copolymer, MS resin (methyl methacrylate-styrene copolymer), polycarbonate, polyarylate, polysulfone, polyethersulfone, phenoxy tree , Polyphenylene ether, modified polyphenylene ether, thermoplastic polyimide such as polyetherimide, polytetrafluoroethylene, tetrafluoroethylene-hexafluoropropylene copolymer, tetrafluoroethylene-ethylene copolymer, tetrafluoroethylene-perfluoroalkyl vinyl ether Fluoropolymers such as copolymer, polychlorotri
  • Various acrylic rubbers ethylene-vinyl acetate copolymers, ethylene-acrylic acid copolymers and alkali metal salts thereof (so-called ionomers), ethylene-acrylic acid alkyl ester copolymers (for example, ethylene-ethyl acrylate copolymer) Copolymer, ethylene-butyl acrylate copolymer), diene rubber (for example, 1,4-polybutadiene, 1,2-polybutadiene, polyisoprene, polychloroprene), copolymer of diene and vinyl monomer (for example, Styrene-butadiene random copolymer, styrene-butadiene block copolymer, styrene-butadiene-styrene block copolymer, styrene-isoprene random copolymer, styrene-isoprene block copolymer, sty
  • a multi-layer structure polymer called a so-called core-shell rubber which is composed of one or more shell layers to be covered and whose adjacent layers are composed of different types of polymers, can also be used, and further a core-shell rubber containing a silicone compound Can also be used.
  • These polymers may be used alone or in combination of two or more.
  • the content is 30 with respect to the total solid content of the resin composition.
  • the content is preferably not more than mass%, more preferably 2 to 10 mass%.
  • the resin composition of the present invention can be used for various applications. For example, it is good also as a film by melt
  • the resin composition of the present invention is preferably an injection molding resin composition.
  • the molded product of the present invention can be obtained by molding the resin composition of the present invention.
  • the manufacturing method of the molded object of this invention includes the process of heating and shape
  • the heating temperature is usually 160 to 300 ° C, preferably 180 to 260 ° C.
  • the use of the molded product of the present invention is not particularly limited.
  • interior or exterior parts of electrical and electronic equipment home appliances, OA / media related equipment, optical equipment, communication equipment, etc.
  • automobiles mechanical parts, etc.
  • materials for housing and construction for example, from the viewpoint of having excellent heat resistance and impact resistance and low environmental impact, for example, exterior parts (especially casings) for electrical and electronic equipment such as copiers, printers, personal computers, and televisions. ) Can be suitably used.
  • oligomer plasticizer Using the dicarboxylic acid component and the diol component shown in Table 1 in each part by mass shown in Table 1, an oligomer plasticizer having the terminal structure, mass average molecular weight, and ClogP value shown in Table 1 (oligomer plasticizers 1 to 4) Manufactured.
  • GPC Gel permeation chromatography
  • V-not for non-self-extinguishing V-2 for resin composition drip during combustion test and self-extinguishing within a predetermined time V-2, no self-extinguishing resin composition drip for self-extinguishing within a predetermined time during combustion V-1 (combustion time within 30 seconds) and V-0 (combustion time within 10 seconds).
  • V-0 is indicated by ⁇
  • V-1 and V-2 are indicated by ⁇
  • V-not is indicated by ⁇ .
  • the moldability evaluation shows the moldability in an injection molding machine.
  • a resin composition that is excellent in both mold transportability and injection property is indicated by ⁇ , a resin composition that has a problem in either one, and a problem in both.
  • a certain resin composition was set as x.
  • (circle) is what can shape
  • thermoplastic resin does not have an aromatic ring in the main chain, good impact strength and flame retardancy cannot be obtained, there is no low molecular plasticizer, and there is no specified molecular weight In this case, it was confirmed that the moisture absorption resistance was not obtained, and the impact strength was inferior in the absence of the oligomer plasticizer or in the absence of the prescribed molecular weight. Furthermore, it was confirmed that in the absence of a flame retardant, the flame retardancy deteriorates.
  • the resin composition of the present invention is a resin composition from which a molded body excellent in all of moldability, flame retardancy, impact strength, and hygroscopic properties can be obtained, for example, the configuration of automobiles, home appliances, electrical and electronic devices, etc. It can be suitably used as parts, machine parts, housing / building materials, and the like. Moreover, since the resin composition of this invention uses the cellulose ester-type resin obtained from the cellulose which is resin derived from a plant, it can substitute for conventional petroleum-derived resin as a raw material which can contribute to global warming prevention.

Abstract

Disclosed is a resin composition that can provide a molded article superior in all the characteristics of moldability, flame resistance, impact strength and hygroscopicity. The disclosed resin composition contains: a cellulose ester (A); a thermoplastic resin (B) having an aromatic ring on the main chain; a low-molecular weight plasticizer (C1) formed from a compound with a molecular weight of 450 or less; an oligomer plasticizer (C2) formed from a compound with a mass average molecular weight of 500 - 5000; and a phosphorus-based flame retardant (D) formed from a phosphorus-containing compound with a molecular weight of 400 - 800.

Description

樹脂組成物、成形体、及び電気電子機器用筐体Resin composition, molded body, and casing for electrical and electronic equipment
 本発明は、樹脂組成物、成形体、及び電気電子機器用筐体に関する。 The present invention relates to a resin composition, a molded body, and a housing for electric and electronic equipment.
 コピー機、プリンター等の電気電子機器を構成する部材には、その部材に求められる特性、機能等を考慮して、各種の素材が使用されている。例えば、電気電子機器の駆動機等を収納し、当該駆動機を保護する役割を果たす部材(筐体)にはPC(Polycarbonate)、ABS(Acrylonitrile-butadiene-styrene)樹脂、PC/ABS等が一般的に多量に使用されている。これらの樹脂は、石油を原料として得られる化合物を反応させて製造されている。
 ところで、石油、石炭、天然ガス等の化石資源は、長年月の間、地中に固定されてきた炭素を主成分とするものである。このような化石資源、又は化石資源を原料とする製品を燃焼させて、二酸化炭素が大気中に放出された場合には、本来、大気中に存在せずに地中深くに固定されていた炭素を二酸化炭素として急激に放出することになり、大気中の二酸化炭素が大きく増加し、これが地球温暖化の原因となっている。したがって、化石資源である石油を原料とするABS、PC等のポリマーは、電気電子機器用部材の素材としては、優れた特性を有するものであるものの、化石資源である石油を原料とするものであるため、地球温暖化の防止の観点からは、その使用量の低減が望ましい。
 一方、植物由来の樹脂は、元々、植物が大気中の二酸化炭素と水とを原料として光合成反応によって生成したものである。そのため、植物由来の樹脂を焼却して二酸化炭素が発生しても、その二酸化炭素は元々、大気中にあった二酸化炭素に相当するものであるから、大気中の二酸化炭素の収支はプラスマイナスゼロとなり、結局、大気中のCOの総量を増加させない、という考え方がある。このような考えから、植物由来の樹脂は、いわゆる「カーボンニュートラル」な材料と称されている。石油由来の樹脂に代わって、カーボンニュートラルな材料を用いることは、近年の地球温暖化を防止する上で急務となっている。
 このため、PCポリマーにおいて、石油由来の原料の一部としてデンプン等の植物由来資源を使用することにより石油由来資源を低減する方法が提案されている(特許文献1)。
 しかし、より完全なカーボンニュートラルな材料を目指す観点から、さらなる改良が求められている。
Various materials are used for members constituting electric and electronic devices such as copiers and printers in consideration of characteristics and functions required for the members. For example, PC (Polycarbonate), ABS (Acrylonitrile-butadiene-styrene) resin, PC / ABS, etc. are generally used as a member (housing) that stores a drive machine for electrical and electronic equipment and protects the drive machine. Are used in large quantities. These resins are produced by reacting compounds obtained from petroleum as a raw material.
By the way, fossil resources such as oil, coal, and natural gas are mainly composed of carbon that has been fixed in the ground for many years. When such fossil resources or products made from fossil resources are burned and carbon dioxide is released into the atmosphere, carbon that was originally not deep in the atmosphere but fixed deep in the ground Is rapidly released as carbon dioxide, and carbon dioxide in the atmosphere greatly increases, which causes global warming. Therefore, polymers such as ABS and PC made from petroleum, which is a fossil resource, have excellent characteristics as materials for electrical and electronic equipment, but are made from petroleum, which is a fossil resource. Therefore, it is desirable to reduce the amount used from the viewpoint of preventing global warming.
On the other hand, a plant-derived resin is originally produced by a photosynthesis reaction using carbon dioxide and water in the atmosphere as raw materials. Therefore, even if plant-derived resin is incinerated to generate carbon dioxide, the carbon dioxide is equivalent to carbon dioxide originally in the atmosphere, so the balance of carbon dioxide in the atmosphere is plus or minus zero After all, there is an idea that the total amount of CO 2 in the atmosphere is not increased. Based on this idea, plant-derived resins are referred to as so-called “carbon neutral” materials. The use of carbon-neutral materials in place of petroleum-derived resins is an urgent need to prevent global warming in recent years.
For this reason, in PC polymer, the method of reducing petroleum origin resources is proposed by using plant origin resources, such as starch, as some raw materials derived from petroleum (patent documents 1).
However, further improvements are required from the perspective of aiming for a more complete carbon neutral material.
 セルロースは植物から得られる地球上で再生産可能なバイオマス材料として、また環境中にて生分解可能な材料として、昨今の大きな注目を集めつつある。セルロースは紙に用いられるばかりではなく、その誘導体であるセルロースエステルは、例えばセルロースアセテート、セルロースアセテートプロピオネート、セルロースアセテートブチレート、セルロースアセテートフタレート等が、フィルム材料等として用いられている。 Cellulose is gaining great attention as a biomass material that can be regenerated on the earth obtained from plants and as a biodegradable material in the environment. Cellulose is not only used for paper, but cellulose derivatives, for example, cellulose acetate, cellulose acetate propionate, cellulose acetate butyrate, and cellulose acetate phthalate are used as film materials and the like.
 特許文献2では、セルロースエステル、ポリ乳酸樹脂、及び芳香族ポリカーボネート樹脂、難燃剤として縮合リン酸エステルを含む樹脂組成物において、可塑剤としてエチレンビスラウリン酸アミド(分子量425)、又はポリエチレン・プロピレングリコール(平均分子量8400)を用いて成形体を形成することが記載されている。
 特許文献3にはセルロースアセテート溶液に、負の固有屈折性を有する添加剤としてポリスチレン樹脂、可塑剤としてトリフェニルフォスフェート(分子量326)、及びもう1つの可塑剤としてエチルフタリルグリコレート(分子量280)を含む塗布液からフィルムを製膜することが記載されている。
 特許文献4では、セルロースアセテート溶液に可塑剤としてトリフェニルフォスフェート(分子量326)、及びもう1つの可塑剤としてジトリメチロールプロパンテトラアセテート(分子量305)を含む塗布液からフィルムを製膜することが記載されている。
In Patent Document 2, in a resin composition containing cellulose ester, polylactic acid resin, aromatic polycarbonate resin, and condensed phosphate ester as a flame retardant, ethylene bislauric acid amide (molecular weight 425) or polyethylene / propylene glycol as a plasticizer It is described that a molded body is formed using (average molecular weight 8400).
Patent Document 3 discloses a cellulose acetate solution, a polystyrene resin as an additive having negative intrinsic refraction, triphenyl phosphate (molecular weight 326) as a plasticizer, and ethylphthalyl glycolate (molecular weight 280 as another plasticizer). To form a film from a coating solution containing
Patent Document 4 describes that a film is formed from a coating solution containing triphenyl phosphate (molecular weight 326) as a plasticizer and ditrimethylolpropane tetraacetate (molecular weight 305) as another plasticizer in a cellulose acetate solution. Has been.
日本国特開2008-24919号公報Japanese Unexamined Patent Publication No. 2008-24919 日本国特開2006-111858号公報Japanese Unexamined Patent Publication No. 2006-111858 日本国特開2006-291192号公報Japanese Unexamined Patent Publication No. 2006-291192 日本国特開2002-265636号公報Japanese Patent Laid-Open No. 2002-265636
 しかしながら、本発明者らの検討により、特許文献2に記載の樹脂組成物に用いられている可塑剤は、該樹脂組成物から得られる成形体の難燃性を低下させることがわかった。一方、該樹脂組成物において、難燃剤の添加量を増やすと、成形体の耐衝撃性が低下することがわかった。
 また、特許文献3及び4に用いられている可塑剤も、特許文献2の可塑剤と同様に成形体の難燃性を低下させるものであることがわかった。
 このようにカーボンニュートラルな材料としてセルロースエステルを使用した成形体では、難燃性と衝撃強度のバランスをとることが困難であった。また、特許文献2の樹脂組成物では、1種類の可塑剤を含有するが、該可塑剤が特定の分子量範囲よりも高分子の場合は得られた成形体の耐吸湿性が劣る(吸湿率が上昇する)ことがわかった。一方、該可塑剤が比較的低分子の場合は得られた成形体の耐衝撃性が劣ることがわかった。このように、衝撃強度と吸湿性のバランスをとることも、セルロースエステルを含む成形体では問題となっていた。
 また、特許文献3、4のようなセルロースエステルフィルムには、相分離により透明性を低下させる懸念があることから高分子の可塑剤は通常用いられない場合が多い。
However, as a result of studies by the present inventors, it has been found that the plasticizer used in the resin composition described in Patent Document 2 reduces the flame retardancy of a molded product obtained from the resin composition. On the other hand, in the resin composition, it was found that when the amount of the flame retardant added is increased, the impact resistance of the molded article is lowered.
Moreover, it turned out that the plasticizer used for patent document 3 and 4 also reduces the flame retardance of a molded object similarly to the plasticizer of patent document 2. FIG.
As described above, in a molded body using cellulose ester as a carbon neutral material, it is difficult to balance flame retardancy and impact strength. In addition, the resin composition of Patent Document 2 contains one type of plasticizer, but when the plasticizer has a higher molecular weight than the specific molecular weight range, the molded article obtained has poor moisture absorption resistance (moisture absorption rate). ) Rises. On the other hand, it was found that when the plasticizer has a relatively low molecular weight, the resulting molded article has poor impact resistance. Thus, the balance between impact strength and hygroscopicity has also been a problem with molded articles containing cellulose esters.
In addition, in the cellulose ester films as described in Patent Documents 3 and 4, since there is a concern that transparency is lowered by phase separation, a high-molecular plasticizer is not usually used in many cases.
 本発明は、セルロース誘導体を用いた樹脂組成物における上記課題に着目してなされたものであって、その目的は、様々な用途に用いることができる新規な樹脂組成物として、成形性、難燃性、衝撃強度及び耐吸湿性の全ての特性に優れた成形体が得られる樹脂組成物を提供することである。また、本発明の別の目的は、該樹脂組成物を成形して得られる成形体、及び該成形体から構成される電気電子機器用筐体を提供することである。 The present invention has been made by paying attention to the above-mentioned problems in a resin composition using a cellulose derivative, and the purpose thereof is as a novel resin composition that can be used in various applications, as moldability, flame retardancy, and the like. It is providing the resin composition from which the molded object excellent in all the characteristics of property, impact strength, and moisture absorption resistance is obtained. Another object of the present invention is to provide a molded body obtained by molding the resin composition, and a housing for electric and electronic equipment composed of the molded body.
 本発明者らは、上記目的を達成するため鋭意検討を重ねた結果、セルロースエステルに、特定の構造を有する熱可塑性樹脂と、特定の範囲の分子量を有する低分子可塑剤と、特定の範囲の分子量を有するオリゴマー可塑剤と、特定の範囲の分子量を有するリン系の難燃剤とを含有する樹脂組成物により、前記課題を解決し得ることを見出し、本発明を完成するに至った。
 すなわち、上記課題は以下の手段により達成することができる。
As a result of intensive studies to achieve the above object, the present inventors have found that a cellulose ester, a thermoplastic resin having a specific structure, a low molecular plasticizer having a specific molecular weight, and a specific range The present inventors have found that the above problems can be solved by a resin composition containing an oligomer plasticizer having a molecular weight and a phosphorus-based flame retardant having a specific range of molecular weight, and have completed the present invention.
That is, the said subject can be achieved by the following means.
1.
 (A)セルロースエステル、(B)主鎖に芳香族環を有する熱可塑性樹脂、(C1)分子量が450以下の化合物からなる低分子可塑剤、(C2)質量平均分子量が500~5000の化合物からなるオリゴマー可塑剤、及び(D)分子量が400~800のリン含有化合物からなるリン系難燃剤を含む樹脂組成物。
2.
 前記(A)セルロースエステルがセルロースジアセテート、セルロースアセテートプロピオネート又はセルロースアセテートブチレートである上記1に記載の樹脂組成物。
3.
 前記(A)セルロースエステルがセルロースジアセテートである上記1又は2に記載の樹脂組成物。
4.
 前記(A)セルロースエステルの含有量が、樹脂組成物の全固形分に対して30~70質量%である上記1~3のいずれか1項に記載の樹脂組成物。
5.
 前記(B)熱可塑性樹脂がポリカーボネート樹脂である上記1~4のいずれか1項に記載の樹脂組成物。
6.
 前記(B)熱可塑性樹脂の数平均分子量が15000~30000である上記1~5のいずれか1項に記載の樹脂組成物。
7.
 前記(C1)低分子可塑剤の水―n‐オクタノール分配係数(ClogP)が2~6である上記1~6のいずれか1項に記載の樹脂組成物。
8.
 前記(C2)オリゴマー可塑剤の水―n‐オクタノール分配係数(ClogP)が2~6である上記1~7のいずれか1項に記載の樹脂組成物。
9.
 前記(C2)オリゴマー可塑剤が、繰り返し構造を有する上記1~8のいずれか1項に記載の樹脂組成物。
10.
 前記(D)におけるリン含有化合物がリン酸エステルである上記1~9のいずれか1項に記載の樹脂組成物。
11.
 前記(C1)低分子可塑剤と前記(C2)オリゴマー可塑剤の含有量の合計が、樹脂組成物の全固形分に対して5質量%~30質量%である上記1~10のいずれか1項に記載の樹脂組成物。
12.
 前記(C1)低分子可塑剤、前記(C2)オリゴマー可塑剤及び前記(D)リン系難燃剤の含有量の合計が、樹脂組成物の全固形分に対して10質量%~40質量%である上記1~11のいずれか1項に記載の樹脂組成物。
13.
 (C1)低分子可塑剤の含有量/((C1)低分子可塑剤の含有量と(C2)オリゴマー可塑剤の含有量の合計)の値が、0.2~0.8である上記1~12のいずれか1項に記載の樹脂組成物。
14.
 ((C1)低分子可塑剤の含有量と(C2)オリゴマー可塑剤の含有量の合計)/((C1)低分子可塑剤、前記(C2)オリゴマー可塑剤及び前記(D)リン系難燃剤の含有量の合計)の値が0.15~0.7である上記1~13のいずれか1項に記載の樹脂組成物。
15.
 更に(E)相溶化剤を含有する上記1~14のいずれか1項に記載の樹脂組成物。
16.
 更に(F)安定化剤を含有する上記1~15のいずれか1項に記載の樹脂組成物。
17.
 更に(G)フッ素系樹脂を含有する上記1~16のいずれか1項に記載の樹脂組成物。
18.
 上記1~17のいずれか1項に記載の樹脂組成物からなる射出成形用樹脂組成物。
19.
 上記1~17のいずれか1項に記載の樹脂組成物又は上記18に記載の射出成形用樹脂組成物を成形して得られる成形体。
20.
 上記19に記載の成形体から構成される電気電子機器用筺体。
1.
(A) a cellulose ester, (B) a thermoplastic resin having an aromatic ring in the main chain, (C1) a low molecular plasticizer comprising a compound having a molecular weight of 450 or less, and (C2) a compound having a mass average molecular weight of 500 to 5,000. And (D) a phosphorus-based flame retardant comprising a phosphorus-containing compound having a molecular weight of 400 to 800.
2.
2. The resin composition according to 1 above, wherein (A) the cellulose ester is cellulose diacetate, cellulose acetate propionate, or cellulose acetate butyrate.
3.
3. The resin composition as described in 1 or 2 above, wherein (A) the cellulose ester is cellulose diacetate.
4).
4. The resin composition as described in any one of 1 to 3 above, wherein the content of the cellulose ester (A) is 30 to 70% by mass with respect to the total solid content of the resin composition.
5.
5. The resin composition according to any one of the above 1 to 4, wherein the (B) thermoplastic resin is a polycarbonate resin.
6).
6. The resin composition according to any one of 1 to 5 above, wherein the number average molecular weight of the (B) thermoplastic resin is 15000 to 30000.
7).
7. The resin composition as described in any one of 1 to 6 above, wherein the water-n-octanol partition coefficient (ClogP) of the (C1) low molecular plasticizer is 2 to 6.
8).
8. The resin composition according to any one of 1 to 7 above, wherein the (C2) oligomer plasticizer has a water-n-octanol partition coefficient (ClogP) of 2 to 6.
9.
9. The resin composition as described in any one of 1 to 8 above, wherein the (C2) oligomer plasticizer has a repeating structure.
10.
10. The resin composition according to any one of 1 to 9 above, wherein the phosphorus-containing compound in (D) is a phosphate ester.
11.
Any one of 1 to 10 above, wherein the total content of the (C1) low molecular plasticizer and the (C2) oligomer plasticizer is 5% by mass to 30% by mass with respect to the total solid content of the resin composition. The resin composition according to item.
12
The total content of the (C1) low molecular plasticizer, the (C2) oligomer plasticizer and the (D) phosphorus flame retardant is 10% by mass to 40% by mass with respect to the total solid content of the resin composition. 12. The resin composition according to any one of 1 to 11 above.
13.
The value of (C1) low molecular plasticizer content / ((C1) low molecular plasticizer content and (C2) oligomer plasticizer content) is 0.2 to 0.8. The resin composition according to any one of 1 to 12.
14
((C1) low molecular plasticizer content and (C2) oligomer plasticizer content) / ((C1) low molecular plasticizer, (C2) oligomer plasticizer and (D) phosphorus flame retardant 14. The resin composition as described in any one of 1 to 13 above, wherein the value of (total content) is from 0.15 to 0.7.
15.
15. The resin composition according to any one of 1 to 14, further comprising (E) a compatibilizing agent.
16.
16. The resin composition according to any one of 1 to 15, further comprising (F) a stabilizer.
17.
The resin composition according to any one of 1 to 16, further comprising (G) a fluororesin.
18.
18. A resin composition for injection molding comprising the resin composition according to any one of 1 to 17 above.
19.
18. A molded product obtained by molding the resin composition according to any one of 1 to 17 above or the resin composition for injection molding according to 18 above.
20.
20. A housing for electrical and electronic equipment, comprising the molded body as described in 19 above.
 本発明の樹脂組成物は、成形性、難燃性、衝撃強度及び吸湿性の全ての特性に優れた成形体が得られる樹脂組成物であるので、例えば自動車、家電、電気電子機器等の構成部品、機械部品、住宅・建築用材料等として好適に使用することができる。また、本発明の樹脂組成物は、植物由来の樹脂であるセルロースから得られるセルロースエステル系樹脂を使用しているため、温暖化防止に貢献できる素材として、従来の石油由来の樹脂に代替できる。 Since the resin composition of the present invention is a resin composition from which a molded body excellent in all of moldability, flame retardancy, impact strength, and hygroscopic properties can be obtained, for example, the configuration of automobiles, home appliances, electrical and electronic devices, etc. It can be suitably used as parts, machine parts, housing / building materials, and the like. Moreover, since the resin composition of this invention uses the cellulose ester-type resin obtained from the cellulose which is resin derived from a plant, it can substitute for conventional petroleum-derived resin as a raw material which can contribute to global warming prevention.
 本発明の樹脂組成物は、(A)セルロースエステル、(B)主鎖に芳香族環を有する熱可塑性樹脂、(C1)分子量が450以下の化合物からなる低分子可塑剤、(C2)分子量が500~5000の化合物からなるオリゴマー可塑剤、及び(D)分子量が400~800のリン含有化合物からなるリン系難燃剤を含む。 The resin composition of the present invention comprises (A) a cellulose ester, (B) a thermoplastic resin having an aromatic ring in the main chain, (C1) a low molecular plasticizer comprising a compound having a molecular weight of 450 or less, and (C2) a molecular weight. An oligomer plasticizer comprising a compound of 500 to 5000 and (D) a phosphorus flame retardant comprising a phosphorus-containing compound having a molecular weight of 400 to 800.
1.セルロースエステル
 本発明の樹脂組成物はセルロースエステルを含有する。
 本発明におけるセルロースエステルとしては、特に限定はない。セルロースエステルは、通常、木材パルプ(針葉樹パルプ、広葉樹パルプ)、コットンリンターパルプ等のセルロースをエステル化して製造されている。
1. Cellulose ester The resin composition of the present invention contains a cellulose ester.
There is no limitation in particular as a cellulose ester in this invention. Cellulose esters are usually produced by esterifying cellulose such as wood pulp (conifer pulp, hardwood pulp) and cotton linter pulp.
 セルロースエステルは、セルロースをアシル化剤と反応させる慣用のエステル化方法により生成でき、必要に応じてケン化又は熟成工程を経て製造できる。セルロースエステルは、通常、パルプ(セルロース)を活性化剤により活性化処理(活性化工程)した後、硫酸などの触媒を用いてアシル化剤によりエステル(トリエステルなど)を調製し(アシル化工程)、ケン化(加水分解)・熟成によりエステル化度を調整する(ケン化・熟成工程)ことにより製造できる。セルロースアセテートの場合は、例えば、硫酸触媒法、酢酸法、メチレンクロライド法等の慣用の方法で製造できる。 The cellulose ester can be produced by a conventional esterification method in which cellulose is reacted with an acylating agent, and can be produced through a saponification or aging step as necessary. Cellulose esters are usually prepared by activating pulp (cellulose) with an activating agent (activation step) and then preparing an ester (such as a triester) with an acylating agent using a catalyst such as sulfuric acid (acylation step). ), Saponification (hydrolysis) and aging to adjust the degree of esterification (saponification and aging step). In the case of cellulose acetate, it can be produced by a conventional method such as a sulfuric acid catalyst method, an acetic acid method, or a methylene chloride method.
 アシル化工程におけるアシル化剤の割合は、所望のアシル化度(酢化度など)となる範囲で選択でき、例えば、パルプ(セルロース)100質量部に対して230~300質量部、好ましくは240~290質量部、更に好ましくは250~280質量部程度である。なお、セルロースアセテートの場合、アシル化剤としては、例えば、無水酢酸などが使用できる。 The ratio of the acylating agent in the acylation step can be selected within a range that provides a desired degree of acylation (eg, degree of acetylation). For example, 230 to 300 parts by mass, preferably 240 parts per 100 parts by mass of pulp (cellulose). The amount is about 290 parts by mass, more preferably about 250-280 parts by mass. In the case of cellulose acetate, for example, acetic anhydride can be used as the acylating agent.
 アシル化又は熟成触媒としては、通常、硫酸が使用される。硫酸の使用量は、通常、セルロース100質量部に対して、0.5~15質量部、好ましくは5~15質量部、更に好ましくは5~10質量部程度である。また、ケン化・熟成の温度は、40~160℃の範囲から選択でき、例えば、50~70℃程度である。
 更に、残留した硫酸を中和するために、アルカリで処理してもよい。
As the acylation or aging catalyst, sulfuric acid is usually used. The amount of sulfuric acid used is usually about 0.5 to 15 parts by mass, preferably about 5 to 15 parts by mass, and more preferably about 5 to 10 parts by mass with respect to 100 parts by mass of cellulose. The saponification / ripening temperature can be selected from the range of 40 to 160 ° C., for example, about 50 to 70 ° C.
Furthermore, in order to neutralize the remaining sulfuric acid, it may be treated with an alkali.
 セルロースエステルとしては、例えば、有機酸エステル[セルロースアセテート(酢酸セルロース)、セルロースプロピオネート、セルロースブチレート等のセルロースと炭素数2~6のカルボン酸エステルなど]、混合エステル(セルロースアセテートプロピオネート、セルロースアセテートブチレート等のセルロースと炭素数2~6のジカルボン酸エステルなど)、グラフト体(ポリカプロラクトングラフト化セルロースアセテートなど)、無機酸エステル(硝酸セルロース、硫酸セルロース、リン酸セルロース等)、有機酸・無機酸混合エステル(硝酸酢酸セルロースなど)等が例示される。
 本発明においては、これらのセルロースエステルのうち、有機酸で修飾されたセルロース有機酸エステルが好ましく、炭素数2~12の有機酸で修飾されたセルロース有機酸エステルがより好ましい。具体的には、セルロースジアセテート、セルローストリアセテート、セルロースプロピオネート、セルロースアセテートプロピオネート、セルロースブチレート、セルロースアセテートブチレート、セルロースプロピオネートブチレートなどが好ましく、セルロースジアセテート、セルロースプロピオネート、セルロースブチレート、セルロースアセテートプロピオネート、セルロースアセテートブチレート、セルロースプロピオネートブチレートがより好ましく、セルロースジアセテート、セルロースアセテートプロピオネート、セルロースアセテートブチレートが更に好ましい。なかでも難燃性、及び主鎖に芳香族環を有する熱可塑性樹脂と相溶した際の形状制御がしやすい(衝撃強度の向上につながる)という観点からセルロースジアセテートが特に好ましい。
Examples of the cellulose ester include organic acid esters [cellulose acetate (cellulose acetate), cellulose propionate, cellulose butyrate and the like, and a carboxylic acid ester having 2 to 6 carbon atoms, etc.], mixed esters (cellulose acetate propionate). , Cellulose such as cellulose acetate butyrate and dicarboxylic acid esters having 2 to 6 carbon atoms, etc.), grafts (polycaprolactone grafted cellulose acetate, etc.), inorganic acid esters (cellulose nitrate, cellulose sulfate, cellulose phosphate, etc.), organic Examples include acid / inorganic acid mixed esters (such as cellulose nitrate acetate).
In the present invention, among these cellulose esters, cellulose organic acid esters modified with an organic acid are preferable, and cellulose organic acid esters modified with an organic acid having 2 to 12 carbon atoms are more preferable. Specifically, cellulose diacetate, cellulose triacetate, cellulose propionate, cellulose acetate propionate, cellulose butyrate, cellulose acetate butyrate, cellulose propionate butyrate and the like are preferable, and cellulose diacetate and cellulose propionate are preferable. , Cellulose butyrate, cellulose acetate propionate, cellulose acetate butyrate, and cellulose propionate butyrate are more preferable, and cellulose diacetate, cellulose acetate propionate, and cellulose acetate butyrate are still more preferable. Of these, cellulose diacetate is particularly preferable from the viewpoints of flame retardancy and easy shape control when it is compatible with a thermoplastic resin having an aromatic ring in the main chain (leading to improvement in impact strength).
 セルロースエステルのアシル置換度は耐衝撃性の観点から2.7以下であることが好ましく、2.65以下であることがより好ましく、2.6以下であることが更に好ましい。アシル置換度は1~2.7が好ましく、1.3~2.65がより好ましく、1.5~2.6が更に好ましい。
 セルロースアセテートの場合、平均酢化度30~62.5%程度の範囲から選択でき、通常、平均酢化度43.7~62.5%(アセチル基の平均置換度1.7~3)、好ましくは45~62.5%(平均置換度1.8~3)、更に好ましくは48~62.5%(平均置換度2~3)程度である。
The acyl substitution degree of the cellulose ester is preferably 2.7 or less, more preferably 2.65 or less, and even more preferably 2.6 or less from the viewpoint of impact resistance. The acyl substitution degree is preferably 1 to 2.7, more preferably 1.3 to 2.65, and still more preferably 1.5 to 2.6.
In the case of cellulose acetate, it can be selected from the range of an average degree of acetylation of about 30 to 62.5%. It is preferably 45 to 62.5% (average substitution degree 1.8 to 3), more preferably 48 to 62.5% (average substitution degree 2 to 3).
 セルロースエステルの重合度は、特に制限されず、粘度平均重合度200~400、好ましくは250~400、更に好ましくは270~350程度である。粘度平均重合度は特開平9-77801号公報、〔0018〕~〔0019〕に記載の方法で測定することができる。 The polymerization degree of the cellulose ester is not particularly limited, and is a viscosity average polymerization degree of 200 to 400, preferably 250 to 400, and more preferably about 270 to 350. The viscosity average degree of polymerization can be measured by the method described in JP-A-9-77801, [0018] to [0019].
 本発明におけるセルロースエステルは公知の方法で製造することができる。また、市販品を使用することもできる。例えば、セルロースアセテートプロピオネートとして、イーストマンケミカル社製、「482-20(アセチル置換度:0.1、プロピオニル置換度:2.5、Mn:73000、Mw:234000)」が、セルロースアセテートブチレートして、Aldrich社製「cellulose acetate butyrate(アセチル置換度:0.4、ブチレート置換度:1.1、Mn:70000)」が、セルロースジアセテートとして、ダイセル化学製、「L-70(アセチル置換度:2.45、Mn:65000、Mw:200000)」、セルローストリアセテートとして、ダイセル化学製、「FRM(アセチル置換度:2.79、Mn:66000、Mw:186000)」、ダイセル化学製、「LT-35」(アセチル置換度:2.87)などがある。 The cellulose ester in the present invention can be produced by a known method. Moreover, a commercial item can also be used. For example, as cellulose acetate propionate, “482-20 (acetyl substitution degree: 0.1, propionyl substitution degree: 2.5, Mn: 73000, Mw: 234000)” manufactured by Eastman Chemical Co., Ltd. is cellulose acetate butyrate. Aldrich's “cellulose acetate butyrate (acetyl substitution degree: 0.4, butyrate substitution degree: 1.1, Mn: 70000)” is a cellulose diacetate, “L-70 (acetyl). Degree of substitution: 2.45, Mn: 65000, Mw: 200000) ", manufactured by Daicel Chemical," FRM (acetyl substitution degree: 2.79, Mn: 66000, Mw: 186000) ", manufactured by Daicel Chemical, “LT-35” (acetylated) Degree: 2.87), and the like.
 本発明の樹脂組成物に含まれるセルロースエステルの含有量は特に限定されない。好ましくはセルロースエステルを樹脂組成物の全固形分に対して、30~70質量%、より好ましくは40~65質量%、更に好ましくは40~60質量%含有する。この範囲とすることで、耐衝撃性、難燃性、成形性に優れた成形体を得ることができる。またセルロースエステルの含有量を70質量%以下であると耐吸湿性の観点で優れる。 The content of the cellulose ester contained in the resin composition of the present invention is not particularly limited. Preferably, the cellulose ester is contained in an amount of 30 to 70% by mass, more preferably 40 to 65% by mass, and still more preferably 40 to 60% by mass with respect to the total solid content of the resin composition. By setting it as this range, the molded object excellent in impact resistance, a flame retardance, and a moldability can be obtained. Moreover, it is excellent in terms of moisture absorption resistance when the content of the cellulose ester is 70% by mass or less.
2.主鎖に芳香族環を有する熱可塑性樹脂
 本発明の樹脂組成物は主鎖に芳香族環を有する熱可塑性樹脂を含有する。セルロースのみでは得られない熱可塑性を樹脂組成物に与えて成形を可能とするためであり、また、得られる成形体に衝撃強度や難燃性を付与するためである。
 本発明における主鎖に芳香族環を有する熱可塑性樹脂としては、特に限定はなく、例えば、ポリカーボネート樹脂、芳香族ビニル単量体成分を重合体の構成成分として含む重合体、芳香族ポリエステル、ポリフェニレンエーテル、ポリエーテルイミド、ポリフェニレンサルファイド等を挙げることができ、なかでもポリカーボネート樹脂が、セルロースエステルと共に使用した場合に剛性、耐衝撃性、耐熱性、耐吸湿性、成形性のバランスに優れているという理由から好ましい。
 また芳香族環を有する熱可塑性樹脂の数平均分子量は、15000~30000であることが好ましい。数平均分子量が15000以上では、衝撃強度や難燃性がより向上し、数平均分子量が30000以下であれば、成形性がより向上するからである。数平均分子量の値は、例えば、N-メチルピロリドンを溶媒とし、ポリスチレンゲルを使用し、標準単分散ポリスチレンの構成曲線から予め求められた換算分子量較正曲線を用いて求められる。GPC装置は、HLC-8220GPC(東ソー社製)を使用できる。
 また芳香族環を有する熱可塑性樹脂のメルトフローレート(MFR)は2~40cm/10minが好ましい。MFRは分子量と相関する傾向があり、前記数平均分子量の好ましい範囲15000~30000に対して、MFR2~40cm/10minが相関する範囲と考えられる。
 MFRは溶融粘度の指標であり、シリンダー内で300℃に溶融した樹脂に対して荷重(1.2kg)をかけて、10分間で流れ出てくる樹脂の容量を測ることで得られる。MFRの値が大きい方が流動性は高く、値が小さい方が流動性は低いことになる。また、MFR測定についてはJIS7210にも記載されている。
 なお、本発明において、芳香族環を有さない熱可塑性樹脂、例えばポリプロピレンなどや、側鎖のみに芳香族環を有する熱可塑性樹脂、例えばポリスチレンなどは、衝撃強度、難燃性の観点から好ましくない。
2. Thermoplastic resin having an aromatic ring in the main chain The resin composition of the present invention contains a thermoplastic resin having an aromatic ring in the main chain. This is because the resin composition can be molded by imparting thermoplasticity, which cannot be obtained with cellulose alone, to impart impact strength and flame retardancy to the resulting molded article.
The thermoplastic resin having an aromatic ring in the main chain in the present invention is not particularly limited. For example, a polycarbonate resin, a polymer containing an aromatic vinyl monomer component as a constituent component of the polymer, an aromatic polyester, polyphenylene Ether, polyether imide, polyphenylene sulfide, etc. can be mentioned, and among them, polycarbonate resin is excellent in balance of rigidity, impact resistance, heat resistance, moisture absorption resistance and moldability when used with cellulose ester. Preferred for reasons.
The number average molecular weight of the thermoplastic resin having an aromatic ring is preferably 15000 to 30000. This is because when the number average molecular weight is 15000 or more, impact strength and flame retardancy are further improved, and when the number average molecular weight is 30000 or less, moldability is further improved. The value of the number average molecular weight is obtained, for example, using a converted molecular weight calibration curve obtained in advance from a constituent curve of standard monodisperse polystyrene using N-methylpyrrolidone as a solvent and using a polystyrene gel. As the GPC apparatus, HLC-8220 GPC (manufactured by Tosoh Corporation) can be used.
The thermoplastic resin melt flow rate having an aromatic ring (MFR) is 2 ~ 40cm 3 / 10min is preferred. MFR tends to correlate with the molecular weight, with respect to the preferred range 15000-30000 of the number average molecular weight, is considered as a range to be correlated MFR2 ~ 40cm 3 / 10min.
MFR is an index of melt viscosity, and is obtained by applying a load (1.2 kg) to a resin melted at 300 ° C. in a cylinder and measuring the volume of the resin flowing out in 10 minutes. The larger the MFR value, the higher the fluidity, and the smaller the value, the lower the fluidity. The MFR measurement is also described in JIS7210.
In the present invention, a thermoplastic resin having no aromatic ring, such as polypropylene, or a thermoplastic resin having an aromatic ring only in the side chain, such as polystyrene, is preferable from the viewpoint of impact strength and flame retardancy. Absent.
(ポリカーボネート樹脂)
 本発明では、ポリカーボネート樹脂として、芳香族ポリカーボネート樹脂、芳香族-脂肪族ポリカーボネート樹脂を挙げることができる。
 芳香族ポリカーボネート樹脂としては、芳香族ジヒドロキシ化合物をホスゲン又は炭酸のジエステルと反応させることによって得られる熱可塑性芳香族ポリカーボネート重合体又は共重合体が挙げられる。
 該芳香族ジヒドロキシ化合物としては、2,2-ビス(4-ヒドロキシフェニル)プロパン(=ビスフェノールA)、テトラメチルビスフェノールA、ビス(4-ヒドロキシフェニル)-P-ジイソプロピルベンゼン、ハイドロキノン、レゾルシノール、4,4-ジヒドロキシビフェニル、2,2-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)プロパン、ビス(4-ヒドロキシフェニル)メタン、1,1-ビス(4-ヒドロキシフェニル)エタン、2,2-ビス(4-ヒドロキシフェニル)ブタン、2,2-ビス(4-ヒドロキシ-3,5-ジフェニル)ブタン、2,2-ビス(4-ヒドロキシ-3,5-ジエチルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジエチルフェニル)プロパン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、1-フェニル-1,1-ビス(4-ヒドロキシフェニル)エタンなどが挙げられる。これらは単独あるいは混合物として使用することができる。好ましくはビスフェノールAが挙げられる。更に、難燃性を更に高める目的で上記の芳香族ジヒドロキシ化合物にスルホン酸テトラアルキルホスホニウムが1個以上結合した化合物や、シロキサン構造を有する両末端フェノール性OH基含有のポリマーあるいはオリゴマーを使用することができる。
(Polycarbonate resin)
In the present invention, examples of the polycarbonate resin include an aromatic polycarbonate resin and an aromatic-aliphatic polycarbonate resin.
Examples of the aromatic polycarbonate resin include thermoplastic aromatic polycarbonate polymers or copolymers obtained by reacting an aromatic dihydroxy compound with phosgene or a carbonic acid diester.
Examples of the aromatic dihydroxy compound include 2,2-bis (4-hydroxyphenyl) propane (= bisphenol A), tetramethylbisphenol A, bis (4-hydroxyphenyl) -P-diisopropylbenzene, hydroquinone, resorcinol, 4, 4-dihydroxybiphenyl, 2,2-bis (4-hydroxy-3,5-dimethylphenyl) propane, bis (4-hydroxyphenyl) methane, 1,1-bis (4-hydroxyphenyl) ethane, 2,2- Bis (4-hydroxyphenyl) butane, 2,2-bis (4-hydroxy-3,5-diphenyl) butane, 2,2-bis (4-hydroxy-3,5-diethylphenyl) propane, 2,2- Bis (4-hydroxy-3,5-diethylphenyl) propane, 1,1-bis (4-hydroxy) Rokishifeniru) cyclohexane, 1-phenyl-1,1-bis (4-hydroxyphenyl) ethane. These can be used alone or as a mixture. Bisphenol A is preferable. Furthermore, for the purpose of further enhancing the flame retardancy, a compound in which one or more tetraalkylphosphonium sulfonates are bonded to the above aromatic dihydroxy compound, or a polymer or oligomer having a siloxane structure and containing both terminal phenolic OH groups is used. Can do.
 本発明で用いることができる芳香族ポリカーボネート樹脂としては、好ましくは、2,2-ビス(4-ヒドロキシフェニル)プロパンから誘導されるポリカーボネート樹脂、又は2,2-ビス(4-ヒドロキシフェニル)プロパンと他の芳香族ジヒドロキシ化合物とから誘導されるポリカーボネート共重合体が挙げられる。更に2種以上のポリカーボネート樹脂を併用してもよい。 The aromatic polycarbonate resin that can be used in the present invention is preferably a polycarbonate resin derived from 2,2-bis (4-hydroxyphenyl) propane, or 2,2-bis (4-hydroxyphenyl) propane and Examples thereof include polycarbonate copolymers derived from other aromatic dihydroxy compounds. Further, two or more kinds of polycarbonate resins may be used in combination.
 本発明において使用することができる芳香族-脂肪族ポリカーボネート樹脂としては、上に記載した芳香族ポリカーボネート樹脂と以下に記載する脂肪族ポリカーボネート樹脂との共重合体が挙げられる。セルロース誘導体との相溶性を高めるという理由から、芳香族成分と脂肪族成分の共重合比は95/5~30/70が好ましく90/10~50/50がより好ましい。
 芳香族-脂肪族ポリカーボネート樹脂の共重合に用いることができる脂肪族ポリカーボネート樹脂としては、炭素数2~12の脂肪族ジオール残基からなるものであることが好ましい。これらの脂肪族ジオールとしては、例えば、エチレングリコール、1,3-プロピレングリコール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,8-オクタンジオール、2,2-ジメチル-1,3-プロパンジオール、3-メチル-1,5-ペンタンジオール、2,4-ジエチル-1,5-ペンタンジオール、1,9-ノナンジオール、2-メチル-1,8-オクタンジオール、1,2-シクロペンタンジオール、1,3-シクロペンタンジオール、ビス(ヒドロキシメチル)トリシクロ-[5.2.1.0]デカン、エリスリタン、イソソルバイド等の5員環ジオール、1,2-シクロヘキサンジオール、1,3-シクロヘキサンジオール、1,4-シクロヘキサンジオール、1,2-シクロヘキサンジメタノール、1,3-シクロヘキサンジメタノール、1,4-シクロヘキサンジメタノール、2,2-ビス(4-ヒドロキシシクロヘキシル)-プロパン、1,3-アダマンタンジオール、1,3-アダマンタンジメタノール、4,9:5,8-ジメタノ-1(2),6(7)-ヒドロキシメチル-3a,4,4a,5,8,8a,9,9a-オクタヒドロ-1H-ペンゾインデン、2,3-ノルボルナンジオール、2,3-ノルボルナンジメタノール、2,5-ノルボルナンジオール、2,5-ノルボルナンジメタノール等の6員環ジオール、スピログリコール等のスピロ環ジオール等などが挙げられる。特に、得られる成形材料の剛性や耐熱性の点より脂環式脂肪族ジオールが好ましい。これらの成分は、単独で用いてもよいし、必要に応じて2種以上を併用してもよい。
Examples of the aromatic-aliphatic polycarbonate resin that can be used in the present invention include copolymers of the aromatic polycarbonate resin described above and the aliphatic polycarbonate resin described below. The copolymerization ratio of the aromatic component and the aliphatic component is preferably 95/5 to 30/70, more preferably 90/10 to 50/50, for the reason of increasing the compatibility with the cellulose derivative.
The aliphatic polycarbonate resin that can be used for the copolymerization of the aromatic-aliphatic polycarbonate resin is preferably composed of an aliphatic diol residue having 2 to 12 carbon atoms. Examples of these aliphatic diols include ethylene glycol, 1,3-propylene glycol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,8-octanediol, 2, 2-dimethyl-1,3-propanediol, 3-methyl-1,5-pentanediol, 2,4-diethyl-1,5-pentanediol, 1,9-nonanediol, 2-methyl-1,8- 5-membered ring diols such as octanediol, 1,2-cyclopentanediol, 1,3-cyclopentanediol, bis (hydroxymethyl) tricyclo- [5.2.1.0] decane, erythritan, isosorbide, etc. -Cyclohexanediol, 1,3-cyclohexanediol, 1,4-cyclohexanediol, 1,2-cyclohexane Sandimethanol, 1,3-cyclohexanedimethanol, 1,4-cyclohexanedimethanol, 2,2-bis (4-hydroxycyclohexyl) -propane, 1,3-adamantanediol, 1,3-adamantanedimethanol, 4, 9: 5,8-dimethano-1 (2), 6 (7) -hydroxymethyl-3a, 4,4a, 5,8,8,9,9a-octahydro-1H-pentoindene, 2,3-norbornanediol, Examples thereof include 6-membered ring diols such as 2,3-norbornane dimethanol, 2,5-norbornane diol and 2,5-norbornane dimethanol, and spiro ring diols such as spiroglycol. In particular, alicyclic aliphatic diols are preferable from the viewpoint of rigidity and heat resistance of the molding material to be obtained. These components may be used independently and may use 2 or more types together as needed.
 本発明におけるポリカーボネート樹脂の製造方法については、限定されるものでは無く、ホスゲン法(界面重合法)あるいは、溶融法(エステル交換法)、あるいは原料として二酸化炭素を使用するノンホスゲン法等で製造することができる。更に、溶融法で製造された、末端基のOH基量を調整した芳香族ポリカーボネート樹脂を使用することができる。 The production method of the polycarbonate resin in the present invention is not limited, and it is produced by a phosgene method (interfacial polymerization method), a melting method (transesterification method), or a non-phosgene method using carbon dioxide as a raw material. Can do. Furthermore, the aromatic polycarbonate resin which adjusted the amount of OH groups of the terminal group manufactured by the melting method can be used.
 更に、芳香族ポリカーボネート樹脂としては、バージン原料だけでなく、使用済みの製品から再生された芳香族ポリカーボネート樹脂、いわゆるマテリアルリサイクルされた芳香族ポリカーボネート樹脂の使用も可能である。使用済みの製品としては、光学ディスクなどの光記録媒体、導光板、自動車窓ガラスや自動車ヘッドランプレンズ、風防などの車両透明部材、水ボトルなどの容器、メガネレンズ、防音壁やガラス窓、波板などの建築部材などが好ましく挙げられる。また、再生芳香族ポリカーボネート樹脂としては、製品の不適合品、スプルー、又はランナーなどから得られた粉砕品又はそれらを溶融して得たペレットなども使用可能である。 Furthermore, as the aromatic polycarbonate resin, not only virgin raw materials but also aromatic polycarbonate resins regenerated from used products, so-called material recycled aromatic polycarbonate resins can be used. Used products include optical recording media such as optical discs, light guide plates, automobile window glass and automobile headlamp lenses, vehicle transparent members such as windshields, containers such as water bottles, eyeglass lenses, soundproof walls and glass windows, waves A building member such as a plate is preferred. In addition, as the recycled aromatic polycarbonate resin, non-conforming product, pulverized product obtained from sprue or runner or pellets obtained by melting them can be used.
 本発明ではカーボネート樹脂として市販品を用いることもでき、例えばパンライトL1225Y:ビスフェノールA骨格を有するポリカーボネート樹脂(Mn=25000)(帝人化成(株)社製)、パンライトL1225L:ビスフェノールA骨格を有するポリカーボネート樹脂(Mn=21000)(帝人化成(株)社製)、パンライトAD-5503、パンライトL-1250Y、L1225LL、パンライトK1300Y(帝人化成(株)社製)などが挙げられる。 In the present invention, a commercially available product can be used as the carbonate resin. For example, Panlite L1225Y: polycarbonate resin having a bisphenol A skeleton (Mn = 25000) (manufactured by Teijin Chemicals Ltd.), Panlite L1225L: having a bisphenol A skeleton Examples thereof include polycarbonate resin (Mn = 21000) (manufactured by Teijin Chemicals Ltd.), Panlite AD-5503, Panlite L-1250Y, L1225LL, Panlite K1300Y (manufactured by Teijin Chemicals Ltd.), and the like.
(芳香族ポリエステル)
 本発明でいう芳香族ポリエステルとは、芳香族ジカルボン酸とジオール、又はそのエステル誘導体とを主成分とする縮合反応により得られる重合体ないしは共重合体である。
 本発明における芳香族ポリエステルの原料である芳香族ジカルボン酸としてはテレフタル酸、イソフタル酸、オルトフタル酸、1,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、4,4’-ビフェニルジカルボン酸、4,4’-ビフェニルエーテルジカルボン酸、4,4’-ビフェニルメタンジカルボン酸、4,4’-ビフェニルスルホンジカルボン酸、4,4’-ビフェニルイソプロピリデンジカルボン酸、1,2-ビス(フェノキシ)エタン-4,4’-ジカルボン酸、2,5-アントラセンジカルボン酸、2,6-アントラセンジカルボン酸、4,4’-p-ターフェニレンジカルボン酸、2,5-ピリジンジカルボン酸等の芳香族系ジカルボン酸が好適に用いられ、特にテレフタル酸、2,6-ナフタレンジカルボン酸が好ましく使用できる。
(Aromatic polyester)
The aromatic polyester referred to in the present invention is a polymer or copolymer obtained by a condensation reaction mainly comprising an aromatic dicarboxylic acid and a diol or an ester derivative thereof.
Examples of the aromatic dicarboxylic acid that is a raw material of the aromatic polyester in the present invention include terephthalic acid, isophthalic acid, orthophthalic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 4,4′-biphenyldicarboxylic acid, 4,4′-biphenyl ether dicarboxylic acid, 4,4′-biphenylmethane dicarboxylic acid, 4,4′-biphenylsulfone dicarboxylic acid, 4,4′-biphenylisopropylidenedicarboxylic acid, 1,2-bis (phenoxy) ethane Aromatic dicarboxylic acids such as -4,4'-dicarboxylic acid, 2,5-anthracene dicarboxylic acid, 2,6-anthracene dicarboxylic acid, 4,4'-p-terphenylene dicarboxylic acid, 2,5-pyridinedicarboxylic acid Acids are preferably used, particularly terephthalic acid and 2,6-naphthalenedicarboxylic acid. Can be used properly.
 芳香族ジカルボン酸は二種以上を混合して使用してもよい。なお少量であれば、該ジカルボン酸と共にアジピン酸、アゼライン酸、セバシン酸、ドデカンジ酸等の脂肪族ジカルボン酸、シクロヘキサンジカルボン酸等の脂環族ジカルボン酸等を一種以上混合使用することも可能である。 Aromatic dicarboxylic acids may be used as a mixture of two or more. In addition, if it is a small amount, it is also possible to use a mixture of one or more aliphatic dicarboxylic acids such as adipic acid, azelaic acid, sebacic acid and dodecanediic acid, and alicyclic dicarboxylic acids such as cyclohexanedicarboxylic acid together with the dicarboxylic acid. .
 また本発明の芳香族ポリエステルを構成する原料であるジオールとしては、エチレングリコール、プロピレングリコール、ブチレングリコール、ヘキシレングリコール、ネオペンチルグリコール、2-メチル-1,3-プロパンジオール、ジエチレングリコール、トリエチレングリコール、等の脂肪族ジオール、1,4-シクロヘキサンジメタノール等の脂環族ジオール等、及びそれらの混合物等が挙げられる。 Examples of the diol that is a raw material constituting the aromatic polyester of the present invention include ethylene glycol, propylene glycol, butylene glycol, hexylene glycol, neopentyl glycol, 2-methyl-1,3-propanediol, diethylene glycol, and triethylene glycol. , Alicyclic diols such as 1,4-cyclohexanedimethanol, and mixtures thereof.
 具体的な芳香族ポリエステルとしては、ポリエチレンテレフタレート(PET)、ポリプロピレンテレフタレート、ポリブチレンテレフタレート(PBT)、ポリへキシレンテレフタレート、ポリエチレンナフタレート(PEN)、ポリブチレンナフタレート(PBN)、ポリエチレン-1,2-ビス(フェノキシ)エタン-4,4’-ジカルボキシレート、等の他、ポリエチレンイソフタレート/テレフタレート、ポリブチレンテレフタレート/イソフタレート、等のような共重合ポリエステルが挙げられる。これらのうち、機械的性質等のバランスがとれたポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレートが好ましく使用でき、ポリエチレンテレフタレート、ポリブチレンテレフタレートがより好ましく使用できる。本発明においては、これらを単独でも用いても、2種以上を組み合わせて用いても良い。 Specific aromatic polyesters include polyethylene terephthalate (PET), polypropylene terephthalate, polybutylene terephthalate (PBT), polyhexylene terephthalate, polyethylene naphthalate (PEN), polybutylene naphthalate (PBN), polyethylene-1,2 In addition to bis (phenoxy) ethane-4,4′-dicarboxylate, etc., there may be mentioned copolyesters such as polyethylene isophthalate / terephthalate, polybutylene terephthalate / isophthalate, etc. Among these, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, and polybutylene naphthalate having a good balance of mechanical properties and the like can be preferably used, and polyethylene terephthalate and polybutylene terephthalate can be more preferably used. In the present invention, these may be used alone or in combination of two or more.
 芳香族ポリエステルは市販品を用いてもよく、ポリエチレンテレフタレート樹脂(三井PET J005、三井ペット樹脂(株)製)、ポリブチレンテレフタレート樹脂(ジュラネックス2002、日本ポリプラスチック(株)製)などが挙げられる。 As the aromatic polyester, commercially available products may be used, and examples thereof include polyethylene terephthalate resin (Mitsui PET J005, manufactured by Mitsui Pet Resin Co., Ltd.), polybutylene terephthalate resin (Juranex 2002, manufactured by Nippon Polyplastics Co., Ltd.), and the like. .
 かかる芳香族ポリエステルの製造方法については、常法に従い、チタン、ゲルマニウム、アンチモン等を含有する重縮合触媒の存在下に、加熱しながらジカルボン酸成分と前記ジオール成分とを重合させ、副生する水又は低級アルコールを系外に排出することにより行われる。 With respect to the method for producing such an aromatic polyester, in accordance with a conventional method, in the presence of a polycondensation catalyst containing titanium, germanium, antimony, etc., the dicarboxylic acid component and the diol component are polymerized while heating, and water produced as a by-product. Alternatively, it is carried out by discharging lower alcohol out of the system.
(ポリフェニレンエーテル)
 本発明で用いられるポリフェニレンエーテルとは、下記一般式(を繰り返し単位とした単独重合体、下記一般式(a)の繰り返し単位を含む共重合体、あるいはそれらの変性ポリマーを示す。
(Polyphenylene ether)
The polyphenylene ether used in the present invention refers to a homopolymer having the following general formula () as a repeating unit, a copolymer containing a repeating unit of the following general formula (a), or a modified polymer thereof.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 式中R、R、R、R、は各々独立に、水素原子、第一級若しくは第二級の低級アルキル基、フェニル基を表す。R、R、R、Rは水素原子、炭素数1~3の一級アルキル基が特に好ましい。nは繰り返し単位の数を表す。 In the formula, R 2 , R 3 , R 4 and R 5 each independently represent a hydrogen atom, a primary or secondary lower alkyl group, or a phenyl group. R 2 , R 3 , R 4 and R 5 are particularly preferably a hydrogen atom or a primary alkyl group having 1 to 3 carbon atoms. n represents the number of repeating units.
 当該ポリフェニレンエーテルとしては幅広い分子量の重合体が使用可能であるが、還元粘度(0.5g/dl、クロロホルム溶液、30℃測定)として、好ましくは0.15~1.0dl/gの範囲にあるホモ重合体及び/又は共重合体が使用され、更に好ましい還元粘度は、0.20~0.70dl/gの範囲、最も好ましくは0.40~0.60の範囲である。当該ポリフェニレンエーテルとしては、その目的に応じて幅広い溶融流動性の樹脂が使用可能であり、特に溶融流動性の制限はない。しかしながら、例えば、特に高い強度、高い耐熱性及び機械諸物性が要求される構造材料として使用される場合には、JIS K6730に従い、かつ、280℃、荷重10Kgで測定されたメルトインデックスの値としては、好ましくは6(g/10min)以下、より好ましくは5(g/10min)以下、特に好ましくは4(g/10min)以下の値の樹脂が使用される。 A wide range of molecular weight polymers can be used as the polyphenylene ether, but the reduced viscosity (0.5 g / dl, chloroform solution, measured at 30 ° C.) is preferably in the range of 0.15 to 1.0 dl / g. Homopolymers and / or copolymers are used, and more preferred reduced viscosities are in the range of 0.20 to 0.70 dl / g, most preferably in the range of 0.40 to 0.60. As the polyphenylene ether, a wide range of melt fluidity resins can be used depending on the purpose, and there is no particular limitation on melt fluidity. However, for example, when used as a structural material that requires particularly high strength, high heat resistance, and various mechanical properties, the melt index value measured in accordance with JIS K6730 and at 280 ° C. and a load of 10 kg is used. A resin having a value of 6 (g / 10 min) or less, more preferably 5 (g / 10 min) or less, particularly preferably 4 (g / 10 min) or less is used.
 ポリフェニレンエーテルの単独重合体の代表例としては、ポリ(1,4-フェニレン)エーテル、ポリ(2,6-ジメチル-1,4-フェニレン)エーテル、ポリ(2,5-ジメチル-1,4-フェニレン)エーテル、ポリ(2-メチル-6-エチル-1,4-フェニレン)エーテル、ポリ(2,6-ジエチル-1,4-フェニレン)エーテル、ポリ(2,6-ジフェニル-1,4-フェニレン)エーテル、ポリ(2,3,6-トリメチル-1,4-フェニレン)エーテル等が挙げられる。この内、特に好ましいものは、ポリ(2,6-ジメチル-1,4-フェニレン)エーテルである。ポリフェニレンエーテル共重合体としては、例えば、2,6-ジメチルフェノールと他のフェノール類(例えば、2,3,6-トリメチルフェノール、2,6-ジフェニルフェノールあるいは2-メチルフェノール(o-クレゾール))との共重合体などが挙げられる。以上のような各種ポリフェニレンエーテル樹脂の中でもポリ(2,6-ジメチル-1,4-フェニレン)エーテル、2,6-ジメチルフェノールと2,3,6-トリメチルフェノールとの共重合体が好ましく、更にはポリ(2,6-ジメチル-1,4-フェニレン)エーテルが特に好ましい。 Typical examples of polyphenylene ether homopolymers include poly (1,4-phenylene) ether, poly (2,6-dimethyl-1,4-phenylene) ether, poly (2,5-dimethyl-1,4- Phenylene) ether, poly (2-methyl-6-ethyl-1,4-phenylene) ether, poly (2,6-diethyl-1,4-phenylene) ether, poly (2,6-diphenyl-1,4-phenylene) Phenylene) ether, poly (2,3,6-trimethyl-1,4-phenylene) ether, and the like. Of these, poly (2,6-dimethyl-1,4-phenylene) ether is particularly preferred. Examples of the polyphenylene ether copolymer include 2,6-dimethylphenol and other phenols (for example, 2,3,6-trimethylphenol, 2,6-diphenylphenol or 2-methylphenol (o-cresol)). And a copolymer thereof. Among the various polyphenylene ether resins as described above, poly (2,6-dimethyl-1,4-phenylene) ether, a copolymer of 2,6-dimethylphenol and 2,3,6-trimethylphenol are preferable, and Is particularly preferably poly (2,6-dimethyl-1,4-phenylene) ether.
 本発明で使用するポリフェニレンエーテルの製造方法の例として、米国特許第3306874号明細書記載の第一銅塩とアミンのコンプレックスを触媒として用い、2,6-キシレノールを酸化重合する方法が挙げられる。 As an example of the method for producing the polyphenylene ether used in the present invention, there is a method of oxidative polymerization of 2,6-xylenol using a complex of cuprous salt and amine described in US Pat. No. 3,306,874 as a catalyst.
 米国特許第3306875号、同第3257357号及び同第3257358号の明細書、特公昭52-17880号及び特開昭50-51197号及び同63-152628号の各公報等に記載された方法もポリフェニレンエーテルの製造方法として好ましい。 The methods described in U.S. Pat. Nos. 3,306,875, 3,257,357 and 3,257,358, Japanese Patent Publication Nos. 52-17880, and JP-A-50-51197, and 63-152628 are also polyphenylene. This is preferred as a method for producing ether.
 ポリフェニレンエーテルは、重合工程後のパウダーのまま用いてもよいし、押出機などを用いて、窒素ガス雰囲気下あるいは非窒素ガス雰囲気下、脱揮下あるいは非脱揮下にて溶融混練することでペレット化して用いてもよい。 The polyphenylene ether may be used as it is after the polymerization step, or may be melt kneaded in a nitrogen gas atmosphere or a non-nitrogen gas atmosphere under devolatilization or non-devolatilization using an extruder or the like. You may use it by pelletizing.
 ポリフェニレンエーテルには、ジエノフィル化合物により変性されたポリフェニレンエーテルも含まれる。この変性処理には、種々のジエノフィル化合物が使用されるが、ジエノフィル化合物の例としては、例えば無水マレイン酸、マレイン酸、フマル酸、フェニルマレイミド、イタコン酸、アクリル酸、メタクリル酸、メチルアリレート、メチルメタクリレート、グリシジルアクリレート、グリシジルメタクリレート、ステアリルアクリレート、スチレンなどの化合物が挙げられる。更にこれらジエノフィル化合物により変性する方法としては、ラジカル発生剤存在下あるいは非存在下で押出機などを用い、脱揮下あるいは非脱揮下にて溶融状態で官能化してもよい。あるいはラジカル発生剤存在下あるいは非存在下で、非溶融状態、すなわち室温以上、かつ融点以下の温度範囲にて官能化してもよい。この際、ポリフェニレンエーテルの融点は、示差熱走査型熱量計(DSC)の測定において、20℃/分で昇温するときに得られる温度-熱流量グラフで観測されるピークのピークトップ温度で定義され、ピークトップ温度が複数ある場合にはその内の最高の温度で定義される。 Polyphenylene ether also includes polyphenylene ether modified with dienophile compounds. For this modification treatment, various dienophile compounds are used. Examples of dienophile compounds include maleic anhydride, maleic acid, fumaric acid, phenylmaleimide, itaconic acid, acrylic acid, methacrylic acid, methyl allylate, methyl Examples of the compound include methacrylate, glycidyl acrylate, glycidyl methacrylate, stearyl acrylate, and styrene. Furthermore, as a method of modifying with these dienophile compounds, an extruder or the like may be used in the presence or absence of a radical generator, and functionalization may be performed in a molten state under devolatilization or non-devolatilization. Alternatively, it may be functionalized in the non-molten state, that is, in the temperature range from room temperature to the melting point in the presence or absence of a radical generator. In this case, the melting point of polyphenylene ether is defined by the peak top temperature of the peak observed in the temperature-heat flow graph obtained when the temperature is raised at 20 ° C./min in the differential thermal scanning calorimeter (DSC) measurement. If there are a plurality of peak top temperatures, the peak top temperature is defined as the highest temperature.
 ポリフェニレンエーテルは、市販されているものを使用でき、例えば旭化成ケミカルズ(株)製ザイロン(熱可塑性ポリフェニレンエーテルとポリスチレン系樹脂とのポリマーアロイ)、GEプラスチック社製ノリルPX9701(ポリ(2,6-ジメチル-1,4-フェニレン)エーテル)が挙げられる。 As the polyphenylene ether, commercially available products can be used, for example, Asylon Chemicals Co., Ltd. Zylon (polymer alloy of thermoplastic polyphenylene ether and polystyrene resin), GE Plastics' Noryl PX9701 (Poly (2,6-dimethyl). -1,4-phenylene) ether).
(ポリエーテルイミド)
 ポリエーテルイミドは公知の樹脂であり、たとえば日本ジーイープラスチックス社から商品名ULTEMとして市販されているものが挙げられる。
(Polyetherimide)
Polyetherimide is a well-known resin, for example, what is marketed by GE Plastics under the trade name ULTEM.
(ポリフェニレンサルファイド)
 ポリフェニレンサルファイド(PPS)は、置換若しくは非置換のフェニレンサルファイド繰り返し単位を有する公知の樹脂である。たとえばフィリプス ペトロリアム(株)、及び東ソー・サスティール(株)、(株)トープレン及び呉羽化学(株)等から市販されているものが挙げられる。
(Polyphenylene sulfide)
Polyphenylene sulfide (PPS) is a known resin having a substituted or unsubstituted phenylene sulfide repeating unit. Examples thereof include those commercially available from Phillips Petroleum Co., Ltd., Tosoh Sustiel Co., Ltd., Toprene Co., Ltd., and Kureha Chemical Co., Ltd.
 本発明の樹脂組成物に含まれる主鎖に芳香族環を有する熱可塑性樹脂の含有量は特に限定されない。好ましくは該熱可塑性樹脂を樹脂組成物の全固形分に対して、30~70質量%、より好ましくは15~40質量%、更に好ましくは20~40質量%含有する。この範囲とすることで、成形体の強度、特に衝撃強度と難燃性がより優れたものとなる。 The content of the thermoplastic resin having an aromatic ring in the main chain contained in the resin composition of the present invention is not particularly limited. Preferably, the thermoplastic resin is contained in an amount of 30 to 70% by mass, more preferably 15 to 40% by mass, and still more preferably 20 to 40% by mass with respect to the total solid content of the resin composition. By setting it as this range, the strength of the molded body, in particular, the impact strength and flame retardancy will be more excellent.
3.可塑剤
 本発明の樹脂組成物は可塑剤として、分子量が450以下の化合物からなる可塑剤(「低分子可塑剤」とも呼ぶ)と、分子量が500~5000の化合物からなる可塑剤(「オリゴマー可塑剤」とも呼ぶ)の両方を含有する。これらの可塑剤は、本発明の樹脂組成物の成形性を向上させることに寄与している。更に低分子可塑剤は、セルロースエステルの吸湿性をコントロールして耐吸湿性を付与することができ、オリゴマー可塑剤は、セルロースエステルを含む成形体の機械的強度を補って衝撃強度を付与することができる。
3. Plasticizer The resin composition of the present invention includes a plasticizer comprising a compound having a molecular weight of 450 or less (also referred to as “low molecular plasticizer”) and a plasticizer comprising a compound having a molecular weight of 500 to 5000 (“oligomer plasticizer”). (Also referred to as “agent”). These plasticizers contribute to improving the moldability of the resin composition of the present invention. Furthermore, low molecular weight plasticizers can control the hygroscopicity of cellulose esters and impart moisture resistance, and oligomer plasticizers provide impact strength by supplementing the mechanical strength of molded articles containing cellulose esters. Can do.
(C1)低分子可塑剤
 低分子可塑剤としては、分子量が450以下の可塑剤であれば特に制限はなく、好ましくは分子量が350以上450以下の可塑剤である。ポリマーの成形に常用されるものを用いることができる。例えば、ポリエステル系可塑剤、グリセリン系可塑剤、多価カルボン酸エステル系可塑剤、ポリアルキレングリコール系可塑剤及びエポキシ系可塑剤等が挙げられる。
(C1) Low molecular plasticizer The low molecular plasticizer is not particularly limited as long as it has a molecular weight of 450 or less, and is preferably a plasticizer having a molecular weight of 350 or more and 450 or less. Those commonly used for polymer molding can be used. Examples thereof include polyester plasticizers, glycerin plasticizers, polycarboxylic acid ester plasticizers, polyalkylene glycol plasticizers, and epoxy plasticizers.
 また低分子可塑剤(C1)の水―n‐オクタノール分配係数(ClogP)は2~6であることが好ましい。ClogPの値をこの範囲とすることで、耐吸湿性をより向上させることができる。またClogPを6以下とすることで、可塑剤の添加による難燃性の低下をより抑制することができる。
 なお、水―n‐オクタノール分配係数であるClogP値とは、化合物のn‐オクタノール中及び水中における化合物の平衡濃度間の比率を示すn‐オクタノール/水分配係数Pの常用対数値をいう。このClogP値は、化合物の化学構造に基づくフラグメントアプローチ(A.Leo,Comprehensive Medical Chemistry,Vol.4;C.Hansch,P.G.Sammens,J.B.Taylor and C.A.Ramden,Eds.,p.295,Pergramon Press,1990)等によって決定され、デイライト・ケミカル・インフォメーション・システム社から入手し得る”CLOGP”プログラムで計算された値と定義される。
The water-n-octanol partition coefficient (ClogP) of the low molecular plasticizer (C1) is preferably 2-6. By setting the value of ClogP within this range, the moisture absorption resistance can be further improved. Moreover, the flame retardance fall by addition of a plasticizer can be suppressed more by making ClogP into 6 or less.
The ClogP value, which is a water-n-octanol partition coefficient, refers to a common logarithmic value of n-octanol / water partition coefficient P indicating the ratio between the equilibrium concentrations of the compound in n-octanol and in water. This ClogP value is determined by a fragment approach based on the chemical structure of the compound (A. Leo, Comprehensive Medical Chemistry, Vol. 4; C. Hansch, P. G. Sammens, JB Taylor and CA A. Ramden, Eds. , P. 295, Pergramon Press, 1990), etc., and is defined as a value calculated by the “CLOGP” program available from Daylight Chemical Information Systems.
 ポリエステル系可塑剤の具体例としては、アジピン酸、セバチン酸、テレフタル酸、イソフタル酸、ナフタレンジカルボン酸、ジフェニルジカルボン酸、ロジンなどの酸成分と、プロピレングリコール、1,3-ブタンジオール、1,4-ブタンジオール、1,6-ヘキサンジオール、エチレングリコール、ジエチレングリコールなどのジオール成分からなるポリエステルや、ポリカプロラクトンなどのヒドロキシカルボン酸からなるポリエステル等が挙げられる。これらのポリエステルは単官能カルボン酸若しくは単官能アルコールで末端封鎖されていてもよく、またエポキシ化合物などで末端封鎖されていてもよい。 Specific examples of the polyester plasticizer include acid components such as adipic acid, sebacic acid, terephthalic acid, isophthalic acid, naphthalenedicarboxylic acid, diphenyldicarboxylic acid, rosin, propylene glycol, 1,3-butanediol, 1,4 -Polyesters composed of diol components such as butanediol, 1,6-hexanediol, ethylene glycol and diethylene glycol, and polyesters composed of hydroxycarboxylic acids such as polycaprolactone. These polyesters may be end-capped with a monofunctional carboxylic acid or monofunctional alcohol, or may be end-capped with an epoxy compound or the like.
 グリセリン系可塑剤の具体例としては、グリセリンモノアセトモノラウレート、グリセリンジアセトモノラウレート、グリセリンモノアセトモノステアレート、グリセリンジアセトモノオレート及びグリセリンモノアセトモノモンタネート等が挙げられる。グリセリン系可塑剤としてはグリセリルトリベンゾエートを好ましく用いることができる。 Specific examples of the glycerin plasticizer include glycerin monoacetomonolaurate, glycerin diacetomonolaurate, glycerin monoacetomonostearate, glycerin diacetomonooleate, and glycerin monoacetomonomontanate. As the glycerin plasticizer, glyceryl tribenzoate can be preferably used.
 多価カルボン酸系可塑剤の具体例としては、フタル酸ジメチル、フタル酸ジエチル、フタル酸ジブチル、フタル酸ジオクチル、フタル酸ジヘプチル、フタル酸ジベンジル、フタル酸ブチルベンジル、フタル酸ジシクロヘキシルなどのフタル酸エステル、トリメリット酸トリブチル、トリメリット酸トリオクチル、トリメリット酸トリヘキシルなどのトリメリット酸エステル、アジピン酸ジイソデシル、アジピン酸n-オクチル-n-デシル、アジピン酸メチルジグリコールブチルジグリコール、アジピン酸ベンジルメチルジグリコール、アジピン酸ベンジルブチルジグリコールなどのアジピン酸エステル、アセチルクエン酸トリエチル、アセチルクエン酸トリブチルなどのクエン酸エステル、アゼライン酸ジ-2-エチルヘキシルなどのアゼライン酸エステル、セバシン酸ジブチル、及びセバシン酸ジ-2-エチルヘキシル等が挙げられる。 Specific examples of polycarboxylic acid plasticizers include phthalates such as dimethyl phthalate, diethyl phthalate, dibutyl phthalate, dioctyl phthalate, diheptyl phthalate, dibenzyl phthalate, butyl benzyl phthalate, and dicyclohexyl phthalate. , Trimellitic acid esters such as tributyl trimellitic acid, trioctyl trimellitic acid, trihexyl trimellitic acid, diisodecyl adipate, n-octyl-n-decyl adipate, methyl diglycol butyl diglycol adipate, benzyl methyl diadipate Adipic acid esters such as glycol, benzylbutyl diglycol adipate, citrate esters such as triethyl acetylcitrate, tributyl acetylcitrate, and di-2-ethylhexyl azelate Line esters, dibutyl sebacate, and di-2-ethylhexyl sebacate, and the like.
 ポリアルキレングリコール系可塑剤の具体例としては、ポリエチレングリコール、ポリプロピレングリコール、ポリ(エチレンオキサイド・プロピレンオキサイド)ブロック及び/又はランダム共重合体、ポリテトラメチレングリコール、ビスフェノール類のエチレンオキシド付加重合体、ビスフェノール類のプロピレンオキシド付加重合体、ビスフェノール類のテトラヒドロフラン付加重合体などのポリアルキレングリコールあるいはその末端エポキシ変性化合物、末端エステル変性化合物、及び末端エーテル変性化合物等が挙げられる。 Specific examples of the polyalkylene glycol plasticizer include polyethylene glycol, polypropylene glycol, poly (ethylene oxide / propylene oxide) block and / or random copolymer, polytetramethylene glycol, ethylene oxide addition polymer of bisphenols, and bisphenols. And a polyalkylene glycol such as a propylene oxide addition polymer, a tetrahydrofuran addition polymer of bisphenol, or a terminal epoxy-modified compound thereof, a terminal ester-modified compound, a terminal ether-modified compound, and the like.
 エポキシ系可塑剤とは、一般にはエポキシステアリン酸アルキルと大豆油とからなるエポキシトリグリセリドなどを指すが、その他にも、主にビスフェノールAとエピクロロヒドリンを原料とするような、いわゆるエポキシ樹脂も使用することができる。 The epoxy plasticizer generally refers to an epoxy triglyceride composed of an alkyl epoxy stearate and soybean oil, but there are also so-called epoxy resins mainly made of bisphenol A and epichlorohydrin. Can be used.
 その他の可塑剤の具体例としては、ネオペンチルグリコールジベンゾエート、ジエチレングリコールジベンゾエート、トリエチレングリコールジ-2-エチルブチレートなどの脂肪族ポリオールの安息香酸エステル、ステアリン酸アミドなどの脂肪酸アミド、オレイン酸ブチルなどの脂肪族カルボン酸エステル、アセチルリシノール酸メチル、アセチルリシノール酸ブチルなどのオキシ酸エステル、ペンタエリスリトール、各種ソルビトール等が挙げられる。
 低分子可塑剤は一種のみを使用してもよいし、二種以上を混合して用いてもよい。
Specific examples of other plasticizers include benzoate esters of aliphatic polyols such as neopentyl glycol dibenzoate, diethylene glycol dibenzoate, triethylene glycol di-2-ethylbutyrate, fatty acid amides such as stearamide, oleic acid Examples thereof include aliphatic carboxylic acid esters such as butyl, oxy acid esters such as methyl acetylricinoleate and butyl acetylricinoleate, pentaerythritol, and various sorbitols.
A low molecular plasticizer may use only 1 type, and may mix and use 2 or more types.
(C2)オリゴマー可塑剤
 オリゴマー可塑剤としては、質量平均分子量が500~5000の可塑剤であれば特に制限はないが、好ましくは質量平均分子量が600~1500の可塑剤である。オリゴマー可塑剤の質量平均分子量の測定は、ゲル・パーミエーション・クロマトグラフィー(GPC)を用いて行うことができる。具体的には、テトラヒドロフラン(THF)を溶媒とし、ポリスチレンゲルを使用し、標準単分散ポリスチレンの構成曲線から予め求められた換算分子量較正曲線を用いて求めることができる。GPC装置は、HLC-8220GPC(東ソー社製)を使用することができる。
 オリゴマー可塑剤としては、ポリマーの成形に常用されるものを用いることができ、上述の低分子可塑剤と同様、ポリエステル系可塑剤、グリセリン系可塑剤、多価カルボン酸エステル系可塑剤、ポリアルキレングリコール系可塑剤及びエポキシ系可塑剤等が挙げられる。
 また、オリゴマー可塑剤(C2)の水―n‐オクタノール分配係数(ClogP)は2~6であることが好ましい。ClogPの値をこの範囲とすることで、吸湿性の増大をより抑制することができる。またClogPを6以下とすることで、可塑剤の添加による難燃性、衝撃強度の低下をより抑制することができる。
(C2) Oligomer Plasticizer The oligomer plasticizer is not particularly limited as long as it is a plasticizer having a mass average molecular weight of 500 to 5000, but is preferably a plasticizer having a mass average molecular weight of 600 to 1500. The measurement of the mass average molecular weight of an oligomer plasticizer can be performed using gel permeation chromatography (GPC). Specifically, tetrahydrofuran (THF) is used as a solvent, polystyrene gel is used, and the molecular weight can be obtained using a conversion molecular weight calibration curve obtained in advance from a constituent curve of standard monodisperse polystyrene. As the GPC apparatus, HLC-8220 GPC (manufactured by Tosoh Corporation) can be used.
As the oligomer plasticizer, those commonly used for molding a polymer can be used, and like the above-mentioned low molecular plasticizer, polyester plasticizer, glycerin plasticizer, polyvalent carboxylic ester plasticizer, polyalkylene. Examples include glycol plasticizers and epoxy plasticizers.
The water-n-octanol partition coefficient (ClogP) of the oligomer plasticizer (C2) is preferably 2-6. By setting the value of ClogP within this range, an increase in hygroscopicity can be further suppressed. Moreover, the fall of the flame retardance and impact strength by addition of a plasticizer can be suppressed more by making ClogP into 6 or less.
 更に、本発明のオリゴマー可塑剤としては、繰り返し構造単位を有するものがより好ましい。
 通常、可塑剤は樹脂成形体の難燃性や衝撃強度を低下させるものであるが、繰り返し構造単位を有する重合体を可塑剤として添加した場合、難燃性や衝撃強度の低下を抑制しやすくなる。この効果は、繰り返し構造単位が重合することにより、分子が線状の構造をとり易くなることに由来すると考えられる。
Furthermore, as an oligomer plasticizer of this invention, what has a repeating structural unit is more preferable.
Usually, a plasticizer reduces the flame retardancy and impact strength of a resin molded article. However, when a polymer having a repeating structural unit is added as a plasticizer, it is easy to suppress a decrease in flame retardancy and impact strength. Become. This effect is considered to be derived from the fact that the repeating structural units are polymerized, so that the molecules easily have a linear structure.
 繰り返し構造単位を含む可塑剤としては、例えばポリビニルオリゴマー((メタ)アクリル系オリゴマー、スチレン系オリゴマーなど)、ポリエーテル系オリゴマー、ポリウレタン系オリゴマー、ポリエステル系オリゴマー、ポリカーボネート系オリゴマーなどを好ましく用いることができる。なかでも繰り返し単位が互いにエステル結合で連結しているポリエステルオリゴマーが成形性、強度、難燃性のバランスに優れるという理由から好ましい。
 ポリエステルオリゴマーの具体例としては、2価のカルボン酸、2価のアルコール、ヒドロキシ基含有カルボン酸を構成成分として含むものが好ましい。2価のカルボン酸の例としては、アジピン酸、コハク酸、デカンジカルボン酸、セバチン酸、フタル酸、テレフタル酸、イソフタル酸、ナフタレンジカルボン酸、ジフェニルジカルボン酸などが挙げられる。セルロースエステルに対して相溶性が高いことがより好ましく、具体的にはアジピン酸、コハク酸、フタル酸、テレフタル酸、イソフタル酸が好ましく挙げられる。
 また2価のアルコールの例としては、エチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,3-ブタンジオール、1,4-ブタンジオール、1,6-ヘキサンジオール、ジエチレングリコール、ポリエチレングリコール、ポリプロピレングリコールなどが挙げられる。上記2価のカルボン酸と同様にセルロースエステルに対して相溶性が高いことがより好ましく、具体的にはエチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,4-ブタンジオールが好ましく挙げられる。
As the plasticizer containing a repeating structural unit, for example, polyvinyl oligomers ((meth) acrylic oligomers, styrene oligomers, etc.), polyether oligomers, polyurethane oligomers, polyester oligomers, polycarbonate oligomers and the like can be preferably used. . Among these, a polyester oligomer in which repeating units are connected to each other through an ester bond is preferable because it has an excellent balance of moldability, strength, and flame retardancy.
Specific examples of the polyester oligomer preferably include a divalent carboxylic acid, a divalent alcohol, and a hydroxy group-containing carboxylic acid as components. Examples of the divalent carboxylic acid include adipic acid, succinic acid, decanedicarboxylic acid, sebacic acid, phthalic acid, terephthalic acid, isophthalic acid, naphthalenedicarboxylic acid, diphenyldicarboxylic acid and the like. It is more preferable that the compatibility with the cellulose ester is high. Specifically, adipic acid, succinic acid, phthalic acid, terephthalic acid, and isophthalic acid are preferable.
Examples of dihydric alcohols include ethylene glycol, propylene glycol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, 1,6-hexanediol, diethylene glycol, polyethylene glycol, polypropylene And glycols. Like the divalent carboxylic acid, it is more preferable that the compatibility with the cellulose ester is high, and specific examples include ethylene glycol, propylene glycol, 1,3-propanediol, and 1,4-butanediol. .
 またヒドロキシ基含有カルボン酸の例としては、グリコール酸、乳酸、3-ヒドロキシ酪酸、4-ヒドロキシ酪酸、3-ヒドロキシ吉草酸、3-ヒドロキシヘキサン酸などが好ましく挙げられる。上記2価のカルボン酸と同様にセルロースエステルに対して相溶性が高いことがより好ましく、具体的にはグリコール酸、乳酸、3-ヒドロキシ酪酸、4-ヒドロキシ酪酸が好ましく挙げられる。
 更に、ポリカプロラクトン、ポリ乳酸などのヒドロキシカルボン酸あるいは環状ラクトンを原料とするポリエステルオリゴマーなども好ましい例として挙げることができる。
Preferred examples of the hydroxy group-containing carboxylic acid include glycolic acid, lactic acid, 3-hydroxybutyric acid, 4-hydroxybutyric acid, 3-hydroxyvaleric acid, and 3-hydroxyhexanoic acid. Like the divalent carboxylic acid, it is more preferable that the compatibility with the cellulose ester is high. Specifically, glycolic acid, lactic acid, 3-hydroxybutyric acid, and 4-hydroxybutyric acid are preferable.
Furthermore, preferred examples include polyester oligomers using hydroxycarboxylic acids such as polycaprolactone and polylactic acid or cyclic lactones as raw materials.
 これらのポリエステルオリゴマーの末端は、封止されることなくOH残基を有するままでもよいし、封止されていてもよいが、耐吸湿性の観点から末端封止がされ、水酸基とカルボキシル基を含有していないことが好ましい。
 封止は、エステル封止、エーテル封止等、任意の方法で行うことができる。エステル封止の場合、封止に用いるモノカルボン酸類としては酢酸、プロピオン酸、ブタン酸、2-エチルヘキサン酸、安息香酸、トルイル酸、p-tert-ブチル安息香酸、ナフトエ酸等を挙げることができる。封止に用いるモノアルコール類としてはメタノール、エタノール、プロパノール、イソプロパノール、ブタノール、イソブタノールを挙げることができる。
 オリゴマー可塑剤は一種のみを使用してもよいし、二種以上を混合して用いてもよい。
The ends of these polyester oligomers may remain OH residues without being sealed, or may be sealed, but they are end-capped from the viewpoint of moisture absorption resistance, and have hydroxyl groups and carboxyl groups. It is preferable not to contain.
Sealing can be performed by any method such as ester sealing or ether sealing. In the case of ester sealing, examples of monocarboxylic acids used for sealing include acetic acid, propionic acid, butanoic acid, 2-ethylhexanoic acid, benzoic acid, toluic acid, p-tert-butylbenzoic acid, naphthoic acid and the like. it can. Examples of monoalcohols used for sealing include methanol, ethanol, propanol, isopropanol, butanol, and isobutanol.
Only one kind of oligomer plasticizer may be used, or two or more kinds may be mixed and used.
 本発明の樹脂組成物に含まれる可塑剤の含有量は特に限定されない。好ましくは樹脂組成物の全固形分に対して、(C1)低分子可塑剤と(C2)オリゴマー可塑剤の含有量の合計が、5~30質量%、より好ましくは10~20質量%含有する。この範囲とすることで成形性がより優れたものとなり、また混練や成形プロセス中のブリードアウトが抑えられる。 The content of the plasticizer contained in the resin composition of the present invention is not particularly limited. Preferably, the total content of (C1) low molecular plasticizer and (C2) oligomer plasticizer is 5 to 30% by mass, more preferably 10 to 20% by mass, based on the total solid content of the resin composition. . By setting it within this range, the moldability becomes more excellent, and bleeding out during kneading and molding processes can be suppressed.
 また、(C1)低分子可塑剤の含有量/((C1)低分子可塑剤の含有量と(C2)オリゴマー可塑剤の含有量の合計)の値が、0.2~0.8であることが好ましく、0.4~0.6であることがより好ましい。この範囲とすることで、得られる成型体の耐吸湿性と衝撃強度のよりよいバランスを得ることができる。なお、上記含有量は質量基準である。 The value of (C1) low molecular plasticizer content / ((C1) low molecular plasticizer content and (C2) oligomer plasticizer content) is 0.2 to 0.8. It is preferably 0.4 to 0.6. By setting it as this range, it is possible to obtain a better balance between moisture absorption resistance and impact strength of the molded article obtained. In addition, the said content is a mass reference | standard.
4.(D)リン系難燃剤
 本発明の樹脂組成物はリン含有化合物からなるリン系難燃剤を含有する。リン含有化合物の分子量は400~800であり、500~700であることが好ましい。分子量をこの範囲とすることで、成形体の優れた衝撃強度を維持しつつ難燃性を付与することができる。
4). (D) Phosphorus flame retardant The resin composition of the present invention contains a phosphorus flame retardant comprising a phosphorus-containing compound. The molecular weight of the phosphorus-containing compound is 400 to 800, preferably 500 to 700. By setting the molecular weight within this range, flame retardancy can be imparted while maintaining the excellent impact strength of the molded article.
 リン系難燃剤は、通常使用される臭素系難燃剤、塩素系難燃剤等、他の難燃剤と比較して、樹脂との複合時や成形加工時に熱分解してハロゲン化水素が発生して加工機械や金型を腐食させたり、作業環境を悪化させたりすることがなく、焼却廃棄時にハロゲンが揮散したり、分解してダイオキシン類等の有害物質の発生等によって環境に悪影響を与える可能性が少ないという利点がある。また通常使用されるケイ素含有難燃剤、窒素化合物系難燃剤、無機系難燃剤等、他の難燃剤と比較して、曲げ弾性率や耐衝撃性の低下が抑制されるという利点がある。 Phosphorus flame retardants are thermally decomposed when combined with resins or during molding, and generate hydrogen halide, compared to other flame retardants such as bromine flame retardants and chlorine flame retardants that are usually used. There is no possibility of corroding processing machines or molds or deteriorating the work environment, and halogens may be volatilized during incineration and disposal, which may adversely affect the environment due to the generation of harmful substances such as dioxins. There is an advantage that there are few. Moreover, compared with other flame retardants, such as a silicon containing flame retardant normally used, a nitrogen compound flame retardant, an inorganic flame retardant, there exists an advantage that the fall of a bending elastic modulus and impact resistance is suppressed.
 本発明におけるリン含有化合物としては、特に限定されることはなく、常用のものを用いることができる。例えば、リン酸エステル、縮合リン酸エステル、ポリリン酸塩などの有機リン系化合物が挙げられるが、熱安定性の観点からリン酸エステルが好ましく、なかでも縮合リン酸エステル(分子内にリン酸エステルユニットを2つ以上有する化合物)がより好ましい。 The phosphorus-containing compound in the present invention is not particularly limited, and a commonly used one can be used. For example, organic phosphorus compounds such as phosphate esters, condensed phosphate esters, and polyphosphates may be mentioned. From the viewpoint of thermal stability, phosphate esters are preferred, and condensed phosphate esters (particularly phosphate esters in the molecule). A compound having two or more units) is more preferable.
 リン酸エステルの具体例としては、トリメチルホスフェート、トリエチルホスフェート、トリブチルホスフェート、トリ(2-エチルヘキシル)ホスフェート、トリブトキシエチルホスフェート、トリフェニルホスフェート、トリクレジルホスフェート、トリキシレニルホスフェート、トリス(イソプロピルフェニル)ホスフェート、トリス(フェニルフェニル)ホスフェート、トリナフチルホスフェート、クレジルジフェニルホスフェート、キシレニルジフェニルホスフェート、ジフェニル(2-エチルヘキシル)ホスフェート、ジ(イソプロピルフェニル)フェニルホスフェート、モノイソデシルホスフェート、2-アクリロイルオキシエチルアシッドホスフェート、2-メタクリロイルオキシエチルアシッドホスフェート、ジフェニル-2-アクリロイルオキシエチルホスフェート、ジフェニル-2-メタクリロイルオキシエチルホスフェート、メラミンホスフェート、ジメラミンホスフェート、メラミンピロホスフェート、トリフェニルホスフィンオキサイド、トリクレジルホスフィンオキサイド、メタンホスホン酸ジフェニル、フェニルホスホン酸ジエチルなどを挙げることができる。 Specific examples of phosphate esters include trimethyl phosphate, triethyl phosphate, tributyl phosphate, tri (2-ethylhexyl) phosphate, tributoxyethyl phosphate, triphenyl phosphate, tricresyl phosphate, trixylenyl phosphate, tris (isopropylphenyl) Phosphate, tris (phenylphenyl) phosphate, trinaphthyl phosphate, cresyl diphenyl phosphate, xylenyl diphenyl phosphate, diphenyl (2-ethylhexyl) phosphate, di (isopropylphenyl) phenyl phosphate, monoisodecyl phosphate, 2-acryloyloxyethyl Acid phosphate, 2-methacryloyloxyethyl acid phosphate, diphenyl -2-acryloyloxyethyl phosphate, diphenyl-2-methacryloyloxyethyl phosphate, melamine phosphate, dimelamine phosphate, melamine pyrophosphate, triphenylphosphine oxide, tricresylphosphine oxide, diphenyl methanephosphonate, diethyl phenylphosphonate Can be mentioned.
 縮合リン酸エステルとしては、例えば、レゾルシノールポリフェニルホスフェート、レゾルシノールポリ(ジ-2,6-キシリル)ホスフェート、ビスフェノールAポリクレジルホスフェート、ハイドロキノンポリ(2,6-キシリル)ホスフェート並びにこれらの縮合物などの芳香族縮合リン酸エステル等を挙げることができる。 Examples of the condensed phosphate ester include resorcinol polyphenyl phosphate, resorcinol poly (di-2,6-xylyl) phosphate, bisphenol A polycresyl phosphate, hydroquinone poly (2,6-xylyl) phosphate, and condensates thereof. And aromatic condensed phosphoric acid esters.
 これらリン酸エステルの分子量は、成形時の揮散と、成形体のブリードアウトを抑制することが出来るという観点から、500~700が好ましい。 The molecular weight of these phosphate esters is preferably 500 to 700 from the viewpoint that volatilization during molding and bleeding out of the molded product can be suppressed.
 また、リン酸、ポリリン酸と周期律表1族~14族の金属、アンモニア、脂肪族アミン、芳香族アミンとの塩からなるポリリン酸塩を挙げることもできる。ポリリン酸塩の代表的な塩として、金属塩としてリチウム塩、ナトリウム塩、カルシウム塩、バリウム塩、鉄(II)塩、鉄(III)塩、アルミニウム塩など、脂肪族アミン塩としてメチルアミン塩、エチルアミン塩、ジエチルアミン塩、トリエチルアミン塩、エチレンジアミン塩、ピペラジン塩などがあり、芳香族アミン塩としてはピリジン塩、トリアジン等が挙げられる。 In addition, polyphosphates composed of salts of phosphoric acid, polyphosphoric acid and metals of Groups 1 to 14 of the periodic table, ammonia, aliphatic amines, and aromatic amines can also be mentioned. As typical salts of polyphosphates, lithium salts, sodium salts, calcium salts, barium salts, iron (II) salts, iron (III) salts, aluminum salts and the like as metal salts, methylamine salts as aliphatic amine salts, Examples include ethylamine salts, diethylamine salts, triethylamine salts, ethylenediamine salts, piperazine salts, and examples of aromatic amine salts include pyridine salts and triazines.
 更に、前記以外にも、トリスクロロエチルホスフェート、トリスジクロロプロピルホスフェート、トリス(β-クロロプロピル)ホスフェート)などの含ハロゲンリン酸エステル、また、リン原子と窒素原子が二重結合で結ばれた構造を有するホスファゼン化合物、リン酸エステルアミドを挙げることができる。
 これらのリン含有難燃剤は、1種単独でも2種以上を組み合わせて用いてもよい。
In addition to the above, halogen-containing phosphate esters such as trischloroethyl phosphate, trisdichloropropyl phosphate, tris (β-chloropropyl) phosphate), and structures in which a phosphorus atom and a nitrogen atom are connected by a double bond Phosphazene compounds having phosphoric acid and phosphoric ester amides.
These phosphorus-containing flame retardants may be used singly or in combination of two or more.
 これらのリン系難燃剤は公知の方法で製造することができる。また、市販品を使用することもでき、例えば、「PX-200、1,3-フェニレンビス(ジ-2,6-キシレニルホスフェート)(大八化学製)」「CR733S(大八化学製)」、「FP-600(アデカ社製)」を挙げることができる。 These phosphorus flame retardants can be produced by a known method. Commercially available products can also be used, for example, “PX-200, 1,3-phenylenebis (di-2,6-xylenyl phosphate) (manufactured by Daihachi Chemical)” “CR733S (manufactured by Daihachi Chemical). ) "," FP-600 (manufactured by Adeka) ".
 本発明の樹脂組成物に含まれる前記低分子可塑剤、前記オリゴマー可塑剤、及びリン系難燃剤の合計の含有量は特に限定されないが、樹脂組成物の全固形分に対して、好ましくは10~40質量%、より好ましくは20~30質量%である。この範囲とすることで、耐衝撃性、脆性、燃焼性等の観点から好ましい。また、成形時の揮散と、成形体のブリードアウトをより低く抑えることもできる。 The total content of the low molecular plasticizer, the oligomer plasticizer, and the phosphorus flame retardant contained in the resin composition of the present invention is not particularly limited, but is preferably 10 with respect to the total solid content of the resin composition. -40% by mass, more preferably 20-30% by mass. By setting it as this range, it is preferable from the viewpoints of impact resistance, brittleness, combustibility, and the like. Further, volatilization during molding and bleed-out of the molded body can be further suppressed.
 また、(低分子可塑剤の含有量+オリゴマー可塑剤の含有量)/(低分子可塑剤の含有量+オリゴマー可塑剤の含有量+リン系難燃剤の含有量)の値が0.15~0.7であることが好ましく、0.3~0.5であることがより好ましい。この範囲とすることで、得られる成型体について耐吸湿性、衝撃強度、難燃性のよりよいバランスを得ることができる。なお、上記含有量は質量基準である。 The value of (low molecular plasticizer content + oligomer plasticizer content) / (low molecular plasticizer content + oligomer plasticizer content + phosphorus flame retardant content) is 0.15 to It is preferably 0.7, and more preferably 0.3 to 0.5. By setting it as this range, it is possible to obtain a better balance between moisture absorption resistance, impact strength, and flame retardancy of the molded article obtained. In addition, the said content is a mass reference | standard.
5.相溶化剤
 本発明の樹脂組成物は、更に相溶化剤を含有することが好ましい。相溶化剤とは、本発明におけるセルロースエステルと熱可塑性樹脂とを相溶化させるものであり、セルロースエステルに親和性のある部分と熱可塑性樹脂に親和性のある部分を持つ化合物や、前記2種の樹脂の何れかに反応する官能基を有する化合物が好ましい。前者の例としては、極性が異なる部分を有するブロックポリマーやグラフトポリマーを好ましく用いることができる。後者の例としては、反応性基としてカルボン酸無水物、又は、エポキシ基、イソシアネート基、及びオキサゾリン基から選ばれる少なくとも1種を有するオリゴマー又はポリマーが好ましい。本発明の樹脂組成物に相溶化剤を配合すると、熱可塑性樹脂に対するセルロースエステルの分散性が更に向上し、樹脂組成物の流動性(成形加工性)、及び成形体の耐衝撃性などの性能がより向上する。
 相溶化剤は、上記の条件を満たす材料であれば特に限定されないが、具体的には、日本油脂(株)製モディパーシリーズ、住友化学(株)製、ボンドファースト、ボンダインシリーズ、日本石油(株)社製レクスパールシリーズ、東亞合成(株)社製レゼダシリーズ、アルフォンシリーズ、日本触媒(株)製エポクロスシリーズなどの市販品が好適に用いられる。また相溶化剤はこれらに限定されることはなく、「プラスチック相溶化剤 開発・評価・リサイクル」(シーエムシー出版)に記載の相溶化剤なども好適に用いることができる。
5. Compatibilizer The resin composition of the present invention preferably further contains a compatibilizer. The compatibilizing agent is used to compatibilize the cellulose ester and the thermoplastic resin in the present invention. The compatibilizing agent includes a compound having a part having affinity for the cellulose ester and a part having affinity for the thermoplastic resin, and the two kinds described above. A compound having a functional group that reacts with any of these resins is preferred. As the former example, a block polymer or a graft polymer having portions having different polarities can be preferably used. As an example of the latter, a carboxylic acid anhydride as a reactive group, or an oligomer or polymer having at least one selected from an epoxy group, an isocyanate group, and an oxazoline group is preferable. When a compatibilizing agent is added to the resin composition of the present invention, the dispersibility of the cellulose ester with respect to the thermoplastic resin is further improved, and the properties such as the fluidity (molding processability) of the resin composition and the impact resistance of the molded product. Will be improved.
The compatibilizing agent is not particularly limited as long as it satisfies the above conditions, and specifically, Nippon Oil & Fats Modiper Series, Sumitomo Chemical Co., Ltd., Bond First, Bondine Series, Nippon Oil Commercially available products such as Lexpearl series manufactured by Co., Ltd., Reseda series manufactured by Toagosei Co., Ltd., Alfon series, and Epochros series manufactured by Nippon Shokubai Co., Ltd. are preferably used. In addition, the compatibilizer is not limited to these, and the compatibilizer described in “Plastic compatibilizer development / evaluation / recycling” (CMC Publishing Co., Ltd.) can also be suitably used.
 本発明の樹脂組成物における相溶化剤の含有量は、樹脂組成物の全固形分に対して、0.1~30質量%が好ましく、より好ましくは0.5~20質量%である。 The content of the compatibilizing agent in the resin composition of the present invention is preferably from 0.1 to 30% by mass, more preferably from 0.5 to 20% by mass, based on the total solid content of the resin composition.
6.安定化剤
 本発明の樹脂組成物は、更に安定化剤を含有することが好ましい。安定化剤としては、特に限定はされないが、ヒンダードフェノール系酸化防止剤、リン系酸化防止剤、アミン系酸化防止剤、イオウ系酸化防止剤、耐光剤、紫外線吸収剤、銅害防止剤などを挙げることができる。
 本発明の樹脂組成物における安定化剤の含有量は、樹脂組成物の全固形分に対して、0.05~30質量%が好ましく、より好ましくは0.1~20質量%である。
6). Stabilizer It is preferable that the resin composition of the present invention further contains a stabilizer. Although it does not specifically limit as a stabilizer, hindered phenolic antioxidant, phosphorus antioxidant, amine antioxidant, sulfur antioxidant, light resistance agent, ultraviolet absorber, copper damage inhibitor, etc. Can be mentioned.
The content of the stabilizer in the resin composition of the present invention is preferably 0.05 to 30% by mass, more preferably 0.1 to 20% by mass, based on the total solid content of the resin composition.
7.フッ素系樹脂
 本発明の樹脂組成物は、更にフッ素系樹脂を含有することが好ましい。成形体が燃焼した場合のドリップを防止し、更に高度な難燃性を得るためである。
 本発明におけるフッ素系樹脂とは、物質分子中にフッ素を含有する樹脂であり、具体的には、ポリテトラフルオロエチレン、ポリヘキサフルオロプロピレン、テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体、テトラフルオロエチレン/パーフルオロアルキルビニルエーテル共重合体、テトラフルオロエチレン/エチレン共重合体、ヘキサフルオロプロピレン/プロピレン共重合体、ポリビニリデンフルオライド、ビニリデンフルオライド/エチレン共重合体などが挙げられるが、中でもポリテトラフルオロエチレン、テトラフルオロエチレン/パーフルオロアルキルビニルエーテル共重合体、テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体、テトラフルオロエチレン/エチレン共重合体、ポリビニリデンフルオライドが好ましく、特にポリテトラフルオロエチレン、テトラフルオロエチレン/エチレン共重合体が好ましく、更にはポリテトラフルオロエチレンが好ましく、ポリテトラフルオロエチレン粒子と有機系重合体とからなるポリテトラフルオロエチレン含有混合粉体も好ましく用いられる。ポリテトラフルオロエチレンなどのフッ素系樹脂の分子量は10万~1000万の範囲のものが好ましく、とくに10万~100万の範囲のものがより好ましく、本発明の押出成形性と難燃性にとくに効果がある。ポリテトラフルオロエチレンの市販品としては、三井・デュポンフロロケミカル(株)製の“テフロン(登録商標)”6-J、“テフロン(登録商標)”6C-J、“テフロン(登録商標)”62-J、旭アイシーアイフロロポリマーズ(株)製の“フルオン”CD1やCD076などが市販されている。また、ポリテトラフルオロエチレン粒子と有機系重合体とからなるポリテトラフルオロエチレン含有混合粉体の市販品としては、三菱レイヨン(株)から、“メタブレン(登録商標)”Aシリーズとして市販され、“メタブレン(登録商標)”A-3000、“メタブレン(登録商標)”A-3800などが市販されている。また、ポリテトラフルオロエチレンの“テフロン(登録商標)”6-Jなどは凝集し易いため、他の樹脂組成物と共にヘンシェルミキサーなどで機械的に強く混合すると凝集により塊が生じる場合があり、混合条件によってはハンドリング性や分散性に課題がある。一方、ポリテトラフルオロエチレン粒子と有機系重合体とからなるポリテトラフルオロエチレン含有混合粉体は前記のハンドリング性や分散性に優れ、とくに好ましく用いられる。前記のポリテトラフルオロエチレン粒子と有機系重合体とからなるポリテトラフルオロエチレン含有混合粉体とは、限定されるものではないが、特開2000-226523号公報で開示されているポリテトラフルオロエチレン粒子と有機系重合体とからなるポリテトラフルオロエチレン含有混合粉体などが挙げられ、前記の有機系重合体としては芳香族ビニル系単量体、アクリル酸エステル系単量体、及びシアン化ビニル系単量体を10質量%以上含有する有機系重合体などであり、それらの混合物でもよく、ポリテトラフルオロエチレン含有混合粉体中のポリテトラフルオロエチレンの含有量は0.1質量%~90質量%であることが好ましい。
7). Fluorine-based resin The resin composition of the present invention preferably further contains a fluorine-based resin. This is to prevent drip when the molded body burns and to obtain higher flame retardancy.
The fluororesin in the present invention is a resin containing fluorine in a substance molecule, specifically, polytetrafluoroethylene, polyhexafluoropropylene, tetrafluoroethylene / hexafluoropropylene copolymer, tetrafluoroethylene. / Perfluoroalkyl vinyl ether copolymer, tetrafluoroethylene / ethylene copolymer, hexafluoropropylene / propylene copolymer, polyvinylidene fluoride, vinylidene fluoride / ethylene copolymer, etc., among which polytetrafluoro Ethylene, tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer, tetrafluoroethylene / hexafluoropropylene copolymer, tetrafluoroethylene / ethylene copolymer, polyvinylidene fluoride In particular, polytetrafluoroethylene and tetrafluoroethylene / ethylene copolymers are preferred, and polytetrafluoroethylene is more preferred, and polytetrafluoroethylene-containing mixed powder comprising polytetrafluoroethylene particles and an organic polymer. The body is also preferably used. The molecular weight of the fluororesin such as polytetrafluoroethylene is preferably in the range of 100,000 to 10,000,000, more preferably in the range of 100,000 to 1,000,000, especially for the extrudability and flame retardancy of the present invention. effective. Commercially available products of polytetrafluoroethylene include “Teflon (registered trademark)” 6-J, “Teflon (registered trademark)” 6C-J, and “Teflon (registered trademark)” 62 manufactured by Mitsui DuPont Fluorochemical Co., Ltd. -J, “Full-on” CD1 and CD076 manufactured by Asahi IC Fluoropolymers Co., Ltd. are commercially available. In addition, as a commercial product of a polytetrafluoroethylene-containing mixed powder composed of polytetrafluoroethylene particles and an organic polymer, it is commercially available as “Metabrene (registered trademark)” A series from Mitsubishi Rayon Co., Ltd. METABLEN (registered trademark) “A-3000”, “METABBRENE (registered trademark)” A-3800 and the like are commercially available. In addition, polytetrafluoroethylene “Teflon (registered trademark)” 6-J and the like are prone to agglomerate, and when mixed with other resin compositions mechanically with a Henschel mixer or the like, agglomeration may occur due to aggregation. There are problems in handling and dispersibility depending on conditions. On the other hand, a polytetrafluoroethylene-containing mixed powder composed of polytetrafluoroethylene particles and an organic polymer is excellent in handling properties and dispersibility, and is particularly preferably used. The polytetrafluoroethylene-containing mixed powder composed of the polytetrafluoroethylene particles and the organic polymer is not limited, but polytetrafluoroethylene disclosed in Japanese Patent Application Laid-Open No. 2000-226523. Examples thereof include polytetrafluoroethylene-containing mixed powder composed of particles and an organic polymer. Examples of the organic polymer include aromatic vinyl monomers, acrylate monomers, and vinyl cyanide. An organic polymer containing 10% by mass or more of a monomer, and may be a mixture thereof. The polytetrafluoroethylene content in the polytetrafluoroethylene-containing mixed powder is 0.1% by mass to 90% by mass. It is preferable that it is mass%.
 本発明の樹脂組成物におけるフッ素系樹脂の含有量は樹脂組成物の全固形分に対して、好ましくは0.01~3質量%であり、より好ましくは0.02~2質量%であり、更に好ましくは0.03~1質量%である。この範囲とすることで、成形性への影響を抑えながら難燃性をより向上させることができる。 The content of the fluororesin in the resin composition of the present invention is preferably 0.01 to 3% by mass, more preferably 0.02 to 2% by mass, based on the total solid content of the resin composition. More preferably, it is 0.03 to 1% by mass. By setting it as this range, a flame retardance can be improved more, suppressing the influence on a moldability.
8.樹脂組成物、及び成形体
 本発明の樹脂組成物は、上記した成分のほか、必要に応じて、フィラー(強化材)等の種々の添加剤を含有していてもよい。
8). Resin Composition and Molded Body The resin composition of the present invention may contain various additives such as a filler (reinforcing material) as necessary in addition to the above-described components.
 本発明の樹脂組成物は、フィラー(強化材)を含有してもよい。フィラーを含有することにより、樹脂組成物によって形成される成形体の機械的特性を強化することができる。
 フィラーとしては、公知のものを使用できる。フィラーの形状は、繊維状、板状、粒状、粉末状等いずれでもよい。また、無機物でも有機物でもよい。
 具体的には、無機フィラーとしては、ガラス繊維、炭素繊維、グラファイト繊維、金属繊維、チタン酸カリウムウイスカー、ホウ酸アルミニウムウイスカー、マグネシウム系ウイスカー、珪素系ウイスカー、ワラステナイト、セピオライト、スラグ繊維、ゾノライト、エレスタダイト、石膏繊維、シリカ繊維、シリカ・アルミナ繊維、ジルコニア繊維、窒化硼素繊維、窒化硅素繊維及び硼素繊維等の繊維状の無機フィラーや;ガラスフレーク、非膨潤性雲母、カーボンブラック、グラファイト、金属箔、セラミックビーズ、タルク、クレー、マイカ、セリサイト、ゼオライト、ベントナイト、ドロマイト、カオリン、微粉ケイ酸、長石粉、チタン酸カリウム、シラスバルーン、炭酸カルシウム、炭酸マグネシウム、硫酸バリウム、酸化カルシウム、酸化アルミニウム、酸化チタン、酸化マグネシウム、ケイ酸アルミニウム、酸化ケイ素、水酸化アルミニウム、水酸化マグネシウム、石膏、ノバキュライト、ドーソナイト、白土等の板状や粒状の無機フィラーが挙げられる。
The resin composition of the present invention may contain a filler (reinforcing material). By containing the filler, the mechanical properties of the molded body formed from the resin composition can be enhanced.
A well-known thing can be used as a filler. The shape of the filler may be any of fibrous, plate-like, granular, powdery and the like. Further, it may be inorganic or organic.
Specifically, as the inorganic filler, glass fiber, carbon fiber, graphite fiber, metal fiber, potassium titanate whisker, aluminum borate whisker, magnesium whisker, silicon whisker, wollastonite, sepiolite, slag fiber, zonolite, Elastadite, gypsum fiber, silica fiber, silica-alumina fiber, zirconia fiber, boron nitride fiber, silicon nitride fiber and boron fiber, and other inorganic fillers; glass flakes, non-swellable mica, carbon black, graphite, metal foil , Ceramic beads, talc, clay, mica, sericite, zeolite, bentonite, dolomite, kaolin, fine silicate, feldspar, potassium titanate, shirasu balloon, calcium carbonate, magnesium carbonate, barium sulfate, calcium oxide Beam, aluminum oxide, titanium oxide, magnesium oxide, aluminum silicate, silicon oxide, aluminum hydroxide, magnesium hydroxide, gypsum, novaculite, dawsonite, and a plate-like or granular inorganic fillers of clay or the like.
 有機フィラーとしては、ポリエステル繊維、ナイロン繊維、アクリル繊維、再生セルロース繊維、アセテート繊維等の合成繊維、ケナフ、ラミー、木綿、ジュート、麻、サイザル、マニラ麻、亜麻、リネン、絹、ウール等の天然繊維、微結晶セルロース、さとうきび、木材パルプ、紙屑、古紙等から得られる繊維状の有機フィラーや、有機顔料等の粒状の有機フィラーが挙げられる。 Organic fillers include synthetic fibers such as polyester fiber, nylon fiber, acrylic fiber, regenerated cellulose fiber, and acetate fiber, and natural fibers such as kenaf, ramie, cotton, jute, hemp, sisal, Manila hemp, flax, linen, silk, and wool. Examples thereof include fibrous organic fillers obtained from microcrystalline cellulose, sugar cane, wood pulp, paper waste, waste paper and the like, and granular organic fillers such as organic pigments.
 樹脂組成物がフィラーを含有する場合、その含有量は限定的でないが、樹脂組成物の全固形分に対して、30質量%以下が好ましく、5~10質量%がより好ましい。 When the resin composition contains a filler, the content is not limited, but is preferably 30% by mass or less, more preferably 5 to 10% by mass with respect to the total solid content of the resin composition.
 本発明の樹脂組成物は、前記したもの以外にも、本発明の目的を阻害しない範囲で、成形性・難燃性等の各種特性をより一層改善する目的で他の成分を含んでいてもよい。
 他の成分としては、例えば、前記セルロースエステル以外のポリマー、紫外線吸収剤、離型剤(脂肪酸、脂肪酸金属塩、オキシ脂肪酸、脂肪酸エステル、脂肪族部分鹸化エステル、パラフィン、低分子量ポリオレフィン、脂肪酸アミド、アルキレンビス脂肪酸アミド、脂肪族ケトン、脂肪酸低級アルコールエステル、脂肪酸多価アルコールエステル、脂肪酸ポリグリコールエステル、変成シリコーン)、帯電防止剤、難燃助剤、加工助剤、抗菌剤、防カビ剤等が挙げられる。更に、染料や顔料を含む着色剤などを添加することもできる。
In addition to those described above, the resin composition of the present invention may contain other components for the purpose of further improving various properties such as moldability and flame retardancy, as long as the object of the present invention is not impaired. Good.
Other components include, for example, polymers other than the cellulose ester, ultraviolet absorbers, mold release agents (fatty acids, fatty acid metal salts, oxy fatty acids, fatty acid esters, aliphatic partially saponified esters, paraffins, low molecular weight polyolefins, fatty acid amides, Alkylene bis fatty acid amide, aliphatic ketone, fatty acid lower alcohol ester, fatty acid polyhydric alcohol ester, fatty acid polyglycol ester, modified silicone), antistatic agent, flame retardant aid, processing aid, antibacterial agent, antifungal agent, etc. Can be mentioned. Further, a coloring agent containing a dye or a pigment can be added.
 前記セルロースエステル以外のポリマーとしては、熱可塑性ポリマー、熱硬化性ポリマーのいずれも用い得るが、成形性の点から熱可塑性ポリマーが好ましい。セルロースエステル以外のポリマーの具体例としては、低密度ポリエチレン、直鎖状低密度ポリエチレン、高密度ポリエチレン、ポリプロピレン、エチレン-プロピレン共重合体、エチレン-プロピレン-非共役ジエン共重合体、エチレン-ブテン-1共重合体、ポリプロピレンホモポリマー、ポリプロピレンコポリマー(エチレン-プロピレンブロックコポリマーなど)、ポリブテン-1及びポリ-4-メチルペンテン-1等のポリオレフィン、ポリブチレンテレフタレート、ポリエチレンテレフタレート及びその他の芳香族ポリエステル等のポリエステル、ナイロン6、ナイロン46、ナイロン66、ナイロン610、ナイロン612、ナイロン6T、ナイロン12等のポリアミド、ポリスチレン、ハイインパクトポリスチレン、ポリアセタール(ホモポリマー及び共重合体を含む)、ポリウレタン、芳香族及び脂肪族ポリケトン、ポリフェニレンサルファイド、ポリエーテルエーテルケトン、熱可塑性澱粉樹脂、ポリメタクリル酸メチルやメタクリル酸エステル-アクリル酸エステル共重合体などのアクリル樹脂、AS樹脂(アクリロニトリル-スチレン共重合体)、ABS樹脂、AES樹脂(エチレン系ゴム強化AS樹脂)、ACS樹脂(塩素化ポリエチレン強化AS樹脂)、ASA樹脂(アクリル系ゴム強化AS樹脂)、ポリ塩化ビニル、ポリ塩化ビニリデン、ビニルエステル系樹脂、無水マレイン酸-スチレン共重合体、MS樹脂(メタクリル酸メチル-スチレン共重合体)、ポリカーボネート、ポリアリレート、ポリスルホン、ポリエーテルスルホン、フェノキシ樹脂、ポリフェニレンエーテル、変性ポリフェニレンエーテル、ポリエーテルイミド等の熱可塑性ポリイミド、ポリテトラフルオロエチレン、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体、テトラフルオロエチレン-エチレン共重合体、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体、ポリクロロトリフルオロエチレン、ポリフッ化ビニリデン、テトラフルオロエチレン-ヘキサフルオロプロピレン-パーフルオロアルキルビニルエーテル共重合体などのフッ素系ポリマー、ポリビニルアルコール、不飽和ポリエステル、メラミン樹脂、フェノール樹脂、尿素樹脂、ポリイミドなどを挙げることができる。
 また、各種アクリルゴム、エチレン-酢酸ビニル共重合体、エチレン-アクリル酸共重合体及びそのアルカリ金属塩(いわゆるアイオノマー)、エチレン-アクリル酸アルキルエステル共重合体(例えば、エチレン-アクリル酸エチル共重合体、エチレン-アクリル酸ブチル共重合体)、ジエン系ゴム(例えば、1,4-ポリブタジエン、1,2-ポリブタジエン、ポリイソプレン、ポリクロロプレン)、ジエンとビニル単量体との共重合体(例えば、スチレン-ブタジエンランダム共重合体、スチレン-ブタジエンブロック共重合体、スチレン-ブタジエン-スチレンブロック共重合体、スチレン-イソプレンランダム共重合体、スチレン-イソプレンブロック共重合体、スチレン-イソプレン-スチレンブロック共重合体、ポリブタジエンにスチレンをグラフト共重合させたもの、ブタジエン-アクリロニトリル共重合体)、ポリイソブチレン、イソブチレンとブタジエン又はイソプレンとの共重合体、ブチルゴム、天然ゴム、チオコールゴム、多硫化ゴム、アクリルゴム、ニトリルゴム、ポリエーテルゴム、エピクロロヒドリンゴム、フッ素ゴム、シリコーンゴム、その他ポリウレタン系やポリエステル系、ポリアミド系などの熱可塑性エラストマー等が挙げられる。
As the polymer other than the cellulose ester, either a thermoplastic polymer or a thermosetting polymer can be used, but a thermoplastic polymer is preferable from the viewpoint of moldability. Specific examples of polymers other than cellulose esters include low density polyethylene, linear low density polyethylene, high density polyethylene, polypropylene, ethylene-propylene copolymer, ethylene-propylene-nonconjugated diene copolymer, ethylene-butene- 1 copolymer, polypropylene homopolymer, polypropylene copolymer (such as ethylene-propylene block copolymer), polyolefins such as polybutene-1 and poly-4-methylpentene-1, polybutylene terephthalate, polyethylene terephthalate and other aromatic polyesters, etc. Polyamide such as polyester, nylon 6, nylon 46, nylon 66, nylon 610, nylon 612, nylon 6T, nylon 12, etc., polystyrene, high impact polystyrene, poly Tar (including homopolymers and copolymers), polyurethane, aromatic and aliphatic polyketones, polyphenylene sulfide, polyether ether ketone, thermoplastic starch resin, polymethyl methacrylate, methacrylate ester-acrylate ester copolymer, etc. Acrylic resin, AS resin (acrylonitrile-styrene copolymer), ABS resin, AES resin (ethylene rubber reinforced AS resin), ACS resin (chlorinated polyethylene reinforced AS resin), ASA resin (acrylic rubber reinforced AS resin) , Polyvinyl chloride, polyvinylidene chloride, vinyl ester resin, maleic anhydride-styrene copolymer, MS resin (methyl methacrylate-styrene copolymer), polycarbonate, polyarylate, polysulfone, polyethersulfone, phenoxy tree , Polyphenylene ether, modified polyphenylene ether, thermoplastic polyimide such as polyetherimide, polytetrafluoroethylene, tetrafluoroethylene-hexafluoropropylene copolymer, tetrafluoroethylene-ethylene copolymer, tetrafluoroethylene-perfluoroalkyl vinyl ether Fluoropolymers such as copolymer, polychlorotrifluoroethylene, polyvinylidene fluoride, tetrafluoroethylene-hexafluoropropylene-perfluoroalkyl vinyl ether copolymer, polyvinyl alcohol, unsaturated polyester, melamine resin, phenol resin, urea resin And polyimide.
Various acrylic rubbers, ethylene-vinyl acetate copolymers, ethylene-acrylic acid copolymers and alkali metal salts thereof (so-called ionomers), ethylene-acrylic acid alkyl ester copolymers (for example, ethylene-ethyl acrylate copolymer) Copolymer, ethylene-butyl acrylate copolymer), diene rubber (for example, 1,4-polybutadiene, 1,2-polybutadiene, polyisoprene, polychloroprene), copolymer of diene and vinyl monomer (for example, Styrene-butadiene random copolymer, styrene-butadiene block copolymer, styrene-butadiene-styrene block copolymer, styrene-isoprene random copolymer, styrene-isoprene block copolymer, styrene-isoprene-styrene block copolymer Polymer, polybutadiene Styrene-grafted styrene, butadiene-acrylonitrile copolymer), polyisobutylene, copolymer of isobutylene and butadiene or isoprene, butyl rubber, natural rubber, thiocol rubber, polysulfide rubber, acrylic rubber, nitrile rubber, poly Examples include ether rubber, epichlorohydrin rubber, fluoro rubber, silicone rubber, and other thermoplastic elastomers such as polyurethane, polyester, and polyamide.
 更に、各種の架橋度を有するものや、各種のミクロ構造、例えばシス構造、トランス構造等を有するもの、ビニル基などを有するもの、あるいは各種の平均粒径を有するものや、コア層とそれを覆う1以上のシェル層から構成され、また隣接し合った層が異種の重合体から構成されるいわゆるコアシェルゴムと呼ばれる多層構造重合体なども使用することができ、更にシリコーン化合物を含有したコアシェルゴムも使用することができる。
 これらのポリマーは、1種単独で用いても、2種以上を併用してもよい。
Furthermore, those having various degrees of crosslinking, those having various microstructures such as cis structure and trans structure, those having vinyl groups, those having various average particle diameters, core layers and the like A multi-layer structure polymer called a so-called core-shell rubber, which is composed of one or more shell layers to be covered and whose adjacent layers are composed of different types of polymers, can also be used, and further a core-shell rubber containing a silicone compound Can also be used.
These polymers may be used alone or in combination of two or more.
 本発明の樹脂組成物が前記セルロースエステル、主鎖に芳香族環を有する熱可塑性樹脂、及び可塑剤以外のポリマーを含有する場合、その含有量は、樹脂組成物の全固形分に対して30質量%以下が好ましく、2~10質量%がより好ましい。 When the resin composition of the present invention contains the cellulose ester, a thermoplastic resin having an aromatic ring in the main chain, and a polymer other than the plasticizer, the content is 30 with respect to the total solid content of the resin composition. The content is preferably not more than mass%, more preferably 2 to 10 mass%.
 本発明の樹脂組成物は、様々な用途に用いることが可能である。例えば、溶剤に溶かして塗布法によりフィルムとしてもよい。また、溶融押し出し法などによりフィルムとしてもよい。
 本発明の樹脂組成物は射出成形用樹脂組成物であることが好ましい。
The resin composition of the present invention can be used for various applications. For example, it is good also as a film by melt | dissolving in a solvent and the apply | coating method. Moreover, it is good also as a film by the melt extrusion method.
The resin composition of the present invention is preferably an injection molding resin composition.
 本発明の成形体は、本発明の樹脂組成物を成形することにより得られる。
 本発明の成形体の製造方法は、本発明の樹脂組成物を加熱し、成形する工程を含む。
 成形方法としては、例えば、射出成形、押し出し成形、ブロー成形等が挙げられる。
 加熱温度は、通常160~300℃であり、好ましくは180~260℃である。
The molded product of the present invention can be obtained by molding the resin composition of the present invention.
The manufacturing method of the molded object of this invention includes the process of heating and shape | molding the resin composition of this invention.
Examples of the molding method include injection molding, extrusion molding, blow molding and the like.
The heating temperature is usually 160 to 300 ° C, preferably 180 to 260 ° C.
 本発明の成形体の用途は、とくに限定されるものではないが、例えば、電気電子機器(家電、OA・メディア関連機器、光学用機器及び通信機器等)の内装又は外装部品、自動車、機械部品、住宅・建築用材料等が挙げられる。これらの中でも、優れた耐熱性及び耐衝撃性を有しており、環境への負荷が小さい観点から、例えば、コピー機、プリンター、パソコン、テレビ等といった電気電子機器用の外装部品(特に筐体)として好適に使用することができる。 The use of the molded product of the present invention is not particularly limited. For example, interior or exterior parts of electrical and electronic equipment (home appliances, OA / media related equipment, optical equipment, communication equipment, etc.), automobiles, mechanical parts, etc. And materials for housing and construction. Among these, from the viewpoint of having excellent heat resistance and impact resistance and low environmental impact, for example, exterior parts (especially casings) for electrical and electronic equipment such as copiers, printers, personal computers, and televisions. ) Can be suitably used.
 以下に実施例及び比較例を挙げて本発明を具体的に説明するが、本発明の範囲は以下に示す実施例に限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to examples and comparative examples, but the scope of the present invention is not limited to the examples shown below.
<オリゴマー可塑剤の製造>
 表1に示すジカルボン酸成分、ジオール成分を表1に記載の各質量部で用いて、表1記載の末端構造、質量平均分子量、及びClogP値を有するオリゴマー可塑剤(オリゴマー可塑剤1~4)を製造した。
<Manufacture of oligomer plasticizer>
Using the dicarboxylic acid component and the diol component shown in Table 1 in each part by mass shown in Table 1, an oligomer plasticizer having the terminal structure, mass average molecular weight, and ClogP value shown in Table 1 (oligomer plasticizers 1 to 4) Manufactured.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
[質量平均分子量の測定方法]
 オリゴマー可塑剤の質量平均分子量の測定は、ゲル・パーミエーション・クロマトグラフィー(GPC)を用いた。具体的には、THFを溶媒とし、ポリスチレンゲルを使用し、標準単分散ポリスチレンの構成曲線から予め求められた換算分子量較正曲線を用いて求めた。GPC装置は、HLC-8220GPC(東ソー社製)を使用した。
[Method for measuring mass average molecular weight]
Gel permeation chromatography (GPC) was used for measurement of the mass average molecular weight of the oligomer plasticizer. Specifically, THF was used as a solvent, polystyrene gel was used, and a molecular weight calibration curve obtained in advance from a standard monodisperse polystyrene constituent curve was used. As the GPC apparatus, HLC-8220 GPC (manufactured by Tosoh Corporation) was used.
[ClogP値の測定方法]
 オリゴマー可塑剤のClogP値はデイライト・ケミカル・インフォメーション・システム社から入手し得る”CLOGP”プログラムで計算された値を使用した。
[Measurement method of ClogP value]
The ClogP value of the oligomer plasticizer used was a value calculated with the “CLOGP” program available from Daylight Chemical Information Systems.
<実施例1~27、29~54、比較例1~18、28>
[成形体の作製]
 セルロースエステル、熱可塑性樹脂、低分子可塑剤、オリゴマー可塑剤、難燃剤及びその他の成分を表2~7に示す配合割合(質量%)で混合し、樹脂組成物を調製した。この樹脂組成物を二軸混練押出機(テクノベル(株)製、Ultranano)に供給しペレットを作製し、ついで得られたペレットを、射出成形機(ファナック(株)Roboshot S-2000i、自動射出成形機)に供給して、シャルピー衝撃試験用の試験片(長さ:80mm、幅:10mm、厚さ:4.0mm)、及び難燃試験用の試験片(長さ:120mm、幅:13mm、厚さ:1.6mm)を成形した。
<Examples 1 to 27, 29 to 54, Comparative Examples 1 to 18 and 28>
[Production of molded body]
Cellulose ester, thermoplastic resin, low molecular weight plasticizer, oligomer plasticizer, flame retardant and other components were mixed at the blending ratios (mass%) shown in Tables 2 to 7 to prepare resin compositions. This resin composition was supplied to a twin-screw kneading extruder (manufactured by Technobel Co., Ltd., Ultranano) to produce pellets, and then the obtained pellets were injected into an injection molding machine (FANUC Corporation Robot S-2000i, automatic injection molding). A test piece for Charpy impact test (length: 80 mm, width: 10 mm, thickness: 4.0 mm), and a test piece for flame retardancy test (length: 120 mm, width: 13 mm, (Thickness: 1.6 mm).
[評価]
 得られた樹脂組成物、ペレット、及び多目的試験片を用いて、以下の項目について評価した。評価結果は表2~7に示した。
[Evaluation]
Using the obtained resin composition, pellets, and multipurpose test pieces, the following items were evaluated. The evaluation results are shown in Tables 2-7.
(シャルピー衝撃強度)
 ISO179に準拠して、射出成形にて成形したシャルピー衝撃試験用の試験片に入射角45±0.5°、先端0.25±0.05mmのノッチを形成し、23℃±2℃、50%±5%RHで48時間以上静置した後、シャルピー衝撃試験機((株)東洋精機製作所製)によってエッジワイズにて衝撃強度を測定した。測定は3回測定の平均値である。
 また、シャルピー衝撃強度が10kJ/m2以上のものを◎、6kJ/m2以上のものを○、4kJ/m2以上のものを△、4kJ/m2未満のものを×とした。
(Charpy impact strength)
In accordance with ISO 179, a notch with an incident angle of 45 ± 0.5 ° and a tip of 0.25 ± 0.05 mm is formed on a specimen for Charpy impact test molded by injection molding, and 23 ° C. ± 2 ° C., 50 After leaving still for 48 hours or more at% ± 5% RH, the impact strength was measured edgewise by a Charpy impact tester (manufactured by Toyo Seiki Seisakusho). The measurement is an average of three measurements.
Moreover, those Charpy impact strength of 10 kJ / m 2 or more ◎, 6 kJ / m 2 or more of the ○, 4 kJ / m 2 or more of the △, was × those less than 4 kJ / m 2.
(吸湿率)
 混練後のペレットを32℃、85%環境下に7日間で保管した。保管前後のペレット質量を測定し、(増えた質量/元のペレット質量)×100で吸湿率(%)を測定した。
 また、吸湿率2.5%以下のものを○、3%未満のものを△、3%以上のものを×とした。
(Hygroscopic rate)
The kneaded pellets were stored in an environment of 32 ° C. and 85% for 7 days. The pellet mass before and after storage was measured, and the moisture absorption (%) was measured by (increased mass / original pellet mass) × 100.
Moreover, the thing of moisture absorption 2.5% or less was made into (circle), less than 3% was made into (triangle | delta), and 3% or more was made into x.
(難燃性)
 難燃試験用の試験片を用い、難燃性の指標として、UL94に準拠した垂直燃焼試験を行った。試験本数は5本である。自己消火性の無いものをV-not、燃焼試験時に樹脂組成物のドリップがあり所定時間内に自己消火するものをV-2、燃焼時に樹脂組成物ドリップがなく所定時間内に自己消火するものをV-1(燃焼時間30秒以内)、V-0(燃焼時間10秒以内)とした。
 また、V-0を○、V-1及びV-2を△、V-notを×とした。
(Flame retardance)
Using a test piece for a flame retardant test, a vertical combustion test based on UL94 was performed as an index of flame retardancy. The number of tests is five. V-not for non-self-extinguishing, V-2 for resin composition drip during combustion test and self-extinguishing within a predetermined time V-2, no self-extinguishing resin composition drip for self-extinguishing within a predetermined time during combustion V-1 (combustion time within 30 seconds) and V-0 (combustion time within 10 seconds).
In addition, V-0 is indicated by ○, V-1 and V-2 are indicated by Δ, and V-not is indicated by ×.
(成形性)
 成形性評価は、射出成形機での成形適性を示しており、成形搬送性及び射出性ともに優れている樹脂組成物を○、いずれか一方に課題がある樹脂組成物を△、両方に課題がある樹脂組成物を×とした。
 なお、○は成形時の温度230℃以下で着色などの劣化無く成形ができるものであり、△は成形時の240℃以下で着色などの劣化無く成形ができるものであり、×は成形時の240℃より高い温度で着色などの劣化無く成形ができるものであり、××は成形できないものである。
(Formability)
The moldability evaluation shows the moldability in an injection molding machine. A resin composition that is excellent in both mold transportability and injection property is indicated by ○, a resin composition that has a problem in either one, and a problem in both. A certain resin composition was set as x.
In addition, (circle) is what can shape | mold without deterioration, such as coloring, at the temperature of 230 degrees C or less at the time of shaping | molding, (triangle | delta) can be shape | molded without deterioration, such as coloring, at 240 degrees C or less at the time of shaping | molding, * Molding can be performed at a temperature higher than 240 ° C. without deterioration such as coloring, and xx cannot be molded.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 表中、MFR(cm/10min)はシリンダー内で300℃に溶融した樹脂に対して荷重(1.2kg)をかけて、10分間で流れ出てくる樹脂の容量を測定し、求めた。 In the table, over a MFR (cm 3 / 10min) the load to the molten resin to 300 ° C. in the cylinder (1.2 kg), by measuring the volume of flow out come resin for 10 minutes, was determined.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 以上の結果より、熱可塑性樹脂が主鎖に芳香族環を有さない場合、良好な衝撃強度、難燃性が得られないこと、低分子可塑剤がない場合や規定の分子量を有さない場合は耐吸湿性が得られないこと、オリゴマー可塑剤がない場合や規定の分子量を有さない場合は衝撃強度が劣ることが確認された。更に難燃剤がない場合は難燃性が悪化することが確認された。 From the above results, when the thermoplastic resin does not have an aromatic ring in the main chain, good impact strength and flame retardancy cannot be obtained, there is no low molecular plasticizer, and there is no specified molecular weight In this case, it was confirmed that the moisture absorption resistance was not obtained, and the impact strength was inferior in the absence of the oligomer plasticizer or in the absence of the prescribed molecular weight. Furthermore, it was confirmed that in the absence of a flame retardant, the flame retardancy deteriorates.
 本発明の樹脂組成物は、成形性、難燃性、衝撃強度及び吸湿性の全ての特性に優れた成形体が得られる樹脂組成物であるので、例えば自動車、家電、電気電子機器等の構成部品、機械部品、住宅・建築用材料等として好適に使用することができる。また、本発明の樹脂組成物は、植物由来の樹脂であるセルロースから得られるセルロースエステル系樹脂を使用しているため、温暖化防止に貢献できる素材として、従来の石油由来の樹脂に代替できる。 Since the resin composition of the present invention is a resin composition from which a molded body excellent in all of moldability, flame retardancy, impact strength, and hygroscopic properties can be obtained, for example, the configuration of automobiles, home appliances, electrical and electronic devices, etc. It can be suitably used as parts, machine parts, housing / building materials, and the like. Moreover, since the resin composition of this invention uses the cellulose ester-type resin obtained from the cellulose which is resin derived from a plant, it can substitute for conventional petroleum-derived resin as a raw material which can contribute to global warming prevention.
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2010年3月30日出願の日本特許出願(特願2010-079928)に基づくものであり、その内容はここに参照として取り込まれる。
Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
This application is based on a Japanese patent application filed on March 30, 2010 (Japanese Patent Application No. 2010-079928), the contents of which are incorporated herein by reference.

Claims (20)

  1.  (A)セルロースエステル、(B)主鎖に芳香族環を有する熱可塑性樹脂、(C1)分子量が450以下の化合物からなる低分子可塑剤、(C2)質量平均分子量が500~5000の化合物からなるオリゴマー可塑剤、及び(D)分子量が400~800のリン含有化合物からなるリン系難燃剤を含む樹脂組成物。 (A) a cellulose ester, (B) a thermoplastic resin having an aromatic ring in the main chain, (C1) a low molecular plasticizer comprising a compound having a molecular weight of 450 or less, and (C2) a compound having a mass average molecular weight of 500 to 5,000. And (D) a phosphorus-based flame retardant comprising a phosphorus-containing compound having a molecular weight of 400 to 800.
  2.  前記(A)セルロースエステルがセルロースジアセテート、セルロースアセテートプロピオネート又はセルロースアセテートブチレートである請求項1に記載の樹脂組成物。 The resin composition according to claim 1, wherein the cellulose ester (A) is cellulose diacetate, cellulose acetate propionate, or cellulose acetate butyrate.
  3.  前記(A)セルロースエステルがセルロースジアセテートである請求項1又は2に記載の樹脂組成物。 The resin composition according to claim 1 or 2, wherein the (A) cellulose ester is cellulose diacetate.
  4.  前記(A)セルロースエステルの含有量が、樹脂組成物の全固形分に対して30~70質量%である請求項1~3のいずれか1項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 3, wherein the content of the cellulose ester (A) is 30 to 70 mass% with respect to the total solid content of the resin composition.
  5.  前記(B)熱可塑性樹脂がポリカーボネート樹脂である請求項1~4のいずれか1項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 4, wherein the (B) thermoplastic resin is a polycarbonate resin.
  6.  前記(B)熱可塑性樹脂の数平均分子量が15000~30000である請求項1~5のいずれか1項に記載の樹脂組成物。 6. The resin composition according to claim 1, wherein the number average molecular weight of the (B) thermoplastic resin is 15000 to 30000.
  7.  前記(C1)低分子可塑剤の水―n‐オクタノール分配係数(ClogP)が2~6である請求項1~6のいずれか1項に記載の樹脂組成物。 7. The resin composition according to claim 1, wherein the (C1) low molecular plasticizer has a water-n-octanol partition coefficient (ClogP) of 2 to 6.
  8.  前記(C2)オリゴマー可塑剤の水―n‐オクタノール分配係数(ClogP)が2~6である請求項1~7のいずれか1項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 7, wherein the (C2) oligomer plasticizer has a water-n-octanol partition coefficient (ClogP) of 2 to 6.
  9.  前記(C2)オリゴマー可塑剤が、繰り返し構造を有する請求項1~8のいずれか1項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 8, wherein the (C2) oligomer plasticizer has a repeating structure.
  10.  前記(D)におけるリン含有化合物がリン酸エステルである請求項1~9のいずれか1項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 9, wherein the phosphorus-containing compound in (D) is a phosphate ester.
  11.  前記(C1)低分子可塑剤と前記(C2)オリゴマー可塑剤の含有量の合計が、樹脂組成物の全固形分に対して5質量%~30質量%である請求項1~10のいずれか1項に記載の樹脂組成物。 The total content of the (C1) low molecular plasticizer and the (C2) oligomer plasticizer is 5% by mass to 30% by mass with respect to the total solid content of the resin composition. 2. The resin composition according to item 1.
  12.  前記(C1)低分子可塑剤、前記(C2)オリゴマー可塑剤及び前記(D)リン系難燃剤の含有量の合計が、樹脂組成物の全固形分に対して10質量%~40質量%である請求項1~11のいずれか1項に記載の樹脂組成物。 The total content of the (C1) low molecular plasticizer, the (C2) oligomer plasticizer and the (D) phosphorus flame retardant is 10% by mass to 40% by mass with respect to the total solid content of the resin composition. The resin composition according to any one of claims 1 to 11.
  13.  (C1)低分子可塑剤の含有量/((C1)低分子可塑剤の含有量と(C2)オリゴマー可塑剤の含有量の合計)の値が、0.2~0.8である請求項1~12のいずれか1項に記載の樹脂組成物。 The value of (C1) content of low molecular plasticizer / ((C1) content of low molecular plasticizer and (C2) content of oligomer plasticizer) is 0.2 to 0.8. The resin composition according to any one of 1 to 12.
  14.  ((C1)低分子可塑剤の含有量と(C2)オリゴマー可塑剤の含有量の合計)/((C1)低分子可塑剤、前記(C2)オリゴマー可塑剤及び前記(D)リン系難燃剤の含有量の合計)の値が0.15~0.7である請求項1~13のいずれか1項に記載の樹脂組成物。 ((C1) low molecular plasticizer content and (C2) oligomer plasticizer content) / ((C1) low molecular plasticizer, (C2) oligomer plasticizer and (D) phosphorus flame retardant The resin composition according to any one of claims 1 to 13, which has a value of (total content) of 0.15 to 0.7.
  15.  更に(E)相溶化剤を含有する請求項1~14のいずれか1項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 14, further comprising (E) a compatibilizing agent.
  16.  更に(F)安定化剤を含有する請求項1~15のいずれか1項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 15, further comprising (F) a stabilizer.
  17.  更に(G)フッ素系樹脂を含有する請求項1~16のいずれか1項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 16, further comprising (G) a fluororesin.
  18.  請求項1~17のいずれか1項に記載の樹脂組成物からなる射出成形用樹脂組成物。 An injection molding resin composition comprising the resin composition according to any one of claims 1 to 17.
  19.  請求項1~17のいずれか1項に記載の樹脂組成物又は請求項18に記載の射出成形用樹脂組成物を成形して得られる成形体。 A molded product obtained by molding the resin composition according to any one of claims 1 to 17 or the resin composition for injection molding according to claim 18.
  20.  請求項19に記載の成形体から構成される電気電子機器用筺体。 A housing for electrical and electronic equipment comprising the molded body according to claim 19.
PCT/JP2011/057899 2010-03-30 2011-03-29 Resin composition, molded article and housing for electric/electronic device WO2011122646A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-079928 2010-03-30
JP2010079928 2010-03-30

Publications (1)

Publication Number Publication Date
WO2011122646A1 true WO2011122646A1 (en) 2011-10-06

Family

ID=44712341

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/057899 WO2011122646A1 (en) 2010-03-30 2011-03-29 Resin composition, molded article and housing for electric/electronic device

Country Status (2)

Country Link
JP (1) JP2011225845A (en)
WO (1) WO2011122646A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015512466A (en) * 2012-04-09 2015-04-27 エルジー・ハウシス・リミテッドLg Hausys,Ltd. Biodegradable resin composition containing environmentally friendly plasticizer and biodegradable resin product using the same
JP2015113417A (en) * 2013-12-12 2015-06-22 Dic株式会社 Resin composition, molded article, interior part composed of molded article, interior material, and housing
EP2989166A4 (en) * 2013-06-28 2016-11-30 Canon Kk Flame retardant composition and molded article including the same
EP3333219A1 (en) * 2016-12-08 2018-06-13 Scg Chemicals Co. Ltd. Plasticizer composition
JP6369610B1 (en) * 2017-07-27 2018-08-08 富士ゼロックス株式会社 Resin composition and resin molded body

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101438899B1 (en) 2012-08-16 2014-09-05 현대자동차주식회사 Eco-friendly plastic compositions with excellent mechanical property
JP2017114938A (en) * 2015-12-21 2017-06-29 富士ゼロックス株式会社 Resin composition and resin molded body
WO2019151236A1 (en) * 2018-01-30 2019-08-08 株式会社Adeka Polycarbonate resin additive, polycarbonate resin composition containing same and molded body thereof
WO2023008552A1 (en) * 2021-07-29 2023-02-02 日本電気株式会社 Cellulose-based resin composition and molded article using same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003306577A (en) * 2002-04-15 2003-10-31 Daicel Chem Ind Ltd Cellulose resin composition
JP2006111858A (en) * 2004-09-17 2006-04-27 Toray Ind Inc Resin composition and molding comprising the same
JP2007161943A (en) * 2005-12-16 2007-06-28 Daicel Chem Ind Ltd Cellulose ester-based resin composition
JP2009046531A (en) * 2007-08-14 2009-03-05 Dic Corp Modifier for cellulose ester resin, and cellulose ester optical film and polarizing plate protective film using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003306577A (en) * 2002-04-15 2003-10-31 Daicel Chem Ind Ltd Cellulose resin composition
JP2006111858A (en) * 2004-09-17 2006-04-27 Toray Ind Inc Resin composition and molding comprising the same
JP2007161943A (en) * 2005-12-16 2007-06-28 Daicel Chem Ind Ltd Cellulose ester-based resin composition
JP2009046531A (en) * 2007-08-14 2009-03-05 Dic Corp Modifier for cellulose ester resin, and cellulose ester optical film and polarizing plate protective film using the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015512466A (en) * 2012-04-09 2015-04-27 エルジー・ハウシス・リミテッドLg Hausys,Ltd. Biodegradable resin composition containing environmentally friendly plasticizer and biodegradable resin product using the same
EP2989166A4 (en) * 2013-06-28 2016-11-30 Canon Kk Flame retardant composition and molded article including the same
JP2015113417A (en) * 2013-12-12 2015-06-22 Dic株式会社 Resin composition, molded article, interior part composed of molded article, interior material, and housing
EP3333219A1 (en) * 2016-12-08 2018-06-13 Scg Chemicals Co. Ltd. Plasticizer composition
WO2018104001A1 (en) * 2016-12-08 2018-06-14 Scg Chemicals Company Limited Plasticizer composition
JP6369610B1 (en) * 2017-07-27 2018-08-08 富士ゼロックス株式会社 Resin composition and resin molded body
CN109306078A (en) * 2017-07-27 2019-02-05 富士施乐株式会社 Resin combination and resin-formed body
CN109306078B (en) * 2017-07-27 2022-04-01 富士胶片商业创新有限公司 Resin composition and resin molded article

Also Published As

Publication number Publication date
JP2011225845A (en) 2011-11-10

Similar Documents

Publication Publication Date Title
WO2011122582A1 (en) Resin composition, resin composition for injection molding, molded article and housing for electric/electronic device
WO2011122646A1 (en) Resin composition, molded article and housing for electric/electronic device
EP2294140B1 (en) Fire retardant resin composition
JPWO2009041054A1 (en) Resin composition and molded body obtained by molding the same
JP5326232B2 (en) Resin composition and molded article comprising the same
JP2010121121A (en) Cellulose derivative, resin composition, molded body obtained from cellulose derivative, and enclosure for electric/electronic device composed of the molded body
WO2011152371A1 (en) Thermoplastic resin composition and molded products thereof
WO2011142388A1 (en) Resin composition, resin composition for injection molding, and housing for electric/electronic device
JP2007231050A (en) Modified cellulose acylate resin composition
WO2011122421A1 (en) Resin composition, molded products, and housing for electrical or electronic equipment
WO2012023561A1 (en) Resin composition, and housing for electric/electronic device
JP2011208103A (en) Resin composition, molded article, and housing for electric and electronic equipment
JP4651952B2 (en) Flame-retardant polyester resin composition and molded product obtained by molding the same
WO2012073661A1 (en) Molding material, molded body, method for producing same, and electrical and electronic equipment housing
JP2010241848A (en) Cellulose resin composition, molded article and housing for electric and electronic equipment
JP2011162696A (en) Resin composition for injection molding, molded article, manufacturing method therefor, and box body for electric/electronic equipment
JP2010090311A (en) Cellulose derivative, resin composition, molded article, housing for electronic device and method for producing cellulose derivative
JP2011132431A (en) Molding material, molded article, and method for producing the same, and housing for electric electronic equipment
JP2011162697A (en) Resin composition for injection molding, molded article, manufacturing method therefor, and box body for electric/electronic equipment
WO2011078278A1 (en) Molding material, molded article and process for production thereof, and housing for electric/electronic device
WO2011040378A1 (en) Cellulose ester resin composition
JP2011162695A (en) Resin composition, molded article, manufacturing method therefor, and box body for electric/electronic equipment
JP5486917B2 (en) MOLDING MATERIAL, MOLDED BODY, MANUFACTURING METHOD THEREOF, AND CASE FOR ELECTRIC AND ELECTRONIC DEVICE
WO2011078283A1 (en) Molding material, molded article and process for production thereof, and housing for electric/electronic device
WO2011078279A1 (en) Molding material, molded article and process for production thereof, and housing for electric/electronic device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11762870

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11762870

Country of ref document: EP

Kind code of ref document: A1