WO2022080179A1 - Compressor and refrigeration cycle apparatus - Google Patents

Compressor and refrigeration cycle apparatus Download PDF

Info

Publication number
WO2022080179A1
WO2022080179A1 PCT/JP2021/036763 JP2021036763W WO2022080179A1 WO 2022080179 A1 WO2022080179 A1 WO 2022080179A1 JP 2021036763 W JP2021036763 W JP 2021036763W WO 2022080179 A1 WO2022080179 A1 WO 2022080179A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylinder
bearing
shaft
compression mechanism
compressor
Prior art date
Application number
PCT/JP2021/036763
Other languages
French (fr)
Japanese (ja)
Inventor
勝吾 志田
卓也 平山
Original Assignee
東芝キヤリア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝キヤリア株式会社 filed Critical 東芝キヤリア株式会社
Priority to JP2022557381A priority Critical patent/JPWO2022080179A1/ja
Priority to CN202180052105.XA priority patent/CN115943259A/en
Publication of WO2022080179A1 publication Critical patent/WO2022080179A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation

Definitions

  • the present invention relates to a compressor and a refrigeration cycle device.
  • a compressor housing having a vertically placed cylindrical airtight container in which lubricating oil is stored, a compression mechanism unit arranged at the bottom of the airtight container, and an electric motor unit arranged at the top of the airtight container to drive the compression mechanism unit.
  • a rotary compressor is known to be equipped with a motor and a rotating shaft. The rotation axis is provided along a center line extending vertically in the compressor housing. The compression mechanism portion is connected to the motor via a rotating shaft.
  • the compression mechanism includes an annular cylinder, an upper end plate that closes the upper side of the cylinder, a lower end plate that closes the lower side of the cylinder, a main bearing provided on the upper end plate, and an auxiliary bearing provided on the lower end plate. , Is equipped.
  • the compression mechanism portion includes an annular piston that is fitted to the eccentric portion of the rotating shaft and revolves along the inner peripheral surface of the cylinder. The piston is located in the cylinder chamber inside the cylinder.
  • the main shaft portion of the rotating shaft is rotatably supported by the main bearing, and the sub-shaft portion of the rotating shaft is rotatably supported by the sub-bearing.
  • the inner peripheral surface of the shaft hole of the auxiliary bearing is provided with a spiral lubrication groove that supplies lubricating oil from the lower end to the upper end of the shaft hole.
  • the refueling groove is inclined with respect to the rotation direction of the rotation shaft and extends from the lower end to the upper end in the rotation direction of the rotation shaft.
  • the lubricating oil stored in the compressor housing is sucked up along the lubrication groove extending from the lower end to the upper end of the shaft hole of the auxiliary bearing by the rotation of the rotating shaft.
  • the sucked-up lubricating oil lubricates the sliding portion between the rotating shaft and the auxiliary bearing.
  • a gas load (compression load) is generated during compression.
  • the direction in which the peak of the gas load occurs is determined, for example, with respect to the eccentric direction of the eccentric portion of the rotating shaft.
  • the eccentric directions of the plurality of eccentric portions of the rotating shaft face different directions depending on the number of cylinders.
  • the eccentric directions of the three eccentric portions of the rotation shaft of the three-cylinder rotary compressor are directed to three directions at every 120 °, for example. Therefore, there are three peak positions of the gas load of the three-cylinder rotary compressor on the outer peripheral surface of the rotating shaft.
  • the multi-cylinder rotary compressor is equipped with a partition plate between the main bearing and the auxiliary bearing.
  • This partition plate functions as an intermediate bearing that rotatably supports the eccentric portion of the rotating shaft. Therefore, for example, the position where the gas load peaks in the intermediate bearing of the three-cylinder rotary compressor is determined by the position in each of the three compression chambers.
  • the multi-cylinder rotary compressor may be equipped with a balancer provided in a portion protruding from the auxiliary bearing of the rotating shaft in order to reduce the imbalance during the compression operation of the compression mechanism.
  • the auxiliary bearing receives a load due to the centrifugal force of the balancer over the entire circumference of the inner peripheral surface due to the rotation of the rotating shaft. Therefore, when the oil supply groove is provided on the inner peripheral surface of the auxiliary bearing, the load due to this centrifugal force may overlap with the oil supply groove, and it becomes difficult to form an oil film. Therefore, in a multi-cylinder rotary compressor, it is difficult to lubricate the sliding portion between the rotating shaft and the auxiliary bearing by the oil supply groove provided on the inner peripheral surface of the auxiliary bearing.
  • an object of the present invention is to provide a compressor and a refrigeration cycle device having a lubrication structure capable of stably lubricating the sliding portion between the rotating shaft and the bearing.
  • the compressor according to the embodiment of the present invention includes a cylindrical closed container having a center line extending in the vertical direction, a compression mechanism unit for compressing the refrigerant introduced into the closed container, and a compression mechanism unit.
  • An electric motor unit having a main shaft portion, an intermediate shaft portion, and a sub-shaft portion, connected to a rotating shaft provided along the center line via the rotating shaft, and driving the compression mechanism portion.
  • a main bearing that rotatably supports the main shaft portion and a sub-shaft that rotatably supports the main shaft portion.
  • An auxiliary bearing that rotatably supports the portion, an annular cylinder arranged by stacking three or more between the main bearing and the auxiliary bearing, and an annular cylinder arranged in each of the cylinders and reciprocating in the radial direction of the cylinder.
  • An intermediate that includes a moving vane and a plurality of partition plates that partition between adjacent cylinders, and one of the plurality of partition plates functions as a bearing that rotatably supports the intermediate shaft portion.
  • the intermediate bearing includes a bearing, and the intermediate bearing has a first oil supply groove extending in the vertical direction and allowing the lubricating oil to flow on an inner peripheral surface through which the rotating shaft is inserted.
  • the vanes of the compressor according to the embodiment of the present invention are arranged in a straight line in the vertical direction, and the rotary shaft is provided on the outer peripheral surface of the sub-shaft portion and extends in the vertical direction to flow the lubricating oil. It is preferable to have a second lubrication groove and a protruding portion protruding from the auxiliary bearing, and the compression mechanism portion is provided with a balancer provided in the protruding portion.
  • the compression mechanism portion of the compressor according to the embodiment of the present invention sequentially drives the refrigerant from the cylinders arranged above to the cylinders arranged below among the cylinders stacked in the vertical direction. It is preferable to compress it.
  • the refrigerating cycle device connects the compressor, the radiator, the expander, the heat absorber, the compressor, the radiator, the expander, and the heat absorber. It is equipped with a refrigerant pipe for circulating the refrigerant.
  • the present invention can provide a compressor and a refrigeration cycle device having a lubrication structure capable of stably lubricating the sliding portion between the rotating shaft and the bearing.
  • FIG. 1 An explanatory diagram schematically showing a refrigerating cycle apparatus and a compressor according to an embodiment.
  • the cross-sectional view which shows the compression mechanism part of the compressor which concerns on embodiment.
  • the cross-sectional view which shows the intermediate bearing of the compressor which concerns on embodiment.
  • the cross-sectional view which shows the auxiliary bearing of the compressor which concerns on embodiment.
  • FIGS. 1 to 4 An embodiment of the compressor and the refrigeration cycle apparatus according to the present invention will be described with reference to FIGS. 1 to 4.
  • the same or corresponding configurations are designated by the same reference numerals.
  • FIG. 1 is a schematic diagram of a refrigeration cycle device and a compressor according to an embodiment of the present invention.
  • the compressor is shown in a vertical cross section.
  • FIG. 2 is a cross-sectional view of the compression mechanism portion of the compressor according to the embodiment of the present invention as viewed from below.
  • the refrigerating cycle device 1 is, for example, an air conditioner.
  • the refrigeration cycle device 1 includes a closed-type rotary compressor 2 (hereinafter, simply referred to as “compressor 2”), a radiator 3 (radiator), an expansion device 5, a heat absorber 6 (heat absorber), and the like. It includes an accumulator 7 and a refrigerant pipe 8.
  • the refrigerant pipe 8 sequentially connects the compressor 2, the radiator 3, the expansion device 5, the heat absorber 6, and the accumulator 7 to circulate the refrigerant.
  • the radiator 3 is also referred to as a condenser.
  • the endothermic absorber 6 is also called an evaporator.
  • the compressor 2 sucks in the refrigerant that has passed through the heat absorber 6 through the refrigerant pipe 8, compresses it, and discharges the high-temperature and high-pressure refrigerant to the radiator 3 through the refrigerant pipe 8.
  • the compressor 2 includes a cylindrical airtight container 11 placed vertically, an open winding type motor unit 12 (hereinafter, simply referred to as “motor unit 12”) housed in the upper half of the airtight container 11.
  • the compression mechanism unit 13 housed in the lower half of the closed container 11, the rotary shaft 15 that transmits the rotational driving force of the motor unit 12 to the compression mechanism unit 13, and the main bearing 16 that rotatably supports the rotary shaft 15.
  • a sub-bearing 17 that rotatably supports the rotary shaft 15 in cooperation with the main bearing 16, and a refueling mechanism 22 that refuels the lubricating oil 21 (refrigerator oil) stored in the closed container 11 to the compression mechanism unit 13. And have.
  • the center line of the vertically placed closed container 11 extends in the vertical direction.
  • the closed container 11 includes a cylindrical body portion 11a extending in the vertical direction, a end plate 11b that closes the upper end portion of the body portion, and a end plate 11c that closes the lower end portion of the body portion.
  • a discharge pipe 8a for discharging the refrigerant to the outside of the closed container 11 is connected to the end plate 11b on the upper side of the closed container 11.
  • the discharge pipe 8a is connected to the refrigerant pipe 8.
  • a pair of sealed terminals 25 and 26 and a pair of terminal blocks 27 and 28 that guide the electric power supplied to the electric motor unit 12 from the outside to the inside of the closed container 11 are provided. It is provided.
  • the terminal blocks 27 and 28 are provided on the sealed terminals 25 and 26, respectively.
  • a plurality of power lines 29 that are electrically connected to the sealed terminals 25 and 26 to supply electric power are fixed to the terminal blocks 27 and 28, respectively.
  • the power line 29 is a so-called lead wire.
  • the motor unit 12 generates a driving force for rotating the compression mechanism unit 13.
  • the electric motor unit 12 is arranged above the compression mechanism unit 13.
  • the electric motor unit 12 is composed of a tubular stator 31 fixed to the inner surface of the closed container 11, a rotor 32 arranged inside the stator 31 to generate a rotational driving force of the compression mechanism unit 13, and a stator 31. It is provided with a plurality of outlet wires 33 that are drawn out and electrically connected to the pair of sealed terminals 25 and 26.
  • the rotor 32 includes a rotor core 35 having a magnet accommodating hole (not shown) and a permanent magnet accommodated in the magnet accommodating hole (not shown).
  • the rotor 32 is fixed to the rotating shaft 15.
  • the rotation center line C of the rotor 32 and the rotation shaft 15 substantially coincides with the center line of the stator 31. Further, the rotation center line C of the rotor 32 and the rotation shaft 15 substantially coincides with the center line of the closed container 11.
  • the plurality of outlet wires 33 are power lines that supply electric power to the stator 31 through the sealed terminals 25 and 26, and are so-called lead wires.
  • a plurality of outlet wires 33 are wired according to the type of the motor unit 12. In this embodiment, six outlet wires 33 are wired.
  • the motor unit 12 may be a motor unit having a plurality of systems, for example, two systems of three-phase winding, in addition to the open winding type.
  • the rotating shaft 15 connects the motor unit 12 and the compression mechanism unit 13.
  • the rotating shaft 15 transmits the rotational driving force generated by the electric motor unit 12 to the compression mechanism unit 13.
  • the rotation shaft 15 is rotationally integrated with the rotor 32 and extends downward from the rotor 32.
  • the spindle portion 15a located in the middle portion of the rotating shaft 15 connects the motor portion 12 and the compression mechanism portion 13, and is rotatably supported by the main bearing 16.
  • the sub-shaft portion 15b located at the lower end portion of the rotating shaft 15 is rotatably supported by the sub-bearing 17.
  • the main bearing 16 and the auxiliary bearing 17 are also a part of the compression mechanism portion 13. In other words, the rotating shaft 15 is arranged so as to penetrate the compression mechanism portion 13.
  • the rotary shaft 15 is provided with a plurality, for example, three eccentric portions 36 between the spindle portion 15a supported by the main bearing 16 and the sub-shaft portion 15b supported by the sub-bearing 17.
  • Each eccentric portion 36 is a disk or a cylinder having a center that does not match the rotation center line C of the rotation axis 15.
  • a balancer 38 is provided at a protruding portion of the rotating shaft 15 protruding from the auxiliary bearing 17.
  • the compression mechanism unit 13 compresses the refrigerant introduced into the closed container 11.
  • the compression mechanism unit 13 sucks the gaseous refrigerant from the refrigerant pipe 8 and compresses it, and discharges the compressed high-temperature and high-pressure refrigerant into the closed container 11.
  • the compression mechanism unit 13 is a multi-cylinder type, for example, a 3-cylinder rotary type. As shown in FIGS. 1 and 2, the compression mechanism unit 13 includes a plurality of cylinders 42 each having a circular cylinder chamber 41, a plurality of annular rollers 43 arranged in each cylinder chamber 41, and each of them.
  • the cylinder 42 includes vanes 44 arranged in the radial direction of the cylinder chamber 41.
  • the roller 43 is fitted to the eccentric portion 36 of the rotating shaft 15.
  • the rotation shaft 15 is assumed to rotate counterclockwise in the plan view of the compressor 2. That is, when the rotating shaft 15 is rotating, the eccentric portion 36 shown in FIG. 2 viewed from below the rotating shaft 15 is counterclockwise indicated by a solid arrow R about the rotation center line C (see FIG. 1). Rotate around.
  • the roller 43 rotates eccentrically with respect to the central axis of the cylinder 42 and the rotating shaft 15 while being in contact with the inner wall of the cylinder 42 by the rotation of the rotating shaft 15 joined to the motor portion 12 (indicated by the solid line arrow R in FIG. 2). do.
  • the direction indicated by the solid arrow in FIG. 2 is the eccentric direction X of the roller 43.
  • the roller 43 is also called a rolling piston.
  • the vanes 44 are arranged in a straight line in the vertical direction in the compression mechanism unit 13. In other words, the vanes 44 are arranged at substantially the same position in the circumferential direction of the cylinder 42.
  • the vane 44 reciprocates in the radial direction of the cylinder chamber 41 while being pressed against the roller 43 by a vane spring (not shown). Therefore, the vane 44 divides the space between the cylinder 42 and the roller 43 into two in this radial direction.
  • the cylinder 42 closest to the motor unit 12 is the first cylinder 42A
  • the cylinder 42 farthest from the motor unit 12 is the third cylinder 42C
  • the cylinder is arranged between the first cylinder 42A and the third cylinder 42C.
  • 42 be the second cylinder 42B.
  • the first cylinder 42A, the second cylinder 42B, and the third cylinder 42C may be collectively referred to as a cylinder 42.
  • the compression mechanism portion 13 includes a main bearing 16 that closes the upper surface of the first cylinder 42A, a first partition plate 45A that closes the lower surface of the first cylinder 42A and the upper surface of the second cylinder 42B, and the lower surface and the third of the second cylinder 42B. It includes a second partition plate 45B that closes the upper surface of the cylinder 42C, and an auxiliary bearing 17 that closes the lower surface of the third cylinder 42C.
  • the upper surface of the first cylinder 42A is closed by the main bearing 16.
  • the lower surface of the first cylinder 42A is closed by the first partition plate 45A.
  • the upper surface of the second cylinder 42B is closed by the first partition plate 45A.
  • the lower surface of the second cylinder 42B is closed by the second partition plate 45B.
  • the upper surface of the third cylinder 42C is closed by the second partition plate 45B.
  • the lower surface of the third cylinder 42C is closed by the auxiliary bearing 17.
  • first cylinder 42A is sandwiched between the main bearing 16 and the first partition plate 45A.
  • the second cylinder 42B is sandwiched between the first partition plate 45A and the second partition plate 45B.
  • the third cylinder 42C is sandwiched between the second partition plate 45B and the auxiliary bearing 17.
  • the main bearing 16 and the first partition plate 45A are collectively fixed to the second cylinder 42B by a fastening member 46 such as a bolt. That is, the main bearing 16 and the first partition plate 45A are co-tightened to the second cylinder 42B by the fastening member 46.
  • the main bearing 16 includes a first discharge valve mechanism 51A that discharges the compressed refrigerant in the cylinder chamber 41 of the first cylinder 42A, and a first discharge muffler 52 (main muffler) that covers the first discharge valve mechanism 51A. , Are provided.
  • the first discharge valve mechanism 51A discharges when the pressure difference between the pressure in the cylinder chamber 41 of the first cylinder 42A and the pressure in the first discharge muffler 52 reaches a predetermined value due to the compression action of the compression mechanism unit 13.
  • the port (not shown) is opened to discharge the compressed refrigerant into the first discharge muffler 52.
  • the first discharge muffler 52 partitions the space where the refrigerant compressed by the cylinder 42 is discharged.
  • the first discharge muffler 52 has a discharge hole (not shown) connecting the inside and outside of the first discharge muffler 52.
  • the compressed refrigerant discharged into the first discharge muffler 52 is discharged into the closed container 11 through the discharge holes.
  • the second partition plate 45B is provided with a second discharge valve mechanism 51B for discharging the compressed refrigerant in the cylinder chamber 41 of the second cylinder 42B, and a discharge chamber 53.
  • the main bearing 16, the first cylinder 42A, the first partition plate 45A, and the second cylinder 42B have a first hole (not shown) for connecting the discharge chamber 53 of the second partition plate 45B into the first discharge muffler 52.
  • the second discharge valve mechanism 51B has a discharge port (a discharge port () when the pressure difference between the pressure in the cylinder chamber 41 and the pressure in the discharge chamber 53 of the second cylinder 42B reaches a predetermined value due to the compression action of the compression mechanism unit 13.
  • the second partition plate 45B includes a partition plate portion 45Ba and an intermediate bearing 45Bb that functions as a bearing that rotatably supports the intermediate shaft portion 15A of the rotating shaft 15. Is configured to include.
  • the auxiliary bearing 17, the third cylinder 42C, and the second partition plate 45B are collectively fixed to the second cylinder 42B by a fastening member 55 such as a bolt. That is, the auxiliary bearing 17, the third cylinder 42C, and the second partition plate 45B are co-tightened to the second cylinder 42B by the fastening member 55.
  • the auxiliary bearing 17 includes a third discharge valve mechanism 51C that discharges the compressed refrigerant in the cylinder chamber 41 of the third cylinder 42C, and a second discharge muffler 56 (secondary muffler) that covers the third discharge valve mechanism 51C. , Are provided.
  • the second discharge muffler 56 partitions the space where the refrigerant compressed by the third cylinder 42C is discharged.
  • the main bearing 16, the first cylinder 42A, the first partition plate 45A, the second cylinder 42B, the second partition plate 45B, and the third cylinder 42C connect the space in the second discharge muffler 56 into the first discharge muffler 52. It has a second hole 57.
  • the third discharge valve mechanism 51C discharges when the pressure difference between the pressure in the cylinder chamber 41 of the third cylinder 42C and the pressure in the second discharge muffler 56 reaches a predetermined value due to the compression action of the compression mechanism unit 13.
  • the port (not shown) is opened to discharge the compressed refrigerant into the second discharge muffler 56.
  • the refrigerant discharged into the second discharge muffler 56 is discharged into the first discharge muffler 52 through the second hole 57.
  • the refrigerant discharged into the first discharge muffler 52 joins the refrigerant compressed by the first cylinder 42A and the refrigerant compressed by the second cylinder 42B.
  • the maximum compression load that maximizes the compression load received from the gas is approximately orthogonal to the eccentric direction X, specifically, from the eccentric direction X. It occurs in the direction advanced by 90 degrees in the direction of rotation. Therefore, on the outer peripheral surface of the eccentric portion 36 in each cylinder 42, the maximum compression load is generated in the range indicated by the solid line arrow P1 in FIG.
  • the first hole may be a part of the second hole 57. Further, the discharge chamber 53 of the second partition plate 45B may be connected to the inside of the second discharge muffler 56. That is, the first hole may be connected to the inside of the second discharge muffler 56.
  • the first cylinder 42A is fixed to the closed container 11 by welding at a plurality of places, for example, to the frame 58 fixed by spot welding with a fastening member 59 such as a bolt. That is, the frame 58 supports the rotor 32 of the motor unit 12, the compression mechanism unit 13, and the rotating shaft 15 to the closed container 11 via the first cylinder 42A.
  • the center of gravity of the rotor 32 of the motor unit 12, the compression mechanism unit 13, and the airtight container 11 of the rotating shaft 15 in the height direction is located within the range of the thickness of the frame 58 (dimensions in the height direction of the compressor 2). It is preferable to do.
  • the balancer 38 is housed in the second discharge muffler 56 that covers the auxiliary bearing 17.
  • the balancer 38 is, for example, a disk having a center line parallel to the rotation center line C of the rotation shaft 15 or a fan-shaped plate requiring the rotation center line C of the rotation shaft 15.
  • the balancer 38 is provided at an eccentric position away from the center line of the balancer 38, and has a through hole 38a penetrating the balancer 38.
  • the lower end of the rotating shaft 15 is press-fitted into the through hole 38a of the balancer 38.
  • the amount of eccentricity of the through hole 38a is adjusted so as to reduce the imbalance of the rotating body of the compression mechanism portion 13 during the compression operation.
  • the plurality of suction pipes 61 penetrate the closed container 11 and are connected to the cylinder chamber 41 of each cylinder 42.
  • Each cylinder 42 has a suction hole connected to each suction pipe 61 and reaches the cylinder chamber 41.
  • the first suction pipe 61A is connected to the cylinder chamber 41 of the first cylinder 42A.
  • the second suction pipe 61B is connected to the cylinder chamber 41 of the second cylinder 42B.
  • the third suction pipe 61C is connected to the cylinder chamber 41 of the third cylinder 42C.
  • the number of the plurality of suction pipes 61 may be the same as that of the plurality of cylinders 42 as in the present embodiment, or may be shared by the two cylinders 42 and may be smaller than the number of the plurality of cylinders 42. good.
  • the second suction pipe 61B may be connected to the second partition plate 45B.
  • the second partition plate 45B is connected to the second partition plate 45B, and is branched into the cylinder chamber 41 of the second cylinder 42B and the cylinder chamber 41 of the third cylinder 42C, and is connected to the two cylinder chambers 41. (Not shown) is provided.
  • the lower part of the closed container 11 is filled with the lubricating oil 21. Most of the compression mechanism portion 13 is immersed in the lubricating oil 21 in the closed container 11.
  • the lubrication mechanism 22 pumps up the lubricating oil 21 in the closed container 11 and supplies it to the sliding portion of the compression mechanism portion 13.
  • the refueling mechanism 22 includes a pump 65 that pumps the lubricating oil 21 in the closed container 11, and an oil passage 66 that sends the lubricating oil 21 pumped by the pump 65 to the sliding portion of the compression mechanism portion 13.
  • the “sliding portion of the compression mechanism portion 13" is, for example, a gap between the eccentric portion 36 and the roller 43, a gap between the main bearing 16 and the rotary shaft 15, and a gap between the intermediate bearing 45Bb and the rotary shaft 15. It also includes a gap between the auxiliary bearing 17 and the rotating shaft 15.
  • the pump 65 is, for example, a screw pump (Archimedean screw, Archimedes' spiral).
  • the suction port of the screw pump is immersed in the lubricating oil 21 stored in the closed container 11.
  • the second discharge muffler 56 has a refueling mechanism insertion hole 68 that exposes the lower end portion of the rotating shaft 15 to the outside of the second discharge muffler 56.
  • the lower end of the rotating shaft 15 is immersed in the lubricating oil 21 in the closed container 11 through the lubrication mechanism insertion hole 68.
  • the rotary shaft 15 has a pump arrangement hole 69 that opens at the lower end portion of the rotary shaft 15 and extends toward the upper end portion of the rotary shaft 15.
  • the pump 65 is arranged in the pump arrangement hole 69 of the rotation shaft 15 and includes a rotor 71 that extends spirally along the rotation center line C of the rotation shaft 15.
  • the rotor 71 is rotationally integrated with the rotating shaft 15.
  • the rotor 71 rotates together with the rotary shaft 15 to continuously pump the lubricating oil 21 from the opening at the lower end of the rotary shaft 15 into the pump arrangement hole 69 of the rotary shaft 15.
  • the pump 65 is not limited to the rotor 71 as long as it is provided in the closed container 11 and can continuously supply the lubricating oil 21 into the pump arrangement hole 69 of the rotary shaft 15.
  • the pump 65 may be a turbo pump driven by utilizing the rotational driving force of the rotary shaft 15, or may be a positive displacement pump.
  • the pump arrangement hole 69 plays a part of the oil passage 66.
  • the oil passage 66 sends the lubricating oil 21 pumped up into the pump arrangement hole 69 of the rotary shaft 15 by the pump 65 that is rotationally integrated with the rotary shaft 15 to the sliding portion of the compression mechanism portion 13 for lubrication.
  • the oil passage 66 has a first cylinder oil supply hole 73A for supplying the lubricating oil 21 in the pump arrangement hole 69 to the gap between the eccentric portion 36 housed in the first cylinder 42A and the roller 43, and the pump arrangement hole 69.
  • the second cylinder refueling hole 73B for refueling the gap between the eccentric portion 36 and the roller 43 in which the lubricating oil 21 is housed in the second cylinder 42B, and the lubricating oil 21 in the pump arrangement hole 69 are housed in the third cylinder 42C. It has a third cylinder oil supply hole 73C for supplying oil to the gap between the eccentric portion 36 and the roller 43.
  • the main bearing oil supply hole 75A for supplying the lubricating oil 21 in the pump arrangement hole 69 to the gap between the main bearing 16 and the rotary shaft 15 and the lubricating oil 21 in the pump arrangement hole 69 are used as the auxiliary bearing 17. It has an auxiliary bearing oil supply hole 75B for supplying oil to the gap between the rotary shaft 15 and the rotary shaft 15.
  • the accumulator 7 prevents the liquid refrigerant that could not be completely gasified by the heat absorber 6 from being sucked into the compressor 2.
  • FIG. 3 is an enlarged view showing a cross section of an intermediate bearing of a compressor according to an embodiment of the present invention in the field of view of AA in FIG.
  • the intermediate bearing 45Bb faces the inner peripheral surface 45Bc through which the rotating shaft 15 is inserted in the vertical direction, that is, from the second cylinder 42B side to the third cylinder 42C side. It has a first lubrication groove 81 extending through the cylinder.
  • the first refueling groove 81 is recessed from the inner peripheral surface 45Bc toward the outer peripheral surface side of the intermediate bearing 45Bb, communicates with the second cylinder refueling hole 73B on the upper side, and reaches the second cylinder 42B. Further, the first refueling groove 81 reaches the partition plate portion 45Ba on the lower side and communicates with the third cylinder refueling hole 73C via the partition plate portion 45Ba.
  • the lubricating oil 21 is supplied to the sliding portion between the intermediate shaft portion 15A of the rotary shaft 15 and the intermediate bearing 45Bb through the first lubrication groove 81.
  • the pump 65 is pumped into the pump arrangement hole 69 of the rotary shaft 15 by the pump 65 which is integrally rotated with the rotary shaft 15.
  • the lubricating oil 21 flowing out from the second cylinder oil supply hole 73B and the third cylinder oil supply hole 73C flows into the first oil supply groove 81 of the intermediate shaft portion 15A to lubricate the gap between the intermediate shaft portion 15A and the intermediate bearing 45Bb. ..
  • the compression mechanism unit 13 compresses the gas in the space partitioned by the cylinder 42, the roller 43, and the vane 44.
  • the maximum compressive load generated in the cylinder 42 occurs at a position corresponding to the position of the vane 44.
  • the maximum compression load generated between each cylinder 42 and the eccentric portion 36 is generated at a position on the counter-rotation direction side from the position of the vane 44.
  • the vanes 44 of the three cylinders 42 are arranged on the same straight line in the vertical direction. Therefore, the maximum compression load generated in each cylinder 42 is generated on the same straight line in the vertical direction of the compression mechanism unit 13, that is, is generated in the same direction range of the cylinder 42.
  • a maximum load is generated on the inner peripheral surface 45Bc of the intermediate bearing 45Bb.
  • the maximum load of the inner peripheral surface 45Bc of the intermediate bearing 45Bb is, for example, the oil passage 66 from the position facing the position where the maximum compression load of the cylinder 42 is generated (solid arrow P1 in FIG. 2), that is, the position where the maximum compression load of the cylinder 42 is generated. It occurs at a position separated by (solid arrow P3 in FIG. 3).
  • the maximum load is also generated on the outer peripheral surface of the intermediate shaft portion 15A of the rotating shaft 15.
  • the maximum load on the outer peripheral surface of the intermediate shaft portion 15A is generated at a position (solid line arrow P2 in FIG. 3) that overlaps with the maximum load on the inner peripheral surface 45Bc of the intermediate bearing 45Bb.
  • the rotating shaft 15 When the gas is compressed by the cylinder 42, the rotating shaft 15 is rotating. Therefore, as shown in FIG. 3 when viewed from below the rotating shaft 15, the outer peripheral surface of the intermediate shaft portion 15A of the rotating shaft 15 is inside the intermediate bearings 45Bb facing the rotating center line C (see FIG. 1). It moves so as to cross the peripheral surface 45Bc counterclockwise indicated by the solid line arrow R. Further, in the compressor 2 of the present embodiment, since the compression mechanism portion 13 is a rotary type having three cylinders, the eccentric direction X of the rotating shaft 15 is directed at equal intervals at an angle corresponding to the number of cylinders (that is, 120 °). Has been done.
  • the maximum load on the outer peripheral surface of the intermediate shaft portion 15A is the position corresponding to the eccentric portion 36 of each of the first cylinder 42A, the second cylinder 42B, and the third cylinder 42C (three points indicated by arrows P2 in FIG. 3). ) Occurs one after another.
  • the first lubrication groove 81 becomes a solid line on the inner peripheral surface 45Bc of the intermediate bearing 45Bb which becomes the maximum load as the rotating shaft 15 rotates. Cross the range of arrow P3. That is, if the first lubrication groove 81 is provided on the outer peripheral surface of the intermediate shaft portion 15A, the first lubrication groove 81 is susceptible to a compression load. Further, when the compression mechanism portion 13 is a multi-cylinder rotary type, the range in which the maximum load is received on the outer peripheral surface of the intermediate shaft portion 15A (arrow P2 in FIG. 3) increases, and the first lubrication groove 81 receives a further compression load. Cheap. When the first lubrication groove 81 is arranged on the outer peripheral surface of the intermediate shaft portion 15A in this way, the lubrication reliability of the sliding portion between the rotating shaft 15 and the intermediate bearing 45Bb is lowered.
  • the first lubrication groove 81 is arranged outside the range of the inner peripheral surface 45Bc of the intermediate bearing 45Bb, more specifically, the solid line arrow P3 at which the compression load by each cylinder 42 is maximized. ..
  • the lubrication structure between the rotating shaft 15 and the intermediate bearing 45Bb includes the flow path cross-sectional area of the first oil supply groove 81, the flow path length of the first oil supply groove 81, and the first oil supply groove 81 and the oil passage 66 on the upstream side thereof.
  • Rotation is performed by appropriately setting at least one of the cross-sectional area of the second cylinder refueling hole 73B to be connected and the cross-sectional area of the third cylinder refueling hole 73C connecting the first refueling groove 81 and the oil passage 66 on the downstream side thereof.
  • the amount of oil supplied at the sliding portion between the shaft 15 and the intermediate bearing 45Bb is adjusted.
  • FIG. 4 is a cross-sectional view showing the auxiliary bearing of the compressor according to the embodiment of the present invention in the BB field of view in FIG.
  • the outer peripheral surface of the sub-shaft portion 15b supported by the sub-bearing 17 of the rotating shaft 15 (see FIG. 1) of the compressor 2 according to the present embodiment has a rotation direction of the rotating shaft 15 on the outer peripheral surface.
  • a second refueling groove 82 extending in the opposite direction and toward the third cylinder 42C is provided. That is, the second lubrication groove 82 faces the inner peripheral surface 78 of the auxiliary bearing 17.
  • the second refueling groove 82 is recessed toward the rotation center line C of the rotary shaft 15, is connected to the sub-bearing refueling hole 75B, and extends from the connection portion with the sub-bearing refueling hole 75B to reach the third cylinder 42C.
  • the second lubrication groove 82 extends spirally along the outer peripheral surface of the sub-shaft portion 15b.
  • the second lubrication groove 82 draws a clockwise spiral from the connection portion with the auxiliary bearing lubrication hole 75B toward the third cylinder 42C. ..
  • the lubricating oil 21 is supplied to the sliding portion between the sub-shaft portion 15b of the rotary shaft 15 and the sub-bearing 17 through the second lubrication groove 82.
  • the sub-shaft portion 15b receives the maximum compression load within the range of the solid line arrow P4 shown in FIG.
  • the auxiliary bearing 17 since the auxiliary bearing 17 receives only the compression load from the third cylinder 42C, the position where the compression load becomes maximum receives the maximum compression load within the range of the solid line arrow P5 shown in FIG.
  • the auxiliary bearing 17 is loaded over the entire circumference of the inner peripheral surface 78 due to the centrifugal force of the balancer 38. Therefore, when the oil supply groove is provided on the auxiliary bearing 17 side (that is, the inner peripheral surface 78 of the auxiliary bearing 17), a load due to centrifugal force acts on the oil supply groove, and it becomes difficult to form an oil film on the sliding portion.
  • the second oil supply groove 82 is provided on the outer peripheral surface of the sub-shaft portion 15b.
  • the compression load becomes the maximum value when the P4 portion which is the maximum compression load in the auxiliary shaft portion 15b of the rotary shaft 15 passes, and when the second lubrication groove 82 passes through.
  • the compression load is lower than the maximum value. That is, in the range of the solid line arrow P5 of the auxiliary bearing 17, the compression load fluctuates with increasing or decreasing with the rotation of the rotating shaft 15.
  • the inner peripheral surface 78 of the auxiliary bearing 17 passes through the P4 portion, which is the maximum compression load in the auxiliary shaft portion 15b, over the entire circumference. Therefore, it is preferable to provide the second oil supply groove 82 on the outer peripheral surface of the sub-shaft portion 15b that can pass through when the compression load is low in the range of the solid line arrow P5 of the sub-bearing 17.
  • the direction in which the balancer 38 is arranged is determined according to the eccentric direction in which the eccentric portion 36 of the rotating shaft 15 is arranged. Therefore, there are cases where the compression process is performed from the first cylinder 42A located above to the third cylinder 42C sequentially located below, and the compression process is performed from the third cylinder 42C located below to the first cylinder 42A sequentially located upward.
  • the direction in which the centrifugal force generated by the balancer 38 is generated differs depending on the case where the process is performed. In the case of the present embodiment, the former (compression from upper to lower) is in the direction indicated by the solid arrow M1 in FIG. 4, and the latter (compression from lower to upper) is in the direction indicated by the solid arrow M2 in FIG.
  • the sub-shaft portion 15b rotates with the driving of the rotating shaft 15 without changing the relative positions of the position of the second oil supply groove 82 and the directions M1 and M2 of the centrifugal force.
  • the lubricating structure of the rotating shaft 15 and the auxiliary bearing 17 having such a configuration is pumped into the pump arrangement hole 69 of the rotating shaft 15 by the pump 65 which is integrally rotated with the rotating shaft 15, and the lubricating oil flows out from the auxiliary bearing oil supply hole 75B.
  • 21 is made to flow into the second lubrication groove 82 of the rotating shaft 15.
  • the lubricating oil 21 that has flowed into the second lubrication groove 82 of the rotary shaft 15 flows from the auxiliary bearing lubrication hole 75B toward the third cylinder 42C as the rotary shaft 15 rotates, and the gap between the rotary shaft 15 and the auxiliary bearing 17 is reached. Lubricate.
  • the lubrication structure of the rotary shaft 15 and the auxiliary bearing 17 includes the flow path cross-sectional area of the second lubrication groove 82, the flow path length of the second lubrication groove 82, and the second lubrication groove 82 with respect to the rotation center line C of the rotary shaft 15.
  • the flow path cross-sectional area of the first refueling groove 81 and the second refueling groove 82 is set by a combination of the groove depth and the groove width of the first refueling groove 81 and the second refueling groove 82.
  • the length of the second refueling groove 82 according to the present embodiment is shorter than that around the outer peripheral surface of the rotating shaft 15. That is, the second lubrication groove 82 does not go around the rotating shaft 15 once. Therefore, the compressor 2 and the refrigeration cycle device 1 can easily process the second refueling groove 82.
  • the lubricating oil 21 pumped by the pump 65 is constantly supplied to the second oil supply groove 82 of the rotary shaft 15.
  • the second refueling groove 82 is open to the inside of the roller 43 of the third cylinder 42C. That is, the second lubrication groove 82 causes the lubricating oil 21 to flow out to the inside of the roller 43 of the third cylinder 42C while suppressing the amount of the lubricating oil 21 flowing out from the opening on the lower end side of the auxiliary bearing 17.
  • the compressor 2 and the refrigerating cycle device 1 are provided on one of the plurality of partition plates 45A and 45B, and rotate the intermediate shaft portion 15A of the rotating shaft 15. It has an intermediate bearing 45Bb that functions as a bearing that can support it.
  • the intermediate bearing 45Bb has a first oil supply groove 81 extending in the vertical direction and allowing the lubricating oil 21 to flow through the inner peripheral surface 45Bc through which the intermediate shaft portion 15A of the rotating shaft 15 is inserted.
  • the compressor 2 and the refrigerating cycle device 1 do not overlap with the portion (solid line arrows P2, P3) where the maximum value of the compression load is obtained by the rotation of the rotating shaft 15 as in the conventional compressor, and the first lubrication groove 81 Is provided.
  • the lubricating oil 21 flowing into the first lubrication groove 81 can reliably lubricate the entire gap between the rotating shaft 15 and the intermediate bearing 45Bb.
  • the compressor 2 and the refrigerating cycle device 1 are provided with vanes provided on the plurality of cylinders 42 and arranged in a straight line in the vertical direction, and the outer periphery of the sub-shaft portion 15b of the rotating shaft 15. It is provided with a second lubrication groove 82 provided on the surface and extending in the vertical direction to circulate the lubricating oil 21, and a balancer 38 provided on the protruding portion of the rotating shaft 15 protruding from the auxiliary bearing 17.
  • the compressor 2 and the refrigerating cycle device 1 suppress the bending of the rotating shaft 15 by arranging the balancer 38 in the protruding portion of the rotating shaft 15 protruding from the auxiliary bearing 17, that is, the second discharge muffler 56.
  • the imbalance of the rotating body of the compression mechanism unit 13 can be easily adjusted.
  • the sub-shaft portion 15b has a constant interval with the centrifugal force. Since the rotation is maintained, it is possible to prevent the second lubrication groove 82 from overlapping with the position where the maximum value of the compression load is reached. Therefore, the lubricating oil 21 flowing into the second lubrication groove 82 can form an oil film in the gap between the rotary shaft 15 and the auxiliary bearing 17, and the entire gap can be reliably lubricated.
  • the compressor 2 and the refrigerating cycle device 1 ensure the entire gap between the rotary shaft 15 and each bearing (intermediate bearing 45Bb, auxiliary bearing 17) by the first lubrication groove 81 and the second lubrication groove 82. Can be lubricated to.
  • the compression mechanism unit 13 can sequentially drive the first cylinder 42A arranged above the cylinders 42 stacked in the vertical direction to the third cylinder 42C arranged below to compress the refrigerant.
  • the sub-shaft portion 15b rotates with the driving of the rotating shaft 15 without changing the relative positions of the position of the second oil supply groove 82 and the directions M1 and M2 of the centrifugal force.
  • the closer the position where the compression load is maximized to the direction of the centrifugal force the more the second oil supply groove 82 is provided in the direction opposite to the position, so that the influence of the compression load and the centrifugal force can be avoided.
  • the compressor 2 and the refrigeration cycle device 1 include a compression mechanism unit 13 having three or more cylinders. Therefore, the compressor 2 and the refrigerating cycle device 1 are intermediate with the rotating shaft 15 even in the compression mechanism unit 13 having three or more cylinders, in which the adjustment of the imbalance of the rotating body of the compression mechanism unit 13 becomes more serious.
  • the gap between the bearing 45Bb and the auxiliary bearing 17 can be lubricated.
  • the refrigerating cycle device 1 and the compressor 2 according to the present embodiment it is possible to provide a lubrication structure capable of stably lubricating the sliding portions of the rotating shaft 15 and the intermediate bearing 45Bb and the auxiliary bearing 17. can.
  • stator 32 ... rotor, 33 ... outlet wire, 35 ... Rotor core, 36 ... Eccentric part, 38 ... Balancer, 38a ... Through hole, 41 ... Cylinder chamber, 42 ... Cylinder, 42A ... First cylinder, 42B ... Second cylinder, 42C ... Third cylinder, 43 ... Roller , 44 ... vane, 45A ... first partition plate, 45B ... second partition plate, 45Ba ... partition plate part, 45Bb ... intermediate bearing, 46 ... fastening member, 51A ... first discharge valve mechanism, 51B ... second discharge valve mechanism , 51C ... Third discharge valve mechanism, 52 ... First discharge muffler, 53 ... Discharge chamber, 55 ... Fastening member, 56 ...

Abstract

Provided are a compressor and a refrigeration cycle apparatus having a lubricating structure capable of stably lubricating a sliding portion between a rotary shaft and each bearing. A compression mechanism portion (13) of a compressor (2) is provided with: a main bearing (16) rotatably supporting a main shaft portion (15a) of a rotary shaft (15); a sub-bearing (17) rotatably supporting a sub-shaft portion (15b) of the rotary shaft (15); three or more annular cylinders (42) stacked on each other and arranged between the main bearing (16) and the sub-bearing (17); vanes (44) each arranged in each of the cylinders (42) and reciprocating in the radial direction of the cylinder (42); and a plurality of partition plates (45A, 45B) serving as partitions between the cylinders (42, 42) adjacent to each other. The partition plate (45B), which is one of the plurality of partition plates (45A, 45B), includes an intermediate bearing (45Bb) rotatably supporting an intermediate shaft portion (15A) of the rotary shaft (15). The intermediate bearing (45Bb) has a first oil supply groove (81) provided in an inner peripheral surface (45Bc), along which the rotary shaft (15) is to be inserted, and extending toward a second cylinder (42B).

Description

圧縮機、および冷凍サイクル装置Compressor and refrigeration cycle equipment
 本発明は、圧縮機、および冷凍サイクル装置に関する。 The present invention relates to a compressor and a refrigeration cycle device.
 潤滑油が貯留される縦置き円筒状の密閉容器を有する圧縮機筐体と、密閉容器の下部に配置される圧縮機構部と、密閉容器の上部に配置されて圧縮機構部を駆動する電動機部としてのモーターと、回転軸と、を備えるロータリー圧縮機が知られている。回転軸は、圧縮機筐体の上下に延びる中心線に沿って設けられている。圧縮機構部は、回転軸を介してモーターに連結されている。 A compressor housing having a vertically placed cylindrical airtight container in which lubricating oil is stored, a compression mechanism unit arranged at the bottom of the airtight container, and an electric motor unit arranged at the top of the airtight container to drive the compression mechanism unit. A rotary compressor is known to be equipped with a motor and a rotating shaft. The rotation axis is provided along a center line extending vertically in the compressor housing. The compression mechanism portion is connected to the motor via a rotating shaft.
 圧縮機構部は、環状のシリンダーと、シリンダーの上側を閉塞する上端板と、シリンダーの下側を閉塞する下端板と、上端板に設けられた主軸受と、下端板に設けられた副軸受と、を備えている。また、圧縮機構部は、回転軸の偏心部に嵌め合わされ、シリンダーの内周面に沿って公転する環状のピストンを備えている。ピストンは、シリンダー内のシリンダー室に配置されている。回転軸の主軸部は、主軸受に回転可能に支持され、回転軸の副軸部は、副軸受に回転可能に支持されている。 The compression mechanism includes an annular cylinder, an upper end plate that closes the upper side of the cylinder, a lower end plate that closes the lower side of the cylinder, a main bearing provided on the upper end plate, and an auxiliary bearing provided on the lower end plate. , Is equipped. Further, the compression mechanism portion includes an annular piston that is fitted to the eccentric portion of the rotating shaft and revolves along the inner peripheral surface of the cylinder. The piston is located in the cylinder chamber inside the cylinder. The main shaft portion of the rotating shaft is rotatably supported by the main bearing, and the sub-shaft portion of the rotating shaft is rotatably supported by the sub-bearing.
 副軸受の軸穴の内周面には、潤滑油を軸穴の下端から上端へ供給する螺旋状の給油溝が設けられている。給油溝は、回転軸の回転方向に対して傾斜し、かつ、回転軸の回転方向において下端から上端に向かって延びている。 The inner peripheral surface of the shaft hole of the auxiliary bearing is provided with a spiral lubrication groove that supplies lubricating oil from the lower end to the upper end of the shaft hole. The refueling groove is inclined with respect to the rotation direction of the rotation shaft and extends from the lower end to the upper end in the rotation direction of the rotation shaft.
 従来のロータリー圧縮機は、回転軸の回転によって、圧縮機筐体内に貯留された潤滑油を副軸受の軸穴の下端から上端へ延びる給油溝に沿って吸い上げる。吸い上げられた潤滑油は、回転軸と副軸受との摺動部位を潤滑する。 In the conventional rotary compressor, the lubricating oil stored in the compressor housing is sucked up along the lubrication groove extending from the lower end to the upper end of the shaft hole of the auxiliary bearing by the rotation of the rotating shaft. The sucked-up lubricating oil lubricates the sliding portion between the rotating shaft and the auxiliary bearing.
特開2019-183768号公報Japanese Unexamined Patent Publication No. 2019-183768
 従来のロータリー圧縮機は、圧縮時にガス負荷(圧縮負荷)が生じる。このガス負荷のピークが生じる方向は、例えば回転軸の偏心部の偏心方向に対して定まる。とりわけ、多気筒型のロータリー圧縮機の場合、回転軸の複数の偏心部の偏心方向は、気筒の数に応じて異なる方向を向く。具体的には、3気筒のロータリー圧縮機の回転軸の3つの偏心部の偏心方向は、例えば120°毎に三つの方向へ向く。このため、3気筒のロータリー圧縮機のガス負荷のピークとなる位置は、回転軸の外周面において3箇所となる。 In the conventional rotary compressor, a gas load (compression load) is generated during compression. The direction in which the peak of the gas load occurs is determined, for example, with respect to the eccentric direction of the eccentric portion of the rotating shaft. In particular, in the case of a multi-cylinder rotary compressor, the eccentric directions of the plurality of eccentric portions of the rotating shaft face different directions depending on the number of cylinders. Specifically, the eccentric directions of the three eccentric portions of the rotation shaft of the three-cylinder rotary compressor are directed to three directions at every 120 °, for example. Therefore, there are three peak positions of the gas load of the three-cylinder rotary compressor on the outer peripheral surface of the rotating shaft.
 また、多気筒型のロータリー圧縮機は、主軸受と副軸受との間に仕切板を備えている。この仕切板は、回転軸の偏心部を回転可能に支持する中間軸受として機能する。このため、例えば3気筒のロータリー圧縮機の中間軸受に生じるガス負荷のピークとなる位置は、3つの圧縮室において、それぞれどの位置に生じるかで決まる。 In addition, the multi-cylinder rotary compressor is equipped with a partition plate between the main bearing and the auxiliary bearing. This partition plate functions as an intermediate bearing that rotatably supports the eccentric portion of the rotating shaft. Therefore, for example, the position where the gas load peaks in the intermediate bearing of the three-cylinder rotary compressor is determined by the position in each of the three compression chambers.
 さらに、中間軸受と回転軸との摺動部位に給油溝を有する多気筒型のロータリー圧縮機の場合、回転軸の回転によって給油溝が配置された部位にガス負荷のピークとなる位置が重なる。この場合、給油溝を介して供給される潤滑油の油膜が形成され難くなり、潤滑信頼性が低下する。そのため、多気筒型のロータリー圧縮機では、中間軸受と回転軸との摺動部分を潤滑にすることが難しい。 Furthermore, in the case of a multi-cylinder rotary compressor that has a refueling groove in the sliding part between the intermediate bearing and the rotating shaft, the position where the gas load peaks overlaps with the part where the refueling groove is arranged due to the rotation of the rotating shaft. In this case, it becomes difficult to form an oil film of the lubricating oil supplied through the lubrication groove, and the lubrication reliability is lowered. Therefore, in a multi-cylinder rotary compressor, it is difficult to lubricate the sliding portion between the intermediate bearing and the rotating shaft.
 さらにまた、多気筒型のロータリー圧縮機は、圧縮機構部の圧縮運転時におけるアンバランスを低減するべく、回転軸の副軸受から突出した部位に設けられるバランサーを備えている場合がある。しかしながら、副軸受は、回転軸の回転によりバランサーの遠心力による負荷を内周面の全周に亘って受ける。このため、副軸受の内周面に給油溝を設けた場合、この遠心力による負荷が給油溝と重なることがあり、油膜が形成され難くなる。そのため、多気筒型のロータリー圧縮機では、副軸受の内周面に設けた給油溝によって回転軸と副軸受との摺動部分を潤滑にすることが難しい。 Furthermore, the multi-cylinder rotary compressor may be equipped with a balancer provided in a portion protruding from the auxiliary bearing of the rotating shaft in order to reduce the imbalance during the compression operation of the compression mechanism. However, the auxiliary bearing receives a load due to the centrifugal force of the balancer over the entire circumference of the inner peripheral surface due to the rotation of the rotating shaft. Therefore, when the oil supply groove is provided on the inner peripheral surface of the auxiliary bearing, the load due to this centrifugal force may overlap with the oil supply groove, and it becomes difficult to form an oil film. Therefore, in a multi-cylinder rotary compressor, it is difficult to lubricate the sliding portion between the rotating shaft and the auxiliary bearing by the oil supply groove provided on the inner peripheral surface of the auxiliary bearing.
 そこで、本発明は、回転軸と軸受との摺動部分を安定的に潤滑可能な潤滑構造を有する圧縮機および冷凍サイクル装置を提供することを目的とする。 Therefore, an object of the present invention is to provide a compressor and a refrigeration cycle device having a lubrication structure capable of stably lubricating the sliding portion between the rotating shaft and the bearing.
 前記の課題を解決するため本発明の実施形態に係る圧縮機は、上下方向に延びる中心線を有する円筒形状の密閉容器と、前記密閉容器内に導入される冷媒を圧縮する圧縮機構部と、主軸部、中間軸部、および副軸部を有し、前記中心線に沿って設けられる回転軸と、前記圧縮機構部に前記回転軸を介して連結し、前記圧縮機構部を駆動する電動機部と、前記密閉容器内に貯留される潤滑油を前記圧縮機構部へ給油する給油機構部と、を備え、前記圧縮機構部は、前記主軸部を回転可能に支持する主軸受と、前記副軸部を回転可能に支持する副軸受と、前記主軸受と前記副軸受との間に3つ以上積層して配置される環状のシリンダーと、各前記シリンダーに配置され、前記シリンダーの半径方向に往復運動するベーンと、隣り合う前記シリンダー間を仕切る複数の仕切板と、を備え、前記複数の仕切板のうちの1つの仕切板は、前記中間軸部を回転可能に支持する軸受として機能する中間軸受を含み、前記中間軸受は、前記回転軸を挿し通す内周面に、前記上下方向に延び前記潤滑油を流通させる第一給油溝を有している。 In order to solve the above problems, the compressor according to the embodiment of the present invention includes a cylindrical closed container having a center line extending in the vertical direction, a compression mechanism unit for compressing the refrigerant introduced into the closed container, and a compression mechanism unit. An electric motor unit having a main shaft portion, an intermediate shaft portion, and a sub-shaft portion, connected to a rotating shaft provided along the center line via the rotating shaft, and driving the compression mechanism portion. A main bearing that rotatably supports the main shaft portion and a sub-shaft that rotatably supports the main shaft portion. An auxiliary bearing that rotatably supports the portion, an annular cylinder arranged by stacking three or more between the main bearing and the auxiliary bearing, and an annular cylinder arranged in each of the cylinders and reciprocating in the radial direction of the cylinder. An intermediate that includes a moving vane and a plurality of partition plates that partition between adjacent cylinders, and one of the plurality of partition plates functions as a bearing that rotatably supports the intermediate shaft portion. The intermediate bearing includes a bearing, and the intermediate bearing has a first oil supply groove extending in the vertical direction and allowing the lubricating oil to flow on an inner peripheral surface through which the rotating shaft is inserted.
 本発明の実施形態に係る圧縮機の前記ベーンは、上下方向へ一直線に並んで配置され、前記回転軸は、前記副軸部の外周面に設けられて上下方向に延び前記潤滑油を流通させる第二給油溝と、前記副軸受から突出する突出部分とを有し、前記圧縮機構部は、前記突出部分に設けられるバランサーを備えていることが好ましい。 The vanes of the compressor according to the embodiment of the present invention are arranged in a straight line in the vertical direction, and the rotary shaft is provided on the outer peripheral surface of the sub-shaft portion and extends in the vertical direction to flow the lubricating oil. It is preferable to have a second lubrication groove and a protruding portion protruding from the auxiliary bearing, and the compression mechanism portion is provided with a balancer provided in the protruding portion.
 本発明の実施形態に係る圧縮機の前記圧縮機構部は、上下方向に積層される前記シリンダーのうち上方に配置された前記シリンダーから下方に配置された前記シリンダーへと順次駆動して前記冷媒を圧縮することが好ましい。 The compression mechanism portion of the compressor according to the embodiment of the present invention sequentially drives the refrigerant from the cylinders arranged above to the cylinders arranged below among the cylinders stacked in the vertical direction. It is preferable to compress it.
 また、本発明の実施形態に係る冷凍サイクル装置は、前記圧縮機と、放熱器と、膨張装置と、吸熱器と、前記圧縮機、前記放熱器、前記膨張装置、および前記吸熱器を接続して冷媒を流通させる冷媒配管と、を備えている。 Further, the refrigerating cycle device according to the embodiment of the present invention connects the compressor, the radiator, the expander, the heat absorber, the compressor, the radiator, the expander, and the heat absorber. It is equipped with a refrigerant pipe for circulating the refrigerant.
 そこで、本発明は、回転軸と軸受との摺動部分を安定的に潤滑可能な潤滑構造を有する圧縮機および冷凍サイクル装置を提供できる。 Therefore, the present invention can provide a compressor and a refrigeration cycle device having a lubrication structure capable of stably lubricating the sliding portion between the rotating shaft and the bearing.
実施形態に係る冷凍サイクル装置および圧縮機を概略的に示す説明図。An explanatory diagram schematically showing a refrigerating cycle apparatus and a compressor according to an embodiment. 実施形態に係る圧縮機の圧縮機構部を示す横断面図。The cross-sectional view which shows the compression mechanism part of the compressor which concerns on embodiment. 実施形態に係る圧縮機の中間軸受を示す横断面図。The cross-sectional view which shows the intermediate bearing of the compressor which concerns on embodiment. 実施形態に係る圧縮機の副軸受を示す横断面図。The cross-sectional view which shows the auxiliary bearing of the compressor which concerns on embodiment.
 本発明に係る圧縮機、および冷凍サイクル装置の実施形態について図1から図4を参照して説明する。なお、複数の図面中、同じまたは相当する構成には同一の符号が付されている。 An embodiment of the compressor and the refrigeration cycle apparatus according to the present invention will be described with reference to FIGS. 1 to 4. In the plurality of drawings, the same or corresponding configurations are designated by the same reference numerals.
 図1は、本発明の実施形態に係る冷凍サイクル装置および圧縮機の概略的な図である。なお、図1において、圧縮機は縦断面で示されている。 FIG. 1 is a schematic diagram of a refrigeration cycle device and a compressor according to an embodiment of the present invention. In FIG. 1, the compressor is shown in a vertical cross section.
 図2は、本発明の実施形態に係る圧縮機の圧縮機構部における下方から見た横断面図である。 FIG. 2 is a cross-sectional view of the compression mechanism portion of the compressor according to the embodiment of the present invention as viewed from below.
 図1に示すように、本実施形態に係る冷凍サイクル装置1は、例えば空気調和機である。冷凍サイクル装置1は、密閉型の回転圧縮機2(以下、単に「圧縮機2」と言う。)と、放熱器3(radiator)と、膨張装置5と、吸熱器6(heat absorber)と、アキュムレーター7と、冷媒配管8と、を備えている。冷媒配管8は、圧縮機2と放熱器3と膨張装置5と吸熱器6とアキュムレーター7とを順次に接続して冷媒を流通させる。放熱器3は、凝縮器(condenser)とも呼ばれる。吸熱器6は蒸発器(evaporator)とも呼ばれる。 As shown in FIG. 1, the refrigerating cycle device 1 according to the present embodiment is, for example, an air conditioner. The refrigeration cycle device 1 includes a closed-type rotary compressor 2 (hereinafter, simply referred to as “compressor 2”), a radiator 3 (radiator), an expansion device 5, a heat absorber 6 (heat absorber), and the like. It includes an accumulator 7 and a refrigerant pipe 8. The refrigerant pipe 8 sequentially connects the compressor 2, the radiator 3, the expansion device 5, the heat absorber 6, and the accumulator 7 to circulate the refrigerant. The radiator 3 is also referred to as a condenser. The endothermic absorber 6 is also called an evaporator.
 圧縮機2は、冷媒配管8を通じて吸熱器6を通過した冷媒を吸い込み、圧縮し、冷媒配管8を通じて高温高圧の冷媒を放熱器3へ吐き出す。 The compressor 2 sucks in the refrigerant that has passed through the heat absorber 6 through the refrigerant pipe 8, compresses it, and discharges the high-temperature and high-pressure refrigerant to the radiator 3 through the refrigerant pipe 8.
 圧縮機2は、縦置きされる円筒状の密閉容器11と、密閉容器11内の上半部に収容されるオープン巻線型電動機部12(以下、単に「電動機部12」と言う。)と、密閉容器11内の下半部に収容される圧縮機構部13と、電動機部12の回転駆動力を圧縮機構部13へ伝達する回転軸15と、回転軸15を回転自在に支持する主軸受16と、主軸受16と協働して回転軸15を回転自在に支持する副軸受17と、密閉容器11内に貯留される潤滑油21(冷凍機油)を圧縮機構部13へ給油する給油機構22と、を備えている。 The compressor 2 includes a cylindrical airtight container 11 placed vertically, an open winding type motor unit 12 (hereinafter, simply referred to as “motor unit 12”) housed in the upper half of the airtight container 11. The compression mechanism unit 13 housed in the lower half of the closed container 11, the rotary shaft 15 that transmits the rotational driving force of the motor unit 12 to the compression mechanism unit 13, and the main bearing 16 that rotatably supports the rotary shaft 15. A sub-bearing 17 that rotatably supports the rotary shaft 15 in cooperation with the main bearing 16, and a refueling mechanism 22 that refuels the lubricating oil 21 (refrigerator oil) stored in the closed container 11 to the compression mechanism unit 13. And have.
 縦置きされる密閉容器11の中心線は、上下方向へ延びている。密閉容器11は、上下方向に延びる円筒形状の胴部11aと、胴部の上端部を塞ぐ鏡板11bと、胴部の下端部を塞ぐ鏡板11cと、を備えている。 The center line of the vertically placed closed container 11 extends in the vertical direction. The closed container 11 includes a cylindrical body portion 11a extending in the vertical direction, a end plate 11b that closes the upper end portion of the body portion, and a end plate 11c that closes the lower end portion of the body portion.
 密閉容器11の上側の鏡板11bには、冷媒を密閉容器11外へ吐出する吐出管8aが接続されている。吐出管8aは冷媒配管8に繋がれている。また、密閉容器11の上側の鏡板11bには、電動機部12へ供給される電力を密閉容器11の外側から内側へ導く一対の密封端子25、26と、一対の端子台27、28と、が設けられている。それぞれの端子台27、28は、それぞれの密封端子25、26に設けられている。それぞれの端子台27、28には、それぞれの密封端子25、26に電気的に接続されて電力を供給する複数の電力線29が固定される。電力線29は、いわゆるリード線である。 A discharge pipe 8a for discharging the refrigerant to the outside of the closed container 11 is connected to the end plate 11b on the upper side of the closed container 11. The discharge pipe 8a is connected to the refrigerant pipe 8. Further, on the end plate 11b on the upper side of the closed container 11, a pair of sealed terminals 25 and 26 and a pair of terminal blocks 27 and 28 that guide the electric power supplied to the electric motor unit 12 from the outside to the inside of the closed container 11 are provided. It is provided. The terminal blocks 27 and 28 are provided on the sealed terminals 25 and 26, respectively. A plurality of power lines 29 that are electrically connected to the sealed terminals 25 and 26 to supply electric power are fixed to the terminal blocks 27 and 28, respectively. The power line 29 is a so-called lead wire.
 電動機部12は、圧縮機構部13を回転させる駆動力を発生させる。電動機部12は、圧縮機構部13よりも上方に配置されている。電動機部12は密閉容器11の内面に固定される筒状の固定子31と、固定子31の内側に配置されて圧縮機構部13の回転駆動力を発生させる回転子32と、固定子31から引き出されて一対の密封端子25、26に電気的に接続される複数の口出線33と、を備えている。 The motor unit 12 generates a driving force for rotating the compression mechanism unit 13. The electric motor unit 12 is arranged above the compression mechanism unit 13. The electric motor unit 12 is composed of a tubular stator 31 fixed to the inner surface of the closed container 11, a rotor 32 arranged inside the stator 31 to generate a rotational driving force of the compression mechanism unit 13, and a stator 31. It is provided with a plurality of outlet wires 33 that are drawn out and electrically connected to the pair of sealed terminals 25 and 26.
 回転子32は、磁石収容孔(図示省略)を有する回転子鉄心35と、磁石収容孔に収容される永久磁石(図示省略)と、を備えている。回転子32は、回転軸15に固定されている。回転子32および回転軸15の回転中心線Cは、固定子31の中心線に実質的に一致している。また、回転子32および回転軸15の回転中心線Cは、密閉容器11の中心線に実質的に一致している。 The rotor 32 includes a rotor core 35 having a magnet accommodating hole (not shown) and a permanent magnet accommodated in the magnet accommodating hole (not shown). The rotor 32 is fixed to the rotating shaft 15. The rotation center line C of the rotor 32 and the rotation shaft 15 substantially coincides with the center line of the stator 31. Further, the rotation center line C of the rotor 32 and the rotation shaft 15 substantially coincides with the center line of the closed container 11.
 複数の口出線33は、密封端子25、26を通じて固定子31に電力を供給する電力線であり、いわゆるリード線である。口出線33は、電動機部12の種類に応じて複数配線される。本実施形態では6本の口出線33が配線されている。 The plurality of outlet wires 33 are power lines that supply electric power to the stator 31 through the sealed terminals 25 and 26, and are so-called lead wires. A plurality of outlet wires 33 are wired according to the type of the motor unit 12. In this embodiment, six outlet wires 33 are wired.
 なお、電動機部12は、オープン巻線型の他に、複数系統、例えば、二系統の三相巻線を備える電動機部であっても良い。 The motor unit 12 may be a motor unit having a plurality of systems, for example, two systems of three-phase winding, in addition to the open winding type.
 回転軸15は、電動機部12と圧縮機構部13とを連結している。回転軸15は、電動機部12が発生させる回転駆動力を圧縮機構部13に伝達する。回転軸15は、回転子32に回転一体であって、回転子32より下方へ延びている。 The rotating shaft 15 connects the motor unit 12 and the compression mechanism unit 13. The rotating shaft 15 transmits the rotational driving force generated by the electric motor unit 12 to the compression mechanism unit 13. The rotation shaft 15 is rotationally integrated with the rotor 32 and extends downward from the rotor 32.
 回転軸15の中間部分に位置する主軸部15aは、電動機部12と圧縮機構部13とを繋ぎ、主軸受16によって回転可能に支持されている。回転軸15の下端部分に位置する副軸部15bは、副軸受17によって回転可能に支持されている。主軸受16および副軸受17は、圧縮機構部13の一部でもある。換言すると、回転軸15は、圧縮機構部13を貫通して配置されている。 The spindle portion 15a located in the middle portion of the rotating shaft 15 connects the motor portion 12 and the compression mechanism portion 13, and is rotatably supported by the main bearing 16. The sub-shaft portion 15b located at the lower end portion of the rotating shaft 15 is rotatably supported by the sub-bearing 17. The main bearing 16 and the auxiliary bearing 17 are also a part of the compression mechanism portion 13. In other words, the rotating shaft 15 is arranged so as to penetrate the compression mechanism portion 13.
 また、回転軸15は、主軸受16に支持されている主軸部15aと副軸受17に支持されている副軸部15bとの間に、複数、例えば3つの偏心部36を備えている。それぞれの偏心部36は、回転軸15の回転中心線Cに不一致な中心を有する円盤、あるいは円柱である。回転軸15の副軸受17から突出する突出部分には、バランサー38が設けられている。 Further, the rotary shaft 15 is provided with a plurality, for example, three eccentric portions 36 between the spindle portion 15a supported by the main bearing 16 and the sub-shaft portion 15b supported by the sub-bearing 17. Each eccentric portion 36 is a disk or a cylinder having a center that does not match the rotation center line C of the rotation axis 15. A balancer 38 is provided at a protruding portion of the rotating shaft 15 protruding from the auxiliary bearing 17.
 圧縮機構部13は、密閉容器11内に導入される冷媒を圧縮する。電動機部12が回転軸15を回転駆動することによって、圧縮機構部13は、冷媒配管8からガス状の冷媒を吸込んで圧縮し、圧縮された高温高圧の冷媒を密閉容器11内に吐出する。 The compression mechanism unit 13 compresses the refrigerant introduced into the closed container 11. When the motor unit 12 rotates and drives the rotary shaft 15, the compression mechanism unit 13 sucks the gaseous refrigerant from the refrigerant pipe 8 and compresses it, and discharges the compressed high-temperature and high-pressure refrigerant into the closed container 11.
 圧縮機構部13は、多気筒型、例えば3気筒のロータリー式である。圧縮機構部13は、図1および図2に示すように、それぞれが円形のシリンダー室41を有する複数のシリンダー42と、それぞれのシリンダー室41内に配置される複数の環状のローラー43と、各シリンダー42においてシリンダー室41の径方向に配置されたベーン44と、を備えている。ローラー43は、回転軸15の偏心部36に嵌め合わされている。 The compression mechanism unit 13 is a multi-cylinder type, for example, a 3-cylinder rotary type. As shown in FIGS. 1 and 2, the compression mechanism unit 13 includes a plurality of cylinders 42 each having a circular cylinder chamber 41, a plurality of annular rollers 43 arranged in each cylinder chamber 41, and each of them. The cylinder 42 includes vanes 44 arranged in the radial direction of the cylinder chamber 41. The roller 43 is fitted to the eccentric portion 36 of the rotating shaft 15.
 なお、回転軸15は、圧縮機2の平面視において反時計回りに回転するものとする。すなわち、回転軸15が回転しているとき、回転軸15の下方から見た図2に示される偏心部36は、回転中心線C(図1参照)を軸に、実線矢印Rで示す反時計回りに回転する。 The rotation shaft 15 is assumed to rotate counterclockwise in the plan view of the compressor 2. That is, when the rotating shaft 15 is rotating, the eccentric portion 36 shown in FIG. 2 viewed from below the rotating shaft 15 is counterclockwise indicated by a solid arrow R about the rotation center line C (see FIG. 1). Rotate around.
 ローラー43は、電動機部12と接合された回転軸15の回転(図2中、実線矢印Rで示す)によりシリンダー42の内壁に接しながらシリンダー42の中心軸と回転軸15とに対して偏心回転する。このとき、図2中の実線矢印で示す方向がローラー43の偏心方向Xとなる。ローラー43は、ローリングピストンとも呼ばれる。ベーン44は、圧縮機構部13において、上下方向へ一直線に並んで配置されている。換言すると、ベーン44は、シリンダー42の周方向において略同一の位置に配置されている。また、ベーン44は、不図示のベーンスプリングによってローラー43に押し付けられながらシリンダー室41の径方向に往復運動する。このため、ベーン44は、この径方向においてシリンダー42とローラー43との間の空間を2つに区画する。 The roller 43 rotates eccentrically with respect to the central axis of the cylinder 42 and the rotating shaft 15 while being in contact with the inner wall of the cylinder 42 by the rotation of the rotating shaft 15 joined to the motor portion 12 (indicated by the solid line arrow R in FIG. 2). do. At this time, the direction indicated by the solid arrow in FIG. 2 is the eccentric direction X of the roller 43. The roller 43 is also called a rolling piston. The vanes 44 are arranged in a straight line in the vertical direction in the compression mechanism unit 13. In other words, the vanes 44 are arranged at substantially the same position in the circumferential direction of the cylinder 42. Further, the vane 44 reciprocates in the radial direction of the cylinder chamber 41 while being pressed against the roller 43 by a vane spring (not shown). Therefore, the vane 44 divides the space between the cylinder 42 and the roller 43 into two in this radial direction.
 ここで、電動機部12に最も近いシリンダー42を第一シリンダー42Aとし、電動機部12から最も遠いシリンダー42を第三シリンダー42Cとし、第一シリンダー42Aと第三シリンダー42Cとの間に配置されるシリンダー42を第二シリンダー42Bとする。なお、以下では、これら第一シリンダー42A、第二シリンダー42Bおよび第三シリンダー42Cを総称してシリンダー42と称する場合がある。 Here, the cylinder 42 closest to the motor unit 12 is the first cylinder 42A, the cylinder 42 farthest from the motor unit 12 is the third cylinder 42C, and the cylinder is arranged between the first cylinder 42A and the third cylinder 42C. Let 42 be the second cylinder 42B. In the following, the first cylinder 42A, the second cylinder 42B, and the third cylinder 42C may be collectively referred to as a cylinder 42.
 圧縮機構部13は、第一シリンダー42Aの上面を塞ぐ主軸受16と、第一シリンダー42Aの下面および第二シリンダー42Bの上面を塞ぐ第一仕切板45Aと、第二シリンダー42Bの下面および第三シリンダー42Cの上面を塞ぐ第二仕切板45Bと、第三シリンダー42Cの下面を塞ぐ副軸受17と、を備えている。 The compression mechanism portion 13 includes a main bearing 16 that closes the upper surface of the first cylinder 42A, a first partition plate 45A that closes the lower surface of the first cylinder 42A and the upper surface of the second cylinder 42B, and the lower surface and the third of the second cylinder 42B. It includes a second partition plate 45B that closes the upper surface of the cylinder 42C, and an auxiliary bearing 17 that closes the lower surface of the third cylinder 42C.
 換言すると、第一シリンダー42Aの上面は、主軸受16によって閉鎖されている。第一シリンダー42Aの下面は、第一仕切板45Aによって閉鎖されている。第二シリンダー42Bの上面は、第一仕切板45Aによって閉鎖されている。第二シリンダー42Bの下面は、第二仕切板45Bによって閉鎖されている。第三シリンダー42Cの上面は、第二仕切板45Bによって閉鎖されている。第三シリンダー42Cの下面は、副軸受17によって閉鎖されている。 In other words, the upper surface of the first cylinder 42A is closed by the main bearing 16. The lower surface of the first cylinder 42A is closed by the first partition plate 45A. The upper surface of the second cylinder 42B is closed by the first partition plate 45A. The lower surface of the second cylinder 42B is closed by the second partition plate 45B. The upper surface of the third cylinder 42C is closed by the second partition plate 45B. The lower surface of the third cylinder 42C is closed by the auxiliary bearing 17.
 つまり、第一シリンダー42Aは、主軸受16と第一仕切板45Aとの間に挟み込まれている。第二シリンダー42Bは、第一仕切板45Aと第二仕切板45Bとの間に挟み込まれている。第三シリンダー42Cは、第二仕切板45Bと副軸受17との間に挟み込まれている。 That is, the first cylinder 42A is sandwiched between the main bearing 16 and the first partition plate 45A. The second cylinder 42B is sandwiched between the first partition plate 45A and the second partition plate 45B. The third cylinder 42C is sandwiched between the second partition plate 45B and the auxiliary bearing 17.
 主軸受16および第一仕切板45Aは、ボルトなどの締結部材46によって第二シリンダー42Bに一括して固定されている。つまり、主軸受16および第一仕切板45Aは、締結部材46によって第二シリンダー42Bに共締めされている。主軸受16には、第一シリンダー42Aのシリンダー室41内で圧縮された冷媒を吐出する第一吐出弁機構51Aと、第一吐出弁機構51Aに覆い被さる第一吐出マフラー52(主マフラー)と、が設けられている。第一吐出弁機構51Aは、圧縮機構部13の圧縮作用にともない第一シリンダー42Aのシリンダー室41内の圧力と第一吐出マフラー52内の圧力との圧力差が所定値に達したときに吐出ポート(図示省略)を開放して、圧縮された冷媒を第一吐出マフラー52内に吐出する。 The main bearing 16 and the first partition plate 45A are collectively fixed to the second cylinder 42B by a fastening member 46 such as a bolt. That is, the main bearing 16 and the first partition plate 45A are co-tightened to the second cylinder 42B by the fastening member 46. The main bearing 16 includes a first discharge valve mechanism 51A that discharges the compressed refrigerant in the cylinder chamber 41 of the first cylinder 42A, and a first discharge muffler 52 (main muffler) that covers the first discharge valve mechanism 51A. , Are provided. The first discharge valve mechanism 51A discharges when the pressure difference between the pressure in the cylinder chamber 41 of the first cylinder 42A and the pressure in the first discharge muffler 52 reaches a predetermined value due to the compression action of the compression mechanism unit 13. The port (not shown) is opened to discharge the compressed refrigerant into the first discharge muffler 52.
 第一吐出マフラー52は、シリンダー42で圧縮される冷媒が吐出される空間を仕切っている。第一吐出マフラー52は、第一吐出マフラー52の内外を繋ぐ吐出孔(図示省略)を有している。第一吐出マフラー52内に吐出した圧縮冷媒は、吐出孔を通じて密閉容器11内へ吐出する。 The first discharge muffler 52 partitions the space where the refrigerant compressed by the cylinder 42 is discharged. The first discharge muffler 52 has a discharge hole (not shown) connecting the inside and outside of the first discharge muffler 52. The compressed refrigerant discharged into the first discharge muffler 52 is discharged into the closed container 11 through the discharge holes.
 第二仕切板45Bには、第二シリンダー42Bのシリンダー室41内で圧縮された冷媒を吐出する第二吐出弁機構51B、および吐出室53が設けられている。主軸受16、第一シリンダー42A、第一仕切板45A、および第二シリンダー42Bは、第二仕切板45Bの吐出室53を第一吐出マフラー52内に繋げる第一孔(図示省略)を有している。第二吐出弁機構51Bは、圧縮機構部13の圧縮作用にともない第二シリンダー42Bのシリンダー室41内の圧力と吐出室53内の圧力との圧力差が所定値に達したときに吐出ポート(図示省略)を開放して、圧縮された冷媒を吐出室53内に吐出する。吐出室53内に吐出した冷媒は、第一孔を通って第一吐出マフラー52内に吐出する。第一孔を通って第一吐出マフラー52内に吐出した冷媒は、第一シリンダー42Aで圧縮された冷媒に合流する。なお、詳細は後述するが、本実施形態の場合、第二仕切板45Bは、仕切板部45Baと、回転軸15の中間軸部15Aを回転可能に支持する軸受として機能する中間軸受45Bbと、を含んで構成されている。 The second partition plate 45B is provided with a second discharge valve mechanism 51B for discharging the compressed refrigerant in the cylinder chamber 41 of the second cylinder 42B, and a discharge chamber 53. The main bearing 16, the first cylinder 42A, the first partition plate 45A, and the second cylinder 42B have a first hole (not shown) for connecting the discharge chamber 53 of the second partition plate 45B into the first discharge muffler 52. ing. The second discharge valve mechanism 51B has a discharge port (a discharge port () when the pressure difference between the pressure in the cylinder chamber 41 and the pressure in the discharge chamber 53 of the second cylinder 42B reaches a predetermined value due to the compression action of the compression mechanism unit 13. (Not shown) is opened, and the compressed refrigerant is discharged into the discharge chamber 53. The refrigerant discharged into the discharge chamber 53 is discharged into the first discharge muffler 52 through the first hole. The refrigerant discharged into the first discharge muffler 52 through the first hole joins the refrigerant compressed by the first cylinder 42A. Although details will be described later, in the case of the present embodiment, the second partition plate 45B includes a partition plate portion 45Ba and an intermediate bearing 45Bb that functions as a bearing that rotatably supports the intermediate shaft portion 15A of the rotating shaft 15. Is configured to include.
 副軸受17、第三シリンダー42C、および第二仕切板45Bは、ボルトなどの締結部材55によって第二シリンダー42Bに一括して固定されている。つまり、副軸受17、第三シリンダー42C、および第二仕切板45Bは、締結部材55によって第二シリンダー42Bに共締めされている。副軸受17には、第三シリンダー42Cのシリンダー室41内で圧縮された冷媒を吐出する第三吐出弁機構51Cと、第三吐出弁機構51Cに覆い被さる第二吐出マフラー56(副マフラー)と、が設けられている。第二吐出マフラー56は、第三シリンダー42Cで圧縮される冷媒が吐出される空間を仕切っている。主軸受16、第一シリンダー42A、第一仕切板45A、第二シリンダー42B、第二仕切板45B、および第三シリンダー42Cは、第二吐出マフラー56内の空間を第一吐出マフラー52内に繋げる第二孔57を有している。第三吐出弁機構51Cは、圧縮機構部13の圧縮作用にともない第三シリンダー42Cのシリンダー室41内の圧力と第二吐出マフラー56内の圧力との圧力差が所定値に達したときに吐出ポート(図示省略)を開放して、圧縮された冷媒を第二吐出マフラー56内に吐出する。第二吐出マフラー56内に吐出した冷媒は、第二孔57を通って第一吐出マフラー52内に吐出する。第一吐出マフラー52内に吐出した冷媒は、第一シリンダー42Aで圧縮された冷媒、および第二シリンダー42Bで圧縮された冷媒に合流する。 The auxiliary bearing 17, the third cylinder 42C, and the second partition plate 45B are collectively fixed to the second cylinder 42B by a fastening member 55 such as a bolt. That is, the auxiliary bearing 17, the third cylinder 42C, and the second partition plate 45B are co-tightened to the second cylinder 42B by the fastening member 55. The auxiliary bearing 17 includes a third discharge valve mechanism 51C that discharges the compressed refrigerant in the cylinder chamber 41 of the third cylinder 42C, and a second discharge muffler 56 (secondary muffler) that covers the third discharge valve mechanism 51C. , Are provided. The second discharge muffler 56 partitions the space where the refrigerant compressed by the third cylinder 42C is discharged. The main bearing 16, the first cylinder 42A, the first partition plate 45A, the second cylinder 42B, the second partition plate 45B, and the third cylinder 42C connect the space in the second discharge muffler 56 into the first discharge muffler 52. It has a second hole 57. The third discharge valve mechanism 51C discharges when the pressure difference between the pressure in the cylinder chamber 41 of the third cylinder 42C and the pressure in the second discharge muffler 56 reaches a predetermined value due to the compression action of the compression mechanism unit 13. The port (not shown) is opened to discharge the compressed refrigerant into the second discharge muffler 56. The refrigerant discharged into the second discharge muffler 56 is discharged into the first discharge muffler 52 through the second hole 57. The refrigerant discharged into the first discharge muffler 52 joins the refrigerant compressed by the first cylinder 42A and the refrigerant compressed by the second cylinder 42B.
 このような圧縮工程では、各偏心部36の外周面では、ガスから受ける圧縮負荷が最大となる最大圧縮負荷が概ね偏心方向Xに対して直交する方向、具体的には、概ね偏心方向Xから回転方向側に90度進んだ方向に生じる。そのため、各シリンダー42における偏心部36の外周面においては、図2の実線矢印P1で示す範囲に最大圧縮負荷が生じる。 In such a compression step, on the outer peripheral surface of each eccentric portion 36, the maximum compression load that maximizes the compression load received from the gas is approximately orthogonal to the eccentric direction X, specifically, from the eccentric direction X. It occurs in the direction advanced by 90 degrees in the direction of rotation. Therefore, on the outer peripheral surface of the eccentric portion 36 in each cylinder 42, the maximum compression load is generated in the range indicated by the solid line arrow P1 in FIG.
 なお、第一孔は、第二孔57の一部であっても良い。また、第二仕切板45Bの吐出室53は、第二吐出マフラー56内に繋がれていても良い。つまり、第一孔は、第二吐出マフラー56内に繋がれていても良い。 The first hole may be a part of the second hole 57. Further, the discharge chamber 53 of the second partition plate 45B may be connected to the inside of the second discharge muffler 56. That is, the first hole may be connected to the inside of the second discharge muffler 56.
 第一シリンダー42Aは、密閉容器11に複数箇所で溶接、例えばスポット溶接によって固定されたフレーム58にボルトなどの締結部材59で固定されている。つまり、フレーム58は、第一シリンダー42Aを介して電動機部12の回転子32、圧縮機構部13、および回転軸15を密閉容器11に支えている。なお、電動機部12の回転子32、圧縮機構部13、および回転軸15の密閉容器11の高さ方向における重心は、フレーム58の厚み(圧縮機2の高さ方向における寸法)の範囲に位置していることが好ましい。 The first cylinder 42A is fixed to the closed container 11 by welding at a plurality of places, for example, to the frame 58 fixed by spot welding with a fastening member 59 such as a bolt. That is, the frame 58 supports the rotor 32 of the motor unit 12, the compression mechanism unit 13, and the rotating shaft 15 to the closed container 11 via the first cylinder 42A. The center of gravity of the rotor 32 of the motor unit 12, the compression mechanism unit 13, and the airtight container 11 of the rotating shaft 15 in the height direction is located within the range of the thickness of the frame 58 (dimensions in the height direction of the compressor 2). It is preferable to do.
 バランサー38は、副軸受17を覆う第二吐出マフラー56内に収容されている。バランサー38は、例えば、回転軸15の回転中心線C方向に平行な中心線を有する円板や、回転軸15の回転中心線Cを要とする扇形板である。バランサー38は、バランサー38の中心線から離れて偏心した位置に設けられて、バランサー38を貫通する貫通孔38aを有している。バランサー38の貫通孔38aには、回転軸15の下端部が圧入されている。貫通孔38aの偏心量は、圧縮運転時の圧縮機構部13の回転体のアンバランスを低減できるよう調整される。 The balancer 38 is housed in the second discharge muffler 56 that covers the auxiliary bearing 17. The balancer 38 is, for example, a disk having a center line parallel to the rotation center line C of the rotation shaft 15 or a fan-shaped plate requiring the rotation center line C of the rotation shaft 15. The balancer 38 is provided at an eccentric position away from the center line of the balancer 38, and has a through hole 38a penetrating the balancer 38. The lower end of the rotating shaft 15 is press-fitted into the through hole 38a of the balancer 38. The amount of eccentricity of the through hole 38a is adjusted so as to reduce the imbalance of the rotating body of the compression mechanism portion 13 during the compression operation.
 ところで、回転子32の上方に突出する回転軸15の上端部にバランサーを設ける場合には、このバランサーと回転軸15を支える軸受(主軸受16)との距離は、回転子32の軸方向寸法に依存する。このため、この距離に比べると、本実施形態のように副軸受17から突出する回転軸15の下端部にバランサー38を設ける場合には、バランサー38と回転軸15を支える軸受(副軸受17)との距離が極めて短縮される。そのため、本実施形態のようにバランサー38を配置することで、回転軸15および回転子32の撓みが抑制される。 By the way, when a balancer is provided at the upper end of the rotating shaft 15 protruding above the rotor 32, the distance between the balancer and the bearing (main bearing 16) supporting the rotating shaft 15 is the axial dimension of the rotor 32. Depends on. Therefore, compared to this distance, when the balancer 38 is provided at the lower end of the rotating shaft 15 protruding from the auxiliary bearing 17 as in the present embodiment, the bearing supporting the balancer 38 and the rotating shaft 15 (auxiliary bearing 17). The distance to and from is extremely shortened. Therefore, by arranging the balancer 38 as in the present embodiment, the bending of the rotating shaft 15 and the rotor 32 is suppressed.
 複数の吸込管61は、密閉容器11を貫いて、それぞれのシリンダー42のシリンダー室41に接続されている。それぞれのシリンダー42は、それぞれの吸込管61に繋がってシリンダー室41に到達する吸込孔を有している。第一吸込管61Aは、第一シリンダー42Aのシリンダー室41に繋がれている。第二吸込管61Bは、第二シリンダー42Bのシリンダー室41に繋がれている。第三吸込管61Cは、第三シリンダー42Cのシリンダー室41に繋がれている。なお、複数の吸込管61の数は、本実施形態のように複数のシリンダー42と同数であっても良いし、2つのシリンダー42で共有されていて、複数のシリンダー42より少数であっても良い。例えば、第二吸込管61Bは、第二仕切板45Bに繋がれていても良い。第二仕切板45Bには、第二仕切板45Bに繋がれ、かつ第二シリンダー42Bのシリンダー室41、および第三シリンダー42Cのシリンダー室41に分岐して2つのシリンダー室41に繋がる冷媒通路(図示省略)が設けられる。 The plurality of suction pipes 61 penetrate the closed container 11 and are connected to the cylinder chamber 41 of each cylinder 42. Each cylinder 42 has a suction hole connected to each suction pipe 61 and reaches the cylinder chamber 41. The first suction pipe 61A is connected to the cylinder chamber 41 of the first cylinder 42A. The second suction pipe 61B is connected to the cylinder chamber 41 of the second cylinder 42B. The third suction pipe 61C is connected to the cylinder chamber 41 of the third cylinder 42C. The number of the plurality of suction pipes 61 may be the same as that of the plurality of cylinders 42 as in the present embodiment, or may be shared by the two cylinders 42 and may be smaller than the number of the plurality of cylinders 42. good. For example, the second suction pipe 61B may be connected to the second partition plate 45B. The second partition plate 45B is connected to the second partition plate 45B, and is branched into the cylinder chamber 41 of the second cylinder 42B and the cylinder chamber 41 of the third cylinder 42C, and is connected to the two cylinder chambers 41. (Not shown) is provided.
 密閉容器11の下部は潤滑油21で満たされている。そして、圧縮機構部13の大部分は、密閉容器11内の潤滑油21中に浸されている。 The lower part of the closed container 11 is filled with the lubricating oil 21. Most of the compression mechanism portion 13 is immersed in the lubricating oil 21 in the closed container 11.
 給油機構22は、密閉容器11内の潤滑油21を汲み上げて、圧縮機構部13の摺動部に供給する。給油機構22は、密閉容器11内の潤滑油21を汲み上げるポンプ65と、ポンプ65で汲み上げた潤滑油21を圧縮機構部13の摺動部へ送り込む油路66と、を含んでいる。 The lubrication mechanism 22 pumps up the lubricating oil 21 in the closed container 11 and supplies it to the sliding portion of the compression mechanism portion 13. The refueling mechanism 22 includes a pump 65 that pumps the lubricating oil 21 in the closed container 11, and an oil passage 66 that sends the lubricating oil 21 pumped by the pump 65 to the sliding portion of the compression mechanism portion 13.
 ここで、「圧縮機構部13の摺動部」とは、例えば、偏心部36とローラー43との隙間、主軸受16と回転軸15との隙間、中間軸受45Bbと回転軸15との隙間、および、副軸受17と回転軸15との隙間を含んでいる。 Here, the "sliding portion of the compression mechanism portion 13" is, for example, a gap between the eccentric portion 36 and the roller 43, a gap between the main bearing 16 and the rotary shaft 15, and a gap between the intermediate bearing 45Bb and the rotary shaft 15. It also includes a gap between the auxiliary bearing 17 and the rotating shaft 15.
 ポンプ65は、例えば、スクリューポンプ(アルキメディアン・スクリュー、アルキメデスの螺旋)である。スクリューポンプの吸込口は、密閉容器11に貯留されている潤滑油21に浸っている。 The pump 65 is, for example, a screw pump (Archimedean screw, Archimedes' spiral). The suction port of the screw pump is immersed in the lubricating oil 21 stored in the closed container 11.
 ここで、第二吐出マフラー56は、回転軸15の下端部を第二吐出マフラー56外に露出させる給油機構挿通孔68を有している。回転軸15の下端部は、給油機構挿通孔68を通じて密閉容器11内の潤滑油21に浸されている。また、回転軸15は、回転軸15の下端部に開口し、回転軸15の上端部へ向かって延びるポンプ配置穴69を有している。 Here, the second discharge muffler 56 has a refueling mechanism insertion hole 68 that exposes the lower end portion of the rotating shaft 15 to the outside of the second discharge muffler 56. The lower end of the rotating shaft 15 is immersed in the lubricating oil 21 in the closed container 11 through the lubrication mechanism insertion hole 68. Further, the rotary shaft 15 has a pump arrangement hole 69 that opens at the lower end portion of the rotary shaft 15 and extends toward the upper end portion of the rotary shaft 15.
 そして、ポンプ65は、回転軸15のポンプ配置穴69内に配置されて、回転軸15の回転中心線Cに沿って螺旋状に延びるローター71を備えている。ローター71は、回転軸15に回転一体化されている。ローター71は、回転軸15とともに回転することで、回転軸15の下端部の開口から回転軸15のポンプ配置穴69内へ潤滑油21を連続的に汲み上げる。 The pump 65 is arranged in the pump arrangement hole 69 of the rotation shaft 15 and includes a rotor 71 that extends spirally along the rotation center line C of the rotation shaft 15. The rotor 71 is rotationally integrated with the rotating shaft 15. The rotor 71 rotates together with the rotary shaft 15 to continuously pump the lubricating oil 21 from the opening at the lower end of the rotary shaft 15 into the pump arrangement hole 69 of the rotary shaft 15.
 なお、ポンプ65は、密閉容器11内に設けられて回転軸15のポンプ配置穴69内に潤滑油21を連続的に供給できるものであれば、ローター71に限られない。ポンプ65は、回転軸15の回転駆動力を利用して駆動されるターボ形ポンプであっても良いし、容積ポンプであっても良い。この場合には、ポンプ配置穴69は、油路66の一部の役割を担う。 The pump 65 is not limited to the rotor 71 as long as it is provided in the closed container 11 and can continuously supply the lubricating oil 21 into the pump arrangement hole 69 of the rotary shaft 15. The pump 65 may be a turbo pump driven by utilizing the rotational driving force of the rotary shaft 15, or may be a positive displacement pump. In this case, the pump arrangement hole 69 plays a part of the oil passage 66.
 油路66は、回転軸15に回転一体のポンプ65によって回転軸15のポンプ配置穴69に汲み上げられた潤滑油21を圧縮機構部13の摺動部へ送り潤滑する。 The oil passage 66 sends the lubricating oil 21 pumped up into the pump arrangement hole 69 of the rotary shaft 15 by the pump 65 that is rotationally integrated with the rotary shaft 15 to the sliding portion of the compression mechanism portion 13 for lubrication.
 油路66は、ポンプ配置穴69内の潤滑油21を第一シリンダー42Aに収容されている偏心部36とローラー43との隙間に給油する第一シリンダー給油孔73Aと、ポンプ配置穴69内の潤滑油21を第二シリンダー42Bに収容されている偏心部36とローラー43との隙間に給油する第二シリンダー給油孔73Bと、ポンプ配置穴69内の潤滑油21を第三シリンダー42Cに収容されている偏心部36とローラー43との隙間に給油する第三シリンダー給油孔73Cと、を有している。 The oil passage 66 has a first cylinder oil supply hole 73A for supplying the lubricating oil 21 in the pump arrangement hole 69 to the gap between the eccentric portion 36 housed in the first cylinder 42A and the roller 43, and the pump arrangement hole 69. The second cylinder refueling hole 73B for refueling the gap between the eccentric portion 36 and the roller 43 in which the lubricating oil 21 is housed in the second cylinder 42B, and the lubricating oil 21 in the pump arrangement hole 69 are housed in the third cylinder 42C. It has a third cylinder oil supply hole 73C for supplying oil to the gap between the eccentric portion 36 and the roller 43.
 また、油路66は、ポンプ配置穴69内の潤滑油21を主軸受16と回転軸15との隙間に給油する主軸受給油孔75Aと、ポンプ配置穴69内の潤滑油21を副軸受17と回転軸15との隙間に給油する副軸受給油孔75Bと、を有している。 Further, in the oil passage 66, the main bearing oil supply hole 75A for supplying the lubricating oil 21 in the pump arrangement hole 69 to the gap between the main bearing 16 and the rotary shaft 15 and the lubricating oil 21 in the pump arrangement hole 69 are used as the auxiliary bearing 17. It has an auxiliary bearing oil supply hole 75B for supplying oil to the gap between the rotary shaft 15 and the rotary shaft 15.
 アキュムレーター7は、吸熱器6でガス化しきれなかった液状の冷媒が圧縮機2に吸い込まれることを防ぐ。 The accumulator 7 prevents the liquid refrigerant that could not be completely gasified by the heat absorber 6 from being sucked into the compressor 2.
 次いで、回転軸15と中間軸受45Bbとの潤滑構造について説明する。 Next, the lubrication structure between the rotary shaft 15 and the intermediate bearing 45Bb will be described.
 図3は、本発明の実施形態に係る圧縮機の中間軸受の横断面を図1におけるA-A視野で示す拡大図である。 FIG. 3 is an enlarged view showing a cross section of an intermediate bearing of a compressor according to an embodiment of the present invention in the field of view of AA in FIG.
 図1および図3に示すように、圧縮機構部13において、中間軸受45Bbは、回転軸15を挿し通す内周面45Bcに、上下方向、すなわち第二シリンダー42B側から第三シリンダー42C側へ向かって延びる第一給油溝81を有している。 As shown in FIGS. 1 and 3, in the compression mechanism portion 13, the intermediate bearing 45Bb faces the inner peripheral surface 45Bc through which the rotating shaft 15 is inserted in the vertical direction, that is, from the second cylinder 42B side to the third cylinder 42C side. It has a first lubrication groove 81 extending through the cylinder.
 第一給油溝81は、内周面45Bcから中間軸受45Bbの外周面側へ向かって窪み、上方側で第二シリンダー給油孔73Bと連通し、第二シリンダー42Bに達している。また、第一給油溝81は、下方側で仕切板部45Baに達し、仕切板部45Baを介して第三シリンダー給油孔73Cと連通している。潤滑油21は、第一給油溝81を通って、回転軸15の中間軸部15Aと中間軸受45Bbとの摺動部分に供給される。 The first refueling groove 81 is recessed from the inner peripheral surface 45Bc toward the outer peripheral surface side of the intermediate bearing 45Bb, communicates with the second cylinder refueling hole 73B on the upper side, and reaches the second cylinder 42B. Further, the first refueling groove 81 reaches the partition plate portion 45Ba on the lower side and communicates with the third cylinder refueling hole 73C via the partition plate portion 45Ba. The lubricating oil 21 is supplied to the sliding portion between the intermediate shaft portion 15A of the rotary shaft 15 and the intermediate bearing 45Bb through the first lubrication groove 81.
 具体的に、このような構成の回転軸15の中間軸部15Aと中間軸受45Bbとの潤滑構造では、回転軸15に回転一体のポンプ65によって回転軸15のポンプ配置穴69に汲み上げられ、かつ第二シリンダー給油孔73Bおよび第三シリンダー給油孔73Cから流れ出す潤滑油21を、中間軸部15Aの第一給油溝81に流入させて、中間軸部15Aと中間軸受45Bbとの隙間を潤滑にする。 Specifically, in the lubrication structure of the intermediate shaft portion 15A of the rotary shaft 15 and the intermediate bearing 45Bb having such a configuration, the pump 65 is pumped into the pump arrangement hole 69 of the rotary shaft 15 by the pump 65 which is integrally rotated with the rotary shaft 15. The lubricating oil 21 flowing out from the second cylinder oil supply hole 73B and the third cylinder oil supply hole 73C flows into the first oil supply groove 81 of the intermediate shaft portion 15A to lubricate the gap between the intermediate shaft portion 15A and the intermediate bearing 45Bb. ..
 ここで、シリンダー42でガスを圧縮する際に生じる負荷について説明する。圧縮機構部13は、シリンダー42、ローラー43、およびベーン44によって2つに区画された空間においてガスを圧縮する。シリンダー42において発生する最大圧縮負荷は、ベーン44の位置に対応した位置に生じる。具体的には、各シリンダー42と偏心部36の間に発生する最大圧縮負荷は、ベーン44の位置より反回転方向側の位置に生じる。また、3つのシリンダー42のベーン44は、上下方向へ同一直線上に配置されている。このため、各シリンダー42において発生する最大圧縮負荷は、圧縮機構部13の上下方向の同一直線上に生じ、つまり、シリンダー42の同一の方向の範囲に生じる。 Here, the load generated when the gas is compressed by the cylinder 42 will be described. The compression mechanism unit 13 compresses the gas in the space partitioned by the cylinder 42, the roller 43, and the vane 44. The maximum compressive load generated in the cylinder 42 occurs at a position corresponding to the position of the vane 44. Specifically, the maximum compression load generated between each cylinder 42 and the eccentric portion 36 is generated at a position on the counter-rotation direction side from the position of the vane 44. Further, the vanes 44 of the three cylinders 42 are arranged on the same straight line in the vertical direction. Therefore, the maximum compression load generated in each cylinder 42 is generated on the same straight line in the vertical direction of the compression mechanism unit 13, that is, is generated in the same direction range of the cylinder 42.
 シリンダー42の最大圧縮負荷の反力として、中間軸受45Bbの内周面45Bcに最大負荷が生じる。中間軸受45Bbの内周面45Bcの最大負荷は、例えば、シリンダー42の最大圧縮負荷が生じる位置(図2の実線矢印P1)の対向位置、つまりシリンダー42の最大圧縮負荷が生じる位置から油路66を介して離隔する位置(図3の実線矢印P3)に生じる。また、中間軸受45Bbの内周面45Bcの最大負荷の反作用として、回転軸15の中間軸部15Aの外周面にも最大負荷が生じる。中間軸部15Aの外周面における最大負荷は、中間軸受45Bbの内周面45Bcの最大負荷と重なる位置(図3の実線矢印P2)に生じる。 As a reaction force of the maximum compression load of the cylinder 42, a maximum load is generated on the inner peripheral surface 45Bc of the intermediate bearing 45Bb. The maximum load of the inner peripheral surface 45Bc of the intermediate bearing 45Bb is, for example, the oil passage 66 from the position facing the position where the maximum compression load of the cylinder 42 is generated (solid arrow P1 in FIG. 2), that is, the position where the maximum compression load of the cylinder 42 is generated. It occurs at a position separated by (solid arrow P3 in FIG. 3). Further, as a reaction of the maximum load on the inner peripheral surface 45Bc of the intermediate bearing 45Bb, the maximum load is also generated on the outer peripheral surface of the intermediate shaft portion 15A of the rotating shaft 15. The maximum load on the outer peripheral surface of the intermediate shaft portion 15A is generated at a position (solid line arrow P2 in FIG. 3) that overlaps with the maximum load on the inner peripheral surface 45Bc of the intermediate bearing 45Bb.
 シリンダー42でガスを圧縮する際には、回転軸15が回転している。そのため、回転軸15の下方から見た図3に示すように、回転軸15の中間軸部15Aの外周面は、回転中心線C(図1参照)を軸に、対向する中間軸受45Bbの内周面45Bcを実線矢印Rで示す反時計回りに横切るように移動する。また、本実施形態の圧縮機2は、圧縮機構部13が3気筒のロータリー式であるため、回転軸15の偏心方向Xが気筒数に応じた角度(すなわち、120°)で等間隔に向けられている。これらにより、中間軸部15Aの外周面における最大負荷は、第一シリンダー42A、第二シリンダー42B、および第三シリンダー42Cのそれぞれの偏心部36に応じた位置(図3の矢印P2で示す3箇所)において順々に生じる。 When the gas is compressed by the cylinder 42, the rotating shaft 15 is rotating. Therefore, as shown in FIG. 3 when viewed from below the rotating shaft 15, the outer peripheral surface of the intermediate shaft portion 15A of the rotating shaft 15 is inside the intermediate bearings 45Bb facing the rotating center line C (see FIG. 1). It moves so as to cross the peripheral surface 45Bc counterclockwise indicated by the solid line arrow R. Further, in the compressor 2 of the present embodiment, since the compression mechanism portion 13 is a rotary type having three cylinders, the eccentric direction X of the rotating shaft 15 is directed at equal intervals at an angle corresponding to the number of cylinders (that is, 120 °). Has been done. As a result, the maximum load on the outer peripheral surface of the intermediate shaft portion 15A is the position corresponding to the eccentric portion 36 of each of the first cylinder 42A, the second cylinder 42B, and the third cylinder 42C (three points indicated by arrows P2 in FIG. 3). ) Occurs one after another.
 そのため、第一給油溝81を仮に中間軸部15Aの外周面に設けた場合、回転軸15の回転に伴って第一給油溝81は、最大負荷となる中間軸受45Bbの内周面45Bcにおける実線矢印P3の範囲を横切る。つまり、第一給油溝81を仮に中間軸部15Aの外周面に設けた場合には、第1給油溝81は、圧縮負荷を受け易い。また、圧縮機構部13が多気筒ロータリー式である場合、中間軸部15Aの外周面において最大負荷を受ける範囲(図3の矢印P2)が多くなり、第一給油溝81はさらに圧縮負荷を受けやすい。このように、第一給油溝81を中間軸部15Aの外周面に配置した場合、回転軸15と中間軸受45Bbとの摺動部分の潤滑信頼性が低下することとなる。 Therefore, if the first lubrication groove 81 is provided on the outer peripheral surface of the intermediate shaft portion 15A, the first lubrication groove 81 becomes a solid line on the inner peripheral surface 45Bc of the intermediate bearing 45Bb which becomes the maximum load as the rotating shaft 15 rotates. Cross the range of arrow P3. That is, if the first lubrication groove 81 is provided on the outer peripheral surface of the intermediate shaft portion 15A, the first lubrication groove 81 is susceptible to a compression load. Further, when the compression mechanism portion 13 is a multi-cylinder rotary type, the range in which the maximum load is received on the outer peripheral surface of the intermediate shaft portion 15A (arrow P2 in FIG. 3) increases, and the first lubrication groove 81 receives a further compression load. Cheap. When the first lubrication groove 81 is arranged on the outer peripheral surface of the intermediate shaft portion 15A in this way, the lubrication reliability of the sliding portion between the rotating shaft 15 and the intermediate bearing 45Bb is lowered.
 そこで、本実施形態では、中間軸受45Bbの内周面45Bc、より具体的には、各シリンダー42による圧縮負荷が最大となる実線矢印P3の範囲以外に、第一給油溝81を配置している。 Therefore, in the present embodiment, the first lubrication groove 81 is arranged outside the range of the inner peripheral surface 45Bc of the intermediate bearing 45Bb, more specifically, the solid line arrow P3 at which the compression load by each cylinder 42 is maximized. ..
 回転軸15と中間軸受45Bbとの潤滑構造は、第一給油溝81の流路断面積、第一給油溝81の流路長さ、第一給油溝81とその上流側の油路66とを繋ぐ第二シリンダー給油孔73Bの断面積、第一給油溝81とその下流側の油路66とを繋ぐ第三シリンダー給油孔73Cの断面積、の少なくともいずれかを適宜に設定することで、回転軸15と中間軸受45Bbとの摺動部分における給油量が調整される。 The lubrication structure between the rotating shaft 15 and the intermediate bearing 45Bb includes the flow path cross-sectional area of the first oil supply groove 81, the flow path length of the first oil supply groove 81, and the first oil supply groove 81 and the oil passage 66 on the upstream side thereof. Rotation is performed by appropriately setting at least one of the cross-sectional area of the second cylinder refueling hole 73B to be connected and the cross-sectional area of the third cylinder refueling hole 73C connecting the first refueling groove 81 and the oil passage 66 on the downstream side thereof. The amount of oil supplied at the sliding portion between the shaft 15 and the intermediate bearing 45Bb is adjusted.
 次に、回転軸15と副軸受17との潤滑構造について説明する。 Next, the lubrication structure of the rotating shaft 15 and the auxiliary bearing 17 will be described.
 図4は、本発明の実施形態に係る圧縮機の副軸受を図1におけるB-B視野で示す横断面図である。 FIG. 4 is a cross-sectional view showing the auxiliary bearing of the compressor according to the embodiment of the present invention in the BB field of view in FIG.
 図4に示すように、本実施形態に係る圧縮機2の回転軸15(図1参照)の副軸受17によって支持されている副軸部15bの外周面には、回転軸15の回転方向の逆方向かつ第三シリンダー42Cへ向かって延びる第二給油溝82が設けられている。つまり、第二給油溝82は、副軸受17の内周面78を臨んでいる。第二給油溝82は、回転軸15の回転中心線Cへ向かって窪み、副軸受給油孔75Bに繋がり、かつ副軸受給油孔75Bとの接続部分から延びて第三シリンダー42Cに達している。第二給油溝82は、副軸部15bの外周面に沿って螺旋状に延びている。平面視において反時計回りに回転軸15を回転させる圧縮機2では、第二給油溝82は、副軸受給油孔75Bとの接続部分から第三シリンダー42Cへ向かって時計回りの螺旋を描いている。潤滑油21は、第二給油溝82を通って、回転軸15の副軸部15bと副軸受17との摺動部分に供給される。 As shown in FIG. 4, the outer peripheral surface of the sub-shaft portion 15b supported by the sub-bearing 17 of the rotating shaft 15 (see FIG. 1) of the compressor 2 according to the present embodiment has a rotation direction of the rotating shaft 15 on the outer peripheral surface. A second refueling groove 82 extending in the opposite direction and toward the third cylinder 42C is provided. That is, the second lubrication groove 82 faces the inner peripheral surface 78 of the auxiliary bearing 17. The second refueling groove 82 is recessed toward the rotation center line C of the rotary shaft 15, is connected to the sub-bearing refueling hole 75B, and extends from the connection portion with the sub-bearing refueling hole 75B to reach the third cylinder 42C. The second lubrication groove 82 extends spirally along the outer peripheral surface of the sub-shaft portion 15b. In the compressor 2 that rotates the rotating shaft 15 counterclockwise in a plan view, the second lubrication groove 82 draws a clockwise spiral from the connection portion with the auxiliary bearing lubrication hole 75B toward the third cylinder 42C. .. The lubricating oil 21 is supplied to the sliding portion between the sub-shaft portion 15b of the rotary shaft 15 and the sub-bearing 17 through the second lubrication groove 82.
 ここで、回転軸15の回転に伴って副軸部15bは、図4中に示す実線矢印P4の範囲で最大圧縮負荷を受ける。また、副軸受17は、第三シリンダー42Cからの圧縮負荷のみを受けるため、圧縮負荷の最大となる位置は図4中に示す実線矢印P5の範囲で最大圧縮負荷を受けることとなる。加えて、副軸受17は、バランサー38による遠心力により、内周面78の全周に亘って負荷を受けることとなる。そのため、副軸受17側(すなわち、副軸受17の内周面78)に給油溝を設ける場合、給油溝に対して遠心力による負荷が作用し、摺動部分に油膜の形成が困難となる。 Here, with the rotation of the rotating shaft 15, the sub-shaft portion 15b receives the maximum compression load within the range of the solid line arrow P4 shown in FIG. Further, since the auxiliary bearing 17 receives only the compression load from the third cylinder 42C, the position where the compression load becomes maximum receives the maximum compression load within the range of the solid line arrow P5 shown in FIG. In addition, the auxiliary bearing 17 is loaded over the entire circumference of the inner peripheral surface 78 due to the centrifugal force of the balancer 38. Therefore, when the oil supply groove is provided on the auxiliary bearing 17 side (that is, the inner peripheral surface 78 of the auxiliary bearing 17), a load due to centrifugal force acts on the oil supply groove, and it becomes difficult to form an oil film on the sliding portion.
 そこで、本実施形態の圧縮機2では、副軸部15bの外周面に第二給油溝82を設けている。なお、副軸受17の実線矢印P5の範囲では、回転軸15の副軸部15bにおける最大圧縮負荷となるP4部分が通過する際に圧縮負荷が最大値となり、第二給油溝82が通過する際に圧縮負荷が最大値より低下している。つまり、副軸受17の実線矢印P5の範囲では、回転軸15の回転に伴って圧縮負荷が高くなったり、低くなったりと変動する。これに対し、副軸受17の内周面78は、全周に亘って副軸部15bにおける最大圧縮負荷となるP4部分が通過する。よって、副軸受17の実線矢印P5の範囲における圧縮負荷が低いときに通過可能な副軸部15bの外周面に第二給油溝82を設けることが好ましい。 Therefore, in the compressor 2 of the present embodiment, the second oil supply groove 82 is provided on the outer peripheral surface of the sub-shaft portion 15b. In the range of the solid line arrow P5 of the auxiliary bearing 17, the compression load becomes the maximum value when the P4 portion which is the maximum compression load in the auxiliary shaft portion 15b of the rotary shaft 15 passes, and when the second lubrication groove 82 passes through. The compression load is lower than the maximum value. That is, in the range of the solid line arrow P5 of the auxiliary bearing 17, the compression load fluctuates with increasing or decreasing with the rotation of the rotating shaft 15. On the other hand, the inner peripheral surface 78 of the auxiliary bearing 17 passes through the P4 portion, which is the maximum compression load in the auxiliary shaft portion 15b, over the entire circumference. Therefore, it is preferable to provide the second oil supply groove 82 on the outer peripheral surface of the sub-shaft portion 15b that can pass through when the compression load is low in the range of the solid line arrow P5 of the sub-bearing 17.
 また、このような圧縮機構部13では、回転軸15の偏心部36が配置された偏心方向に応じてバランサー38を配置する方向が定まる。そのため、上方に位置する第一シリンダー42Aから順次下方に位置する第三シリンダー42Cへと圧縮工程を行う場合と、下方に位置する第三シリンダー42Cから順次上方に位置する第一シリンダー42Aへと圧縮工程を行う場合とで、バランサー38による遠心力の生じる方向が異なってくる。本実施形態の場合、前者(上方から下方への圧縮)が図4に実線矢印M1で示す方向となり、後者(下方から上方への圧縮)が同図に実線矢印M2で示す方向となる。そして、副軸部15bは、第二給油溝82の位置と、遠心力の方向M1およびM2とが、相対的な位置を変えないまま回転軸15の駆動に伴って回転する。このとき、圧縮負荷が最大となる位置と、遠心力の方向とが近い程、その反対側となる方向に第二給油溝82を設けることで、これら圧縮負荷および遠心力による影響を回避できる傾向にある。したがって、圧縮機構部13では、上方に位置する第一シリンダー42Aから順次下方に位置する第三シリンダー42Cへと圧縮工程を行うことが好ましい。 Further, in such a compression mechanism portion 13, the direction in which the balancer 38 is arranged is determined according to the eccentric direction in which the eccentric portion 36 of the rotating shaft 15 is arranged. Therefore, there are cases where the compression process is performed from the first cylinder 42A located above to the third cylinder 42C sequentially located below, and the compression process is performed from the third cylinder 42C located below to the first cylinder 42A sequentially located upward. The direction in which the centrifugal force generated by the balancer 38 is generated differs depending on the case where the process is performed. In the case of the present embodiment, the former (compression from upper to lower) is in the direction indicated by the solid arrow M1 in FIG. 4, and the latter (compression from lower to upper) is in the direction indicated by the solid arrow M2 in FIG. Then, the sub-shaft portion 15b rotates with the driving of the rotating shaft 15 without changing the relative positions of the position of the second oil supply groove 82 and the directions M1 and M2 of the centrifugal force. At this time, the closer the position where the compression load is maximized to the direction of the centrifugal force, the more the second lubrication groove 82 is provided in the direction opposite to the position, so that the influence of these compression load and the centrifugal force can be avoided. It is in. Therefore, in the compression mechanism unit 13, it is preferable to perform the compression step from the first cylinder 42A located above to the third cylinder 42C sequentially located below.
 このような構成の回転軸15と副軸受17との潤滑構造は、回転軸15に回転一体のポンプ65によって回転軸15のポンプ配置穴69に汲み上げられ、かつ副軸受給油孔75Bから流れ出す潤滑油21を、回転軸15の第二給油溝82に流入させる。回転軸15の第二給油溝82に流れ込んだ潤滑油21は、回転軸15の回転に伴って副軸受給油孔75Bから第三シリンダー42Cへ向かって流れ、回転軸15と副軸受17との隙間を潤滑する。 The lubricating structure of the rotating shaft 15 and the auxiliary bearing 17 having such a configuration is pumped into the pump arrangement hole 69 of the rotating shaft 15 by the pump 65 which is integrally rotated with the rotating shaft 15, and the lubricating oil flows out from the auxiliary bearing oil supply hole 75B. 21 is made to flow into the second lubrication groove 82 of the rotating shaft 15. The lubricating oil 21 that has flowed into the second lubrication groove 82 of the rotary shaft 15 flows from the auxiliary bearing lubrication hole 75B toward the third cylinder 42C as the rotary shaft 15 rotates, and the gap between the rotary shaft 15 and the auxiliary bearing 17 is reached. Lubricate.
 回転軸15と副軸受17との潤滑構造は、第二給油溝82の流路断面積、第二給油溝82の流路長さ、回転軸15の回転中心線Cに対する第二給油溝82の傾き、第二給油溝82とその上流側の油路66とを繋ぐ副軸受給油孔75Bの断面積の少なくともいずれかを適宜に設定することで、回転軸15と副軸受17との摺動部分における給油量が調整される。 The lubrication structure of the rotary shaft 15 and the auxiliary bearing 17 includes the flow path cross-sectional area of the second lubrication groove 82, the flow path length of the second lubrication groove 82, and the second lubrication groove 82 with respect to the rotation center line C of the rotary shaft 15. By appropriately setting at least one of the cross-sectional areas of the auxiliary bearing oil supply hole 75B that is tilted and connects the second oil supply groove 82 and the oil passage 66 on the upstream side thereof, the sliding portion between the rotary shaft 15 and the auxiliary bearing 17 The amount of refueling in is adjusted.
 なお、第一給油溝81、第二給油溝82の流路断面積は、第一給油溝81、第二給油溝82の溝の深さと溝幅との組み合わせで設定される。 The flow path cross-sectional area of the first refueling groove 81 and the second refueling groove 82 is set by a combination of the groove depth and the groove width of the first refueling groove 81 and the second refueling groove 82.
 さらに、本実施形態に係る第二給油溝82の長さは、回転軸15の外周面を周回するより短い。つまり、第二給油溝82は、回転軸15を1周していない。そのため、圧縮機2、および冷凍サイクル装置1は、第二給油溝82を容易に加工できる。なお、回転軸15の第二給油溝82には、ポンプ65が汲み上げた潤滑油21が常時供給される。 Further, the length of the second refueling groove 82 according to the present embodiment is shorter than that around the outer peripheral surface of the rotating shaft 15. That is, the second lubrication groove 82 does not go around the rotating shaft 15 once. Therefore, the compressor 2 and the refrigeration cycle device 1 can easily process the second refueling groove 82. The lubricating oil 21 pumped by the pump 65 is constantly supplied to the second oil supply groove 82 of the rotary shaft 15.
 第二給油溝82は、第三シリンダー42Cのローラー43の内側に開放されている。すなわち、第二給油溝82は、副軸受17の下端側の開口から流れ出る潤滑油21の量を抑えつつ、潤滑油21を第三シリンダー42Cのローラー43の内側へ流出させる。 The second refueling groove 82 is open to the inside of the roller 43 of the third cylinder 42C. That is, the second lubrication groove 82 causes the lubricating oil 21 to flow out to the inside of the roller 43 of the third cylinder 42C while suppressing the amount of the lubricating oil 21 flowing out from the opening on the lower end side of the auxiliary bearing 17.
 以上説明したように、本実施形態に係る圧縮機2、および冷凍サイクル装置1は、複数の仕切板45A、45Bのうち一つの仕切板45Bに設けられて回転軸15の中間軸部15Aを回転可能に支持する軸受として機能する中間軸受45Bbを有している。中間軸受45Bbは、回転軸15の中間軸部15Aを挿し通す内周面45Bcに、上下方向に延び潤滑油21を流通させる第一給油溝81を有する。 As described above, the compressor 2 and the refrigerating cycle device 1 according to the present embodiment are provided on one of the plurality of partition plates 45A and 45B, and rotate the intermediate shaft portion 15A of the rotating shaft 15. It has an intermediate bearing 45Bb that functions as a bearing that can support it. The intermediate bearing 45Bb has a first oil supply groove 81 extending in the vertical direction and allowing the lubricating oil 21 to flow through the inner peripheral surface 45Bc through which the intermediate shaft portion 15A of the rotating shaft 15 is inserted.
 そのため、圧縮機2、および冷凍サイクル装置1は、従来の圧縮機のように回転軸15の回転によって圧縮負荷の最大値となる部位(実線矢印P2、P3)に重なることなく第一給油溝81を設けている。この第一給油溝81に流れ込む潤滑油21は、回転軸15と中間軸受45Bbとの隙間の全体を確実に潤滑できる。 Therefore, the compressor 2 and the refrigerating cycle device 1 do not overlap with the portion (solid line arrows P2, P3) where the maximum value of the compression load is obtained by the rotation of the rotating shaft 15 as in the conventional compressor, and the first lubrication groove 81 Is provided. The lubricating oil 21 flowing into the first lubrication groove 81 can reliably lubricate the entire gap between the rotating shaft 15 and the intermediate bearing 45Bb.
 また、本実施形態に係る圧縮機2、および冷凍サイクル装置1は、複数のシリンダー42にそれぞれ設けられて上下方向へ一直線に並んで配置されたベーンと、回転軸15の副軸部15bの外周面に設けられて上下方向に延び潤滑油21を流通させる第二給油溝82と、副軸受17から突出する回転軸15の突出部分に設けられるバランサー38と、を備えている。 Further, the compressor 2 and the refrigerating cycle device 1 according to the present embodiment are provided with vanes provided on the plurality of cylinders 42 and arranged in a straight line in the vertical direction, and the outer periphery of the sub-shaft portion 15b of the rotating shaft 15. It is provided with a second lubrication groove 82 provided on the surface and extending in the vertical direction to circulate the lubricating oil 21, and a balancer 38 provided on the protruding portion of the rotating shaft 15 protruding from the auxiliary bearing 17.
 圧縮機2、および冷凍サイクル装置1は、副軸受17から突出する回転軸15の突出部分、すなわち第二吐出マフラー56内にバランサー38を配置することで、回転軸15の撓みを抑制し、かつ圧縮機構部13の回転体のアンバランスを容易に調整できる。 The compressor 2 and the refrigerating cycle device 1 suppress the bending of the rotating shaft 15 by arranging the balancer 38 in the protruding portion of the rotating shaft 15 protruding from the auxiliary bearing 17, that is, the second discharge muffler 56. The imbalance of the rotating body of the compression mechanism unit 13 can be easily adjusted.
 さらに、副軸受17の実線矢印P5の範囲における圧縮負荷が低いときに通過可能な副軸部15bの外周面に第二給油溝82を設けることで、副軸部15bが遠心力と一定の間隔を保って回転するので、第二給油溝82が圧縮負荷の最大値となる位置と重なることを回避できる。よって、第二給油溝82に流れ込む潤滑油21で回転軸15と副軸受17との隙間に油膜を形成し、当該隙間の全体を確実に潤滑することができる。 Further, by providing the second oil supply groove 82 on the outer peripheral surface of the sub-shaft portion 15b that can pass when the compression load is low in the range of the solid line arrow P5 of the sub-bearing 17, the sub-shaft portion 15b has a constant interval with the centrifugal force. Since the rotation is maintained, it is possible to prevent the second lubrication groove 82 from overlapping with the position where the maximum value of the compression load is reached. Therefore, the lubricating oil 21 flowing into the second lubrication groove 82 can form an oil film in the gap between the rotary shaft 15 and the auxiliary bearing 17, and the entire gap can be reliably lubricated.
 このように、圧縮機2、および冷凍サイクル装置1は、第一給油溝81、第二給油溝82によって、回転軸15と各軸受(中間軸受45Bb、副軸受17)との隙間の全体を確実に潤滑することができる。 In this way, the compressor 2 and the refrigerating cycle device 1 ensure the entire gap between the rotary shaft 15 and each bearing (intermediate bearing 45Bb, auxiliary bearing 17) by the first lubrication groove 81 and the second lubrication groove 82. Can be lubricated to.
 さらに、圧縮機構部13は、上下方向に積層されるシリンダー42のうちの上方に配置された第一シリンダー42Aから下方に配置された第三シリンダー42Cへと順次駆動して冷媒を圧縮することが好ましい。副軸部15bは、第二給油溝82の位置と、遠心力の方向M1およびM2とが、相対的な位置を変えないまま回転軸15の駆動に伴って回転する。このとき、圧縮負荷が最大となる位置と、遠心力の方向とが近い程、その反対側となる方向に第二給油溝82を設けることで、これら圧縮負荷および遠心力による影響を回避できる。 Further, the compression mechanism unit 13 can sequentially drive the first cylinder 42A arranged above the cylinders 42 stacked in the vertical direction to the third cylinder 42C arranged below to compress the refrigerant. preferable. The sub-shaft portion 15b rotates with the driving of the rotating shaft 15 without changing the relative positions of the position of the second oil supply groove 82 and the directions M1 and M2 of the centrifugal force. At this time, the closer the position where the compression load is maximized to the direction of the centrifugal force, the more the second oil supply groove 82 is provided in the direction opposite to the position, so that the influence of the compression load and the centrifugal force can be avoided.
 さらに、圧縮機2、および冷凍サイクル装置1は、三気筒以上の圧縮機構部13を備えている。そのため、圧縮機2、および冷凍サイクル装置1は、圧縮機構部13の回転体のアンバランスの調整が、より深刻化する三気筒以上の圧縮機構部13であっても、回転軸15と、中間軸受45Bbおよび副軸受17との隙間を潤滑することができる。 Further, the compressor 2 and the refrigeration cycle device 1 include a compression mechanism unit 13 having three or more cylinders. Therefore, the compressor 2 and the refrigerating cycle device 1 are intermediate with the rotating shaft 15 even in the compression mechanism unit 13 having three or more cylinders, in which the adjustment of the imbalance of the rotating body of the compression mechanism unit 13 becomes more serious. The gap between the bearing 45Bb and the auxiliary bearing 17 can be lubricated.
 したがって、本実施形態に係る冷凍サイクル装置1、および圧縮機2によれば、回転軸15と、中間軸受45Bbおよび副軸受17との摺動部分を安定的に潤滑可能な潤滑構造を備えることができる。 Therefore, according to the refrigerating cycle device 1 and the compressor 2 according to the present embodiment, it is possible to provide a lubrication structure capable of stably lubricating the sliding portions of the rotating shaft 15 and the intermediate bearing 45Bb and the auxiliary bearing 17. can.
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although some embodiments of the present invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other embodiments, and various omissions, replacements, and changes can be made without departing from the gist of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are also included in the scope of the invention described in the claims and the equivalent scope thereof.
 1…冷凍サイクル装置、2…回転圧縮機、3…放熱器、5…膨張装置、6…吸熱器、7…アキュムレーター、8…冷媒配管、8a…吐出管、11…密閉容器、11a…胴部、11b…鏡板、11c…鏡板、12…オープン巻線型電動機部、13…圧縮機構部、15…回転軸、15a…主軸部、15b…副軸部、15A…中間軸部、16…主軸受、17…副軸受、21…潤滑油、22…給油機構、25、26…密封端子、27、28…端子台、29…電力線、31…固定子、32…回転子、33…口出線、35…回転子鉄心、36…偏心部、38…バランサー、38a…貫通孔、41…シリンダー室、42…シリンダー、42A…第一シリンダー、42B…第二シリンダー、42C…第三シリンダー、43…ローラー、44…ベーン、45A…第一仕切板、45B…第二仕切板、45Ba…仕切板部、45Bb…中間軸受、46…締結部材、51A…第一吐出弁機構、51B…第二吐出弁機構、51C…第三吐出弁機構、52…第一吐出マフラー、53…吐出室、55…締結部材、56…第二吐出マフラー、57…第二孔、58…フレーム、59…締結部材、61…吸込管、61A…第一吸込管、61B…第二吸込管、61C…第三吸込管、65…ポンプ、66…油路、68…給油機構挿通孔、69…ポンプ配置穴、71…ローター、73A…第一シリンダー給油孔、73B…第二シリンダー給油孔、73C…第三シリンダー給油孔、75A…主軸受給油孔、75B…副軸受給油孔、78…副軸受の内周面、81…第一給油溝、82…第二給油溝。 1 ... refrigeration cycle device, 2 ... rotary compressor, 3 ... radiator, 5 ... expansion device, 6 ... heat absorber, 7 ... accumulator, 8 ... refrigerant pipe, 8a ... discharge pipe, 11 ... closed container, 11a ... body Part, 11b ... End plate, 11c ... End plate, 12 ... Open winding type electric motor part, 13 ... Compression mechanism part, 15 ... Rotating shaft, 15a ... Main shaft part, 15b ... Sub-shaft part, 15A ... Intermediate shaft part, 16 ... Main bearing , 17 ... auxiliary bearing, 21 ... lubricating oil, 22 ... lubrication mechanism, 25, 26 ... sealed terminal, 27, 28 ... terminal block, 29 ... power line, 31 ... stator, 32 ... rotor, 33 ... outlet wire, 35 ... Rotor core, 36 ... Eccentric part, 38 ... Balancer, 38a ... Through hole, 41 ... Cylinder chamber, 42 ... Cylinder, 42A ... First cylinder, 42B ... Second cylinder, 42C ... Third cylinder, 43 ... Roller , 44 ... vane, 45A ... first partition plate, 45B ... second partition plate, 45Ba ... partition plate part, 45Bb ... intermediate bearing, 46 ... fastening member, 51A ... first discharge valve mechanism, 51B ... second discharge valve mechanism , 51C ... Third discharge valve mechanism, 52 ... First discharge muffler, 53 ... Discharge chamber, 55 ... Fastening member, 56 ... Second discharge muffler, 57 ... Second hole, 58 ... Frame, 59 ... Fastening member, 61 ... Suction pipe, 61A ... 1st suction pipe, 61B ... 2nd suction pipe, 61C ... 3rd suction pipe, 65 ... pump, 66 ... oil passage, 68 ... refueling mechanism insertion hole, 69 ... pump placement hole, 71 ... rotor, 73A ... 1st cylinder refueling hole, 73B ... 2nd cylinder refueling hole, 73C ... 3rd cylinder refueling hole, 75A ... main bearing refueling hole, 75B ... sub-bearing refueling hole, 78 ... sub-bearing inner peripheral surface, 81 ... One refueling groove, 82 ... Second refueling groove.

Claims (4)

  1. 上下方向に延びる中心線を有する円筒形状の密閉容器と、
     前記密閉容器内に導入される冷媒を圧縮する圧縮機構部と、
     主軸部、中間軸部、および副軸部を有し、前記中心線に沿って設けられる回転軸と、
     前記圧縮機構部に前記回転軸を介して連結し、前記圧縮機構部を駆動する電動機部と、
     前記密閉容器内に貯留される潤滑油を前記圧縮機構部へ給油する給油機構部と、を備え、
     前記圧縮機構部は、
     前記主軸部を回転可能に支持する主軸受と、
     前記副軸部を回転可能に支持する副軸受と、
     前記主軸受と前記副軸受との間に3つ以上積層して配置される環状のシリンダーと、
     各前記シリンダーに配置され、前記シリンダーの半径方向に往復運動するベーンと、
     隣り合う前記シリンダー間を仕切る複数の仕切板と、を備え、
     前記複数の仕切板のうちの1つの仕切板は、前記中間軸部を回転可能に支持する軸受として機能する中間軸受を含み、
     前記中間軸受は、前記回転軸を挿し通す内周面に、上下方向に延び前記潤滑油を流通させる第一給油溝を有する圧縮機。
    A cylindrical closed container with a center line extending in the vertical direction,
    A compression mechanism that compresses the refrigerant introduced into the closed container,
    A rotating shaft having a main shaft portion, an intermediate shaft portion, and a sub shaft portion and provided along the center line,
    An electric motor unit that is connected to the compression mechanism unit via the rotation shaft and drives the compression mechanism unit.
    A lubrication mechanism unit for supplying the lubricating oil stored in the airtight container to the compression mechanism unit is provided.
    The compression mechanism unit
    A main bearing that rotatably supports the spindle and
    A sub-bearing that rotatably supports the sub-shaft and
    An annular cylinder arranged by stacking three or more between the main bearing and the auxiliary bearing,
    A vane placed in each cylinder and reciprocating in the radial direction of the cylinder,
    It is equipped with a plurality of partition plates that partition between adjacent cylinders.
    One of the plurality of partition plates includes an intermediate bearing that functions as a bearing that rotatably supports the intermediate shaft portion.
    The intermediate bearing is a compressor having a first lubrication groove extending in the vertical direction and allowing the lubricating oil to flow on the inner peripheral surface through which the rotating shaft is inserted.
  2. 前記ベーンは、上下方向へ一直線に並んで配置され、
    前記回転軸は、前記副軸部の外周面に設けられて上下方向に延び前記潤滑油を流通させる第二給油溝と、前記副軸受から突出する突出部分とを有し、
     前記圧縮機構部は、前記突出部分に設けられるバランサーを備え、
    ている請求項1に記載の圧縮機。
    The vanes are arranged in a straight line in the vertical direction.
    The rotary shaft has a second lubrication groove provided on the outer peripheral surface of the sub-shaft portion and extending in the vertical direction to circulate the lubricating oil, and a protruding portion protruding from the sub-bearing.
    The compression mechanism portion includes a balancer provided on the protruding portion, and the compression mechanism portion includes a balancer.
    The compressor according to claim 1.
  3. 前記圧縮機構部は、上下方向に積層される前記シリンダーのうち上方に配置された前記シリンダーから下方に配置された前記シリンダーへと順次駆動して前記冷媒を圧縮する請求項2に記載の圧縮機。 The compressor according to claim 2, wherein the compression mechanism unit is sequentially driven from the cylinder arranged above the cylinders stacked in the vertical direction to the cylinders arranged below to compress the refrigerant. ..
  4. 請求項1から3のいずれか1項に記載される圧縮機と、
     放熱器と、
     膨張装置と、
     吸熱器と、
     前記圧縮機、前記放熱器、前記膨張装置、および前記吸熱器を接続して前記冷媒を流通させる冷媒配管と、を備える冷凍サイクル装置。
    The compressor according to any one of claims 1 to 3 and
    With a radiator,
    Inflator and
    With a heat absorber,
    A refrigerating cycle device including the compressor, the radiator, the expansion device, and a refrigerant pipe for connecting the heat absorber and circulating the refrigerant.
PCT/JP2021/036763 2020-10-14 2021-10-05 Compressor and refrigeration cycle apparatus WO2022080179A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022557381A JPWO2022080179A1 (en) 2020-10-14 2021-10-05
CN202180052105.XA CN115943259A (en) 2020-10-14 2021-10-05 Compressor and refrigeration cycle device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-172962 2020-10-14
JP2020172962 2020-10-14

Publications (1)

Publication Number Publication Date
WO2022080179A1 true WO2022080179A1 (en) 2022-04-21

Family

ID=81207949

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/036763 WO2022080179A1 (en) 2020-10-14 2021-10-05 Compressor and refrigeration cycle apparatus

Country Status (3)

Country Link
JP (1) JPWO2022080179A1 (en)
CN (1) CN115943259A (en)
WO (1) WO2022080179A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62218680A (en) * 1986-03-18 1987-09-26 Nippon Denso Co Ltd Compressor
JPH01277695A (en) * 1988-04-28 1989-11-08 Toshiba Corp Two-cylinder type rotary compressor
WO2014155938A1 (en) * 2013-03-26 2014-10-02 東芝キヤリア株式会社 Multiple-cylinder rotary compressor and refrigeration cycle device
WO2020161965A1 (en) * 2019-02-07 2020-08-13 東芝キヤリア株式会社 Rotary compressor, method for manufacturing rotary compressor, and refrigeration cycle device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62218680A (en) * 1986-03-18 1987-09-26 Nippon Denso Co Ltd Compressor
JPH01277695A (en) * 1988-04-28 1989-11-08 Toshiba Corp Two-cylinder type rotary compressor
WO2014155938A1 (en) * 2013-03-26 2014-10-02 東芝キヤリア株式会社 Multiple-cylinder rotary compressor and refrigeration cycle device
WO2020161965A1 (en) * 2019-02-07 2020-08-13 東芝キヤリア株式会社 Rotary compressor, method for manufacturing rotary compressor, and refrigeration cycle device

Also Published As

Publication number Publication date
CN115943259A (en) 2023-04-07
JPWO2022080179A1 (en) 2022-04-21

Similar Documents

Publication Publication Date Title
US8858205B2 (en) Compressor having an inlet port formed to overlap with a roller and a cylinder-type rotor for compressing a refrigerant
KR20090012839A (en) 2 stage rotary compressor
KR20090048255A (en) 2 stage rotary compressor
KR101381085B1 (en) 2 stage rotary compressor
US11867175B2 (en) Scroll compressor
WO2022080179A1 (en) Compressor and refrigeration cycle apparatus
US9181947B2 (en) Compressor
KR101324865B1 (en) Rotary compressor
WO2022085443A1 (en) Compressor and refrigeration cycle device
JP2021173211A (en) Compressor and refrigeration cycle device
JP7119721B2 (en) compressor
KR101528646B1 (en) 2-stage rotary compressor
KR101328198B1 (en) 2 stage rotary compressor
KR20210010808A (en) Scroll compressor
KR20100010460A (en) Rotary compressor
WO2023181364A1 (en) Rotary compressor and refrigeration cycle device
KR101337079B1 (en) Two stage rotary compressor
KR101268638B1 (en) Two stage rotary compressor
WO2023181362A1 (en) Rotary compressor and refrigeration cycle device
WO2022264792A1 (en) Scroll compressor
WO2024070389A1 (en) Scroll compressor
KR102182171B1 (en) Scroll compressor
KR101328816B1 (en) Two stage rotary compressor
KR101381082B1 (en) 2 stage rotary compressor
KR20240022816A (en) Scroll compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21879919

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022557381

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21879919

Country of ref document: EP

Kind code of ref document: A1