WO2022080021A1 - Guide wire, and method for manufacturing guide wire - Google Patents

Guide wire, and method for manufacturing guide wire Download PDF

Info

Publication number
WO2022080021A1
WO2022080021A1 PCT/JP2021/031733 JP2021031733W WO2022080021A1 WO 2022080021 A1 WO2022080021 A1 WO 2022080021A1 JP 2021031733 W JP2021031733 W JP 2021031733W WO 2022080021 A1 WO2022080021 A1 WO 2022080021A1
Authority
WO
WIPO (PCT)
Prior art keywords
core wire
guide wire
wire
resin layer
resin
Prior art date
Application number
PCT/JP2021/031733
Other languages
French (fr)
Japanese (ja)
Inventor
紘一郎 田代
Original Assignee
ミズホ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ミズホ株式会社 filed Critical ミズホ株式会社
Publication of WO2022080021A1 publication Critical patent/WO2022080021A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/09Guide wires

Definitions

  • the present invention relates to a guide wire and a method for manufacturing the guide wire.
  • a guide wire has been used as a medical device for guiding various catheters to a target site in the living lumen.
  • the cerebral blood vessels in the skull are thinner and more complicatedly bent than the coronary arterial blood vessels and the like. Therefore, on the distal side of the guide wire inserted into the cerebral blood vessel in the skull, it is flexible so that it can smoothly pass through the small blood vessel (thinner than the puncture site) where the target site is located and the blood vessel wall is not damaged. Need to be increased.
  • the practitioner's operations (rotation and pushing) need to be stiff so that they are transmitted to the distal side.
  • a wire material having a low elastic modulus arranged on the distal side and a wire material having a high elastic modulus arranged on the proximal side are arranged.
  • a guide wire integrated by welding has been proposed (see, for example, Patent Document 1).
  • the distal side of the guide wire is coated with a hydrophilic resin in order to improve the lubricity with blood.
  • the proximal side is coated with fluororesin in order to reduce the frictional resistance with the inner wall of the catheter when the catheter is externally inserted into the guide wire.
  • the distal side and the proximal side of the guide wire are coated with different resins, when the joints of the two resin layers overlap, the overlapped part swells, so that the inner wall of the externalized catheter The frictional resistance of is partially increased. Further, due to the frictional resistance with the inner wall of the catheter, a part of the resin layer on the outer side of the overlapped portion may be peeled off.
  • the work of coating the resin takes time and effort, and thus the productivity is lowered. Further, since the heat treatment is performed when the resin is coated, the heat generated at that time may affect the welded portion. On the other hand, it is also possible to coat each wire material with resin and then integrate them by welding, but the coated resin layer interferes with welding, or a part of the resin layer is peeled off by the heat generated during welding. There is a risk of
  • An object of the present invention is to provide a guide wire and a method for manufacturing a guide wire having high slidability in a blood vessel and a catheter and excellent in productivity.
  • One embodiment of the present invention is a guide wire inserted into a cerebral blood vessel in the skull, which is a first core wire provided on the proximal side and a second core wire provided on the distal side of the first core wire.
  • a second core wire that is linearly integrated with the guide wire at the joint is provided, and the joint has a smooth outer peripheral portion and does not include the joint portion from the proximal side of the guide wire.
  • a first resin layer is provided between the distal side and a second resin layer is provided between the distal end of the guide wire and the proximal side including the joint, and the first resin is provided.
  • the resin end on the distal side of the layer and the resin end on the proximal side of the second resin layer are separated in the axial direction of the guide wire, and the second resin end with respect to the length L1 of the guide wire is separated.
  • the ratio L2 / L1 of the length L2 of the two core wires is 0.1 or more.
  • the second core wire may be made of a material having a relatively lower elastic modulus than the first core wire.
  • the first resin layer may contain a fluororesin
  • the second resin layer may contain a hydrophilic resin
  • the length L3 between the resin end portion and the joint portion of the first resin layer may be 2 to 50 mm.
  • the length L4 between the resin end portion and the joint portion of the second resin layer may be 2 to 50 mm.
  • the distance L5 between the resin end portion of the first resin layer and the resin end portion of the second resin layer may be 2 to 50 mm.
  • Another embodiment of the present invention is a first core wire provided on the proximal side and a second core wire provided on the distal side of the first core wire as a guide wire inserted into a cerebral blood vessel in the skull.
  • the ratio L2 / L1 of the length L2 of the second core wire to the length L1 of the guide wire is 0.1 or more.
  • the distal resin end of the first resin layer and the second resin layer are close to each other. It has a step of covering the second resin layer so as to be separated from the resin end portion on the position side in the axial direction of the guide wire.
  • the step of coating the second resin layer is a raw material of the second resin layer from the distal end portion of the guide wire to the proximal side including the joint portion.
  • a step of immersing in a solution of the resin and then pulling it out of the solution to dry it may be included.
  • the present invention it is possible to provide a guide wire and a method for manufacturing a guide wire having high slidability in a blood vessel and a catheter and excellent in productivity.
  • FIG. 1 is a side view of the guide wire 1 of the present embodiment.
  • FIG. 2 is a schematic cross-sectional view of a portion corresponding to the region b in FIG.
  • the guide wire 1 of the present embodiment is used, for example, in the skull for adjusting the position of a catheter or the like used for treating cerebrovascular disease and assisting the movement (guidance to a target position).
  • the guide wire 1 includes a core wire 10, a contrast coil 20, a coil 30, and a tip fixing portion 40.
  • the core wire 10 is composed of a first core wire 11 and a second core wire 12.
  • the first core wire 11 is a linear wire material constituting the proximal side (X1 side) of the core wire 10. As described above, the first core wire 11 on the proximal side of the guide wire 1 enhances the transmission of force in the axial direction X, and facilitates the transmission of the practitioner's operation (rotation or pushing) to the distal side. In order to do so, it needs to be stiff. Therefore, the first core wire 11 is made of a material having a high elastic modulus such as stainless steel. The outer diameter of the first core wire 11 is, for example, 0.02 to 0.05 mm.
  • the outer peripheral surface of the first core wire 11 is covered with a first resin layer 111 made of a fluororesin.
  • the first resin layer 111 is a layer coated to reduce the frictional resistance with the inner wall of the catheter when the catheter (not shown) is externally inserted into the guide wire 1.
  • the first resin layer 111 may be covered only in the range to be inserted into the catheter in the first core wire 11. That is, the first resin layer 111 does not necessarily have to be covered from the proximal end to the distal side of the first core wire 11.
  • the average layer thickness of the first resin layer 111 is, for example, 3 to 15 ⁇ m. As will be described later, the first resin layer 111 is coated on the outer peripheral surface of the first core wire 11 before welding (joining) the first core wire 11 and the second core wire 12.
  • the second core wire 12 is a linear wire material constituting the distal side (X2 side) of the core wire 10. As described above, the second core wire 12 on the distal side of the guide wire 1 needs to be more flexible in order to smoothly pass through a small blood vessel having a target site and not to damage the blood vessel wall. Therefore, the second core wire 12 is made of a material having a low elastic modulus and excellent shape restoration, such as a nickel titanium (Ni—Ti) alloy.
  • the elastic modulus of the second core wire 12 is set to be relatively lower than the elastic modulus of the first core wire 11.
  • the outer diameter of the second core wire 12 is, for example, 0.02 to 0.05 mm.
  • the first core wire 11 on the proximal side is made of a material having a high elastic modulus
  • the second core wire 12 on the distal side is made of a material having a low elastic modulus. ing. Therefore, the guide wire 1 provided with the core wire 10 can further reduce the burden on the blood vessel wall in the bent blood vessel, and is excellent in the transmission of the rotational force and the axial force by the operation of the practitioner. Assuming that the guide wire 1 of the present embodiment is inserted into the cerebral blood vessel in the skull, the total length of the guide wire 1 is, for example, about 2000 to 4000 mm. In FIG. 1, the ratio L2 / L1 of the length L2 of the second core wire 12 to the length L1 of the guide wire 1 is 0.1 to 0.5.
  • the outer peripheral surface of the second core wire 12 is covered with a second resin layer 121 made of a hydrophilic resin.
  • the second resin layer 121 is a layer coated to improve the lubricity with blood when the second core wire 12 comes into contact with blood in the blood vessel.
  • the hydrophilic resin constituting the second resin layer 121 include polyvinylpyrrolidone (PVP), polyvinyl alcohol (PVA), maleic anhydride copolymer compound, hyaluronic acid and the like.
  • PVP polyvinylpyrrolidone
  • PVA polyvinyl alcohol
  • maleic anhydride copolymer compound hyaluronic acid and the like.
  • the second resin layer 121 is coated on the outer peripheral surface of the second core wire 12 after joining the first core wire 11 and the second core wire 12 to smooth the outer peripheral surface of the joint portion 15. ..
  • a contrast coil 20 or the like (described later) is provided on the tip end side (X2 side) of the second core wire. Therefore, the second resin layer 121 is covered with the outer surface of the members such as the contrast coil 20 on the distal end side of the second core wire 12 in the region where the members are extrapolated.
  • the contrast coil 20 is a spiral member externally attached to the distal side (X2 side) of the second core wire 12.
  • the contrast coil 20 serves as a mark for confirming the position of the tip of the guide wire 1 in the X-ray transmission image.
  • the contrast coil 20 is made of a material that is impermeable to radiation such as X-rays and can be molded into a coil shape. Examples of the material constituting the contrast coil 20 include platinum tungsten (Pt—W) alloy, platinum-iridium (Pt—Ir) alloy, gold, tantalum and the like.
  • a hemispherical tip fixing portion 40 is provided on the distal side (X2 side) of the contrast coil 20.
  • the coil 30 is a spiral member externally attached to the proximal side (X1 side) of the contrast coil 20.
  • the second core wire 12 can be made hard to break and can be made flexible.
  • the material constituting the coil 30 include stainless steel, tungsten, nickel-titanium alloy and the like.
  • the contrast coil 20, the coil 30, and the tip fixing portion 40 are fixed to the second core wire 12 by soldering.
  • the wire end portion 112 on the distal side (X2 side) of the first core wire 11 and the wire end portion 122 on the proximal side (X1 side) of the second core wire 12 are joined at the joint portion 15. And are integrated linearly.
  • the respective wire ends of the first core wire 11 and the second core wire 12 can be joined by butt welding such as butt welding and upset welding, for example.
  • the outer peripheral portion of the joint portion 15 has a bulging shape (see FIG. 3B).
  • This swollen outer peripheral portion is smoothed in a later process.
  • the slidability at the joint portion between the first core wire 11 and the second core wire 12 can be improved.
  • the signed arrow indicating the position of the joint portion 15 points to the joint surface between the first core wire 11 and the second core wire 12.
  • the joint surface is a portion where the wire ends of both wire materials are melted together.
  • the joint portion 15 shown in FIG. 2 includes a joint surface and an outer peripheral portion smoothed from a bulging shape.
  • the resin end 113 of the first resin layer 111 covered with the first core wire 11 is located proximal to the joint 15.
  • the length L3 between the resin end portion 113 and the joint portion 15 of the first resin layer 111 is configured to be 2 to 50 mm, preferably 10 to 20 mm.
  • the second resin layer 121 coated on the second core wire 12 covers the outer peripheral portion of the joint portion 15. Further, the resin end portion 123 of the second resin layer 121 is located proximal to the joint portion 15.
  • the length L4 between the resin end portion 123 and the joint portion 15 of the second resin layer 121 is configured to be 2 to 50 mm, preferably 10 to 30 mm.
  • the distance L5 between the resin end 113 of the first resin layer 111 and the resin end 123 of the second resin layer 121 can be set to 2 to 50 mm. It can be preferably in the range of 3 to 15 mm.
  • the interval L5 is appropriately selected in the range of 2 to 50 mm based on the outer diameter of the core wire 10, the layer thickness of each resin layer, the product specifications, and the like.
  • 3A to 3D are diagrams illustrating a method of manufacturing the guide wire 1.
  • the outer peripheral surface of the first core wire 11 is covered with the first resin layer 111.
  • Various methods can be used for coating the first resin layer 111.
  • the first core wire 11 may be sprayed with a liquid resin to cover it and fired by heat treatment, or the first core wire 11 may be continuously coated with the resin by an extrusion molding machine.
  • the outer peripheral surface of the first core wire 11 can be covered by externally inserting a tubular fluororesin into the first core wire 11 and heating and shrinking the resin.
  • the processing heat applied to the core wire when coating with the first resin layer 111 affects the welded portion (joint portion 15), and affects the delicate shape, design dimensions, etc. on the distal side of the second core wire 12. Is not given.
  • the first resin layer 111 is covered so that the length L3 (see FIG. 2) between the resin end portion 113 and the joint portion 15 is 2 to 50 mm. After covering the outer peripheral surface of the first core wire 11 with the first resin layer 111, as shown in FIG.
  • wire end portion 112 on the distal side (X2 side) of the first core wire 11 and the vicinity of the second core wire 12 The wire ends 122 on the position side (X1 side) are opposed to each other, and both wire ends are abutted against each other.
  • the wire end 112 of the first core wire 11 and the wire end 122 of the second core wire 12 are joined by butt welding such as the above-mentioned butt welding.
  • butt welding By performing butt welding, the joint portion of both wire end portions becomes the joint portion 15.
  • the resin end portion 113 (see FIG. 2) of the first resin layer 111 coated on the first core wire 11 is separated from the joint portion 15 by a length L4. Therefore, it does not easily interfere with welding.
  • the wire ends of both wire materials are joined by melting each other, so that the outer peripheral portion of the joint portion 15 has a shape bulging in the outer diameter direction as shown in FIG. 3B. ..
  • the outer peripheral portion of the joint portion 15 is smoothed.
  • the outer peripheral portion of the joint portion 15 may be smoothed by using, for example, a cutting tool, an abrasive, or the like, or may be smoothed by a chemical treatment.
  • the outer peripheral portion of the joint portion 15 is covered with the second resin layer 121 in a subsequent step. Therefore, the joint portion 15 may be in a state of substantially no unevenness, and may not be a completely smooth surface.
  • the outer peripheral surface of the second core wire 12 is covered with the second resin layer 121.
  • the second resin layer 121 can be covered, for example, by immersing the portion of the second core wire 12 in a solution of the hydrophilic resin, then pulling it out of the solution and drying it.
  • the second resin layer 121 is covered so that the length L4 (see FIG. 2) between the resin end portion 123 and the joint portion 15 is 2 to 50 mm.
  • the joint portion 15 is covered with the second resin layer 121, and the distance L5 (see FIG. 2) between the resin end portion 113 of the first resin layer 111 and the resin end portion 123 of the second resin layer 121 is increased.
  • a guide wire 1 having a size of 2 to 50 mm can be obtained.
  • the resin end portion 113 of the first resin layer 111 and the resin end portion 123 of the second resin layer 121 are separated from each other in the axial direction X of the guide wire 1. .. Therefore, due to the overlap of the seams of the two resin ends, the frictional resistance with the inner wall of the externalized catheter (not shown) does not partially increase, and a part of the resin layer outside the overlapped portion is formed. It will not come off. In particular, by setting the distance L5 to 2 to 50 mm, it is possible to minimize the decrease in slidability due to the seams of the two resin ends being separated from each other.
  • the guide wire 1 of the present embodiment has high slidability in the blood vessel and the catheter, and is also excellent in productivity.
  • the first resin layer 111 is covered on the outer peripheral surface of the first core wire 11 before welding the first core wire 11 and the second core wire 12. Therefore, the heat generated when the tubular fluororesin to be the first resin layer 111 is shrunk affects the welded portion (joint portion 15), and the delicate shape and design dimensions on the distal side of the second core wire 12 It does not affect such things.
  • the guide wire is first coated with the first resin layer 111 on the first core wire 11, bonded to the second core wire 12, and then coated with the second resin layer 121 on the second core wire 12. 1 is manufactured.
  • the guide wire 1 is manufactured by first coating the second core wire 12 with the second resin layer 121, joining the second core wire 11 with the first core wire 11, and then coating the first core wire 11 with the first resin layer 111.
  • the heat generated when the first resin layer 111 is coated affects the welded portion (joint portion 15), or the delicate shape and design on the distal side of the second core wire 12 are designed. Since it may affect the dimensions, etc., the yield of the product decreases.
  • the method for manufacturing the guide wire 1 of the embodiment when the first core wire 11 is coated with the first resin layer 111 that requires heat treatment, the first core wire 11 is joined to the second core wire 12. It has not been. Therefore, the heat generated when coating the first resin layer 111 does not affect the joint portion 15, or the delicate shape, design dimensions, etc. on the distal side of the second core wire 12. Therefore, according to the method for manufacturing the guide wire 1 of the embodiment, the yield of the product is improved, so that the productivity of the guide wire 1 can be further increased. According to the guide wire 1 of the embodiment, when the first core wire 11 and the second core wire 12 are welded, the ends of both core wires are exposed, so that the welding work and the subsequent smoothing work are easy. Can be done.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Pulmonology (AREA)
  • Engineering & Computer Science (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Hematology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Media Introduction/Drainage Providing Device (AREA)

Abstract

Provided is a guide wire which exhibits high slidability in a blood vessel and a catheter and has excellent productivity. This guide wire 1 is intended to be inserted into a cerebral blood vessel in the cranium, and is provided with a first core wire 11 which is arranged on the proximal side and a second core wire 12 which is arranged distally to the first core wire 11 and is lineally integrated with the first core wire 11 at a joint part 15, in which the joint part 15 has a smooth outer periphery, a first resin layer 111 is provided between the proximal side of the guide wire 1 and the distal side of the guide wire 1 which excludes the joint part 15, a second resin layer 121 is provided between an end part of the distal side of the guide wire 1 and the proximal side of the guide wire 1 which includes the joint part 15, a distal-side resin end part 113 of the first resin layer 111 and a proximal-side resin end part 123 of the second resin layer 121 are separated away from each other in the direction of the axis of the guide wire 1, and the ratio of the length L2 of the second core wire 12 to the length L1 of the guide wire 1, i.e., L2/L1, is 0.1 or more.

Description

ガイドワイヤ及びガイドワイヤの製造方法Guide wire and manufacturing method of guide wire
 本発明は、ガイドワイヤ及びガイドワイヤの製造方法に関する。 The present invention relates to a guide wire and a method for manufacturing the guide wire.
 従来、各種のカテーテルを生体管腔中の目的部位まで案内するための医療器具として、ガイドワイヤが用いられている。ガイドワイヤが挿入される生体管腔の中でも、頭蓋内の脳血管は、冠状動脈血管等に比べて細く且つ複雑に屈曲している。そのため、頭蓋内の脳血管に挿入されるガイドワイヤの遠位側では、目的部位のある細い血管(穿刺部より細い血管)内をスムーズに通り且つ血管壁を損傷しないようにするため、柔軟性を高める必要がある。一方、近位側では、施術者の操作(回転や押し込み)が遠位側に伝達されるようにするため、硬くする必要がある。そこで、遠位側の柔軟性と近位側での操作性を両立させるために、遠位側に配置される弾性率の低いワイヤ材と、近位側に配置される弾性率の高いワイヤ材を、溶接により一体化したガイドワイヤが提案されている(例えば、特許文献1参照)。 Conventionally, a guide wire has been used as a medical device for guiding various catheters to a target site in the living lumen. Even in the living lumen into which the guide wire is inserted, the cerebral blood vessels in the skull are thinner and more complicatedly bent than the coronary arterial blood vessels and the like. Therefore, on the distal side of the guide wire inserted into the cerebral blood vessel in the skull, it is flexible so that it can smoothly pass through the small blood vessel (thinner than the puncture site) where the target site is located and the blood vessel wall is not damaged. Need to be increased. On the proximal side, on the other hand, the practitioner's operations (rotation and pushing) need to be stiff so that they are transmitted to the distal side. Therefore, in order to achieve both flexibility on the distal side and operability on the proximal side, a wire material having a low elastic modulus arranged on the distal side and a wire material having a high elastic modulus arranged on the proximal side are arranged. A guide wire integrated by welding has been proposed (see, for example, Patent Document 1).
特許4203358号公報Japanese Patent No. 4203358
 上記ガイドワイヤの遠位側は、血液との潤滑性を向上させるために、親水性樹脂で被覆される。また、近位側は、ガイドワイヤにカテーテルを外挿した場合に、カテーテルの内壁との摩擦抵抗を低減するために、フッ素樹脂で被覆される。このように、ガイドワイヤの遠位側と近位側をそれぞれ異なる樹脂で被覆した場合に、2つの樹脂層の継ぎ目の部分が重なると、重なった部分が膨らむため、外挿したカテーテルの内壁との摩擦抵抗が部分的に大きくなる。また、カテーテルの内壁との摩擦抵抗によって、重なった部分の外側の樹脂層の一部が剥がれてしまうおそれがある。2つの樹脂層の継ぎ目が一致するように樹脂を被覆すると、樹脂を被覆する作業に手間と時間がかかるため、生産性が低下する。また、樹脂を被覆する際に熱処理を行うため、そのときに生じる熱が溶接部分に影響を与えるおそれもある。一方、それぞれのワイヤ材に樹脂を被覆してから溶接により一体化することもできるが、被覆された樹脂層が溶接の妨げとなったり、樹脂層の一部が溶接の際に生じる熱により剥がれたりするおそれがある。 The distal side of the guide wire is coated with a hydrophilic resin in order to improve the lubricity with blood. Further, the proximal side is coated with fluororesin in order to reduce the frictional resistance with the inner wall of the catheter when the catheter is externally inserted into the guide wire. In this way, when the distal side and the proximal side of the guide wire are coated with different resins, when the joints of the two resin layers overlap, the overlapped part swells, so that the inner wall of the externalized catheter The frictional resistance of is partially increased. Further, due to the frictional resistance with the inner wall of the catheter, a part of the resin layer on the outer side of the overlapped portion may be peeled off. If the resin is coated so that the seams of the two resin layers match, the work of coating the resin takes time and effort, and thus the productivity is lowered. Further, since the heat treatment is performed when the resin is coated, the heat generated at that time may affect the welded portion. On the other hand, it is also possible to coat each wire material with resin and then integrate them by welding, but the coated resin layer interferes with welding, or a part of the resin layer is peeled off by the heat generated during welding. There is a risk of
 本発明の目的は、血管内及びカテーテル内での高い摺動性を有し、生産性にも優れたガイドワイヤ及びガイドワイヤの製造方法を提供することにある。 An object of the present invention is to provide a guide wire and a method for manufacturing a guide wire having high slidability in a blood vessel and a catheter and excellent in productivity.
 本発明の一形態は、頭蓋内の脳血管に挿入されるガイドワイヤであって、近位側に設けられる第1コアワイヤと、前記第1コアワイヤよりも遠位側に設けられる第2コアワイヤであって、接合部において前記ガイドワイヤと線状に一体化される第2コアワイヤと、備え、前記接合部は、平滑な外周部を有し、前記ガイドワイヤの近位側から前記接合部を含まない遠位側までの間に第1樹脂層が設けられ、前記ガイドワイヤの遠位側の端部から前記接合部を含む近位側までの間に第2樹脂層が設けられ、前記第1樹脂層の遠位側の樹脂端部と前記第2樹脂層の近位側の樹脂端部との間は、前記ガイドワイヤの軸方向において離間しており、前記ガイドワイヤの長さL1に対する前記第2コアワイヤの長さL2の比率L2/L1は、0.1以上である。 One embodiment of the present invention is a guide wire inserted into a cerebral blood vessel in the skull, which is a first core wire provided on the proximal side and a second core wire provided on the distal side of the first core wire. A second core wire that is linearly integrated with the guide wire at the joint is provided, and the joint has a smooth outer peripheral portion and does not include the joint portion from the proximal side of the guide wire. A first resin layer is provided between the distal side and a second resin layer is provided between the distal end of the guide wire and the proximal side including the joint, and the first resin is provided. The resin end on the distal side of the layer and the resin end on the proximal side of the second resin layer are separated in the axial direction of the guide wire, and the second resin end with respect to the length L1 of the guide wire is separated. The ratio L2 / L1 of the length L2 of the two core wires is 0.1 or more.
 上記発明において、前記第2コアワイヤを、前記第1コアワイヤよりも相対的に弾性率の低い材料で構成してもよい。 In the above invention, the second core wire may be made of a material having a relatively lower elastic modulus than the first core wire.
 上記発明において、前記第1樹脂層は、フッ素樹脂を含み、前記第2樹脂層は、親水性樹脂を含む構成としてもよい。 In the above invention, the first resin layer may contain a fluororesin, and the second resin layer may contain a hydrophilic resin.
 上記発明において、前記第1樹脂層の前記樹脂端部と前記接合部との間の長さL3は、2~50mmであってもよい。 In the above invention, the length L3 between the resin end portion and the joint portion of the first resin layer may be 2 to 50 mm.
 上記発明において、前記第2樹脂層の前記樹脂端部と前記接合部との間の長さL4は、2~50mmであってもよい。 In the above invention, the length L4 between the resin end portion and the joint portion of the second resin layer may be 2 to 50 mm.
 上記発明において、前記第1樹脂層の前記樹脂端部と前記第2樹脂層の前記樹脂端部との間隔L5は、2~50mmであってもよい。 In the above invention, the distance L5 between the resin end portion of the first resin layer and the resin end portion of the second resin layer may be 2 to 50 mm.
 本発明の他の形態は、頭蓋内の脳血管に挿入されるガイドワイヤとして、近位側に設けられる第1コアワイヤと、前記第1コアワイヤよりも遠位側に設けられる第2コアワイヤであって、接合部において前記第1コアワイヤと線状に一体化される第2コアワイヤと、を備え、前記ガイドワイヤの長さL1に対する前記第2コアワイヤの長さL2の比率L2/L1が0.1以上となるガイドワイヤの製造方法であって、前記第1コアワイヤの近位側から前記第1コアワイヤの遠位側のワイヤ端部を含まない遠位側までの間に第1樹脂層を被覆する工程と、前記第1コアワイヤの遠位側のワイヤ端部と前記第2コアワイヤの近位側のワイヤ端部とを突き合わせて接合して、前記接合部とする工程と、前記接合部の外周部を平滑化する工程と、前記ガイドワイヤの遠位側の端部から前記接合部を含む近位側までの間に、前記第1樹脂層の遠位側の樹脂端部と第2樹脂層の近位側の樹脂端部との間が、前記ガイドワイヤの軸方向において離間するように前記第2樹脂層を被覆する工程と、を有する。 Another embodiment of the present invention is a first core wire provided on the proximal side and a second core wire provided on the distal side of the first core wire as a guide wire inserted into a cerebral blood vessel in the skull. The ratio L2 / L1 of the length L2 of the second core wire to the length L1 of the guide wire is 0.1 or more. A step of coating the first resin layer between the proximal side of the first core wire and the distal side of the first core wire, which does not include the wire end, in the method of manufacturing the guide wire. And the step of abutting and joining the wire end portion on the distal side of the first core wire and the wire end portion on the proximal side of the second core wire to form the joint portion, and the outer peripheral portion of the joint portion. Between the step of smoothing and the distal end of the guide wire to the proximal side including the junction, the distal resin end of the first resin layer and the second resin layer are close to each other. It has a step of covering the second resin layer so as to be separated from the resin end portion on the position side in the axial direction of the guide wire.
 上記発明の他の形態において、前記第2樹脂層を被覆する工程は、前記ガイドワイヤの遠位側の端部から前記接合部を含む近位側までの間を、前記第2樹脂層の原料樹脂の溶液に浸した後、前記溶液から引き上げて乾燥させる工程が含まれてもよい。 In another embodiment of the above invention, the step of coating the second resin layer is a raw material of the second resin layer from the distal end portion of the guide wire to the proximal side including the joint portion. A step of immersing in a solution of the resin and then pulling it out of the solution to dry it may be included.
 本発明によれば、血管内及びカテーテル内での高い摺動性を有し、生産性にも優れたガイドワイヤ及びガイドワイヤの製造方法を提供することができる。 According to the present invention, it is possible to provide a guide wire and a method for manufacturing a guide wire having high slidability in a blood vessel and a catheter and excellent in productivity.
実施形態のガイドワイヤ1の側面図である。It is a side view of the guide wire 1 of an embodiment. 図1の領域bに相当する部分の概略断面図である。It is the schematic sectional drawing of the part corresponding to the region b of FIG. ガイドワイヤ1の製造方法を説明する図である。It is a figure explaining the manufacturing method of the guide wire 1. ガイドワイヤ1の製造方法を説明する図である。It is a figure explaining the manufacturing method of the guide wire 1. ガイドワイヤ1の製造方法を説明する図である。It is a figure explaining the manufacturing method of the guide wire 1. ガイドワイヤ1の製造方法を説明する図である。It is a figure explaining the manufacturing method of the guide wire 1.
 以下、本発明に係るガイドワイヤの実施形態について説明する。なお、本明細書に添付した図面は、いずれも模式図であり、理解しやすさ等を考慮して、各部の形状、縮尺、縦横の寸法比等を、実物から変更又は誇張している。例えば、ガイドワイヤ1の長手方向を短くし、径方向を太く図示している。 Hereinafter, embodiments of the guide wire according to the present invention will be described. The drawings attached to the present specification are all schematic views, and the shape, scale, aspect ratio, etc. of each part are changed or exaggerated from the actual product in consideration of ease of understanding. For example, the longitudinal direction of the guide wire 1 is shortened and the radial direction is shown thick.
 本明細書等において、形状、幾何学的条件、これらの程度を特定する用語、例えば、「平行」、「方向」等の用語については、その用語の厳密な意味に加えて、ほぼ平行とみなせる程度の範囲、概ねその方向とみなせる範囲を含む。また、本明細書では、ガイドワイヤ1を直線状に延ばした状態において、中心軸a(図1参照)と平行な方向を「軸方向X」ともいう。そして、軸方向Xにおいて、施術者に近い近位側をX1側、施術者から離れた遠位側をX2側として説明する。 In the present specification and the like, terms that specify the shape, geometric conditions, and the degree thereof, for example, terms such as "parallel" and "direction", can be regarded as almost parallel in addition to the strict meaning of the terms. Includes a range of degrees, a range that can be generally regarded as that direction. Further, in the present specification, the direction parallel to the central axis a (see FIG. 1) in the state where the guide wire 1 is extended in a straight line is also referred to as "axial direction X". Then, in the axial direction X, the proximal side close to the practitioner will be referred to as the X1 side, and the distal side away from the practitioner will be referred to as the X2 side.
 図1は、本実施形態のガイドワイヤ1の側面図である。図2は、図1の領域bに相当する部分の概略断面図である。本実施形態のガイドワイヤ1は、例えば、頭蓋内において、脳血管の治療に用いられるカテーテル等の位置調整及び移動の補助(目的位置までの案内)等に用いられる。
 図1に示すように、ガイドワイヤ1は、コアワイヤ10、造影コイル20、コイル30及び先端固定部40を備えている。コアワイヤ10は、第1コアワイヤ11と、第2コアワイヤ12とから構成されている。
FIG. 1 is a side view of the guide wire 1 of the present embodiment. FIG. 2 is a schematic cross-sectional view of a portion corresponding to the region b in FIG. The guide wire 1 of the present embodiment is used, for example, in the skull for adjusting the position of a catheter or the like used for treating cerebrovascular disease and assisting the movement (guidance to a target position).
As shown in FIG. 1, the guide wire 1 includes a core wire 10, a contrast coil 20, a coil 30, and a tip fixing portion 40. The core wire 10 is composed of a first core wire 11 and a second core wire 12.
 第1コアワイヤ11は、コアワイヤ10の近位側(X1側)を構成する線状のワイヤ材である。前述したように、ガイドワイヤ1の近位側となる第1コアワイヤ11は、軸方向Xへの力の伝達性を高めて、施術者の操作(回転や押し込み)を遠位側に伝達しやすくするために、硬くする必要がある。そのため、第1コアワイヤ11は、ステンレス鋼等の弾性率の高い材料により構成される。第1コアワイヤ11の外径は、例えば、0.02~0.05mmである。 The first core wire 11 is a linear wire material constituting the proximal side (X1 side) of the core wire 10. As described above, the first core wire 11 on the proximal side of the guide wire 1 enhances the transmission of force in the axial direction X, and facilitates the transmission of the practitioner's operation (rotation or pushing) to the distal side. In order to do so, it needs to be stiff. Therefore, the first core wire 11 is made of a material having a high elastic modulus such as stainless steel. The outer diameter of the first core wire 11 is, for example, 0.02 to 0.05 mm.
 図2に示すように、第1コアワイヤ11の外周面は、フッ素樹脂からなる第1樹脂層111で被覆されている。第1樹脂層111は、ガイドワイヤ1にカテーテル(不図示)を外挿した場合に、カテーテルの内壁との摩擦抵抗を低減するために被覆される層である。第1コアワイヤ11の外周面を第1樹脂層111で被覆することにより、外挿したカテーテルの内壁との摩擦抵抗が低減するため、摺動性をより向上させることができる。なお、第1樹脂層111は、第1コアワイヤ11において、カテーテルに挿入される範囲のみに被覆されていてもよい。すなわち、第1樹脂層111は、必ずしも第1コアワイヤ11の近位側の端部から遠位側に向けて被覆されていなくてもよい。第1樹脂層111の平均的な層厚は、例えば、3~15μmである。後述するように、第1樹脂層111は、第1コアワイヤ11と第2コアワイヤ12とを溶接(接合)する前に、第1コアワイヤ11の外周面に被覆される。 As shown in FIG. 2, the outer peripheral surface of the first core wire 11 is covered with a first resin layer 111 made of a fluororesin. The first resin layer 111 is a layer coated to reduce the frictional resistance with the inner wall of the catheter when the catheter (not shown) is externally inserted into the guide wire 1. By covering the outer peripheral surface of the first core wire 11 with the first resin layer 111, the frictional resistance with the inner wall of the externalized catheter is reduced, so that the slidability can be further improved. The first resin layer 111 may be covered only in the range to be inserted into the catheter in the first core wire 11. That is, the first resin layer 111 does not necessarily have to be covered from the proximal end to the distal side of the first core wire 11. The average layer thickness of the first resin layer 111 is, for example, 3 to 15 μm. As will be described later, the first resin layer 111 is coated on the outer peripheral surface of the first core wire 11 before welding (joining) the first core wire 11 and the second core wire 12.
 第2コアワイヤ12は、コアワイヤ10の遠位側(X2側)を構成する線状のワイヤ材である。前述したように、ガイドワイヤ1の遠位側となる第2コアワイヤ12は、目的部位のある細い血管内をスムーズに通り且つ血管壁を損傷しないようにするため、柔軟性を高める必要がある。そのため、第2コアワイヤ12は、例えば、ニッケルチタン(Ni-Ti)合金等の弾性率が低く、形状復元性に優れた材料により構成される。第2コアワイヤ12の弾性率は、第1コアワイヤ11の弾性率よりも相対的に低く設定される。第2コアワイヤ12の外径は、例えば、0.02~0.05mmである。 The second core wire 12 is a linear wire material constituting the distal side (X2 side) of the core wire 10. As described above, the second core wire 12 on the distal side of the guide wire 1 needs to be more flexible in order to smoothly pass through a small blood vessel having a target site and not to damage the blood vessel wall. Therefore, the second core wire 12 is made of a material having a low elastic modulus and excellent shape restoration, such as a nickel titanium (Ni—Ti) alloy. The elastic modulus of the second core wire 12 is set to be relatively lower than the elastic modulus of the first core wire 11. The outer diameter of the second core wire 12 is, for example, 0.02 to 0.05 mm.
 上述したように、本実施形態のコアワイヤ10は、近位側となる第1コアワイヤ11が弾性率の高い材料により構成され、遠位側となる第2コアワイヤ12が弾性率の低い材料で構成されている。そのため、コアワイヤ10を備えるガイドワイヤ1は、屈曲した血管内における血管壁への負担をより軽減できると共に、施術者の操作による回転力と軸方向への力の伝達性に優れている。
 本実施形態のガイドワイヤ1を、頭蓋内の脳血管に挿入することを前提とした場合、ガイドワイヤ1の全長は、例えば、2000~4000mm程度となる。図1において、ガイドワイヤ1の長さL1に対する第2コアワイヤ12の長さL2の比率L2/L1は、0.1~0.5となる。
As described above, in the core wire 10 of the present embodiment, the first core wire 11 on the proximal side is made of a material having a high elastic modulus, and the second core wire 12 on the distal side is made of a material having a low elastic modulus. ing. Therefore, the guide wire 1 provided with the core wire 10 can further reduce the burden on the blood vessel wall in the bent blood vessel, and is excellent in the transmission of the rotational force and the axial force by the operation of the practitioner.
Assuming that the guide wire 1 of the present embodiment is inserted into the cerebral blood vessel in the skull, the total length of the guide wire 1 is, for example, about 2000 to 4000 mm. In FIG. 1, the ratio L2 / L1 of the length L2 of the second core wire 12 to the length L1 of the guide wire 1 is 0.1 to 0.5.
 図2に示すように、第2コアワイヤ12の外周面は、親水性樹脂からなる第2樹脂層121で被覆されている。第2樹脂層121は、第2コアワイヤ12が血管内において血液と接したときに、血液との潤滑性を向上させるために被覆される層である。第2樹脂層121を構成する親水性樹脂としては、例えば、ポリビニルピロリドン(PVP)、ポリビニルアルコール(PVA)、無水マレイン酸共重合化合物、ヒアルロン酸等が挙げられる。第2コアワイヤ12の外周面を第2樹脂層121で被覆することにより、親水性樹脂の湿潤性により、血液との潤滑性を向上させることができる。第2樹脂層121の平均的な層厚は、例えば、3~15μmである。 As shown in FIG. 2, the outer peripheral surface of the second core wire 12 is covered with a second resin layer 121 made of a hydrophilic resin. The second resin layer 121 is a layer coated to improve the lubricity with blood when the second core wire 12 comes into contact with blood in the blood vessel. Examples of the hydrophilic resin constituting the second resin layer 121 include polyvinylpyrrolidone (PVP), polyvinyl alcohol (PVA), maleic anhydride copolymer compound, hyaluronic acid and the like. By covering the outer peripheral surface of the second core wire 12 with the second resin layer 121, the lubricity with blood can be improved due to the wettability of the hydrophilic resin. The average layer thickness of the second resin layer 121 is, for example, 3 to 15 μm.
 後述するように、第2樹脂層121は、第1コアワイヤ11と第2コアワイヤ12とを接合して、接合部15の外周面を平滑化した後に、第2コアワイヤ12の外周面に被覆される。なお、第2コアワイヤの先端側(X2側)には、造影コイル20等(後述)が設けられる。そのため、第2樹脂層121は、第2コアワイヤ12の先端側において、造影コイル20等の部材が外挿されている領域では、これら部材の外表面に被覆される。 As will be described later, the second resin layer 121 is coated on the outer peripheral surface of the second core wire 12 after joining the first core wire 11 and the second core wire 12 to smooth the outer peripheral surface of the joint portion 15. .. A contrast coil 20 or the like (described later) is provided on the tip end side (X2 side) of the second core wire. Therefore, the second resin layer 121 is covered with the outer surface of the members such as the contrast coil 20 on the distal end side of the second core wire 12 in the region where the members are extrapolated.
 図1に示すように、造影コイル20は、第2コアワイヤ12の遠位側(X2側)に外挿される螺旋状の部材である。造影コイル20は、X線透過の画像において、ガイドワイヤ1の先端の位置を確認するための目印となる。造影コイル20は、X線等の放射線が不透過で且つコイル状に成形可能な材料により構成される。造影コイル20を構成する材料としては、例えば、プラチナタングステン(Pt-W)合金、プラチナ-イリジウム(Pt-Ir)合金、金、タンタル等が挙げられる。造影コイル20の更に遠位側(X2側)には、半球状の先端固定部40が設けられる。 As shown in FIG. 1, the contrast coil 20 is a spiral member externally attached to the distal side (X2 side) of the second core wire 12. The contrast coil 20 serves as a mark for confirming the position of the tip of the guide wire 1 in the X-ray transmission image. The contrast coil 20 is made of a material that is impermeable to radiation such as X-rays and can be molded into a coil shape. Examples of the material constituting the contrast coil 20 include platinum tungsten (Pt—W) alloy, platinum-iridium (Pt—Ir) alloy, gold, tantalum and the like. A hemispherical tip fixing portion 40 is provided on the distal side (X2 side) of the contrast coil 20.
 コイル30は、造影コイル20よりも近位側(X1側)に外挿される螺旋状の部材である。第2コアワイヤ12にコイル30を外挿することにより、第2コアワイヤ12を折れにくくすると共に、柔軟性を持たせることができる。コイル30を構成する材料としては、例えば、ステンレス鋼、タングステン、ニッケルチタン合金等が挙げられる。造影コイル20、コイル30及び先端固定部40は、第2コアワイヤ12に半田付けにより固定される。 The coil 30 is a spiral member externally attached to the proximal side (X1 side) of the contrast coil 20. By extrapolating the coil 30 to the second core wire 12, the second core wire 12 can be made hard to break and can be made flexible. Examples of the material constituting the coil 30 include stainless steel, tungsten, nickel-titanium alloy and the like. The contrast coil 20, the coil 30, and the tip fixing portion 40 are fixed to the second core wire 12 by soldering.
 次に、第1樹脂層111及び第2樹脂層121の軸方向Xにおけるそれぞれの樹脂端部の位置関係について説明する。
 図2に示すように、第1コアワイヤ11の遠位側(X2側)のワイヤ端部112と、第2コアワイヤ12の近位側(X1側)のワイヤ端部122は、接合部15において接合され、線状に一体化されている。第1コアワイヤ11と第2コアワイヤ12のそれぞれのワイヤ端部は、例えば、バット溶接、アプセット溶接等の突き合せ溶接により接合することができる。後述するように、第1コアワイヤ11と第2コアワイヤ12のそれぞれのワイヤ端部を溶接すると、接合部15の外周部は、膨らんだ形状となる(図3B参照)。この膨らんだ外周部は、後工程で平滑化される。接合部15の外周部を平滑化することにより、第1コアワイヤ11と第2コアワイヤ12の接合部分での摺動性を向上させることができる。なお、図2において、接合部15の位置を示す符号付きの矢印は、第1コアワイヤ11と第2コアワイヤ12との接合面を指している。接合面は、両ワイヤ材のワイヤ端部が互いに溶融した部分である。図2に示す接合部15には、接合面と、膨らんだ形状から平滑化された外周部とが含まれる。
Next, the positional relationship between the resin ends of the first resin layer 111 and the second resin layer 121 in the axial direction X will be described.
As shown in FIG. 2, the wire end portion 112 on the distal side (X2 side) of the first core wire 11 and the wire end portion 122 on the proximal side (X1 side) of the second core wire 12 are joined at the joint portion 15. And are integrated linearly. The respective wire ends of the first core wire 11 and the second core wire 12 can be joined by butt welding such as butt welding and upset welding, for example. As will be described later, when the wire ends of the first core wire 11 and the second core wire 12 are welded, the outer peripheral portion of the joint portion 15 has a bulging shape (see FIG. 3B). This swollen outer peripheral portion is smoothed in a later process. By smoothing the outer peripheral portion of the joint portion 15, the slidability at the joint portion between the first core wire 11 and the second core wire 12 can be improved. In FIG. 2, the signed arrow indicating the position of the joint portion 15 points to the joint surface between the first core wire 11 and the second core wire 12. The joint surface is a portion where the wire ends of both wire materials are melted together. The joint portion 15 shown in FIG. 2 includes a joint surface and an outer peripheral portion smoothed from a bulging shape.
 第1コアワイヤ11に被覆された第1樹脂層111の樹脂端部113は、接合部15よりも近位側に位置している。第1コアワイヤ11において、第1樹脂層111の樹脂端部113と接合部15との間の長さL3は、2~50mm、好ましくは10~20mmとなるように構成されている。
 第2コアワイヤ12に被覆された第2樹脂層121は、接合部15の外周部を被覆している。また、第2樹脂層121の樹脂端部123は、接合部15よりも近位側に位置している。第2コアワイヤ12において、第2樹脂層121の樹脂端部123と接合部15との間の長さL4は、2~50mm、好ましくは10~30mmとなるように構成されている。
The resin end 113 of the first resin layer 111 covered with the first core wire 11 is located proximal to the joint 15. In the first core wire 11, the length L3 between the resin end portion 113 and the joint portion 15 of the first resin layer 111 is configured to be 2 to 50 mm, preferably 10 to 20 mm.
The second resin layer 121 coated on the second core wire 12 covers the outer peripheral portion of the joint portion 15. Further, the resin end portion 123 of the second resin layer 121 is located proximal to the joint portion 15. In the second core wire 12, the length L4 between the resin end portion 123 and the joint portion 15 of the second resin layer 121 is configured to be 2 to 50 mm, preferably 10 to 30 mm.
 図2に示す長さL3及びL4を、上記範囲で調整することにより、第1樹脂層111の樹脂端部113と第2樹脂層121の樹脂端部123との間隔L5を、2~50mm、好ましくは3~15mmの範囲とすることができる。間隔L5を上限値に近付けることにより、樹脂層同士が誤って重なり合う不具合が発生しにくくなるため、ガイドワイヤ1の製造の歩留まりを向上させることができる。また、間隔L5を下限値に近付けることにより、ガイドワイヤ1の表面の凹凸がより小さくなるため、ガイドワイヤ1の摺動性を向上させることができる。間隔L5は、2~50mmの範囲において、コアワイヤ10の外径、各樹脂層の層厚、製品仕様等に基づいて、適宜に選択される。 By adjusting the lengths L3 and L4 shown in FIG. 2 within the above range, the distance L5 between the resin end 113 of the first resin layer 111 and the resin end 123 of the second resin layer 121 can be set to 2 to 50 mm. It can be preferably in the range of 3 to 15 mm. By approaching the interval L5 to the upper limit value, it is less likely that the resin layers are erroneously overlapped with each other, so that the manufacturing yield of the guide wire 1 can be improved. Further, by approaching the interval L5 to the lower limit value, the unevenness of the surface of the guide wire 1 becomes smaller, so that the slidability of the guide wire 1 can be improved. The interval L5 is appropriately selected in the range of 2 to 50 mm based on the outer diameter of the core wire 10, the layer thickness of each resin layer, the product specifications, and the like.
 次に、上述したガイドワイヤ1の製造方法について説明する。図3A~図3Dは、ガイドワイヤ1の製造方法を説明する図である。
 まず、第1コアワイヤ11の外周面を、第1樹脂層111で被覆する。第1樹脂層111の被覆には、様々な方法を用いることができる。例えば、第1コアワイヤ11に液状の樹脂をスプレーで噴霧して被覆して熱処理で焼成してもよいし、押出成形機により第1コアワイヤ11に樹脂を連続的に被覆してもよい。また、チューブ状のフッ素樹脂を第1コアワイヤ11に外挿し、加熱して収縮させることにより、第1コアワイヤ11の外周面に被覆させることができる。
Next, the method for manufacturing the guide wire 1 described above will be described. 3A to 3D are diagrams illustrating a method of manufacturing the guide wire 1.
First, the outer peripheral surface of the first core wire 11 is covered with the first resin layer 111. Various methods can be used for coating the first resin layer 111. For example, the first core wire 11 may be sprayed with a liquid resin to cover it and fired by heat treatment, or the first core wire 11 may be continuously coated with the resin by an extrusion molding machine. Further, the outer peripheral surface of the first core wire 11 can be covered by externally inserting a tubular fluororesin into the first core wire 11 and heating and shrinking the resin.
 第1コアワイヤ11の外周面に第1樹脂層111を被覆する際に、第1コアワイヤ11と第2コアワイヤ12は、まだ接合されていない。そのため、第1樹脂層111で被覆する際にコアワイヤに与えられる加工熱が溶接部分(接合部15)に影響を与えたり、第2コアワイヤ12の遠位側の繊細な形状、設計寸法等に影響を与えたりすることは、無い。第1樹脂層111は、樹脂端部113と接合部15との間の長さL3(図2参照)が、2~50mmとなるように被覆される。
 第1コアワイヤ11の外周面に第1樹脂層111を被覆した後、図3Aに示すように、第1コアワイヤ11の遠位側(X2側)のワイヤ端部112と、第2コアワイヤ12の近位側(X1側)のワイヤ端部122とを対向させ、両ワイヤ端部を突き合わせる。
When the outer peripheral surface of the first core wire 11 is coated with the first resin layer 111, the first core wire 11 and the second core wire 12 are not yet joined. Therefore, the processing heat applied to the core wire when coating with the first resin layer 111 affects the welded portion (joint portion 15), and affects the delicate shape, design dimensions, etc. on the distal side of the second core wire 12. Is not given. The first resin layer 111 is covered so that the length L3 (see FIG. 2) between the resin end portion 113 and the joint portion 15 is 2 to 50 mm.
After covering the outer peripheral surface of the first core wire 11 with the first resin layer 111, as shown in FIG. 3A, the wire end portion 112 on the distal side (X2 side) of the first core wire 11 and the vicinity of the second core wire 12 The wire ends 122 on the position side (X1 side) are opposed to each other, and both wire ends are abutted against each other.
 次に、図3Bに示すように、第1コアワイヤ11のワイヤ端部112と第2コアワイヤ12のワイヤ端部122を、前述したバット溶接等の突き合せ溶接により接合する。突き合せ溶接を行うことにより、両ワイヤ端部の継ぎ目の部分は、接合部15となる。第1コアワイヤ11と第2コアワイヤ12とを溶接する際、第1コアワイヤ11に被覆された第1樹脂層111の樹脂端部113(図2参照)は、接合部15から長さL4だけ離間しているため、溶接の妨げとなりにくい。なお、溶接の際、両ワイヤ材のワイヤ端部は、互いに溶融することにより接合されるため、接合部15の外周部は、図3Bに示すように、外径方向に膨んだ形状となる。 Next, as shown in FIG. 3B, the wire end 112 of the first core wire 11 and the wire end 122 of the second core wire 12 are joined by butt welding such as the above-mentioned butt welding. By performing butt welding, the joint portion of both wire end portions becomes the joint portion 15. When welding the first core wire 11 and the second core wire 12, the resin end portion 113 (see FIG. 2) of the first resin layer 111 coated on the first core wire 11 is separated from the joint portion 15 by a length L4. Therefore, it does not easily interfere with welding. At the time of welding, the wire ends of both wire materials are joined by melting each other, so that the outer peripheral portion of the joint portion 15 has a shape bulging in the outer diameter direction as shown in FIG. 3B. ..
 次に、図3Cに示すように、接合部15の外周部を平滑化する。接合部15の外周部は、例えば、切削工具や研磨剤等を用いて平滑にしてもよいし、化学処理により平滑にしてもよい。なお、接合部15の外周部は、後工程で第2樹脂層121により被覆される。そのため、接合部15は、実質的にほぼ凹凸のない状態であればよく、完全な平滑面でなくてもよい。 Next, as shown in FIG. 3C, the outer peripheral portion of the joint portion 15 is smoothed. The outer peripheral portion of the joint portion 15 may be smoothed by using, for example, a cutting tool, an abrasive, or the like, or may be smoothed by a chemical treatment. The outer peripheral portion of the joint portion 15 is covered with the second resin layer 121 in a subsequent step. Therefore, the joint portion 15 may be in a state of substantially no unevenness, and may not be a completely smooth surface.
 次に、図3Dに示すように、第2コアワイヤ12の外周面を、第2樹脂層121で被覆する。第2樹脂層121は、例えば、第2コアワイヤ12の部分を親水性樹脂の溶液に浸した後、溶液から引き上げて乾燥させることにより被覆することができる。第2樹脂層121は、樹脂端部123と接合部15との間の長さL4(図2参照)が、2~50mmとなるように被覆する。これにより、接合部15が第2樹脂層121で被覆されると共に、第1樹脂層111の樹脂端部113と第2樹脂層121の樹脂端部123との間隔L5(図2参照)が、2~50mmとなるガイドワイヤ1を得ることができる。 Next, as shown in FIG. 3D, the outer peripheral surface of the second core wire 12 is covered with the second resin layer 121. The second resin layer 121 can be covered, for example, by immersing the portion of the second core wire 12 in a solution of the hydrophilic resin, then pulling it out of the solution and drying it. The second resin layer 121 is covered so that the length L4 (see FIG. 2) between the resin end portion 123 and the joint portion 15 is 2 to 50 mm. As a result, the joint portion 15 is covered with the second resin layer 121, and the distance L5 (see FIG. 2) between the resin end portion 113 of the first resin layer 111 and the resin end portion 123 of the second resin layer 121 is increased. A guide wire 1 having a size of 2 to 50 mm can be obtained.
 上述した実施形態のガイドワイヤ1によれば、第1樹脂層111の樹脂端部113と第2樹脂層121の樹脂端部123との間が、ガイドワイヤ1の軸方向Xにおいて離間している。そのため、2つの樹脂端部の継ぎ目が重なることにより、外挿したカテーテル(不図示)の内壁との摩擦抵抗が部分的に大きくなることがなく、重なった部分の外側の樹脂層の一部が剥がれてしまうことがない。特に、間隔L5を2~50mmとすることにより、2つの樹脂端部の継ぎ目が離間していることによる摺動性の低下を最小限に抑制することができる。また、2つの樹脂端部の継ぎ目を一致させる必要がないため、それぞれの樹脂層を被覆する作業を効率化できると共に、製品の歩留まりも向上させることができる。したがって、本実施形態のガイドワイヤ1は、血管内及びカテーテル内での高い摺動性を有すると共に、生産性にも優れている。 According to the guide wire 1 of the above-described embodiment, the resin end portion 113 of the first resin layer 111 and the resin end portion 123 of the second resin layer 121 are separated from each other in the axial direction X of the guide wire 1. .. Therefore, due to the overlap of the seams of the two resin ends, the frictional resistance with the inner wall of the externalized catheter (not shown) does not partially increase, and a part of the resin layer outside the overlapped portion is formed. It will not come off. In particular, by setting the distance L5 to 2 to 50 mm, it is possible to minimize the decrease in slidability due to the seams of the two resin ends being separated from each other. Further, since it is not necessary to match the seams of the two resin ends, the work of covering each resin layer can be made more efficient, and the yield of the product can be improved. Therefore, the guide wire 1 of the present embodiment has high slidability in the blood vessel and the catheter, and is also excellent in productivity.
 実施形態のガイドワイヤ1によれば、第1樹脂層111は、第1コアワイヤ11と第2コアワイヤ12とを溶接する前に、第1コアワイヤ11の外周面に被覆される。そのため、第1樹脂層111となるチューブ状のフッ素樹脂を収縮させる際に生じる熱が溶接部分(接合部15)に影響を与えたり、第2コアワイヤ12の遠位側の繊細な形状、設計寸法等に影響を与えたりすることは、無い。 According to the guide wire 1 of the embodiment, the first resin layer 111 is covered on the outer peripheral surface of the first core wire 11 before welding the first core wire 11 and the second core wire 12. Therefore, the heat generated when the tubular fluororesin to be the first resin layer 111 is shrunk affects the welded portion (joint portion 15), and the delicate shape and design dimensions on the distal side of the second core wire 12 It does not affect such things.
 実施形態の製造方法では、先に第1コアワイヤ11に第1樹脂層111を被覆し、第2コアワイヤ12と接合した後、第2コアワイヤ12に第2樹脂層121を被覆するという手順でガイドワイヤ1を製造している。一方、先に第2コアワイヤ12に第2樹脂層121を被覆し、第1コアワイヤ11と接合した後、第1コアワイヤ11に第1樹脂層111を被覆するという手順でガイドワイヤ1を製造することも考えられる。しかし、この製造方法では、第1樹脂層111を被覆(熱処理)する際に生じる熱が溶接部分(接合部15)に影響を与えたり、第2コアワイヤ12の遠位側の繊細な形状、設計寸法等に影響を与えたりするおそれがあるため、製品の歩留まりが低下する。 In the manufacturing method of the embodiment, the guide wire is first coated with the first resin layer 111 on the first core wire 11, bonded to the second core wire 12, and then coated with the second resin layer 121 on the second core wire 12. 1 is manufactured. On the other hand, the guide wire 1 is manufactured by first coating the second core wire 12 with the second resin layer 121, joining the second core wire 11 with the first core wire 11, and then coating the first core wire 11 with the first resin layer 111. Is also possible. However, in this manufacturing method, the heat generated when the first resin layer 111 is coated (heat treated) affects the welded portion (joint portion 15), or the delicate shape and design on the distal side of the second core wire 12 are designed. Since it may affect the dimensions, etc., the yield of the product decreases.
 これに対して、実施形態のガイドワイヤ1の製造方法によれば、第1コアワイヤ11に熱処理が必要な第1樹脂層111を被覆する際に、第1コアワイヤ11は、第2コアワイヤ12と接合されていない。そのため、第1樹脂層111を被覆する際に生じる熱が接合部15に影響を与えたり、第2コアワイヤ12の遠位側の繊細な形状、設計寸法等に影響を与えたりすることが無い。したがって、実施形態のガイドワイヤ1の製造方法によれば、製品の歩留まりが向上するため、ガイドワイヤ1の生産性をより高めることができる。
 実施形態のガイドワイヤ1によれば、第1コアワイヤ11と第2コアワイヤ12を溶接する際に、両コアワイヤの端部同士が露出しているため、溶接作業と、その後の平滑化の作業を容易に行うことができる。
On the other hand, according to the method for manufacturing the guide wire 1 of the embodiment, when the first core wire 11 is coated with the first resin layer 111 that requires heat treatment, the first core wire 11 is joined to the second core wire 12. It has not been. Therefore, the heat generated when coating the first resin layer 111 does not affect the joint portion 15, or the delicate shape, design dimensions, etc. on the distal side of the second core wire 12. Therefore, according to the method for manufacturing the guide wire 1 of the embodiment, the yield of the product is improved, so that the productivity of the guide wire 1 can be further increased.
According to the guide wire 1 of the embodiment, when the first core wire 11 and the second core wire 12 are welded, the ends of both core wires are exposed, so that the welding work and the subsequent smoothing work are easy. Can be done.
 以上、本発明の実施形態について説明したが、本発明は、前述した実施形態に限定されるものではなく、後述する変形形態のように種々の変形や変更が可能であって、それらも本発明の技術的範囲内に含まれる。また、実施形態に記載した効果は、本発明から生じる最も好適な効果を列挙したに過ぎず、実施形態に記載したものに限定されない。なお、上述の実施形態及び後述する変形形態は、適宜に組み合わせて用いることもできるが、詳細な説明は省略する。 Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications and changes can be made as in the modified forms described later, and these are also the present invention. Included within the technical scope of. Moreover, the effects described in the embodiments are merely a list of the most suitable effects resulting from the present invention, and are not limited to those described in the embodiments. The above-described embodiment and the modified form described later may be used in combination as appropriate, but detailed description thereof will be omitted.
(変形形態)
 実施形態では、第2コアワイヤ12の先端側に設けられた造影コイル20等の部材の外周面に第2樹脂層121を被覆する例について説明したが、これに制限されない。第2コアワイヤ12の先端側に上記部材が設けられない場合、第2コアワイヤ12の先端側を含む全体を第2樹脂層で被覆するようにしてもよい。
(Deformed form)
In the embodiment, an example in which the outer peripheral surface of a member such as the contrast coil 20 provided on the tip end side of the second core wire 12 is covered with the second resin layer 121 has been described, but the present invention is not limited thereto. When the member is not provided on the tip end side of the second core wire 12, the entire surface including the tip end side of the second core wire 12 may be covered with the second resin layer.
 1 ガイドワイヤ
 10 コアワイヤ
 11 第1コアワイヤ
 12 第2コアワイヤ
 15 接合部
 20 造影コイル
 30 コイル
 40 先端固定部
 111 第1樹脂層
 112 ワイヤ端部
 113 樹脂端部
 121 第2樹脂層
 122 ワイヤ端部
 123 樹脂端部
1 Guide wire 10 Core wire 11 1st core wire 12 2nd core wire 15 Joint part 20 Contrast coil 30 Coil 40 Tip fixing part 111 1st resin layer 112 Wire end 113 Resin end 121 2nd resin layer 122 Wire end 123 Resin end Department

Claims (8)

  1.  頭蓋内の脳血管に挿入されるガイドワイヤであって、
     近位側に設けられる第1コアワイヤと、前記第1コアワイヤよりも遠位側に設けられる第2コアワイヤであって、接合部において前記第1コアワイヤと線状に一体化される第2コアワイヤと、を備え、
     前記接合部は、平滑な外周部を有し、
     前記ガイドワイヤの近位側から前記接合部を含まない遠位側までの間に第1樹脂層が設けられ、
     前記ガイドワイヤの遠位側の端部から前記接合部を含む近位側までの間に第2樹脂層が設けられ、
     前記第1樹脂層の遠位側の樹脂端部と前記第2樹脂層の近位側の樹脂端部との間は、前記ガイドワイヤの軸方向において離間しており、
     前記ガイドワイヤの長さL1に対する前記第2コアワイヤの長さL2の比率L2/L1は、0.1以上である、
    ガイドワイヤ。
    A guide wire that is inserted into the cerebral blood vessels in the skull.
    A first core wire provided on the proximal side, a second core wire provided on the distal side of the first core wire, and a second core wire linearly integrated with the first core wire at a joint. Equipped with
    The joint has a smooth outer peripheral portion and has a smooth outer peripheral portion.
    A first resin layer is provided between the proximal side of the guide wire and the distal side not including the joint.
    A second resin layer is provided between the distal end of the guide wire and the proximal side including the joint.
    The resin end on the distal side of the first resin layer and the resin end on the proximal side of the second resin layer are separated in the axial direction of the guide wire.
    The ratio L2 / L1 of the length L2 of the second core wire to the length L1 of the guide wire is 0.1 or more.
    Guide wire.
  2.  前記第2コアワイヤは、前記第1コアワイヤよりも相対的に弾性率が低い、
    請求項1に記載のガイドワイヤ。
    The second core wire has a relatively lower elastic modulus than the first core wire.
    The guide wire according to claim 1.
  3.  前記第1樹脂層は、フッ素樹脂を含み、
     前記第2樹脂層は、親水性樹脂を含む、
    請求項1又は2に記載のガイドワイヤ。
    The first resin layer contains a fluororesin and contains
    The second resin layer contains a hydrophilic resin.
    The guide wire according to claim 1 or 2.
  4.  前記第1樹脂層の前記樹脂端部と前記接合部との間の長さL3は、
    2~50mmである、
    請求項1~3のいずれかに記載のガイドワイヤ。
    The length L3 between the resin end portion and the joint portion of the first resin layer is
    2 to 50 mm,
    The guide wire according to any one of claims 1 to 3.
  5.  前記第2樹脂層の前記樹脂端部と前記接合部との間の長さL4は、2~50mmである、
    請求項1~4のいずれかに記載のガイドワイヤ。
    The length L4 between the resin end portion and the joint portion of the second resin layer is 2 to 50 mm.
    The guide wire according to any one of claims 1 to 4.
  6.  前記第1樹脂層の前記樹脂端部と前記第2樹脂層の前記樹脂端部との間隔L5は、
    2~50mmである、
    請求項1~5のいずれかに記載のガイドワイヤ。
    The distance L5 between the resin end portion of the first resin layer and the resin end portion of the second resin layer is
    2 to 50 mm,
    The guide wire according to any one of claims 1 to 5.
  7.  頭蓋内の脳血管に挿入されるガイドワイヤとして、近位側に設けられる第1コアワイヤと、前記第1コアワイヤよりも遠位側に設けられる第2コアワイヤであって、接合部において前記第1コアワイヤと線状に一体化される第2コアワイヤと、を備え、前記ガイドワイヤの長さL1に対する前記第2コアワイヤの長さL2の比率L2/L1が0.1以上となるガイドワイヤの製造方法であって、
     前記第1コアワイヤの近位側から前記第1コアワイヤの遠位側のワイヤ端部を含まない遠位側までの間に第1樹脂層を被覆する工程と、
     前記第1コアワイヤの遠位側のワイヤ端部と前記第2コアワイヤの近位側のワイヤ端部とを突き合わせて接合して、前記接合部とする工程と、
     前記接合部の外周部を平滑化する工程と、
     前記ガイドワイヤの遠位側の端部から前記接合部を含む近位側までの間に、前記第1樹脂層の遠位側の樹脂端部と第2樹脂層の近位側の樹脂端部との間が、前記ガイドワイヤの軸方向において離間するように前記第2樹脂層を被覆する工程と、
    を有するガイドワイヤの製造方法。
    As a guide wire to be inserted into a cerebral blood vessel in the skull, a first core wire provided on the proximal side and a second core wire provided on the distal side of the first core wire, the first core wire at a joint. A guide wire manufacturing method comprising a second core wire linearly integrated with the guide wire, wherein the ratio L2 / L1 of the length L2 of the second core wire to the length L1 of the guide wire is 0.1 or more. There,
    A step of coating the first resin layer from the proximal side of the first core wire to the distal side not including the wire end on the distal side of the first core wire.
    A step of abutting and joining a wire end on the distal side of the first core wire and a wire end on the proximal side of the second core wire to form the joint.
    The step of smoothing the outer peripheral portion of the joint portion and
    Between the distal end of the guide wire and the proximal side including the joint, the resin end on the distal side of the first resin layer and the resin end on the proximal side of the second resin layer. And the step of coating the second resin layer so as to be separated from each other in the axial direction of the guide wire.
    A method of manufacturing a guide wire having.
  8.  前記第2樹脂層を被覆する工程は、
     前記ガイドワイヤの遠位側の端部から前記接合部を含む近位側までの間を、前記第2樹脂層の原料樹脂の溶液に浸した後、前記溶液から引き上げて乾燥させる工程を含む、
    請求項7に記載のガイドワイヤの製造方法。
    The step of coating the second resin layer is
    A step of immersing the guide wire from the distal end to the proximal side including the joint in a solution of the raw material resin of the second resin layer, and then pulling up from the solution to dry the guide wire.
    The method for manufacturing a guide wire according to claim 7.
PCT/JP2021/031733 2020-10-13 2021-08-30 Guide wire, and method for manufacturing guide wire WO2022080021A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-172324 2020-10-13
JP2020172324 2020-10-13

Publications (1)

Publication Number Publication Date
WO2022080021A1 true WO2022080021A1 (en) 2022-04-21

Family

ID=81208323

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/031733 WO2022080021A1 (en) 2020-10-13 2021-08-30 Guide wire, and method for manufacturing guide wire

Country Status (1)

Country Link
WO (1) WO2022080021A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017113267A (en) * 2015-12-24 2017-06-29 住友電気工業株式会社 Medical guide wire
JP2018114239A (en) * 2017-01-20 2018-07-26 テルモ株式会社 Guide wire and method of manufacturing guide wire
WO2018146948A1 (en) * 2017-02-08 2018-08-16 テルモ株式会社 Guide wire

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017113267A (en) * 2015-12-24 2017-06-29 住友電気工業株式会社 Medical guide wire
JP2018114239A (en) * 2017-01-20 2018-07-26 テルモ株式会社 Guide wire and method of manufacturing guide wire
WO2018146948A1 (en) * 2017-02-08 2018-08-16 テルモ株式会社 Guide wire

Similar Documents

Publication Publication Date Title
US5458585A (en) Tracking tip for a work element in a catheter system
EP1325763B1 (en) Guide wire
JP5531352B2 (en) Catheter assembly
JP5027651B2 (en) Vascular catheter
JP2001095923A (en) Catheter
JPH08308934A (en) Medical tube
JP3380691B2 (en) Guide wire
JPH08243168A (en) Tube for medical treatment
JP2006271901A (en) Coiled contrast marker, its manufacturing method and catheter
US20140188005A1 (en) Wire guide and method of making the same
WO2022080021A1 (en) Guide wire, and method for manufacturing guide wire
JP2008307093A (en) Catheter and its manufacturing method
US10850074B2 (en) Guide wire
JP2007319705A (en) Guide wire and production method of guide wire
JP7474589B2 (en) Guidewire and method for manufacturing the same
JP6850368B2 (en) catheter
JP2002291900A (en) Medical tool and method for manufacturing the same
JP3962652B2 (en) Guide wire
JP4116944B2 (en) Guide wire
JP7410695B2 (en) catheter
WO2014181427A1 (en) Guide wire and method for producing same
JP5951268B2 (en) Medical tube and method for manufacturing medical tube
JP2023018560A (en) Catheter, method of manufacturing catheter and method of caulking contrast marker
JP3683237B2 (en) Guide wire
JP4288048B2 (en) Guide wire

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21879763

Country of ref document: EP

Kind code of ref document: A1

WA Withdrawal of international application
NENP Non-entry into the national phase

Ref country code: DE