WO2022078530A1 - 一种太阳能电池、太阳能电池的制备方法和光伏组件 - Google Patents

一种太阳能电池、太阳能电池的制备方法和光伏组件 Download PDF

Info

Publication number
WO2022078530A1
WO2022078530A1 PCT/CN2021/136125 CN2021136125W WO2022078530A1 WO 2022078530 A1 WO2022078530 A1 WO 2022078530A1 CN 2021136125 W CN2021136125 W CN 2021136125W WO 2022078530 A1 WO2022078530 A1 WO 2022078530A1
Authority
WO
WIPO (PCT)
Prior art keywords
perovskite
layer
band gap
light
crystalline silicon
Prior art date
Application number
PCT/CN2021/136125
Other languages
English (en)
French (fr)
Inventor
解俊杰
徐琛
李子峰
吴兆
Original Assignee
隆基绿能科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 隆基绿能科技股份有限公司 filed Critical 隆基绿能科技股份有限公司
Priority to JP2023521648A priority Critical patent/JP2023546375A/ja
Priority to US18/028,491 priority patent/US20230337444A1/en
Priority to AU2021359793A priority patent/AU2021359793B2/en
Publication of WO2022078530A1 publication Critical patent/WO2022078530A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/10Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/40Thermal treatment, e.g. annealing in the presence of a solvent vapour
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/10Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
    • H10K30/15Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/055Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means where light is absorbed and re-emitted at a different wavelength by the optical element directly associated or integrated with the PV cell, e.g. by using luminescent material, fluorescent concentrators or up-conversion arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/078Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers including different types of potential barriers provided for in two or more of groups H01L31/062 - H01L31/075
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/15Deposition of organic active material using liquid deposition, e.g. spin coating characterised by the solvent used
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/311Purifying organic semiconductor materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/50Organic perovskites; Hybrid organic-inorganic perovskites [HOIP], e.g. CH3NH3PbI3
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/70Down-conversion, e.g. by singlet fission
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present disclosure relates to the technical field of solar photovoltaics, and in particular, to a solar cell, a method for preparing a solar cell, and a photovoltaic assembly.
  • the band gap of silicon is narrow, and silicon is an indirect semiconductor, so that photons with more energy than the band gap are absorbed by silicon, and photo-generated carriers cannot be generated, and the energy of the photons is dissipated in the form of heat, As a result, the energy of the visible spectrum cannot be fully utilized.
  • the present disclosure provides a solar cell, a method for preparing a solar cell, and a photovoltaic module, aiming at improving and reducing the energy loss of carriers during the transmission process, and improving the conversion efficiency of the solar cell.
  • an embodiment of the present disclosure provides a solar cell, the solar cell includes a crystalline silicon cell unit, and a down-conversion light-emitting layer and a perovskite layer sequentially positioned on the light-facing surface of the crystalline silicon cell unit;
  • the band gap of the perovskite layer gradually decreases from the light surface to the backlight surface; the band gap at the backlight surface of the perovskite layer is greater than or equal to the band gap of the absorption layer of the crystalline silicon battery unit.
  • the down-conversion light-emitting layer comprises a down-conversion light-emitting material
  • the down-conversion light-emitting material includes perovskite material or light-emitting quantum dots.
  • the perovskite layer is ABX 3 ;
  • Described A is selected from at least one in methylamine ion, formamidine ion, phenethylamine ion, 1-naphthylmethylamine ion and cesium ion;
  • Described B is selected from at least one in lead ion and tin ion;
  • Described X is selected from at least one of bromide ion, iodide ion and chloride ion respectively;
  • the band gap of the perovskite layer from the light-facing surface to the backlight surface is gradually reduced.
  • the band gap size of the perovskite layer at the light-facing surface is 2eV-3.06eV; the band gap size of the perovskite layer at the backlight surface is 1.2eV-1.5eV; The band gap of the conversion luminescent material is 1.2eV ⁇ 1.5eV.
  • the thickness of the perovskite layer is 10 nm ⁇ 100 nm.
  • the solar cell further includes an upper electrode, the upper electrode is formed at the hollow of the perovskite layer and the down-conversion light-emitting layer, and the upper electrode is connected to the perovskite layer and the down-conversion light-emitting layer. not in direct contact.
  • an embodiment of the present disclosure provides a method for preparing a solar cell, where the solar cell is the solar cell described in the first aspect, and the method includes:
  • a down-conversion light-emitting layer and a narrow-band-gap perovskite layer are sequentially formed on the light-facing surface of the crystalline silicon battery unit, and the band gap of the narrow-band gap perovskite layer is greater than or equal to the band gap of the absorption layer of the crystalline silicon battery unit.
  • the wide band gap perovskite material is contacted with the narrow band gap perovskite layer for ion exchange to form a perovskite layer with energy band gradient distribution, and the morphology of the wide band gap perovskite material can be solid phase, gas phase and liquid phase In any one, the band gap of the wide band gap perovskite material is larger than the band gap of the narrow band gap perovskite layer;
  • a down-conversion light-emitting layer is formed on the light-facing surface of the crystalline silicon cell unit
  • a perovskite precursor solution is coated on the down-conversion light-emitting layer, so that the perovskite precursors in the perovskite precursor solution are sequentially crystallized to form a perovskite layer, and the perovskite precursor includes two 3D perovskite precursors and 3D perovskite precursors.
  • the form of the wide band gap perovskite material is a solid phase, and the wide band gap perovskite material is contacted with the narrow band gap perovskite layer to perform ion exchange to form a perovskite layer with energy band gradient distribution steps, including:
  • the narrow-bandgap perovskite layer On the surface of the narrow-bandgap perovskite layer, powder of wide-bandgap perovskite material is added, so that ion exchange is performed between the wide-bandgap perovskite material and the narrow-bandgap perovskite layer, so as to form all the energy band gradient distribution. the perovskite layer.
  • the form of the wide band gap perovskite material is a liquid phase, and the wide band gap perovskite material is contacted with the narrow band gap perovskite layer to perform ion exchange to form a perovskite layer with energy band gradient distribution steps, including:
  • the crystalline silicon battery unit with a narrow band gap perovskite layer is immersed in a wide band gap perovskite material for ion exchange to form the perovskite layer with energy band gradient distribution, and the wide band gap perovskite material includes ABX 3 calcium Any one of ilmenite solution, AX precursor solution and BX 2 precursor solution.
  • the form of the wide-bandgap perovskite material is gaseous, and the wide-bandgap perovskite material is contacted with the narrow-bandgap perovskite layer to perform ion exchange to form a perovskite layer with energy band gradient distribution. steps, including:
  • the crystalline silicon battery unit with the narrow band gap perovskite layer is placed in the atmosphere of the wide band gap perovskite material for ion exchange to form the perovskite layer with energy band gradient distribution, and the wide band gap perovskite material includes ABX Any of 3 perovskite vapor, AX precursor vapor, and BX 2 precursor vapor.
  • embodiments of the present disclosure provide a photovoltaic assembly including the solar cell according to the first aspect.
  • a crystalline silicon battery unit a first encapsulation layer, a perovskite layer, a down-conversion light-emitting layer and a cover glass located on the light-facing surface of the crystalline silicon battery unit, and a backlight surface of the crystalline silicon battery unit the second encapsulation layer and backplane;
  • the perovskite layer and the down-conversion light-emitting layer are located between the light-facing surface of the crystalline silicon battery unit and the first encapsulation layer; or, the perovskite layer and the down-conversion light-emitting layer are located in the between the first encapsulation layer and the backlight surface of the cover glass.
  • the solar cell provided by the embodiment of the present disclosure includes a crystalline silicon cell unit, a perovskite layer and a down-conversion light-emitting layer, and the down-conversion light-emitting layer and the perovskite layer are sequentially located on the light-facing surface of the crystalline silicon cell unit; the perovskite layer
  • the band gap gradually decreases from the light surface to the backlight surface, and the band gap of the backlight surface is greater than or equal to the band gap of the absorbing layer of the crystalline silicon battery unit, so that the crystalline silicon battery unit can not be effectively utilized.
  • the perovskite layer and the down-conversion light-emitting layer provided by the embodiments of the present disclosure can cooperate to down-convert photons with different high-energy and wide wavelength ranges.
  • FIG. 1 shows a schematic structural diagram of a solar cell provided by an embodiment of the present disclosure
  • FIG. 2 shows a schematic diagram of an energy band of a perovskite layer provided by an embodiment of the present disclosure
  • FIG. 3 shows a schematic structural diagram of another solar cell provided by an embodiment of the present disclosure
  • FIG. 4 shows a schematic structural diagram of still another solar cell provided by an embodiment of the present disclosure
  • FIG. 5 shows a flow chart of steps of a method for preparing a solar cell provided by an embodiment of the present disclosure
  • FIG. 6 shows a flow chart of steps of another solar cell fabrication method provided by an embodiment of the present disclosure
  • FIG. 7 shows a schematic diagram of a perovskite structure provided by an embodiment of the present disclosure
  • FIG. 8 shows a schematic diagram of an ion exchange process of a solid-phase wide-bandgap perovskite material provided in an embodiment of the present disclosure
  • FIG. 9 shows a schematic diagram of an ion exchange process of a liquid-phase wide-bandgap perovskite material provided in an embodiment of the present disclosure.
  • Fig. 10 shows a schematic diagram of an ion exchange process of a gas-phase wide-bandgap perovskite material provided in an embodiment of the present disclosure.
  • FIG. 1 shows a schematic structural diagram of a solar cell provided by an embodiment of the present disclosure.
  • the solar cell 10 includes a crystalline silicon cell unit 101 , and down-converted light emitted from the crystalline silicon cell unit 101 on the light surface in sequence layer 102, perovskite layer 103;
  • the band gap of the perovskite layer 103 gradually decreases from the light surface to the backlight surface
  • the band gap at the backlight surface of the perovskite layer 103 is greater than or equal to the band gap of the absorption layer of the crystalline silicon battery unit 101 .
  • the solar cell 10 includes a crystalline silicon cell unit 101 , a down-conversion light-emitting layer 102 and a perovskite layer 103 , wherein the down-conversion light-emitting layer 102 and the perovskite layer 103 are arranged in the light direction of the crystalline silicon cell unit 101
  • the perovskite layer 103 has a band gap that gradually decreases from the light surface to the backlight surface, so that it can absorb photons with different energies and higher energy to generate photo-generated carriers, and the down-conversion light-emitting layer 102 can reduce the photo-generated carriers.
  • Radiation recombination is performed to obtain photons with lower energy, so that the down-conversion light-emitting layer 102 and the perovskite layer 103 can convert high-energy photons into high-efficiency photons of the crystalline silicon battery unit 101 before sunlight enters the crystalline silicon battery unit 101. , photons with lower energy, improve the conversion efficiency of the crystalline silicon battery unit 101 .
  • the band gap at the backlight surface of the perovskite layer 103 is greater than or equal to the crystalline silicon battery unit 101, so that the perovskite layer 103 can down-convert the photons that cannot be effectively utilized by the absorption layer of the crystalline silicon battery unit 101;
  • the band gap of the perovskite layer 103 gradually decreases from the direction of the light surface to the backlight surface, that is, the band gap of the light surface is the largest, and the band gap of the backlight surface is the smallest, and the band gap gradually decreases from the light surface to the backlight surface.
  • the perovskite layer 103 can absorb photons in a larger wavelength range from high to low energy, and down-convert photons in a larger range, thereby effectively improving the conversion efficiency of the solar cell 10 .
  • the band gap gradually decreases, which may be the band gap decreases along a smooth trend from large to small, so as to eliminate the potential barrier and improve the migration efficiency of carriers; the band gap can be from large to small. The trend decreases along the multi-step gradient, which is not specifically limited in this embodiment of the present disclosure.
  • FIG. 2 shows a schematic diagram of the energy band of a perovskite layer provided by an embodiment of the present disclosure. As shown in FIG. 2 , it includes the band gap of the crystalline silicon cell 201 and the band gap of the perovskite layer 203. It can be seen that the perovskite layer The band gap (E g1 ) of the titanium ore layer 203 towards the light side is the largest, the band gap (E g2 ) at the backlight side is the smallest, and the band gap gradually decreases from the light side to the backlight side.
  • the perovskite layer 203 absorbs high-energy photons (hv 1 ) and obtains photogenerated electrons and holes. Since the bottom of the conduction band of the perovskite layer 203 gradually decreases from the light side to the backlight side, the electrons are The bottom of the conduction band is transported from high to low; the top of the valence band is gradually increased from the light side to the backlight side, and the holes are transported from low to high at the top of the valence band. Therefore, the photogenerated electrons and The holes tend to be transported to the backlight surface of the perovskite layer 203, and finally radiative recombination luminescence occurs in the down-conversion light-emitting layer 202. Since the perovskite layer 203 has a longer free path, the top of the valence band gradually increases, Driven by the gradual decrease of the conduction band bottom, electrons and holes have higher transport efficiency.
  • hv 1 high-energy photons
  • the down-conversion light-emitting layer 202 electrons and holes can undergo radiative recombination to obtain photons (hv 2 ) with lower energy than hv 1 and can be efficiently utilized by the crystalline silicon battery unit 201 .
  • the top of the conduction band is relatively close to the bottom of the valence band, and it is easy for electrons and holes to recombine, and radiative recombination luminescence occurs.
  • the down-conversion light-emitting layer 202 radiates compound light, and the absorption layer of the crystalline silicon battery unit 201 can absorb hv 2 and can efficiently utilize hv 2 .
  • the material of the perovskite layer 203 is ABX 3 .
  • the perovskite material may be an organic-inorganic hybrid perovskite, an inorganic perovskite, or a lead-free system perovskite.
  • ABX 3 may be used to represent the perovskite
  • A, B, and X can be one kind of ions respectively, or can be a mixture of two or more kinds of ions, respectively.
  • the size and change of the band gap in the perovskite layer 203 can be adjusted. Therefore, the band gap of the perovskite layer 203 is gradually reduced and distributed from the light surface to the back light surface.
  • ions can migrate along the ion concentration gradient, so that the ions of the wide-bandgap material migrate to the narrow-bandgap material, and the ions of the narrow-bandgap material migrate to the wide-bandgap material , since the size of the band gap is related to the ion species and concentration, a perovskite layer with a gradually changing band gap can be formed by adjusting the ion species and concentration.
  • a and A' can be used to represent different A ions, B and B' to represent different B ions, and C and C' to represent different C ions.
  • B' ions build the main framework of the crystal structure of perovskite materials, migration requires high energy (> 2eV), and may cause the collapse of the crystal structure of the material, therefore, B, B' ions usually do not migrate.
  • the band gap of ABX 3 is larger than that of A'B'X' 3 .
  • the ionic species of the disclosed embodiments are not specifically limited.
  • the A is selected from at least one of methylamine ion, formamidine ion, phenethylamine ion, 1-naphthylmethylamine ion and cesium ion.
  • A is selected from monovalent cations such as methylamine ion, formamidine ion, phenethylamine ion, 1-naphthylmethylamine ion, and cesium ion.
  • monovalent cations such as methylamine ion, formamidine ion, phenethylamine ion, 1-naphthylmethylamine ion, and cesium ion.
  • monovalent cations such as methylamine ion, formamidine ion, phenethylamine ion, 1-naphthylmethylamine ion, and cesium ion.
  • Different kinds of monovalent cations are selected, represented by A and A', at this time, the band gap of ABX 3 should be different from that of A'BX 3 .
  • the band gap size relationship of the above monovalent cations is 1-naphthylmethylamine ion (NMA) > phenethylamine ion (PEA) > cesium ion (Cs) > methylamine ion (MA )>formamidine ion (FA), at this time, when A chooses NMA, A' can choose at least one of PEA, Cs, MA, FA, and when A chooses PEA, A' can choose among Cs, MA, FA At least one is chosen such that the band gap of ABX 3 is greater than that of A'BX 3 , and so on.
  • NMA 1-naphthylmethylamine ion
  • PEA phenethylamine ion
  • Cs cesium ion
  • MA methylamine ion
  • FA formamidine ion
  • the B is selected from at least one of lead ions and tin ions.
  • B is selected from divalent metal cations such as lead ions and tin ions, wherein B can be selected from one divalent metal cation, or two divalent metal cations can be selected, which are represented by B and B' respectively,
  • the band gap of ABX 3 is made different from AB'X 3 .
  • the band gap size relationship of the above divalent metal cations is lead ion (Pb) > tin ion (Sn).
  • Pb lead ion
  • Sn tin ion
  • the band gap of ABX 3 may also be larger than that of A'B'X' 3 in the composed material system.
  • the size of the band gap may be based on the band gap measured by the perovskite material, and there is no specific limitation on the selection of different ions.
  • the X is selected from at least one of bromide, iodide and chloride.
  • X can be selected from halogen ions such as bromide ion, iodide ion and chloride ion, wherein X can be selected from one kind of halogen ion, or different halide ions can be selected, which are represented by X and X' respectively, so that ABX
  • the band gap of 3 is different from that of ABX' 3 .
  • the band gap size relationship of the above halide ions is chloride ion (Cl) > bromide ion (Br) > iodide ion (I).
  • X' can be in the range of At least one of Br, I is selected, and so on, so that the band gap of ABX 3 is larger than ABX' 3 .
  • the band gap of ABX 3 in the material system is greater than A'B'X' 3 , which is not specifically limited in the embodiments of the present disclosure.
  • the band gap of the perovskite layer from the light-facing surface to the backlight surface is gradually reduced.
  • the thickness direction may be the light incident direction of the perovskite layer
  • adjusting the element distribution of ABX 3 in the perovskite layer may be adjusting the type, proportion, concentration, etc. of the above-mentioned ions in the perovskite layer, such as in the perovskite layer.
  • the ions with larger band gaps are more distributed on the light-facing surface of the perovskite layer
  • the ions with smaller band gaps are more distributed on the backlight surface of the perovskite layer, so that the perovskite layer is composed of light-facing surfaces.
  • the band gap from the face to the backlight face gradually decreases.
  • the bandgap size of the perovskite layer at the light-facing surface is 2eV-3.06eV; the bandgap size of the perovskite layer at the backlight surface is 1.2eV-1.5eV; the down-conversion light-emitting layer
  • the band gap of the mid-down conversion luminescent material is 1.2eV ⁇ 1.5eV.
  • the energy of the photons converted first by the perovskite layer 203 must be greater than or equal to the upper limit that the crystalline silicon battery unit 201 can absorb, so as to prevent the photons that can be absorbed by the crystalline silicon battery unit 201 in sunlight from also participating in the down-conversion, resulting in
  • the waste of resources according to the band gap range of the perovskite material used in the perovskite layer 203, the band gap of the crystalline silicon cell 201 and the maximum absorption of visible light, those skilled in the art can select the perovskite layer 203 to the light surface and The range of different band gap sizes at the backlight surface, for example, in the case where the band gap of the crystalline silicon cell 201 is 1.12 eV, the band gap size at the light-facing surface of the perovskite 203 is 2 eV to 3.06 eV.
  • the size of the band gap at the plane is 1.2 eV ⁇ 1.5 eV, which is not specifically limited in
  • the down-conversion light-emitting layer 202 is located between the backlight surface of the perovskite layer 203 and the light-facing surface of the crystalline silicon cell 201 , and the down-conversion light-emitting material in the down-conversion light-emitting layer 202 can collect the light of the perovskite layer 203 Electrons and holes are photogenerated, and radiative recombination occurs to the crystalline silicon cell 201 to emit light.
  • the band gap size of the down-conversion luminescent material can refer to the size of the band gap at the backlight surface of the perovskite layer 203, It is 1.2eV ⁇ 1.5eV.
  • Those skilled in the art can also add other materials to the down-conversion light-emitting layer according to actual requirements, which are not specifically limited in the embodiments of the present disclosure.
  • the thickness of the perovskite layer 203 is 10 nm ⁇ 100 nm.
  • the perovskite material has a high absorption coefficient, in order to avoid self-absorption and heat generation due to the excessive thickness of the perovskite layer 203, the low-energy photons emitted by the down-conversion light-emitting layer 202 are not easily absorbed.
  • the thickness of the crystalline silicon battery cell 201 is absorbed, and the thickness of the perovskite layer 203 can be any value within the range of 10 nm to 100 nm, such as 10 nm, 15 nm, 30 nm, 60 nm, 80 nm, 100 nm, etc., which are not specifically limited in the embodiments of the present disclosure.
  • FIG. 3 shows a schematic structural diagram of another solar cell provided by an embodiment of the present disclosure.
  • the solar cell 30 includes a crystalline silicon cell unit 301 and the down-conversion of the crystalline silicon cell unit 301 to the light surface in sequence.
  • the band gap of the perovskite layer 303 gradually decreases from the light surface to the backlight surface
  • the band gap at the backlight surface of the perovskite layer 303 is greater than or equal to the band gap of the absorption layer of the crystalline silicon battery unit 301 .
  • the crystalline silicon battery unit 301 and the perovskite layer 303 can be referred to the related descriptions in FIG. 1 and FIG. 2 , which are not repeated here to avoid repetition.
  • the down-conversion light-emitting layer 302 includes a down-conversion light-emitting material.
  • the down-conversion light-emitting material includes perovskite material or light-emitting quantum dots.
  • the down-conversion light-emitting layer 302 may include a down-conversion light-emitting material, wherein the down-conversion light-emitting material may be a perovskite material or a light-emitting quantum dot, wherein the band gap of the perovskite material may be uniformly distributed, using Preparation of different perovskite materials or the same perovskite material with the same band gap; light-emitting quantum dots refer to semiconductor nanostructures that can bind carriers, optionally, the down-conversion light-emitting material can be a backlight embedded in the perovskite layer 303
  • the light-emitting quantum dots on the surface can be injected into the light-emitting quantum dots after the electrons and holes converge to the backlight surface, and radiative recombination occurs in the light-emitting quantum dots, releasing low-energy photons. Based on the quantum confinement effect of light-emitting quantum dots , electrons and holes have
  • the bandgap of the perovskite layer 303 when the bandgap of the perovskite layer 303 is 1.2eV ⁇ 1.5eV, the bandgap of the light-emitting quantum dots may be in the range of 1.2eV ⁇ 1.5eV and the bandgap at the backlight surface of the perovskite layer 303 The gap is the same, and may also be different from the band gap at the backlight surface of the perovskite layer 303 .
  • the light-emitting quantum dots can be formed to form quantum wells on the energy band structure of the solar cell 30, thereby improving the efficiency of the light-emitting quantum dots.
  • the radiation recombination probability increases the luminous efficiency of the solar cell 30 .
  • the bandgap of the light-emitting quantum dots may be larger than that at the backside of the perovskite layer 303, or may be smaller than that of calcium The band gap at the backside of the titanium ore layer 303 .
  • the band gap of the light-emitting quantum dots can more comprehensively absorb the carriers generated by the perovskite layer 303 .
  • the band gap of the light-emitting quantum dots can also be the same as the band gap of the perovskite layer 303, so that electrons and holes can more easily enter the light-emitting quantum dots and improve the conversion efficiency.
  • the solar cell 30 further includes an upper electrode 304 formed at the hollow of the perovskite layer 303 and the down-conversion light-emitting layer 302 , the upper electrode 304 and the perovskite layer 303 It is not in direct contact with the down-conversion light-emitting layer 302 .
  • the upper electrode 304 refers to the electrode located on the light-facing surface of the crystalline silicon battery unit 301 in the solar cell 30 . As shown in FIG. 3 , the upper electrode 304 is connected to the light-facing surface of the crystalline silicon battery unit 301 , and It protrudes through the hollow of the down-conversion light-emitting layer 302 and the perovskite layer 303. In order to avoid the conduction between the upper electrode 304 and the perovskite layer 303 or the down-conversion light-emitting layer 302, the upper electrode 304 can be connected to the perovskite layer 303 and the down-conversion layer 302.
  • the light-emitting layer 302 is not in direct contact, for example, there is no contact between the upper electrode 304 and the perovskite layer 303 and the down-conversion light-emitting layer 302, or, the upper electrode 304 is respectively provided with an insulating layer with the down-conversion light-emitting layer 302 and the perovskite layer 303, the present disclosure The embodiment does not specifically limit this.
  • a lower electrode 305 may also be disposed on the backlight surface of the crystalline silicon battery unit 301 .
  • the solar cell 30 may further include other functional layers, such as a passivation layer, etc., which are not specifically limited in the embodiment of the present disclosure.
  • FIG. 4 shows a schematic structural diagram of another solar cell provided by an embodiment of the present disclosure.
  • an insulating layer 3041 exists between the upper electrode 304 and the perovskite layer 303 , and the insulating layer 3041
  • the upper electrode 304 is wrapped to prevent the upper electrode 304 from being conductive with the down-conversion light-emitting layer 302 or the perovskite layer 303.
  • Those skilled in the art can select the material of the insulating layer 3041 according to actual needs and process conditions, which is not specifically limited in the embodiment of the present disclosure. .
  • the solar cell provided by the embodiment of the present disclosure includes a crystalline silicon cell unit, a perovskite layer and a down-conversion light-emitting layer, and the down-conversion light-emitting layer and the perovskite layer are sequentially located on the light-facing surface of the crystalline silicon cell unit; the perovskite layer
  • the band gap gradually decreases from the light surface to the backlight surface, and the band gap of the backlight surface is greater than or equal to the band gap of the absorbing layer of the crystalline silicon battery unit, so that the crystalline silicon battery unit can not be effectively utilized.
  • the perovskite layer and the down-conversion light-emitting layer provided by the embodiments of the present disclosure can cooperate to down-convert photons with different high-energy and wide wavelength ranges.
  • FIG. 5 shows a flow chart of steps of a method for preparing a solar cell provided by an embodiment of the present disclosure. As shown in FIG. 5 , the method may include:
  • Step 501 providing crystalline silicon battery cells.
  • the crystalline silicon battery unit may be a single crystal silicon battery, a polycrystalline silicon battery, etc., or a microcrystalline silicon battery, a nanocrystalline silicon battery, etc., and the specific structure of the crystalline silicon battery unit is not limited in the embodiment of the present disclosure .
  • Step 502 forming a down-conversion light-emitting layer and a narrow-bandgap perovskite layer on the light-facing surface of the crystalline silicon cell in sequence, and the bandgap of the narrow-bandgap perovskite layer is greater than or equal to the absorption layer of the crystalline silicon cell. the band gap.
  • ion exchange can be performed between perovskite materials.
  • the ion migration energy in the perovskite material is low, and the ions are easy to migrate along the concentration gradient.
  • the narrow bandgap perovskite material and the broadband Due to the different band gaps of perovskite materials, the types and proportions of ions are also different. Therefore, driven by the concentration gradient, the band gap changes of perovskite materials are adjusted by ion migration.
  • the down-conversion light-emitting layer and the narrow-band-gap perovskite layer can be sequentially formed on the light-facing side of the crystalline silicon cell.
  • the ore layer, the band gap of the narrow band gap perovskite layer is greater than or equal to the band gap of the absorber layer of the crystalline silicon battery unit.
  • the band gap size of the down-conversion light-emitting layer can refer to the band gap size of the narrow-band-gap perovskite layer.
  • Step 503 contacting the wide band gap perovskite material with the narrow band gap perovskite layer for ion exchange to form a perovskite layer with energy band gradient distribution, and the form of the wide band gap perovskite material can be solid phase, gas phase and any one of the liquid phase, the band gap of the wide band gap perovskite material is larger than the band gap of the narrow band gap perovskite layer.
  • the wide-bandgap perovskite material can be contacted with the narrow-bandgap perovskite layer on the light-facing surface of the crystalline silicon cell, wherein the bandgap of the wide-bandgap perovskite material should be larger than that of the narrow-bandgap perovskite layer. Bandgap.
  • the ions in the wide-bandgap perovskite material migrate into the narrow-band-gap perovskite layer, and the ions in the narrow-band-gap perovskite layer are replaced to form a perovskite layer, thereby obtaining a crystalline silicon cell, a down-conversion light-emitting layer and a perovskite layer. of solar cells.
  • the ions in the wide-bandgap perovskite material show a gradually decreasing distribution trend from the light-facing surface to the back-lighting surface in the narrow-band-gap perovskite layer, so that the band gap of the perovskite layer changes from the light-facing surface
  • the direction to the backlight surface gradually decreases, and the energy band gradient is distributed.
  • the form of the wide-bandgap perovskite material can be solid phase, gas phase or liquid phase, etc. Among them, the wide-bandgap perovskite material in the solid phase and liquid phase has a faster ion migration speed, usually in a few seconds to tens of seconds.
  • the ion migration depth of hundreds of nanometers can be reached in a short time.
  • Those skilled in the art can choose the wide-bandgap perovskite material and the narrow-bandgap perovskite layer on the light-facing surface of the crystalline silicon cell according to the actual application requirements and preparation process conditions.
  • the temperature and time during contact are not specifically limited in the embodiments of the present disclosure.
  • the step 502 includes:
  • Step S11 adding powder of wide band gap perovskite material on the surface of the narrow band gap perovskite layer, so that ion exchange is performed between the wide band gap perovskite material and the narrow band gap perovskite layer to form an energy band gradient distribution of the perovskite layer.
  • the powder of the wide band gap material when the wide band gap material is in a solid phase, the powder of the wide band gap material can be covered on the narrow band gap perovskite layer, and the temperature is further increased, and the wide band gap material and the narrow band gap perovskite are driven by the concentration difference and the temperature.
  • the ion exchange occurs between the ore layers, so that the band gap of the perovskite layer gradually decreases from the outside to the inside.
  • the wide band gap perovskite material and the narrow band gap perovskite layer are both composed of perovskite materials.
  • the wide band gap perovskite material and the narrow band gap perovskite layer can migrate A ions and X ions in the perovskite layer. At least one is different, and the band gap of the wide band gap material is larger than that of the narrow band gap perovskite layer.
  • the difference may be different ion species, different ion concentrations, and the like.
  • the form of the wide band gap perovskite material is a liquid phase
  • the step 502 includes:
  • Step S21 immersing the crystalline silicon battery unit with a narrow band gap perovskite layer in a wide band gap perovskite material to perform ion exchange to form the perovskite layer with energy band gradient distribution, and the wide band gap perovskite material includes Any one of ABX 3 perovskite solution, AX precursor solution and BX 2 precursor solution.
  • the narrow-bandgap perovskite layer when the wide-bandgap perovskite material is in liquid phase, the narrow-bandgap perovskite layer can be immersed in it, so that the wide-bandgap perovskite material is in contact with the narrow-bandgap perovskite layer.
  • the depth of immersion in the wide-bandgap material from the light-facing side to the backlight side of the crystalline silicon cell with a narrow bandgap perovskite layer such as the narrow bandgap of the crystalline silicon cell and the light-facing side of the crystalline silicon cell
  • the perovskite layer is immersed in the solution of the wide-bandgap perovskite material together, and the depth of immersion can also be controlled to soak the narrow-bandgap perovskite layer in the wide-bandgap perovskite material, and the crystalline silicon cell is not immersed in the wide-bandgap perovskite material.
  • the embodiments of the present disclosure do not specifically limit this.
  • wide-bandgap perovskite materials can be saturated solutions, thus avoiding the dissolution loss of narrow-bandgap perovskite layers.
  • the wide band gap perovskite material may be an ABX 3 perovskite solution, and the wide band gap perovskite material and the narrow band gap perovskite layer are both composed of perovskite materials.
  • the wide band gap calcium At least one of A ions and X ions that can be migrated between the titanium material and the narrow band gap perovskite layer is different, and the band gap of the wide band gap material is larger than that of the narrow band gap perovskite layer.
  • the wide-bandgap perovskite material can also choose any one of the AX precursor solution and the BX 2 precursor solution, when the migrating ion is A ion, X ion or AX ion, the AX precursor solution can be selected.
  • the AX precursor solution can be selected.
  • at least one of A'BX 3 , ABX' 3 , and A'BX' 3 of the narrow bandgap perovskite material can be selected when the mobile ion is X ion BX 2 precursor solution, and the X' ion of the narrow-bandgap perovskite layer is different from the X ion.
  • Those skilled in the art can select different precursor solutions as the wide-bandgap perovskite material according to requirements, which is not covered in the embodiments of the present disclosure. specific restrictions.
  • the remaining wide-bandgap perovskite material can also be washed with a solvent that is insoluble in the perovskite material, so as to avoid the residual wide-bandgap perovskite material in the formed perovskite layer.
  • a solvent that is insoluble in the perovskite material so as to avoid the residual wide-bandgap perovskite material in the formed perovskite layer.
  • another layer of wide-bandgap perovskite layer is formed, which affects the preparation process.
  • the form of the wide band gap perovskite material is gas phase, and the step 503 includes:
  • Step S31 placing the crystalline silicon battery unit with the narrow band gap perovskite layer in the atmosphere of the wide band gap perovskite material to perform ion exchange to form a perovskite layer with energy band gradient distribution, the wide band gap perovskite material including Any of ABX 3 perovskite vapor, AX precursor vapor, and BX 2 precursor vapor.
  • the narrow band gap perovskite layer when the wide band gap perovskite material is in gas phase, the narrow band gap perovskite layer can be placed in the atmosphere of the wide band gap perovskite material, optionally, the atmosphere of the wide band gap perovskite material can be controlled
  • the insertion depth of the crystalline silicon battery unit with the narrow bandgap perovskite layer from the light surface to the backlight surface can be referred to the relevant description of the foregoing step S21 for details. In order to avoid repetition, it will not be repeated here.
  • the wide band gap perovskite material may be ABX 3 perovskite vapor, and the wide band gap perovskite material and the narrow band gap perovskite layer are both composed of perovskite materials.
  • the wide band gap calcium At least one of A ions and X ions that can be migrated between the titanium material and the narrow band gap perovskite layer is different, and the band gap of the wide band gap material is larger than that of the narrow band gap perovskite layer.
  • the wide-bandgap perovskite material can also choose any one of AX precursor vapor and BX 2 precursor vapor, when the migrating ion is A ion, X ion or AX ion, the AX precursor vapor can be selected. At this time, at least one of A'BX 3 , ABX' 3 , and A'BX' 3 of the narrow bandgap perovskite material can be selected when the mobile ion is X ion. BX 2 precursor vapor, and the X' ion of the narrow-bandgap perovskite layer is different from the X ion.
  • Those skilled in the art can select different precursor vapors as the wide-bandgap perovskite material according to requirements, which is not covered in the embodiments of the present disclosure. specific restrictions.
  • FIG. 6 shows a flow chart of steps of another solar cell manufacturing method provided by an embodiment of the present disclosure. As shown in FIG. 6 , the method may include:
  • Step 601 providing crystalline silicon battery cells.
  • step 601 can be referred to the relevant description of the foregoing step 501 , which is not repeated here in order to avoid repetition.
  • Step 602 forming a down-conversion light-emitting layer on the light-facing surface of the crystalline silicon cell unit.
  • Step 603 coating a perovskite precursor solution on the light-facing surface of the down-conversion light-emitting layer, so that the perovskite precursors in the perovskite precursor solution are sequentially crystallized to form a perovskite layer.
  • Perovskite precursors include two-dimensional perovskite precursors and three-dimensional perovskite precursors.
  • a perovskite layer with energy band gradient distribution can be formed by sequential crystallization of three-dimensional-quasi-two-dimensional-two-dimensional perovskite, which can include both two-dimensional perovskite precursors and three-dimensional perovskite precursors.
  • the perovskite precursor solution of the precursor is coated on the light-facing surface of the down-conversion light-emitting layer. At this time, the perovskite precursor will undergo sequential crystallization, and form three-dimensional-quasi-two-dimensional in the direction from the backlight surface to the light-facing surface.
  • a perovskite layer of a two-dimensional perovskite structure can be formed by sequential crystallization of three-dimensional-quasi-two-dimensional-two-dimensional perovskite, which can include both two-dimensional perovskite precursors and three-dimensional perovskite precursors.
  • the perovskite precursor solution of the precursor is coated on the light-facing surface of the down-conversion light
  • FIG. 7 shows a schematic diagram of a perovskite structure provided by an embodiment of the present disclosure.
  • the size of the band gap of the perovskite layer toward the light surface and the backlight surface can be adjusted.
  • the two-dimensional perovskite precursor may refer to the relevant description of the aforementioned wide-bandgap perovskite material, and the three-dimensional perovskite precursor may refer to the aforementioned related description of the narrow-bandgap perovskite material.
  • the two-dimensional perovskite precursor can use A ions with a larger ionic radius, such as NMA (1-naphthylmethylammonium), PEA (phenethylamine), and the like.
  • Crystalline silicon cells are available.
  • a down-conversion light-emitting layer and a FAPbI 3 narrow-bandgap perovskite layer are sequentially formed on the light-facing surface of the crystalline silicon cell;
  • the light-facing surface of the FAPbI 3 narrow bandgap perovskite layer is covered with FAPbBr 3 perovskite powder, and heated to cause ion exchange between the FAPbI 3 narrow band gap perovskite layer and the FAPbBr 3 perovskite powder to form a perovskite layer.
  • FIG. 8 shows a schematic diagram of an ion exchange process of a solid-phase wide-bandgap perovskite material provided in an embodiment of the present disclosure.
  • the FAPbI 3 narrow-bandgap perovskite layer 703 on the down-conversion light-emitting layer 702 has a A layer of FAPbBr 3 perovskite powder 704 is spread on the smooth surface.
  • I ions and Br ions migrate under the driving force of concentration difference and temperature. 3 (the band gap is 2.2eV) the perovskite powder 704 will undergo ion exchange, and the I ions in the FAPbI 3 narrow band gap perovskite layer 703 are replaced by Br ions.
  • the band gap of the perovskite layer 705 is It gradually decreases from the light surface to the backlight surface, forming a perovskite layer with a graded band gap.
  • the perovskite layer prepared in Example 1 can absorb photons with an energy between 2.2 eV and 1.47 eV and emit photons with a wavelength of 845 nm, so as to realize the down-conversion function.
  • Example 2 Liquid-phase wide-bandgap perovskite material ion exchange
  • Crystalline silicon cells are available.
  • a down-conversion light-emitting layer and a FAPbI 3 narrow-bandgap perovskite layer are sequentially formed on the light-facing surface of the crystalline silicon cell;
  • the crystalline silicon cells with the FAPbI3 narrow bandgap perovskite layer were soaked in the MAPbBr3 solution, so that the FAPbI3 narrow bandgap perovskite layer and the MAPbBr3 solution were ion-exchanged to form the perovskite layer.
  • FIG. 9 shows a schematic diagram of an ion exchange process of a liquid-phase wide-bandgap perovskite material provided in an embodiment of the present disclosure.
  • the solution 804 will undergo ion exchange to form a perovskite layer 805 where the band gap of FA 1-y MA y Pb(I 1-x Br x ) 3 gradually decreases from the light side to the back side.
  • the prepared perovskite layer 805 can absorb photons in the energy range of 2.3-1.47 eV, and emit photons with a wavelength of 8
  • Crystalline silicon cells are available.
  • a down-conversion light-emitting layer and a FAPbI 3 narrow-bandgap perovskite layer are sequentially formed on the light-facing surface of the crystalline silicon cell;
  • the crystalline silicon cell with the FAPbI3 narrow-bandgap perovskite layer was placed in an atmosphere of CsPbBr3 vapor, so that the FAPbI3 narrow-bandgap perovskite layer and the CsPbBr3 vapor were ion-exchanged to form the perovskite layer.
  • FIG. 10 shows a schematic diagram of an ion exchange process of a gas-phase wide-bandgap perovskite material provided in an embodiment of the present disclosure.
  • a crystalline silicon cell 901 with a FAPbI 3 narrow-bandgap perovskite layer 903 is placed In the atmosphere of CsPbBr 3 vapor 904, FA ions and Cs ions migrate under the driving force of concentration difference, and the FAPbI 3 narrow bandgap perovskite layer 903 and CsPbBr 3 (band gap of 2.3 eV) vapor 904 will undergo ion exchange to form Cs y FA
  • the 1-y Pb(Br x I 1-x ) 3 perovskite layer 905 has a gradually smaller band gap from the light-facing side to the back-lighting side.
  • the prepared perovskite layer 905 can absorb photons in the energy range of 2.3-1.47 eV, and emit photons with a wavelength of 845
  • a down-conversion light-emitting layer is formed on the light-facing surface of the crystalline silicon battery unit
  • a perovskite precursor solution is coated on the down-conversion light-emitting layer, and the solvent is volatilized by heating, so that the perovskite precursors in the perovskite precursor solution are sequentially crystallized to form a perovskite layer, and the perovskite layer is formed.
  • the precursors include (NMA) 2 PbI 4 two-dimensional perovskite precursor and FAPbI 3 three-dimensional perovskite precursor mixed in a concentration ratio of 1:1.
  • Example 4 the (NMA) 2 PbI 4 two-dimensional perovskite precursor (with a band gap of 2.45 eV) and the FAPbI 3 three-dimensional perovskite precursor (with a band gap of 1.47 eV) can be mixed in a concentration ratio of 1:1.
  • the perovskite precursor solution is coated on the surface of the down-conversion light-emitting layer, and the perovskite begins to crystallize sequentially after the solvent volatilizes, thereby forming a perovskite layer with a three-dimensional-quasi-two-dimensional-two-dimensional structure from the backlight side to the light side.
  • the prepared perovskite layer can absorb photons with a band gap in the range of 2.45-1.47 eV and emit photons at 845 nm to realize the down-conversion function.
  • Embodiments of the present disclosure also provide a photovoltaic assembly, wherein the photovoltaic assembly includes the solar cell according to the first aspect.
  • An embodiment of the present disclosure provides another photovoltaic assembly, the photovoltaic assembly includes a crystalline silicon battery unit, a first encapsulation layer on the light-facing surface of the crystalline silicon battery unit, a perovskite layer, a down-conversion light-emitting layer, and a cover plate glass, and a second encapsulation layer and a backplane on the backlight surface of the crystalline silicon battery unit;
  • the perovskite layer and the down-conversion light-emitting layer are located between the light-facing surface of the crystalline silicon cell and the first encapsulation layer; or,
  • the perovskite layer and the down-conversion light-emitting layer are located between the first encapsulation layer and the backlight surface of the cover glass.
  • the position of the perovskite layer only needs to be between the backlight surface of the cover glass and the light-facing surface of the crystalline silicon battery unit, and the position of the crystalline silicon battery unit on the light-facing surface and
  • the perovskite layer can be between the light-facing surface of the crystalline silicon cell and the first encapsulation layer, or it can be between the first encapsulation layer and the first encapsulation layer. Between the encapsulation layer and the backlit side of the cover glass.
  • the position of the perovskite layer is not specifically limited.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Abstract

本公开提供了一种太阳能电池、太阳能电池的制备方法和光伏组件,涉及太阳能光伏技术领域。其中,太阳能电池包括晶硅电池单元,以及依次位于晶硅电池单元向光面上的下转换发光层、钙钛矿层;所述钙钛矿层由向光面到背光面的方向带隙逐渐减小;所述钙钛矿层的背光面处的带隙大于或等于所述晶硅电池单元的吸收层的带隙,由于带隙逐渐由大变小,钙钛矿层的吸收光谱宽、载流子自由程长、发光效率更高,能够拓宽太阳能电池的光谱吸收范围,提升能量利用、转换效率,且避免了多层电池叠加的复杂工艺,简化了多膜层结构,避免了载流子在膜层界面、串联结构间传输的损失,进一步提升了太阳能电池的转换效率,并降低了工艺难度,便于工业生产。

Description

一种太阳能电池、太阳能电池的制备方法和光伏组件
相关申请的交叉引用
本申请要求在2020年10月12日提交中国专利局、申请号为202011086418.0、名称为“一种太阳能电池、太阳能电池的制备方法和光伏组件”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及太阳能光伏技术领域,特别是涉及一种太阳能电池、太阳能电池的制备方法和光伏组件。
背景技术
在晶硅电池中硅的带隙较窄,且硅为间接半导体,使得能量高于带隙较多的光子被硅吸收后,不能产生光生载流子,该光子的能量以热量的形式散发,导致可见光谱的能量不能被充分利用。
当前,常采用在晶硅电池上叠加宽带隙的其他太阳能电池,以制备能够同时对可见光谱中能量较高的光子吸收、利用的叠层电池,但是,叠层电池的结构中存在多膜层,使得制备工艺复杂,在不同电池之间存在串联结构,也会进一步造成载流子在不同膜层间、不同电池间传输过程中的能量损失,从而限制了叠层电池的能量转换效率。
概述
本公开提供一种太阳能电池、太阳能电池的制备方法和光伏组件,旨在提升降低载流子在传输过程中的能量损失,提升太阳能电池的转换效率。
第一方面,本公开实施例提供了一种太阳能电池,所述太阳能电池包括晶硅电池单元,以及依次位于晶硅电池单元向光面上的下转换发光层、钙钛矿层;
所述钙钛矿层由向光面到背光面的方向带隙逐渐减小;所述钙钛矿层的背光面处的带隙大于或等于所述晶硅电池单元的吸收层的带隙。
可选地,所述下转换发光层包含下转换发光材料;
所述下转换发光材料包括钙钛矿材料或发光量子点。
可选地,所述钙钛矿层为ABX 3
所述A选自甲胺离子、甲脒离子、苯乙胺离子、1-萘甲基胺离子和铯离子中的至少一个;
所述B选自铅离子和锡离子中的至少一个;
所述X分别选自溴离子、碘离子和氯离子中的至少一个;
其中,通过在厚度方向上调整所述ABX 3在所述钙钛矿层中的元素分布,以使所述钙钛矿层由所述向光面到所述背光面的带隙逐渐减小。
可选地,所述钙钛矿层在向光面处带隙大小为2eV~3.06eV;所述钙钛矿层在背光面处带隙大小为1.2eV~1.5eV;所述下转换发光层中下转换发光材料的带隙为1.2eV~1.5eV。
可选地,所述钙钛矿层的厚度为10nm~100nm。
可选地,所述太阳能电池还包括上电极,所述上电极形成于所述钙钛矿层和下转换发光层的镂空处,所述上电极与所述钙钛矿层和所述下转换发光层不直接接触。
第二方面,本公开实施例提供了一种太阳能电池的制备方法,所述太阳能电池为第一方面所述的太阳能电池,所述方法包括:
提供晶硅电池单元;
在所述晶硅电池单元的向光面上依次形成下转换发光层、窄带隙钙钛矿层,所述窄带隙钙钛矿层的带隙大于或等于所述晶硅电池单元的吸收层的带隙;
将宽带隙钙钛矿材料与所述窄带隙钙钛矿层接触以进行离子交换,形成能带梯度分布的钙钛矿层,所述宽带隙钙钛矿材料的形态可以是固相、气相和液相中的任意一种,所述宽带隙钙钛矿材料的带隙大于所述窄带隙钙钛矿层的带隙;
或,
提供晶硅电池单元;
在晶硅电池单元向光面上形成下转换发光层;
在所述下转换发光层上涂覆钙钛矿前驱体溶液,以使所述钙钛矿前驱体溶液中的钙钛矿前驱体次序结晶形成钙钛矿层,所述钙钛矿前驱体包括二维 钙钛矿前驱体和三维钙钛矿前驱体。
可选地,所述宽带隙钙钛矿材料的形态为固相,所述将宽带隙钙钛矿材料与所述窄带隙钙钛矿层接触以进行离子交换,形成能带梯度分布的钙钛矿层的步骤,包括:
在窄带隙钙钛矿层的表面上添加宽带隙钙钛矿材料的粉末,以使所述宽带隙钙钛矿材料与所述窄带隙钙钛矿层间进行离子交换,形成能带梯度分布的所述钙钛矿层。
可选地,所述宽带隙钙钛矿材料的形态为液相,所述将宽带隙钙钛矿材料与所述窄带隙钙钛矿层接触以进行离子交换,形成能带梯度分布的钙钛矿层的步骤,包括:
将带有窄带隙钙钛矿层的晶硅电池单元浸泡于宽带隙钙钛矿材料中进行离子交换,形成能带梯度分布的所述钙钛矿层,所述宽带隙钙钛矿材料包括ABX 3钙钛矿溶液、AX前驱体溶液和BX 2前驱体溶液中的任意一种。
可选地,所述宽带隙钙钛矿材料的形态为气态,所述将宽带隙钙钛矿材料与所述窄带隙钙钛矿层接触以进行离子交换,形成能带梯度分布的钙钛矿层的步骤,包括:
将带有窄带隙钙钛矿层的晶硅电池单元置于宽带隙钙钛矿材料的气氛中进行离子交换,形成能带梯度分布的所述钙钛矿层,所述宽带隙钙钛矿材料包括ABX 3钙钛矿蒸汽、AX前驱体蒸汽和BX 2前驱体蒸汽中的任意一种。
第三方面,本公开实施例提供了一种光伏组件,所述光伏组件包括如第一方面所述的太阳能电池。
可选地,晶硅电池单元、位于所述晶硅电池单元向光面上的第一封装层、钙钛矿层、下转换发光层和盖板玻璃,以及位于所述晶硅电池单元背光面上的第二封装层和背板;
所述钙钛矿层和所述下转换发光层位于所述晶硅电池单元的向光面和所述第一封装层之间;或,所述钙钛矿层和所述下转换发光层位于所述第一封装层和所述盖板玻璃的背光面之间。
本公开实施例提供的太阳能电池包括晶硅电池单元和钙钛矿层和下转换发光层,且下转换发光层和钙钛矿层依次位于所述晶硅电池单元的向光面上;该钙钛矿层由向光面到背光面的方向带隙逐渐减小,且背光面的带隙大于或等于所述晶硅电池单元的吸收层的带隙,从而可以吸收晶硅电池单元无法有 效利用的、不同能量的光子,并产生电子和空穴,而电子和空穴在带隙能带结构的驱动下向钙钛矿层的背光面传输,并在下转换发光层中发生辐射复合,释放出晶硅电池单元可高效利用的波长范围内的光子。本公开实施例提供的钙钛矿层以及下转换发光层,能够配合以对不同高能量、宽波长范围的光子进行下转换,由于该钙钛矿层吸收光谱宽、载流子自由程长、发光效率更高,因此,能够有效拓宽太阳能电池的光谱吸收范围,提升其能量利用、转换效率,且仅在晶硅电池单元上增加钙钛矿层和下转换发光层,避免了多层电池叠加的复杂工艺,简化了多膜层结构,避免了载流子在膜层界面、串联结构间传输的损失,进一步提升了太阳能电池的转换效率,并降低了工艺难度、制备成本,便于工业生产。
附图简述
为了更清楚地说明本公开实施例的技术方案,下面将对本公开实施例的描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1示出了本公开实施例提供的一种太阳能电池的结构示意图;
图2示出了本公开实施例提供的一种钙钛矿层的能带示意图;
图3示出了本公开实施例提供的另一种太阳能电池的结构示意图;
图4示出了本公开实施例提供的又一种太阳能电池的结构示意图;
图5示出了本公开实施例提供的一种太阳能电池的制备方法的步骤流程图;
图6示出了本公开实施例提供的另一种太阳能电池制备方法的步骤流程图;
图7示出了本公开实施例提供的一种钙钛矿结构示意图;
图8示出了本公开实施例中提供的一种固相宽带隙钙钛矿材料的离子交换工艺示意图;
图9示出了本公开实施例中提供的一种液相宽带隙钙钛矿材料的离子交换工艺示意图;并且
图10示出了本公开实施例中提供的一种气相宽带隙钙钛矿材料的离子 交换工艺示意图。
详细描述
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
图1示出了本公开实施例提供的一种太阳能电池的结构示意图,参照图1,该太阳能电池10包括晶硅电池单元101,以及依次位于晶硅电池单元101向光面上的下转换发光层102、钙钛矿层103;
所述钙钛矿层103由向光面到背光面的方向带隙逐渐减小;
所述钙钛矿层103的背光面处的带隙大于或等于所述晶硅电池单元101的吸收层的带隙。
本公开实施例中,太阳能电池10包括晶硅电池单元101、下转换发光层102和钙钛矿层103,其中,下转换发光层102和钙钛矿层103设置在晶硅电池单元101的向光方向上,钙钛矿层103具有由向光面到背光面逐渐减小的带隙,从而可以吸收不同能量的、能量较高的光子生成光生载流子,下转换发光层102可以对光生载流子进行辐射复合获得能量较低的光子,从而使得下转换发光层102和钙钛矿层103能够在太阳光进入晶硅电池单元101之前,将高能量的光子转换为晶硅电池单元101利用率高的、能量较低的光子,提高晶硅电池单元101的转换效率。
本公开实施例中,钙钛矿层103背光面处的带隙大于或等于晶硅电池单元101,以使得钙钛矿层103能够对晶硅电池单元101的吸收层无法有效利用的光子进行下转换;另外,钙钛矿层103的带隙从向光面到背光面的方向逐渐减小,即向光面的带隙最大,背光面的带隙最小,从向光面到背光面方向带隙逐渐减小,从而使得钙钛矿层103能够吸收能量由高到低,较大波长范围内的光子,对更大范围内的光子下转换,从而有效提升太阳能电池10的转换效率。可选地,本公开实施例中带隙逐渐减小,可以是带隙从大到小沿平滑趋势减小,从而消除势垒,提高载流子的迁移效率;带隙可以是从大到小沿多台阶梯度趋势减小,本公开实施例对此不作具体限制。
图2示出了本公开实施例提供的一种钙钛矿层的能带示意图,如图2所 示,包括晶硅电池单元201的带隙和钙钛矿层203的带隙,可以看出,钙钛矿层203向光面处的带隙(E g1)最大,背光面处的带隙(E g2)最小,且从向光面到背光面带隙逐渐减小,此时,由于钙钛矿层203在不同深度的带隙不同,因此,在不同深度可以吸收不同能量的光子,使得钙钛矿层203可以吸收能量范围在Eg 1~Eg 2之间的光子,并产生载流子。
如图2所示,钙钛矿层203吸收高能量的光子(hv 1),并得到光生电子和空穴,由于钙钛矿层203的导带底自向光面至背光面逐渐降低,而电子在导带底由高向低传输;价带顶自向光面至背光面逐渐升高,而空穴在价带顶从低向高传输,因此,在钙钛矿层203不同深度产生的光生电子和空穴,都趋向于向钙钛矿层203的背光面传输,并最终在下转换发光层202发生辐射复合发光,由于钙钛矿层203具有更长的自由程,因此,在价带顶逐渐升高、导带底逐渐降低的驱动下,电子和空穴具有更高的传输效率。
如图2所示,在下转换发光层202上,电子和空穴可以发生辐射复合,获得相比于hv 1能量较低,且可被晶硅电池单元201高效利用的光子(hv 2),在下转换发光层202上,导带顶与价带底较为接近,易于电子和空穴复合,发生辐射复合发光。
如图2所示,下转换发光层202辐射复合发光,晶硅电池单元201的吸收层可以吸收hv 2,并可以高效利用hv 2
可选地,所述钙钛矿层203的材料为ABX 3
本公开实施例中,钙钛矿材料可以是有机-无机杂化钙钛矿,也可以是无机钙钛矿,也可以是无铅体系钙钛矿等,可选地,可以采用ABX 3表示钙钛矿层的材料,其中,A为一价阳离子,B为二价金属阳离子,X为卤素离子。其中,A、B、X可以分别为一种离子,也可以分别是两种以上离子的混合,通过调整离子的种类以及离子混合的比例等,可以调整钙钛矿层203中带隙的大小与变化趋势,从而使得钙钛矿层203的带隙由向光面到背光面的带隙逐渐减小分布。
本公开实施例中,可以通过将宽带隙材料与窄带隙材料接触,以使离子顺离子浓度梯度发生迁移,使得宽带隙材料的离子向窄带隙材料迁移,窄带隙材料的离子向宽带隙材料迁移,由于带隙大小与离子种类、浓度有关,因此可以通过调整离子种类、浓度形成带隙逐渐变化的钙钛矿层。当A、B、X分别为两种以上离子的混合时,可以以A、A'表示不同的A离子,B、B'表 示不同的B离子,C、C'表示不同的C离子,由于B、B'离子构建了钙钛矿材料晶体结构的主要框架,迁移需要很高的能量(>2eV),而且可能会引起材料晶体结构的坍塌,因此,B、B'离子通常不会迁移。可选地,本公开实施例中,可以通过选用不同的A与A'离子,或选用不同的X与X'离子,或同时选用不同的A与A'离子和不同的X与X'离子,从而使得ABX 3的带隙大于A'B'X' 3,在贴合后由于离子在两种材料中的浓度不同,会顺离子浓度梯度发生迁移,获得带隙逐渐变化的钙钛矿层,本公开实施例离子种类不做具体限制。
可选地,所述A选自甲胺离子、甲脒离子、苯乙胺离子、1-萘甲基胺离子和铯离子中的至少一个。
本公开实施例中,A选自甲胺离子、甲脒离子、苯乙胺离子、1-萘甲基胺离子和铯离子等一价阳离子,其中,A可以选择一种一价阳离子,也可以选择不同种的一价阳离子,以A、A'表示,此时应使得ABX 3的带隙不同于A'BX 3。一般情况下,当其他离子相同时,上述一价阳离子的带隙大小关系为1-萘甲基胺离子(NMA)>苯乙胺离子(PEA)>铯离子(Cs)>甲胺离子(MA)>甲脒离子(FA),此时,当A选择NMA时,A'可以在PEA、Cs、MA、FA中选择至少一个,当A选择PEA时,A'可以在Cs、MA、FA中选择至少一个,以使得ABX 3的带隙大于A'BX 3,以此类推。
所述B选自铅离子和锡离子中的至少一个。
本公开实施例中,B选自铅离子、锡离子等二价金属阳离子,其中,B可以选择一种二价金属阳离子,也可以选择两种二价金属阳离子,分别以B、B'表示,使得ABX 3的带隙不同于AB'X 3。一般情况下,当其他离子相同时,上述二价金属阳离子的带隙大小关系为铅离子(Pb)>锡离子(Sn),此时,当B选择Pb时,B'可以为Sn,以此类推,以使得ABX 3的带隙大于AB'X 3。但是,在实际应用中,由于B、B'不参与离子迁移,因此,A、A',X、X'中有至少一个不同以使得材料的带隙大小不同,此时,即使B为Sn,B'为Pb,组成的材料体系中ABX 3的带隙也可能大于A'B'X' 3。本公开实施例中,带隙大小可以以钙钛矿材料实测的带隙为准,对不同离子的选择不做具体限制。
所述X选自溴离子、碘离子和氯离子中的至少一个。
本公开实施例中,X可以选自溴离子、碘离子和氯离子等卤素离子,其中,X可以选择一种卤素离子,也可以选择不同卤素离子,分别以X、X'表 示,以使得ABX 3的带隙不同于ABX' 3。一般情况下,当其他离子相同时,上述卤素离子的带隙大小关系为氯离子(Cl)>溴离子(Br)>碘离子(I),此时,当X选择Cl时,X'可以在Br、I中选择至少一个,以此类推,以使得ABX 3的带隙大于ABX' 3
本公开实施例中,由于卤素在材料的体系中对带隙变化的影响较大,因此,在X为宽带隙的卤素离子,X'为窄带隙的卤素离子且其他离子选择不同种类的情况下,其他离子对应的带隙大小关系也可以相反,此时,材料体系中ABX 3的带隙大于A'B'X' 3,本公开实施例对此不做具体限制。
其中,通过在厚度方向上调整所述ABX 3在所述钙钛矿层中的元素分布,以使所述钙钛矿层由所述向光面到所述背光面的带隙逐渐减小。
本公开实施例中,厚度方向可以是钙钛矿层的光入射方向,调整ABX 3在钙钛矿层中的元素分布可以是调整钙钛矿层中上述离子的种类、比例、浓度等,如在钙钛矿层中使得带隙较大的离子更多的分布在钙钛矿层的向光面处,带隙较小的离子更多的分布在钙钛矿层的背光面处,以使得钙钛矿层由向光面到背光面的带隙逐渐减小。
可选地,所述钙钛矿层在向光面处的带隙大小为2eV~3.06eV;所述钙钛矿层在背光面处的带隙大小为1.2eV~1.5eV;所述下转换发光层中下转换发光材料的带隙为1.2eV~1.5eV。
本公开实施例中,钙钛矿层203进行先转换的光子能量需大于或等于晶硅电池单元201可吸收的上限,以避免太阳光中晶硅电池单元201可吸收的光子也参与下转换,造成资源的浪费,根据钙钛矿层203中采用的钙钛矿材料带隙范围、晶硅电池单元201的带隙和吸收可见光的最大限度,本领域技术人员可以选择钙钛矿层203向光面处以及背光面处不同的带隙大小的范围,如在晶硅电池单元201的带隙为1.12eV的情况下,钙钛矿203中在向光面处的带隙大小为2eV~3.06eV,在背光面处的带隙大小为1.2eV~1.5eV,本公开实施例对此不做具体限制。
本公开实施例中,下转换发光层202位于钙钛矿层203的背光面和晶硅电池单元201的向光面之间,下转换发光层202中的下转换发光材料能够收集钙钛矿层203的光生电子和空穴,并发生辐射复合向晶硅电池单元201发光,此时,为了保证辐射复合的效率,下转换发光材料的带隙大小可以参照钙钛矿层203背光面处的带隙大小,为1.2eV~1.5eV。本领域技术人员也可 以根据实际需求在下转换发光层中添加其他材料,本公开实施例对此不做具体限制。
可选地,所述钙钛矿层203的厚度为10nm~100nm。
本公开实施例中,由于钙钛矿材料具有较高的吸收系数,因此,为了避免钙钛矿层203过厚发生自吸收、发热等,使得下转换发光层202发射出的低能量的光子不易被晶硅电池单元201吸收,钙钛矿层203的厚度可以是10nm~100nm范围内的任意数值,如10nm、15nm、30nm、60nm、80nm、100nm等,本公开实施例对此不做具体限制。
图3示出了本公开实施例提供的另一种太阳能电池的结构示意图,参照图3,该太阳能电池30包括晶硅电池单元301,以及依次位于晶硅电池单元301向光面上的下转换发光层302、钙钛矿层303;
所述钙钛矿层303由向光面到背光面的方向带隙逐渐减小;
所述钙钛矿层303的背光面处的带隙大于或等于所述晶硅电池单元301的吸收层的带隙。
本公开实施例中,晶硅电池单元301和钙钛矿层303可对应参照前述图1和图2的相关描述,为避免重复,在此不再赘述。
可选地,所述下转换发光层302包含下转换发光材料。
可选地,所述下转换发光材料包括钙钛矿材料或发光量子点。
本公开实施例中,下转换发光层302中可以包括下转换发光材料,其中,下转换发光材料可以是钙钛矿材料或者发光量子点,其中,钙钛矿材料的带隙可以均匀分布,采用带隙相同的不同钙钛矿材料或同种钙钛矿材料制备;发光量子点是指可以束缚载流子的半导体纳米结构,可选地,下转换发光材料可以是嵌入钙钛矿层303的背光面的发光量子点,在电子和空穴汇聚到背光面后,可以注入发光量子点中,并在发光量子点中发生辐射复合,释放出低能量的光子,基于发光量子点的量子限域效应,在发光量子点中电子和空穴具有更高的发光效率。
本公开实施例中,当钙钛矿层303的带隙大小为1.2eV~1.5eV时,发光量子点的带隙可以在1.2eV~1.5eV的范围内与钙钛矿层303的背光面处的带隙相同,也可以与钙钛矿层303的背光面处的带隙不同。可选地,当发光量子点的带隙与钙钛矿层303的背光面处的带隙不同时,可以使发光量子点在太阳能电池30的能带结构上形成量子阱,从而提升发光量子点的辐射复合几 率,提高太阳能电池30的发光效率。
本公开实施例中,当发光量子点的带隙与钙钛矿层303背光面处的带隙不同时,发光量子点的带隙可以大于钙钛矿层303背光面处的带隙,也可以小于钙钛矿层303背光面处的带隙。当发光量子点的带隙小于钙钛矿层303背光面处的带隙时,发光量子点可以对钙钛矿层303产生的载流子更全面的吸收。可选地,发光量子点的带隙也可以与钙钛矿层303的带隙相同,从而使得电子、空穴更易进入发光量子点,提高转换效率。
可选地,所述太阳能电池30还包括上电极304,所述上电极304形成于所述钙钛矿层303和下转换发光层302的镂空处,所述上电极304与所述钙钛矿层303和所述下转换发光层302不直接接触。
本公开实施例中,上电极304指太阳能电池30中位于晶硅电池单元301向光面上的电极,如图3所示,上电极304连接在晶硅电池单元301的向光面上,并穿过下转换发光层302和钙钛矿层303的镂空处伸出,为了避免上电极304与钙钛矿层303或下转换发光层302导通,可以使上电极304与钙钛矿层303和下转换发光层302不直接接触,如上电极304和钙钛矿层303和下转换发光层302之间均不接触,或者,上电极304分别与下转换发光层302和钙钛矿层303设置绝缘层,本公开实施例对此不做具体限制。另外,晶硅电池单元301的背光面上还可以设置有下电极305。
本公开实施例中,太阳能电池30除上述各功能层外,还可以包括其他功能层,如钝化层等,本公开实施例对此不作具体限制。
图4示出了本公开实施例提供的又一种太阳能电池的结构示意图,如图4所示,在图3的基础上,上电极304与钙钛矿层303间存在绝缘层3041,绝缘层3041包裹上电极304,避免上电极304与下转换发光层302或钙钛矿层303导通,本领域技术人员可以根据实际需求、工艺条件选择绝缘层3041的材料,本公开实施例对此不作具体限制。
本公开实施例提供的太阳能电池包括晶硅电池单元和钙钛矿层和下转换发光层,且下转换发光层和钙钛矿层依次位于所述晶硅电池单元的向光面上;该钙钛矿层由向光面到背光面的方向带隙逐渐减小,且背光面的带隙大于或等于所述晶硅电池单元的吸收层的带隙,从而可以吸收晶硅电池单元无法有效利用的、不同能量的光子,并产生电子和空穴,而电子和空穴在带隙能带结构的驱动下向钙钛矿层的背光面传输,并在下转换发光层中发生辐射复合, 释放出晶硅电池单元可高效利用的波长范围内的光子。本公开实施例提供的钙钛矿层以及下转换发光层,能够配合以对不同高能量、宽波长范围的光子进行下转换,由于该钙钛矿层吸收光谱宽、载流子自由程长、发光效率更高,因此,能够有效拓宽太阳能电池的光谱吸收范围,提升其能量利用、转换效率,且仅在晶硅电池单元上增加钙钛矿层和下转换发光层,避免了多层电池叠加的复杂工艺,简化了多膜层结构,避免了载流子在膜层界面、串联结构间传输的损失,进一步提升了太阳能电池的转换效率,并降低了工艺难度、制备成本,便于工业生产。
图5示出了本公开实施例提供的一种太阳能电池的制备方法的步骤流程图,如图5所示,该方法可以包括:
步骤501、提供晶硅电池单元。
本公开实施例中,晶硅电池单元可以是单晶硅电池、多晶硅电池等,也可以是微晶硅电池、纳米晶硅电池等,本公开实施例对晶硅电池单元的具体结构不做限制。
步骤502、在所述晶硅电池单元的向光面上依次形成下转换发光层、窄带隙钙钛矿层,所述窄带隙钙钛矿层的带隙大于或等于所述晶硅电池单元的吸收层的带隙。
本公开实施例中,可以在钙钛矿材料间进行离子交换,钙钛矿材料中离子迁移能较低,离子易于沿浓度梯度进行迁移,此时,可以使得窄带隙的钙钛矿材料和宽带隙的钙钛矿材料接触,由于钙钛矿材料的带隙不同,离子的种类、比例也不同,因此,在浓度梯度的驱动下,通过离子迁移调节钙钛矿材料的带隙变化。可选地,由于制备得到的钙钛矿层的带隙应从向光面到背光面逐渐减小,因此,可以在晶硅电池单元的向光面上先依次形成下转换发光层、窄带隙钙钛矿层,该窄带隙钙钛矿层的带隙大于或等于晶硅电池单元的吸收层的带隙。其中,下转换发光层的带隙大小可以参考窄带隙钙钛矿层的带隙大小。
步骤503、将宽带隙钙钛矿材料与所述窄带隙钙钛矿层接触以进行离子交换,形成能带梯度分布的钙钛矿层,所述宽带隙钙钛矿材料的形态可以是固相、气相和液相中的任意一种,所述宽带隙钙钛矿材料的带隙大于所述窄带隙钙钛矿层的带隙。
本公开实施例中,可以将宽带隙钙钛矿材料与晶硅电池单元的向光面上 的窄带隙钙钛矿层接触,其中,宽带隙钙钛材料的带隙应大于窄带隙钙钛矿层的带隙。宽带隙钙钛矿材料中的离子迁移到窄带隙钙钛矿层中,置换出窄带隙钙钛矿层中的离子,形成钙钛矿层,从而获得包括晶硅电池单元、下转换发光层和钙钛矿层的太阳能电池。由于浓度梯度的驱动,宽带隙钙钛矿材料中的离子在窄带隙钙钛矿层中呈由向光面到背光面方向逐渐减小的分布趋势,从而使得钙钛矿层的带隙从向光面到背光面的方向逐渐减小,能带梯度分布。可选地,宽带隙钙钛矿材料的形态可以是固相、气相或液相等其中,固相、液相的宽带隙钙钛矿材料离子迁移速度较快,通常在几秒至几十秒间即可达到数百纳米的离子迁移深度,本领域技术人员可以根据实际应用需求、制备工艺条件等选择将宽带隙钙钛矿材料与晶硅电池单元的向光面上的窄带隙钙钛矿层接触时的温度、时间,本公开实施例对此不作具体限定。
可选地,所述宽带隙钙钛矿材料的形态为固相时,所述步骤502包括:
步骤S11、在窄带隙钙钛矿层的表面上添加宽带隙钙钛矿材料的粉末,以使所述宽带隙钙钛矿材料与所述窄带隙钙钛矿层间进行离子交换,形成能带梯度分布的所述钙钛矿层。
本公开实施例中,宽带隙材料为固相时可以将宽带隙材料的粉末覆盖在窄带隙钙钛矿层上,再进一步提升温度,在浓度差和温度的驱动下宽带隙材料与窄带隙钙钛矿层之间发生离子交换,从而使得钙钛矿层的带隙从外向内逐渐减小。其中,宽带隙钙钛矿材料和窄带隙钙钛矿层均由钙钛矿材料组成,为了形成不同带隙,宽带隙钙钛矿材料和窄带隙钙钛矿层可迁移的A离子、X离子中的至少一个不同,且使得宽带隙材料的带隙大于窄带隙钙钛矿层,可选地,该不同可以是离子种类不同、离子浓度不同等。
可选地,所述宽带隙钙钛矿材料的形态为液相,所述步骤502包括:
步骤S21、将带有窄带隙钙钛矿层的晶硅电池单元浸泡于宽带隙钙钛矿材料中进行离子交换,形成能带梯度分布的所述钙钛矿层,所述宽带隙钙钛矿材料包括ABX 3钙钛矿溶液、AX前驱体溶液和BX 2前驱体溶液中的任意一种。
本公开实施例中,宽带隙钙钛矿材料为液相时,可以将窄带隙钙钛矿层浸泡在其中,从而使得宽带隙钙钛矿材料与窄带隙钙钛矿层接触接触,可选地,可以控制带有窄带隙钙钛矿层的晶硅电池单元从向光面到背光面方向浸泡在宽带隙材料中的深度,如可以将晶硅电池单元和晶硅电池单元的向光面 上的窄带隙钙钛矿层一同浸泡在宽带隙钙钛矿材料的溶液中,也可以控制浸泡的深度将窄带隙钙钛矿层浸泡在宽带隙钙钛材料中,晶硅电池单元不浸泡在宽带隙钙钛矿材料中,本公开实施例对此不做具体限制。另外,宽带隙钙钛矿材料可以是饱和溶液,从而避免窄带隙钙钛矿层的溶解损失。
本公开实施例中,宽带隙钙钛矿材料可以为ABX 3钙钛矿溶液,宽带隙钙钛矿材料和窄带隙钙钛矿层均由钙钛矿材料组成,为了形成不同带隙,宽带隙钙钛矿材料和窄带隙钙钛矿层可迁移的A离子、X离子中的至少一个不同,且使得宽带隙材料的带隙大于窄带隙钙钛矿层,可选地,该不同可以是离子种类不同、离子浓度不同等;可选地,根据迁移离子种类,宽带隙钙钛矿材料也可以选择AX前驱体溶液、BX 2前驱体溶液中的任意一种,当迁移离子为A离子、X离子或AX离子时,可以选择AX前驱体溶液,此时,窄带隙钙钛矿材料的A'BX 3、ABX' 3、A'BX' 3中的至少一种,当迁移离子为X离子时,可以选择BX 2前驱体溶液,且窄带隙钙钛矿层的X'离子与X离子不同,本领域技术人员可以根据需求选择不同的前驱体溶液作为宽带隙钙钛矿材料,本公开实施例对此不做具体限制。
本公开实施例中,在离子迁移结束后,还可以用对钙钛矿材料难溶的溶剂冲洗残留的宽带隙钙钛矿材料,从而避免残留的宽带隙钙钛矿材料在形成的钙钛矿层向光面上,又形成一层宽带隙钙钛矿层,影响制备工艺。
可选地,宽带隙钙钛矿材料的形态为气相,所述步骤503包括:
步骤S31、将带有窄带隙钙钛矿层的晶硅电池单元置于宽带隙钙钛矿材料的气氛中进行离子交换,形成能带梯度分布的钙钛矿层,所述宽带隙钙钛矿材料包括ABX 3钙钛矿蒸汽、AX前驱体蒸汽和BX 2前驱体蒸汽中的任意一种。
本公开实施例中,宽带隙钙钛矿材料为气相时,可以将窄带隙钙钛矿层置入宽带隙钙钛矿材料的气氛中,可选地,可以控制宽带隙钙钛矿材料的气氛中带有窄带隙钙钛矿层的晶硅电池单元从向光面到背光面的置入深度,具体可对应参照前述步骤S21的相关描述,为避免重复,在此不再赘述。
本公开实施例中,宽带隙钙钛矿材料可以为ABX 3钙钛矿蒸汽,宽带隙钙钛矿材料和窄带隙钙钛矿层均由钙钛矿材料组成,为了形成不同带隙,宽带隙钙钛矿材料和窄带隙钙钛矿层可迁移的A离子、X离子中的至少一个不同,且使得宽带隙材料的带隙大于窄带隙钙钛矿层,可选地,该不同可以是 离子种类不同、离子浓度不同等;可选地,根据迁移离子种类,宽带隙钙钛矿材料也可以选择AX前驱体蒸汽、BX 2前驱体蒸汽中的任意一种,当迁移离子为A离子、X离子或AX离子时,可以选择AX前驱体蒸汽,此时,窄带隙钙钛矿材料的A'BX 3、ABX' 3、A'BX' 3中的至少一种,当迁移离子为X离子时,可以选择BX 2前驱体蒸汽,且窄带隙钙钛矿层的X'离子与X离子不同,本领域技术人员可以根据需求选择不同的前驱体蒸汽作为宽带隙钙钛矿材料,本公开实施例对此不做具体限制。
图6示出了本公开实施例提供的另一种太阳能电池制备方法的步骤流程图,如图6所示,该方法可以包括:
步骤601、提供晶硅电池单元。
本公开实施例中,步骤601可对应参照前述步骤501的相关描述,为避免重复,在此不再赘述。
步骤602、在晶硅电池单元向光面上形成下转换发光层。
步骤603、在所述下转换发光层的向光面上涂覆钙钛矿前驱体溶液,以使所述钙钛矿前驱体溶液中的钙钛矿前驱体次序结晶形成钙钛矿层,所述钙钛矿前驱体包括二维钙钛矿前驱体和三维钙钛矿前驱体。
本公开实施例中,可以采用三维-准二维-二维钙钛矿次序结晶的方式形成能带梯度分布的钙钛矿层,可以将既包括二维钙钛矿前驱体又包括三维钙钛矿前驱体的钙钛矿前驱体溶液涂敷在下转换发光层的向光面上,此时,钙钛矿前驱体会发生次序结晶,从背光面到向光面的方向上依次形成三维-准二维-二维钙钛矿结构的钙钛矿层。
图7示出了本公开实施例提供的一种钙钛矿结构示意图,如图7所示,在下转换发光层的向光面上形成三维钙钛矿时,其结构对应于n=∞的情况,在次序结晶的过程中,n值逐渐减小,从而逐渐形成准二维钙钛矿层,n=1时形成二维钙钛矿层。由于n值越小,钙钛矿材料的带隙越大,因此,次序结晶的钙钛矿层从向光面到背光面的方向带隙逐渐减小。可选地,本公开实施例中可以通过调节二维钙钛矿前驱体、三维钙钛矿前驱体的比例、离子类型,可以调节钙钛矿层向光面和背光面的带隙大小。
本公开实施例中,二维钙钛矿前驱体可以对应参照前述宽带隙钙钛矿材料的相关描述,三维钙钛矿前驱体可以对应参照前述窄带隙钙钛矿材料的相关描述,为避免重复,在此不再赘述。可选地,二维钙钛矿前驱体可以采用 离子半径较大的A离子,如NMA(1-萘基甲基铵)、PEA(苯乙胺)等。
实施例1固相宽带隙钙钛矿材料离子交换
提供晶硅电池单元。
在晶硅电池单元的向光面上依次形成下转换发光层、FAPbI 3窄带隙钙钛矿层;
在FAPbI 3窄带隙钙钛矿层的向光面铺满FAPbBr 3钙钛矿粉末,并加热以使FAPbI 3窄带隙钙钛矿层和FAPbBr 3钙钛矿粉末发生离子交换,形成钙钛矿层。
图8示出了本公开实施例中提供的一种固相宽带隙钙钛矿材料的离子交换工艺示意图,如图8所示,在下转换发光层702上的FAPbI 3窄带隙钙钛矿层703的向光面上铺一层FAPbBr 3钙钛矿粉末704,此时,I离子和Br离子在浓度差和温度的驱动下迁移,FAPbI 3(带隙为1.47eV)窄带隙钙钛矿层703和FAPbBr 3(带隙为2.2eV)钙钛矿粉末704将发生离子交换,FAPbI 3窄带隙钙钛矿层703中的I离子被Br离子取代,越靠近向光面被取代的越多,Br离子浓度越高,带隙越大,最终形成了Br离子浓度自向光面至背光面方向逐渐减小的FAPb(I 1-xBr x) 3的钙钛矿层705,该钙钛矿层705的带隙自向光面至背光面方向逐渐减小,形成渐变带隙的钙钛矿层。实施例1中制备得到的钙钛矿层可以吸收能量在2.2eV~1.47eV之间的光子,并发射波长为845nm的光子,以实现下转换功能。
实施例2液相宽带隙钙钛矿材料离子交换
提供晶硅电池单元。
在晶硅电池单元的向光面上依次形成下转换发光层、FAPbI 3窄带隙钙钛矿层;
将带有FAPbI 3窄带隙钙钛矿层的晶硅电池单元浸泡在MAPbBr 3溶液中,以使FAPbI 3窄带隙钙钛矿层和MAPbBr 3溶液发生离子交换,形成钙钛矿层。
图9示出了本公开实施例中提供的一种液相宽带隙钙钛矿材料的离子交换工艺示意图,如图9所示,带有FAPbI 3窄带隙钙钛矿层803的晶硅电池单元801浸泡在MAPbBr 3溶液804中,I离子和Br离子、FA离子和MA离子在浓度差的驱动下迁移,FAPbI 3(带隙为1.47eV)窄带隙钙钛矿层803和MAPbBr 3(带隙为2.3eV)溶液804将发生离子交换,形成FA 1-yMA yPb(I 1-xBr x) 3从向光面到背光面带隙逐渐变小的钙钛矿层805。制备得到的钙钛矿层805 可以吸收2.3-1.47eV能量范围内的光子,并发射波长为845nm的光子,实现下转换功能。
实施例3气相宽带隙钙钛矿材料离子交换
提供晶硅电池单元。
在晶硅电池单元的向光面上依次形成下转换发光层、FAPbI 3窄带隙钙钛矿层;
将带有FAPbI 3窄带隙钙钛矿层的晶硅电池单元置于CsPbBr 3蒸汽的气氛中,以使FAPbI 3窄带隙钙钛矿层和CsPbBr 3蒸汽发生离子交换,形成钙钛矿层。
图10示出了本公开实施例中提供的一种气相宽带隙钙钛矿材料的离子交换工艺示意图,如图9所示,带有FAPbI 3窄带隙钙钛矿层903的晶硅电池单元901置于CsPbBr 3蒸汽904的气氛中FA离子和Cs离子在浓度差的驱动下迁移,FAPbI 3窄带隙钙钛矿层903和CsPbBr 3(带隙为2.3eV)蒸汽904将发生离子交换,形成Cs yFA 1-yPb(Br xI 1-x) 3从向光面到背光面带隙逐渐变小的钙钛矿层905。制备得到的钙钛矿层905可以吸收2.3-1.47eV能量范围内的光子,并发射波长为845nm的光子,实现下转换功能。
实施例4三维-准二维-二维钙钛矿次序结晶
提供晶硅电池单元;
在晶硅电池单元的向光面上形成下转换发光层;
在所述下转换发光层上涂覆钙钛矿前驱体溶液,加热使溶剂挥发以使所述钙钛矿前驱体溶液中的钙钛矿前驱体次序结晶形成钙钛矿层,所述钙钛矿前驱体包括浓度比1:1混合的(NMA) 2PbI 4二维钙钛矿前驱体和FAPbI 3三维钙钛矿前驱体。
实施例4中,可以将浓度比1:1混合的(NMA) 2PbI 4二维钙钛矿前驱(带隙为2.45eV)和FAPbI 3三维钙钛矿前驱体(带隙为1.47eV)的钙钛矿前驱体溶液涂覆在下转换发光层的表面,在溶剂挥发后钙钛矿开始次序结晶,从而形成从背光面到向光面方向三维-准二维-二维结构的钙钛矿层,制备得到的钙钛矿层可以吸收带隙在2.45-1.47eV范围内的光子,并发射845nm的光子,实现下转换功能。
本公开实施例还提供了一种光伏组件,所述光伏组件包括如第一方面所述的太阳能电池。
本公开实施例提供了另一种光伏组件,所述光伏组件包括晶硅电池单元、位于所述晶硅电池单元向光面上的第一封装层、钙钛矿层、下转换发光层和盖板玻璃,以及位于所述晶硅电池单元背光面上的第二封装层和背板;
所述钙钛矿层和所述下转换发光层位于所述晶硅电池单元的向光面和所述第一封装层之间;或,
所述钙钛矿层和所述下转换发光层位于所述第一封装层和所述盖板玻璃的背光面之间。
本公开实施例中,在实际生产的光伏组件中,钙钛矿层的位置只需在盖板玻璃背光面,与晶硅电池单元向光面之间即可,在晶硅电池单元向光面和盖板玻璃背光面之间存在第一封装层、下转换发光层和钙钛矿层的情况下,钙钛矿层可以在晶硅电池单元向光面与第一封装层之间,也可以在第一封装层和盖板玻璃的背光面之间。本公开实施例中,在晶硅电池单元的向光面和盖板玻璃的背光面之间存在其他功能层的情况下,钙钛矿层的位置不做具体限制。
需要说明的是,对于方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本申请实施例并不受所描述的动作顺序的限制,因为依据本申请实施例,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作并不一定都是本申请实施例所必须的。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
上面结合附图对本公开的实施例进行了描述,但是本公开并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本公开的启示下,在不脱离本公开宗旨和权利要求所保护的范围情况下,还可做出很多形式,这些均属于本公开的保护之内。

Claims (12)

  1. 一种太阳能电池,其特征在于,所述太阳能电池包括晶硅电池单元,以及依次位于晶硅电池单元向光面上的下转换发光层、钙钛矿层;
    所述钙钛矿层由向光面到背光面的方向带隙逐渐减小;所述钙钛矿层的背光面处的带隙大于或等于所述晶硅电池单元的吸收层的带隙。
  2. 根据权利要求1所述的太阳能电池,其特征在于,所述下转换发光层包含下转换发光材料;
    所述下转换发光材料包括钙钛矿材料或发光量子点。
  3. 根据权利要求1所述的太阳能电池,其特征在于,所述钙钛矿层为ABX 3
    所述A选自甲胺离子、甲脒离子、苯乙胺离子、1-萘甲基胺离子和铯离子中的至少一个;
    所述B选自铅离子和锡离子中的至少一个;
    所述X分别选自溴离子、碘离子和氯离子中的至少一个;
    其中,通过在厚度方向上调整所述ABX 3在所述钙钛矿层中的元素分布,以使所述钙钛矿层由所述向光面到所述背光面的带隙逐渐减小。
  4. 根据权利要求1-3所述的太阳能电池,其特征在于,所述钙钛矿层在向光面处带隙大小为2eV~3.06eV;所述钙钛矿层在背光面处带隙大小为1.2eV~1.5eV;所述下转换发光层中下转换发光材料的带隙为1.2eV~1.5eV。
  5. 根据权利要求1-3所述的太阳能电池,其特征在于,所述钙钛矿层的厚度为10nm~100nm。
  6. 根据权利要求1-3所述的太阳能电池,其特征在于,所述太阳能电池还包括上电极,所述上电极形成于所述钙钛矿层和下转换发光层的镂空处,所述上电极与所述钙钛矿层和所述下转换发光层不直接接触。
  7. 一种太阳能电池的制备方法,其特征在于,所述太阳能电池为权利要求1-6任一项所述的太阳能电池,所述方法包括:
    提供晶硅电池单元;
    在所述晶硅电池单元的向光面上依次形成下转换发光层、窄带隙钙钛矿层,所述窄带隙钙钛矿层的带隙大于或等于所述晶硅电池单元的吸收层的带隙;
    将宽带隙钙钛矿材料与所述窄带隙钙钛矿层接触以进行离子交换,形成能带梯度分布的钙钛矿层,所述宽带隙钙钛矿材料的形态可以是固相、气相和液相中的任意一种,所述宽带隙钙钛矿材料的带隙大于所述窄带隙钙钛矿层的带隙;
    或,
    提供晶硅电池单元;
    在晶硅电池单元向光面上形成下转换发光层;
    在所述下转换发光层上涂覆钙钛矿前驱体溶液,以使所述钙钛矿前驱体溶液中的钙钛矿前驱体次序结晶形成钙钛矿层,所述钙钛矿前驱体包括二维钙钛矿前驱体和三维钙钛矿前驱体。
  8. 根据权利要求7所述的方法,其特征在于,所述宽带隙钙钛矿材料的形态为固相,所述将宽带隙钙钛矿材料与所述窄带隙钙钛矿层接触以进行离子交换,形成能带梯度分布的钙钛矿层的步骤,包括:
    在窄带隙钙钛矿层的表面上添加宽带隙钙钛矿材料的粉末,加热以使所述宽带隙钙钛矿材料与所述窄带隙钙钛矿层间进行离子交换,形成能带梯度分布的所述钙钛矿层。
  9. 根据权利要求7所述的方法,其特征在于,所述宽带隙钙钛矿材料的形态为液相,所述将宽带隙钙钛矿材料与所述窄带隙钙钛矿层接触以进行离子交换,形成能带梯度分布的钙钛矿层的步骤,包括:
    将带有窄带隙钙钛矿层的晶硅电池单元浸泡于宽带隙钙钛矿材料中进行离子交换,形成能带梯度分布的所述钙钛矿层,所述宽带隙钙钛矿材料包括ABX 3钙钛矿溶液、AX前驱体溶液和BX 2前驱体溶液中的任意一种。
  10. 根据权利要求7所述的方法,其特征在于,所述宽带隙钙钛矿材料的形态为气态,所述将宽带隙钙钛矿材料与所述窄带隙钙钛矿层接触以进行离子交换,形成能带梯度分布的钙钛矿层的步骤,包括:
    将带有窄带隙钙钛矿层的晶硅电池单元置于宽带隙钙钛矿材料的气氛中进行离子交换,形成能带梯度分布的所述钙钛矿层,所述宽带隙钙钛矿材料包括ABX 3钙钛矿蒸汽、AX前驱体蒸汽和BX 2前驱体蒸汽中的任意一种。
  11. 一种光伏组件,其特征在于,所述光伏组件包括权利要求1~6任一项所述的太阳能电池。
  12. 一种如权利要求11所述的光伏组件,其特征在于,所述光伏组件包 括晶硅电池单元、位于所述晶硅电池单元向光面上的第一封装层、钙钛矿层、下转换发光层和盖板玻璃,以及位于所述晶硅电池单元背光面上的第二封装层和背板;
    所述钙钛矿层和所述下转换发光层位于所述晶硅电池单元的向光面和所述第一封装层之间;或,
    所述钙钛矿层和所述下转换发光层位于所述第一封装层和所述盖板玻璃的背光面之间。
PCT/CN2021/136125 2020-10-12 2021-12-07 一种太阳能电池、太阳能电池的制备方法和光伏组件 WO2022078530A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023521648A JP2023546375A (ja) 2020-10-12 2021-12-07 太陽電池、太陽電池の製造方法及び太陽光発電モジュール
US18/028,491 US20230337444A1 (en) 2020-10-12 2021-12-07 Solar cell, preparation method for solar cell, and photovoltaic module
AU2021359793A AU2021359793B2 (en) 2020-10-12 2021-12-07 Solar cell, preparation method for solar cell, and photovoltaic module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011086418.0 2020-10-12
CN202011086418.0A CN112259688B (zh) 2020-10-12 2020-10-12 一种太阳能电池、太阳能电池的制备方法和光伏组件

Publications (1)

Publication Number Publication Date
WO2022078530A1 true WO2022078530A1 (zh) 2022-04-21

Family

ID=74242260

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/136125 WO2022078530A1 (zh) 2020-10-12 2021-12-07 一种太阳能电池、太阳能电池的制备方法和光伏组件

Country Status (5)

Country Link
US (1) US20230337444A1 (zh)
JP (1) JP2023546375A (zh)
CN (1) CN112259688B (zh)
AU (1) AU2021359793B2 (zh)
WO (1) WO2022078530A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112259688B (zh) * 2020-10-12 2022-10-04 隆基绿能科技股份有限公司 一种太阳能电池、太阳能电池的制备方法和光伏组件

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100180932A1 (en) * 2009-01-22 2010-07-22 OmniPV, Inc. Solar Modules Including Spectral Concentrators and Related Manufacturing Methods
US20100294339A1 (en) * 2007-07-17 2010-11-25 Miasole photovoltaic device with a luminescent down-shifting material
CN103094406A (zh) * 2011-11-07 2013-05-08 太极能源科技股份有限公司 多晶硅太阳能电池及其制造方法
US20150287864A1 (en) * 2012-05-10 2015-10-08 Leidos, Inc. Luminescent Solar Concentrator
CN105895726A (zh) * 2016-05-11 2016-08-24 徐翔星 含钙钛矿纳米晶下转换层的太阳能电池及其制备方法
CN106575707A (zh) * 2014-07-15 2017-04-19 剑桥企业有限公司 复合型光捕获材料和装置
CN107887466A (zh) * 2017-12-01 2018-04-06 吉林大学 一种稀土掺杂无机钙钛矿量子点复合硅太阳能电池及其制备方法
CN108540082A (zh) * 2018-04-26 2018-09-14 青岛大学 一种叠层式太阳能荧光聚光器及其制备方法
WO2019035503A1 (ko) * 2017-08-17 2019-02-21 재단법인 대구경북과학기술원 질소 도핑된 그래핀 양자점 제조방법, 질소 도핑된 그래핀 양자점 및 질소 도핑된 그래핀 양자점을 포함하는 태양전지
CN110246904A (zh) * 2019-05-17 2019-09-17 宁波大学 一种基于光谱下转换技术的量子点荧光太阳集光器、平板型聚光光伏器及其制备方法
CN111554814A (zh) * 2020-05-11 2020-08-18 陕西师范大学 一种以钙钛矿材料为基础的集成电路及其制备方法
CN112259688A (zh) * 2020-10-12 2021-01-22 隆基绿能科技股份有限公司 一种太阳能电池、太阳能电池的制备方法和光伏组件

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108511605A (zh) * 2018-03-23 2018-09-07 北京理工大学 光伏组件及其制备方法
CN109273600A (zh) * 2018-08-27 2019-01-25 中山大学 一种以下转换材料界面修饰的太阳能电池及其制备方法
CN109786423B (zh) * 2019-01-09 2021-09-21 无锡极电光能科技有限公司 钙钛矿/硅叠层太阳能电池及其制备方法和应用
CN110190195B (zh) * 2019-05-16 2021-03-30 华南理工大学 一种基于复合界面传输材料的钙钛矿光伏-发光-光探测多功能器件及其制备方法
CN110246908A (zh) * 2019-07-18 2019-09-17 深圳黑晶光电科技有限公司 一种光谱下转换减反膜、制作方法及叠层太阳能电池

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100294339A1 (en) * 2007-07-17 2010-11-25 Miasole photovoltaic device with a luminescent down-shifting material
US20100180932A1 (en) * 2009-01-22 2010-07-22 OmniPV, Inc. Solar Modules Including Spectral Concentrators and Related Manufacturing Methods
CN103094406A (zh) * 2011-11-07 2013-05-08 太极能源科技股份有限公司 多晶硅太阳能电池及其制造方法
US20150287864A1 (en) * 2012-05-10 2015-10-08 Leidos, Inc. Luminescent Solar Concentrator
CN106575707A (zh) * 2014-07-15 2017-04-19 剑桥企业有限公司 复合型光捕获材料和装置
CN105895726A (zh) * 2016-05-11 2016-08-24 徐翔星 含钙钛矿纳米晶下转换层的太阳能电池及其制备方法
WO2019035503A1 (ko) * 2017-08-17 2019-02-21 재단법인 대구경북과학기술원 질소 도핑된 그래핀 양자점 제조방법, 질소 도핑된 그래핀 양자점 및 질소 도핑된 그래핀 양자점을 포함하는 태양전지
CN107887466A (zh) * 2017-12-01 2018-04-06 吉林大学 一种稀土掺杂无机钙钛矿量子点复合硅太阳能电池及其制备方法
CN108540082A (zh) * 2018-04-26 2018-09-14 青岛大学 一种叠层式太阳能荧光聚光器及其制备方法
CN110246904A (zh) * 2019-05-17 2019-09-17 宁波大学 一种基于光谱下转换技术的量子点荧光太阳集光器、平板型聚光光伏器及其制备方法
CN111554814A (zh) * 2020-05-11 2020-08-18 陕西师范大学 一种以钙钛矿材料为基础的集成电路及其制备方法
CN112259688A (zh) * 2020-10-12 2021-01-22 隆基绿能科技股份有限公司 一种太阳能电池、太阳能电池的制备方法和光伏组件

Also Published As

Publication number Publication date
AU2021359793A1 (en) 2023-06-01
AU2021359793B2 (en) 2024-02-01
US20230337444A1 (en) 2023-10-19
CN112259688B (zh) 2022-10-04
CN112259688A (zh) 2021-01-22
JP2023546375A (ja) 2023-11-02

Similar Documents

Publication Publication Date Title
Feng et al. Theoretical simulations of the effects of the indium content, thickness, and defect density of the i-layer on the performance of pin InGaN single homojunction solar cells
KR101208272B1 (ko) 양면 구조를 가지는 태양전지 및 이의 제조방법
CN102544195B (zh) 太阳能电池及其制作方法
TW201513380A (zh) 高效率堆疊太陽電池
WO2019173803A1 (en) Perovskite-containing devices and methods of making the same
CN107046027B (zh) 钙钛矿和砷化镓异质集成的太阳能电池制造方法及电池
CN114792704B (zh) 一种钙钛矿/硅异质结叠层太阳能电池及其制备方法
WO2022078530A1 (zh) 一种太阳能电池、太阳能电池的制备方法和光伏组件
JP2016186968A (ja) 光電変換装置及びその製造方法
TW201432967A (zh) 激子能量轉移以提升無機太陽能電池效率
US20220109077A1 (en) Solar cell
JP2024513065A (ja) ペロブスカイト太陽電池及びこれを含むタンデム太陽電池
US20220140169A1 (en) Solar cell element and method for manufacturing solar cell element
Vivaldo et al. Study of the photon down‐conversion effect produced by thin silicon‐rich oxide films on silicon solar cells
TW201308635A (zh) 具有改良式通道接合之串列太陽能電池
WO2019074616A2 (en) MANUFACTURE OF STACKED PEROVSKITE STRUCTURES
CN112086559A (zh) 一种钙钛矿电池及钙钛矿电池的制备方法
JP6510529B2 (ja) 薄膜太陽電池、薄膜太陽電池用層系及び薄膜太陽電池用層系の製造方法
CN112086560B (zh) 一种叠层电池及叠层电池的制备方法
KR102372914B1 (ko) 실리콘 페로브스카이트 이중접합 태양전지의 제조 방법
Hwang et al. Nanoarchitectonics of wide-bandgap perovskite films using sputtered-PbI2 precursor and ion-exchange method
WO2013031376A1 (ja) 量子ドット構造体、波長変換素子、光光変換装置および光電変換装置
CN113690372B (zh) 一种钙钛矿太阳能电池及其制备方法
CN112086534B (zh) 一种叠层电池及其制作方法
US20220158118A1 (en) Light emitting device, display device and manufacturing method of light emitting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21879571

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023521648

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021879571

Country of ref document: EP

Effective date: 20230512

ENP Entry into the national phase

Ref document number: 2021359793

Country of ref document: AU

Date of ref document: 20211207

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 21879571

Country of ref document: EP

Kind code of ref document: A1