WO2022078055A1 - 数据传输方法、装置、存储介质及移动终端 - Google Patents

数据传输方法、装置、存储介质及移动终端 Download PDF

Info

Publication number
WO2022078055A1
WO2022078055A1 PCT/CN2021/113236 CN2021113236W WO2022078055A1 WO 2022078055 A1 WO2022078055 A1 WO 2022078055A1 CN 2021113236 W CN2021113236 W CN 2021113236W WO 2022078055 A1 WO2022078055 A1 WO 2022078055A1
Authority
WO
WIPO (PCT)
Prior art keywords
subframe
frequency domain
period
determining
resource
Prior art date
Application number
PCT/CN2021/113236
Other languages
English (en)
French (fr)
Inventor
刘君
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to EP21879102.8A priority Critical patent/EP4213571A1/en
Publication of WO2022078055A1 publication Critical patent/WO2022078055A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/40Resource management for direct mode communication, e.g. D2D or sidelink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/11Semi-persistent scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices

Definitions

  • the present application relates to the technical field of mobile terminals, and in particular, to a data transmission method, device, storage medium and mobile terminal.
  • the communication between pedestrian terminal and vehicle is one of the application scenarios of C-V2X (Cellular-vehicle-to-everything, vehicle-to-everything communication based on cellular network). information to ensure the safety of pedestrians.
  • C-V2X Cellular-vehicle-to-everything, vehicle-to-everything communication based on cellular network.
  • the terminal held by the pedestrian may not have a downlink receiving link but only have an uplink transmitting link.
  • the embodiments of the present application provide a data transmission method, device, storage medium and mobile terminal, which can reduce the communication resource conflict between pedestrian terminals and improve the probability of successful information transmission.
  • an embodiment of the present application provides a data transmission method, including:
  • an embodiment of the present application further provides a data transmission device, including:
  • a first determining module configured to determine the first subframe corresponding to the current transmission period
  • a subframe calculation module configured to determine the second subframe corresponding to the next transmission period according to the first subframe, the preset period and the time domain adjustment amount;
  • a resource determination module configured to determine a target frequency domain resource corresponding to the second subframe
  • a data transmission module configured to determine data to be transmitted, and send the data to be transmitted on the second subframe through the target frequency domain resource.
  • an embodiment of the present application further provides a storage medium on which a computer program is stored, and when the computer program runs on a computer, causes the computer to execute:
  • an embodiment of the present application further provides a mobile terminal, including a processor and a memory, wherein the memory has a computer program, and the processor invokes the computer program to execute: a subframe;
  • FIG. 1 is a first schematic flowchart of a data transmission method provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a first scenario of a data transmission method provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a second scenario of a data transmission method provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a third scenario of a data transmission method provided by an embodiment of the present application.
  • FIG. 5 is a schematic flowchart of a second data transmission method provided by an embodiment of the present application.
  • FIG. 6 is a third schematic flowchart of a data transmission method provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a fourth scenario of a data transmission method provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a data transmission apparatus according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram of a first structure of a mobile terminal according to an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a second structure of a mobile terminal according to an embodiment of the present application.
  • the embodiment of the present application provides a data transmission method, including:
  • the determining the target frequency domain resource corresponding to the second subframe includes:
  • a frequency domain resource is randomly selected from the resource pool as a target frequency domain resource.
  • the determining the resource pool corresponding to the second subframe includes:
  • a resource pool corresponding to the second subframe is formed.
  • the determining the target frequency domain resource corresponding to the second subframe includes:
  • the frequency domain resource used in the first subframe is used as the target frequency domain resource.
  • the determining the target frequency domain resource corresponding to the second subframe further includes:
  • the frequency domain resource is determined from the configuration resources of the next half of the static scheduling period as the target frequency domain resource.
  • the determining, according to the first subframe, the preset period and the time domain adjustment amount, the second subframe corresponding to the next transmission period includes:
  • the second subframe is obtained by calculation according to the first subframe and the extended or shortened preset period.
  • the target frequency domain resources include a physical sidechain shared channel, a physical sidechain control channel, and a demodulation reference signal.
  • the embodiment of the present application provides a data transmission method
  • the execution body of the data transmission method may be the data transmission device provided in the embodiment of the present application, or a mobile terminal integrated with the data transmission device, wherein the data transmission device may adopt hardware or implemented in software.
  • the mobile terminal may be a device that supports a cellular network, such as a smart phone, a tablet computer, and a smart wearable device.
  • FIG. 1 is a schematic flowchart of a first data transmission method provided by an embodiment of the present application.
  • the specific process of the data transmission method provided by the embodiment of the present application may be as follows:
  • a first subframe corresponding to the current transmission period is determined.
  • V2X communication supported in a cellular communication system such as a 4G communication system, a 5G communication system, etc.
  • C-V2X communication includes V2V (vehicle-to-vehicle, vehicle-to-vehicle) communication, V2I (vehicle-to-infrastructure, vehicle-to-infrastructure) communication, V2P/P2V (Vehicle to
  • Pedestrian/Pedestrian to Vehicle vehicle-to-pedestrian/pedestrian-to-vehicle communication, etc.
  • the solutions of the embodiments of the present application can be applied to P2V communication.
  • the communication between the pedestrian terminal and the vehicle and between the vehicle and the vehicle can be realized through the side link.
  • the pedestrian terminal In the application of Internet of Vehicles based on public safety, the pedestrian terminal (Pedestrian User Equipment, PUE) needs to obtain communication resources in order to timely issue early warning information to nearby vehicles in scenarios such as crossing the road.
  • the communication resource sends relevant data such as position information and walking speed. After the vehicle obtains the position information and other data, it avoids pedestrians.
  • the pedestrian terminal here is a mobile terminal held or carried by pedestrians.
  • the communication resources are divided into time domain resources and frequency domain resources, and the combination of the two can also be called time-frequency resources.
  • Resource pools are formed by arranging according to the horizontal axis of the time domain and the vertical axis of the frequency domain. In the time domain, one subframe is 1 ms, and one subframe may include 14 consecutive symbols.
  • the basic unit in the frequency domain is a subcarrier, and the subcarrier spacing is 15 kHz.
  • One RB Resource Block, resource block
  • An RB is the smallest unit of frequency domain resources that can be allocated to a user.
  • the network divides the total bandwidth into several sub-channels through signaling, and one sub-channel may occupy several RBs (Resource Block, resource block).
  • the number of RBs occupied by the subchannel is generally pre-configured in the C-V2X communication protocol. For example, if the total bandwidth is 10MHz, there are 50 RBs in total, and the subchannel size indicated by the network is 5 RBs, so the total bandwidth includes 10 subchannels.
  • the pedestrian terminal can select one of the sub-channels to send data when selecting the frequency domain resources.
  • Pedestrian terminals periodically send location information and other related data, and vehicles will also detect signals in accordance with the P2V communication protocol to obtain location information sent by pedestrian terminals, thereby avoiding pedestrians.
  • the pedestrian terminal only needs to send relevant data, and the vehicle does not need to feed back information to the pedestrian terminal.
  • the pedestrian terminal may not have a downlink receive link but only an uplink transmit link.
  • semi-static scheduling can be used to configure time-frequency resources for pedestrian terminals.
  • Each semi-static scheduling period configures time-frequency resources for pedestrian terminals once.
  • the pedestrian terminal has two side chain transmission modes, namely random selection of resource mode and partial perception resource mode.
  • the resource mode is randomly selected, that is, the pedestrian terminal randomly selects resources in the resource pool for communication according to a fixed transmission period, and uses the same resources for communication in each transmission period in a semi-static scheduling period, but this resource The conflict rate of the selection mode is relatively high.
  • the number of pedestrian terminals is large. If the pedestrian terminals send data according to a fixed period and fixed sub-channels in a semi-static scheduling period, it is very difficult to Resource collision is prone to occur, that is to say, it is easy for different pedestrian terminals to randomly select the same time-frequency resource to send data, which will cause the vehicle to fail to receive data.
  • the solution of the embodiment of the present application further optimizes the relevant random selection resource mode, and extends or shortens the duration of the transmission period before each data transmission. Further, in the process of transmitting data, the pedestrian terminal can dynamically adjust the duration of the transmission period, thereby effectively reducing the collision probability of the transmission resources between the pedestrian terminals.
  • FIG. 2 is a schematic diagram of a first scenario of a data transmission method provided by an embodiment of the present application.
  • the time domain resources are divided into consecutive subframes.
  • a small square in the figure is a subframe, and a subframe is 1ms. According to the ten numbers of 0-9, it is continuous.
  • a semi-static scheduling period includes a plurality of consecutive transmission periods T, and the pedestrian terminal transmits data every other transmission period.
  • the pedestrian terminal After the pedestrian terminal has sent data in the current transmission cycle, it determines the subframe of the current transmission cycle, and records the subframe number of the subframe. In order to distinguish the subframe from the subframe used in the next transmission cycle, the current transmission cycle The subframe used for periodically sending data is marked as the first subframe, and the subframe used for sending data in the next sending period is marked as the second subframe.
  • a second subframe corresponding to the next transmission period is determined according to the first subframe, the preset period and the time domain adjustment amount.
  • determining the second subframe corresponding to the next transmission period according to the first subframe, the preset period, and the time domain adjustment amount includes: determining the time domain adjustment amount, and adjusting the preset value according to the time domain adjustment amount The period is extended or shortened; the second subframe is obtained by calculation according to the first subframe and the extended or shortened preset period.
  • the time-domain adjustment amount may be a preset value.
  • the time-domain adjustment amount is 1ms, and the pedestrian terminal can randomly choose to extend the transmission period by 1ms or shorten it by 1ms to obtain a new transmission period.
  • the transmission period and the first subframe to determine the second subframe.
  • the subframe number of the first subframe is added to the adjusted transmission period, and then a modulo operation is performed on the obtained sum to obtain the subframe number of the second subframe.
  • the divisor of the modulo operation is 10, and in other embodiments, if other subframe number numbering methods are adopted, the corresponding divisor is taken.
  • time-domain adjustment amount here is 1 ms for illustration only, and other values may be used in other embodiments.
  • an integer can be selected from (0, T) as the time-domain adjustment amount, where , T is the transmission period, and the unit of T is ms.
  • T is the transmission period
  • T is the transmission period
  • T is the transmission period
  • T is the unit of T.
  • preset transmission periods of different pedestrian terminals may be different.
  • the time domain adjustment amount it is not necessary to preset the time domain adjustment amount, but when determining the time domain adjustment amount, an integer is randomly selected from (0, T) as the time domain adjustment amount, and then the The subframe number of the second subframe is calculated in the same manner as in an embodiment.
  • a target frequency domain resource corresponding to the second subframe is determined.
  • the target frequency domain resource here mainly refers to a target subchannel formed from a plurality of consecutive RBs selected from the resource pool.
  • FIG. 3 is a schematic diagram of a second scenario of the data transmission method provided by the embodiment of the present application. After the second subframe is determined, a subchannel is randomly selected as the target subchannel from the resource pool pre-configured for the second subframe.
  • DMRS Demodulation Reference Signal, demodulation reference signal
  • PSCCH Physical Sidelink Share Channel, physical side chain shared channel
  • PSSCH Physical Sidelink Control Channel, physical side chain shared channel
  • the PSCCH time-frequency resource is used for transmission of control information
  • the PSSCH time-frequency resource is used for the transmission of service data
  • the DMRS is used for related demodulation of PSSCH and PSCCH channels.
  • the number and positions of RBs occupied by the DMRS, PSCCH, and PSSCH in the subchannels of a subframe are generally pre-configured in the C-V2X communication protocol. For example, assuming that the total bandwidth of the resource pool in Figure 3 is 10MHz, there are 50 RBs in total, and the sub-channel size indicated by the network is 5 RBs, so the total bandwidth includes 10 sub-channels (four of which are indicated in the figure).
  • DMRS occupies all RBs of the 2nd, 5th, 8th, and 11th symbols in the time domain in one subchannel, except for other RBs of the 2nd, 5th, 8th, and 11th symbols, PSCCH occupies one The first two RBs of the subchannel and the PSSCH occupy the last three RBs.
  • FIG. 4 is a schematic diagram of a third scenario of the data transmission method provided by the embodiment of the present application.
  • the target frequency domain resources are re-selected from the resource pool.
  • the target sub-channel shown in FIG. 4 can be determined by random selection.
  • the target subchannel is different from the target subchannel used in the previous half of the static scheduling period.
  • the data to be transmitted is determined, and the data to be transmitted is sent on the second subframe through the target frequency domain resource.
  • determine the data to be transmitted for example, take the current position information, moving speed and moving direction of the pedestrian terminal as the data to be transmitted, and send it on the second subframe through the selected target channel Go out so that nearby vehicles can receive this data and avoid pedestrians based on this data.
  • the present application is not limited by the execution order of the described steps, and certain steps may also be performed in other sequences or simultaneously under the condition of no conflict.
  • the pedestrian terminal when the pedestrian terminal periodically sends information, it first determines the first subframe corresponding to the current sending period, and adjusts the first subframe, the preset period and the time domain according to the first subframe, the preset period and the time domain.
  • Determine the second subframe corresponding to the next transmission cycle that is, first determine the time domain resource, then determine the target frequency domain resource corresponding to the second subframe, and then determine the data to be transmitted, and pass it on the second subframe.
  • the determined frequency domain resource sends the data to be transmitted.
  • the interval between two adjacent subframes is dynamically adjusted based on the time domain adjustment amount.
  • the time length can be adjusted to effectively reduce the collision probability of the transmission resources between pedestrian terminals, thereby increasing the probability that the information sent by the pedestrian terminals can be correctly received by the vehicle.
  • FIG. 5 is a second schematic flowchart of a data transmission method provided by an embodiment of the present invention.
  • the method includes:
  • a first subframe corresponding to the current transmission period is determined.
  • the human-vehicle communication adopts a semi-static scheduling manner to configure time-frequency resources for pedestrian terminals.
  • Each semi-static scheduling period configures time-frequency resources for pedestrian terminals once.
  • Pedestrian terminals periodically send location information and other related data, and vehicles will also detect signals in accordance with the P2V communication protocol to obtain location information sent by pedestrian terminals, thereby avoiding pedestrians.
  • the pedestrian terminal After the pedestrian terminal has sent data in the current transmission cycle, it determines the subframe of the current transmission cycle, and records the subframe number of the subframe. In order to distinguish the subframe from the subframe used in the next transmission cycle, the current transmission cycle The subframe used for periodically sending data is marked as the first subframe, and the subframe used for sending data in the next sending period is marked as the second subframe.
  • a second subframe corresponding to the next transmission period is determined according to the first subframe, the preset period and the time domain adjustment amount.
  • the duration of the transmission period is dynamically extended or shortened.
  • the time-domain adjustment amount may be a preset value.
  • the time-domain adjustment amount is 1ms, and the pedestrian terminal can randomly choose to extend the transmission period by 1ms or shorten it by 1ms to obtain a new transmission period.
  • the transmission period and the first subframe to determine the second subframe.
  • the subframe number of the first subframe is added to the adjusted transmission period, and then a modulo operation is performed on the obtained sum to obtain the subframe number of the second subframe.
  • the divisor of the modulo operation is 10. In other embodiments, if other subframe numbering methods are adopted, the corresponding divisor is taken.
  • a semi-persistent scheduling period corresponding to the current transmission period is determined.
  • the frequency domain resource used in the first subframe is used as the target frequency domain resource.
  • a frequency domain resource is determined from the configuration resources of the next half of the static scheduling period as a target frequency domain resource.
  • the same frequency domain resources on the first subframe are still used to transmit data, and resources are not reselected, so as to improve the efficiency of data transmission.
  • the second subframe When the second subframe is not located in the semi-static scheduling period where the current transmission period is located, it means that the next transmission period has entered a new semi-static scheduling period, and the frequency domain resources are determined from the configuration resources of the next half of the static scheduling period as target frequency domain resource. For example, a sub-channel is randomly selected from the resource pool as the target channel.
  • the data to be transmitted is determined, and the data to be transmitted is sent on the second subframe through the target frequency domain resource.
  • determine the data to be transmitted for example, take the current position information, moving speed and moving direction of the pedestrian terminal as the data to be transmitted, and send it on the second subframe through the selected target channel Go out so that nearby vehicles can receive this data and avoid pedestrians based on this data.
  • the interval time between two adjacent subframes is dynamically adjusted based on the time domain adjustment amount, which effectively reduces the number of pedestrians.
  • the collision probability of the transmission resources between the terminals improves the probability that the information sent by the pedestrian terminal can be correctly received by the vehicle.
  • FIG. 6 is a second schematic flowchart of a data transmission method provided by an embodiment of the present invention.
  • the method includes:
  • a first subframe corresponding to the current transmission period is determined.
  • the human-vehicle communication adopts a semi-static scheduling manner to configure time-frequency resources for pedestrian terminals.
  • Each semi-static scheduling period configures time-frequency resources for pedestrian terminals once.
  • Pedestrian terminals periodically send location information and other related data, and vehicles will also detect signals in accordance with the P2V communication protocol to obtain location information sent by pedestrian terminals, thereby avoiding pedestrians.
  • the pedestrian terminal After the pedestrian terminal has sent data in the current transmission cycle, it determines the subframe of the current transmission cycle, and records the subframe number of the subframe. In order to distinguish the subframe from the subframe used in the next transmission cycle, the current transmission cycle The subframe used for periodically sending data is marked as the first subframe, and the subframe used for sending data in the next sending period is marked as the second subframe.
  • a second subframe corresponding to the next transmission period is determined according to the first subframe, the preset period and the time domain adjustment amount.
  • the duration of the transmission period is dynamically extended or shortened.
  • the time-domain adjustment amount may be a preset value.
  • the time-domain adjustment amount is 1ms, and the pedestrian terminal can randomly choose to extend the transmission period by 1ms or shorten it by 1ms to obtain a new transmission period.
  • the transmission period and the first subframe to determine the second subframe.
  • the subframe number of the first subframe is added to the adjusted transmission period, and then a modulo operation is performed on the obtained sum to obtain the subframe number of the second subframe.
  • the divisor of the modulo operation is 10. In other embodiments, if other subframe numbering methods are adopted, the corresponding divisor is taken.
  • a resource pool corresponding to the second subframe is determined.
  • a frequency domain resource is randomly selected from the resource pool as the target frequency domain resource.
  • determining the resource pool corresponding to the second subframe may include: determining a semi-persistent scheduling period corresponding to the current transmission period, wherein a semi-persistent scheduling The period includes multiple consecutive transmission periods; from the configuration resources of the semi-persistent scheduling period, the idle frequency domain resources on the second subframe are determined; based on the idle frequency domain resources, a resource pool corresponding to the second subframe is formed.
  • the idle frequency domain resources may be determined by detecting the signals on each subchannel in the second subframe, as the resource pool corresponding to the second subframe.
  • FIG. 7 is a schematic diagram of a fourth scenario of the data transmission method provided by the embodiment of the present application.
  • the subchannel selected on the second subframe is likely to be different from the subchannel selected on the first subframe.
  • the pedestrian terminals select sub-channels from the resource pool in each transmission cycle, the selected sub-channels are likely to be different, which can reduce the probability of collision of transmission resources between pedestrian terminals.
  • the data to be transmitted is determined, and the data to be transmitted is sent on the second subframe through the target frequency domain resource.
  • determine the data to be transmitted for example, take the current position information, moving speed and moving direction of the pedestrian terminal as the data to be transmitted, and send it on the second subframe through the selected target channel Go out so that nearby vehicles can receive this data and avoid pedestrians based on this data.
  • the data transmission method proposed in this embodiment can effectively reduce the collision probability of the transmission resources between pedestrian terminals by randomizing the transmission period and randomizing the frequency domain resources, and can improve the probability that the information sent by the pedestrian terminal can be correctly received by the vehicle.
  • FIG. 8 is a schematic structural diagram of a data transmission apparatus 400 according to an embodiment of the present application.
  • the data transmission device 400 is applied to a mobile terminal, and the data transmission device 400 includes a first determination module 401, a subframe calculation module 402, a resource determination module 403, and a data transmission module 404, as follows:
  • a first determining module 401 configured to determine the first subframe corresponding to the current transmission period
  • a subframe calculation module 402 configured to determine a second subframe corresponding to the next transmission period according to the first subframe, the preset period and the time domain adjustment amount;
  • a resource determination module 403, configured to determine a target frequency domain resource corresponding to the second subframe
  • the data transmission module 404 is configured to determine the data to be transmitted, and send the data to be transmitted through the target frequency domain resource on the second subframe.
  • the resource determining module 403 is further configured to: determine a resource pool corresponding to the second subframe;
  • a frequency domain resource is randomly selected from the resource pool as a target frequency domain resource.
  • the resource determining module 403 is further configured to: determine a semi-persistent scheduling period corresponding to the current sending period, wherein a semi-persistent scheduling period includes multiple consecutive sending periods;
  • a resource pool corresponding to the second subframe is formed.
  • the resource determination module 403 is further configured to: determine a semi-persistent scheduling period corresponding to the current transmission period;
  • the frequency domain resource used in the first subframe is used as the target frequency domain resource.
  • the resource determination module 403 is further configured to: when the second subframe is not located in the semi-persistent scheduling period, determine a frequency domain resource from the configuration resources of the next half-permanent scheduling period as the target frequency domain resources.
  • the subframe calculation module 402 is further configured to: determine a time domain adjustment amount, and extend or shorten the preset period according to the time domain adjustment amount;
  • the second subframe is obtained by calculation according to the first subframe and the extended or shortened preset period.
  • the target frequency domain resources include a physical sidechain shared channel, a physical sidechain control channel, and a demodulation reference signal.
  • the data transmission device provided in the embodiment of the present application and the data transmission method in the above embodiments belong to the same concept, and any method provided in the data transmission method embodiment can be implemented by the data transmission device.
  • any method provided in the data transmission method embodiment can be implemented by the data transmission device.
  • the data transmission device 400 includes a first determination module 401, a subframe calculation module 402, a resource determination module 403, and a data transmission module 404.
  • the first determination The module 401 first determines the first subframe corresponding to the current transmission cycle, and the subframe calculation module 402 determines the second subframe corresponding to the next transmission cycle according to the pair of the first subframe, the preset cycle and the time domain adjustment amount, that is, first The time domain resource is determined, the resource determination module 403 determines the target frequency domain resource corresponding to the second subframe, and then the data transmission module 404 determines the data to be transmitted, and sends the to-be-transmitted data on the second subframe through the determined frequency domain resource.
  • the interval between two adjacent subframes is dynamically adjusted based on the time domain adjustment amount, which effectively reduces the number of pedestrian terminals.
  • the collision probability of the transmission resources between the two thereby improving the probability that the information sent by the pedestrian terminal can be correctly received by the vehicle.
  • the embodiments of the present application also provide a mobile terminal.
  • the mobile terminal may be a device such as a smart phone, a tablet computer, or the like. Please refer to FIG. 9.
  • FIG. 9 is a schematic structural diagram of a first type of a mobile terminal according to an embodiment of the present application.
  • the mobile terminal 500 includes a processor 501 and a memory 502 .
  • the processor 501 is electrically connected to the memory 502 .
  • the processor 501 is the control center of the mobile terminal 500, uses various interfaces and lines to connect various parts of the entire mobile terminal, and executes the movement by running or calling the computer program stored in the memory 502 and calling the data stored in the memory 502. Various functions of the terminal and processing data, so as to monitor the mobile terminal as a whole.
  • Memory 502 may be used to store computer programs and data.
  • the computer program stored in the memory 502 contains instructions executable in the processor.
  • a computer program can be composed of various functional modules.
  • the processor 501 executes various functional applications and data processing by calling the computer program stored in the memory 502 .
  • the processor 501 in the mobile terminal 500 loads the instructions corresponding to the processes of one or more computer programs into the memory 502 according to the following steps, and the processor 501 executes the instructions stored in the memory 502 .
  • a computer program in which implements various functions:
  • FIG. 10 is a schematic diagram of a second structure of a mobile terminal according to an embodiment of the present application.
  • the mobile terminal 500 further includes: a radio frequency circuit 503 , a display screen 504 , a control circuit 505 , an input unit 506 , an audio circuit 507 , a sensor 508 and a power supply 509 .
  • the processor 501 is electrically connected to the radio frequency circuit 503 , the display screen 504 , the control circuit 505 , the input unit 506 , the audio circuit 507 , the sensor 508 and the power supply 509 respectively.
  • the radio frequency circuit 503 is used for transmitting and receiving radio frequency signals to communicate with network equipment or other mobile terminals through wireless communication.
  • the display screen 504 may be used to display information input by or provided to the user and various graphical user interfaces of the mobile terminal, which may be composed of images, texts, icons, videos, and any combination thereof.
  • the control circuit 505 is electrically connected to the display screen 504 for controlling the display screen 504 to display information.
  • Input unit 506 may be used to receive input numbers, character information, or user characteristic information (eg, fingerprints), and generate keyboard, mouse, joystick, optical, or trackball signal input related to user settings and function control.
  • the input unit 506 may include a fingerprint identification module.
  • the audio circuit 507 can provide an audio interface between the user and the mobile terminal through speakers and microphones.
  • the audio circuit 507 includes a microphone.
  • the microphone is electrically connected to the processor 501 .
  • the microphone is used for receiving voice information input by the user.
  • the sensor 508 is used to collect external environment information.
  • the sensor 508 may include one or more of an ambient brightness sensor, an acceleration sensor, a gyroscope, and the like.
  • the power supply 509 is used to power various components of the mobile terminal 500 .
  • the power supply 509 may be logically connected to the processor 501 through a power management system, so as to implement functions such as managing charging, discharging, and power consumption through the power management system.
  • the mobile terminal 500 may also include a camera, a Bluetooth module, and the like, which will not be repeated here.
  • the processor 501 in the mobile terminal 500 loads the instructions corresponding to the processes of one or more computer programs into the memory 502 according to the following steps, and the processor 501 executes the instructions stored in the memory 502 .
  • a computer program in which implements various functions:
  • the processor 501 when determining the target frequency domain resource corresponding to the second subframe, the processor 501 further executes: determining a resource pool corresponding to the second subframe; randomly selecting a frequency domain from the resource pool resource, as the target frequency domain resource.
  • the processor 501 when determining the target frequency domain resource corresponding to the second subframe, the processor 501 further executes:
  • a resource pool corresponding to the second subframe is formed.
  • the processor 501 when determining the target frequency domain resource corresponding to the second subframe, the processor 501 further executes:
  • the frequency domain resource used in the first subframe is used as the target frequency domain resource.
  • the embodiment of the present application provides a mobile terminal, when the mobile terminal periodically transmits information, firstly determines the first subframe corresponding to the current transmission period, and according to the first subframe and the preset period, The time domain adjustment pair determines the second subframe corresponding to the next transmission cycle, that is, first determines the time domain resources, then determines the target frequency domain resources corresponding to the second subframe, and then determines the data to be transmitted, and then determines the time domain resources in the second subframe.
  • the data to be transmitted is sent on the frame through the determined frequency domain resources.
  • the time domain adjustment amount is dynamically adjusted between the adjacent two subframes. The interval time between the two can be adjusted to effectively reduce the collision probability of the transmission resources between the pedestrian terminals, thereby increasing the probability that the information sent by the pedestrian terminals can be correctly received by the vehicle.
  • An embodiment of the present application further provides a storage medium, where a computer program is stored in the storage medium, and when the computer program runs on a computer, the computer executes the data transmission method described in any of the foregoing embodiments.
  • the storage medium may include, but is not limited to: read-only memory (ROM, Read Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disk, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种数据传输方法、装置、存储介质及移动终端,其中,该方法包括:确定当前发送周期对应的第一子帧;根据所述第一子帧、预设周期和时域调整量确定下一发送周期对应的第二子帧;确定所述第二子帧对应的目标频域资源;确定待传输数据,并在所述第二子帧上通过所述目标频域资源发送所述待传输数据。

Description

数据传输方法、装置、存储介质及移动终端
本申请要求于2020年10月12日提交中国专利局、申请号为202011086212.8、申请名称为“数据传输方法、装置、存储介质及移动终端”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及移动终端技术领域,具体涉及一种数据传输方法、装置、存储介质及移动终端。
背景技术
行人终端与车辆通信是C-V2X(Cellular-vehicle-to-everything,基于蜂窝网络的车辆到一切通信)应用场景之一,行人终端通过发送行人位置等信息使得人车通信中的车辆知道行人的信息从而保障行人的安全。行人终端与车辆通信中,为了降低功耗,行人持有的终端可以没有下行接收链路而只有上行发送链路。
C-V2X现有的数据传输方案中,同一区域的多个行人终端发送数据时,容易出现通信资源的冲突,导致行人终端发送的数据难以被车辆成功接收。
发明内容
本申请实施例提供一种数据传输方法、装置、存储介质及移动终端,能够减少行人终端之间的通信资源冲突,提高信息发送成功的概率。
第一方面,本申请实施例提供一种数据传输方法,包括:
确定当前发送周期对应的第一子帧;
根据所述第一子帧、预设周期和时域调整量确定下一发送周期对应的第二子帧;
确定所述第二子帧对应的目标频域资源;
确定待传输数据,并在所述第二子帧上通过所述目标频域资源发送所述待传输数据。
第二方面,本申请实施例还提供一种数据传输装置,包括:
第一确定模块,用于确定当前发送周期对应的第一子帧;
子帧计算模块,用于根据所述第一子帧、预设周期和时域调整量确定下一发送周期对应的第二子帧;
资源确定模块,用于确定所述第二子帧对应的目标频域资源;
数据传输模块,用于确定待传输数据,并在所述第二子帧上通过所述目标频域资源发送所述待传输数据。
第三方面,本申请实施例还提供一种存储介质,其上存储有计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行:
确定当前发送周期对应的第一子帧;
根据所述第一子帧、预设周期和时域调整量确定下一发送周期对应的第二子帧;
确定所述第二子帧对应的目标频域资源;
确定待传输数据,并在所述第二子帧上通过所述目标频域资源发送所述待传输数据。
第四方面,本申请实施例还提供一种移动终端,包括处理器和存储器,所述存储器有计算机程序,所述处理器通过调用所述计算机程序,用于执行:确定当前发送周期对应的第一子帧;
根据所述第一子帧、预设周期和时域调整量确定下一发送周期对应的第二子帧;
确定所述第二子帧对应的目标频域资源;
确定待传输数据,并在所述第二子帧上通过所述目标频域资源发送所述待传输数据。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的数据传输方法的第一种流程示意图。
图2为本申请实施例提供的数据传输方法的第一场景示意图。
图3为本申请实施例提供的数据传输方法的第二场景示意图。
图4为本申请实施例提供的数据传输方法的第三场景示意图。
图5为本申请实施例提供的数据传输方法的第二种流程示意图。
图6为本申请实施例提供的数据传输方法的第三种流程示意图。
图7为本申请实施例提供的数据传输方法的第四场景示意图。
图8为本申请实施例提供的数据传输装置的结构示意图。
图9为本申请实施例提供的移动终端的第一种结构示意图。
图10为本申请实施例提供的移动终端的第二种结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有付出创造性劳动前提下所获得的所有其他实施例,都属于本申请的保护范围。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
本申请实施例提供一种数据传输方法,包括:
确定当前发送周期对应的第一子帧;
根据所述第一子帧、预设周期和时域调整量确定下一发送周期对应的第二子帧;
确定所述第二子帧对应的目标频域资源;
确定待传输数据,并在所述第二子帧上通过所述目标频域资源发送所述待传输数据。
在一些实施例中,所述确定所述第二子帧对应的目标频域资源,包括:
确定所述第二子帧对应的资源池;
从所述资源池中随机选择频域资源,作为目标频域资源。
在一些实施例中,所述确定所述第二子帧对应的资源池,包括:
确定所述当前发送周期对应的半静态调度周期,其中,一个半静态调度周期内包含多个连续的发送周期;
从所述半静态调度周期的配置资源中,确定出所述第二子帧上的空闲频域资源;
基于所述空闲频域资源,构成所述第二子帧对应的资源池。
在一些实施例中,所述确定所述第二子帧对应的目标频域资源,包括:
确定所述当前发送周期对应的半静态调度周期;
当所述第二子帧位于所述半静态调度周期内时,将在所述第一子帧上使用的频域资源作为目标频域资源。
在一些实施例中,所述确定所述第二子帧对应的目标频域资源,还包括:
当所述第二子帧不位于所述半静态调度周期内时,从下一半静态调度周期的配置资源中确定频域资源,作为目标频域资源。
在一些实施例中,所述根据所述第一子帧、预设周期和时域调整量确定下一发送周期对应的第二子帧,包括:
确定时域调整量,根据所述时域调整量对所述预设周期进行延长或者缩短;
根据所述第一子帧以及延长或者缩短后的预设周期,计算得到第二子帧。
在一些实施例中,所述目标频域资源包括物理侧链共享信道、物理侧链控制信道以及解调参考信号。
本申请实施例提供一种数据传输方法,该数据传输方法的执行主体可以是本申请实施例提供的数据传输装置,或者集成了该数据传输装置的移动终端,其中该数据传输装置可以采用硬件或者软件的方式实现。其中,移动终端可以是智能手机、平板电脑、智能穿戴设备等支持蜂窝网络的设备。
请参阅图1,图1为本申请实施例提供的数据传输方法的第一种流程示意图。本申请实施例提供的数据传输方法的具体流程可以如下:
在101中,确定当前发送周期对应的第一子帧。
4G(the 4th generation mobile communication technology,第四代移动通信技术)通信系统和5G(the 5th generation mobile communication technology,第五代移动通信技术)通信系统可以支持V2X通信。在诸如4G通信系统、5G通信系统等的蜂窝通信系统中支持的V2X通信可以被称为C-V2X通信。C-V2X通信包括V2V(vehicle-to-vehicle,车辆到车辆)通信、V2I(vehicle-to-infrastructure,车辆到基础设施)通信、V2P/P2V(Vehicle to
Pedestrian/Pedestrian to Vehicle,车到行人/行人到车)通信等。本申请实施例的方案可以应用于P2V通信中。其中行人终端与车辆之间、车辆与车辆之间的通信可以通过侧边链路实现。
在基于公共安全的车联网应用中,行人终端(Pedestrian User Equipment,PUE)需要获取通信资源,以便于在横穿马路等场景中及时地向附近的车辆发出预警信息,例如,行人终端通过获取的通信资源发送位置信息、行走速度等相关数据,车辆获取到位置信息等数据后,对行人进行避让。这里的行人终端为行人手持或者携带的移动终端。
其中,通信资源分为时域资源和频域资源,二者结合也可以称为时频资源。按照时域横轴和频域纵轴的方式排列形成资源池。在时域上,一个子帧为1ms,一个子帧可以包括14个连续的symbol(符号)。频域上的基本单位为子载波,子载波间距为15kHz,一个RB(Resource Block,资源块)在频域上包含12个连续的子载波。RB是可以分配给用户的频域资源的最小单位。
此外,在频域上,由网络通过信令将总带宽划分成若干个子信道,一个子信道可以占用若干个RB(Resource Block,资源块)。其中,子信道占用的RB数量一般是C-V2X通信的协议中预先配置好的。比如,总带宽是10MHz,则一共有50个RB,网络指示的子信道大小为5个RB,那么总带宽就包含有10个子信道。行人终端在选择频域资源时选择其中的一个子信道用来发送数据即可。
行人终端周期性地发送位置信息等相关数据,同时车辆也会按照P2V通信协议规定的方式检测信号,以获取行人终端发送的位置信息,进而实现对行人的避让。此外,可以理解的是,行人终端只需要将相关数据发送出去,车辆无需反馈信息给行人终端,为了降低功耗,行人终端可以没有下行接收链路而只有上行发送链路。
其中,人车通信中,可以采用半静态调度的方式为行人终端配置时频资源。每一个半静态调度周期为行人终端进行一次时频资源的配置。其中,行人终端有两种侧链传输模式,即随机选择资源模式和部分感知资源模式。其中,随机选择资源模式,即行人终端按照固定的发送周期在资源池中随机选择资源进行通信,并在一个半静态调度周期内的每个发送周期都使用相同的资源进行通信,但是这种资源选择模式的冲突率相对较高。
例如,在一些场景下,如十字路口、人行通道附近等场景下,行人终端的数量较多,如果行人终端在一个半静态调度周期内都按照固定的周期和固定的子信道进行数据发送,很容易出现资源碰撞,也就是说,很容易出现不同的行人终端随机选择到了相同的时频资源发送数据,这会导致车辆接收数据失败。
为了解决这一技术问题,本申请实施例的方案对相关的随机选择资源模式进行进一步优化,在每一次发送数据之前,对发送周期的时长进行延长或者缩短。进而实现行人终端在发送数据的过程中,动态地调整发送周期的时长,有效地降低行人终端之间的发送资源的碰撞概率。
请参阅图2,图2为本申请实施例提供的数据传输方法的第一场景示意图。在时域横轴上,将时域资源划分为连续的子帧,图中的一个小方格为一个子帧,一个子帧为1ms,按照0-9这十个数字循环的方式为连续的子帧编号。一个半静态调度周期内包含有多个连续的发送周期T,行人终端每间隔一个发送周期发送一次数据。
行人终端在当前发送周期发送完数据之后,确定出当前发送周期的子帧,记录该子帧的子帧号,此处为了将该子帧与下一个发送周期使用的子帧区别,将当前发送周期发送数据使用的子帧记为第一子帧,将下一发送周期发送数据使用的子帧记为第二子帧。
在102中,根据第一子帧、预设周期和时域调整量确定下一发送周期对应的第二子帧。
在获取到第一子帧的子帧号之后,动态地对发送周期的时长进行延长或者缩短。其中,在一些实施例中,根据第一子帧、预设周期和时域调整量确定下一发送周期对应的第二子帧,包括:确定时域调整量,根据时域调整量对预设周期进行延长或者缩短;根据第一子帧以及延长或者缩短后的预设周期,计算得到第二子帧。
该实施例中,时域调整量可以为预先设置的值,例如,时域调整量为1ms,行人终端可以随机的选择将发送周期延长1ms或者缩短1ms,得到新的发送周期,根据该发送周期和第一子帧确定出第二子帧。具体的,将第一子帧的子帧号与调整后的发送周期相加,再对求得的和进行取模运算,得到第二子帧的子帧号。其中,取模运算的除数为10,在其他 实施例中,如果采用其他的子帧号编号方式,则取与之对应的除数。
需要说明的是,这里的时域调整量为1ms仅为举例说明,在其他实施例中可以采用其他的数值,一般情况下可以从(0,T)中选择一个整数作为时域调整量,其中,T为发送周期,T的单位为ms。此外,可以理解的是,不同的行人终端预设的发送周期可以不相同。
或者,在另一些实施例中,不需要预设设置时域调整量,而是在确定时域调整量时,随机从(0,T)中选择一个整数作为时域调整量,然后按照与上一实施例相同的方式计算第二子帧的子帧号。
在103中,确定第二子帧对应的目标频域资源。
在确定完时域资源后,接下来确定目标频域资源。其中,这里的目标频域资源主要是指从在资源池中选择的多个连续的RB构成的目标子信道。
例如,在一个半静态调度周期内的每个发送周期选择相同的子信道来发送数据,在新的半静态调度周期重新确定使用的目标频域资源。请参阅图3,图3为本申请实施例提供的数据传输方法的第二场景示意图。在确定出第二子帧后,从预先为第二子帧配置的资源池中随机选择一个子信道作为目标子信道。
目标子信道中的多个RB按照P2V协议的规定分配给DMRS(Demodulation Reference Signal,解调参考信号)、PSCCH(Physical Sidelink Share Channel,物理侧链共享信道)、PSSCH(Physical Sidelink Control Channel,物理侧链控制信道)。
其中,PSCCH时频资源用于控制信息的传输,PSSCH时频资源用于业务数据的传输,DMRS用于PSSCH和PSCCH信道的相关解调。DMRS、PSCCH、PSSCH在一个子帧的子信道中占用的RB的数量和位置一般C-V2X通信的协议中预先配置好的。比如,假设图3中的资源池的总带宽是10MHz,则一共有50个RB,网络指示的子信道大小为5个RB,那么总带宽就包含有10个子信道(图中指示出了其中四个连续的子信道),DMRS在一个子信道里面占用时域上的第2,5,8,11个symbol的全部RB,除第2,5,8,11个symbol的其他RB,PSCCH占用一个子信道的前面两个RB,PSSCH占用后面的三个RB。
请参阅图4,图4为本申请实施例提供的数据传输方法的第三场景示意图。当结束图3所示的半静态调度周期,进入新的半静态调度周期后,从资源池中重新选择目标频域资源,例如,可以采用随机选择的方式确定如图4所示的目标子信道,该目标子信道不同于上一半静态调度周期使用的目标子信道。
在104中,确定待传输数据,并在第二子帧上通过目标频域资源发送待传输数据。
在确定出目标子信道之后,确定待传输数据,比如,将行人终端当前的位置信息、移动速度和移动方向等数据作为待传输数据,并在第二子帧上通过选择的目标信道将其发送出去,使得附近的车辆可以接收到这些数据,并根据这些数据对行人进行避让。
具体实施时,本申请不受所描述的各个步骤的执行顺序的限制,在不产生冲突的情况下,某些步骤还可以采用其它顺序进行或者同时进行。
由上可知,本申请实施例提供的数据传输方法,行人终端在周期性的发送信息时,先确定当前发送周期对应的第一子帧,根据该第一子帧、预设周期以及时域调整量对确定出下一个发送周期对应的第二子帧,即先确定出时域资源,再确定出第二子帧对应的目标频域资源,然后确定待传输数据,在第二子帧上通过确定出的频域资源发送该待传输数据, 通过这样的方式,在选择每一个发送子帧时,在发送周期的基础上,基于时域调整量动态地对相邻两个子帧之间的间隔时长进行调整,有效地降低行人终端之间的发送资源的碰撞概率,进而提高行人终端发送的信息能被车辆正确接收的概率。
请参阅图5,图5为本发明实施例提供的数据传输方法的第二流程示意图。在一些实施例中,该方法包括:
在201中,确定当前发送周期对应的第一子帧。
该实施例中,人车通信采用半静态调度的方式为行人终端配置时频资源。每一个半静态调度周期为行人终端进行一次时频资源的配置。行人终端周期性地发送位置信息等相关数据,同时车辆也会按照P2V通信协议规定的方式检测信号,以获取行人终端发送的位置信息,进而实现对行人的避让。
行人终端在当前发送周期发送完数据之后,确定出当前发送周期的子帧,记录该子帧的子帧号,此处为了将该子帧与下一个发送周期使用的子帧区别,将当前发送周期发送数据使用的子帧记为第一子帧,将下一发送周期发送数据使用的子帧记为第二子帧。
在202中,根据第一子帧、预设周期和时域调整量确定下一发送周期对应的第二子帧。
在获取到第一子帧的子帧号之后,动态地对发送周期的时长进行延长或者缩短。该实施例中,时域调整量可以为预先设置的值,例如,时域调整量为1ms,行人终端可以随机的选择将发送周期延长1ms或者缩短1ms,得到新的发送周期,根据该发送周期和第一子帧确定出第二子帧。具体的,将第一子帧的子帧号与调整后的发送周期相加,再对求得的和进行取模运算,得到第二子帧的子帧号。其中,取模运算的除数为10,在其他实施例中,如果采用其他的子帧号编号方式,则取与之对应的除数。
在203中,确定当前发送周期对应的半静态调度周期。
在确定出下一个发送周期要使用的第二子帧之后,确定发送发送周期对应的半静态调度周期,当第二子帧位于半静态调度周期内时,执行204;当第二子帧不位于半静态调度周期内时,执行205。
在204中,将在第一子帧上使用的频域资源作为目标频域资源。
在205中,从下一半静态调度周期的配置资源中确定频域资源,作为目标频域资源。
当第二子帧位于当前发送周期所在半静态调度周期内时,仍然使用第一子帧上相同的频域资源发送数据,不进行资源的重新选择,以提高数据发送的效率。
而当第二子帧不位于当前发送周期所在半静态调度周期内时,说明下一次发送周期进入了新的半静态调度周期,则从下一半静态调度周期的配置资源中确定频域资源,作为目标频域资源。例如,从资源池中随机选择子信道作为目标信道。
在206中,确定待传输数据,并在第二子帧上通过目标频域资源发送待传输数据。
在确定出目标子信道之后,确定待传输数据,比如,将行人终端当前的位置信息、移动速度和移动方向等数据作为待传输数据,并在第二子帧上通过选择的目标信道将其发送出去,使得附近的车辆可以接收到这些数据,并根据这些数据对行人进行避让。
该实施例提出的数据传输方法,在选择每一个发送子帧时,在发送周期的基础上,基于时域调整量动态地对相邻两个子帧之间的间隔时长进行调整,有效地降低行人终端之间的发送资源的碰撞概率,进而提高行人终端发送的信息能被车辆正确接收的概率。
请参阅图6,图6为本发明实施例提供的数据传输方法的第二流程示意图。在一些实施例中,该方法包括:
在301中,确定当前发送周期对应的第一子帧。
该实施例中,人车通信采用半静态调度的方式为行人终端配置时频资源。每一个半静态调度周期为行人终端进行一次时频资源的配置。行人终端周期性地发送位置信息等相关数据,同时车辆也会按照P2V通信协议规定的方式检测信号,以获取行人终端发送的位置信息,进而实现对行人的避让。
行人终端在当前发送周期发送完数据之后,确定出当前发送周期的子帧,记录该子帧的子帧号,此处为了将该子帧与下一个发送周期使用的子帧区别,将当前发送周期发送数据使用的子帧记为第一子帧,将下一发送周期发送数据使用的子帧记为第二子帧。
在302中,根据第一子帧、预设周期和时域调整量确定下一发送周期对应的第二子帧。
在获取到第一子帧的子帧号之后,动态地对发送周期的时长进行延长或者缩短。该实施例中,时域调整量可以为预先设置的值,例如,时域调整量为1ms,行人终端可以随机的选择将发送周期延长1ms或者缩短1ms,得到新的发送周期,根据该发送周期和第一子帧确定出第二子帧。具体的,将第一子帧的子帧号与调整后的发送周期相加,再对求得的和进行取模运算,得到第二子帧的子帧号。其中,取模运算的除数为10,在其他实施例中,如果采用其他的子帧号编号方式,则取与之对应的除数。
在303中,确定第二子帧对应的资源池。
在304中,从资源池中随机选择频域资源,作为目标频域资源。
在确定出第二子帧后,确定第二子帧对应的资源池,比如,确定第二子帧对应的资源池可以包括:确定当前发送周期对应的半静态调度周期,其中,一个半静态调度周期内包含多个连续的发送周期;从半静态调度周期的配置资源中,确定出第二子帧上的空闲频域资源;基于空闲频域资源,构成第二子帧对应的资源池。其中,可以通过对第二子帧上各子信道上的信号进行检测,确定出空闲频域资源,作为与第二子帧对应的资源池。
然后,从确定出的资源池中随机选择一个子信道作为目标子信道,进行数据的发送。请参阅图7,图7为本申请实施例提供的数据传输方法的第四场景示意图。在第二子帧上选择的子信道与在第一子帧上选择的子信道大概率不相同。当有多个行人终端,行人终端如果都是每个发送周期从资源池中选择子信道,选择的子信道大概率不相同,能够降低行人终端之间的发送资源发生碰撞的概率。
在305中,确定待传输数据,并在第二子帧上通过目标频域资源发送待传输数据。
在确定出目标子信道之后,确定待传输数据,比如,将行人终端当前的位置信息、移动速度和移动方向等数据作为待传输数据,并在第二子帧上通过选择的目标信道将其发送出去,使得附近的车辆可以接收到这些数据,并根据这些数据对行人进行避让。
该实施例提出的数据传输方法,通过随机化发送周期以及随机化频域资源,有效地降低行人终端之间的发送资源的碰撞概率,能够提高行人终端发送的信息能被车辆正确接收的概率。
在一实施例中还提供一种数据传输装置。请参阅图8,图8为本申请实施例提供的数据传输装置400的结构示意图。其中该数据传输装置400应用于移动终端,该数据传输装 置400包括第一确定模块401、子帧计算模块402、资源确定模块403、数据传输模块404,如下:
第一确定模块401,用于确定当前发送周期对应的第一子帧;
子帧计算模块402,用于根据所述第一子帧、预设周期和时域调整量确定下一发送周期对应的第二子帧;
资源确定模块403,用于确定所述第二子帧对应的目标频域资源;
数据传输模块404,用于确定待传输数据,并在所述第二子帧上通过所述目标频域资源发送所述待传输数据。
在一些实施例中,资源确定模块403还用于:确定所述第二子帧对应的资源池;
从所述资源池中随机选择频域资源,作为目标频域资源。
在一些实施例中,资源确定模块403还用于:确定所述当前发送周期对应的半静态调度周期,其中,一个半静态调度周期内包含多个连续的发送周期;
从所述半静态调度周期的配置资源中,确定出所述第二子帧上的空闲频域资源;
基于所述空闲频域资源,构成所述第二子帧对应的资源池。
在一些实施例中,资源确定模块403还用于:确定所述当前发送周期对应的半静态调度周期;
当所述第二子帧位于所述半静态调度周期内时,将在所述第一子帧上使用的频域资源作为目标频域资源。
在一些实施例中,资源确定模块403还用于:当所述第二子帧不位于所述半静态调度周期内时,从下一半静态调度周期的配置资源中确定频域资源,作为目标频域资源。
在一些实施例中,子帧计算模块402还用于:确定时域调整量,根据所述时域调整量对所述预设周期进行延长或者缩短;
根据所述第一子帧以及延长或者缩短后的预设周期,计算得到第二子帧。
在一些实施例中,所述目标频域资源包括物理侧链共享信道、物理侧链控制信道以及解调参考信号。
应当说明的是,本申请实施例提供的数据传输装置与上文实施例中的数据传输方法属于同一构思,通过该数据传输装置可以实现数据传输方法实施例中提供的任一方法,其具体实现过程详见数据传输方法实施例,此处不再赘述。
由上可知,本申请实施例提出的数据传输装置400包括第一确定模块401、子帧计算模块402、资源确定模块403、数据传输模块404,行人终端在周期性的发送信息时,第一确定模块401先确定当前发送周期对应的第一子帧,子帧计算模块402根据该第一子帧、预设周期以及时域调整量对确定出下一个发送周期对应的第二子帧,即先确定出时域资源,资源确定模块403再确定出第二子帧对应的目标频域资源,然后数据传输模块404确定待传输数据,在第二子帧上通过确定出的频域资源发送该待传输数据,通过这样的方式,在选择每一个发送子帧时,在发送周期的基础上,基于时域调整量动态地对相邻两个子帧之间的间隔时长进行调整,有效地降低行人终端之间的发送资源的碰撞概率,进而提高行人终端发送的信息能被车辆正确接收的概率。
本申请实施例还提供一种移动终端。所述移动终端可以是智能手机、平板电脑等设备。 请参阅图9,图9为本申请实施例提供的移动终端的第一种结构示意图。移动终端500包括处理器501和存储器502。其中,处理器501与存储器502电性连接。
处理器501是移动终端500的控制中心,利用各种接口和线路连接整个移动终端的各个部分,通过运行或调用存储在存储器502内的计算机程序,以及调用存储在存储器502内的数据,执行移动终端的各种功能和处理数据,从而对移动终端进行整体监控。
存储器502可用于存储计算机程序和数据。存储器502存储的计算机程序中包含有可在处理器中执行的指令。计算机程序可以组成各种功能模块。处理器501通过调用存储在存储器502的计算机程序,从而执行各种功能应用以及数据处理。
在本实施例中,移动终端500中的处理器501会按照如下的步骤,将一个或一个以上的计算机程序的进程对应的指令加载到存储器502中,并由处理器501来运行存储在存储器502中的计算机程序,从而实现各种功能:
确定当前发送周期对应的第一子帧;
根据所述第一子帧、预设周期和时域调整量确定下一发送周期对应的第二子帧;
确定所述第二子帧对应的目标频域资源;
确定待传输数据,并在所述第二子帧上通过所述目标频域资源发送所述待传输数据。
在一些实施例中,请参阅图10,图10为本申请实施例提供的移动终端的第二种结构示意图。移动终端500还包括:射频电路503、显示屏504、控制电路505、输入单元506、音频电路507、传感器508以及电源509。其中,处理器501分别与射频电路503、显示屏504、控制电路505、输入单元506、音频电路507、传感器508以及电源509电性连接。
射频电路503用于收发射频信号,以通过无线通信与网络设备或其他移动终端进行通信。
显示屏504可用于显示由用户输入的信息或提供给用户的信息以及移动终端的各种图形用户接口,这些图形用户接口可以由图像、文本、图标、视频和其任意组合来构成。
控制电路505与显示屏504电性连接,用于控制显示屏504显示信息。
输入单元506可用于接收输入的数字、字符信息或用户特征信息(例如指纹),以及产生与用户设置以及功能控制有关的键盘、鼠标、操作杆、光学或者轨迹球信号输入。其中,输入单元506可以包括指纹识别模组。
音频电路507可通过扬声器、传声器提供用户与移动终端之间的音频接口。其中,音频电路507包括麦克风。所述麦克风与所述处理器501电性连接。所述麦克风用于接收用户输入的语音信息。
传感器508用于采集外部环境信息。传感器508可以包括环境亮度传感器、加速度传感器、陀螺仪等传感器中的一种或多种。
电源509用于给移动终端500的各个部件供电。在一些实施例中,电源509可以通过电源管理系统与处理器501逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。
虽然图中未示出,移动终端500还可以包括摄像头、蓝牙模块等,在此不再赘述。
在本实施例中,移动终端500中的处理器501会按照如下的步骤,将一个或一个以上的计算机程序的进程对应的指令加载到存储器502中,并由处理器501来运行存储在存储 器502中的计算机程序,从而实现各种功能:
确定当前发送周期对应的第一子帧;
根据所述第一子帧、预设周期和时域调整量确定下一发送周期对应的第二子帧;
确定所述第二子帧对应的目标频域资源;
确定待传输数据,并在所述第二子帧上通过所述目标频域资源发送所述待传输数据。
在一些实施例中,在确定所述第二子帧对应的目标频域资源时,处理器501还执行:确定所述第二子帧对应的资源池;从所述资源池中随机选择频域资源,作为目标频域资源。
在一些实施例中,在确定所述第二子帧对应的目标频域资源时,处理器501还执行:
确定所述当前发送周期对应的半静态调度周期,其中,一个半静态调度周期内包含多个连续的发送周期;
从所述半静态调度周期的配置资源中,确定出所述第二子帧上的空闲频域资源;
基于所述空闲频域资源,构成所述第二子帧对应的资源池。
在一些实施例中,在确定所述第二子帧对应的目标频域资源时,处理器501还执行:
确定所述当前发送周期对应的半静态调度周期;
当所述第二子帧位于所述半静态调度周期内时,将在所述第一子帧上使用的频域资源作为目标频域资源。
由上可知,本申请实施例提供了一种移动终端,所述移动终端在周期性的发送信息时,先确定当前发送周期对应的第一子帧,根据该第一子帧、预设周期以及时域调整量对确定出下一个发送周期对应的第二子帧,即先确定出时域资源,再确定出第二子帧对应的目标频域资源,然后确定待传输数据,在第二子帧上通过确定出的频域资源发送该待传输数据,通过这样的方式,在选择每一个发送子帧时,在发送周期的基础上,基于时域调整量动态地对相邻两个子帧之间的间隔时长进行调整,有效地降低行人终端之间的发送资源的碰撞概率,进而提高行人终端发送的信息能被车辆正确接收的概率。
本申请实施例还提供一种存储介质,所述存储介质中存储有计算机程序,当所述计算机程序在计算机上运行时,所述计算机执行上述任一实施例所述的数据传输方法。
需要说明的是,本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分步骤是可以通过计算机程序来指令相关的硬件来完成,所述计算机程序可以存储于计算机可读存储介质中,所述存储介质可以包括但不限于:只读存储器(ROM,Read Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁盘或光盘等。
此外,本申请中的术语“第一”、“第二”和“第三”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或模块的过程、方法、系统、产品或设备没有限定于已列出的步骤或模块,而是某些实施例还包括没有列出的步骤或模块,或某些实施例还包括对于这些过程、方法、产品或设备固有的其它步骤或模块。
以上对本申请实施例所提供的数据传输方法、装置、存储介质及移动终端进行了详细介绍。本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应 理解为对本申请的限制。

Claims (20)

  1. 一种数据传输方法,其中,包括:
    确定当前发送周期对应的第一子帧;
    根据所述第一子帧、预设周期和时域调整量确定下一发送周期对应的第二子帧;
    确定所述第二子帧对应的目标频域资源;
    确定待传输数据,并在所述第二子帧上通过所述目标频域资源发送所述待传输数据。
  2. 如权利要求1所述的数据传输方法,其中,所述确定所述第二子帧对应的目标频域资源,包括:
    确定所述第二子帧对应的资源池;
    从所述资源池中随机选择频域资源,作为目标频域资源。
  3. 如权利要求2所述的数据传输方法,其中,所述确定所述第二子帧对应的资源池,包括:
    确定所述当前发送周期对应的半静态调度周期,其中,一个半静态调度周期内包含多个连续的发送周期;
    从所述半静态调度周期的配置资源中,确定出所述第二子帧上的空闲频域资源;
    基于所述空闲频域资源,构成所述第二子帧对应的资源池。
  4. 如权利要求1所述的数据传输方法,其中,所述确定所述第二子帧对应的目标频域资源,包括:
    确定所述当前发送周期对应的半静态调度周期;
    当所述第二子帧位于所述半静态调度周期内时,将在所述第一子帧上使用的频域资源作为目标频域资源。
  5. 如权利要求4所述的数据传输方法,其中,所述确定所述第二子帧对应的目标频域资源,还包括:
    当所述第二子帧不位于所述半静态调度周期内时,从下一半静态调度周期的配置资源中确定频域资源,作为目标频域资源。
  6. 如权利要求1所述的数据传输方法,其中,所述根据所述第一子帧、预设周期和时域调整量确定下一发送周期对应的第二子帧,包括:
    确定时域调整量,根据所述时域调整量对所述预设周期进行延长或者缩短;
    根据所述第一子帧以及延长或者缩短后的预设周期,计算得到第二子帧。
  7. 如权利要求1所述的数据传输方法,其中,所述目标频域资源包括物理侧链共享信道、物理侧链控制信道以及解调参考信号。
  8. 一种数据传输装置,其中,包括:
    第一确定模块,用于确定当前发送周期对应的第一子帧;
    子帧计算模块,用于根据所述第一子帧、预设周期和时域调整量确定下一发送周期对应的第二子帧;
    资源确定模块,用于确定所述第二子帧对应的目标频域资源;
    数据传输模块,用于确定待传输数据,并在所述第二子帧上通过所述目标频域资源发送所述待传输数据。
  9. 如权利要求8所述的数据传输装置,其中,所述源确定模块还用于:确定所述第二子帧对应的资源池;
    从所述资源池中随机选择频域资源,作为目标频域资源。
  10. 如权利要求9所述的数据传输装置,其中,所述资源确定模块还用于:确定所述当前发送周期对应的半静态调度周期,其中,一个半静态调度周期内包含多个连续的发送周期;
    从所述半静态调度周期的配置资源中,确定出所述第二子帧上的空闲频域资源;
    基于所述空闲频域资源,构成所述第二子帧对应的资源池。
  11. 如权利要求8所述的数据传输装置,其中,所述资源确定模块还用于:确定所述当前发送周期对应的半静态调度周期;
    当所述第二子帧位于所述半静态调度周期内时,将在所述第一子帧上使用的频域资源作为目标频域资源。
  12. 如权利要求11所述的数据传输装置,其中,所述资源确定模块还用于:当所述第二子帧不位于所述半静态调度周期内时,从下一半静态调度周期的配置资源中确定频域资源,作为目标频域资源。
  13. 如权利要求8所述的数据传输装置,其中,所述子帧计算模块还用于:确定时域调整量,根据所述时域调整量对所述预设周期进行延长或者缩短;
    根据所述第一子帧以及延长或者缩短后的预设周期,计算得到第二子帧。
  14. 如权利要求8所述的数据传输装置,其中,所述目标频域资源包括物理侧链共享信道、物理侧链控制信道以及解调参考信号。
  15. 一种存储介质,其上存储有计算机程序,其中,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1至7任一项所述的数据传输方法。
  16. 一种移动终端,包括处理器和存储器,所述存储器存储有计算机程序,其中,所述处理器通过调用所述计算机程序,用于执行:
    确定当前发送周期对应的第一子帧;
    根据所述第一子帧、预设周期和时域调整量确定下一发送周期对应的第二子帧;
    确定所述第二子帧对应的目标频域资源;
    确定待传输数据,并在所述第二子帧上通过所述目标频域资源发送所述待传输数据。
  17. 如权利要求16所述的移动终端,其中,所述处理器通过调用所述计算机程序,用于执行:
    确定所述第二子帧对应的资源池;
    从所述资源池中随机选择频域资源,作为目标频域资源。
  18. 如权利要求17所述的移动终端,其中,所述处理器通过调用所述计算机程序,用于执行:
    确定所述当前发送周期对应的半静态调度周期,其中,一个半静态调度周期内包含多个连续的发送周期;
    从所述半静态调度周期的配置资源中,确定出所述第二子帧上的空闲频域资源;
    基于所述空闲频域资源,构成所述第二子帧对应的资源池。
  19. 如权利要求16所述的移动终端,其中,所述处理器通过调用所述计算机程序,用 于执行:
    确定所述当前发送周期对应的半静态调度周期;
    当所述第二子帧位于所述半静态调度周期内时,将在所述第一子帧上使用的频域资源作为目标频域资源。
  20. 如权利要求19所述的移动终端,其中,所述处理器通过调用所述计算机程序,用于执行:
    当所述第二子帧不位于所述半静态调度周期内时,从下一半静态调度周期的配置资源中确定频域资源,作为目标频域资源。
PCT/CN2021/113236 2020-10-12 2021-08-18 数据传输方法、装置、存储介质及移动终端 WO2022078055A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21879102.8A EP4213571A1 (en) 2020-10-12 2021-08-18 Data transmission method and apparatus, and storage medium and mobile terminal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011086212.8 2020-10-12
CN202011086212.8A CN112203253B (zh) 2020-10-12 2020-10-12 数据传输方法、装置、存储介质及移动终端

Publications (1)

Publication Number Publication Date
WO2022078055A1 true WO2022078055A1 (zh) 2022-04-21

Family

ID=74008593

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/113236 WO2022078055A1 (zh) 2020-10-12 2021-08-18 数据传输方法、装置、存储介质及移动终端

Country Status (3)

Country Link
EP (1) EP4213571A1 (zh)
CN (1) CN112203253B (zh)
WO (1) WO2022078055A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112203253B (zh) * 2020-10-12 2023-06-30 Oppo广东移动通信有限公司 数据传输方法、装置、存储介质及移动终端
CN114501396B (zh) * 2022-03-28 2022-10-14 深圳市科思科技股份有限公司 数据传输方法、装置及设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010090556A1 (en) * 2009-02-04 2010-08-12 Telefonaktiebolaget L M Ericsson (Publ) Method and arrangement for scheduling transmissions
CN102821477A (zh) * 2012-08-15 2012-12-12 中国联合网络通信集团有限公司 调度请求周期的调整方法及装置
CN103905174A (zh) * 2012-12-28 2014-07-02 中兴通讯股份有限公司 一种提升系统容量的方法、装置及系统
WO2017132996A1 (zh) * 2016-02-05 2017-08-10 广东欧珀移动通信有限公司 业务传输方法和通信设备
CN107592327A (zh) * 2016-07-07 2018-01-16 普天信息技术有限公司 一种V2X网络中sidelink的资源分配方法以及装置
CN112203253A (zh) * 2020-10-12 2021-01-08 Oppo广东移动通信有限公司 数据传输方法、装置、存储介质及移动终端

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106211332B (zh) * 2015-05-05 2021-08-17 中兴通讯股份有限公司 资源分配的方法和装置
CN106470485B (zh) * 2015-08-14 2022-06-14 中兴通讯股份有限公司 一种无线资源选择方法及终端设备
CN106559446A (zh) * 2015-09-25 2017-04-05 中兴通讯股份有限公司 用于道路车辆的通讯系统的传输方法及装置
CN107295494B (zh) * 2016-03-31 2020-11-10 上海诺基亚贝尔股份有限公司 用于车对车通信中的数据传输的控制方法和装置
CN107659995A (zh) * 2017-09-15 2018-02-02 中国联合网络通信集团有限公司 一种资源调度的方法及终端
CN109862534B (zh) * 2017-11-30 2020-12-15 华为技术有限公司 资源配置方法和装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010090556A1 (en) * 2009-02-04 2010-08-12 Telefonaktiebolaget L M Ericsson (Publ) Method and arrangement for scheduling transmissions
CN102821477A (zh) * 2012-08-15 2012-12-12 中国联合网络通信集团有限公司 调度请求周期的调整方法及装置
CN103905174A (zh) * 2012-12-28 2014-07-02 中兴通讯股份有限公司 一种提升系统容量的方法、装置及系统
WO2017132996A1 (zh) * 2016-02-05 2017-08-10 广东欧珀移动通信有限公司 业务传输方法和通信设备
CN107592327A (zh) * 2016-07-07 2018-01-16 普天信息技术有限公司 一种V2X网络中sidelink的资源分配方法以及装置
CN112203253A (zh) * 2020-10-12 2021-01-08 Oppo广东移动通信有限公司 数据传输方法、装置、存储介质及移动终端

Also Published As

Publication number Publication date
CN112203253A (zh) 2021-01-08
CN112203253B (zh) 2023-06-30
EP4213571A1 (en) 2023-07-19

Similar Documents

Publication Publication Date Title
JP7216804B2 (ja) アップリンク情報の送信方法及び端末
JP2022530124A (ja) チャネルモニタリング方法、端末及びネットワーク機器
JP7206417B2 (ja) チャネルリソース決定方法、チャネル検出方法及び端末
JP7454037B2 (ja) サイドリンク情報の送信方法、受信方法、端末及び制御ノード
WO2022078055A1 (zh) 数据传输方法、装置、存储介质及移动终端
CN110636538B (zh) 波束测量方法、网络侧设备、终端设备及存储介质
EP3952606A1 (en) Indication method, terminal device and network side device
CN111818646B (zh) 一种dci传输方法和通信设备
EP3755080A1 (en) Method for determining position of paging message, communication device, network and user equipment
US20190222381A1 (en) Resource Mapping Method, Transmit End, And Receive End
JP7453422B2 (ja) 無線通信方法及び装置、端末及び記憶媒体
CN109451853A (zh) 指示多业务数据复用传输的方法及装置、终端和基站
JP2023546940A (ja) 情報伝送方法、情報伝送装置、電子機器と可読記憶媒体
WO2021249476A1 (zh) Srs资源指示方法、srs资源确定方法及相关设备
JP7436685B2 (ja) 周波数領域リソース処理方法、周波数領域リソース構成方法及び関連機器
WO2021013006A1 (zh) 参数处理方法、设备及计算机可读存储介质
WO2023098684A1 (zh) 信息传输方法及设备
WO2021109956A1 (zh) 参考信号的发送方法及发射机
CN113498088B (zh) 资源确定方法及终端
US10680776B2 (en) Pilot signal transmission method, base station, and user equipment
KR20220115103A (ko) 채널 측정 기준 신호 전송 방법 및 단말기
CN112911639B (zh) 上行传输方法、配置方法、终端及网络侧设备
WO2023232007A1 (zh) 信号传输方法及装置
WO2023143533A1 (zh) 旁链路传输方法、终端及存储介质
WO2020164584A1 (zh) 消息发送方法、消息接收方法、终端设备及网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21879102

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021879102

Country of ref document: EP

Effective date: 20230412

NENP Non-entry into the national phase

Ref country code: DE