WO2022077975A1 - 无充电回路的供电电路及电源管理系统 - Google Patents

无充电回路的供电电路及电源管理系统 Download PDF

Info

Publication number
WO2022077975A1
WO2022077975A1 PCT/CN2021/105766 CN2021105766W WO2022077975A1 WO 2022077975 A1 WO2022077975 A1 WO 2022077975A1 CN 2021105766 W CN2021105766 W CN 2021105766W WO 2022077975 A1 WO2022077975 A1 WO 2022077975A1
Authority
WO
WIPO (PCT)
Prior art keywords
switching device
bus
collector
emitter
power supply
Prior art date
Application number
PCT/CN2021/105766
Other languages
English (en)
French (fr)
Inventor
王京
黄猛
冯上贤
方明照
崔铖浩
盛明强
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Priority to EP21879023.6A priority Critical patent/EP4167432A4/en
Priority to US18/016,387 priority patent/US20230283098A1/en
Priority to AU2021359357A priority patent/AU2021359357A1/en
Publication of WO2022077975A1 publication Critical patent/WO2022077975A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • H02J7/06Regulation of charging current or voltage using discharge tubes or semiconductor devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/10Arrangements incorporating converting means for enabling loads to be operated at will from different kinds of power supplies, e.g. from ac or dc
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/345Parallel operation in networks using both storage and other dc sources, e.g. providing buffering using capacitors as storage or buffering devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/36Means for starting or stopping converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/125Avoiding or suppressing excessive transient voltages or currents
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/219Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/50Charging of capacitors, supercapacitors, ultra-capacitors or double layer capacitors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Definitions

  • the present disclosure is based on the Chinese application with the application number of 202011111589.4 and the filing date of October 16, 2020 , and claims its priority.
  • the disclosure of the Chinese application is hereby incorporated into the present disclosure as a whole.
  • the present disclosure relates to the technical field of charging, and in particular, to a power supply circuit and a power management system without a charging loop.
  • the DC bus open technology is more and more adopted. Opening the DC bus of the system can facilitate the rendezvous and docking of various energy forms, which greatly improves the operating efficiency of the energy management system and simplifies equipment configuration.
  • Embodiments of the present disclosure provide a power supply circuit and a power management system without a charging loop, which are used to solve the problem that a large inrush current is generated instantaneously when different energy sources are switched to a DC bus.
  • a power supply circuit without a charging loop comprising:
  • the AC switch assembly is configured to connect the live wire of the three-phase AC power with the DC bus, and when the AC is selected to charge the DC bus capacitor, the voltage across the DC bus capacitor is controlled to steadily rise to the target voltage;
  • a photovoltaic switch assembly configured to connect a photovoltaic power source with the DC bus, and control the voltage across the DC bus capacitor to steadily increase to a target voltage when a photovoltaic power source is selected to charge the DC bus capacitor;
  • the DC bus capacitor is connected between the positive and negative poles of the DC bus.
  • the first live wire in the three-phase alternating current is connected to the positive pole of the DC bus through the first switching device in the alternating current switch assembly, and is connected to the positive electrode of the DC bus through the second switching device in the alternating current switching assembly. the negative pole of the DC bus is connected;
  • the second live wire in the three-phase alternating current is connected to the positive electrode of the DC bus through the third switching device in the alternating current switch assembly, and is connected to the negative electrode of the DC bus through the fourth switching device in the alternating current switch assembly connect;
  • the third live wire in the three-phase alternating current is connected to the positive electrode of the DC bus through the fifth switching device in the alternating current switch assembly, and is connected to the negative electrode of the DC bus through the sixth switching device in the alternating current switch assembly connect.
  • the seventh switching device in the AC switch assembly is inversely connected to the first switching device, the eighth switching device is inversely connected to the third switching device, and the ninth switching device is reversed to the fifth switching device
  • the tenth switching device is in antiparallel with the second switching device
  • the eleventh switching device is antiparallel with the fourth switching device
  • the twelfth switching device is antiparallel with the sixth switching device.
  • the seventh to twelfth switching devices are divided into three groups of switching devices;
  • Each group includes any one of the seventh switching device, the eighth switching device, and the ninth switching device, and any one of the tenth switching device, the eleventh switching device, and the twelfth switching device;
  • the three groups of switching devices are alternately turned on, and the first to sixth switching devices are in an off state.
  • the first to twelfth switching devices are all IGBTs.
  • the gates of the first to sixth switching devices are connected to the first driving signal terminal
  • the collector of the first switching device is connected to the positive electrode of the DC bus, and the emitter is connected to the first live wire;
  • the collector of the seventh switching device is connected to the emitter of the first switching device, and the emitter is connected to the first live wire.
  • the pole is connected to the collector of the first switching device;
  • the collector of the second switching device is connected to the first live wire, and the emitter is connected to the negative electrode of the DC bus; the collector of the tenth switching device is connected to the emitter of the second switching device, and transmits The pole is connected to the collector of the second switching device;
  • the collector of the third switching device is connected to the positive electrode of the DC bus, and the emitter is connected to the second live wire;
  • the collector of the eighth switching device is connected to the emitter of the third switching device, and the emitter is connected to the second live wire.
  • the pole is connected to the collector of the third switching device;
  • the collector of the fourth switching device is connected to the second live wire, and the emitter is connected to the negative electrode of the DC bus;
  • the collector of the eleventh switching device is connected to the emitter of the fourth switching device, the emitter is connected to the collector of the fourth switching device;
  • the collector of the fifth switching device is connected to the positive electrode of the DC bus, and the emitter is connected to the third live wire;
  • the collector of the ninth switching device is connected to the emitter of the fifth switching device, and the emission The pole is connected to the collector of the fifth switching device;
  • the collector of the sixth switching device is connected to the third live wire, and the emitter is connected to the negative electrode of the DC bus; the collector of the twelfth switching device is connected to the emitter of the sixth switching device, The emitter is connected to the collector of the sixth switching device.
  • the photovoltaic switch assembly includes a thirteenth switching device and a fourteenth switching device
  • the thirteenth switching device is connected between the positive electrode of the photovoltaic power source and the positive electrode of the DC bus;
  • the fourteenth switching device is connected between the negative electrode of the photovoltaic power source and the negative electrode of the DC bus.
  • the thirteenth switch device and the fourteenth switch device are both IGBTs
  • the collector of the thirteenth switching device is connected to the positive electrode of the photovoltaic power source, the emitter is connected to the positive electrode of the DC bus, and the grid is connected to the second driving signal terminal;
  • the emitter of the fourteenth switching device is connected to the negative electrode of the photovoltaic power source, the collector electrode is connected to the negative electrode of the DC bus, and the gate is connected to the second driving signal terminal.
  • the drive signal is a pulse width modulated PWM signal.
  • the power supply circuit without a charging loop further includes a voltage detector configured to detect a voltage across the positive and negative terminals of the DC bus.
  • an energy management system including the power supply circuit without a charging loop of the above-mentioned embodiments.
  • the three-phase alternating current is connected to the DC bus through the AC switch assembly, and when the three-phase alternating current is charging the DC bus capacitor, the voltage at both ends of the DC bus capacitor can be controlled to rise steadily to the target voltage, so as to prevent the three-phase alternating current from rising to the target voltage.
  • the photovoltaic power source is connected to the DC bus through the photovoltaic switch assembly, which can charge the DC bus capacitor in the photovoltaic power source.
  • FIG. 1 is a schematic diagram of a DC bus power supply circuit in the related art
  • FIG. 2 is a schematic diagram of a charging circuit control circuit in the related art
  • FIG. 3 is a schematic diagram of another DC bus power supply circuit in the related art.
  • FIG. 4 is a schematic diagram of a power supply circuit without a charging loop according to some embodiments of the disclosure.
  • FIG. 5 is a schematic diagram of a power supply circuit without a charging loop according to other embodiments of the present disclosure.
  • the first is to connect a negative temperature coefficient thermal resistor (full name: “Negative Temperature CoeffiCient”, referred to as "NTC”) in series at a, b or c as shown in Figure 1.
  • NTC Negative Temperature CoeffiCient
  • the NTC resistor plays a role in the charging circuit.
  • the current limiting effect makes the charging current I of the DC bus capacitor not too large; as the DC bus voltage is gradually established, the charging current I gradually decreases to zero, and the charging is completed.
  • the NTC resistor since the NTC resistor is always connected in series with the main circuit, it will continue to generate heat, which is not conducive to the improvement of the system efficiency; in addition, when the resistance value of the NTC is selected too large, the loss will be very large, and if the resistance value is selected too small, it will start again. No current limiting effect.
  • the second is to add the charging loop control circuit shown in Figure 2 at a, b or c shown in Figure 1.
  • the cement resistance is connected in series to the charging circuit, and the cement resistance is connected in parallel to the normally open circuit. type relay.
  • the cement resistance plays a current limiting role.
  • the relays connected in parallel at both ends of the cement resistance are closed by an external control signal, and the cement resistance is cut out from the main circuit.
  • the inrush current at the moment of power-on can be suppressed, and the continuous heating of the charging resistor can be avoided.
  • this method introduces a charging loop control circuit, and the circuit structure is complex, and after the charging is completed, the relay coil is always in the energized state, the relay heats up seriously, and the loss is large.
  • the third type is that a metal-oxide semi-field effect transistor (full name “Metal-Oxide-Semiconductor Field-Effect Transistor", referred to as "MOSFET”) can be connected in series in the main circuit of the DC bus as a switch, as shown in Figure 3.
  • the on and off of the MOSFET is controlled by the pulse signal output by the pulse generator, and the DC bus support capacitor is charged in the form of pulses.
  • This method can slowly charge the DC bus capacitor in a controlled manner, which is relatively safe.
  • the MOSFET cannot be cut out from the main circuit, the current flowing through the MOSFET The current is very large, which leads to serious heating of the MOSFET. On the one hand, it increases the loss of energy. On the other hand, a large amount of heating also brings huge hidden dangers to the reliability of the MOSFET, and this method cannot effectively cut off the photovoltaic in the event of a fault. with isolation.
  • the embodiments of the present disclosure provide a power supply circuit without a charging circuit, which solves the problem of serious heat generation while solving the problem of a large inrush current generated instantly when different energy sources are switched to the DC bus. .
  • the embodiment of the present disclosure provides a power supply circuit without a charging loop.
  • the circuit includes: an AC switch assembly 401 , a photovoltaic switch assembly 402 , and a DC bus capacitor C.
  • the DC bus capacitor C is connected between the positive and negative electrodes of the DC bus.
  • the AC switch assembly 401 is configured to connect the live wire of the three-phase AC power with the DC bus, and controls the voltage across the DC bus capacitor C to steadily increase to the target voltage when the AC power is selected to charge the DC bus capacitor C.
  • the photovoltaic switch assembly 402 is configured to connect the DC bus of the photovoltaic power source, and when the photovoltaic power source is selected to charge the DC bus capacitor C, the voltage across the DC bus capacitor C is controlled to steadily rise to the target voltage.
  • the three-phase alternating current is connected to the DC bus through the AC switch assembly, and when the three-phase alternating current is charging the DC bus capacitor, the voltage at both ends of the DC bus capacitor can be controlled to rise steadily to the target voltage, so as to prevent the three-phase alternating current from rising to the target voltage.
  • the photovoltaic power source is connected to the DC bus through the photovoltaic switch assembly, which can charge the DC bus capacitor in the photovoltaic power source.
  • the power supply circuit without a charging loop provided by the embodiments of the present disclosure is shown in FIG. 5 , and the AC switch assembly 401 may include a first switching device T1 to a twelfth switching device T12 .
  • the first live wire L1 in the three-phase AC power can be connected to the positive pole of the DC bus through the first switching device T1 in the AC switch assembly 401 , and connected to the negative pole of the DC bus through the second switching device T2 in the AC switch assembly 401 .
  • the second live wire L2 in the three-phase AC power is connected to the positive pole of the DC bus through the third switching device T3 in the AC switch assembly 401 , and is connected to the negative pole of the DC bus through the fourth switching device T4 in the AC switch assembly 401 .
  • the third live wire L3 in the three-phase AC power is connected to the positive pole of the DC bus through the fifth switching device T5 in the AC switch assembly 401 , and is connected to the negative pole of the DC bus through the sixth switching device T6 in the AC switch assembly 401 .
  • the seventh switching device T7 and the first switching device T1 in the alternating current switch assembly 401 are in antiparallel
  • the eighth switching device T8 and the third switching device T3 are antiparallel
  • the ninth switching device T9 and the fifth switching device T5 are antiparallel
  • the tenth switching device T10 is antiparallel to the second switching device T2
  • the eleventh switching device T11 is antiparallel to the fourth switching device T4
  • the twelfth switching device T12 is antiparallel to the sixth switching device T6.
  • the seventh to twelfth switching devices T7 to T12 may be pre-divided into three groups.
  • each group includes any one of the seventh switching device T7, the eighth switching device T8 and the ninth switching device T9, and any one of the tenth switching device T10, the eleventh switching device T11 and the twelfth switching device T12.
  • how to group can be determined according to an algorithm, and can also be transformed, as long as any one of T7, T8, and T9 is matched with any one of T10, T11, and T12.
  • the seventh switching device T7 and the twelfth switching device T12 may be grouped into one group, the eighth switching device T8 and the eleventh switching device T11 may be grouped into a group, and the ninth switching device T9 and the tenth switching device may be grouped together T10 is divided into a group; when three-phase alternating current needs to be used to charge the DC bus capacitor, the seventh switching device T7 and the twelfth switching device T12 can be turned on for several microseconds first, and then the eighth switching device T8 and the tenth switching device T12 can be turned on for several microseconds A switching device T11 is turned on for several microseconds and turns off the seventh switching device T7 and the twelfth switching device T12, and then turns on the ninth switching device T9 and the tenth switching device T10 for several microseconds and turns off the eighth switching device T8 and the eleventh switching device T11.
  • the above-mentioned power supply circuit without a charging loop may further include a voltage detector, and the voltage detector may be configured to detect the voltage between the positive and negative terminals of the DC bus.
  • a voltage detector can be used to detect the voltage between the positive and negative terminals of the DC bus, so as to determine whether the charging of the DC bus capacitor C is completed.
  • the first switching device T1 to the twelfth switching device T12 are all insulated gate bipolar transistors (the full name is "Insulated Gate Bipolar Transistor", IGBT for short). IGBT has the advantages of good thermal stability and large safe working area.
  • the gates of the first switching device T1 to the sixth switching device T6 are connected to the first driving signal terminal. Under the driving of the first driving signal, the first switching device T1 to the sixth switching device T6 can be turned off or turned on at the same time. . When three-phase alternating current is used to charge the DC bus capacitor C, the first switching device T1 to the sixth switching device T6 can be turned off by the first driving signal.
  • the collector of the first switching device T1 is connected to the positive electrode of the DC bus, and the emitter is connected to the first live wire L1; the collector of the seventh switching device T7 is connected to the emitter of the first switching device T1, and the emitter of the seventh switching device T7 The pole is connected to the collector of the first switching device T1.
  • the collector of the second switching device T2 is connected to the first live wire L1, and the emitter is connected to the negative electrode of the DC bus; the collector of the tenth switching device T10 is connected to the emitter of the second switching device T2, and the emitter of the tenth switching device T10 The pole is connected to the collector of the second switching device T2.
  • the collector of the third switching device T3 is connected to the positive electrode of the DC bus, and the emitter is connected to the second live wire L2; the collector of the eighth switching device T8 is connected to the emitter of the third switching device T3, and the emitter of the eighth switching device T8 The pole is connected to the collector of the third switching device T3.
  • the collector of the fourth switching device T4 is connected to the second live wire L2, and the emitter is connected to the negative electrode of the DC bus; the collector of the eleventh switching device T11 is connected to the emitter of the fourth switching device T4, and the eleventh switching device T11 The emitter is connected to the collector of the fourth switching device T4.
  • the collector of the fifth switching device T5 is connected to the positive electrode of the DC bus, and the emitter is connected to the third live wire L3; the collector of the ninth switching device T9 is connected to the emitter of the fifth switching device T5, and the emitter of the ninth switching device T9 The pole is connected to the collector of the fifth switching device T5.
  • the collector of the sixth switching device T6 is connected to the third live wire L3, and the emitter is connected to the negative electrode of the DC bus; the collector of the twelfth switching device T12 is connected to the emitter of the sixth switching device T6, and the twelfth switching device T12 The emitter is connected to the collector of the sixth switching device T6.
  • the seventh switching device T7 to the twelfth switching device T12 can be divided into three groups, and the gates of each group of switching devices can be connected to the same driving signal port, of course, can also be connected to different driving signal ports.
  • the signal can make the three groups of switching devices turn on alternately.
  • the photovoltaic switch assembly 402 may include a thirteenth switching device T13 and a fourteenth switching device T14 as shown in FIG. 5 .
  • the thirteenth switching device T13 is connected between the positive electrode of the photovoltaic power source and the positive electrode of the DC bus; the fourteenth switching device T14 is connected between the negative electrode of the photovoltaic power source and the negative electrode of the DC bus.
  • the thirteenth switch device T13 and the fourteenth switch device T14 are both IGBTs. Specifically, the collector of the thirteenth switching device T13 is connected to the positive pole of the photovoltaic power supply, the emitter is connected to the positive pole of the DC bus, and the gate is connected to the driving signal terminal; the emitter of the fourteenth switching device T14 is connected to the negative pole of the photovoltaic power supply The collector is connected to the negative pole of the DC bus, and the gate is connected to the input terminal of the driving signal.
  • the driving signal input terminals connected to the first switching device T13 and the second switching device T14 may be the same or different.
  • the first switching device T13 and the second switching device T14 can be intermittently turned on through the driving signal.
  • the first switching device T13 and the second switching device T14 can be turned on.
  • the second switching device T14 is turned on for several microseconds at the same time, then turned off at the same time, and turned on at the same time, so that the photovoltaic power supply is slowly cut into the DC bus.
  • the DC bus voltage slowly rises to the target voltage, it is sufficient to control the first switching device T13 and the second switching device T14 to be in a normally closed conduction state, so that the photovoltaic is in a continuous connection state.
  • a pulse width modulated PWM signal can be used as the driving signal of the first switching device T13 and the second switching device T14, and the speed of switching in the photovoltaic power can be realized by adjusting the duty ratio of the PWM.
  • an embodiment of the present disclosure provides a power management system, including the power supply circuit without a charging loop as described in any of the previous embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Burglar Alarm Systems (AREA)

Abstract

本公开提供了一种无充电回路的供电电路及电源管理系统。该供电电路包括交流电开关组件、光伏开关组件和直流母线电容;交流电开关组件,用于联通三相交流电的火线与直流母线,在选择交流电为所述直流母线电容充电时,控制直流母线电容两端电压逐渐上升至目标电压;光伏开关组件,用于联通光伏电源与直流母线,在选择光伏电源为直流母线电容充电时,控制直流母线电容两端电压逐渐上升至目标电压;直流母线电容,连接于直流母线的正负极之间。在交流电或光伏电源接入直流母线时,交流电开关组件或光伏开关组件能够控制直流母线电容两端电压稳步上升至目标电压,从而避免直流电容两端电压快速上升产生较大的冲击电流对直流母线上的元器件造成损害。

Description

无充电回路的供电电路及电源管理系统
相关申请的横向引用
本公开是以申请号为 202011111589.4,申请日为 2020年10月16日的中国申请为基础,并主张其优先权,该中国申请的公开内容在此作为整体引入本公开中。
技术领域
本公开涉及充电技术领域,尤其涉及一种无充电回路的供电电路及电源管理系统。
背景技术
在能源管理系统中,直流母线开放技术被越来越多的采用。将系统的直流母线开放,可以方便各种能源形式的交会对接,极大的提升了能源管理系统的运行效率并简化了设备配置。
在直流母线开放技术的使用中,为维持直流母线电压稳定,往往需要配置很大容量的直流母线电容。当不同的能源形式接入直流母线的瞬间,由于直流母线电容的存在,根据I=C*(du/dt)可知,在能源接入的瞬间,直流母线电容上会产生很大的冲击电流,会造成母线电容损坏及主回路中的元器件损坏、电源跳闸等情况,甚至发生起火、爆炸等安全事故。
因此,需要对能源切入直流母线时产生的冲击电流进行控制,从而避免元器件损坏以及安全隐患等。
发明内容
本公开实施例提供一种无充电回路的供电电路及电源管理系统,用于解决不同能源切入直流母线瞬间产生较大的冲击电流的问题。
根据本公开的第一方面,提供一种无充电回路的供电电路,包括:
交流电开关组件,被配置为联通三相交流电的火线与直流母线,在选择交流电为所述直流母线电容充电时,控制所述直流母线电容两端电压稳步上升至目标电压;
光伏开关组件,被配置为联通光伏电源与所述直流母线,在选择光伏电源为所述直流母线电容充电时,控制所述直流母线电容两端电压稳步上升至目标电压;和
直流母线电容,连接于直流母线的正负极之间。
在一些实施例中,所述三相交流电中的第一火线通过所述交流电开关组件中的第一开关器件与所述直流母线的正极连接,通过所述交流电开关组件中的第二开关器件与所述直流母线的负极连接;
所述三相交流电中的第二火线通过所述交流电开关组件中的第三开关器件与所述直流母线的正极连接,通过所述交流电开关组件中的第四开关器件与所述直流母线的负极连接;
所述三相交流电中的第三火线通过所述交流电开关组件中的第五开关器件与所述直流母线的正极连接,通过所述交流电开关组件中的第六开关器件与所述直流母线的负极连接。
所述交流电开关组件中的第七开关器件与所述第一开关器件反向并联,第八开关器件与所述第三开关器件反向并联,第九开关器件与所述第五开关器件反向并联,第十开关器件与所述第二开关器件反向并联,第十一开关器件与所述第四开关器件反向并联,第十二开关器件与所述第六开关器件反向并联。
在一些实施例中,所述第七开关器件至所述第十二开关器件分为三组开关器件;
每组包括所述第七开关器件、第八开关器件、第九开关器件中任意一个,以及所述第十开关器件、第十一开关器件、第十二开关器件中任意一个;
当使用所述三相交流电为所述直流母线电容充电时,所述三组开关器件被交替导通,所述第一开关器件至所述第六开关器件处于关断状态。
在一些实施例中,所述第一开关器件至所述第十二开关器件均为IGBT。
在一些实施例中,所述第一开关器件至第六开关器件的栅极与第一驱动信号端连接,
所述第一开关器件的集电极与所述直流母线的正极连接,发射极与所述第一火线连接;所述第七开关器件的集电极与所述第一开关器件的发射极连接,发射极与所述第一开关器件的集电极连接;
所述第二开关器件的集电极与所述第一火线连接,发射极与所述直流母线的负极连接;所述第十开关器件的集电极与所述第二开关器件的发射极连接,发射极与所述第二开关器件的集电极连接;
所述第三开关器件的集电极与所述直流母线的正极连接,发射极与所述第二火线 连接;所述第八开关器件的集电极与所述第三开关器件的发射极连接,发射极与所述第三开关器件的集电极连接;
所述第四开关器件的集电极与所述第二火线连接,发射极与所述直流母线的负极连接;所述第十一开关器件的集电极与所述第四开关器件的发射极连接,发射极与所述第四开关器件的集电极连接;
所述第五开关器件的集电极与所述直流母线的正极连接,发射极与所述第三火线连接;所述第九开关器件的集电极与所述第五开关器件的发射极连接,发射极与所述第五开关器件的集电极连接;
所述第六开关器件的集电极与所述第三火线连接,发射极与所述直流母线的负极连接;所述第十二开关器件的集电极与所述第六开关器件的发射极连接,发射极与所述第六开关器件的集电极连接。
在一些实施例中,所述光伏开关组件包括第十三开关器件和第十四开关器件;
所述第十三开关器件连接于所述光伏电源的正极和所述直流母线的正极之间;
所述第十四开关器件连接于所述光伏电源的负极和所述直流母线的负极之间。
在一些实施例中,所述第十三开关管器件和所述第十四开关器件均为IGBT;
所述第十三开关器件的集电极与所述光伏电源的正极连接,发射极与所述直流母线的正极连接,栅极与第二驱动信号端连接;
所述第十四开关器件的发射极与所述光伏电源的负极连接,集电极与所述直流母线的负极连接,栅极与所述第二驱动信号端连接。
在一些实施例中,所述驱动信号为脉冲宽度调制PWM信号。
在一些实施例中,无充电回路的供电电路还包括电压检测器,所述电压检测器被配置为检测所述直流母线正极和负极两端之间的电压。
根据本公开的第二方面,提供了一种能源管理系统,包括上述实施例的无充电回路的供电电路。
在本公开上述实施例中,三相交流电通过交流开关组件与直流母线连接,能够在三相交流电为直流母线电容充电时,控制直流母线电容两端的电压稳步上升至目标电压,从而避免在三相交流电接入直流母线时,直流电容两端电压快速上升产生较大的冲击电流对直流母线上的元器件造成损害;光伏电源通过光伏开关组件与直流母线连接,能够在光伏电源为直流母线电容充电时,控制直流母线电容两端电压稳步上升至 目标电压,从而避免在光伏电源接入直流母线时,直流电容两端电压快速上升产生较大的冲击电流对直流母线上的元器件造成损害。
附图说明
为了更清楚地说明本公开实施例或相关技术中的技术方案,下面将对实施例或相关技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为相关技术中的直流母线供电电路示意图;
图2为相关技术中的充电回路控制电路示意图;
图3为相关技术中的另一直流母线供电电路示意图;
图4为本公开一些实施例的无充电回路的供电电路示意图;
图5为本公开另一些实施例的无充电回路的供电电路示意图。
具体实施方式
为使本公开的目的、技术方案和优点更加清楚,下面将对本公开的技术方案进行详细的描述。显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所得到的所有其它实施方式,都属于本公开所保护的范围。
为了解决能源切入直流母线时所产生的较大冲击电流对直流母线的影响,相关技术中常常采用以下四种方式:
第一种,在如图1所示的a、b或c处串联负温度系数热敏(全称:“Negative Temperature CoeffiCient”,简称“NTC”)电阻,充电瞬间,NTC电阻在充电回路中起到限流作用,使直流母线电容的充电电流I不会太大;随着直流母线电压逐渐建立,充电电流I逐渐减小到零,充电完成。然而,由于NTC电阻始终串联在主回路中,它将会持续发热,其发热量不利于系统效率的提升;另外,NTC的阻值选取太大时,损耗非常大,阻值选取太小又起不到限流作用。
第二种,可以在图1所示的a、b或c处添加如图2所示的充电回路控制电路,具体的,将水泥电阻串联接入充电回路中,并在水泥电阻上并联常开型继电器。在充电 瞬间水泥电阻起到限流作用,在直流母线电压建立起来后,通过外部控制信号使并联在水泥电阻两端的继电器闭合,水泥电阻则从主回路中切出。通过控制充电回路的切入与切出,可以抑制上电瞬间的冲击电流,也可以避免充电电阻的持续发热。然而,该方式引入了充电回路控制电路,电路结构复杂,且充电完成后,继电器线圈始终处于通电状态,继电器发热严重,损耗较大。
第三种,可以在直流母线主回路中串联金氧半场效晶体管(全称“Metal-Oxide-Semiconductor Field-Effect Transistor”,简称“MOSFET”)作为开关,如图3所示。通过脉冲出发器输出的脉冲信号控制MOSFET的开通与关断,以脉冲形式为直流母线支撑电容充电。该方法可以在受控的方式下为直流母线电容缓慢充电,比较安全,但是由于直流母线上接入的负载较大,正常工作状态下,由于MOSFET不能从主回路中切出,流经MOSFET的电流很大,导致MOSFET发热严重,一方面增大了能量的损耗,另一方面,大量的发热也给MOSFET的工作可靠性带来巨大的隐患,且该方法不能在故障中对光伏的有效切断与隔离。
上述各种方式均存在一定的弊端,因此,本公开实施例提供一种无充电回路的供电电路,在解决不同能源切入直流母线瞬间产生较大的冲击电流的问题的同时,解决发热严重的问题。
本公开实施例提供了一种无充电回路的供电电路,如图4所示,该电路包括:交流电开关组件401、光伏开关组件402和直流母线电容C。
其中,直流母线电容C,连接于直流母线的正负极之间。
交流电开关组件401,被配置为联通三相交流电的火线与直流母线,在选择交流电为直流母线电容C充电时,控制直流母线电容C两端电压稳步上升至目标电压。
光伏开关组件402,被配置为联通光伏电源直流母线,在选择光伏电源为直流母线电容充C电时,控制直流母线电容C两端电压稳步上升至目标电压。
在本公开上述实施例中,三相交流电通过交流开关组件与直流母线连接,能够在三相交流电为直流母线电容充电时,控制直流母线电容两端的电压稳步上升至目标电压,从而避免在三相交流电接入直流母线时,直流电容两端电压快速上升产生较大的冲击电流对直流母线上的元器件造成损害;光伏电源通过光伏开关组件与直流母线连接,能够在光伏电源为直流母线电容充电时,控制直流母线电容两端电压稳步上升至目标电压,从而避免在光伏电源接入直流母线时,直流电容两端电压快速上升产生较 大的冲击电流对直流母线上的元器件造成损害。
在一些实施例中,本公开实施例提供的无充电回路的供电电路如图5所示,交流电开关组件401可以包括第一开关器件T1至第十二开关器件T12。
具体的,三相交流电中的第一火线L1可以通过交流电开关组件401中的第一开关器件T1与直流母线的正极连接,通过交流电开关组件401中的第二开关器件T2与直流母线的负极连接。
三相交流电中的第二火线L2通过交流电开关组件401中的第三开关器件T3与直流母线的正极连接,通过交流电开关组件401中的第四开关器件T4与直流母线的负极连接。
三相交流电中的第三火线L3通过交流电开关组件401中的第五开关器件T5与直流母线的正极连接,通过交流电开关组件401中的第六开关器件T6与直流母线的负极连接。
交流电开关组件401中的第七开关器件T7与第一开关器件T1反向并联、第八开关器件T8与第三开关器T3件反向并联、第九开关器件T9与第五开关器件T5反向并联、第十开关器件T10与第二开关器件T2反向并联、第十一开关器件T11与第四开关器件T4反向并联、第十二开关器件T12与第六开关器件T6反向并联。
在一些实施例中,可以将第七开关器件T7至第十二开关器件T12预先分为三组。其中,每组包括第七开关器件T7、第八开关器件T8和第九开关器件T9中任意一个,以及第十开关器件T10、第十一开关器件T11和第十二开关器件T12中任意一个。具体的,如何分组可以根据算法确定,还可以进行变换,只要满足T7、T8和T9中任意一个搭配T10、T11和T12中任意一个即可。
当三相交流电切入时,即,使用三相交流电为直流母线电容充电时,上述三组开关器件(T7~T12)被交替导通,而第一开关器件T1至第六开关器件T6处于关断状态。例如,可以将第七开关器件T7和第十二开关器件T12分为一组,将第八开关器件T8和第十一开关器件T11分为一组,将第九开关器件T9和第十开关器件T10分为一组;在需要使用三相交流电为直流母线电容充电时,可以先将第七开关器件T7和第十二开关器件T12导通若干微秒,然后将第八开关器件T8和第十一开关器件T11导通若干微秒并关断第七开关器件T7和第十二开关器件T12,然后将第九开关器件T9和第十开关器件T10导通若干微秒并关断第八开关器件T8和第十一开关器件T11。
在一些实施例中,上述无充电回路的供电电路还可以包括电压检测器,该电压检测器可以被配置为检测直流母线正极和负极两端之间的电压。在使用三相交流电或光伏电源为直流母线电容C充电时,可以利用电压检测器检测直流母线正极和负极两端之间的电压,从而确定对直流母线电容C的充电是否完成。
例如,上述第一开关器件T1至第十二开关器件T12均为绝缘栅双极型晶体管(全称“Insulated Gate Bipolar Transistor”,简称IGBT)。IGBT具有热稳定性好、安全工作区大等优点。
相应的,当交流电开关组件401中的器件均为IGBT时,其具体连接关系可以如下所述:
第一开关器件T1至第六开关器件T6的栅极与第一驱动信号端连接,在第一驱动信号的驱动下,第一开关器件T1至第六开关器件T6能够实现同时关断或导通。当采用三相交流电为直流母线电容C充电时,可以通过第一驱动信号令第一开关器件T1至第六开关器件T6处于关断状态。
第一开关器件T1的集电极与直流母线的正极连接,发射极与第一火线L1连接;第七开关器件T7的集电极与第一开关器件T1的发射极连接,第七开关器件T7的发射极与第一开关器件T1的集电极连接。
第二开关器件T2的集电极与第一火线L1连接,发射极与直流母线的负极连接;第十开关器件T10的集电极与第二开关器件T2的发射极连接,第十开关器件T10的发射极与第二开关器件T2的集电极连接。
第三开关器件T3的集电极与直流母线的正极连接,发射极与第二火线L2连接;第八开关器件T8的集电极与第三开关器件T3的发射极连接,第八开关器件T8的发射极与第三开关器件T3的集电极连接。
第四开关器件T4的集电极与第二火线L2连接,发射极与直流母线的负极连接;第十一开关器件T11的集电极与第四开关器件T4的发射极连接,第十一开关器件T11的发射极与第四开关器件T4的集电极连接。
第五开关器件T5的集电极与直流母线的正极连接,发射极与第三火线L3连接;第九开关器件T9的集电极与第五开关器件T5的发射极连接,第九开关器件T9的发射极与第五开关器件T5的集电极连接。
第六开关器件T6的集电极与第三火线L3连接,发射极与直流母线的负极连接; 第十二开关器件T12的集电极与第六开关器件T6的发射极连接,第十二开关器件T12的发射极与第六开关器件T6的集电极连接。
如前所述,可以将第七开关器件T7至第十二开关器件T12分为三组,每组开关器件的栅极可以连接相同的驱动信号端口,当然也可以连接不同的驱动信号端口,驱动信号能够令三组开关器件交替导通即可。
在一些实施例中,光伏开关组件402可以如图5所示,包括第十三开关器件T13和第十四开关器件T14。其中,第十三开关器件T13连接于光伏电源的正极和直流母线的正极之间;第十四开关器件T14连接于所述光伏电源的负极和所述直流母线的负极之间。
在一些实施例中,上述第十三开关管器件T13和第十四开关器件T14均为IGBT。具体的,第十三开关器件T13的集电极与光伏电源的正极连接,发射极与直流母线的正极连接,栅极与驱动信号端连接;第十四开关器件T14的发射极与光伏电源的负极连接,集电极与直流母线的负极连接,栅极与驱动信号输入端连接。第一开关器件T13和第二开关器件T14所连接的驱动信号输入端可以相同,也可以不同。当光伏电源切入时,为了避免光伏电源对直流母线产生较大的电流冲击,可以通过驱动信号令第一开关器件T13和第二开关器件T14间歇导通,例如,可以令第一开关器件T13和第二开关器件T14同时导通若干微秒,然后令其同时关断,再令其同时导通,从而实现光伏电源缓慢切入直流母线。当直流母线电压缓慢升至目标电压时,控制第一开关器件T13和第二开关器件T14处于常闭导通状态即可,使光伏处于持续接入状态。
在一些实施例中,可以采用脉冲宽度调制PWM信号作为第一开关器件T13和第二开关器件T14的驱动信号,通过调节PWM的占空比实现对光伏电源切入的速度。
基于相同的技术构思,本公开实施例提供一种电源管理系统,包括如前任一实施例所述的无充电回路的供电电路。
需要说明的是,在本公开实施例的描述中,术语“第一”、“第二”等仅用于进行区分,而不能理解为指示或暗示相对重要性或先后顺序。此外,在本公开的描述中,除非另有说明,“多个”的含义是指至少两个。
显然,本领域的技术人员可以对本公开进行各种改动和变型而不脱离本公开的精神和范围。这样,倘若本公开的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (10)

  1. 一种无充电回路的供电电路,包括:
    交流电开关组件,被配置为联通三相交流电的火线与直流母线,在选择交流电为所述直流母线电容充电时,控制所述直流母线电容两端电压稳步上升至目标电压;
    光伏开关组件,被配置为联通光伏电源与所述直流母线,在选择光伏电源为所述直流母线电容充电时,控制所述直流母线电容两端电压稳步上升至目标电压;和
    直流母线电容,连接于直流母线的正负极之间。
  2. 根据权利要求1所述的无充电回路的供电电路,其中,
    所述三相交流电中的第一火线通过所述交流电开关组件中的第一开关器件与所述直流母线的正极连接,通过所述交流电开关组件中的第二开关器件与所述直流母线的负极连接;
    所述三相交流电中的第二火线通过所述交流电开关组件中的第三开关器件与所述直流母线的正极连接,通过所述交流电开关组件中的第四开关器件与所述直流母线的负极连接;
    所述三相交流电中的第三火线通过所述交流电开关组件中的第五开关器件与所述直流母线的正极连接,通过所述交流电开关组件中的第六开关器件与所述直流母线的负极连接;
    所述交流电开关组件中的第七开关器件与所述第一开关器件反向并联,第八开关器件与所述第三开关器件反向并联,第九开关器件与所述第五开关器件反向并联,第十开关器件与所述第二开关器件反向并联,第十一开关器件与所述第四开关器件反向并联,第十二开关器件与所述第六开关器件反向并联。
  3. 根据权利要求2所述的无充电回路的供电电路,其中所述第七开关器件至所述第十二开关器件分为三组开关器件;
    每组包括所述第七开关器件、第八开关器件、第九开关器件中任意一个,以及所述第十开关器件、第十一开关器件、第十二开关器件中任意一个;
    当使用所述三相交流电为所述直流母线电容充电时,所述三组开关器件被交替导通,所述第一开关器件至所述第六开关器件处于关断状态。
  4. 根据权利要求3所述的无充电回路的供电电路,其中所述第一开关器件至所述第十二开关器件均为IGBT。
  5. 根据权利要求4所述的无充电回路的供电电路,其中所述第一开关器件至第六开关器件的栅极与第一驱动信号端连接,
    所述第一开关器件的集电极与所述直流母线的正极连接,发射极与所述第一火线连接;所述第七开关器件的集电极与所述第一开关器件的发射极连接,发射极与所述第一开关器件的集电极连接;
    所述第二开关器件的集电极与所述第一火线连接,发射极与所述直流母线的负极连接;所述第十开关器件的集电极与所述第二开关器件的发射极连接,发射极与所述第二开关器件的集电极连接;
    所述第三开关器件的集电极与所述直流母线的正极连接,发射极与所述第二火线连接;所述第八开关器件的集电极与所述第三开关器件的发射极连接,发射极与所述第三开关器件的集电极连接;
    所述第四开关器件的集电极与所述第二火线连接,发射极与所述直流母线的负极连接;所述第十一开关器件的集电极与所述第四开关器件的发射极连接,发射极与所述第四开关器件的集电极连接;
    所述第五开关器件的集电极与所述直流母线的正极连接,发射极与所述第三火线连接;所述第九开关器件的集电极与所述第五开关器件的发射极连接,发射极与所述第五开关器件的集电极连接;
    所述第六开关器件的集电极与所述第三火线连接,发射极与所述直流母线的负极连接;所述第十二开关器件的集电极与所述第六开关器件的发射极连接,发射极与所述第六开关器件的集电极连接。
  6. 根据权利要求1~5任一项所述的无充电回路的供电电路,其中所述光伏开关组件包括第十三开关器件和第十四开关器件;
    所述第十三开关器件连接于所述光伏电源的正极和所述直流母线的正极之间;
    所述第十四开关器件连接于所述光伏电源的负极和所述直流母线的负极之间。
  7. 根据权利要求6所述的无充电回路的供电电路,其中所述第十三开关管器件和所述第十四开关器件均为IGBT;
    所述第十三开关器件的集电极与所述光伏电源的正极连接,发射极与所述直流母线的正极连接,栅极与第二驱动信号端连接;
    所述第十四开关器件的发射极与所述光伏电源的负极连接,集电极与所述直流母线的负极连接,栅极与所述第二驱动信号端连接。
  8. 根据权利要求7所述的无充电回路的供电电路,其中所述驱动信号为脉冲宽度调制PWM信号。
  9. 根据权利要求1~8任一项所述的无充电回路的供电电路,还包括电压检测器,所述电压检测器被配置为检测所述直流母线正极和负极两端之间的电压。
  10. 一种能源管理系统,包括如权利要求1-9任一项所述的无充电回路的供电电路。
PCT/CN2021/105766 2020-10-16 2021-07-12 无充电回路的供电电路及电源管理系统 WO2022077975A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21879023.6A EP4167432A4 (en) 2020-10-16 2021-07-12 LOAD-LOOP-FREE POWER SUPPLY CIRCUIT AND ENERGY MANAGEMENT SYSTEM
US18/016,387 US20230283098A1 (en) 2020-10-16 2021-07-12 Power Supply Circuit Without Charging Loop, and Power Management System
AU2021359357A AU2021359357A1 (en) 2020-10-16 2021-07-12 Power supply circuit without charging loop, and power management system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011111589.4 2020-10-16
CN202011111589.4A CN112271800A (zh) 2020-10-16 2020-10-16 一种无充电回路的供电电路及电源管理系统

Publications (1)

Publication Number Publication Date
WO2022077975A1 true WO2022077975A1 (zh) 2022-04-21

Family

ID=74338397

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/105766 WO2022077975A1 (zh) 2020-10-16 2021-07-12 无充电回路的供电电路及电源管理系统

Country Status (5)

Country Link
US (1) US20230283098A1 (zh)
EP (1) EP4167432A4 (zh)
CN (1) CN112271800A (zh)
AU (1) AU2021359357A1 (zh)
WO (1) WO2022077975A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112271800A (zh) * 2020-10-16 2021-01-26 珠海格力电器股份有限公司 一种无充电回路的供电电路及电源管理系统
CN113783266B (zh) * 2021-09-24 2024-03-19 珠海格力电器股份有限公司 一种充电控制方法、装置及多电源供电设备、变频器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201830136U (zh) * 2010-10-29 2011-05-11 华南理工大学 大功率开关电源的软启动装置
EP3349343A1 (en) * 2013-11-08 2018-07-18 DET International Holding Limited Resistorless precharging
CN110690813A (zh) * 2019-09-12 2020-01-14 珠海格力电器股份有限公司 基于开关控制的电容充电控制方法、装置及变流器
CN111313676A (zh) * 2020-03-18 2020-06-19 许昌许继风电科技有限公司 一种伺服驱动器软启动系统及其控制方法
CN112271800A (zh) * 2020-10-16 2021-01-26 珠海格力电器股份有限公司 一种无充电回路的供电电路及电源管理系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011007222A1 (de) * 2011-04-12 2012-10-18 Kaco New Energy Gmbh Wechselrichterschaltung, Wechselrichter und Photovoltaiksystem
EP3381117B1 (en) * 2015-11-24 2022-03-23 ABB Schweiz AG Four-level power converter
CN107040034A (zh) * 2016-02-03 2017-08-11 珠海格力电器股份有限公司 一种光伏储能空调装置及控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201830136U (zh) * 2010-10-29 2011-05-11 华南理工大学 大功率开关电源的软启动装置
EP3349343A1 (en) * 2013-11-08 2018-07-18 DET International Holding Limited Resistorless precharging
CN110690813A (zh) * 2019-09-12 2020-01-14 珠海格力电器股份有限公司 基于开关控制的电容充电控制方法、装置及变流器
CN111313676A (zh) * 2020-03-18 2020-06-19 许昌许继风电科技有限公司 一种伺服驱动器软启动系统及其控制方法
CN112271800A (zh) * 2020-10-16 2021-01-26 珠海格力电器股份有限公司 一种无充电回路的供电电路及电源管理系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4167432A4 *

Also Published As

Publication number Publication date
EP4167432A1 (en) 2023-04-19
US20230283098A1 (en) 2023-09-07
AU2021359357A1 (en) 2023-02-16
EP4167432A4 (en) 2024-02-28
CN112271800A (zh) 2021-01-26

Similar Documents

Publication Publication Date Title
US10389262B2 (en) Device for temporarily taking over electrical current from an energy transfer or distribution device, when needed
WO2022077975A1 (zh) 无充电回路的供电电路及电源管理系统
EP3185421A1 (en) Solid state power control
EP2747260B1 (en) Method for operating an electrical power rectifier, and an electrical power rectifier
TWI450491B (zh) 避免突波電流之馬達驅動裝置
CN105103427A (zh) 绝缘栅型半导体装置
CN103683861B (zh) 一种新型的可控硅触发电路
CN203967733U (zh) 无桥apfc系统的电流采样及过流保护装置
CN108847835B (zh) 一种功率器件驱动保护电路及其控制方法
CN108736446B (zh) 永磁同步电机的保护方法、保护系统和永磁同步电机
US11239746B2 (en) Two-stage converter and method for starting the same, LLC converter, and application system
CN208849663U (zh) 逆变器保护电路及伺服设备
CN107591777A (zh) 过流保护型功率驱动电路和电机驱动电路
CN207819427U (zh) 过流保护型功率驱动电路和电机驱动电路
CN106374420A (zh) 一种直流微电网变流器
CN216122197U (zh) 可控硅驱动电路、开关电路及整流电路
CN213637166U (zh) 一种无充电回路的供电电路及电源管理系统
CN103280997B (zh) 功率可调的整流电路
Wang et al. A 400V/300A ultra-fast intelligent DC solid state circuit breaker using parallel connected SiC JFETs
CN212380935U (zh) 制动电阻保护电路及变频器
CN210201543U (zh) 用于提升可靠性的充电电路及光伏空调设备
CN113794470A (zh) 可控硅驱动电路、可控硅驱动应用电路及电气/电器设备
CN107196496B (zh) Pwm整流器的矢量型软启动方法
JP6419266B2 (ja) 制御可能なクランプを有する電力用インバータのためのシステムおよび方法
Thahir et al. Investigations on modern self-defined controller for hybrid HVDC systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21879023

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021879023

Country of ref document: EP

Effective date: 20230116

ENP Entry into the national phase

Ref document number: 2021359357

Country of ref document: AU

Date of ref document: 20210712

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE