WO2022077934A1 - 一种叶轮 - Google Patents
一种叶轮 Download PDFInfo
- Publication number
- WO2022077934A1 WO2022077934A1 PCT/CN2021/098766 CN2021098766W WO2022077934A1 WO 2022077934 A1 WO2022077934 A1 WO 2022077934A1 CN 2021098766 W CN2021098766 W CN 2021098766W WO 2022077934 A1 WO2022077934 A1 WO 2022077934A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- blade
- cavity
- impeller
- fixed
- fixedly connected
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/26—Rotors specially for elastic fluids
- F04D29/28—Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
- F04D29/281—Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for fans or blowers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/26—Rotors specially for elastic fluids
- F04D29/28—Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
- F04D29/30—Vanes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/66—Combating cavitation, whirls, noise, vibration or the like; Balancing
- F04D29/661—Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps
- F04D29/666—Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps by means of rotor construction or layout, e.g. unequal distribution of blades or vanes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/66—Combating cavitation, whirls, noise, vibration or the like; Balancing
- F04D29/661—Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps
- F04D29/667—Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps by influencing the flow pattern, e.g. suppression of turbulence
Definitions
- the invention belongs to the technical field of fans, and particularly refers to an impeller.
- Centrifugal fans are widely used in cement, electric power, building materials, metallurgy, petrochemical, coal, mining and environmental protection industries. At present, the impeller blades of centrifugal fans are single-layer and single-layer blade fans. When the machine size is large and the speed is high , the blades are easily deformed or shaken, which affects the stability and safety of the centrifugal fan.
- the invention patent with the application number "201710155189.5" discloses a double-layer blade of a centrifugal fan, including an upper blade and a lower blade, and one side of the upper blade and one side of the lower blade are attached and fixedly connected; Specifically, the upper blade and the lower blade are fixedly connected by welding around them; or a hole is made in the lower blade, and then the upper blade and the lower blade are fixedly connected by filling welding; or the upper blade and the lower blade are connected by rivets or bolts, etc.
- the connector is fixed.
- the structure of the above-mentioned double-layer blades of the centrifugal fan can enhance the structural strength of the blades to a certain extent, it also nearly doubles the weight of the blades, especially when the upper blade and the lower blade are of the same size, the weight is doubled If the size of the upper blade and the lower blade are different, the lower blade will affect the smooth flow of the airflow, resulting in the formation of eddy currents, increasing the loss and reducing the energy efficiency of the fan; at the same time, the structure of the double-layer blade needs to be separate Welding and other operations on the formed upper and lower blades have lower production efficiency.
- the purpose of the present invention is to provide an impeller with higher structural strength, smoother airflow and less energy consumption.
- An impeller comprising an upper disc, a lower disc and blades, the upper end of the blade is fixedly connected to the upper disc, and the lower end of the blade is fixedly connected to the lower disc, characterized in that the thickness of the blade gradually increases from both ends to the middle Increase, the blade is provided with a cavity matched with the shape of the blade.
- the impeller By arranging a cavity in the blade that matches the shape of the blade, the impeller increases the thickness of the blade, thereby enhancing the structural strength of the blade. Even if it is applied to a larger size impeller or when the impeller rotates rapidly, the thickened blade will still be thickened. It can maintain good stability and is not easy to deform or shake; at the same time, the overall shape of the blade is streamlined, and there are no edges and corners on the front and rear sides of the blade, so that the airflow flows smoothly along the front or rear side of the blade. , to avoid the formation of eddy currents; further, due to the cavity inside the blade, the added weight of the blade is not large, which has little impact on the energy efficiency of the fan when the impeller is working. Compared with the existing double-layer structure of the blade, it is conducive to improving The energy efficiency of the fan reduces energy consumption.
- the upper end and the lower end of the blade are provided with openings communicating with the cavity.
- Both the upper end and the lower end of the above-mentioned blade are provided with openings that communicate with the cavity.
- This design can reduce the overall weight of the blade, and at the same time, the blade can be formed more easily, which is conducive to reducing production costs; It is fixed by welding with the upper plate and the lower plate, so this design will not affect the stability of the blade after installation.
- At least two reinforcing ribs are arranged in the cavity of the blade, the reinforcing ribs extend from the upper end of the blade to the lower end of the blade, and the front end of the reinforcing ribs is connected to the front side wall of the cavity.
- the rear end of the reinforcing rib is fixedly connected with the rear side wall of the cavity.
- the above-mentioned multiple reinforcing ribs are arranged at intervals along the inner and outer directions. Due to the small volume of the reinforcing ribs, the increase of the reinforcing ribs has little effect on the overall weight of the blade.
- the front side wall plays a supporting role to avoid deformation of the blade due to the high-speed rotating air hitting the front side of the blade, which is beneficial to enhance the overall structural strength of the blade.
- the reinforcing rib includes a front rib fixedly connected with the front side wall of the cavity and a rear rib fixedly connected with the rear side wall of the cavity, between the front rib and the rear rib There are gaps.
- the design of the gap between the front rib and the rear rib can provide a small elastic deformation space for the blade.
- the front side wall of the blade will leak through slight elastic deformation. It is beneficial to improve the structural strength of the blade, avoid the irreversible deformation of the front side wall of the blade due to too much pressure, ensure that the blade is always streamlined, make the airflow flow more smoothly, and help reduce energy consumption.
- the blade is in a streamline shape, and the forward convex arc of the front side of the blade is larger than the forward convex arc of the rear side of the blade.
- the streamlined design of the blade can not only make the airflow flowing through the surface of the blade smoother, but also avoid the formation of vortex behind the blade after the airflow flows through the blade, which is beneficial to reduce energy loss; further, the convex arc on the front side of the blade is greater than The convex curvature of the rear side causes the air velocity on the front side of the blade to be greater than that on the rear side of the blade.
- the pressure on the front side of the blade is lower than the pressure on the rear side of the blade due to different air velocity, and the blade is subjected to a The forward force F1; at the same time, during the working process of the blade, the front side of the blade will beat the air to form an air flow on the surface of the blade, and the blade is subjected to a backward force F2 during the whole beating process;
- the upper end of the blade is welded and fixed to the lower side surface of the upper disk, and the lower end of the blade is welded and fixed to the upper side surface of the lower disk.
- the blades are fixedly connected with the upper plate and the lower plate by welding, and the connection is more firm, and the welding can also seal the gap between the blade and the upper plate and between the blade and the lower plate, so as to prevent the airflow from entering the blade and the lower plate during operation.
- the abnormal noise and the shaking of the blades caused by the airflow can be avoided, which is beneficial to improve the structural strength of the connection between the various components of the impeller. Flow is smoother.
- the front and rear sides of the upper end of the blade are welded and fixed with the lower side of the upper plate to form a fish-scale weld
- the front and rear sides of the lower end of the blade are welded and fixed with the upper side of the lower plate. And form a scaly weld.
- the fish-scale welded seam can not only increase the firmness of the welding and the structural strength of the impeller, but also make the air flow more smoothly when passing through the welding seam.
- the middle part of the upper plate is in the shape of a circular arc with a high middle and a low outer side
- at least two fixed end heads are arranged on the rear side of the lower end of the blade along the inner and outer directions at intervals
- the lower plate is provided with at least two fixed ends.
- Pre-fixing is beneficial to reduce the connection error between the blade and the upper plate and the lower plate, avoid the generation of gaps after assembly, improve the assembly accuracy, improve the structural strength of the impeller after assembly and the smoothness of airflow flow, and reduce the impeller. energy consumption during operation.
- the lower plate is provided with a positioning groove which is matched with the inner end of the lower end surface of the blade, and the blade can be inserted into the positioning groove.
- the blade By setting the positioning groove, the blade can be further positioned, which is beneficial to further improve the assembly accuracy of the blade.
- the impeller By arranging a cavity in the blade that matches the shape of the blade, the impeller increases the thickness of the blade, thereby enhancing the structural strength of the blade. Even if it is applied to a larger size impeller or when the impeller rotates rapidly, the thickened blade will still be thickened. It can maintain good stability and is not easy to deform or shake; at the same time, the overall shape of the blade is streamlined, and there are no edges and corners on the front and rear sides of the blade, so that the airflow flows smoothly along the front or rear side of the blade. , to avoid the formation of eddy currents; further, due to the cavity inside the blade, the added weight of the blade is not large, which has little impact on the energy efficiency of the fan when the impeller is working. Compared with the existing double-layer structure of the blade, it is conducive to improving The energy efficiency of the fan reduces energy consumption.
- Figure 1 is a schematic diagram of the overall structure of the present invention.
- Fig. 2 is a perspective view 1 of the blade of the present invention.
- Fig. 3 is a second perspective view of the blade of the present invention.
- Fig. 4 is a cross-sectional view of the blade of the present invention.
- FIG. 5 is a schematic view of the structure of the lower disc of the present invention.
- FIG. 6 is a partial enlarged view of A in FIG. 2 .
- FIG. 7 is a partial enlarged view of B in FIG. 3 .
- FIG. 8 is a partial enlarged view of C in FIG. 5 .
- Figure 9 is a partial enlarged view of the weld.
- the impeller includes an upper disk 2, a lower disk 3 and a blade 1.
- the upper end of the blade 1 is fixedly connected to the upper disk 2, and the lower end of the blade 1 is fixedly connected to the lower disk 3.
- the thickness of the blade 1 gradually increases from both ends to the middle, and the blade 1 is provided with a cavity 11 that matches the shape of the blade 1; the upper end and the lower end of the blade 1 are provided with openings communicating with the cavity 11.
- the thickened blade 1 can still maintain good stability and is not easy to deform or shake; at the same time, the overall shape of the blade 1 is streamlined, and there are no edges and corners on the front side 15 and the rear side 16 of the blade 1, so that the airflow is smooth. It flows along the front side 15 or the rear side 16 of the blade 1 to avoid the formation of eddy currents; further, because the blade 1 has a cavity 11 inside the blade 1, the added weight of the blade 1 is not large, and the energy efficiency of the fan when the impeller is working is small.
- the upper and lower ends of the blade 1 are provided with openings that communicate with the cavity 11, and this design can reduce the number of blades 1.
- it can make the blade 1 easier to form, which is beneficial to reduce the production cost; and because the two ends of the blade 1 are welded and fixed to the upper plate 2 and the lower plate 3 during subsequent installation, this design will not affect the The stability of the blade 1 after installation is affected.
- the cavity 11 of the blade 1 is provided with at least two reinforcing ribs 12.
- the reinforcing ribs 12 extend from the upper end of the blade 1 to the lower end of the blade 1.
- the front end of the reinforcing ribs 12 is connected to the hollow space.
- the front side wall of the cavity 11 is fixedly connected, and the rear end of the reinforcing rib 12 is fixedly connected with the rear side wall of the cavity 11;
- the above-mentioned plurality of reinforcing ribs 12 are arranged at intervals along the inner and outer directions.
- the increase of the reinforcing ribs 12 has little effect on the overall weight of the blade 1;
- the side wall plays a supporting role on the front side wall of the cavity 11 to avoid the deformation of the blade 1 due to the high-speed rotating air hitting the front side 15 of the blade 1, which is beneficial to enhance the overall structural strength of the blade 1; the above-mentioned front ribs 121
- the design of the gap between it and the rear rib 122 can provide a small elastic deformation space for the blade 1.
- the pressure relief is beneficial to improve the structural strength of the blade 1, to avoid the irreversible deformation of the front side wall of the blade 1 due to too high pressure, to ensure that the blade 1 is always streamlined, to make the airflow flow more smoothly, and to reduce energy consumption.
- the blade 1 is streamlined, and the forward convex arc of the front side 15 of the blade 1 is greater than the forward convex arc of the rear side 16 of the blade 1 .
- the streamlined design of the blade 1 can not only make the airflow flowing through the surface of the blade 1 smoother, but also avoid the formation of a vortex behind the blade 1 after the airflow flows through the blade 1, which is beneficial to reduce energy loss; further, the front side of the blade 1 above
- the convex arc of 15 is greater than the convex arc of the rear side 16, which causes the air velocity on the front side 15 of the blade 1 to be greater than the flow velocity on the rear side 16 of the blade 1.
- the difference in air velocity causes the front side of the blade 1.
- the pressure of 15 is less than the pressure of the rear side 16 of the blade 1, and the blade 1 is subjected to a forward force F1; at the same time, during the working process of the blade 1, the front side 15 of the blade 1 will beat the air to form an airflow on the surface of the blade 1.
- This design can eliminate part of the front side 15 of the blade 1 through the pressure generated by Bernoulli's principle. Due to the pressure of the flapping air, the pressure of the entire blade 1 is reduced, and the structural strength of the impeller can be improved under the same working environment.
- the upper end of the blade 1 is welded and fixed to the lower side of the upper disk 2, the lower end of the blade 1 is welded and fixed to the upper side of the lower disk 3; the front and rear sides of the upper end of the blade 1 are welded to the lower side of the upper disk 2.
- a fish-scale-shaped welding seam 13 is fixed and formed, and both the front and rear sides of the lower end of the blade 1 are welded and fixed with the upper side surface of the lower plate 3 to form a fish-scale-shaped welding seam 13 .
- the blade 1 is fixedly connected with the upper plate 2 and the lower plate 3 by welding, and the connection is more firm, and the welding can also seal the gap between the blade 1 and the upper plate 2 and between the blade 1 and the lower plate 3 to avoid When working, the airflow enters the gap between the blade 1 and the upper disk 2 or the lower disk 3, which can avoid abnormal noise and the shaking of the blade 1 caused by the airflow, which is beneficial to improve the structural strength of the connection between the various components of the impeller.
- the branched airflow that does not enter the gap can also make the airflow flow more smoothly; the fish-scale welding seam 13 can not only increase the firmness of the welding, increase the structural strength of the impeller, but also make the airflow flowing through the welding seam 13. smooth.
- the middle part of the upper plate 2 is in the shape of an arc with a high middle and a low outer side, and at least two fixed end heads 14 are arranged on the rear side of the lower end of the blade 1 at intervals along the inner and outer directions.
- the lower plate 3 is provided with an insertion hole 31 that cooperates with the fixed end 14, and the fixed end 14 can be inserted into the insertion hole 31; It can be inserted into the positioning groove 32 .
- the design of the two fixed ends 14 in the impeller can Pre-fixing the blade 1 and the lower disk 3 during assembly is beneficial to reduce the connection error between the blade 1 and the upper disk 2 and the lower disk 3, avoid the generation of gaps after assembly, improve the assembly accuracy, and help improve the impeller after assembly.
- the structural strength and the smoothness of the airflow are beneficial to reduce the energy loss during operation of the impeller; the positioning grooves 32 can further position the blade 1 , which is beneficial to further improve the assembly accuracy of the blade 1 .
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
Abstract
一种叶轮,属于风机技术领域,叶轮包括上盘(2)、下盘(3)和叶片(1),叶片(1)的上端与上盘(2)固连,叶片(1)的下端与下盘(3)固连,叶片(1)的厚度从两端往中部逐渐增大,叶片(1)内设有与叶片(1)形状相配合的空腔(11)。通过在叶片(1)内设置与叶片(1)形状配合的空腔(11),增加了叶片(1)厚度从而使叶片(1)的结构强度得到增强;叶片(1)的整体形状呈流线型,叶片(1)的前侧面(15)和后侧面(16)上并没有棱角的存在,使气流顺畅的沿叶片(1)的前侧面(15)或后侧面(16)流动,避免形成涡流;空腔(11)的设计有利于减少叶片(1)的重量,有利于提高风机的能源效率,降低能源损耗。
Description
本发明属于风机技术领域,特指一种叶轮。
离心风机广泛的应用于水泥、电力、建材、冶金、石油化工、煤炭、矿山和环保等行业,而目前离心风机的叶轮叶片均为单层,单层叶片风机,当机号大、转速高时,叶片容易变形或抖动,影响离心风机工作的稳定性和安全性。
为了解决上述技术问题,申请号为“201710155189.5”的发明专利公开了一种离心风机双层叶片,包括上叶片和下叶片,所述上叶片的一面和所述下叶片的一面贴合固定连接;具体的,上叶片和下叶片通过四周焊接的方式进行固连;或者在下叶片上开孔,然后上叶片和下叶片通过填焊的方式进行固连;或者上叶片和下叶片通过铆钉或螺栓等连接件进行固连。
虽然上述离心风机双层叶片的结构能够在一定程度上增强了叶片的结构强度,但是同时也增加了近一倍的叶片重量,尤其是上叶片和下叶片大小相同的时候,增大一倍重量的叶片增加了能源损耗;如果上叶片和下叶片大小不同的时候,下叶片会影响气流的顺畅流动,导致形成涡流,增加了损失,降低了风机能源效率;同时该双层叶片的结构需要单独对成型后的上叶片和下叶片进行焊接等操作,生产效率较低。
发明内容
针对现有技术存在的不足,本发明的目的在于提供一种结构强度更高、气流流动更顺畅、能源损耗更小的叶轮。
本发明的目的可通过下列技术方案来实现:
一种叶轮,包括上盘、下盘和叶片,所述叶片的上端与上盘固连,所述叶片的下端与下盘固连,其特征在于:所述叶片的厚度从两端往中部逐渐增大,所述叶片内设有与叶片形状相配合的空腔。
本叶轮通过在叶片内设置与叶片形状配合的空腔,增加了叶片厚度从而使叶片的结构强度得到增强,即使应用于机号较大的叶轮或者当叶轮转速很快使,增厚的叶片依旧能够保持较好的稳定性,不容易变型或者抖动;同时,叶片的整体形状呈流线型,叶片的前侧面和后侧面上并没有棱角的存在,使气流顺畅的沿叶片的前侧面或后侧面流动,避免形成涡流;进一步的,由于叶片内部具有空腔,叶片增加的重量并不大,对叶轮工作时风机的能源效率影响较小,相对于现有双层结构的叶片来说,有利于提高风机的能源效率,降低能源损耗。
在上述的一种叶轮中,所述叶片的上端和下端均设有与空腔连通的开口。
上述叶片的上端和下端均设有与空腔连通的开口,该设计能够减少叶片的整体重量,同时能够使叶片成型更为容易,有利于降低生产成本;并且由于后续安装的时候叶片的两端与上盘以及下盘焊接固定,因此该设计也并不会对叶片安装后的稳定性造成影响。
在上述的一种叶轮中,所述叶片的空腔内设有至少两根加强筋,所述加强筋从叶片的上端延伸到叶片的下端,所述加强筋的前端与空腔的前侧壁固连,所述加强筋的后端与空腔的后侧壁固连。
上述多根加强筋沿内外方向间隔设置,由于加强筋的体积较小,增加加强筋后对于叶片整体重量的影响并不大;而加强筋的设计能够使空腔的后侧壁对空腔的前侧壁起到一个支撑作用,避免由于高速旋转空气拍打叶片前侧面而导致叶片发生变形,有利于增强本叶片的整体结构强度。
在上述的一种叶轮中,所述加强筋包括与空腔前侧壁固连的前筋条以及与空腔后侧壁固连的后筋条,所述前筋条和后筋条之间存在间隙。
上述前筋条和后筋条之间存在间隙的设计,能够为叶片提供一个微小的弹性形变空间,当叶片的前侧面收到较大压力的时候,叶片的前侧壁通过轻微的弹性形变泄压,有利于提高本叶片的结构强度,避免叶片的前侧壁因为压力太大而导致不可逆的形变,确保叶片始终保持流线型,使气流流动更为顺畅,有利于降低能源损耗。
在上述的一种叶轮中,所述叶片呈流线型,所述叶片前侧面向前凸起的弧度大于叶片后侧面向前凸起的弧度。
叶片呈流线型设计不仅能够流经叶片表面的气流流动更为顺畅,还能够避免气流流经叶片后在叶片的后方形成涡流,有利于降低能源损耗;进一步的,上述叶片前侧面的凸起弧度大于后侧面凸起弧度,导致空气在叶片前侧面的流速会大于在叶片后侧面的流速,根据伯努利定理,用于空气流速不同导致叶片前侧面的压强小于叶片后侧面的压强,叶片受到一个向前的力F1;于此同时,叶片在工作过程中叶片前侧面会拍打空气从而在叶片的表面形成气流,整个拍打过程中叶片受到一个向后的力F2;因此叶片在实际工作过程中受到向后的力F3=F2-F1,该设计能够通过伯努利原理产生的压力消除部分叶片前侧面因拍打空气承受的压力,从而减少整个叶片所承受的压力,在相同工作环境下,能够提高本叶轮的结构强度。
在上述的一种叶轮中,所述叶片的上端与上盘的下侧面焊接固定,所述叶片的下端与下盘的上侧面焊接固定。叶片通过焊接的方式与上盘和下盘固连,连接更为牢固,并且焊接还能够对叶片与上盘以及叶片与下盘之间的缝隙起到密封作用,避免工作时气流进入到叶片与上盘或下盘连接的缝隙中,能够避免由于该气流引起的异响和叶片的抖动,有利于提高叶轮各个部件之间连接的结构强度,同时由于没有进入缝隙的分支气流,也能够使气流流动更为顺畅。
在上述的一种叶轮中,所述叶片上端的前后两侧均与上盘的下侧面焊接固定并形成鱼鳞状的焊缝,所述叶片下端的前后两侧均与下盘的上侧面焊接固定并形成鱼鳞状的焊缝。鱼鳞状的焊缝不仅能够增加焊接的牢固度,增加叶轮的结构强度,还能够使气流流经该焊缝时流动更为顺畅。
在上述的一种叶轮中,所述上盘的中部呈中间高外侧低的圆弧状,所述叶片下端的后侧沿内外方向间隔设置有至少两个固定端头,所述下盘上设有与固定端头配合的插孔,所述固定端头能够插入插孔内。
如果叶轮的组装精度太差,导致叶片角度或位置发生偏移,则很可能在叶轮转动时在叶片周围形成涡流,导致叶片甚至叶轮抖动,影响气流流动的顺畅度以及叶轮的结构 强度,还会导致叶轮的能耗增大;同时由于上盘的中部呈中间高外侧低的圆弧状,还容易在叶片与上盘的连接处形成较大的间隙,不利于后期焊接固定,焊接后的稳定性较差或者容易在焊接后依旧留有与空腔连通的缝隙,结构强度较低,并且影响气流流动的顺畅性;本叶轮中两个固定端头的设计能够在组装时将叶片与下盘进行预固定,有利于减少叶片与上盘以及下盘连接的误差,避免组装后缝隙的产生,提高了组装精度,有利于提高组装后叶轮的结构强度和气流流动的顺畅程度,有利于降低叶轮工作时的能源损耗。
在上述的一种叶轮中,所述下盘上设有与叶片下端面的内端配合的定位槽,所述叶片能够插入定位槽内。
通过设置定位槽能够进一步对叶片进行定位,有利于进一步提高叶片的组装精度。
与现有技术相比,本发明的技术效果为:
本叶轮通过在叶片内设置与叶片形状配合的空腔,增加了叶片厚度从而使叶片的结构强度得到增强,即使应用于机号较大的叶轮或者当叶轮转速很快使,增厚的叶片依旧能够保持较好的稳定性,不容易变型或者抖动;同时,叶片的整体形状呈流线型,叶片的前侧面和后侧面上并没有棱角的存在,使气流顺畅的沿叶片的前侧面或后侧面流动,避免形成涡流;进一步的,由于叶片内部具有空腔,叶片增加的重量并不大,对叶轮工作时风机的能源效率影响较小,相对于现有双层结构的叶片来说,有利于提高风机的能源效率,降低能源损耗。
图1是本发明的整体结构示意图。
图2是本发明的叶片的立体图一。
图3是本发明的叶片的立体图二。
图4是本发明的叶片的剖面图。
图5是本发明的下盘的结构示意图。
图6是图2中A处的局部放大图。
图7是图3中B处的局部放大图。
图8是图5中C处的局部放大图。
图9是焊缝处的局部放大图。
图中,1、叶片;11、空腔;12、加强筋;121、前筋条;122、后筋条;13、焊缝;14、固定端头;15、前侧面;16、后侧面;2、上盘;3、下盘;31、插孔;32、定位槽。
以下是本发明的具体实施例并结合附图,对本发明的技术方案作进一步的描述,但本发明并不限于这些实施例。
本叶轮包括上盘2、下盘3和叶片1,叶片1的上端与上盘2固连,叶片1的下端与下盘3固连,叶片1的厚度从两端往中部逐渐增大,叶片1内设有与叶片1形状相配合的空腔11;叶片1的上端和下端均设有与空腔11连通的开口。本叶轮通过在叶片1内设置与叶片1形状配合的空腔11,增加了叶片1厚度从而使叶片1的结构强度得到增强,即使应用于机号较大 的叶轮或者当叶轮转速很快使,增厚的叶片1依旧能够保持较好的稳定性,不容易变型或者抖动;同时,叶片1的整体形状呈流线型,叶片1的前侧面15和后侧面16上并没有棱角的存在,使气流顺畅的沿叶片1的前侧面15或后侧面16流动,避免形成涡流;进一步的,由于叶片1内部具有空腔11,叶片1增加的重量并不大,对叶轮工作时风机的能源效率影响较小,相对于现有双层结构的叶片1来说,有利于提高风机的能源效率,降低能源损耗;上述叶片1的上端和下端均设有与空腔11连通的开口,该设计能够减少叶片1的整体重量,同时能够使叶片1成型更为容易,有利于降低生产成本;并且由于后续安装的时候叶片1的两端与上盘2以及下盘3焊接固定,因此该设计也并不会对叶片1安装后的稳定性造成影响。
如图2、图3和图6所示,叶片1的空腔11内设有至少两根加强筋12,加强筋12从叶片1的上端延伸到叶片1的下端,加强筋12的前端与空腔11的前侧壁固连,加强筋12的后端与空腔11的后侧壁固连;加强筋12包括与空腔11前侧壁固连的前筋条121以及与空腔11后侧壁固连的后筋条122,前筋条121和后筋条122之间存在间隙。上述多根加强筋12沿内外方向间隔设置,由于加强筋12的体积较小,增加加强筋12后对于叶片1整体重量的影响并不大;而加强筋12的设计能够使空腔11的后侧壁对空腔11的前侧壁起到一个支撑作用,避免由于高速旋转空气拍打叶片1前侧面15而导致叶片1发生变形,有利于增强本叶片1的整体结构强度;上述前筋条121和后筋条122之间存在间隙的设计,能够为叶片1提供一个微小的弹性形变空间,当叶片1的前侧面15收到较大压力的时候,叶片1的前侧壁通过轻微的弹性形变泄压,有利于提高本叶片1的结构强度,避免叶片1的前侧壁因为压力太大而导致不可逆的形变,确保叶片1始终保持流线型,使气流流动更为顺畅,有利于降低能源损耗。
如图4所示,叶片1呈流线型,叶片1前侧面15向前凸起的弧度大于叶片1后侧面16向前凸起的弧度。叶片1呈流线型设计不仅能够流经叶片1表面的气流流动更为顺畅,还能够避免气流流经叶片1后在叶片1的后方形成涡流,有利于降低能源损耗;进一步的,上述叶片1前侧面15的凸起弧度大于后侧面16凸起弧度,导致空气在叶片1前侧面15的流速会大于在叶片1后侧面16的流速,根据伯努利定理,用于空气流速不同导致叶片1前侧面15的压强小于叶片1后侧面16的压强,叶片1受到一个向前的力F1;于此同时,叶片1在工作过程中叶片1前侧面15会拍打空气从而在叶片1的表面形成气流,整个拍打过程中叶片1受到一个向后的力F2;因此叶片1在实际工作过程中受到向后的力F3=F2-F1,该设计能够通过伯努利原理产生的压力消除部分叶片1前侧面15因拍打空气承受的压力,从而减少整个叶片1所承受的压力,在相同工作环境下,能够提高本叶轮的结构强度。
如图9所示,叶片1的上端与上盘2的下侧面焊接固定,叶片1的下端与下盘3的上侧面焊接固定;叶片1上端的前后两侧均与上盘2的下侧面焊接固定并形成鱼鳞状的焊缝13,叶片1下端的前后两侧均与下盘3的上侧面焊接固定并形成鱼鳞状的焊缝13。叶片1通过焊接的方式与上盘2和下盘3固连,连接更为牢固,并且焊接还能够对叶片1与上盘2以及叶片1与下盘3之间的缝隙起到密封作用,避免工作时气流进入到叶片1与上盘2或下盘3连接的缝隙中,能够避免由于该气流引起的异响和叶片1的抖动,有利于提高叶轮各个部件之间连接的结构强度,同时由于没有进入缝隙的分支气流,也能够使气流流动更为顺畅;鱼鳞状的焊缝13不仅能够增加焊接的牢固度,增加叶轮的结构强度,还能够使气流流经该焊缝13时流动更为顺畅。
如图1、图5、图7和图8所示,上盘2的中部呈中间高外侧低的圆弧状,叶片1下端的 后侧沿内外方向间隔设置有至少两个固定端头14,下盘3上设有与固定端头14配合的插孔31,固定端头14能够插入插孔31内;下盘3上设有与叶片1下端面的内端配合的定位槽32,叶片1能够插入定位槽32内。如果叶轮的组装精度太差,导致叶片1角度或位置发生偏移,则很可能在叶轮转动时在叶片1周围形成涡流,导致叶片1甚至叶轮抖动,影响气流流动的顺畅度以及叶轮的结构强度,还会导致叶轮的能耗增大;同时由于上盘2的中部呈中间高外侧低的圆弧状,还容易在叶片1与上盘2的连接处形成较大的间隙,不利于后期焊接固定,焊接后的稳定性较差或者容易在焊接后依旧留有与空腔11连通的缝隙,结构强度较低,并且影响气流流动的顺畅性;本叶轮中两个固定端头14的设计能够在组装时将叶片1与下盘3进行预固定,有利于减少叶片1与上盘2以及下盘3连接的误差,避免组装后缝隙的产生,提高了组装精度,有利于提高组装后叶轮的结构强度和气流流动的顺畅程度,有利于降低叶轮工作时的能源损耗;通过设置定位槽32能够进一步对叶片1进行定位,有利于进一步提高叶片1的组装精度。
上述实施例仅为本发明的较佳实施例,并非依此限制本发明的保护范围,故:凡依本发明的结构、形状、原理所做的等效变化,均应涵盖于本发明权利要求所定义的保护范围之内。
Claims (9)
- 一种叶轮,包括上盘(2)、下盘(3)和叶片(1),所述叶片(1)的上端与上盘(2)固连,所述叶片(1)的下端与下盘(3)固连,其特征在于:所述叶片(1)的厚度从两端往中部逐渐增大,所述叶片(1)内设有与叶片(1)形状相配合的空腔(11)。
- 根据权利要求1所述的一种叶轮,其特征在于:所述空腔(11)的上端和下端均设有与空腔(11)连通的开口。
- 根据权利要求2所述的一种叶轮,其特征在于:所述叶片(1)的空腔(11)内设有至少两根加强筋(12),所述加强筋(12)从叶片(1)的上端延伸到叶片(1)的下端,所述加强筋(12)的前端与空腔(11)的前侧壁固连,所述加强筋(12)的后端与空腔(11)的后侧壁固连。
- 根据权利要求3所述的一种叶轮,其特征在于:所述加强筋(12)包括与空腔(11)前侧壁固连的前筋条(121)以及与空腔(11)后侧壁固连的后筋条(122),所述前筋条(121)和后筋条(122)之间存在间隙。
- 根据权利要求1-4任意一项所述的一种叶轮,其特征在于:所述叶片(1)呈流线型,所述叶片(1)前侧面(15)向前凸起的弧度大于叶片(1)后侧面(16)向前凸起的弧度。
- 根据权利要求1-4任意一项所述的一种叶轮,其特征在于:所述叶片(1)的上端与上盘(2)的下侧面焊接固定,所述叶片(1)的下端与下盘(3)的上侧面焊接固定。
- 根据权利要求6所述的一种叶轮,其特征在于:所述叶片(1)上端的前后两侧均与上盘(2)的下侧面焊接固定并形成鱼鳞状的焊缝(13),所述叶片(1)下端的前后两侧均与下盘(3)的上侧面焊接固定并形成鱼鳞状的焊缝(13)。
- 根据权利要求6所述的一种叶轮,其特征在于:所述上盘(2)的中部呈中间高外侧低的圆弧状,所述叶片(1)下端的后侧沿内外方向间隔设置有至少两个固定端头(14),所述下盘(3)上设有与固定端头(14)配合的插孔(31),所述固定端头(14)能够插入插孔(31)内。
- 根据权利要求8所述的一种叶轮,其特征在于:所述下盘(3)上设有与叶片(1)下端面的内端配合的定位槽(32),所述叶片(1)能够插入定位槽(32)内。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011085358.0 | 2020-10-12 | ||
CN202011085358.0A CN112503021A (zh) | 2020-10-12 | 2020-10-12 | 一种叶轮 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022077934A1 true WO2022077934A1 (zh) | 2022-04-21 |
Family
ID=74953758
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/098766 WO2022077934A1 (zh) | 2020-10-12 | 2021-06-08 | 一种叶轮 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN112503021A (zh) |
WO (1) | WO2022077934A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112503021A (zh) * | 2020-10-12 | 2021-03-16 | 浙江铭振电子股份有限公司 | 一种叶轮 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012052439A (ja) * | 2010-08-31 | 2012-03-15 | Mitsubishi Heavy Ind Ltd | インペラ |
CN203627302U (zh) * | 2013-11-20 | 2014-06-04 | 浙江双阳风机有限公司 | 一种离心风机叶轮 |
CN204164033U (zh) * | 2014-08-28 | 2015-02-18 | 中航商用航空发动机有限责任公司 | 航空发动机空心风扇叶片 |
CN104632700A (zh) * | 2015-02-06 | 2015-05-20 | 浙江理工大学 | 一种离心通风机的双叶轮装置 |
CN104632699A (zh) * | 2015-02-06 | 2015-05-20 | 浙江理工大学 | 一种离心通风机用双叶轮 |
CN112503021A (zh) * | 2020-10-12 | 2021-03-16 | 浙江铭振电子股份有限公司 | 一种叶轮 |
CN213540831U (zh) * | 2020-10-12 | 2021-06-25 | 浙江铭振电子股份有限公司 | 一种叶轮 |
-
2020
- 2020-10-12 CN CN202011085358.0A patent/CN112503021A/zh active Pending
-
2021
- 2021-06-08 WO PCT/CN2021/098766 patent/WO2022077934A1/zh active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012052439A (ja) * | 2010-08-31 | 2012-03-15 | Mitsubishi Heavy Ind Ltd | インペラ |
CN203627302U (zh) * | 2013-11-20 | 2014-06-04 | 浙江双阳风机有限公司 | 一种离心风机叶轮 |
CN204164033U (zh) * | 2014-08-28 | 2015-02-18 | 中航商用航空发动机有限责任公司 | 航空发动机空心风扇叶片 |
CN104632700A (zh) * | 2015-02-06 | 2015-05-20 | 浙江理工大学 | 一种离心通风机的双叶轮装置 |
CN104632699A (zh) * | 2015-02-06 | 2015-05-20 | 浙江理工大学 | 一种离心通风机用双叶轮 |
CN112503021A (zh) * | 2020-10-12 | 2021-03-16 | 浙江铭振电子股份有限公司 | 一种叶轮 |
CN213540831U (zh) * | 2020-10-12 | 2021-06-25 | 浙江铭振电子股份有限公司 | 一种叶轮 |
Also Published As
Publication number | Publication date |
---|---|
CN112503021A (zh) | 2021-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019153536A1 (zh) | 轴流风轮及空调器 | |
KR20180031948A (ko) | 프로펠러 팬 및 이를 구비하는 공기조화기 | |
CN203717440U (zh) | 轴流风轮 | |
CN113719471B (zh) | 一种具有仿生型尾缘叶片的呼吸机降噪离心叶轮 | |
WO2022077934A1 (zh) | 一种叶轮 | |
JP2012154325A (ja) | 風車ロータ羽根エレメント及び風車ロータ羽根 | |
CN103291561A (zh) | 尖部具有分裂小翼的风力机叶片 | |
CN211648507U (zh) | 一种高效吸尘器风机总成及其吸尘器 | |
CN202768481U (zh) | 一种离心风机叶轮 | |
CN213540831U (zh) | 一种叶轮 | |
CN217477543U (zh) | 桨叶、螺旋桨和飞行器 | |
WO2018228066A1 (zh) | 轴流风轮及空调器 | |
CN210484191U (zh) | 一种具有降低叶尖涡噪声的轴流风机叶片结构 | |
CN215214095U (zh) | 离心风机叶轮用后向叶片、离心风机以及吸油烟机 | |
CN210033944U (zh) | 单级超高压专用离心风机锥形轴孔叶轮 | |
CN209818372U (zh) | 一种高效静音的负压式轴流风机 | |
US10801337B2 (en) | Steam turbine | |
CN206770124U (zh) | 一种抗剪力风机叶片 | |
CN221003211U (zh) | 一种具有降噪结构的高速吹风机马达 | |
CN212003425U (zh) | 一种风机叶片叶尖延长装置 | |
CN221879787U (zh) | 一种轴流风机的导叶组件以及轴流风机 | |
CN208311122U (zh) | 一种风机叶片 | |
CN219549195U (zh) | 一种一体成型的风机叶轮 | |
CN108397420A (zh) | 鹰齿形轴流风叶 | |
CN218479958U (zh) | 一种低噪声风机叶片结构 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21878985 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21878985 Country of ref document: EP Kind code of ref document: A1 |