WO2022077465A1 - 用于传输控制信息的方法和装置 - Google Patents

用于传输控制信息的方法和装置 Download PDF

Info

Publication number
WO2022077465A1
WO2022077465A1 PCT/CN2020/121590 CN2020121590W WO2022077465A1 WO 2022077465 A1 WO2022077465 A1 WO 2022077465A1 CN 2020121590 W CN2020121590 W CN 2020121590W WO 2022077465 A1 WO2022077465 A1 WO 2022077465A1
Authority
WO
WIPO (PCT)
Prior art keywords
control information
level control
pssch
resource
resources
Prior art date
Application number
PCT/CN2020/121590
Other languages
English (en)
French (fr)
Inventor
郭文婷
苏宏家
董蕾
何畅
卢磊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2020/121590 priority Critical patent/WO2022077465A1/zh
Publication of WO2022077465A1 publication Critical patent/WO2022077465A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling

Definitions

  • the present application relates to the field of communications, and more particularly, to a method and apparatus for transmitting control information.
  • the first-level control information and the second-level control information related to the data need to be transmitted at the same time.
  • the first-level control information is transmitted on the physical sidelink control channel PSCCH, which carries the modulation and coding strategy MCS of the data, the code rate adjustment factor of the second-level control information, and the PSSCH demodulation guide of the physical sidelink shared channel. frequency pattern and other information.
  • PSCCH physical sidelink control channel
  • the receiving end user After correctly decoding the PSCCH, the receiving end user obtains the indication information of the first-level control information, thereby decoding the second-level control information and data.
  • the present application provides a method for transmitting control information, which can support independent transmission of control information, thereby improving the flexibility of transmitting information and meeting the requirements of V2X service scenarios.
  • an embodiment of the present application provides a method for transmitting control information, the method includes: determining first-level control information, where the first-level control information is used to determine a physical sidelink shared channel PSSCH Whether only the second-level control information is carried; the first-level control information is sent on the physical sidelink control channel PSCCH.
  • the value of the first bit in the first-level control information is used to indicate whether only the second-level control information is carried in the PSSCH.
  • the first-level control information includes a modulation and coding strategy MCS index value, and the MCS index value is used to indicate whether only the second-level control is carried in the PSSCH information.
  • the first-level control information includes format indication information, and the format indication information is used to indicate whether only the second-level control information is carried in the PSSCH .
  • the first-level control information is used to determine that only the second-level control information is carried in the PSSCH, and the method further includes determining whether to transmit the first-level control information.
  • the number of resource unit REs of the secondary control information, and the secondary control information is sent on the PSSCH according to the number of REs.
  • the determining the number of resource unit REs used for sending the second-level control information includes: determining the number of REs according to a first parameter, and the first parameter A parameter includes the following parameters:
  • PRBs physical resource blocks
  • the determining the number of resource unit REs used for sending the second-level control information further includes: determining the number of the REs according to the following formula
  • O SCI2 represents the payload size of the second-level control information
  • L SCI2 represents the CRC bit length of the second-level control information
  • R represents the code rate of the PSSCH
  • Q represents the modulation order of the PSSCH
  • represents the scaling factor of the resources of the second-level control information indicated by the first-level control information
  • represents the scaling factor of the resource type used for transmitting the second-level control information to the total PSSCH resources
  • lengthSLsymbols is the number of symbols contained in a sidelink communication slot
  • v represents the data layer (the number of DMRS ports) of the PSSCH data transmission
  • n represents the number of idle resources in the resource block to which the coded symbol of the PSSCH belongs.
  • the first-level control information is used to determine that only the second-level control information is carried in the PSSCH, and the second-level control information includes the second-level control information.
  • the second parameter includes at least one of the following parameters: the time-frequency domain location of the target resource, the period of the target resource, the priority of the target resource, the index of the resource pool where the target resource is located, and the resource selection window position of the target resource.
  • an embodiment of the present application provides a method for transmitting control information, the method comprising: receiving first-level control information, where the first-level control information is used to determine a physical sidelink shared channel PSSCH Whether only the second-level control information is carried; the PSSCH is decoded according to the first-level control information.
  • the value of the first bit in the first-level control information is used to indicate whether only the second-level control information is carried in the PSSCH.
  • the first-level control information includes a modulation and coding strategy MCS index value, which is used to indicate whether only the second-level control is carried in the PSSCH transmitted by the SL information.
  • the first-level control information includes format indication information, where the format indication information is used to indicate whether only the second-level control information is carried in the PSSCH .
  • the first-level control information is used to determine that only the second-level control information is carried in the PSSCH, and the method includes: receiving the second-level control information; determining the number of resource units REs occupied by the second-level control information;
  • the determining the number of resource unit REs occupied by the second-level control information includes: determining the number of REs according to a first parameter, and the first parameter A parameter includes the following parameters:
  • the number of physical resource blocks (PRBs) occupied by the current SL information transmission indicated by the first-level control information, the number of orthogonal frequency division multiplexing OFDM symbols in the time slot where the current sideline information transmission is located, and the first control information The number of occupied resources, the number of resources occupied by the demodulation reference channel DMRS of the PSSCH channel.
  • the determining the number of resource unit REs occupied by the second-level control information further includes determining the number of the REs according to the following formula
  • O SCI2 represents the payload size of the second-level control information
  • L SCI2 represents the CRC bit length of the second-level control information
  • R represents the code rate of the PSSCH
  • Q represents the modulation order of the PSSCH
  • represents the scaling factor of the resources of the second-level control information indicated by the first-level control information
  • represents the scaling factor of the resource type used for transmitting the second-level control information to the total PSSCH resources
  • lengthSLsymbols is the number of symbols contained in a sidelink communication slot
  • v represents the data layer (the number of DMRS ports) of the PSSCH data transmission
  • n represents the number of idle resources in the resource block to which the coded symbol of the PSSCH belongs.
  • the first-level control information is used to determine that only the second-level control information is carried in the PSSCH, and the second-level control information includes the second-level control information.
  • the second parameter includes at least one of the following parameters: the time-frequency domain location of the target resource, the period of the target resource, the priority of the target resource, the index of the resource pool where the target resource is located, and the resource selection window position of the target resource.
  • an embodiment of the present application provides an apparatus for transmitting control information, where the first device is configured to execute the first aspect or the communication method in any possible implementation manner of the first aspect.
  • an embodiment of the present application provides an apparatus for transmitting control information, and the second device is configured to execute the second aspect or a module of the communication method in any possible implementation manner of the second aspect .
  • an embodiment of the present application provides an apparatus for transmitting control information, including a transmitter and a processor, where the transmitter and the processor are used to implement the first aspect or any possible implementation of the first aspect method of communication.
  • an embodiment of the present application provides an apparatus for transmitting control information, including a receiver and a processor, where the receiver and the processor are used to implement the second aspect or any possible implementation of the second aspect method of communication.
  • an embodiment of the present application provides a computer-readable medium, where the computer-readable medium stores a program code for execution by a terminal device, the program code includes a program code for executing the first aspect or the first aspect Instructions for the communication method in any of the possible implementations.
  • an embodiment of the present application provides a computer-readable medium, where the computer-readable medium stores program code for execution by a network device, the program code includes a program code for executing the second aspect or the second aspect Instructions for the communication method in any of the possible implementations.
  • a computer program product comprising instructions, which, when run on a computer, cause the computer to perform the method of the first aspect or any possible implementations thereof.
  • a computer program product comprising instructions which, when run on a computer, cause the computer to perform the method in the second or any possible implementations thereof.
  • a communication system comprising a device having the functions of implementing the methods and various possible designs of the above-mentioned first aspect, and the methods of the above-mentioned second aspect and the functions of various possible designs. installation.
  • a twelfth aspect provides a processor, coupled to a memory, for executing the method in the first aspect or any possible implementations thereof.
  • a thirteenth aspect provides a processor, coupled to a memory, for performing the method of the second aspect or any possible implementations thereof.
  • a fourteenth aspect provides a chip, where the chip includes a processor and a communication interface, where the communication interface is used to communicate with an external device or an internal device, and the processor is used to implement the above-mentioned first aspect or any possible implementation manner thereof Methods.
  • the chip may further include a memory in which instructions are stored, and the processor is configured to execute the instructions stored in the memory or derived from other instructions.
  • the processor is configured to implement the method of the first aspect or any possible implementations thereof.
  • the chip can be integrated on the terminal.
  • a fifteenth aspect provides a chip, where the chip includes a processor and a communication interface, where the communication interface is used to communicate with an external device or an internal device, and the processor is used to implement the above-mentioned second aspect or any possible implementation manner thereof Methods.
  • the chip may further include a memory in which instructions are stored, and the processor is configured to execute the instructions stored in the memory or derived from other instructions.
  • the processor is configured to implement the method of the second aspect above or any possible implementation thereof.
  • the chip can be integrated on the access network device.
  • control information can be transmitted independently without data transmission, and a method for determining the resources required for transmitting the control information is provided, thereby improving the flexibility of information transmission.
  • FIG. 1 is a schematic structural diagram of a mobile communication system to which an embodiment of the present application is applied.
  • FIG. 2 is a schematic interaction diagram of a method for transmitting control information according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a subframe structure for transmitting control information according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a subframe structure for transmitting control information according to another embodiment of the present application.
  • FIG. 5 is a schematic block diagram of an originating device according to an embodiment of the present application.
  • FIG. 6 is a schematic block diagram of a receiving end device according to an embodiment of the present application.
  • FIG. 7 is a structural block diagram of an originating device according to an embodiment of the present application.
  • FIG. 8 is a structural block diagram of a receiving end device according to an embodiment of the present application.
  • the wireless communication systems mentioned in the embodiments of this application include, but are not limited to: Global System of Mobile communication (GSM) system, Code Division Multiple Access (Code Division Multiple Access, CDMA) system, Wideband Code Division Multiple Access (Wideband Code Division Multiple Access, WCDMA) system, General Packet Radio Service (GPRS), Long Term Evolution (LTE) system, Advanced Long Term Evolution (LTE-A) system, LTE Frequency Division Duplex (Frequency Division Duplex, FDD) system, LTE Time Division Duplex (TDD), Universal Mobile Telecommunication System (UMTS), Worldwide Interoperability for Microwave Access (WiMAX) communication system, next-generation communication system (For example, fifth-generation (5G) communication system), fusion system of multiple access systems, or evolution system, three major application scenarios of next-generation 5G mobile communication system eMBB, URLLC and eMTC or future emerging new communication system.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS
  • the network device involved in the embodiments of this application may be any device with a wireless transceiver function or a chip that can be provided in the device, and the device includes but is not limited to: a base station (for example, a base station NodeB, an evolved base station eNodeB, a fifth base station).
  • Network equipment eg, transmission point (TP), transmission reception point (TRP), base station, small base station equipment, etc.
  • 5G transmission point
  • wireless Access nodes wireless relay nodes
  • wireless backhaul nodes etc. in a fidelity (Wireless-Fidelity, WiFi) system.
  • the terminal devices involved in the embodiments of this application may include various access terminals, mobile devices, user terminals, or user equipments with wireless communication functions.
  • it can be a mobile phone (mobile phone), a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (Virtual Reality, VR) terminal device, an augmented reality (Augmented Reality, AR) terminal device, industrial control (industrial control) ), machine type communication (MTC) terminals, customer terminal equipment (Customer Premise Equipment, CPE), wireless terminals in self-driving (self-driving), telemedicine (remote medical) in Wireless terminal, wireless terminal in smart grid, wireless terminal in transportation safety, wireless terminal in smart city, wireless terminal in smart home, etc.
  • the embodiments of the present application do not limit application scenarios.
  • the aforementioned terminal equipment and the chips that can be provided in the aforementioned terminal equipment are collectively referred to as terminal equipment.
  • the PSCCH is used as an example to describe the side link control channel
  • the PSSCH is used as an example to describe the side link data channel
  • the carrier is used as an example to describe the frequency domain unit
  • the time slot is used as an example to describe the time in the 5G system. A description of the unit.
  • FIG. 1 is a schematic diagram of the architecture of a mobile communication system to which an embodiment of the present application is applied.
  • the communication system of the present application can be applied to the vehicle to everything (V2X) technology.
  • the “X” in V2X represents different Communication objectives, V2X may include but are not limited to: vehicle to vehicle (V2V), vehicle to infrastructure (V2I), vehicle to network (V2N), and vehicle to pedestrian (vehicle to pedestrian). to pedestrian, V2P).
  • V2X services can be provided in two ways: namely, the way based on the PC5 interface and the way based on the Uu interface.
  • the PC5 interface is an interface defined on the basis of a sidelink, and by using this interface, communication transmission can be directly performed between communication devices (eg, automobiles).
  • the PC5 interface can be used outside of coverage (OOC) and in coverage (IC), but only authorized communication devices can use the PC5 interface for transmission.
  • V2X cut-through link transmission supports two modes, namely, scheduling mode (may be referred to as mode3 or mode1) and UE autonomous resource selection mode (may be referred to as mode4 or mode 2):
  • the scheduling mode requires the UE to be in a radio resource control (radio resource control, RRC) connected state.
  • RRC radio resource control
  • the UE first requests a resource from an access device (eg, an eNB), and then the access device allocates control and data resources on the V2X cut-through link.
  • the scheduling in the scheduling mode may include semi-persistent scheduling (SPS).
  • SPS semi-persistent scheduling
  • the UE autonomous resource selection mode the UE selects transmission resources by itself and autonomously adjusts the transmission format of control and data on the V2X cut-through link.
  • SL transmission time slot after removing the first-level control information and the second-level control information, data is mapped on resources other than pilots.
  • the resource size of the PSCCH channel for transmitting the first-level control information is configured in the resource pool.
  • the number of symbols occupied in the time domain is expressed as sl-PSCCHsymlLengh, and the number of resources occupied in the frequency domain is expressed as sl-PSCCHfreqPRB.
  • the protocol restricts that PSCCH must be transmitted in one subchannel, that is, sl-PSCCHfreqPRB is less than or equal to the subchannel bandwidth L_CH_PRB, and all terminal users working on this resource pool use the configured resource size for encoding and transmission.
  • sl-PSCCHfreqPRB is less than or equal to the subchannel bandwidth L_CH_PRB, and all terminal users working on this resource pool use the configured resource size for encoding and transmission.
  • the first-level control information includes the priority of the relevant data, the size of the resources occupied by the corresponding PSSCH frequency domain, the time-frequency resource information of the subsequent reserved resources, the DMRS (demodulation reference signal, demodulation reference signal) time domain of this data transmission.
  • the second-level control information is used for decoding the data channel.
  • the second-level control information includes the HARQ processing thread number of the data, the indication information of the newly transmitted data and the retransmitted data, the version number of the data transmission, the source address and the destination of the data transmission. information such as address ID. Therefore, the receiving end user needs to decode the second-level control information first, and then decode the data channel.
  • the first-level control information carries the size of the resources occupied by the corresponding PSSCH frequency domain, the resource time domain position of the subsequent reservation, the demodulation information of the second-level control information and other information, which are used to inform the receiving end user to perform decoding.
  • Time-frequency resources, and the resource location information of subsequent reservations can assist the receiving end user in resource selection, that is, excluding reserved resources during resource selection to reduce resource collisions.
  • the demodulation information of the second-level control information carried in the first-level control information can be used to determine the resource size of the second-level control information, so as to avoid blind detection of the second-level control information.
  • FIG. 2 is a schematic flowchart of a method for transmitting control information according to an embodiment of the present application. It should be understood that FIG. 2 shows detailed steps or operations of the method for transmitting control information, but these steps or operations are only examples, and other operations or modifications of the operations in FIG. 2 may also be performed in this embodiment of the present application. Furthermore, the various steps in FIG. 2 may be performed in a different order than presented in FIG. 2, and it is possible that not all operations in FIG. 2 are performed. The method steps shown in FIG. 2 are described in detail below.
  • the indication information is an example of auxiliary information.
  • the indication information is used to indicate the specific content carried by the current SL transmission, and may also be used to indicate the manner of determining the resource.
  • the method includes:
  • Step 1 the originating device adds instruction information to the first-level control information
  • Step 2 the originating device sends first-level control information, or, first-level control information and second-level control information, or, first-level control information, second-level control information, and valid data information;
  • Step 3 the receiving end device receives the first-level control information, or, the first-level control information and the second-level control information, or, the first-level control information, the second-level control information, and the valid data information.
  • Step 4 The receiving end device determines the resources on the corresponding channel and performs decoding.
  • the second-level control information carries auxiliary information for assisting in selecting resources, and the second-level control information includes at least one of the following parameters: the time-frequency domain of the target resource The location, the period of the target resource, the priority of the target resource, the index of the resource pool where the target resource is located, and the position of the resource selection window of the target resource.
  • step 1 1-bit indication information is carried in the first-level control information.
  • step 1 the corresponding relationship between the value of the bit information and the indication content is pre-configured.
  • the corresponding relationship between the value of the bit and the content of the indication information is shown in Table 1.
  • the bit value when the bit value is 0, it means that the second-level control information and data of the prior art are carried in this transmission; when the bit value is 1, it means that this SL transmission does not carry data, but only carries control
  • the information may be only the first-level control information, or may be the first-level control information and the second-level control information.
  • the value of the bit can also be used to indicate the manner of determining the resources occupied by the second-level control information
  • O SCI2 represents the payload size of the second-level control information
  • L SCI2 represents the CRC bit length of the second-level control information
  • R represents the code rate of the data channel
  • Q represents the modulation order of the data channel
  • represents the scaling factor of the resources of the second-level control information indicated by the first-level control information
  • represents the scaling factor of the resource type used for transmitting the second-level control information to the total PSSCH resources
  • lengthSLsymbols is the number of symbols contained in a sidelink communication slot, is the number of symbols occupied by the PSFCH,
  • v represents the data layer (the number of DMRS ports) for PSSCH data transmission
  • represents the number of REs defined to satisfy an integer number of PRBs occupied by the second-level control information.
  • O SCI2 represents the payload size of the second-level control information
  • L SCI2 represents the CRC bit length of the second-level control information
  • R represents the code rate of the data channel
  • Q represents the modulation order of the data channel
  • represents the scaling factor of the resources of the second-level control information indicated by the first-level control information
  • represents the scaling factor of the resource type used for transmitting the second-level control information to the total PSSCH resources
  • lengthSLsymbols is the number of symbols contained in a sidelink communication slot, is the number of symbols occupied by the PSFCH,
  • v represents the data layer (the number of DMRS ports) for PSSCH data transmission
  • n represents the number of idle resources in the resource block to which the coded symbol of the PSSCH belongs.
  • bit values are only used for illustration, and vice versa, and are not limited.
  • step 1 the existing MCS index value is used to determine.
  • the first-level control information uses 5 bits to indicate the value of the MCS, and the index value also has reserved status bits, and the reserved status bits can be used as indications.
  • MCS 0 to 28 in Table 2 indicate that the current SL transmission is an existing technical solution, that is, there is second-level control information and valid data transmission.
  • a reserved bit is used to indicate that there is only control information in the current SL transmission, and no valid data transmission.
  • the currently reserved first status bit 29 indicates that there is a second level of control information transmission, no data transmission (or only part of the data position padding information, the purpose is that the transmission power on each SL symbol is the same );
  • the second status bit 30 currently reserved indicates that there is no second-level control information and valid data transmission, that is, except PSCCH, the rest are location filling information, and the purpose is that the transmit power on each SL symbol is the same.
  • the MCS index value is shown in Table 3.
  • MCS 0 to 27 in the table indicate that the current SL transmission is an existing technical solution, that is, there is second-level control information and valid data transmission.
  • the reserved bits are used to indicate that there is only control information in the current SL transmission, and no valid data transmission.
  • the currently reserved first status bit 28 indicates that there is a second level of control information transmission, no data transmission (or only part of the data position padding information, the purpose is that the transmission power on each SL symbol is the same );
  • the second status bit 29 currently reserved indicates that there is no second-level control information and valid data transmission, that is, except PSCCH, the rest are location padding information, and the purpose is that the transmit power on each SL symbol is the same.
  • the MCS index value may also be used to indicate a manner of determining the resources occupied by the second-level control information.
  • the first reserved bit such as the status bit 29 in Table 2 or the status bit 28 in Table 3 indicates that only the second-level control information is transmitted, then the resource determination method of the second-level control information is the formula (2).
  • the non-reserved bits indicate that the resource determination method of the second-level control information is formula (1).
  • status bits 29 or 28 are for illustration only and not for limitation.
  • the format indication information carried in the first-level control information is used to indicate the format of the second-level control information in the PSSCH, that is, whether the second-level control information transmitted this time carries data.
  • the definition format X indicates that there is only the second-level control information in the data channel, and there is no data encoding.
  • the format indication information can also be used to indicate the determination method of the second-level control resources.
  • the definition format X indicates that there is only the second-level control information in the data channel, and there is no data information.
  • the determination method of the second-level control information resources is as follows: shown in formula (2).
  • the embodiments of this application define the use of one bit information, or the reserved value of the existing MCS (also called a status bit), or the format indication information of a certain second-level control information, to determine the specific content carried by the current SL transmission, Or the resource determination method of the second-level control information. Therefore, this transmission can support independent transmission of control information, and support coexistence with the prior art.
  • step 2 the originating device needs to determine the number of resource units REs required to send the second-level control information.
  • the calculation method is shown in formula (1).
  • the PSSCH divides the The REs occupied by the secondary control information and the reference signal RS, and other REs are filled as placeholders, as shown in FIG. 3 .
  • the embodiment of the present application provides a method for separately sending control information, which uses placeholders to fill REs in the DATA part for sending, which reduces the code rate and improves the reliability of transmission.
  • step 2 the calculation method of the number of REs is shown in formula (2), considering that the second-level control information occupies the entire transmission resources except PSCCH and DMRS indicated by the first-level control information, formula (2) ) can be simplified to the following expression:
  • n PRB represents the frequency domain resource bandwidth occupied by the secondary sideline information transmission indicated by the first-level control information, that is, the number of PRBs; represents the number of subcarriers in a PRB, Indicates the number of OFDM symbols in the time slot where the secondary sideline information is transmitted.
  • the resource pool is not configured with PSFCH transmission resources, then Indicates the number of SL transmission symbols contained in a time slot of the resource pool configured by the upper layer, otherwise if the time slot has PSFCH resource configuration, then 3 represents the overhead of the PSFCH channel; Indicates the overhead of the control channel, in a possible case, the actual physical resources for the transmission of PSCCH and PSCCH DMRS configured by the upper layer; Indicates the overhead of the second-level control information demodulation reference signal (also called the data channel demodulation reference signal) for this transmission. In a possible case, The number of REs actually transmitted by the DMRS, or the number of REs determined according to the DMRS pattern indicated in the first-level control information.
  • the second-level control information in PSSCH occupies all other available REs except PSCCH and PSSCH DMRS (and other necessary RSs), as shown in FIG. 4 .
  • the embodiment of the present application provides a method for separately sending control information, and provides a method for determining resources required for transmitting control information, which satisfies the requirement of transmitting only control information.
  • FIG. 5 shows a schematic block diagram of an originating device according to an embodiment of the present application.
  • the originating device 500 is configured to execute the methods or steps corresponding to the foregoing originating device.
  • each module in the originating device 500 may be implemented by software.
  • the originating device 500 includes:
  • the determining unit 510 is configured to determine the first-level control information; and is also configured to determine the amount of resources required for sending the second-level control information.
  • the sending unit 520 is configured to send the information to be sent, including first-level control information, or, first-level control information and second-level control information, or, first-level control information, second-level control information, and valid data information.
  • the originating device 500 can send control information independently, which helps to meet the communication requirement that only needs to transmit control information in a V2X scenario.
  • the originating device 500 may correspond to the originating device that transmits control information in the foregoing method embodiments, and the above-mentioned and other management operations and/or functions of each unit in the originating device 500 are for the purpose of realizing the foregoing various Therefore, the beneficial effects in the foregoing method embodiments can also be achieved.
  • the determination unit in the embodiment of the present application may be implemented by a processor, and the transceiver unit may be implemented by a transceiver.
  • FIG. 6 shows a schematic block diagram of a receiving end device according to an embodiment of the present application.
  • the receiving end device 600 is configured to execute the methods or steps corresponding to the foregoing sending end device.
  • each module in the receiving end device 600 may be implemented by software.
  • the receiving end device 600 includes:
  • the receiving unit 610 is configured to receive information sent by the originating device, including first-level control information, or, first-level control information and second-level control information, or, first-level control information, second-level control information, and valid data information.
  • the determining unit 620 is configured to determine the amount of resources occupied by the second-level control information.
  • the processing unit 630 optionally, the processing unit is a decoding unit, configured to correctly decode the PSSCH channel.
  • the receiving end device 600 may correspond to the receiving end device that transmits control information in the foregoing method embodiments, and the above-mentioned and other management operations and/or functions of each unit in the receiving end device 600 are respectively for the purpose of Corresponding steps of the foregoing methods are implemented, so the beneficial effects in the foregoing method embodiments can also be achieved.
  • the determination unit and the decoding unit in the embodiments of the present application may be implemented by a processor, and the transceiver unit may be implemented by a transceiver.
  • FIG. 7 is a structural block diagram of an originating device 700 provided according to an embodiment of the present application.
  • the originating device 700 shown in FIG. 7 includes: a processor 701 , a memory 702 and a transceiver 703 .
  • the processor 701, the memory 702 and the transceiver 703 communicate with each other through an internal connection path to transmit control and/or data signals.
  • the processor 701, the memory 702 and the transceiver 703 may be implemented in a chip.
  • the memory 702 may store program codes, and the processor 601 invokes the program codes stored in the memory 702 to implement corresponding functions of the originating device.
  • the processor 701 is used for:
  • the information to be sent is sent through the transceiver 703, including first-level control information, or, first-level control information and second-level control information, or, first-level control information, second-level control information, and valid data information.
  • the originating device 700 may also include other devices, such as input devices, output devices, batteries, and the like.
  • the memory 702 may store some or all of the instructions for performing some or all of the aforementioned methods performed by the originating device.
  • the processor 701 can execute the instructions stored in the memory 702 in combination with other hardware (such as the transceiver 703) to complete the steps performed by the originating device in the foregoing method.
  • other hardware such as the transceiver 703
  • FIG. 8 is a structural block diagram of a receiving end device 800 provided according to an embodiment of the present application.
  • the receiving end device 800 shown in FIG. 8 includes: a processor 801 , a memory 802 and a transceiver 803 .
  • the processor 801, the memory 802 and the transceiver 803 communicate with each other through an internal connection path to transmit control and/or data signals.
  • the processor 801, the memory 802 and the transceiver 803 may be implemented in a chip.
  • the memory 802 may store program codes, and the processor 801 invokes the program codes stored in the memory 802 to implement corresponding functions of the receiving end device.
  • the processor 801 is used for:
  • the information to be sent is received by the transceiver 803, including first-level control information, or, first-level control information and second-level control information, or, first-level control information, second-level control information, and valid data information.
  • the originating device 800 may also include other devices, such as input devices, output devices, batteries, and the like.
  • the memory 802 may store some or all of the instructions for performing the methods performed by the terminal device in the aforementioned methods.
  • the processor 801 can execute the instructions stored in the memory 802 in combination with other hardware (eg, the transceiver 803 ) to complete the steps performed by the terminal device in the foregoing method.
  • other hardware eg, the transceiver 803
  • the size of the sequence numbers of the above-mentioned processes does not mean the sequence of execution, and the execution sequence of each process should be determined by its functions and internal logic, and should not be dealt with in the embodiments of the present application. implementation constitutes any limitation.
  • a processor may be an integrated circuit chip with signal processing capabilities.
  • each step of the above-mentioned method can be completed by a hardware integrated logic circuit in a processor or an instruction in the form of software.
  • the above-mentioned processor can be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), an off-the-shelf programmable gate array (field programmable gate array, FPGA) or other available Programming logic devices, discrete gate or transistor logic devices, discrete hardware components, can also be a system on chip (SoC), can also be a central processor unit (CPU), can also be a network processor (network processor) processor, NP), can also be a digital signal processing circuit (digital signal processor, DSP), can also be a microcontroller (micro controller unit, MCU), can also be a programmable logic device (programmable logic device, PLD) or other Integrated chip.
  • SoC system on chip
  • CPU central processor unit
  • NP network processor
  • DSP digital signal processing circuit
  • MCU microcontroller
  • PLD programmable logic device
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the steps of the method disclosed in conjunction with the embodiments of the present application may be directly embodied as executed by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • Software modules can be located in random access memory (RAM), flash memory, read-only memory (ROM), programmable read-only memory or electrically erasable programmable memory, registers, etc. in the storage medium.
  • the storage medium is located in the memory, and the processor reads the instructions in the memory, and completes the steps of the above method in combination with its hardware.
  • the originating device chip implements the functions of the originating device in the foregoing method embodiments.
  • the originating device chip receives information from other modules (eg, radio frequency modules or antennas) in the originating device.
  • the terminal device chip implements the functions of the terminal device in the foregoing method embodiments.
  • the receiving end device chip sends the above information from other modules (such as radio frequency modules or antennas) in the receiving end device.
  • the size of the sequence numbers of the above-mentioned processes does not mean the sequence of execution, and the execution sequence of each process should be determined by its functions and internal logic, and should not be implemented in the present application.
  • the implementation of the examples constitutes no limitation.
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as independent products, may be stored in a computer-readable storage medium.
  • the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art or the part of the technical solution, and the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: a U disk, a removable hard disk, a read-only memory ROM, a random access memory RAM, a magnetic disk or an optical disk and other media that can store program codes.

Abstract

本申请实施例提供了一种传输控制信息的方法和装置,适用于车联网V2X、智能驾驶、智联网联车等领域。该方法包括:确定第一级控制信息,所述第一级控制信息指示物理侧行链路共享信道PSSCH中是否只承载第二级控制信息;在物理侧行链路控制信道PSCCH发送所述第一级控制信息;接收所述控制信息,根据所述控制信息对所述PSSCH进行译码。本申请实施例的传输控制信息的方法和装置,满足了V2X业务中只有控制信息传输的需求,提供了确定传输控制信息所需的资源的方式,提高了信息传输的灵活性。

Description

用于传输控制信息的方法和装置 技术领域
本申请涉及通信领域,并且更具体地,涉及一种传输控制信息的方法和装置。
背景技术
现有的V2X业务中在一个侧行链路SL传输资源上需要传输数据时,需要同时传输与数据相关的第一级控制信息和第二级控制信息。第一级控制信息在物理侧行链路控制信道PSCCH上传输,其内携带数据的调制与编码策略MCS,第二级控制信息的码率调整因子、物理侧行链路共享信道PSSCH解调导频图样等信息。收端用户在正确译码PSCCH以后,获取第一级控制信息的指示信息,从而对第二级控制信息和数据进行译码。
可见,现有技术要求控制信息必须与数据一起传输,无数据传输时,控制信息不能单独传输。在V2X业务演进过程中,存在只有控制信息传输的需求,如何提高控制信息传输的灵活性是目前亟待解决的技术问题。
发明内容
本申请提供一种传输控制信息的方法,能够支持单独传输控制信息,从而可以提高传输信息的灵活性,满足了V2X业务场景的需求。
第一方面,本申请实施例提供了一种用于传输控制信息的方法,该方法包括:确定第一级控制信息,所述第一级控制信息用于确定物理侧行链路共享信道PSSCH中是否只承载第二级控制信息;在物理侧行链路控制信道PSCCH发送所述第一级控制信息。
结合第一方面,在第一方面的某些实现方式中,所述第一级控制信息中的第一比特位的取值用于指示所述PSSCH中是否只承载第二级控制信息。
结合第一方面,在第一方面的某些实现方式中,所述第一级控制信息包括调制编码策略MCS索引值,所述MCS索引值用于指示所述PSSCH中是否只承载第二级控制信息。
结合第一方面,在第一方面的某些实现方式中,所述第一级控制信息包括格式指示信息,所述格式指示信息用于指示所述PSSCH中是否只承载所述第二级控制信息。
结合第一方面,在第一方面的某些实现方式中,所述第一级控制信息用于确定所述PSSCH中只承载第二级控制信息,所述方法还包括确定用于发送所述第二级控制信息的资源单元RE数量,根据所述RE数量在PSSCH上发送第二级控制信息。
结合第一方面,在第一方面的某些实现方式中,所述确定用于发送第二级控制信息的资源单元RE的数量,包括:根据第一参数确定所述RE的数量,所述第一参数包括以下参数:
所述第一级控制信息指示的该次侧行链路SL信息传输占用的物理资源块PRB数量、该次所述SL信息传输所在时隙的正交频分复用OFDM符号数量、所述第一控制信息占用的资源数量、所述PSSCH信道的解调参考信道DMRS占用的资源数量。
结合第一方面,在第一方面的某些实现方式中,所述确定用于发送第二级控制信息的资源单元RE的数量,还包括,根据下述公式确定所述RE的数量
Figure PCTCN2020121590-appb-000001
Figure PCTCN2020121590-appb-000002
其中,O SCI2表示所述第二级控制信息的有效负载大小,
L SCI2表示所述第二级控制信息的循环冗余校验CRC比特长度,
R表示所述PSSCH的码率,
Q表示所述PSSCH的调制阶数,
β表示所述第一级控制信息指示的所述第二级控制信息的资源的缩放因子,α表示用于传输所述第二级控制信息的资源型对于所述PSSCH总资源的比例因子,
Figure PCTCN2020121590-appb-000003
lengthSLsymbols是一个侧行链路通信时隙中包含的符号数量,
Figure PCTCN2020121590-appb-000004
是物理侧行链路反馈信道PSFCH占用的符号数量,
v表示所述PSSCH数据发送的数据层(DMRS端口数量),
Figure PCTCN2020121590-appb-000005
表示传输所述PSSCH的带宽中包含的子载波数量,
Figure PCTCN2020121590-appb-000006
表示所述PSSCH对应的所述PSCCH以及所述PSCCH DMRS包含的子载波数量,
η表示所述PSSCH的编码符号所属的资源块中空闲的资源数量。
结合第一方面,在第一方面的某些实现方式中,所述第一级控制信息用于确定所述PSSCH中只承载所述第二级控制信息,所述第二级控制信息包括第二参数,所述第二参数包括以下参数中的至少一种:目标资源的时频域位置、目标资源的周期、目标资源的优先级、目标资源所在资源池索引、目标资源的资源选择窗位置。
第二方面,本申请实施例提供了一种用于传输控制信息的方法,该方法包括:接收第一级控制信息,所述第一级控制信息用于确定物理侧行链路共享信道PSSCH中是否只承载第二级控制信息;根据所述第一级控制信息对所述PSSCH进行译码。
结合第二方面,在第二方面的某些实现方式中,所述第一级控制信息中的第一比特位的取值用于指示所述PSSCH中是否只承载第二级控制信息。
结合第二方面,在第二方面的某些实现方式中,所述第一级控制信息包括调制编码策略MCS索引值,用于指示所述SL传输的所述PSSCH中是否只承载第二级控制信息。
结合第二方面,在第二方面的某些实现方式中,所述第一级控制信息包括格式指示信息,所述格式指示信息用于指示所述PSSCH中是否只承载所述第二级控制信息。
结合第二方面,在第二方面的某些实现方式中,所述第一级控制信息用于确定所述PSSCH中只承载第二级控制信息,所述方法包括:接收第二级控制信息;确定所述第二级控制信息占用的资源单元RE数量;
结合第二方面,在第二方面的某些实现方式中,所述确定所述第二级控制信息占用的资源单元RE的数量,包括:根据第一参数确定所述RE的数量,所述第一参数包括以下参数:
所述第一级控制信息指示的该次所述SL信息传输占用的物理资源块PRB数量、该次侧行信息传输所在时隙的正交频分复用OFDM符号数量、所述第一控制信息占用的资源 数、所述PSSCH信道的解调参考信道DMRS占用的资源数量。
结合第二方面,在第二方面的某些实现方式中,所述确定所述第二级控制信息占用的资源单元RE的数量,还包括根据下述公式确定所述RE的数量
Figure PCTCN2020121590-appb-000007
Figure PCTCN2020121590-appb-000008
其中,O SCI2表示所述第二级控制信息的有效负载大小,
L SCI2表示所述第二级控制信息的循环冗余校验CRC比特长度,
R表示所述PSSCH的码率,
Q表示所述PSSCH的调制阶数,
β表示所述第一级控制信息指示的所述第二级控制信息的资源的缩放因子,α表示用于传输所述第二级控制信息的资源型对于所述PSSCH总资源的比例因子,
Figure PCTCN2020121590-appb-000009
lengthSLsymbols是一个侧行链路通信时隙中包含的符号数量,
Figure PCTCN2020121590-appb-000010
是物理侧行链路反馈信道PSFCH占用的符号数量,
v表示所述PSSCH数据发送的数据层(DMRS端口数量),
Figure PCTCN2020121590-appb-000011
表示传输所述PSSCH的带宽中包含的子载波数量,
Figure PCTCN2020121590-appb-000012
表示所述PSSCH对应的所述PSCCH以及所述PSCCH DMRS包含的子载波数量,
η表示所述PSSCH的编码符号所属的资源块中空闲的资源数量。
结合第二方面,在第二方面的某些实现方式中,所述第一级控制信息用于确定所述PSSCH中只承载所述第二级控制信息,所述第二级控制信息包括第二参数,所述第二参数包括以下参数中的至少一种:目标资源的时频域位置、目标资源的周期、目标资源的优先级、目标资源所在资源池索引、目标资源的资源选择窗位置。
第三方面,本申请实施例提供了一种用于传输控制信息的装置,所述第一设备用于执行第一方面或第一方面中任意一种可能的实现方式中的通信方法。
第四方面,本申请实施例提供了一种用于传输控制信息的的装置,所述第二设备用于执行第二方面或第二方面中任意一种可能的实现方式中的通信方法的模块。
第五方面,本申请实施例提供了一种用于传输控制信息的装置,包括发送器和处理器,所述发送器和处理器用于实现第一方面或第一方面中任意一种可能的实现方式中的通信方法。
第六方面,本申请实施例提供了一种用于传输控制信息的装置,包括接收器和处理器,所述接收器和处理器用于实现第二方面或第二方面中任意一种可能的实现方式中的通信方法。
第七方面,本申请实施例提供了一种计算机可读介质,所述计算机可读介质存储用于终端设备执行的程序代码,所述程序代码包括用于执行第一方面中或第一方面中任意一种可能的实现方式中的通信方法的指令。
第八方面,本申请实施例提供了一种计算机可读介质,所述计算机可读介质存储用于网络设备执行的程序代码,所述程序代码包括用于执行第二方面中或第二方面中任意一种可能的实现方式中的通信方法的指令。
第九方面,提供了一种包含指令的计算机程序产品,其在计算机上运行时,使得计算机执行上述第一方面或其任意可能的实现方式中的方法。
第十方面,提供了一种包含指令的计算机程序产品,其在计算机上运行时,使得计算机执行上述第二或其任意可能的实现方式中的方法。
第十一方面,提供了一种通信系统,该通信系统包括具有实现上述第一方面、的各方法及各种可能设计的功能的装置和上述第二方面的各方法及各种可能设计的功能的装置。
第十二方面,提供了一种处理器,用于与存储器耦合,用于执行上述第一方面或其任意可能的实现方式中的方法。
第十三方面,提供了一种处理器,用于与存储器耦合,用于执行上述第二方面或其任意可能的实现方式中的方法。
第十四方面,提供了一种芯片,芯片包括处理器和通信接口,该通信接口用于与外部器件或内部器件进行通信,该处理器用于实现上述第一方面或其任意可能的实现方式中的方法。
可选地,该芯片还可以包括存储器,该存储器中存储有指令,处理器用于执行存储器中存储的指令或源于其他的指令。当该指令被执行时,处理器用于实现上述第一方面或其任意可能的实现方式中的方法。
可选地,该芯片可以集成在终端上。
第十五方面,提供了一种芯片,芯片包括处理器和通信接口,该通信接口用于与外部器件或内部器件进行通信,该处理器用于实现上述第二方面或其任意可能的实现方式中的方法。
可选地,该芯片还可以包括存储器,该存储器中存储有指令,处理器用于执行存储器中存储的指令或源于其他的指令。当该指令被执行时,处理器用于实现上述第二方面或其任意可能的实现方式中的方法。
可选地,该芯片可以集成在接入网设备上。
基于上述技术方案,控制信息可被单独传输,无需传输数据,并提供了确定传输控制信息所需的资源的方式,提高了信息传输的灵活性。
附图说明
图1是本申请的实施例应用的移动通信系统的架构示意图。
图2是根据本申请实施例的传输控制信息的方法的示意性交互图。
图3是根据本申请实施例的传输控制信息的子帧结构示意图。
图4是根据本申请另外一种实施例的传输控制信息的子帧结构示意图。
图5是根据本申请实施例的发端设备的示意性框图。
图6是根据本申请实施例的收端设备的示意性框图。
图7是根据本申请实施例的发端设备的结构框图。
图8是根据本申请实施例的收端设备的结构框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例提及的无线通信系统包括但不限于:全球移动通信(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(LTE)系统、先进的长期演进(LTE-A)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信系统、下一代通信系统(例如,第五代(fifth-generation,5G)通信系统)、多种接入系统的融合系统,或演进系统、下一代5G移动通信系统的三大应用场景eMBB,URLLC和eMTC或者将来出现的新的通信系统。
本申请实施例中涉及的网络设备可以是任意一种具有无线收发功能的设备或可设置于该设备的芯片,该设备包括但不限于:基站(例如,基站NodeB、演进型基站eNodeB、第五代(5G)通信系统中的网络设备(例如,传输点(transmission point,TP)、发送接收点(transmission reception point,TRP)、基站、小基站设备等)、未来通信系统中的网络设备、无线保真(Wireless-Fidelity,WiFi)系统中的接入节点、无线中继节点、无线回传节点等。
本申请实施例中所涉及到的终端设备可以包括各种具有无线通信功能的接入终端、移动设备、用户终端、或用户装置。例如,可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(industrial control)中的无线终端、机器类型通信(Machine Type Communication,MTC)终端、客户终端设备(Customer Premise Equipment,CPE)、无人驾驶(self-driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。本申请的实施例对应用场景不做限定。本申请中将前述终端设备及可设置于前述终端设备的芯片统称为终端设备。
本申请以PSCCH为例进行侧链路控制信道的描述,以PSSCH为例进行侧链路数据信道的描述,以载波为例进行频域单元的描述,以时隙为例进行5G系统中的时间单元的描述。
图1是本申请的实施例应用的移动通信系统的架构示意图,如图1所示,本申请的通信系统可以适用于车联网(vehicle to everything,V2X)技术V2X中的“X”代表不同的通信目标,V2X可以包括但不限于:汽车对汽车(vehicle to vehicl,V2V),汽车对路标设(vehicle to infrastructure,V2I),汽车对网络(vehicle to network,V2N),和汽车对行人(vehicle to pedestrian,V2P)。V2X的业务可以通过两种方式提供:即,基于PC5接口的方式和基于Uu接口的方式。其中PC5接口是在直通链路(sidelink)基础上定义的接口,使用这种接口,通信设备(例如,汽车)之间可以直接进行通信传输。PC5接口可以在覆盖外(out of coverage,OOC)和覆盖内(in coverage,IC)下使用,但只有得到授权的通信设备才能使用PC5接口进行传输。
在本申请中,V2X直通链路传输支持两种模式,即,调度模式(可以称为:mode3 或者mode1)和UE自主资源选择模式(可以称为:mode4或者mode 2):
其中,调度模式要求UE处于无线资源控制(radio resource control,RRC)连接态。在调度过程中,UE首先向接入设备(例如,eNB)进行资源请求,然后接入设备会分配V2X直通链路上的控制和数据资源。作为示例而非限定,在本申请中,调度模式下的调度可以包括半静态调度(semi-persistent scheduling,SPS)。另外,在UE自主资源选择模式下,UE自己选择传输资源并自主调节V2X直通链路上控制和数据的传输格式。
在一个SL传输时隙中,去除第一级控制信息和第二级控制信息后,数据在除导频以外的资源上映射。传输第一级控制信息的PSCCH信道的资源大小在资源池中配置,其时域占用的符号数量表示为sl-PSCCHsymlLengh,频域占用的资源数量表示为sl-PSCCHfreqPRB,为减少盲检测复杂度,协议约束PSCCH必须在一个子信道内传输,即sl-PSCCHfreqPRB小于等于子信道带宽L_CH_PRB,所有工作在该资源池上的终端用户均采用该配置的资源大小进行编码传输。在一个SL传输时隙中,去除第一级控制信息和第二级控制信息后,数据在除导频以外的资源上映射。第一级控制信息包括相关数据的优先级、其对应的PSSCH频域占用的资源大小、后续预约资源的时频资源信息,该次数据传输的DMRS(demodulation reference signal,解调参考信号)时域图样指示信息,DMRS端口,第二级控制信息的格式和beta偏移指示信息。第二级控制信息用于数据信道的译码,第二级控制信息包括数据的HARQ处理线程号,新传数据和重传数据的指示信息,数据传输的版本号,数据传输的源地址和目的地址ID等信息。所以收端用户需要先译码第二级控制信息,再译码数据信道。其中第一级控制信息中携带其对应的PSSCH频域占用的资源大小,以及后续预约的资源时域位置,第二级控制信息的解调信息等信息,用于告知收端用户进行译码的时频资源,且后续预约的资源位置信息可以辅助收端用户进行资源选择,即在资源选择的时候排除以预约的资源,以减少资源碰撞。同时第一级控制信息中携带的第二级控制信息的解调信息可以用于确定第二级控制信息的资源大小,以避免第二级控制信息的盲检测。
下文结合附图,详细地描述本申请实施例的传输控制信息的方法。
图2是本申请实施例的传输控制信息方法的示意性流程图。应理解,图2是传输控制信息方法的详细的步骤或操作,但这些步骤或操作仅是示例,本申请实施例还可以执行其他操作,或者图2中各操作的变形。此外,图2中的各个步骤可以按照与图2呈现的不同顺序来执行,并且有可能并非要执行图2中的全部操作。下面具体描述图2所示的方法步骤。
应理解,指示信息是辅助信息的一种示例。
还应理解,指示信息用于指示当前SL传输携带的具体内容,也可用于指示资源的确定方式。
如图2所示,该方法包括:
步骤1,发端设备在第一级控制信息中添加指示信息;
步骤2,发端设备发送第一级控制信息,或,第一级控制信息和第二级控制信息,或,第一级控制信息、第二级控制信息和有效数据信息;
步骤3,收端设备接收第一级控制信息,或,第一级控制信息和第二级控制信息,或,第一级控制信息、第二级控制信息和有效数据信息。
步骤4,收端设备确定对应信道上的资源,进行译码。
应理解,在无有效数据信息传输的情况下,第二级控制信息携带辅助信息,用于辅助选择资源,所述第二级控制信息包括以下参数中的至少一种:目标资源的时频域位置、目标资源的周期、目标资源的优先级、目标资源所在资源池索引、目标资源的资源选择窗位置。
可选地,在步骤1中,在第一级控制信息中携带1比特指示信息。
具体而言,在步骤1中,预先配置好比特信息取值与指示内容的对应关系,比如,比特的取值与指示信息的内容的对应关系如表一。
表一.比特信息取值与指示内容的对应关系
比特值 有无数据信息
1
0
如表一所示,当比特值为0时,表示该次传输中携带现有技术的第二级控制信息和数据;当比特值为1时,表示该次SL传输不携带数据,只携带控制信息,可以是只有第一级控制信息,也可以是第一级控制信息和第二级控制信息。
应理解,表一只是用于举例说明,反之亦然,不作限定。
可选地,比特的取值还可用于指示第二级控制信息占用的资源的确定方式,
当比特值为0时,第二级控制信息占用的RE的数量
Figure PCTCN2020121590-appb-000013
根据公式(1)确定,
Figure PCTCN2020121590-appb-000014
其中,O SCI2表示所述第二级控制信息的有效负载大小,
L SCI2表示所述第二级控制信息的循环冗余校验CRC比特长度,
R表示所述数据信道的码率,
Q表示所述数据信道的调制阶数,
β表示第一级控制信息指示的第二级控制信息的资源的缩放因子,α表示用于传输所述第二级控制信息的资源型对于PSSCH总资源的比例因子,
Figure PCTCN2020121590-appb-000015
lengthSLsymbols是一个侧行链路通信时隙中包含的符号数量,
Figure PCTCN2020121590-appb-000016
是PSFCH占用的符号数量,
v表示PSSCH数据发送的数据层(DMRS端口数量),
Figure PCTCN2020121590-appb-000017
表示传输PSSCH的带宽中包含的子载波数量,
Figure PCTCN2020121590-appb-000018
表示PSSCH对应的PSCCH以及PSCCH DMRS包含的子载波数量,
γ表示为满足所述第二级控制信息占用整数个PRB定义的RE数量。
当比特值为1时,第二级控制信息占用的RE的数量
Figure PCTCN2020121590-appb-000019
根据公式(2)确定,
Figure PCTCN2020121590-appb-000020
其中,O SCI2表示所述第二级控制信息的有效负载大小,
L SCI2表示所述第二级控制信息的循环冗余校验CRC比特长度,
R表示所述数据信道的码率,
Q表示所述数据信道的调制阶数,
β表示第一级控制信息指示的第二级控制信息的资源的缩放因子,α表示用于传输所述第二级控制信息的资源型对于PSSCH总资源的比例因子,
Figure PCTCN2020121590-appb-000021
lengthSLsymbols是一个侧行链路通信时隙中包含的符号数量,
Figure PCTCN2020121590-appb-000022
是PSFCH占用的符号数量,
v表示PSSCH数据发送的数据层(DMRS端口数量),
Figure PCTCN2020121590-appb-000023
表示传输PSSCH的带宽中包含的子载波数量,
Figure PCTCN2020121590-appb-000024
表示PSSCH对应的PSCCH以及PSCCH DMRS包含的子载波数量,
η表示所述PSSCH的编码符号所属的资源块中空闲的资源数量。
应理解,比特取值只是用于举例说明,反之亦然,不作限定。
可选地,在步骤1中,利用现有MCS索引值确定。
具体地,现有技术中第一级控制信息中用5比特来指示MCS取值,索引值还有预留状态位,预留状态位可以用作指示。
本申请实施例利用MCS不同的状态位表示不同含义。如表二中的MCS 0~28表示当前SL传输为现有技术方案,即存在第二级控制信息和有效数据传输。
表二.MCS索引表格
Figure PCTCN2020121590-appb-000025
用预留比特指示当前SL传输中只有控制信息,没有有效数据传输。一种示例,当前 预留的第一个状态位29表示,有第二级控制信息传输,没有数据传输(或者仅有部分数据位置填充信息,目的是是的每个SL符号上的发送功率相同);当前预留的第二个状态位30表示,没有第二级控制信息和有效数据传输,即PSCCH外,其余皆为位置填充信息,目的是每个SL符号上的发送功率相同。
应理解,表二只是用于举例说明,不作限定。
可选地,MCS索引值如表三所示。
本申请实施例利用MCS不同的状态位表示不同含义。如表格中的MCS 0~27表示当前SL传输为现有技术方案,即存在第二级控制信息和有效数据传输。用预留比特指示当前SL传输中只有控制信息,没有有效数据传输。一种示例,当前预留的第一个状态位28表示,有第二级控制信息传输,没有数据传输(或者仅有部分数据位置填充信息,目的是是的每个SL符号上的发送功率相同);当前预留的第二个状态位29表示,没有第二级控制信息和有效数据传输,即PSCCH外,其余皆为位置填充信息,目的是每个SL符号上的发送功率相同。
表三.MCS索引表格
Figure PCTCN2020121590-appb-000026
应理解,表三只是用于举例说明,不作限定。
可选地,MCS索引值还可用于指示第二级控制信息占用的资源的确定方式。
具体地,一种示例,第一预留位,如表二中的状态位29或表三中的状态位28表示只有第二级控制信息传输,则第二级控制信息的资源确定方式为公式(2)。非预留位则表 示第二级控制信息的资源确定方式为公式(1)。
应理解,状态位29或28只是用于举例说明,不作限定。
可选地,第一级控制信息中携带的格式指示信息,用于指示所述PSSCH中的所述第二级控制信息的格式,即此次传输第二级控制信息是否携带了数据。比如定义格式X表示,数据信道中只有第二级控制信息,没有数据编码。
应理解,格式指示信息也可用于指示第二级控制资源的确定方式,比如定义格式X表示,数据信道中只有第二级控制信息,没有数据信息,则第二级控制信息资源的确定方式如公式(2)所示。
本申请实施例定义使用一个比特信息,或者现有MCS的预留值(也可以称为状态位),或者通过某一个第二级控制信息的格式指示信息,确定当前SL传输携带的具体内容,或者第二级控制信息的资源确定方式。由此,该次传输能够支持控制信息单独传输,且支持与现有技术共存。
可选地,在步骤2中,发端设备需要确定发送第二级控制信息所需的资源单元RE数量,计算方法如公式(1)所示,在该次SL信息传输中,其中PSSCH中除第二级控制信息以及参考信号RS占用的RE,其他RE均填充为占位符,如图3所示。
本申请实施例提供了一种单独发送控制信息的方法,利用占位符填充DATA部分的RE进行发送,降低了码率,提高了传输的可靠性。
可选地,在步骤2中,RE数量的计算方法如公式(2)所示,考虑第二级控制信息占满第一级控制信息指示的除PSCCH以及DMRS以外的整个传输资源,公式(2)可以简化为如下表达式:
Figure PCTCN2020121590-appb-000027
其中n PRB表示第一级控制信息指示的该次侧行信息传输占用的频域资源带宽,即PRB数量;
Figure PCTCN2020121590-appb-000028
表示一个PRB中子载波数量,
Figure PCTCN2020121590-appb-000029
表示该次侧行信息传输所在时隙的OFDM符号数量,如果该时隙没有PSFCH,或者该资源池没有配置PSFCH发送资源,则
Figure PCTCN2020121590-appb-000030
表示高层配置的该资源池的一个时隙中包含的SL传输符号数量,否则若该时隙有PSFCH资源配置,则
Figure PCTCN2020121590-appb-000031
其中3表示PSFCH信道的开销;
Figure PCTCN2020121590-appb-000032
表示控制信道的开销,一种可能的情况下为高层配置的PSCCH以及PSCCH DMRS的传输的实际物理资源;
Figure PCTCN2020121590-appb-000033
表示该次传输第二级控制信息解调参考信号的开销(也可以称为数据信道解调参考信号),一种可能的情况下,
Figure PCTCN2020121590-appb-000034
为DMRS真实传输的RE数量,或者为根据第一级控制信息中指示的DMRS图样确定的RE数量。
在一次SL信息传输中,其中PSSCH中第二级控制信息占用除PSCCH和PSSCH DMRS(以及其他必要的RS)的其他所有可用RE,如图4所示。
本申请实施例提供了一种单独发送控制信息的方法,并提供了确定传输控制信息所需的资源的方式,满足了只有控制信息传输的需求。
图5示出了本申请实施例的发端设备的示意性框图。所述发端设备500用于执行前述发端设备对应的方法或步骤。可选地,所述发端设备500中各个模块可以是通过软件来实现的。如图5所示,所述发端设备500包括:
确定单元510,用于确定第一级控制信息;也用于确定发送第二级控制信息所需的资源数量。
发送单元520,用于发送待发送信息,包括第一级控制信息,或,第一级控制信息和第二级控制信息,或,第一级控制信息、第二级控制信息和有效数据信息。
在本申请实施例中,发端设备500能够单独发送控制信息,有助于满足V2X场景中存在只需传输控制信息的通信需求。
应理解,根据本申请实施例的发端设备500可对应于前述方法实施例的传输控制信息的发端设备,并且发端设备500中的各个单元的上述和其它管理操作和/或功能分别为了实现前述各个方法的相应步骤,因此也可以实现前述方法实施例中的有益效果。
还应理解,本申请实施例中的确定单元可以由处理器实现,收发单元可以由收发器实现。
图6示出了本申请实施例的收端设备的示意性框图。所述收端设备600用于执行前述发端设备对应的方法或步骤。可选地,所述收端设备600中各个模块可以是通过软件来实现的。如图6所示,所述收端设备600包括:
接收单元610,用于接收发端设备发送的信息,包括第一级控制信息,或,第一级控制信息和第二级控制信息,或,第一级控制信息、第二级控制信息和有效数据信息。
确定单元620,用于确定第二级控制信息占用的资源数量。
处理单元630,可选地,所述处理单元为译码单元,用于正确译码所述PSSCH信道。
应理解,根据本申请实施例的收端设备600可对应于前述方法实施例的传输控制信息的收端设备,并且收端设备600中的各个单元的上述和其它管理操作和/或功能分别为了实现前述各个方法的相应步骤,因此也可以实现前述方法实施例中的有益效果。
还应理解,本申请实施例中的确定单元、译码单元可以由处理器实现,收发单元可以由收发器实现。
图7是根据本申请实施例提供的发端设备700的结构框图。图7所示的发端设备700包括:处理器701、存储器702和收发器703。
处理器701、存储器702和收发器703之间通过内部连接通路互相通信,传递控制和/或数据信号。在一个可能的设计中,处理器701、存储器702和收发器703可以通过芯片实现。该存储器702可以存储程序代码,处理器601调用存储器702存储的程序代码,以实现该发端设备的相应功能。
所述处理器701用于:
用于确定第一级控制信息;也用于确定发送第二级控制信息所需的资源数量;
通过所述收发器703发送待发送信息,包括第一级控制信息,或,第一级控制信息和第二级控制信息,或,第一级控制信息、第二级控制信息和有效数据信息。
可以理解的是,尽管并未示出,发端设备700还可以包括其他装置,例如输入装置、输出装置、电池等。
可选地,在一些实施例中,存储器702可以存储用于执行前述方法中发端设备执行的方法的部分或全部指令。处理器701可以执行存储器702中存储的指令结合其他硬件(例如收发器703)完成前述方法中发端设备执行的步骤,具体工作过程和有益效果可以参见前述方法实施例中的描述。
图8是根据本申请实施例提供的收端设备800的结构框图。图8所示的收端设备800包括:处理器801、存储器802和收发器803。
处理器801、存储器802和收发器803之间通过内部连接通路互相通信,传递控制和/或数据信号。在一个可能的设计中,处理器801、存储器802和收发器803可以通过芯片实现。该存储器802可以存储程序代码,处理器801调用存储器802存储的程序代码,以实现该收端设备的相应功能。
所述处理器801用于:
用于确定发送第二级控制信息所需的资源数量,对所述PSSCH信道进行译码;
通过所述收发器803接收待发送信息,包括第一级控制信息,或,第一级控制信息和第二级控制信息,或,第一级控制信息、第二级控制信息和有效数据信息。
可以理解的是,尽管并未示出,发端设备800还可以包括其他装置,例如输入装置、输出装置、电池等。
可选地,在一些实施例中,存储器802可以存储用于执行前述方法中终端设备执行的方法的部分或全部指令。处理器801可以执行存储器802中存储的指令结合其他硬件(例如收发器803)完成前述方法中收端设备执行的步骤,具体工作过程和有益效果可以参见前述方法实施例中的描述。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
上述本申请实施例揭示的方法可以应用于处理器中,或者由处理器实现。处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(digital signal processor,DSP),专用集成电路(application specific integrated circuit,ASIC),现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件,分立门或者晶体管逻辑器件,分立硬件组件,还可以是系统芯片(system on chip,SoC),还可以是中央处理器(central processor unit,CPU),还可以是网络处理器(network processor,NP),还可以是数字信号处理电路(digital signal processor,DSP),还可以是微控制器(micro controller unit,MCU),还可以是可编程控制器(programmable logic device,PLD)或其他集成芯片。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存取存储器(random access memory,RAM)、闪存、只读存储器(read-only memory,ROM)、可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的指令,结合其硬件完成上述方法的步骤。
可以理解的是,当本申请的实施例应用于发端设备芯片时,该发端设备芯片实现上述方法实施例中发端设备的功能。该发端设备芯片向发端设备中的其它模块(如射频模块或天线)接收信息。
当本申请的实施例应用于收端设备芯片时,该收端设备芯片实现上述方法实施例中收端设备的功能。该收端设备芯片从收端设备中的其它模块(如射频模块或天线)发送上述 信息。
还应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
还应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
还应理解,本申请实施例中引入编号“第一”和“第二”只是为了区分不同的对象,比如,区分不同的“设备”,或,“单元”并不对本申请实施例构成限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器ROM、随机存取存储器RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (35)

  1. 一种传输控制信息的方法,其特征在于,包括:
    确定第一级控制信息,所述第一级控制信息用于确定物理侧行共享信道PSSCH中是否只承载第二级控制信息;
    在物理侧行链路控制信道PSCCH发送所述第一级控制信息。
  2. 如权利要求1所述的方法,其特征在于,所述第一级控制信息中的第一比特位的取值用于指示所述PSSCH中是否只承载所述第二级控制信息。
  3. 如权利要求1所述的方法,其特征在于,所述第一级控制信息包括调制编码策略MCS索引值,所述MCS索引值用于指示所述PSSCH中是否只承载所述第二级控制信息。
  4. 如权利要求1所述的方法,其特征在于,所述第一级控制信息包括格式指示信息,所述格式指示信息用于指示所述PSSCH中是否只承载所述第二级控制信息。
  5. 如权利要求1-4中任一项所述的方法,其特征在于,所述第一级控制信息用于确定所述PSSCH中只承载所述第二级控制信息,所述方法还包括:
    确定用于发送所述第二级控制信息的资源单元RE的数量。
  6. 如权利要求5所述的方法,其特征在于,所述确定用于发送所述第二级控制信息的资源单元RE的数量包括:
    根据第一参数确定所述RE的数量,所述第一参数包括以下参数:
    所述第一级控制信息指示的该次侧行链路SL信息传输占用的物理资源块PRB数量、该次所述SL信息传输所在时隙的正交频分复用OFDM符号数量、所述第一控制信息占用的资源数量、所述PSSCH信道的解调参考信道DMRS占用的资源数量。
  7. 如权利要求5所述的方法,其特征在于,所述确定用于发送所述第二级控制信息的资源单元RE的数量还包括,根据下述公式确定所述RE的数量
    Figure PCTCN2020121590-appb-100001
    Figure PCTCN2020121590-appb-100002
    其中,O SCI2表示所述第二级控制信息的有效负载大小,
    L SCI2表示所述第二级控制信息的循环冗余校验CRC比特长度,
    R表示所述PSSCH的码率,
    Q表示所述PSSCH的调制阶数,
    β表示所述第一级控制信息指示的所述第二级控制信息的资源的缩放因子,α表示用于传输所述第二级控制信息的资源型对于所述PSSCH总资源的比例因子,
    Figure PCTCN2020121590-appb-100003
    是一个侧行链路通信时隙中包含的符号数量,
    Figure PCTCN2020121590-appb-100004
    是物理侧行链路反馈信道PSFCH占用的符号数量,
    v表示所述PSSCH数据发送的数据层(DMRS端口数量),
    Figure PCTCN2020121590-appb-100005
    表示传输所述PSSCH的带宽中包含的子载波数量,
    Figure PCTCN2020121590-appb-100006
    表示所述PSSCH对应的所述PSCCH以及所述PSCCH DMRS包含的子载波数量,
    η表示所述PSSCH的编码符号所属的资源块中空闲的资源数量。
  8. 如权利要求1-7中任一项所述的方法,其特征在于,所述第一级控制信息用于确定所述PSSCH中只承载所述第二级控制信息,所述第二级控制信息用于辅助选择资源,所述第二级控制信息包括第二参数,所述第二参数包括以下参数中的至少一种:目标资源的时频域位置、目标资源的周期、目标资源的优先级、目标资源所在资源池索引、目标资源的资源选择窗位置。
  9. 一种传输控制信息的方法,其特征在于,包括:
    接收第一级控制信息,所述第一级控制信息用于确定物理侧行链路共享信道PSSCH中是否只承载第二级控制信息;
    根据所述第一级控制信息对所述PSSCH进行译码。
  10. 如权利要求9所述的方法,其特征在于,所述第一级控制信息中的第一比特位的取值用于指示所述PSSCH中是否只承载第二级控制信息。
  11. 如权利要求9所述的方法,其特征在于,所述第一级控制信息包括调制编码策略MCS索引值,用于指示所述PSSCH中是否只承载第二级控制信息。
  12. 如权利要求9所述的方法,其特征在于,所述第一级控制信息包括格式指示信息,所述格式指示信息用于指示所述PSSCH中是否只承载所述第二级控制信息。
  13. 如权利要求9-12中任一项所述的方法,其特征在于,所述第一级控制信息用于确定所述PSSCH中只承载第二级控制信息,所述方法包括:
    接收第二级控制信息;
    确定所述第二级控制信息占用的资源单元RE的数量。
  14. 如权利要求13所述的方法,其特征在于,所述确定所述第二级控制信息占用的资源单元RE的数量包括:
    根据第一参数确定所述RE的数量,所述第一参数包括以下参数:
    所述第一级控制信息指示的该次侧行链路SL信息传输占用的物理资源块PRB数量、该次所述SL信息传输所在时隙的正交频分复用OFDM符号数量、所述第一控制信息占用的资源数、所述PSSCH信道的解调参考信道DMRS占用的资源数量。
  15. 如权利要求13所述的方法,其特征在于,所述确定所述第二级控制信息占用的资源单元RE的数量还包括,根据下述公式确定所述RE的数量
    Figure PCTCN2020121590-appb-100007
    Figure PCTCN2020121590-appb-100008
    其中,O SCI2表示所述第二级控制信息的有效负载大小,
    L SCI2表示所述第二级控制信息的循环冗余校验CRC比特长度,
    R表示所述PSSCH的码率,
    Q表示所述PSSCH的调制阶数,
    β表示所述第一级控制信息指示的所述第二级控制信息的资源的缩放因子,α表示用于传输所述第二级控制信息的资源型对于所述PSSCH总资源的比例因子,
    Figure PCTCN2020121590-appb-100009
    是一个侧行链路通信时隙中包含的符号数量,
    Figure PCTCN2020121590-appb-100010
    是物理侧行链路反馈信道PSFCH占用的符号数量,
    v表示所述PSSCH数据发送的数据层(DMRS端口数量),
    Figure PCTCN2020121590-appb-100011
    表示传输所述PSSCH的带宽中包含的子载波数量,
    Figure PCTCN2020121590-appb-100012
    表示所述PSSCH对应的所述PSCCH以及所述PSCCH DMRS包含的子载波数量,
    η表示所述PSSCH的编码符号所属的资源块中空闲的资源数量。
  16. 如权利要求9-15中任一项所述的方法,其特征在于,所述第一级控制信息确定所述PSSCH中只承载所述第二级控制信息,所述第二级控制信息用于辅助选择资源,所述第二级控制信息包括第二参数,所述第二参数包括以下参数中的至少一种:目标资源的时频域位置、目标资源的周期、目标资源的优先级、目标资源所在资源池索引、目标资源的资源选择窗位置。
  17. 一种传输控制信息的装置,其特征在于,包括:
    确定单元,用于确定第一级控制信息,所述第一级控制信息用于确定物理侧行链路共享信道PSSCH中是否只承载第二级控制信息;
    发送单元,用于发送待发送信息。
  18. 如权利要求17所述的装置,其特征在于,所述第一级控制信息中的第一比特位的取值用于指示所述PSSCH中是否只承载第二级控制信息。
  19. 如权利要求17所述的装置,其特征在于,所述第一级控制信息包括调制编码策略MCS索引值,所述MCS索引值用于指示所述PSSCH中是否只承载第二级控制信息。
  20. 如权利要求17所述的装置,其特征在于,所述第一级控制信息包括格式指示信息,所述格式指示信息用于指示所述PSSCH中是否只承载所述第二级控制信息。
  21. 如权利要求17-20中任一项所述的装置,其特征在于,所述第一级控制信息用于确定所述PSSCH中只承载第二级控制信息,所述确定单元还用于确定发送所述第二级控制信息的资源单元RE的数量。
  22. 如权利要求21所述的装置,其特征在于,所述确定单元具体用于根据第一参数确定所述RE的数量,所述第一参数包括以下参数:
    所述第一级控制信息指示的该次侧行链路SL信息传输占用的物理资源块PRB数量、该次所述SL信息传输所在时隙的正交频分复用OFDM符号数量、所述第一控制信息占用的资源数、所述PSSCH信道的解调参考信道DMRS占用的资源数量。
  23. 如权利要求21所述的装置,其特征在于,所述确定单元具体用于根据下述公式确定所述RE的数量
    Figure PCTCN2020121590-appb-100013
    Figure PCTCN2020121590-appb-100014
    其中,O SCI2表示所述第二级控制信息的有效负载大小,
    L SCI2表示所述第二级控制信息的循环冗余校验CRC比特长度,
    R表示所述PSSCH的码率,
    Q表示所述PSSCH的调制阶数,
    β表示所述第一级控制信息指示的所述第二级控制信息的资源的缩放因子,α表示用于传输所述第二级控制信息的资源型对于所述PSSCH总资源的比例因子,
    Figure PCTCN2020121590-appb-100015
    是一个侧行链路通信时隙中包含的符号数量,
    Figure PCTCN2020121590-appb-100016
    是物理侧行链路反馈信道PSFCH占用的符号数量,
    v表示所述PSSCH数据发送的数据层(DMRS端口数量),
    Figure PCTCN2020121590-appb-100017
    表示传输所述PSSCH的带宽中包含的子载波数量,
    Figure PCTCN2020121590-appb-100018
    表示所述PSSCH对应的所述PSCCH以及所述PSCCH DMRS包含的子载波数量,
    η表示所述PSSCH的编码符号所属的资源块中空闲的资源数量。
  24. 如权利要求17-23中任一项所述的装置,其特征在于,所述第一级控制信息确定所述PSSCH中只承载所述第二级控制信息,所述第二级控制信息用于辅助选择资源,所述第二级控制信息包括第二参数,所述第二参数包括以下参数中的至少一种:目标资源的时频域位置、目标资源的周期、目标资源的优先级、目标资源所在资源池索引、目标资源的资源选择窗位置。
  25. 一种传输控制信息的装置,其特征在于,包括:
    接收单元,用于接收第一级控制信息,所述第一级控制信息用于确定物理侧行链路共享信道PSSCH中是否只承载第二级控制信息;
    处理单元,用于根据所述第一级控制信息对所述PSSCH进行译码。
  26. 如权利要求25所述的装置,其特征在于,所述第一级控制信息中的第一比特位的取值用于指示所述PSSCH中是否只承载第二级控制信息。
  27. 如权利要求25所述的装置,其特征在于,所述第一级控制信息包括调制编码策略MCS索引值,所述MCS索引值用于指示所述PSSCH中是否只承载第二级控制信息。
  28. 如权利要求25所述的装置,其特征在于,所述第一级控制信息包括格式指示信息,所述格式指示信息用于指示所述PSSCH中是否只承载所述第二级控制信息。
  29. 如权利要求25-28中任一项所述的装置,其特征在于,所述第一级控制信息用于确定所述PSSCH中只承载第二级控制信息,所述确定单元还用于确定所述第二级控制信息占用的资源单元RE的数量。
  30. 如权利要求29所述的装置,其特征在于,所述确定单元具体用于根据第一参数确定所述RE的数量,所述第一参数包括以下参数:
    所述第一级控制信息指示的该次侧行链路SL信息传输占用的物理资源块PRB数量、该次所述SL信息传输所在时隙的正交频分复用OFDM符号数量、所述第一控制信息占用的资源数、所述PSSCH信道的解调参考信道DMRS占用的资源数量。
  31. 如权利要求29所述的装置,其特征在于,所述确定单元具体用于根据下述公式确定所述RE的数量
    Figure PCTCN2020121590-appb-100019
    Figure PCTCN2020121590-appb-100020
    其中,O SCI2表示所述第二级控制信息的有效负载大小,
    L SCI2表示所述第二级控制信息的循环冗余校验CRC比特长度,
    R表示所述PSSCH的码率,
    Q表示所述PSSCH的调制阶数,
    β表示所述第一级控制信息指示的所述第二级控制信息的资源的缩放因子,α表示用于传输所述第二级控制信息的资源型对于所述PSSCH总资源的比例因子,
    Figure PCTCN2020121590-appb-100021
    是一个侧行链路通信时隙中包含的符号数量,
    Figure PCTCN2020121590-appb-100022
    是物理侧行链路反馈信道PSFCH占用的符号数量,
    v表示所述PSSCH数据发送的数据层(DMRS端口数量),
    Figure PCTCN2020121590-appb-100023
    表示传输所述PSSCH的带宽中包含的子载波数量,
    Figure PCTCN2020121590-appb-100024
    表示所述PSSCH对应的所述PSCCH以及所述PSCCH DMRS包含的子载波数量,
    η表示所述PSSCH的编码符号所属的资源块中空闲的资源数量。
  32. 如权利要求25-31中任一项所述的装置,其特征在于,所述第一级控制信息确定所述PSSCH中只承载所述第二级控制信息,所述第二级控制信息用于辅助选择资源,所述第二级控制信息包括第二参数,所述第二参数包括以下参数中的至少一种:目标资源的时频域位置、目标资源的周期、目标资源的优先级、目标资源所在资源池索引、目标资源的资源选择窗位置。
  33. 一种系统,其特征在于,所述系统包括至少一个如权利要求17-24中任一项所述的装置和至少一个如权利要求25-32中任一项所述的装置。
  34. 一种计算机可读存储介质,其存储有计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1-8或9-16中任意一项所述的方法。
  35. 一种计算机程序产品,当其在处理器上运行时,使得处理器执行权利要求1-8或9-16中任一项所述的方法。
PCT/CN2020/121590 2020-10-16 2020-10-16 用于传输控制信息的方法和装置 WO2022077465A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/121590 WO2022077465A1 (zh) 2020-10-16 2020-10-16 用于传输控制信息的方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/121590 WO2022077465A1 (zh) 2020-10-16 2020-10-16 用于传输控制信息的方法和装置

Publications (1)

Publication Number Publication Date
WO2022077465A1 true WO2022077465A1 (zh) 2022-04-21

Family

ID=81208869

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/121590 WO2022077465A1 (zh) 2020-10-16 2020-10-16 用于传输控制信息的方法和装置

Country Status (1)

Country Link
WO (1) WO2022077465A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024027609A1 (zh) * 2022-08-01 2024-02-08 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110381599A (zh) * 2018-04-13 2019-10-25 维沃移动通信有限公司 Sidelink的传输方法和终端
CN110999357A (zh) * 2017-08-11 2020-04-10 中兴通讯股份有限公司 资源分配
US20200280398A1 (en) * 2019-01-11 2020-09-03 Lg Electronics Inc. Method related to a timing to transmit a feedback information in a wireless communication system
CN111727651A (zh) * 2019-01-23 2020-09-29 Lg电子株式会社 Nr v2x的2步sci发送

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110999357A (zh) * 2017-08-11 2020-04-10 中兴通讯股份有限公司 资源分配
CN110381599A (zh) * 2018-04-13 2019-10-25 维沃移动通信有限公司 Sidelink的传输方法和终端
US20200280398A1 (en) * 2019-01-11 2020-09-03 Lg Electronics Inc. Method related to a timing to transmit a feedback information in a wireless communication system
CN111727651A (zh) * 2019-01-23 2020-09-29 Lg电子株式会社 Nr v2x的2步sci发送

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PANASONIC: "Discussion on physical layer structure for sidelink in NR V2X", 3GPP DRAFT; R1-1912752, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, USA; 20191118 - 20191122, 8 November 2019 (2019-11-08), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051820188 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024027609A1 (zh) * 2022-08-01 2024-02-08 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置

Similar Documents

Publication Publication Date Title
CN110034905B (zh) 上行信息传输方法及装置
US11539467B2 (en) Method and apparatus for partial retransmission in wireless cellular communication system
JP7246396B2 (ja) データ伝送方法及び装置、コンピュータ記憶媒体
CN111181693B (zh) 发送数据的方法、发送数据的装置、以及终端设备
CN110431777B (zh) 用于确定传输数据块大小的方法和节点
EP4013161A1 (en) Data transmission method and device
KR102556803B1 (ko) 피드백 정보를 전송하는 방법, 단말기 및 기지국
EP3550911B1 (en) Communication method, network side device and terminal device
WO2019137467A1 (zh) 上行信息传输方法及装置
WO2019096058A1 (zh) 传输控制信息的方法、终端设备和网络设备
WO2018171625A1 (zh) 数据发送的方法、终端设备和网络设备
US11381347B2 (en) Communication method and communication device
WO2019080555A1 (zh) 免授权数据传输的确认方法和装置
WO2018228498A1 (zh) 传输控制信息的方法、终端设备和网络设备
WO2022077465A1 (zh) 用于传输控制信息的方法和装置
CN112187401B (zh) 多时间单元传输方法及相关装置
CN110611554B (zh) 反馈信息的传输方法和装置
US20220368505A1 (en) Data feedback method and apparatus
CN113271179A (zh) 混合自动重传请求确认码本的反馈方法及装置
KR102362946B1 (ko) 이종 서비스 간 효율적인 송수신 기술
WO2021088091A1 (zh) 通信方法及装置
CN115004828A (zh) 通信方法和通信装置
CN115380588A (zh) 信息传输方法及装置
CN111614446B (zh) 通信处理方法和通信处理装置
CN110943799B (zh) 一种通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20957243

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20957243

Country of ref document: EP

Kind code of ref document: A1