WO2022077454A1 - 一种流化床反应器、装置以及应用 - Google Patents

一种流化床反应器、装置以及应用 Download PDF

Info

Publication number
WO2022077454A1
WO2022077454A1 PCT/CN2020/121556 CN2020121556W WO2022077454A1 WO 2022077454 A1 WO2022077454 A1 WO 2022077454A1 CN 2020121556 W CN2020121556 W CN 2020121556W WO 2022077454 A1 WO2022077454 A1 WO 2022077454A1
Authority
WO
WIPO (PCT)
Prior art keywords
coke
gas
catalyst
zone
control
Prior art date
Application number
PCT/CN2020/121556
Other languages
English (en)
French (fr)
Inventor
叶茂
张涛
张今令
徐庶亮
唐海龙
王贤高
张骋
贾金明
王静
李华
李承功
刘中民
Original Assignee
中国科学院大连化学物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院大连化学物理研究所 filed Critical 中国科学院大连化学物理研究所
Priority to US17/784,650 priority Critical patent/US11872549B2/en
Priority to EP20957232.0A priority patent/EP4088811A4/en
Priority to PCT/CN2020/121556 priority patent/WO2022077454A1/zh
Priority to KR1020227043986A priority patent/KR20230011380A/ko
Priority to JP2022573390A priority patent/JP7393114B2/ja
Publication of WO2022077454A1 publication Critical patent/WO2022077454A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/005Separating solid material from the gas/liquid stream
    • B01J8/0055Separating solid material from the gas/liquid stream using cyclones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/1809Controlling processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/005Separating solid material from the gas/liquid stream
    • B01J8/0065Separating solid material from the gas/liquid stream by impingement against stationary members
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/1836Heating and cooling the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/1845Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with particles moving upwards while fluidised
    • B01J8/1863Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with particles moving upwards while fluidised followed by a downward movement outside the reactor and subsequently re-entering it
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/24Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique
    • B01J8/26Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique with two or more fluidised beds, e.g. reactor and regeneration installations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/24Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique
    • B01J8/38Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique with fluidised bed containing a rotatable device or being subject to rotation or to a circulatory movement, i.e. leaving a vessel and subsequently re-entering it
    • B01J8/384Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique with fluidised bed containing a rotatable device or being subject to rotation or to a circulatory movement, i.e. leaving a vessel and subsequently re-entering it being subject to a circulatory movement only
    • B01J8/388Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique with fluidised bed containing a rotatable device or being subject to rotation or to a circulatory movement, i.e. leaving a vessel and subsequently re-entering it being subject to a circulatory movement only externally, i.e. the particles leaving the vessel and subsequently re-entering it
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/20Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/20Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
    • C07C1/22Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms by reduction
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/60Controlling or regulating the processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00026Controlling or regulating the heat exchange system
    • B01J2208/00035Controlling or regulating the heat exchange system involving measured parameters
    • B01J2208/00044Temperature measurement
    • B01J2208/00061Temperature measurement of the reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00115Controlling the temperature by indirect heat exchange with heat exchange elements inside the bed of solid particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00539Pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00548Flow
    • B01J2208/00557Flow controlling the residence time inside the reactor vessel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00584Controlling the density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00628Controlling the composition of the reactive mixture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00654Controlling the process by measures relating to the particulate material
    • B01J2208/00707Fouling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00796Details of the reactor or of the particulate material
    • B01J2208/00893Feeding means for the reactants
    • B01J2208/00929Provided with baffles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00796Details of the reactor or of the particulate material
    • B01J2208/00938Flow distribution elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00796Details of the reactor or of the particulate material
    • B01J2208/00991Disengagement zone in fluidised-bed reactors
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/82Phosphates
    • C07C2529/84Aluminophosphates containing other elements, e.g. metals, boron
    • C07C2529/85Silicoaluminophosphates (SAPO compounds)
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4075Limiting deterioration of equipment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/40Ethylene production

Definitions

  • the application relates to a fluidized bed reactor, a device for preparing low-carbon olefins from oxygenated compounds, and applications, belonging to the technical field of chemical equipment.
  • MTO Methanol-to-olefins technology
  • DMTO DMTO technology of the Dalian Institute of Chemical Physics of the Chinese Academy of Sciences
  • MTO technology of the UOP Company of the United States In 2010, Shenhua Baotou MTO plant using DMTO technology was completed and put into operation. This is the world's first industrial application of MTO technology. By the end of 2019, 14 sets of DMTO industrial plants had been put into operation, with a total capacity of about 8 million tons of low-carbon olefins per year. .
  • DMTO technology has been further developed, and a new generation of DMTO catalysts with better performance have gradually begun to be industrially applied, creating higher benefits for DMTO factories.
  • the new generation of DMTO catalysts has higher methanol handling capacity and lower olefin selectivity.
  • Existing DMTO industrial devices are difficult to fully utilize the advantages of the new generation of DMTO catalysts. Therefore, it is necessary to develop a DMTO device and production method that can meet the needs of a new generation of DMTO catalysts with high methanol processing capacity and high low-carbon olefin selectivity.
  • a fluidized bed reactor which can control the coke content, coke content distribution and coke species in a DMTO catalyst, thereby controlling the performance of the DMTO catalyst and improving the selection of light olefins sex.
  • the light olefins mentioned in this application refer to ethylene and propylene.
  • a fluidized bed reactor comprises a main shell and a coke control zone shell;
  • the main shell includes an upper shell and a lower shell;
  • the upper shell encloses a synthesis gas-solid separation
  • the lower shell encloses the synthesis reaction zone;
  • the reaction zone and the gas-solid separation zone are axially connected;
  • the coke control zone shell is circumferentially arranged on the outer wall of the main shell;
  • the coke control zone is circumferentially arranged on the outer wall of the main shell;
  • the coke control zone The casing and the main casing are enclosed into an annular cavity, and the annular cavity is a focus control area; in the focus control area, n baffles are arranged along the radial direction, and the n baffles
  • the coke control area is divided into n coke control area sub-areas, where n is an integer;
  • the coke control area sub-area is provided with a coke control raw material inlet; wherein, the n-1 baffle
  • the residence time distribution of the catalyst entering the coke control zone is similar to the residence time distribution of the fully mixed tank reactor. Under such conditions, the coke content on the obtained coke control catalyst particles is uniform. Poor performance, that is, some catalyst particles have little coke content, and some catalyst particles have a large coke content, resulting in lower average activity and lower average selectivity of the catalyst.
  • the coke control area is divided into several sub-areas of the coke control area, thereby controlling the stay of the catalyst entering the coke control area.
  • the time distribution makes the coke content distribution in the coke control catalyst narrow, the average activity is higher, and the average selectivity is higher.
  • the use of partition control is also beneficial to control the coke species and coke content on the coke control catalyst.
  • the catalyst entering the coke control zone may be a new catalyst or a regenerated catalyst.
  • it is to regenerate the catalyst, so that regeneration and coke regulation can be achieved online at the same time.
  • the n baffles include a first baffle, a second baffle to an nth baffle;
  • the catalyst flow hole is not opened on the first baffle plate; the catalyst flow hole is opened on the second to nth baffle plates;
  • the first coke control zone sub-area formed by dividing the first baffle plate and the second baffle plate is provided with a coke control zone catalyst inlet;
  • the nth coke control zone sub-area formed by dividing the first baffle and the nth baffle is provided with a coke control catalyst conveying pipe, and the outlet of the coke control catalyst conveying pipe is located in the reaction zone;
  • a coke control raw material inlet is provided below the coke control zone sub-area, and the coke control raw material inlet is a coke control zone distributor;
  • the top of the coke control area sub-area is provided with a coke control area gas conveying pipe, and the outlet of the coke control area gas conveying pipe is located in the gas-solid separation area.
  • the number of catalyst flow holes opened on each baffle plate may be one, or may be more than one, which is not strictly limited in this application.
  • the relative positions of the catalyst flow holes are not strictly limited in the present application.
  • the plurality of catalyst flow holes may be arranged in parallel, or may be arranged randomly.
  • the shape of the coke control catalyst transport pipe is not strictly limited, as long as the coke control catalyst transport pipe can transport the coke control catalyst to the reaction zone; for example, it can be an "L"-shaped pipe, of course, it can also be other suitable shape.
  • the coke control catalyst conveying pipe can be an "L"-shaped pipe, so that the outlet of the coke control catalyst conveying pipe is located at a lower position in the reaction zone, and is in efficient contact with the raw material containing oxygenates entering from the reaction zone distributor, reaction, and also avoids the entry of coke control catalyst into the first stripper.
  • a focus adjustment area distributor is arranged below the focus adjustment area sub-area.
  • a focus adjustment area distributor is provided below each focus adjustment area sub-area.
  • the coke control material can be uniformly entered into the coke control zone as a whole, and the phenomenon of uneven distribution of coke control material between each sub-zone can be avoided, and the coke content of the catalyst and the distribution control of the coke content can be better realized.
  • a gas delivery pipe is arranged at the top of the sub-region of the focus control region.
  • a gas delivery pipe is provided at the top of each focus control zone sub-zone. Better control of catalyst coke content distribution can be achieved.
  • n 2 ⁇ n ⁇ 10.
  • reaction zone distributor is also provided below the reaction zone
  • the reaction zone distributor is used for feeding the reaction raw materials.
  • the reaction raw material is a raw material containing an oxygen-containing compound.
  • the reaction zone is provided with a fluidized bed reactor heat extractor, and the bottom of the reaction zone is provided with a first stripper; the inlet of the first stripper is located in the lower shell; The outlet of the first stripper is located outside the lower shell; the open end of the inlet of the first stripper is located above the outlet end of the coke control catalyst transport pipe; the outlet end of the coke control catalyst transport pipe is located at the above the reaction zone distributor.
  • the open end of the first stripper inlet pipe is arranged above the outlet end of the coke control catalyst transport pipe, so as to prevent the coke control catalyst from the coke control catalyst transport pipe from entering the first stripper inlet pipe.
  • the outlet end of the coke control catalyst conveying pipe is arranged above the distributor in the reaction zone, so that the coke control catalyst can react directly and efficiently with the reaction raw materials coming out of the distributor in the reaction zone.
  • the gas-solid separation zone is provided with a first gas-solid separation device and a second gas-solid separation device; the catalyst outlet pipe of the first gas-solid separation device penetrates the top of the coke control zone and is inserted in the first coke.
  • the catalyst outlet pipe of the first gas-solid separation device penetrates the top of the coke control zone and is inserted in the first coke.
  • the gas outlet of the first gas-solid separation device is set in the gas-solid separation zone; the inlet of the second gas-solid separation device is located in the gas-solid separation zone; the catalyst outlet end of the second gas-solid separation device is located in the reaction zone.
  • the gas delivery pipe in the coke control zone is located above the catalyst outlet end of the second gas-solid separation device.
  • the inner upper part of the gas-solid separation zone is further provided with a first gas collection chamber
  • the gas outlet of the second gas-solid separation device is communicated with the first gas collection chamber
  • the first gas collection chamber is also communicated with the product gas delivery pipe.
  • an apparatus for preparing light olefins from oxygenates comprising a fluidized bed regenerator and the fluidized bed reactor described in any one of the above.
  • the device for preparing low-carbon olefins from oxygenates provided in this application is provided with a fluidized bed regenerator, and the fluidized bed regenerator is used to regenerate the catalyst to be produced, and the regenerated catalyst is passed into the coke control zone In the process, the coke control is carried out, and then the coke control is passed into the reaction zone for catalytic reaction.
  • the catalyst can be regenerated online and the coke control catalyst online, which improves the production efficiency.
  • the fluidized bed regenerator includes a regenerator housing, the regenerator housing includes a regenerator upper housing and a regenerator lower housing, and the regenerator upper housing encloses a synthesis gas-solid separation zone, The lower shell of the regenerator encloses a regeneration zone; the regenerator shell is provided with an inlet of the unborn agent; the inlet of the unborn agent is communicated with the outlet pipe of the first stripper through the delivery pipe of the unborn agent.
  • the bottom of the regeneration zone is also provided with a regeneration zone distributor
  • the regeneration zone distributor is used to introduce regeneration gas.
  • the bottom of the regeneration zone is provided with a second stripper; the inlet of the second stripper is located in the regenerator shell; the outlet of the second stripper is located in the regenerator shell In vitro; the second stripper is communicated with the first gas-solid separation device through a regenerant conveying pipe; the open end of the inlet of the second stripper is located above the regeneration zone distributor.
  • the regenerator housing is further provided with a third gas-solid separation device and a second gas collection chamber; the second gas collection chamber is located at the inner top of the regenerator housing; the third gas-solid separation device
  • the gas outlet of the solid separation equipment is communicated with the second gas collection chamber; the second gas collection chamber is communicated with the flue gas conveying pipe; the catalyst outlet end of the third gas-solid separation equipment is located in the second stripper above the open end of the inlet tube.
  • a method for preparing light olefins from oxygenated compounds comprising the on-line modification of a DMTO catalyst for a coke control reaction through the fluidized bed reactor described in any one of the above;
  • the method includes the following steps:
  • the catalyst and the coke control raw material are passed into the coke control zone, and the catalyst reacts with the coke control raw material while flowing in a circular direction along the sub-region of the coke control zone to generate a product including a coke control catalyst, and the coke control
  • the catalyst is a modified DMTO catalyst.
  • the catalyst flows in an annular direction along the catalyst flow holes provided on the baffle plate; the coke control raw material enters the coke control zone sub-zone from the coke control zone distributor to react with the catalyst.
  • the coke control material enters the coke control area sub-area from the coke control area distributor located below, contacts with the catalyst, and adjusts the coke in the catalyst. content, the gas phase (including the unreacted coke control material) is transported to the gas-solid separation zone by the gas delivery pipe above the coke control zone.
  • the prepared coke control catalyst enters the reaction zone through the coke control catalyst delivery pipe, contacts with the oxygen-containing compound-containing raw material passed through the distributor in the reaction zone, and reacts to generate a catalyst containing low-carbon olefins and a catalyst to be produced.
  • logistics A
  • the product also includes coke control product gas, and the coke control product gas enters the gas-solid separation zone through a gas delivery pipe in the coke control zone.
  • the stream A is mixed with the coke-regulated product gas entering the gas-solid separation zone to form a stream B;
  • Described stream B enters the second gas-solid separation equipment for gas-solid separation to obtain gas-phase stream C and solid-phase stream D,
  • Described gas phase stream C is the product gas containing light olefin
  • the solid phase stream D includes the as-grown catalyst.
  • the gas phase stream C enters the first gas collection chamber, and enters the downstream section through the product gas conveying pipe;
  • the solid phase stream D is returned to the reaction zone of the fluidized bed reactor
  • the catalyst in the reaction zone enters the first stripper through the open end of the inlet pipe of the first stripper, is stripped, and then enters the downstream area after stripping.
  • downstream region may be a regenerator.
  • the coke control raw material includes a C 1 -C 6 hydrocarbon compound
  • the hydrocarbon compound is selected from at least one of C 1 -C 6 alkanes and C 1 -C 6 alkenes.
  • the coke control raw material also includes at least one of hydrogen, alcohol compounds, and water;
  • the mass content of the total content of the alcohol compound and water in the coke control raw material is greater than or equal to 10wt% and less than or equal to 50wt%;
  • the alcohol compound is selected from at least one of methanol and ethanol.
  • the coke control raw materials include: 0-20wt% hydrogen, 0-50wt% methane, 0-50wt% ethane, 0-20wt% ethylene, 0-50wt% propane, 0-20wt% propylene, 0- 90wt% butane, 0-90wt% butene, 0-90wt% pentane, 0-90wt% pentene, 0-90wt% hexane, 0-90wt% hexene, 0-50wt% methanol, 0-50wt% The total amount of ethanol, 0-50wt% water, and hydrocarbon compounds is not 0.
  • the catalyst comprises SAPO molecular sieve
  • the coke content in the catalyst is less than or equal to 3wt%
  • the coke content in the coke control catalyst is 4-9wt%
  • the interquartile range of the coke content distribution in the coke control catalyst is less than 1 wt%.
  • the coke content in the coke control catalyst is 4-9wt%.
  • the coke content of the catalyst refers to each The average value of the coke content of the catalyst particles, but the coke content in each catalyst particle is actually different.
  • the interquartile difference of the coke content distribution of the coke control catalyst particles can be controlled within the range of less than 1 wt%, so that the overall coke content distribution of the catalyst is narrow, thereby improving the activity of the catalyst and the selectivity of light olefins.
  • the coke species in the coke control catalyst include polymethylbenzene and polymethylnaphthalene;
  • the mass and content of the polymethylbenzene and polymethylnaphthalene in the total mass of the coke are ⁇ 70wt%;
  • the total mass of coke refers to the total mass of coke species.
  • the type of coke species and the content of coke species are also very important, and are also one of the purposes of regulation in this application.
  • the effect that the content of polymethylbenzene and polymethylnaphthalene in the total mass of coke is ⁇ 70 wt% is achieved, the activity of the catalyst is improved, and the low carbon Olefin selectivity.
  • the coke content in the as-grown catalyst is 9-13 wt%.
  • the oxygen-containing compound is selected from at least one of methanol and dimethyl ether.
  • the process conditions of the coke control zone are: the gas superficial linear velocity is 0.1-0.5m/s, the reaction temperature is 300-700°C, the reaction pressure is 100-500kPa, and the bed density is 400-800kg/ m3 .
  • the process conditions in the reaction zone are: the gas superficial linear velocity is 0.5-2.0m/s, the reaction temperature is 350-550°C, the reaction pressure is 100-500kPa, and the bed density is 150-500kg/m 3 .
  • the method for preparing lower olefins comprises preparing lower olefins by the device described in any one of the above;
  • the method for preparing light olefins includes the method described in any one of the above;
  • the method for preparing light olefins further comprises the following steps:
  • the to-be-grown catalyst in the reaction zone is passed into the fluidized bed regenerator for regeneration treatment to generate a regenerated catalyst, and the regenerated catalyst is passed into the coke control zone of the fluidized bed reactor to contact and react with the coke control raw material.
  • the method includes: sequentially passing the catalyst to be grown in the reaction zone into the fluidized bed regenerator through the first stripper and the conveying pipe of the to-be-generated agent, contacting with the regeneration gas, and reacting to obtain a mixture containing flue gas and The stream E of the regenerated catalyst, the stream E enters the third gas-solid separation device to separate the flue gas from the regenerated catalyst;
  • the separated regenerated catalyst is sequentially returned to the coke control zone of the fluidized bed reactor through the second stripper, the regenerant conveying pipe, and the first gas-solid separation device, and is contacted and reacted with the coke control raw material.
  • the coke content in the regenerated catalyst is ⁇ 3wt%.
  • the regeneration gas is selected from at least one of oxygen, nitrogen, water vapor, and air.
  • the regeneration gas includes: 0-100wt% air, 0-50wt% oxygen, 0-50wt% nitrogen and 0-50wt% water vapor, the contents of the air, oxygen, nitrogen and water vapor are different at the same time 0.
  • the process conditions in the regeneration zone are: the gas superficial linear velocity is 0.5-2.0m/s, the regeneration temperature is 600-750°C, the regeneration pressure is 100-500kPa, and the bed density is 150-700kg/m 3 .
  • DMTO catalysts One of the main characteristics of DMTO catalysts is that the selectivity of lower olefins in the methanol conversion process increases with the increase of the coke content of the catalyst, and the lower olefins mentioned in this application refer to ethylene and propylene.
  • the applicant's research has found that the main factors affecting the activity of DMTO catalysts and the selectivity of light olefins are the coke content, coke content distribution and coke species in the catalyst. When the average coke content of the catalyst is the same, the coke content distribution is narrow, and the selectivity and activity of light olefins are high.
  • the coke species in the catalyst include polymethyl aromatic hydrocarbons and polymethyl naphthenes, among which polymethylbenzene and polymethylnaphthalene can promote the formation of ethylene. Therefore, controlling the coke content, coke content distribution and coke species in the catalyst is the key to control the activity of DMTO catalyst and improve the selectivity of light olefins.
  • the fluidized bed reactor in the present application is provided with a coke control area, and the coke control area is divided into a plurality of sub-areas by means of baffles arranged in the coke control area, so that the catalyst flows along the sub-areas in sequence, and the catalyst is controlled by the sub-areas
  • the residence time distribution of the catalyst is narrow, so that the coke content distribution in the catalyst is controlled, and the coke content distribution is narrow; at the same time, the coke content and coke species are also controlled.
  • the activity of the DMTO catalyst is improved, and the selectivity of light olefins is improved.
  • the catalyst can only flow from the upstream sub-region to the downstream sub-region sequentially through the catalyst flow holes in the baffle plate in the coke control zone, so that the first can be controlled by controlling the flow of the catalyst in the coke control zone.
  • the average residence time is used to control the coke content in the catalyst;
  • the structure of n coke control zone sub-zones is used to control the residence time distribution of the catalyst.
  • the inactive macromolecular coke species remaining in the regenerated catalyst are converted into small molecular coke species, and on the other hand, the coke control raw materials can also enter the catalyst.
  • the high activity of small molecular coke species is generated in the medium, and the small molecular coke species are mainly polymethylbenzene and polymethylnaphthalene, which can improve the selectivity of ethylene.
  • the method for on-line modification of DMTO catalyst by coke regulation and control reaction in the present application can obtain the coke regulation catalyst with high coke content, narrow coke content distribution, and the main components of coke species are polymethylbenzene and polymethylnaphthalene,
  • the regenerated catalyst with low selectivity of light olefins is converted into a coke control catalyst with high selectivity of light olefins.
  • the regenerated catalyst in the present application can also be directly used in the process of preparing low-carbon olefins from oxygenates without the coke regulation and control process, and the low-carbon olefin selectivity in the obtained product gas is 80 when not subjected to the coke regulation and control process. -83wt%.
  • the regenerated catalyst in the present application is used in the process of preparing light olefins from oxygenated compounds after the coke control process, and the selectivity of the light olefins in the obtained product gas is 93-96 wt%.
  • the high-temperature regenerated catalyst from the regenerator first enters the reaction zone after cooling in the coke control zone, that is, there is no local high-temperature zone in the reaction zone, therefore, the raw material containing oxygenated compounds Low coking rate.
  • the reaction zone of the fluidized bed reactor in the present application includes a fluidized bed reactor heat extractor, and the temperature of the reaction zone can be precisely controlled.
  • DMTO oxygenate-to-light olefin
  • FIG. 2 is a schematic cross-sectional view of a coking control zone of a fluidized bed reactor according to an embodiment of the present application.
  • baffle 1-5 baffle; 1-6 first gas-solid separation equipment;
  • the present application provides a method for on-line modification of the DMTO catalyst by coke control reaction, the steps comprising:
  • a coke conditioning feedstock comprising hydrogen, methane, ethane, ethylene, propane, propylene, butane, butene, pentane, pentene, hexane, hexene, methanol, ethanol and water to a coke conditioning reactor ;
  • coke control material and the regenerated catalyst contact and react in the coke control reactor, the coke control material is coked on the regenerated catalyst, and the coked catalyst is called a coke control catalyst, and the coke content in the coke control catalyst is 4- 9wt%, the coke species contains polymethylbenzene and polymethylnaphthalene, the content of the mass of polymethylbenzene and polymethylnaphthalene in the total mass of coke is ⁇ 70wt%, and the mass of coke species with molecular weight>184 is in the coke The content in the total mass is ⁇ 25wt%;
  • the regenerated catalyst is a DMTO catalyst with a coke content of ⁇ 3wt%, and the active component of the DMTO catalyst is SAPO molecular sieve.
  • the composition of the coke control raw material is 0-20wt% hydrogen, 0-50wt% methane, 0-50wt% ethane, 0-20wt% ethylene, 0-50wt% propane, 0-20wt% propylene, 0-90wt% butane alkane, 0-90wt% butene, 0-90wt% pentane, 0-90wt% pentene, 0-90wt% hexane, 0-90wt% hexene, 0-50wt% methanol, 0-50wt% ethanol and 0 -50wt% water, and the total content of methanol, ethanol and water is ⁇ 10wt%.
  • the reaction temperature of the coke control reaction is 300-700°C.
  • the present application also provides a method for preparing light olefins from oxygenated compounds comprising the above-mentioned method for on-line modification of DMTO catalyst by coke control reaction and a device used therefor.
  • the apparatus comprises a fluidized bed reactor 1 and a fluidized bed regenerator 2 .
  • a fluidized bed reactor 1 the fluidized bed reactor 1 is divided into a reaction zone, a coke control zone and a gas-solid separation zone from bottom to top, the fluidized bed reactor 1 comprises: a main shell of the fluidized bed reactor Body 1-1, reaction zone distributor 1-2, fluidized bed reactor heat collector 1-3, coke control zone distributor 1-4, baffle plate 1-5, first gas-solid separation equipment 1-6, Coke control catalyst delivery pipe 1-7, coke control area gas delivery pipe 1-8, second gas-solid separation equipment 1-9, first gas collection chamber 1-10, product gas delivery pipe 1-11, first stripping 1-12, a spool valve 1-13 to be grown and a delivery pipe 1-14 of a stoked agent; the spool valve 1-13 to be grown is used to control the circulation amount of the stoked catalyst.
  • the reaction zone distributor 1-2 is located at the bottom of the reaction zone of the fluidized bed reactor 1, and the fluidized bed reactor heat extractor 1-3 is located in the reaction zone;
  • the focus control area is located in the annular area above the reaction area, and n baffles 1-5 are set in the focus control area. ⁇ n ⁇ 10, focus control area distributors 1-4 are independently set at the bottom of each focus control area sub-area, the cross-section of the focus control area is annular, the cross-section of the focus control area sub-area is a fan ring, the first- The sub-regions of the n coke control area are arranged concentrically and sequentially, and the baffles 1-5 contain catalyst flow holes, but the baffles shared by the first coke control area sub-area and the n-th coke control area sub-area do not contain catalyst flow holes;
  • the first gas-solid separation device 1-6 is located in the gas-solid separation zone of the fluidized bed reactor 1, the inlet of the first gas-solid separation device 1-6 is connected to the outlet of the regenerant conveying pipe 2-9, and the first gas-solid separation
  • the gas outlet of the equipment 1-6 is located in the gas-solid separation zone, the catalyst outlet of the first gas-solid separation equipment 1-6 is located in the sub-zone of the first coke control zone;
  • the inlet of the coke control catalyst transport pipe 1-7 is connected to the nth coke control Zone sub-zone, the outlet of coke control catalyst transport pipe 1-7 is located in the reaction zone;
  • each coke control zone sub-area is independently provided with a coke control zone gas delivery pipe 1-8, and the outlet of the coke control zone gas delivery pipe 1-8 is located in the gas-solid separation zone;
  • the second gas-solid separation equipment 1-9 and the first gas collecting chamber 1-10 is located in the gas-solid separation zone of the fluidized bed reactor 1, the inlet of the second gas-solid separation equipment 1-9 is located in the gas-solid separation zone of the fluidized bed reactor 1, the second gas-solid separation zone
  • the gas outlet of the separation equipment 1-9 is connected to the first gas collection chamber 1-10, the catalyst outlet of the second gas-solid separation equipment 1-9 is located in the reaction zone, and the product gas delivery pipe 1-11 is connected to the first gas collection chamber 1
  • the first stripper 1-12 is located below the fluidized bed reactor 1, and the inlet pipe of the first stripper 1-12 passes through the fluidized bed reactor from the bottom of the fluidized bed reactor 1
  • the lower shell is opened above the distributor 1-2 in the reaction zone, the inlet of the
  • the first gas-solid separation equipment 1-6 adopts a gas-solid cyclone.
  • the first gas-solid separation equipment 1-6 adopts a gas-solid rapid separator.
  • the second gas-solid separation devices 1-9 use one or more groups of gas-solid cyclones, each group of gas-solid cyclones includes a first-stage gas-solid cyclone and a second-stage gas-solid cyclone Gas-solid cyclone separator.
  • a device for preparing light olefins from oxygenates comprises a fluidized bed regenerator 2 for regenerating a catalyst
  • the fluidized bed regenerator 2 comprises: a regenerator shell 2-1, a regenerator Distributor 2-2, third gas-solid separation equipment 2-3, second gas collection chamber 2-4, flue gas conveying pipe 2-5, second stripper 2-6, regenerator heat collector 2-7 , regeneration spool valve 2-8 and regeneration agent delivery pipe 2-9;
  • the regenerator distributor 2-2 is located at the bottom of the fluidized bed regenerator 2, the third gas-solid separation device 2-3 is located at the upper part of the fluidized bed regenerator 2, and the inlet of the third gas-solid separation device 2-3 is located at the upper part of the fluidized bed regenerator 2.
  • the gas outlet of the third gas-solid separation device 2-3 is connected to the second gas collection chamber 2-4, and the catalyst outlet of the third gas-solid separation device 2-3 is located in the fluidized bed regenerator 2, the second gas collection chamber 2-4 is located at the top of the fluidized bed regenerator 2, and the flue gas delivery pipe 2-5 is connected to the top of the second gas collection chamber 2-4;
  • the second stripper 2-6 is located outside the regenerator shell 2-1, and the inlet pipe of the second stripper 2-6 penetrates the regenerator shell 2-1 and opens to the regenerator distributor 2- Above 2, the regenerator heat extractor 2-7 is located in the second stripper 2-6, the inlet of the regeneration slide valve 2-8 is connected to the bottom of the regenerator stripper 2-6 through a pipeline, and the regeneration slide valve The outlet of 2-8 is connected to the inlet of the regeneration agent conveying pipe 2-9 through a pipeline, and the outlet of the regeneration agent conveying pipe 2-9 is connected to the inlet of the first gas-solid separation device 1-6.
  • the regeneration spool valve 2-8 is used to control the circulation amount of the regeneration catalyst.
  • the third solid separation device 2-3 adopts one or more sets of gas-solid cyclones, each set of gas-solid cyclones comprises a first-stage gas-solid cyclone and a second-stage gas-solid cyclone Solid Cyclone Separator.
  • a methanol-to-olefin method comprising a method for on-line modification of a DMTO catalyst by a coke control reaction, comprising the following steps:
  • the coke control raw material is passed from the coke control area distributor 1-4 into the coke control area of the fluidized bed reactor 1, and the regenerated catalyst is passed from the regenerant conveying pipe 2-9 into the first gas-solid separation equipment 1-6, and the gas After the solid separation, the gas is discharged into the gas-solid separation zone of the fluidized bed reactor 1 from the gas outlet of the first gas-solid separation equipment 1-6, and the regenerated catalyst is discharged into the flow through the catalyst outlet of the first gas-solid separation equipment 1-6.
  • the coke control raw material and the regenerated catalyst contact in the coke control area, and a chemical reaction occurs to generate a coke control catalyst and a coke control product gas;
  • the coke control catalyst passes through the catalyst flow holes in the baffles 1-5. Sequentially pass through the sub-regions of the first to n coke control zones, and then enter the reaction zone of the fluidized bed reactor 1 through the coke control catalyst transport pipes 1-7; the coke control product gas enters the flow through the coke control zone gas transport pipes 1-8.
  • the stream A of the catalyst to be produced, the stream A and the coke-regulated product gas are mixed in the gas-solid separation zone to form a stream B, and the stream B enters the second gas-solid separation equipment 1-9.
  • gas phase stream C is the product gas containing light olefins
  • solid phase stream D is the catalyst to be produced
  • gas phase stream C enters the first gas collection chamber 1-10, and then enters the downstream through the product gas delivery pipe 1-11
  • the solid phase stream D is returned to the reaction zone of the fluidized bed reactor 1;
  • the catalyst to be produced in the reaction zone enters the fluidized bed reactor stripper 1-12 through the inlet pipe of the first stripper 1-12, and is stripped
  • the unborn catalyst enters the middle of the fluidized bed regenerator 2 through the unborn slide valve 1-13 and the unborn agent conveying pipe 1-14;
  • the regeneration gas is passed from the regenerator distributor 2-2 to the bottom of the fluidized bed regenerator 2.
  • the regeneration gas contacts the catalyst to be grown, and a chemical reaction occurs, and part of the coke in the catalyst to be grown occurs. It is eliminated by combustion, and a stream E containing flue gas and regenerated catalyst is generated.
  • the stream E enters the third gas-solid separation equipment 2-3. After the gas-solid separation, it is divided into flue gas and regenerated catalyst, and the flue gas enters the second gas collection chamber 2.
  • the composition of the coke control raw material described in this application is 0-20wt% hydrogen, 0-50wt% methane, 0-50wt% ethane, 0-20wt% ethylene, 0-50wt% propane, 0- 20wt% propylene, 0-90wt% butane, 0-90wt% butene, 0-90wt% pentane, 0-90wt% pentene, 0-90wt% hexane, 0-90wt% hexene, 0-50wt% Methanol, 0-50wt% ethanol and 0-50wt% water, and the total content of methanol, ethanol and water ⁇ 10wt%.
  • the oxygenate in the method described herein is one of methanol or dimethyl ether or a mixture of methanol and dimethyl ether.
  • the regeneration gas in the method described herein is 0-100wt% air, 0-50wt% oxygen, 0-50wt% nitrogen and 0-50wt% water vapor.
  • the active component of the catalyst is SAPO molecular sieve.
  • the coke content in the regenerated catalyst is ⁇ 3wt%.
  • the coke content in the coke control catalyst is 4-9 wt %
  • the interquartile difference of the coke content distribution in the coke control catalyst is less than 1 wt %
  • the coke species comprises polymethylbenzene and
  • the mass content of polymethylnaphthalene, polymethylbenzene and polymethylnaphthalene in the total coke mass is ⁇ 70 wt%
  • the mass content of coke species with molecular weight >184 in the total coke mass is ⁇ 25 wt%.
  • the coke content in the to-be-grown catalyst is 9-13 wt %, and further preferably, the coke content in the un-grown catalyst is 10-12 wt %.
  • the process operating conditions of the coke control zone of the fluidized bed reactor 1 are: the gas superficial linear velocity is 0.1-0.5m/s, the reaction temperature is 300-700°C, and the reaction pressure is 100 -500kPa, the bed density is 400-800kg/m3.
  • the process operating conditions of the reaction zone of the fluidized bed reactor 1 are: the gas superficial linear velocity is 0.5-2.0 m/s, the reaction temperature is 350-550°C, and the reaction pressure is 100- 500kPa, the bed density is 150-500kg/m 3 .
  • the process operating conditions of the fluidized bed regenerator 2 are: the gas superficial linear velocity is 0.5-2.0m/s, the regeneration temperature is 600-750°C, the regeneration pressure is 100-500kPa, the bed The layer density is 150-700 kg/m 3 .
  • the composition of the product gas is 38-57wt% ethylene, 37-55wt% propylene, ⁇ 5wt% C4 - C6 hydrocarbons and ⁇ 3wt% other components, and the other components are methane, Ethane, propane, hydrogen, CO and CO2 , etc., and the total selectivity of ethylene and propylene in the product gas is 93-96 wt%.
  • the production unit time consumption is expressed, and the mass of dimethyl ether in the oxygen-containing compound is equivalently converted into methanol mass based on the mass of element C, and the unit of production unit consumption is ton methanol/ton light olefin.
  • the production unit consumption is 2.50-2.58 tons of methanol/ton of light olefins.
  • the diameter of the connection between the lower shell and the upper shell gradually increases from bottom to top, so that the diameter of the gas-solid separation zone is larger than that of the reaction zone.
  • the focus control area is located at the junction of the lower casing and the upper casing.
  • the longitudinal section of the baffle is a parallelogram.
  • the coke control raw material is a mixture of 6wt% butane, 81wt% butene, 2wt% methanol and 11wt% water; the oxygenate is methanol; the regeneration gas is air; the active component in the catalyst is SAPO-34 Molecular sieve; the coke content in the regenerated catalyst is about 1wt%; the coke content in the coke control catalyst is about 4wt%, wherein the content of the mass of polymethylbenzene and polymethylnaphthalene in the total mass of the coke is about 85wt%, The mass content of coke species with molecular weight>184 in the total mass of coke is about 6wt%; the interquartile range of coke content distribution in the coke control catalyst is about 0.9wt%; the coke content in the as-grown catalyst is about 9wt% .
  • the process operating conditions of the coke control zone of the fluidized bed reactor are as follows: the gas superficial linear velocity is about 0.3m/s, the reaction temperature is about 500°C, the reaction pressure is about 100kPa, and the bed density is about 600kg/m 3 .
  • the process operating conditions of the reaction zone of the fluidized bed reactor are: the gas superficial linear velocity is about 2.0m/s, the reaction temperature is about 550°C, the reaction pressure is about 100kPa, and the bed density is about 150kg/m 3 .
  • the process operating conditions of the fluidized bed regenerator are: the gas superficial linear velocity is about 0.5m/s, the regeneration temperature is about 700°C, the regeneration pressure is about 100kPa, and the bed density is about 700kg/m 3 .
  • the composition of the product gas is 57wt% ethylene, 37wt% propylene, 3wt% C4 - C6 hydrocarbons and 3wt% other components, the other components are methane, ethane, propane, hydrogen, CO and CO 2 , etc.; production unit consumption is 2.55 tons of methanol/ton of light olefins.
  • the coke conditioning feedstock is a mixture of 22wt% methane, 24wt% ethane, 3wt% ethylene, 28wt% propane, 4wt% propylene, 7wt% hydrogen and 12wt% water;
  • the oxygenates are 82wt% methanol and 18wt% A mixture of dimethyl ether;
  • the regeneration gas is 50wt% air and 50wt% water vapor;
  • the active component in the catalyst is SAPO-34 molecular sieve;
  • the coke content in the regenerated catalyst is about 3wt%;
  • the coke content in the coke regulating catalyst is about 9wt%, wherein the content of polymethylbenzene and polymethylnaphthalene in the total mass of coke is about 78wt%, and the mass of coke species with molecular weight>184 is about 13wt% in the total mass of coke;
  • the interquartile range of the distribution of coke content in the catalyst is about 0.2 wt%; the
  • the process operating conditions of the coke control zone of the fluidized bed reactor are as follows: the gas superficial linear velocity is about 0.1m/s, the reaction temperature is about 300°C, the reaction pressure is about 500kPa, and the bed density is about 800kg/m 3 .
  • the process operating conditions of the reaction zone of the fluidized bed reactor are as follows: the gas superficial linear velocity is about 0.5m/s, the reaction temperature is about 350°C, the reaction pressure is about 500kPa, and the bed density is about 500kg/m 3 .
  • the process operating conditions of the fluidized bed regenerator are: the gas superficial linear velocity is about 2.0m/s, the regeneration temperature is about 600°C, the regeneration pressure is about 500kPa, and the bed density is about 150kg/m 3 .
  • the composition of the product gas is 38wt% ethylene, 55wt% propylene, 5wt% C4-C6 hydrocarbons and 2wt% other components, and the other components are methane, ethane, propane, hydrogen, CO and CO2, etc. ; Production unit consumption is 2.58 tons of methanol / ton of light olefins.
  • the solid separation equipment adopts a gas-solid rapid separator.
  • the coke control raw materials are 1wt% propane, 1wt% propylene, 3wt% butane, 51wt% butene, 3wt% pentane, 22wt% pentene, 1wt% hexane, 7wt% hexene, 2wt% methanol and 9wt% water;
  • the oxygenate is dimethyl ether;
  • the regeneration gas is 50wt% air and 50wt% oxygen;
  • the active component in the catalyst is SAPO-34 molecular sieve;
  • the coke content in the regenerated catalyst is about 2wt%;
  • the coke content in the regulated catalyst is about 6wt%, of which the content of polymethylbenzene and polymethylnaphthalene in the total coke mass is about 81wt%, and the mass of coke species with molecular weight>184 in the total coke mass
  • the content is about 15wt%;
  • the process operating conditions of the coke control zone of the fluidized bed reactor are as follows: the gas superficial linear velocity is about 0.4m/s, the reaction temperature is about 700°C, the reaction pressure is about 300kPa, and the bed density is about 500kg/m 3 .
  • the process operating conditions of the reaction zone of the fluidized bed reactor are as follows: the gas superficial linear velocity is about 1.0m/s, the reaction temperature is about 450°C, the reaction pressure is about 300kPa, and the bed density is about 300kg/m 3 .
  • the process operating conditions of the fluidized bed regenerator are: the gas superficial linear velocity is about 1.0m/s, the regeneration temperature is about 750°C, the regeneration pressure is about 300kPa, and the bed density is about 360kg/m 3 .
  • the composition of the product gas is 48wt% ethylene, 47wt% propylene, 3wt% C4-C6 hydrocarbons and 2wt% other components, the other components are methane, ethane, propane, hydrogen, CO and CO2 etc.; the production unit consumption is 2.53 tons of methanol/ton of light olefins.
  • the solid separation equipment adopts a gas-solid rapid separator.
  • the coke control feedstock is a mixture of 5wt% butane, 72wt% butene, 8wt% methanol and 15wt% water; the oxygenate is methanol; the regeneration gas is 50wt% air and 50wt% nitrogen; the activity in the catalyst
  • the component is SAPO-34 molecular sieve; the coke content in the regenerated catalyst is about 2wt%; the coke content in the coke control catalyst is about 6wt%, wherein the mass of polymethylbenzene and polymethylnaphthalene in the total mass of coke
  • the content of coke species with molecular weight>184 is about 24wt% in the total mass of coke; the interquartile range of coke content distribution in the coke control catalyst is about 0.3wt%;
  • the coke content is about 12wt%;
  • the process operating conditions of the coke control zone of the fluidized bed reactor are as follows: the gas superficial linear velocity is about 0.5m/s, the reaction temperature is about 600°C, the reaction pressure is about 200kPa, and the bed density is about 400kg/m 3 .
  • the process operating conditions of the reaction zone of the fluidized bed reactor are as follows: the gas superficial linear velocity is about 1.5m/s, the reaction temperature is about 500°C, the reaction pressure is about 200kPa, and the bed density is about 200kg/m 3 .
  • the process operating conditions of the fluidized bed regenerator are: the gas superficial linear velocity is about 1.5m/s, the regeneration temperature is about 680°C, the regeneration pressure is about 200kPa, and the bed density is about 280kg/m 3 .
  • the composition of the product gas is 53wt% ethylene, 43wt% propylene, 3wt% C4-C6 hydrocarbons and 1wt% other components, the other components are methane, ethane, propane, hydrogen, CO and CO2 etc.; the production unit consumption is 2.50 tons of methanol/ton of light olefins.
  • Example 4 The difference between this comparative case and Example 4 is that the DMTO catalyst is not modified online by the coke control reaction.
  • the raw material introduced into the coke control zone is nitrogen, and nitrogen is an inert gas, which will not change the properties of the regenerated catalyst in the coke control zone. That is, the catalyst equivalent to entering the reaction zone is a regenerated catalyst.
  • the composition of the product gas is 43wt% ethylene, 39wt% propylene, 12wt% C4-C6 hydrocarbons and 6wt% other components, the other components are methane, ethane, propane, hydrogen, CO and CO2 etc.; the production unit consumption is 2.91 tons of methanol/ton of light olefins.
  • This comparative case shows that online modification of DMTO catalyst through coke control reaction can greatly improve the performance of the catalyst and reduce the production unit consumption.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Abstract

一种流化床反应器(1)、装置以及生产方法,流化床反应器(1)包括主壳体(1-1)和焦调控区壳体;主壳体(1-1)包括上壳体和下壳体;上壳体围合成气固分离区,下壳体围合成反应区;反应区和气固分离区轴向连通;焦调控区壳体沿周向设置在主壳体(1-1)的外壁上;焦调控区壳体与主壳体(1-1)围合成环形空腔,环形空腔为焦调控区;在焦调控区中,沿径向设有n个挡板(1-5),n个挡板(1-5)将焦调控区分割为n个焦调控区子区,n为整数;焦调控区子区设有焦调控原料入口;其中,n-1个挡板(1-5)上开设有催化剂流通孔,以使进入焦调控区的催化剂沿着环形方向流动。

Description

一种流化床反应器、装置以及应用 技术领域
本申请涉及一种流化床反应器、用于含氧化合物制备低碳烯烃的装置以及应用,属于化工设备技术领域。
背景技术
甲醇制烯烃技术(MTO)主要有中国科学院大连化学物理研究所的DMTO技术和美国UOP公司的MTO技术。2010年,采用DMTO技术的神华包头甲醇制烯烃工厂建成投产,此为MTO技术的全球首次工业化应用,截至2019年底,已有14套DMTO工业装置投产,低碳烯烃产能共计约800万吨/年。
最近几年,DMTO技术进一步发展,性能更加优良的新一代DMTO催化剂逐渐开始工业化应用,为DMTO工厂创造了更高的效益。新一代DMTO催化剂具有更高的甲醇处理能力和低碳烯烃选择性。现有的DMTO工业装置难以充分利用新一代DMTO催化剂的优势,因此,需要开发出一种可以适应高甲醇处理能力、高低碳烯烃选择性的新一代DMTO催化剂需求的DMTO装置及生产方法。
发明内容
根据本申请的一个方面,提供了一种流化床反应器,该流化床反应器可以调控DMTO催化剂中的焦含量、焦含量分布和焦物种,从而控制DMTO催化剂性能,提高低碳烯烃选择性。
本申请中所述的低碳烯烃是指乙烯和丙烯。
一种流化床反应器,所述流化床反应器包括主壳体和焦调控区壳体;所述主壳体包括上壳体和下壳体;所述上壳体围合成气固分离区,所述下壳体围合成反应区;所述反应区和气固分离区轴向连通;所述焦调控区壳体沿周向设置在所述主壳体的外壁上;所述焦调控区壳体与所述主壳体围合成环形空腔,所述环形空腔为焦调控区;在所述焦调控区中,沿径向设有n个挡板,所述n个挡板将所述焦调控区分割为n个焦调控区子区,n为整数;所述焦调控区子区设有焦调控原料入口;其中,n-1个所述挡板上开设有催化剂流通孔,以使进入所述焦调控区的催化剂沿着环形方向流动。
当焦调控区仅含一个区时,进入所述焦调控区的催化剂的停留时间分布近似于全混釜反应器的停留时间分布,此种条件下,获得的焦调控催化剂颗粒上的焦含量均一 性较差,即,有的催化剂颗粒焦含量很少,有的催化剂颗粒焦含量又很多,导致催化剂的平均活性较低、平均选择性较低。本申请中,通过设置焦调控区,并在焦调控区中沿径向安装挡板,将焦调控区分割为若干个焦调控区子区,从而控制了进入所述焦调控区的催化剂的停留时间分布,使得焦调控催化剂中的焦含量分布窄,平均活性较高、平均选择性较高。同时,采用分区控制的方式也有利于控制焦调控催化剂上的焦物种以及焦含量。
本申请中,进入焦调控区的催化剂可以为新催化剂,或者为再生催化剂。优选地,为再生催化剂,这样可以同时在线实现再生和焦调控。
可选地,在所述焦调控区中,所述n个挡板包括第1挡板、第2挡板至第n挡板;
所述第1挡板上未开设有所述催化剂流通孔;所述第2至第n挡板上均开设有所述催化剂流通孔;
所述第1挡板与所述第2挡板分割而成的第1焦调控区子区设有焦调控区催化剂进口;
所述第1挡板与所述第n挡板分割而成的第n焦调控区子区设有焦调控催化剂输送管,所述焦调控催化剂输送管的出口位于所述反应区;
所述焦调控区子区的下方设有焦调控原料入口,所述焦调控原料入口为焦调控区分布器;
所述焦调控区子区的顶部设有焦调控区气体输送管,所述焦调控区气体输送管的出口位于气固分离区。
具体地,每块挡板上开设的催化剂流通孔可以为1个,或者也可以为多个,本申请不做严格限定。当设置多个催化剂流通孔时,催化剂流通孔彼此的相对位置本申请也不做严格限定,例如,多个催化剂流通孔可以平行设置,或者也可以无规则设置。
本申请中,对焦调控催化剂输送管的形状不做严格限定,只要保证焦调控催化剂输送管可以将焦调控催化剂运送至反应区即可;例如可以为“L”型管道,当然,也可以为其他合适的形状。
优选地,焦调控催化剂输送管可以为“L”型管道,这样焦调控催化剂输送管的出口处于反应区较低的位置,与从反应区分布器中进入的含有含氧化合物的原料高效接触,反应,并且也避免了焦调控催化剂进入第一汽提器中。
在焦调控区子区的下方设有焦调控区分布器。
优选地,在每一个焦调控区子区的下方均设有焦调控区分布器。这样可以实现焦调控原料的整体均匀进入焦调控区,避免各个子区之间出现焦调控原料分布不均匀的 现象,可以更好地实现催化剂焦含量以及焦含量分布控制。
所述焦调控区子区的顶部设有气体输送管。
优选地,在每个焦调控区子区的顶部设有气体输送管。可以更好地实现催化剂焦含量分布控制。
可选地,所述n的取值范围为:2≤n≤10。
可选地,所述反应区的内下方还设有反应区分布器;
所述反应区分布器用于通入反应原料。
具体地,本申请中,反应原料为含有含氧化合物的原料。
可选地,所述反应区设有流化床反应器取热器,所述反应区的底部设有第一汽提器;所述第一汽提器的入口位于所述下壳体内;所述第一汽提器的出口位于所述下壳体外;所述第一汽提器的入口的开口端位于焦调控催化剂输送管的出口端的上方;所述焦调控催化剂输送管的出口端位于所述反应区分布器的上方。
具体地,将第一汽提器入口管的开口端设置在焦调控催化剂输送管的出口端的上方,避免了从焦调控催化剂输送管出来的焦调控催化剂进入第一汽提器入口管。
将焦调控催化剂输送管的出口端设置在反应区分布器的上方,可以使焦调控催化剂直接高效地与从反应区分布器中出来的反应原料直接反应。
可选地,所述气固分离区设有第一气固分离设备和第二气固分离设备;所述第一气固分离设备的催化剂出口管穿透焦调控区顶部插设在第1焦调控区子区中(即第一气固分离设备的催化剂出口管通过焦调控区催化剂进口插设在第1焦调控区子区中;);所述第一气固分离设备的气体出口设置于气固分离区;所述第二气固分离设备的入口位于所述气固分离区;所述第二气固分离设备的催化剂出口端位于反应区。
优选地,所述焦调控区气体输送管位于所述第二气固分离设备的催化剂出口端的上方。
可选地,所述气固分离区的内上部还设有第一集气室;
所述第二气固分离设备的气体出口与所述第一集气室连通;
所述第一集气室还与产品气输送管连通。
根据本申请的第二方面,还提供了一种用于含氧化合物制备低碳烯烃的装置,所述装置包括流化床再生器和上述任一项所述的流化床反应器。
具体地,本申请提供的用于含氧化合物制备低碳烯烃的装置,设有流化床再生器,利用流化床再生器,将待生催化剂再生,将再生后的催化剂通入焦调控区中,进行焦 调控,焦调控后再通入反应区进行催化反应。可以在线再生催化剂和在线焦调控催化剂,提高了生产效率。
可选地,所述流化床再生器包括再生器壳体,所述再生器壳体包含再生器上壳体和再生器下壳体,所述再生器上壳体围合成气固分离区,所述再生器下壳体围合成再生区;所述再生器壳体上设有待生剂入口;所述待生剂入口通过待生剂输送管与第一汽提器出口管连通。
可选地,所述再生区的底部还设有再生区分布器;
所述再生区分布器用于通入再生气体。
可选地,所述再生区的底部设有第二汽提器;所述第二汽提器的入口位于所述再生器壳体内;所述第二汽提器的出口位于所述再生器壳体外;所述第二汽提器的通过再生剂输送管与第一气固分离设备连通;所述第二汽提器的入口的开口端位于所述再生区分布器的上方。
可选地,所述再生器壳体中还设有第三气固分离设备和第二集气室;所述第二集气室位于所述再生器壳体的内顶部;所述第三气固分离设备的气体出口与所述第二集气室连通;所述第二集气室与烟气输送管连通;所述第三气固分离设备的催化剂出口端位于所述第二汽提器入口管开口端的上方。
根据本申请的第三方面,还提供了一种含氧化合物制备低碳烯烃的方法,所述方法包括通过上述任一项所述的流化床反应器,焦调控反应在线改性DMTO催化剂;
所述方法包括以下步骤:
将催化剂和焦调控原料通入焦调控区,所述催化剂沿着所述焦调控区子区以环形方向流动的同时,与焦调控原料发生反应,生成包括焦调控催化剂的产物,所述焦调控催化剂为改性的DMTO催化剂。
可选地,所述催化剂沿着设置在挡板上的催化剂流通孔以环形方向流动;所述焦调控原料由焦调控区分布器进入焦调控区子区,与催化剂发生反应。
具体地,催化剂沿着设置在挡板上的催化剂流通孔以环形方向流动的同时,焦调控原料由位于下方的焦调控区分布器进入焦调控区子区,与催化剂接触、调节催化剂中的焦含量,气相(包括未反应的焦调控原料)由焦调控区上方的气体输送管输送至气固分离区。
可选地,制备得到的所述焦调控催化剂通过焦调控催化剂输送管进入反应区,与反应区分布器通入的含有含氧化合物的原料接触,反应,生成含有低碳烯烃和待生催 化剂的物流A;
所述产物中还包括焦调控产品气,所述焦调控产品气通过焦调控区气体输送管进入气固分离区。
可选地,所述物流A与进入气固分离区的焦调控产品气混合,形成物流B;
所述物流B进入第二气固分离设备进行气固分离,得到气相物流C和固相物流D,
所述气相物流C为含有低碳烯烃的产品气;
所述固相物流D包括待生催化剂。
可选地,所述气相物流C进入第一集气室,由产品气输送管进入下游工段;
所述固相物流D返回流化床反应器的反应区;
所述反应区中的催化剂由第一汽提器入口管的开口端进入所述第一汽提器中,进行汽提,汽提后进入下游区域。
具体地,所述下游区域可以为再生器。
可选地,所述焦调控原料包括C 1-C 6的烃类化合物;
优选地,所述烃类化合物选自C 1-C 6的烷烃、C 1-C 6的烯烃中的至少一种。
可选地,所述焦调控原料还包括氢气、醇类化合物、水中的至少一种;
所述醇类化合物和水的总含量在焦调控原料中的质量含量大于等于10wt%且小于等于50wt%;
可选地,所述醇类化合物选自甲醇、乙醇中的至少一种。
可选地,所述焦调控原料包括:0-20wt%氢气、0-50wt%甲烷、0-50wt%乙烷、0-20wt%乙烯、0-50wt%丙烷、0-20wt%丙烯、0-90wt%丁烷、0-90wt%丁烯、0-90wt%戊烷、0-90wt%戊烯、0-90wt%己烷、0-90wt%己烯、0-50wt%甲醇、0-50wt%乙醇、0-50wt%水,烃类化合物的总量不为0。
可选地,所述催化剂包括SAPO分子筛;
所述催化剂中的焦含量≤3wt%;
所述焦调控催化剂中的焦含量为4-9wt%;
所述焦调控催化剂中的焦含量分布的四分位差小于1wt%。
具体地,本申请中,通过焦调控区的设置以及焦调控工艺的选择,实现了焦调控催化剂中的焦含量为4-9wt%,由于催化剂为粉体,所以催化剂的焦含量是指每个催化剂颗粒焦含量的均值,但是每个催化剂颗粒中的焦含量实际上是不一样的。本申请中,可以将焦调控催化剂颗粒的焦含量分布的四分位差控制在小于1wt%的范围内,使得催化剂整体焦含量分布窄,从而提高催化剂的活性、以及低碳烯烃选择性。
可选地,所述焦调控催化剂中的焦物种包括多甲基苯和多甲基萘;
所述多甲基苯和多甲基萘的质量和在焦总质量中的含量≥70wt%;
分子量>184的焦物种的质量在焦总质量中的含量≤25wt%;
其中,所述焦总质量是指焦物种的总质量。
本申请中,焦物种的类型,以及焦物种的含量也非常重要,也是本申请调控的目的之一。本申请中,通过焦调控的设置以及焦调控工艺参数的选择,实现了多甲基苯和多甲基萘在焦总质量中的含量≥70wt%的效果,提高了催化剂的活性,以及低碳烯烃选择性。
可选地,所述待生催化剂中的焦含量为9-13wt%。
可选地,所述含氧化合物选自甲醇、二甲醚中的至少一种。
可选地,焦调控区的工艺条件为:气体表观线速度为0.1-0.5m/s,反应温度为300-700℃,反应压力为100-500kPa,床层密度为400-800kg/m 3
可选地,反应区的工艺条件为:气体表观线速度为0.5-2.0m/s,反应温度为350-550℃,反应压力为100-500kPa,床层密度为150-500kg/m 3
根据本申请的第四方面,还提供了一种制备低碳烯烃方法,所述制备低碳烯烃方法包括通过上述任一项所述的装置制备低碳烯烃;
所述制备低碳烯烃方法包括上述任一项所述的方法;
所述制备低碳烯烃方法还包括以下步骤:
将反应区中的待生催化剂通入流化床再生器中,进行再生处理,生成再生催化剂,将所述再生催化剂通入流化床反应器的焦调控区中,与焦调控原料接触反应。
可选地,所述方法包括:将反应区中的待生催化剂依次通过第一汽提器和待生剂输送管进入流化床再生器中,与再生气体接触,反应,得到含有烟气和再生催化剂的物流E,所述物流E进入第三气固分离设备,将烟气和再生催化剂分离;
分离后的所述再生催化剂依次通过第二汽提器、再生剂输送管、第一气固分离设备返回流化床反应器的焦调控区中,与焦调控原料接触反应。
可选地,所述再生催化剂中的焦含量≤3wt%。
可选地,所述再生气体选自氧气、氮气、水蒸气、空气中的至少一种。
可选地,所述再生气体包括:0-100wt%空气、0-50wt%氧气、0-50wt%氮气和0-50wt%水蒸气,所述空气、氧气、氮气和水蒸汽的含量不同时为0。
可选地,再生区的工艺条件为:气体表观线速度为0.5-2.0m/s,再生温度为600-750℃, 再生压力为100-500kPa,床层密度为150-700kg/m 3
本申请能产生的有益效果包括:
(1)DMTO催化剂的一个主要特性是甲醇转化过程的低碳烯烃选择性随着催化剂的焦含量升高而升高,本申请中所述的低碳烯烃是指乙烯和丙烯。申请人研究发现,影响DMTO催化剂的活性和低碳烯烃选择性的主要因素是催化剂中的焦含量、焦含量分布和焦物种。催化剂的平均焦含量相同时,焦含量分布窄,则低碳烯烃选择性高、活性高。催化剂中的焦物种包含多甲基芳烃和多甲基环烷烃等,其中,多甲基苯和多甲基萘能促进乙烯的生成。因此,控制催化剂中的焦含量、焦含量分布以及焦物种是控制DMTO催化剂活性、提高低碳烯烃选择性的关键。
本申请中的流化床反应器,设有焦调控区,通过在焦调控区设置的挡板,将焦调控区划分为多个子区,使得催化剂依次顺着子区流动,通过子区控制催化剂的停留时间分布,使其停留时间分布窄,从而控制催化剂中的焦含量分布,使焦含量分布窄;与此同时,也控制了焦含量以及焦物种。最终提高了DMTO催化剂的活性,提高低碳烯烃选择性。
(2)本申请的方法中,催化剂仅能通过焦调控区中的挡板中的催化剂流通孔从上游子区依序流向下游子区,使得,第一可以通过控制催化剂在焦调控区中的平均停留时间,从而控制催化剂中的焦含量;第二采用n个焦调控区子区的结构控制催化剂的停留时间分布,其停留时间分布近似于n个串联的全混釜反应器,从而获得焦含量分布窄的催化剂。
(3)本申请通过控制催化剂中的焦物种的转化和生成,一方面将再生催化剂中残留的非活性的大分子焦物种转化为小分子焦物种,另一方面,焦调控原料还可进入催化剂中生成高活性的小分子焦物种,并且小分子焦物种以多甲基苯和多甲基萘为主,可以提高乙烯的选择性。
(4)本申请中的通过焦调控反应在线改性DMTO催化剂的方法,可以获得焦含量高,焦含量分布窄,焦物种的主要成分是多甲基苯和多甲基萘的焦调控催化剂,将低碳烯烃选择性较低的再生催化剂转化为低碳烯烃选择性高的焦调控催化剂。
(5)本申请中的再生催化剂也可以不经过焦调控过程处理,直接用于含氧化合物制备低碳烯烃过程,不经过焦调控处理时,所得的产品气中的低碳烯烃选择性为80-83wt%。本申请中的再生催化剂经过焦调控过程处理后再用于含氧化合物制备低碳烯烃过程,所得的产品气中的低碳烯烃选择性为93-96wt%。
(6)本申请的方法中,由再生器而来的高温再生催化剂先在焦调控区降温之后再进入反应区,即,反应区中不存在局部高温区,因此,含有含氧化合物的原料的结焦率低。
(7)本申请中的流化床反应器的反应区包含流化床反应器取热器,可以精确控制反应区的温度。
附图说明
图1为本申请一个实施方案的含氧化合物制低碳烯烃(DMTO)装置的示意图;
图2为本申请一个实施方案的流化床反应器的焦调控区的横截面示意图。
部件和附图标记列表:
1流化床反应器;          1-1主壳体;      1-2反应区分布器;
1-3流化床反应器取热器;  1-4焦调控区分布器;
1-5挡板;                1-6第一气固分离设备;
1-7焦调控催化剂输送管;  1-8焦调控区气体输送管;
1-9第二气固分离设备;    1-10第一集气室;
1-11产品气输送管;       1-12第一汽提器;
1-13待生滑阀;           1-14待生剂输送管;
2流化床再生器;          2-1再生器壳体;  2-2再生器分布器;
2-3第三气固分离设备;    2-4第二集气室;
2-5烟气输送管;          2-6第二汽提器;  2-7再生器取热器;
2-8再生滑阀;            2-9再生剂输送管。
具体实施方式
下面结合实施例详述本申请,但本申请并不局限于这些实施例。
下面介绍可能的实施方式。
为了提高DMTO催化剂的性能,本申请提供了一种通过焦调控反应在线改性DMTO催化剂的方法,其步骤包含:
a)将再生催化剂输送至焦调控区;
b)将包含氢气、甲烷、乙烷、乙烯、丙烷、丙烯、丁烷、丁烯、戊烷、戊烯、己 烷、己烯、甲醇、乙醇和水的焦调控原料输送至焦调控反应器;
c)焦调控原料和再生催化剂在焦调控反应器中接触并发生反应,焦调控原料在再生催化剂上结焦,结焦后的催化剂被称之为焦调控催化剂,焦调控催化剂中的焦含量为4-9wt%,焦物种中包含多甲基苯和多甲基萘,多甲基苯和多甲基萘的质量在焦总质量中的含量为≥70wt%,分子量>184的焦物种的质量在焦总质量中的含量为≤25wt%;
d)将焦调控催化剂输送至甲醇转化反应器。
所述再生催化剂是焦含量≤3wt%的DMTO催化剂,所述DMTO催化剂的活性组分是SAPO分子筛。
所述焦调控原料的组成为0-20wt%氢气、0-50wt%甲烷、0-50wt%乙烷、0-20wt%乙烯、0-50wt%丙烷、0-20wt%丙烯、0-90wt%丁烷、0-90wt%丁烯、0-90wt%戊烷、0-90wt%戊烯、0-90wt%己烷、0-90wt%己烯、0-50wt%甲醇、0-50wt%乙醇和0-50wt%水,并且,甲醇、乙醇和水的总含量≥10wt%。
所述焦调控反应的反应温度为300-700℃。
本申请还提供了一种包含上述通过焦调控反应在线改性DMTO催化剂的方法的含氧化合物制备低碳烯烃的方法及其使用的装置。所述装置包含流化床反应器1和流化床再生器2。
一种流化床反应器1,所述流化床反应器1由下至上分为反应区、焦调控区和气固分离区,所述流化床反应器1包含:流化床反应器主壳体1-1,反应区分布器1-2,流化床反应器取热器1-3,焦调控区分布器1-4,挡板1-5,第一气固分离设备1-6,焦调控催化剂输送管1-7,焦调控区气体输送管1-8,第二气固分离设备1-9,第一集气室1-10,产品气输送管1-11,第一汽提器1-12,待生滑阀1-13和待生剂输送管1-14;所述待生滑阀1-13用于控制待生催化剂的循环量。
所述反应区分布器1-2位于流化床反应器1的反应区的底部,流化床反应器取热器1-3位于反应区;
所述焦调控区位于反应区上方的环形区域,焦调控区内设置n个挡板1-5,挡板1-5将焦调控区分割为n个焦调控区子区,n为整数,2≤n≤10,每个焦调控区子区的底部都独立设置焦调控区分布器1-4,焦调控区的横截面是环形,焦调控区子区的横截面是扇环形,第1-n焦调控区子区同心依序排列,挡板1-5中含有催化剂流通孔,但第1焦调控区子区和第n焦调控区子区间的共用的挡板不含催化剂流通孔;
第一气固分离设备1-6位于流化床反应器1的气固分离区,第一气固分离设备1-6 的入口连接于再生剂输送管2-9的出口,第一气固分离设备1-6的气体出口位于气固分离区,第一气固分离设备1-6的催化剂出口位于第1焦调控区子区;焦调控催化剂输送管1-7的入口连接于第n焦调控区子区,焦调控催化剂输送管1-7的出口位于反应区;
所述每个焦调控区子区的顶部都独立设置焦调控区气体输送管1-8,焦调控区气体输送管1-8的出口位于气固分离区;第二气固分离设备1-9和第一集气室1-10位于流化床反应器1的气固分离区,第二气固分离设备1-9的入口位于流化床反应器1的气固分离区,第二气固分离设备1-9的气体出口连接于第一集气室1-10,第二气固分离设备1-9的催化剂出口位于反应区,产品气输送管1-11连接于第一集气室1-10的顶部;第一汽提器1-12位于流化床反应器1的下方,第一汽提器1-12的入口管从流化床反应器1的底部穿过流化床反应器下壳体,开口于反应区分布器1-2的上方,待生滑阀1-13的入口连接于第一汽提器1-12底部的出口管,待生滑阀1-13的出口经管道连接于待生剂输送管1-14的入口,待生剂输送管1-14的出口连接于流化床再生器2的中部。
在一个优选实施方式中,第一气固分离设备1-6采用气固旋风分离器。
在一个优选实施方式中,第一气固分离设备1-6采用气固快速分离器。
在一个优选实施方式中,第二气固分离设备1-9采用一组或多组气固旋风分离器,每组气固旋风分离器包含一个第一级气固旋风分离器和一个第二级气固旋风分离器。
一种用于含氧化合物制备低碳烯烃的装置,所述装置包括用于再生催化剂的流化床再生器2,所述流化床再生器2包含:再生器壳体2-1,再生器分布器2-2,第三气固分离设备2-3,第二集气室2-4,烟气输送管2-5,第二汽提器2-6,再生器取热器2-7,再生滑阀2-8和再生剂输送管2-9;
所述再生器分布器2-2位于流化床再生器2的底部,第三气固分离设备2-3位于流化床再生器2的上部,第三气固分离设备2-3的入口位于流化床再生器2的上部,第三气固分离设备2-3的气体出口连接于第二集气室2-4,第三气固分离设备2-3的催化剂出口位于流化床再生器2的下部,第二集气室2-4位于流化床再生器2的顶部,烟气输送管2-5连接于第二集气室2-4的顶部;
所述第二汽提器2-6位于再生器壳体2-1之外,第二汽提器2-6的入口管穿透再生器壳体2-1,开口于再生器分布器2-2的上方,再生器取热器2-7位于第二汽提器2-6之中,再生滑阀2-8的入口经管道连接于再生器汽提器2-6的底部,再生滑阀2-8的出口经管道连接于再生剂输送管2-9的入口,再生剂输送管2-9的出口连接于第一气固分离设备1-6的入口。再生滑阀2-8用于控制再生催化剂的循环量。
在一个优选实施方式中,第三固分离设备2-3采用一组或多组气固旋风分离器,每 组气固旋风分离器包含一个第一级气固旋风分离器和一个第二级气固旋风分离器。
根据本申请的另一个方面,还提供了一种包含通过焦调控反应在线改性DMTO催化剂的方法的甲醇制烯烃方法,包括以下步骤:
将焦调控原料从焦调控区分布器1-4通入流化床反应器1的焦调控区,将再生催化剂从再生剂输送管2-9通入第一气固分离设备1-6,气固分离后,气体由第一气固分离设备1-6的气体出口排入流化床反应器1的气固分离区,再生催化剂由第一气固分离设备1-6的催化剂出口排入流化床反应器1的焦调控区,焦调控原料和再生催化剂在焦调控区接触,发生化学反应,生成焦调控催化剂和焦调控产品气;焦调控催化剂经由挡板1-5中的催化剂流通孔依序通过第1至n焦调控区子区,再经由焦调控催化剂输送管1-7进入流化床反应器1的反应区;焦调控产品气经由焦调控区气体输送管1-8进入流化床反应器1的气固分离区;将含有含氧化合物的原料从反应区分布器1-2通入流化床反应器1的反应区,与焦调控催化剂接触,生成含有低碳烯烃和待生催化剂的物流A,物流A和焦调控产品气在气固分离区中混合形成物流B,物流B进入第二气固分离设备1-9,气固分离后,分为气相物流C和固相物流D,气相物流C是含有低碳烯烃的产品气,固相物流D是待生催化剂,气相物流C进入第一集气室1-10,然后再经由产品气输送管1-11进入下游工段,固相物流D返回流化床反应器1的反应区;反应区的待生催化剂经由第一汽提器1-12的入口管进入流化床反应器汽提器1-12,汽提之后,待生催化剂再经由待生滑阀1-13和待生剂输送管1-14进入流化床再生器2的中部;
将再生气体从再生器分布器2-2通入流化床再生器2的底部,在流化床再生器2中,再生气体和待生催化剂接触,发生化学反应,待生催化剂中的部分焦被燃烧消除,生成含有烟气和再生催化剂的物流E,物流E进入第三气固分离设备2-3,气固分离后,分为烟气和再生催化剂,烟气进入第二集气室2-4,再经由烟气输送管2-5进入下游的烟气处理系统,再生催化剂返回流化床再生器2的底部,流化床再生器2中的再生催化剂进入第二汽提器2-6,汽提、取热之后,再经由再生滑阀2-8和再生剂输送管2-9进入第一气固分离设备1-6。
在一个优选实施方式中,本申请所述焦调控原料的组成为0-20wt%氢气、0-50wt%甲烷、0-50wt%乙烷、0-20wt%乙烯、0-50wt%丙烷、0-20wt%丙烯、0-90wt%丁烷、0-90wt%丁烯、0-90wt%戊烷、0-90wt%戊烯、0-90wt%己烷、0-90wt%己烯、0-50wt%甲醇、0-50wt%乙醇和0-50wt%水,并且,甲醇、乙醇和水的总含量≥10wt%。
在一个优选实施方式中,本申请所述的方法中的含氧化合物是甲醇或二甲醚中的 一种或甲醇和二甲醚的混合物。
在一个优选实施方式中,本申请所述的方法中的再生气体是0-100wt%空气、0-50wt%氧气、0-50wt%氮气和0-50wt%水蒸气。
在一个优选实施方式中,所述催化剂的活性组分是SAPO分子筛。
在一个优选实施方式中,所述再生催化剂中的焦含量≤3wt%。
在一个优选实施方式中,所述焦调控催化剂中的焦含量为4-9wt%,所述焦调控催化剂中的焦含量分布的四分位差小于1wt%,焦物种中包含多甲基苯和多甲基萘,多甲基苯和多甲基萘的质量在焦总质量中的含量为≥70wt%,分子量>184的焦物种的质量在焦总质量中的含量为≤25wt%。
在一个优选实施方式中,所述待生催化剂中的焦含量为9-13wt%,进一步优选地,待生催化剂中的焦含量为10-12wt%。
在一个优选实施方式中,所述流化床反应器1的焦调控区的工艺操作条件为:气体表观线速度为0.1-0.5m/s,反应温度为300-700℃,反应压力为100-500kPa,床层密度为400-800kg/m3。
在一个优选实施方式中,所述流化床反应器1的反应区的工艺操作条件为:气体表观线速度为0.5-2.0m/s,反应温度为350-550℃,反应压力为100-500kPa,床层密度为150-500kg/m 3
在一个优选实施方式中,所述流化床再生器2的工艺操作条件为:气体表观线速度为0.5-2.0m/s,再生温度为600-750℃,再生压力为100-500kPa,床层密度为150-700kg/m 3
本申请所述的方法中,产品气的组成为38-57wt%乙烯,37-55wt%丙烯,≤5wt%C 4-C 6烃类和≤3wt%的其他组分,其他组分是甲烷、乙烷、丙烷、氢气、CO和CO 2等,并且乙烯和丙烯在产品气中的总选择性为93-96wt%。
本申请表述生产单耗时,将含氧化合物中的二甲醚质量依据C元素质量等同折算为甲醇质量计,生产单耗的单位为吨甲醇/吨低碳烯烃。
本申请所述的方法中,生产单耗为2.50-2.58吨甲醇/吨低碳烯烃。
实施例1
本实施方案采用图1和图2所示的装置,流化床反应器中的焦调控区含有2个挡板,即n=2,焦调控区包含2个焦调控区子区,第一气固分离设备采用气固旋风分离器。
具体地,如图1所示,在下壳体和上壳体的连接处的直径由下至上逐渐增大,使 得气固分离区的直径大于反应区的直径。焦调控区位于所述下壳体和上壳体的连接处。所述挡板的纵向截面为平行四边形。
本实施方案中,焦调控原料是6wt%丁烷、81wt%丁烯、2wt%甲醇和11wt%水的混合物;含氧化合物是甲醇;再生气体是空气;催化剂中的活性组分是SAPO-34分子筛;再生催化剂中的焦含量约为1wt%;焦调控催化剂中的焦含量约为4wt%,其中,多甲基苯和多甲基萘的质量在焦总质量中的含量约为85wt%,分子量>184的焦物种的质量在焦总质量中的含量约为6wt%;焦调控催化剂中的焦含量分布的四分位差约为0.9wt%;待生催化剂中的焦含量约为9wt%。
流化床反应器的焦调控区的工艺操作条件为:气体表观线速度约为0.3m/s,反应温度约为500℃,反应压力约为100kPa,床层密度约为600kg/m 3
流化床反应器的反应区的工艺操作条件为:气体表观线速度约为2.0m/s,反应温度约为550℃,反应压力约为100kPa,床层密度约为150kg/m 3
流化床再生器的工艺操作条件为:气体表观线速度约为0.5m/s,再生温度约为700℃,再生压力约为100kPa,床层密度约为700kg/m 3
本实施方案中,产品气的组成为57wt%乙烯,37wt%丙烯,3wt%C 4-C 6烃类和3wt%的其他组分,其他组分是甲烷、乙烷、丙烷、氢气、CO和CO 2等;生产单耗为2.55吨甲醇/吨低碳烯烃。
实施例2
本实施方案采用图1和图2所示的装置,流化床反应器中的焦调控区含有10个挡板,即n=10,焦调控区包含10个焦调控区子区,第一气固分离设备采用气固旋风分离器。
本实施方案中,焦调控原料是22wt%甲烷、24wt%乙烷、3wt%乙烯、28wt%丙烷、4wt%丙烯、7wt%氢气和12wt%水的混合物;含氧化合物是82wt%甲醇和18wt%二甲醚的混合物;再生气体是50wt%空气和50wt%水蒸气;催化剂中的活性组分是SAPO-34分子筛;再生催化剂中的焦含量约为3wt%;焦调控催化剂中的焦含量约为9wt%,其中,多甲基苯和多甲基萘的质量在焦总质量中的含量约为78wt%,分子量>184的焦物种的质量在焦总质量中的含量约为13wt%;焦调控催化剂中的焦含量分布的四分位差约为0.2wt%;待生催化剂中的焦含量约为13wt%。
流化床反应器的焦调控区的工艺操作条件为:气体表观线速度约为0.1m/s,反应温度约为300℃,反应压力约为500kPa,床层密度约为800kg/m 3
流化床反应器的反应区的工艺操作条件为:气体表观线速度约为0.5m/s,反应温度约为350℃,反应压力约为500kPa,床层密度约为500kg/m 3
流化床再生器的工艺操作条件为:气体表观线速度约为2.0m/s,再生温度约为600℃,再生压力约为500kPa,床层密度约为150kg/m 3
本实施方案中,产品气的组成为38wt%乙烯,55wt%丙烯,5wt%C4-C6烃类和2wt%的其他组分,其他组分是甲烷、乙烷、丙烷、氢气、CO和CO2等;生产单耗为2.58吨甲醇/吨低碳烯烃。
实施例3
本实施方案采用图1和图2所示的装置,流化床反应器中的焦调控区含有4个挡板,即n=4,焦调控区包含4个焦调控区子区,第一气固分离设备采用气固快速分离器。
本实施方案中,焦调控原料是1wt%丙烷、1wt%丙烯、3wt%丁烷、51wt%丁烯、3wt%戊烷、22wt%戊烯、1wt%己烷、7wt%己烯、2wt%甲醇和9wt%水的混合物;含氧化合物是二甲醚;再生气体是50wt%空气和50wt%氧气;催化剂中的活性组分是SAPO-34分子筛;再生催化剂中的焦含量约为2wt%;焦调控催化剂中的焦含量约为6wt%,其中,多甲基苯和多甲基萘的质量在焦总质量中的含量约为81wt%,分子量>184的焦物种的质量在焦总质量中的含量约为15wt%;焦调控催化剂中的焦含量分布的四分位差约为0.6wt%;待生催化剂中的焦含量约为11wt%;
流化床反应器的焦调控区的工艺操作条件为:气体表观线速度约为0.4m/s,反应温度约为700℃,反应压力约为300kPa,床层密度约为500kg/m 3
流化床反应器的反应区的工艺操作条件为:气体表观线速度约为1.0m/s,反应温度约为450℃,反应压力约为300kPa,床层密度约为300kg/m 3
流化床再生器的工艺操作条件为:气体表观线速度约为1.0m/s,再生温度约为750℃,再生压力约为300kPa,床层密度约为360kg/m 3
本实施方案中,产品气的组成为48wt%乙烯,47wt%丙烯,3wt%C4-C6烃类和2wt%的其他组分,其他组分是甲烷、乙烷、丙烷、氢气、CO和CO 2等;生产单耗为2.53吨甲醇/吨低碳烯烃。
实施例4
本实施方案采用图1和图2所示的装置,流化床反应器中的焦调控区含有6个挡板,即n=6,焦调控区包含6个焦调控区子区,第一气固分离设备采用气固快速分离器。
本实施方案中,焦调控原料是5wt%丁烷、72wt%丁烯、8wt%甲醇和15wt%水的混合物;含氧化合物是甲醇;再生气体是50wt%空气和50wt%氮气;催化剂中的活性组分是SAPO-34分子筛;再生催化剂中的焦含量约为2wt%;焦调控催化剂中的焦含量约为6wt%,其中,多甲基苯和多甲基萘的质量在焦总质量中的含量约为70wt%,分子量>184的焦物种的质量在焦总质量中的含量约为24wt%;焦调控催化剂中的焦含量分布的四分位差约为0.3wt%;待生催化剂中的焦含量约为12wt%;
流化床反应器的焦调控区的工艺操作条件为:气体表观线速度约为0.5m/s,反应温度约为600℃,反应压力约为200kPa,床层密度约为400kg/m 3
流化床反应器的反应区的工艺操作条件为:气体表观线速度约为1.5m/s,反应温度约为500℃,反应压力约为200kPa,床层密度约为200kg/m 3
流化床再生器的工艺操作条件为:气体表观线速度约为1.5m/s,再生温度约为680℃,再生压力约为200kPa,床层密度约为280kg/m 3
本实施方案中,产品气的组成为53wt%乙烯,43wt%丙烯,3wt%C4-C6烃类和1wt%的其他组分,其他组分是甲烷、乙烷、丙烷、氢气、CO和CO 2等;生产单耗为2.50吨甲醇/吨低碳烯烃。
对比例
该对比案例,和实施例4的差异在于不采用焦调控反应在线改性DMTO催化剂,焦调控区通入的原料是氮气,氮气是惰性气体,不会在焦调控区中改变再生催化剂的性质,即,相当于进入反应区的催化剂是再生催化剂。
本实施方案中,产品气的组成为43wt%乙烯,39wt%丙烯,12wt%C4-C6烃类和6wt%的其他组分,其他组分是甲烷、乙烷、丙烷、氢气、CO和CO 2等;生产单耗为2.91吨甲醇/吨低碳烯烃。
本对比案例说明了通过焦调控反应在线改性DMTO催化剂可以大幅度的提升催化剂的性能,降低生产单耗。
以上所述,仅是本申请的几个实施例,并非对本申请做任何形式的限制,虽然本申请以较佳实施例揭示如上,然而并非用以限制本申请,任何熟悉本专业的技术人员,在不脱离本申请技术方案的范围内,利用上述揭示的技术内容做出些许的变动或修饰均等同于等效实施案例,均属于技术方案范围内。

Claims (34)

  1. 一种流化床反应器,其特征在于,所述流化床反应器包括主壳体和焦调控区壳体;
    所述主壳体包括上壳体和下壳体;
    所述上壳体围合成气固分离区,所述下壳体围合成反应区;
    所述反应区和气固分离区轴向连通;
    所述焦调控区壳体沿周向设置在所述主壳体的外壁上;
    所述焦调控区壳体与所述主壳体围合成环形空腔,所述环形空腔为焦调控区;
    在所述焦调控区中,沿径向设有n个挡板,所述n个挡板将所述焦调控区分割为n个焦调控区子区,n为整数;
    所述焦调控区子区设有焦调控原料入口;
    其中,n-1个所述挡板上开设有催化剂流通孔,以使进入所述焦调控区的催化剂和焦调控原料沿着环形方向流动。
  2. 根据权利要求1所述的流化床反应器,其特征在于,在所述焦调控区中,所述n个挡板包括第1挡板、第2挡板至第n挡板;
    所述第1挡板上未开设有所述催化剂流通孔;
    所述第2至第n挡板上均开设有所述催化剂流通孔;
    所述第1挡板与所述第2挡板分割而成的第1焦调控区子区设有焦调控区催化剂进口;
    所述第1挡板与所述第n挡板分割而成的第n焦调控区子区设有焦调控催化剂输送管,所述焦调控催化剂输送管的出口位于所述反应区;
    所述焦调控区子区的下方设有焦调控原料入口,所述焦调控原料入口为焦调控区分布器;
    所述焦调控区子区的顶部设有焦调控区气体输送管,所述焦调控区气体输送管的出口位于气固分离区。
  3. 根据权利要求1所述的流化床反应器,其特征在于,所述n的取值范围为:2≤n≤10。
  4. 根据权利要求1所述的流化床反应器,其特征在于,所述反应区的内下方还设有反应区分布器;
    所述反应区分布器用于通入反应原料。
  5. 根据权利要求4所述的流化床反应器,其特征在于,所述反应区设有流化床反应器取热器,所述反应区的底部设有第一汽提器;
    所述第一汽提器的入口位于所述下壳体内;
    所述第一汽提器的出口位于所述下壳体外;
    所述第一汽提器的入口的开口端位于焦调控催化剂输送管的出口端的上方;
    所述焦调控催化剂输送管的出口端位于所述反应区分布器的上方。
  6. 根据权利要求1所述的流化床反应器,其特征在于,所述气固分离区设有第一气固分离设备和第二气固分离设备;
    所述第一气固分离设备的催化剂出口管穿透焦调控区顶部插设在第1焦调控区子区中;
    所述第一气固分离设备的气体出口设置于气固分离区;
    所述第二气固分离设备的入口位于所述气固分离区;
    所述第二气固分离设备的催化剂出口端位于反应区。
  7. 根据权利要求6所述的流化床反应器,其特征在于,所述气固分离区的内上部还设有第一集气室;
    所述第二气固分离设备的气体出口与所述第一集气室连通;
    所述第一集气室还与产品气输送管连通。
  8. 一种用于含氧化合物制备低碳烯烃的装置,其特征在于,所述装置包括流化床再生器和权利要求1至7任一项所述的流化床反应器。
  9. 根据权利要求8所述的装置,其特征在于,所述流化床再生器包括再生器壳体,所述再生器壳体包含再生器上壳体和再生器下壳体,所述再生器上壳体围合成气固分离区,所述再生器下壳体围合成再生区;
    所述再生器壳体上设有待生剂入口;
    所述待生剂入口通过待生剂输送管与第一汽提器出口管连通。
  10. 根据权利要求8所述的装置,其特征在于,所述再生区的底部还设有再生区分布器;
    所述再生区分布器用于通入再生气体。
  11. 根据权利要求10所述的装置,其特征在于,所述再生区的底部设有第二汽提器;
    所述第二汽提器的入口位于所述再生器壳体内;
    所述第二汽提器的出口位于所述再生器壳体外;
    所述第二汽提器的通过再生剂输送管与第一气固分离设备连通;
    所述第二汽提器的入口的开口端位于所述再生区分布器的上方。
  12. 根据权利要求8所述的装置,其特征在于,所述再生器壳体中还设有第三气固分离设备和第二集气室;
    所述第二集气室位于所述再生器壳体的内顶部;
    所述第三气固分离设备的气体出口与所述第二集气室连通;
    所述第二集气室与烟气输送管连通;
    所述第三气固分离设备的催化剂出口端位于所述第二汽提器入口管开口端的上方。
  13. 一种含氧化合物制备低碳烯烃的方法,其特征在于,所述方法包括通过权利要求1至7任一项所述的流化床反应器,焦调控反应在线改性DMTO催化剂;
    所述方法包括以下步骤:
    将催化剂和焦调控原料通入焦调控区,所述催化剂沿着所述焦调控区子区以环形方向流动的同时,与焦调控原料发生反应,生成包括焦调控催化剂的产物,所述焦调控催化剂为改性的DMTO催化剂。
  14. 根据权利要求13所述的方法,其特征在于,所述催化剂沿着设置在挡板上的催化剂流通孔以环形方向流动;
    所述焦调控原料由焦调控区分布器进入焦调控区子区,与催化剂发生反应。
  15. 根据权利要求14所述的方法,其特征在于,制备得到的所述焦调控催化剂通过焦调控催化剂输送管进入反应区,与反应区分布器通入的含有含氧化合物的原料接触,反应,生成含有低碳烯烃和待生催化剂的物流A;
    所述产物中还包括焦调控产品气,所述焦调控产品气通过焦调控区气体输送管进入气固分离区。
  16. 根据权利要求15所述的方法,其特征在于,所述物流A与进入气固分离区的焦调控产品气混合,形成物流B;
    所述物流B进入第二气固分离设备进行气固分离,得到气相物流C和固相物流D,
    所述气相物流C为含有低碳烯烃的产品气;
    所述固相物流D包括待生催化剂。
  17. 根据权利要求16所述的方法,其特征在于,所述气相物流C进入第一集气室,由产品气输送管进入下游工段;
    所述固相物流D返回流化床反应器的反应区;
    所述反应区中的催化剂由第一汽提器入口管的开口端进入所述第一汽提器中,进行汽提,汽提后进入下游区域。
  18. 根据权利要求13所述的方法,其特征在于,所述焦调控原料包括C 1-C 6的烃类化合物。
  19. 根据权利要求18所述的方法,其特征在于,所述烃类化合物选自C 1-C 6的烷烃、C 1-C 6的烯烃中的至少一种。
  20. 根据权利要求18所述的方法,其特征在于,所述焦调控原料还包括氢气、醇类化合物、水中的至少一种;
    所述醇类化合物和水的总含量在焦调控原料中的质量含量大于等于10wt%且小于等于50wt%。
  21. 根据权利要求20所述的方法,其特征在于,所述醇类化合物选自甲醇、乙醇中的至少一种。
  22. 根据权利要求20所述的方法,其特征在于,所述焦调控原料包括:0-20wt%氢气、0-50wt%甲烷、0-50wt%乙烷、0-20wt%乙烯、0-50wt%丙烷、0-20wt%丙烯、0-90wt%丁烷、0-90wt%丁烯、0-90wt%戊烷、0-90wt%戊烯、0-90wt%己烷、0-90wt%己烯、0-50wt%甲醇、0-50wt%乙醇、0-50wt%水,烃类化合物的总量不为0。
  23. 根据权利要求13所述的方法,其特征在于,所述催化剂包括SAPO分子筛;
    所述催化剂中的焦含量≤3wt%;
    所述焦调控催化剂中的焦含量为4-9wt%;
    所述焦调控催化剂中的焦含量分布的四分位差小于1wt%。
  24. 根据权利要求13所述的方法,其特征在于,所述焦调控催化剂中的焦物种包括多甲基苯和多甲基萘;
    所述多甲基苯和多甲基萘的质量和在焦总质量中的含量≥70wt%;
    分子量>184的焦物种的质量在焦总质量中的含量≤25wt%;
    其中,所述焦总质量是指焦物种的总质量。
  25. 根据权利要求15所述的方法,其特征在于,所述待生催化剂中的焦含量为9-13wt%。
  26. 根据权利要求15所述的方法,其特征在于,所述含氧化合物选自甲醇、二甲醚中的至少一种。
  27. 根据权利要求13所述的方法,其特征在于,焦调控区的工艺条件为:气体表观线速度为0.1-0.5m/s,反应温度为300-700℃,反应压力为100-500kPa,床层密度为400-800kg/m 3
  28. 根据权利要求15所述的方法,其特征在于,反应区的工艺条件为:气体表观线速度为0.5-2.0m/s,反应温度为350-550℃,反应压力为100-500kPa,床层密度为150-500kg/m 3
  29. 一种制备低碳烯烃方法,其特征在于,所述制备低碳烯烃方法包括通过权利要求8至12任一项所述的装置制备低碳烯烃;
    所述制备低碳烯烃方法包括权利要求13至28任一项所述的方法;
    所述制备低碳烯烃方法还包括以下步骤:
    将流化床反应器反应区中的待生催化剂通入流化床再生器中,进行再生处理,生成再生催化剂,将所述再生催化剂通入流化床反应器的焦调控区中,与焦调控原料接触反应。
  30. 根据权利要求29所述的方法,其特征在于,所述方法包括:将反应区中的待生催化剂依次通过第一汽提器和待生剂输送管进入流化床再生器中,与再生气体接触,反应,得到含有烟气和再生催化剂的物流E,所述物流E进入第三气固分离设备,将烟气和再生催化剂分离;
    分离后的所述再生催化剂依次通过第二汽提器、再生剂输送管、第一气固分离设备返回流化床反应器的焦调控区中,与焦调控原料接触反应。
  31. 根据权利要求29所述的方法,其特征在于,所述再生催化剂中的焦含量≤3wt%。
  32. 根据权利要求30所述的方法,其特征在于,所述再生气体选自氧气、氮气、水蒸气、空气中的至少一种。
  33. 根据权利要求32所述的方法,其特征在于,所述再生气体包括:0-100wt%空气、0-50wt%氧气、0-50wt%氮气和0-50wt%水蒸气;
    所述空气、氧气、氮气和水蒸汽的含量不同时为0。
  34. 根据权利要求29所述的方法,其特征在于,再生区的工艺条件为:气体表观线速度为0.5-2.0m/s,再生温度为600-750℃,再生压力为100-500kPa,床层密度为150-700kg/m 3
PCT/CN2020/121556 2020-10-16 2020-10-16 一种流化床反应器、装置以及应用 WO2022077454A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US17/784,650 US11872549B2 (en) 2020-10-16 2020-10-16 Fluidized bed reactor, device, and use thereof
EP20957232.0A EP4088811A4 (en) 2020-10-16 2020-10-16 FLUID BED REACTOR, DEVICE AND APPLICATION
PCT/CN2020/121556 WO2022077454A1 (zh) 2020-10-16 2020-10-16 一种流化床反应器、装置以及应用
KR1020227043986A KR20230011380A (ko) 2020-10-16 2020-10-16 유동상 반응기, 장치 및 응용
JP2022573390A JP7393114B2 (ja) 2020-10-16 2020-10-16 流動床反応器、装置及び応用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/121556 WO2022077454A1 (zh) 2020-10-16 2020-10-16 一种流化床反应器、装置以及应用

Publications (1)

Publication Number Publication Date
WO2022077454A1 true WO2022077454A1 (zh) 2022-04-21

Family

ID=81207615

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/121556 WO2022077454A1 (zh) 2020-10-16 2020-10-16 一种流化床反应器、装置以及应用

Country Status (5)

Country Link
US (1) US11872549B2 (zh)
EP (1) EP4088811A4 (zh)
JP (1) JP7393114B2 (zh)
KR (1) KR20230011380A (zh)
WO (1) WO2022077454A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001017977A1 (en) * 1999-09-09 2001-03-15 Nihon Bayer Agrochem K.K. 1,3,5-triazines as herbicides
ES2298013A1 (es) * 2005-12-29 2008-05-01 Uop Llc Enfriadores de catalizador para reactor de conversion de compuestos oxigenados.
CN101279873A (zh) * 2007-04-04 2008-10-08 中国石油化工股份有限公司 由甲醇或二甲醚制备低碳烯烃的方法
CN202478902U (zh) * 2011-11-10 2012-10-10 渭南高新区爱心有限责任公司 一种二甲醚或二甲醚与甲醇混合物转化为低碳烯烃的反应装置
WO2015077142A1 (en) * 2013-11-25 2015-05-28 Uop Llc Increased conversion of recycled oxygenates in mto
CN110818521A (zh) * 2018-08-07 2020-02-21 中石化广州工程有限公司 一种用含氧化合物制芳烃和低碳烯烃的装置和方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI101156B (fi) 1996-08-30 1998-04-30 Fortum Oil Oy Kiertomassareaktoriin perustuva menetelmä ja laite hiilivetyjen konver toimiseksi
US7083762B2 (en) 2002-10-18 2006-08-01 Exxonmobil Chemical Patents Inc. Multiple riser reactor with centralized catalyst return
US7763765B2 (en) 2006-03-31 2010-07-27 Exxonmobil Chemical Patents Inc. Method of high pressure and high capacity oxygenate conversion with catalyst exposure cycle
US8435452B2 (en) 2010-02-23 2013-05-07 Exxonmobil Research And Engineering Company Circulating fluid bed reactor with improved circulation
CN104672044B (zh) 2013-12-03 2016-06-08 中国科学院大连化学物理研究所 一种含氧化合物制低碳烯烃的方法
CN104672040B (zh) * 2013-12-03 2017-06-16 中国科学院大连化学物理研究所 一种含氧化合物制低碳烯烃的方法及其使用的设备
AU2013407175B2 (en) 2013-12-03 2017-06-15 Dalian Institute Of Chemical Physics, Chinese Academy Of Sciences Method for preparing a light olefin using an oxygen-containing compound, and device for use thereof
WO2015081489A1 (zh) * 2013-12-03 2015-06-11 中国科学院大连化学物理研究所 一种含氧化合物制低碳烯烃的方法
EP3078414B1 (en) 2013-12-03 2018-09-19 Dalian Institute Of Chemical Physics Chinese Academy of Sciences Reaction device for preparing light olefins from methanol and/or dimethyl ether
KR102243316B1 (ko) 2016-10-19 2021-04-21 달리안 인스티튜트 오브 케미컬 피직스, 차이니즈 아카데미 오브 사이언시즈 산소 함유 화합물로 프로필렌과 c4 탄화수소류를 제조하는 난류 유동층 반응기, 장치 및 방법
CN108786670B (zh) 2017-04-27 2021-01-26 中国科学院大连化学物理研究所 甲醇和/或二甲醚与甲苯制对二甲苯联产低碳烯烃的方法
CN110818522B (zh) 2018-08-07 2022-09-09 中石化广州工程有限公司 一种含氧化合物制取芳烃和低碳烯烃的装置和方法
CN111099945A (zh) 2019-11-09 2020-05-05 洛阳维达石化工程有限公司 一种提高甲醇转化制低碳烯烃选择性的方法及其装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001017977A1 (en) * 1999-09-09 2001-03-15 Nihon Bayer Agrochem K.K. 1,3,5-triazines as herbicides
ES2298013A1 (es) * 2005-12-29 2008-05-01 Uop Llc Enfriadores de catalizador para reactor de conversion de compuestos oxigenados.
CN101279873A (zh) * 2007-04-04 2008-10-08 中国石油化工股份有限公司 由甲醇或二甲醚制备低碳烯烃的方法
CN202478902U (zh) * 2011-11-10 2012-10-10 渭南高新区爱心有限责任公司 一种二甲醚或二甲醚与甲醇混合物转化为低碳烯烃的反应装置
WO2015077142A1 (en) * 2013-11-25 2015-05-28 Uop Llc Increased conversion of recycled oxygenates in mto
CN110818521A (zh) * 2018-08-07 2020-02-21 中石化广州工程有限公司 一种用含氧化合物制芳烃和低碳烯烃的装置和方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4088811A4 *

Also Published As

Publication number Publication date
US11872549B2 (en) 2024-01-16
JP2023528819A (ja) 2023-07-06
JP7393114B2 (ja) 2023-12-06
US20230001371A1 (en) 2023-01-05
EP4088811A4 (en) 2023-04-12
KR20230011380A (ko) 2023-01-20
EP4088811A1 (en) 2022-11-16

Similar Documents

Publication Publication Date Title
WO2022077452A1 (zh) 流化床反应器、装置以及含氧化合物制备低碳烯烃的方法
CN114377621B (zh) 一种流化床反应器、装置以及应用
WO2022077454A1 (zh) 一种流化床反应器、装置以及应用
CN114377730B (zh) 再生装置、制备低碳烯烃的装置及其应用
CN114377729B (zh) 流化床再生器、制备低碳烯烃的装置及其应用
WO2022077458A1 (zh) 一种焦调控反应器、由含氧化合物制备低碳烯烃的装置和应用
CN114377620B (zh) 流化床反应器、装置以及含氧化合物制备低碳烯烃的方法
WO2022077457A1 (zh) 焦调控反应器、装置及含氧化合物制备低碳烯烃的方法
WO2022077459A1 (zh) 再生装置、制备低碳烯烃的装置及其应用
RU2810794C1 (ru) Реактор с псевдоожиженным слоем, устройство и их применение
CN114377625B (zh) 焦调控反应器、装置及含氧化合物制备低碳烯烃的方法
CN114377624B (zh) 一种焦调控反应器、由含氧化合物制备低碳烯烃的装置和应用
WO2022077460A1 (zh) 流化床再生器、制备低碳烯烃的装置及其应用
RU2806760C1 (ru) Реактор с псевдоожиженным слоем, устройство и способ получения низкоуглеродистых олефинов из кислородсодержащего соединения
RU2798851C1 (ru) Реактор для управления содержанием кокса, а также устройство и способ получения низкоуглеродистых олефинов из кислородсодержащего соединения
RU2812664C1 (ru) Реактор для управления содержанием кокса, устройство для получения низкоуглеродистых олефинов из кислородсодержащего соединения и их применение
RU2815512C1 (ru) Устройство для регенерации, устройство для получения низкоуглеродистых олефинов и их применение

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20957232

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020957232

Country of ref document: EP

Effective date: 20220727

ENP Entry into the national phase

Ref document number: 2022573390

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227043986

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE