WO2022077460A1 - 流化床再生器、制备低碳烯烃的装置及其应用 - Google Patents

流化床再生器、制备低碳烯烃的装置及其应用 Download PDF

Info

Publication number
WO2022077460A1
WO2022077460A1 PCT/CN2020/121577 CN2020121577W WO2022077460A1 WO 2022077460 A1 WO2022077460 A1 WO 2022077460A1 CN 2020121577 W CN2020121577 W CN 2020121577W WO 2022077460 A1 WO2022077460 A1 WO 2022077460A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
zone
fluidized bed
catalyst
regenerator
Prior art date
Application number
PCT/CN2020/121577
Other languages
English (en)
French (fr)
Inventor
叶茂
张涛
张今令
徐庶亮
唐海龙
王贤高
张骋
贾金明
王静
李华
李承功
刘中民
Original Assignee
中国科学院大连化学物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院大连化学物理研究所 filed Critical 中国科学院大连化学物理研究所
Priority to KR1020227043991A priority Critical patent/KR20230013254A/ko
Priority to US17/777,052 priority patent/US20220401905A1/en
Priority to PCT/CN2020/121577 priority patent/WO2022077460A1/zh
Priority to EP20957238.7A priority patent/EP4082655A4/en
Priority to JP2022573395A priority patent/JP7449415B2/ja
Publication of WO2022077460A1 publication Critical patent/WO2022077460A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/24Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique
    • B01J8/26Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique with two or more fluidised beds, e.g. reactor and regeneration installations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/04Gas or vapour treating; Treating by using liquids vaporisable upon contacting spent catalyst
    • B01J38/06Gas or vapour treating; Treating by using liquids vaporisable upon contacting spent catalyst using steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/82Phosphates
    • B01J29/84Aluminophosphates containing other elements, e.g. metals, boron
    • B01J29/85Silicoaluminophosphates [SAPO compounds]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/90Regeneration or reactivation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/04Gas or vapour treating; Treating by using liquids vaporisable upon contacting spent catalyst
    • B01J38/12Treating with free oxygen-containing gas
    • B01J38/14Treating with free oxygen-containing gas with control of oxygen content in oxidation gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/04Gas or vapour treating; Treating by using liquids vaporisable upon contacting spent catalyst
    • B01J38/12Treating with free oxygen-containing gas
    • B01J38/16Oxidation gas comprising essentially steam and oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/04Gas or vapour treating; Treating by using liquids vaporisable upon contacting spent catalyst
    • B01J38/12Treating with free oxygen-containing gas
    • B01J38/30Treating with free oxygen-containing gas in gaseous suspension, e.g. fluidised bed
    • B01J38/34Treating with free oxygen-containing gas in gaseous suspension, e.g. fluidised bed with plural distinct serial combustion stages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/1818Feeding of the fluidising gas
    • B01J8/1827Feeding of the fluidising gas the fluidising gas being a reactant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/1872Details of the fluidised bed reactor
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/20Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/20Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
    • C07C1/22Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms by reduction
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C11/00Aliphatic unsaturated hydrocarbons
    • C07C11/02Alkenes
    • C07C11/04Ethylene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C11/00Aliphatic unsaturated hydrocarbons
    • C07C11/02Alkenes
    • C07C11/06Propene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00796Details of the reactor or of the particulate material
    • B01J2208/00823Mixing elements
    • B01J2208/00831Stationary elements
    • B01J2208/0084Stationary elements inside the bed, e.g. baffles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00796Details of the reactor or of the particulate material
    • B01J2208/00991Disengagement zone in fluidised-bed reactors
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/82Phosphates
    • C07C2529/84Aluminophosphates containing other elements, e.g. metals, boron
    • C07C2529/85Silicoaluminophosphates (SAPO compounds)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/40Ethylene production

Definitions

  • the application relates to a fluidized bed regenerator, a device for preparing low-carbon olefins and applications thereof, belonging to the field of chemical catalysis.
  • MTO Methanol-to-olefins technology
  • DMTO DMTO technology of the Dalian Institute of Chemical Physics of the Chinese Academy of Sciences
  • MTO technology of the UOP Company of the United States In 2010, Shenhua Baotou MTO plant using DMTO technology was completed and put into operation. This is the world's first industrial application of MTO technology. By the end of 2019, 14 sets of DMTO industrial plants had been put into operation, with a total capacity of about 8 million tons of low-carbon olefins per year. .
  • DMTO technology has been further developed, and a new generation of DMTO catalysts with better performance have gradually begun to be industrially applied, creating higher benefits for DMTO factories.
  • the new generation of DMTO catalysts has higher methanol handling capacity and lower olefin selectivity.
  • Methanol-to-olefins technology generally uses SAPO-34 molecular sieve catalyst.
  • the high selectivity of light olefins in the methanol-to-olefins process is achieved by the acid catalysis of molecular sieves combined with the restriction of pores in the molecular sieve framework structure.
  • the methanol conversion process is accompanied by the coking process of the acidic molecular sieve catalyst.
  • the methanol-to-olefins process is accompanied by the coking process of the acidic molecular sieve catalyst, and coke species are formed in the molecular sieve cages, triggering the catalytic process of methanol-to-olefins.
  • the coking of the catalyst covers the active sites of the molecular sieve and reduces the activity of the catalyst, but the coke in the molecular sieve further limits the pores in the molecular sieve framework structure and improves the selectivity of light olefins.
  • the light olefins mentioned in this application refer to ethylene and propylene.
  • the applicant's research has found that the main factors affecting the activity of DMTO catalysts and the selectivity of light olefins are the coke content, coke content distribution and coke species in the catalyst. When the average coke content of the catalyst is the same, the coke content distribution is narrow, and the selectivity and activity of light olefins are high.
  • the coke species in the catalyst include polymethyl aromatic hydrocarbons and polymethyl naphthenes, among which polymethylbenzene and polymethylnaphthalene can promote the formation of ethylene. Therefore, controlling the coke content, coke content distribution and coke species in the catalyst is the key to control the operating window of the DMTO catalyst and improve the selectivity of light olefins.
  • the coke content in the methanol to olefins catalyst is generally 7-13 wt %.
  • the activity of the catalyst is greatly reduced.
  • MTO plants generally use air regeneration to restore the activity of the catalyst, so as to recycle the catalyst.
  • coke is burned in the regenerator to generate CO, CO 2 and H 2 O and other substances before being discharged.
  • the coke in the catalyst to be produced can be divided into two categories, one is coke with large molecular weight, high degree of graphitization and no catalytic activity, which can be called inactive coke, and the other is coke with small molecular weight and catalytic activity.
  • Active polymethyl aromatic hydrocarbons and polymethyl naphthenes can be called active coke.
  • activated coke and water react, and macromolecular species are converted into small molecular species.
  • activated coke can be converted into species mainly composed of polymethylbenzene and polymethylnaphthalene.
  • inactive coke and active coke are converted into oxygen-containing hydrocarbon species and oxygen-free hydrocarbon species with smaller molecular weight under the action of oxygen and water, among which oxygen-containing hydrocarbon species do not catalytic activity.
  • Oxygen-containing hydrocarbon species can be converted into oxygen-free hydrocarbon species with catalytic activity under the action of water vapor, hydrogen, methane, ethane, propane and other substances.
  • the present application provides a controllable activation method for converting a to-be-grown catalyst into a regenerated catalyst, and the obtained regenerated catalyst has the characteristics of high activity, high selectivity of low-carbon olefins, etc., and can reduce the unit consumption of methanol and the coking rate of methanol, Improve the atom economy of methanol-to-olefins technology.
  • a fluidized bed regenerator for a catalyst for activating oxygenates to produce light olefins.
  • a fluidized bed regenerator for activating a catalyst for activating oxygenated compounds to prepare light olefins comprises a second activation zone, a first activation zone and a gas-solid separation zone from bottom to top;
  • the second activation zone and the gas-solid separation zone are in axial communication;
  • the first activation zone is arranged on the periphery of the connection between the second activation zone and the gas-solid separation zone;
  • the first activation zone is an annular cavity
  • the first activation area is provided with n baffles along the radial direction, and the n baffles divide the first activation area into n first activation area sub-areas;
  • catalyst flow holes are opened on the n-1 baffle plates, so that the catalyst entering the first activation zone flows along the annular direction.
  • the n baffles include a first baffle, a second baffle to an nth baffle;
  • the first baffle plate is not provided with the catalyst flow hole
  • the second to nth baffles are provided with the catalyst flow holes
  • the first activation zone sub-region formed by dividing the first baffle plate and the second baffle plate is provided with a catalyst inlet to be produced;
  • the nth activation zone sub-region formed by dividing the first baffle plate and the nth baffle plate is provided with a first activation zone catalyst conveying pipe;
  • a first activation zone distributor is arranged below the first activation zone sub-zone
  • the top of the first activation zone sub-zone is provided with a first activation zone gas delivery pipe.
  • the number of catalyst flow holes opened on the baffle may be one, or may be multiple, which is not strictly limited in this application.
  • the relative positions of the catalyst flow holes are not strictly limited in the present application.
  • the plurality of catalyst flow holes may be arranged in parallel, or may be arranged randomly.
  • a first active area distributor is provided below each of the first active area sub-areas. In this way, the overall uniform entry of the raw material of the first activation zone into the sub-zones of the first activation zone can be achieved.
  • each first activation zone sub-zone is provided with a first activation zone gas delivery pipe.
  • the first activation zone feedstock is contacted and reacted with the to-be-generated catalyst through the first activation zone distributor.
  • the upper part of the first activation zone is provided with a regenerator first gas-solid separation device
  • the first gas-solid separation device of the regenerator communicates with the first activation zone through the to-be-grown catalyst inlet.
  • the to-be-grown catalyst enters the first activation zone through the first gas-solid separation device.
  • the first activation zone is provided with a first activation zone catalyst transport pipe, the inlet of the first activation zone catalyst transport pipe is connected to the nth first activation zone sub-zone, and the outlet of the first activation zone catalyst transport pipe in the second activation zone.
  • the first gas-solid separation device of the regenerator adopts a gas-solid cyclone.
  • n 2 ⁇ n ⁇ 10.
  • the cross section of the first active region sub-region is a fan-shaped ring.
  • m pieces of perforated plates are arranged in the second activation zone along the horizontal direction;
  • the aperture ratio of the porous plate is 5-50%.
  • a porous plate is used in the second activation zone to suppress back-mixing of the catalyst in the bed, so as to improve the uniformity of coke distribution in the catalyst.
  • the bottom of the second activation zone is provided with a second activation zone distributor.
  • the fluidized bed regenerator includes a regenerator gas collection chamber and a fluidized bed regenerator heat extractor;
  • regenerator plenum is located at the top of the fluidized bed regenerator
  • the top of the regenerator gas collection chamber is provided with a regenerator product gas conveying pipe;
  • the gas-solid separation zone is provided with a second gas-solid separation device
  • the regenerator gas collection chamber is connected to the outlet of the second gas-solid separation device
  • the fluidized bed regenerator heat extractor is located in the lower part of the second activation zone.
  • the inner diameter of the connection between the second activation zone and the gas-solid separation zone is from small to large.
  • the inner diameter of the connection between the lower shell and the upper shell of the fluidized bed regenerator is from small to large.
  • the second gas-solid separation device of the regenerator adopts one or more groups of gas-solid cyclone separators.
  • each group of gas-solid cyclones includes a first-stage gas-solid cyclone and a second-stage gas-solid cyclone.
  • the fluidized bed regenerator is divided into a second activation zone, a first activation zone and a gas-solid separation zone from bottom to top;
  • the fluidized bed regenerator includes: a regenerator shell, a first gas-solid separation device of the regenerator, a first activation zone distributor, a baffle plate, a catalyst conveying pipe in the first activation zone, a gas conveying pipe in the first activation zone, a first activation zone Two activation zone distributor, perforated plate, fluidized bed regenerator heat collector, regenerator second gas-solid separation equipment, regenerator gas collection chamber, regenerator product gas delivery pipe, regeneration inclined pipe, regeneration slide valve and regeneration agent delivery pipe;
  • the first activation area is located in the annular area above the second activation area, and n baffles are set in the first activation area.
  • the baffle divides the first activation area into n first activation area sub-areas, 2 ⁇ n ⁇ 10, each The bottoms of the first activation zone sub-zones are independently provided with first activation zone distributors.
  • the sub-regions are arranged concentrically and sequentially, and the baffle plates contain catalyst flow holes, but the baffle plates of the first first activation region sub-region and the nth first activation region sub-region do not contain catalyst flow holes;
  • the first gas-solid separation device of the regenerator is located in the gas-solid separation zone of the fluidized bed regenerator.
  • the inlet of the first gas-solid separation device of the regenerator is connected to the outlet of the conveying pipe for the raw material, and the gas of the first gas-solid separation device of the regenerator The outlet is located in the gas-solid separation zone, and the catalyst outlet of the first gas-solid separation device of the regenerator is located in the first sub-zone of the first activation zone;
  • the inlet of the catalyst transport pipe in the first activation zone is connected to the nth first activation zone sub-zone, and the outlet of the catalyst transport pipe in the first activation zone is located in the second activation zone; the top of each first activation zone sub-zone is independently provided with a first activation zone.
  • the gas delivery pipe in the activation zone, the outlet of the gas delivery pipe in the first activation zone is located in the gas-solid separation zone;
  • the second activation zone distributor is located at the bottom of the second activation zone of the fluidized bed regenerator, m pieces of perforated plates are set in the second activation zone, 1 ⁇ m ⁇ 10, and the fluidized bed regenerator heat collector is located in the second activation zone ;
  • the second gas-solid separation device of the regenerator and the regenerator gas collection chamber are located in the gas-solid separation zone of the fluidized bed regenerator, and the inlet of the second gas-solid separation device of the regenerator is located in the gas-solid separation zone of the fluidized bed regenerator.
  • the gas outlet of the second gas-solid separation equipment is connected to the regenerator gas collection chamber, the catalyst outlet of the second gas-solid separation equipment of the regenerator is located in the second activation zone, and the regenerator product gas delivery pipe is connected to the top of the regenerator gas collection chamber;
  • the inlet of the regeneration inclined pipe is connected to the lower part of the second activation zone, the inlet of the regeneration slide valve is connected to the outlet of the regeneration inclined pipe, the outlet of the regeneration slide valve is connected to the inlet of the regeneration agent conveying pipe through the pipeline, and the outlet of the regeneration agent conveying pipe is connected in the reaction zone of the fluidized bed reactor.
  • an apparatus for preparing light olefins from oxygenates is an oxygenate-to-light olefin (DMTO) device comprising a fluidized bed reactor and a fluidized bed regenerator.
  • DMTO oxygenate-to-light olefin
  • a device for preparing light olefins from oxygenates comprising a fluidized bed reactor and the above-mentioned fluidized bed regenerator.
  • the device comprises a sloping pipe for regeneration, a stripper of a fluidized bed reactor, a conveying pipe for a waiting agent, a regenerating inclined pipe and a regenerating agent conveying pipe;
  • the unborn agent zone, the unborn inclined pipe, the stripper of the fluidized bed reactor, the unborn agent conveying pipe, and the first gas-solid separation device of the regenerator are connected in sequence;
  • the second activation zone, the regeneration inclined pipe, the regeneration agent conveying pipe, and the reaction zone of the fluidized bed reactor are connected in sequence.
  • the inclined pipe to be grown, the stripper of the fluidized bed reactor, and the conveying pipe of the unborn agent are connected in sequence;
  • the regeneration inclined pipe and the regeneration agent conveying pipe are connected in sequence;
  • the inlet of the regeneration inclined pipe is connected to the lower part of the second activation zone
  • the to-be-grown catalyst reacted in the fluidized-bed reactor enters the to-be-grown inclined pipe, and enters the fluidized-bed regenerator through the to-be-grown agent conveying pipe;
  • the regenerated catalyst after being regenerated by the fluidized bed regenerator enters the regeneration inclined pipe, and enters the fluidized bed reactor through the regenerating agent conveying pipe.
  • the stripper of the fluidized bed reactor and the conveying pipe of the ready-to-generate agent are connected through a ready-to-generate slide valve.
  • the regeneration inclined pipe and the regeneration agent conveying pipe are connected through a regeneration slide valve.
  • the fluidized bed reactor includes a lower shell, a conveying pipe and an upper shell;
  • the lower shell encloses a synthesis reaction zone
  • the conveying pipe is located above the reaction zone and communicates with the reaction zone;
  • the outer periphery of the conveying pipe is provided with an upper casing
  • the cavity is divided from bottom to top into a growth agent area and a gas-solid separation area.
  • the inner diameter of the connection between the reaction zone of the fluidized bed reactor and the conveying pipe is from large to small.
  • the inner diameter of the connection between the lower shell and the upper shell of the fluidized bed reactor is from small to large.
  • the reaction zone belongs to a fast fluidization zone.
  • the to-be-generating agent zone belongs to the bubbling fluidization zone.
  • the fluidization type of the reaction zone is not strictly limited, and preferably the reaction zone belongs to the fast fluidization zone.
  • the gas superficial linear velocity in the reaction zone can reach 7.0m/s, with high methanol flux, the methanol processing capacity per unit volume of the equipment is large, and the methanol mass space velocity can reach 20h -1 .
  • the type of fluidization of the to-be-generating agent zone is not strictly limited, and preferably, the to-be-generating agent zone belongs to the bubbling fluidization zone.
  • the unborn agent zone is used to take heat, reduce the temperature of the unborn catalyst, and transport the low-temperature unborn catalyst to the reaction zone, increase the bed density of the reaction zone, and control the bed temperature of the reaction zone.
  • the gas superficial linear velocity is When 0.5-7.0m/s, the corresponding bed density is 500-100kg/m 3 .
  • the gas-solid separation zone is provided with a fluidized bed reactor first gas-solid separation device
  • the upper part of the conveying pipe is connected to the inlet of the first gas-solid separation device of the fluidized bed reactor.
  • the fluidized-bed reactor includes a fluidized-bed reactor distributor, a fluidized-bed reactor heat extractor, a gas distributor in the zone to be generated, a fluidized-bed reactor gas collection chamber, and a fluidized-bed reactor.
  • second gas-solid separation equipment
  • the fluidized bed reactor distributor is located at the bottom of the reaction zone
  • the fluidized-bed reactor heat extractor is located in the lower part of the regeneration zone;
  • the gas distributor in the unborn agent area is located at the lower part of the unborn agent area;
  • the gas outlet of the second gas-solid separation device of the fluidized bed reactor and the first gas-solid separation device of the fluidized bed reactor are connected to the gas collecting chamber of the fluidized bed reactor;
  • the gas collecting chamber of the fluidized bed reactor is provided with a product gas conveying pipe;
  • the catalyst outlet of the first gas-solid separation device of the fluidized-bed reactor and the second gas-solid separation device of the fluidized-bed reactor are connected with the zone of the reagent to be generated.
  • the oxygenate-containing feedstock is contacted and reacted with the regenerated catalyst through a fluidized bed reactor distributor.
  • the fluidizing gas in the to-be-produced agent zone is contacted with the to-be-produced catalyst through a gas distributor in the to-be-produced agent zone.
  • reaction zone and the generation agent zone are communicated through a generation agent circulation pipe.
  • the inlet of the circulating pipe of the unborn agent is connected to the unborn area;
  • the outlet of the circulating pipe for the generation agent is connected to the bottom of the reaction zone.
  • the unborn agent circulation pipe is provided with a unborn agent circulation slide valve.
  • the first gas-solid separation device of the fluidized bed reactor adopts one or more groups of gas-solid cyclones.
  • each group of gas-solid cyclones includes a first-stage gas-solid cyclone and a second-stage gas-solid cyclone.
  • the second gas-solid separation device of the fluidized bed reactor adopts one or more groups of gas-solid cyclones.
  • each group of gas-solid cyclones includes a first-stage gas-solid cyclone and a second-stage gas-solid cyclone.
  • the fluidized bed reactor comprises: a fluidized bed reactor shell, a fluidized bed reactor distributor, a conveying pipe, a fluidized bed reactor first gas-solid separation device, a fluidized bed reactor Bed reactor gas collection chamber, gas distributor in the area of unborn agent, heat collector of fluidized bed reactor, second gas-solid separation equipment of fluidized bed reactor, product gas conveying pipe, circulating pipe of unborn agent, unborn agent Circulating slide valve, inclined pipe to be produced, stripper of fluidized bed reactor, slide valve to be produced and conveying pipe of ready-to-produce agent;
  • the lower part of the fluidized-bed reactor is the reaction zone, the middle part is the growth agent zone, and the upper part is the gas-solid separation zone;
  • the fluidized bed reactor distributor is located at the bottom of the reaction zone of the fluidized bed reactor, the conveying pipe is located in the central area of the middle and upper part of the fluidized bed reactor, the bottom end of the conveying pipe is connected to the top of the reaction zone, and the conveying pipe is The upper part of the fluidized bed reactor is connected to the inlet of the first gas-solid separation device of the fluidized bed reactor, and the first gas-solid separation device of the fluidized bed reactor is located in the gas-solid separation zone of the fluidized bed reactor.
  • the gas outlet of the separation device is connected to the gas collecting chamber of the fluidized bed reactor, the catalyst outlet of the first gas-solid separation device of the fluidized bed reactor is located in the unborn agent area, and the gas distributor in the unborn agent area is located at the bottom of the unborn agent area , the heat extractor of the fluidized bed reactor is located in the waiting agent area, the second gas-solid separation equipment of the fluidized bed reactor is located in the gas-solid separation area of the fluidized bed reactor, and the second gas-solid separation equipment of the fluidized bed reactor is located in the
  • the inlet is located in the gas-solid separation zone of the fluidized-bed reactor, the gas outlet of the second gas-solid separation device of the fluidized-bed reactor is connected to the gas-collecting chamber of the fluidized-bed reactor, and the gas-solid separation of the second gas-solid separation device of the fluidized-bed reactor is connected.
  • the catalyst outlet is located in the area to be generated, the gas collection chamber of the fluidized bed reactor is located at the top of the fluidized bed reactor, the product gas delivery pipe is connected to the top of the gas collection chamber of the fluidized bed reactor, and the inlet of the circulation pipe to be generated is connected to In the ungenerating agent area, the outlet of the ungenerating agent circulating pipe is connected to the bottom of the reaction zone of the fluidized bed reactor, the ungenerating agent circulating pipe is provided with the ungenerating agent circulating slide valve, and the inlet of the ungenerating slanting pipe is connected to the ungenerating agent circulating pipe.
  • the outlet of the inclined pipe to be produced is connected to the upper part of the stripper of the fluidized bed reactor, the stripper of the fluidized bed reactor is placed outside the shell of the fluidized bed reactor, and the inlet of the slid valve to be produced passes through the pipeline It is connected to the bottom of the stripper of the fluidized bed reactor, the outlet of the spool valve to be grown is connected to the inlet of the conveying pipe of the unborn agent through a pipeline, and the outlet of the conveying pipe of the unborn agent is connected to the fluidized bed regenerator.
  • a method for activating an oxygen-containing compound to prepare a catalyst for lower olefins there is provided a method for activating an oxygen-containing compound to prepare a catalyst for lower olefins.
  • a method for activating oxygen-containing compounds to prepare a catalyst for light olefins adopts the above-mentioned fluidized bed regenerator.
  • the method includes:
  • the raw material of the first activation zone and the catalyst to be formed are passed into the first activation zone, and the catalyst to be formed flows in a circular direction along the sub-region of the first activation zone, and chemically reacts with the raw material of the first activation zone, generate partially activated catalyst;
  • the coke in the partially activated catalyst contains oxygenated hydrocarbon species and non-oxygenated hydrocarbon species in the composition.
  • the first activation zone feedstock enters the first activation zone through the first activation zone distributor to react with coke in the catalyst.
  • the second activation zone feedstock enters the second activation zone through the second activation zone distributor to react with coke in the catalyst.
  • the raw material of the first activation zone enters the first activation zone sub-zone from the first activation zone distributor located below, and is different from the to-be-grown zone.
  • the catalyst is contacted to convert the inactive coke and active coke in the catalyst to be produced into oxygen-containing hydrocarbon species and oxygen-free hydrocarbon species with smaller molecular weight, and the gas phase (including the unreacted first activation zone raw material) is activated by the first
  • the gas delivery pipe of the first activation zone above the zone is transported to the gas-solid separation zone.
  • the catalyst enters the second activation zone through the catalyst conveying pipe of the first activation zone, and the raw material of the second activation zone enters the second activation zone through the second activation zone distributor located below, and contacts with the catalyst to dissipate all the coke in the catalyst.
  • the contained oxygen-containing hydrocarbon species without catalytic activity are converted into catalytically active oxygen-free hydrocarbon species, and the gas phase (including the unreacted second activation zone feedstock) enters the gas-solid separation zone.
  • the coke in the to-be-grown catalyst reacts chemically with the raw material of the first activation zone to generate the product gas of the first activation zone.
  • the coke in the partially activated catalyst reacts chemically with the raw material of the second activation zone to generate product gas in the second activation zone.
  • the first activation zone product gas and the second activation zone product gas are mixed in the gas-solid separation zone to form the regenerator product gas.
  • the regenerator product gas carries the catalyst into the regenerator second gas-solid separation device, and is separated by the regenerator second gas-solid separation device to obtain the regenerator product gas and the catalyst;
  • the regenerator product gas enters the regenerator gas collection chamber
  • the catalyst is returned to the second activation zone of the fluidized bed regenerator.
  • the regenerator product gas contains CO, H 2 , CO 2 ;
  • the content of CO and H 2 is greater than 90 wt %.
  • the first activation zone raw material contains oxygen, air and water vapor
  • the mass fraction of oxygen is 0-10wt%
  • the mass fraction of air is 0-20wt%
  • the mass fraction of water vapor is 80-100wt%.
  • the raw material of the second activation zone is water vapor.
  • the coke content in the as-grown catalyst is 9-13 wt%.
  • the coke content in the as-grown catalyst is 10-12 wt%.
  • the coke content in the regenerated catalyst is 5-11 wt%
  • the interquartile range of the coke content distribution in the regenerated catalyst is less than 1.0 wt%.
  • the coke species include polymethylbenzene and polymethylnaphthalene
  • the mass and content of polymethylbenzene and polymethylnaphthalene in the total mass of coke are ⁇ 60wt%;
  • the content of the mass of coke species with molecular weight>184 in the total mass of coke is ⁇ 30wt%;
  • the total mass of coke refers to the total mass of coke species.
  • the type of coke species and the content of coke species are very important, and the coke content and distribution of coke content in the catalyst are controlled by controlling the average residence time and residence time distribution of the catalyst in the first activation zone and the second activation zone, The effect that the content of polymethylbenzene and polymethylnaphthalene in the total mass of the coke is greater than or equal to 60 wt% is achieved, the activity of the catalyst and the selectivity of light olefins are improved.
  • the as-grown catalyst contains SAPO-34 molecular sieve.
  • the active component in the catalyst is SAPO-34 molecular sieve.
  • the process operating conditions of the first activation zone of the fluidized bed regenerator are: the gas superficial linear velocity is 0.1-0.5m/s, the temperature is 650-750°C, the pressure is 100-500kPa, the bed The density is 400-700kg/m 3 .
  • the process operating conditions of the second activation zone of the fluidized bed regenerator are: the gas superficial linear velocity is 0.1-0.5m/s, the temperature is 550-700°C, the pressure is 100-500kPa, the bed The density is 400-700kg/m 3 .
  • the first activation zone of the fluidized bed regenerator in the present application includes n first activation zone sub-zones, and the catalyst can only flow from the upstream sub-zone to the downstream sub-zone sequentially through the catalyst flow holes in the baffle plate in the first activation zone.
  • the beneficial effects include: 1 the average residence time of the catalyst in the first activation zone can be controlled by changing the process operating conditions, therefore, the coke content in the catalyst can be controlled; 2 the structure of n first activation zone sub-zones is used to control
  • the residence time distribution of the catalyst is similar to that of n series-connected total mixed tank reactors, so a regenerated catalyst with a narrow coke content distribution can be obtained.
  • the coke content of the catalyst refers to the average value of the coke content of each catalyst particle, but the coke content of each catalyst particle is actually different.
  • the interquartile difference of the coke content distribution in the regenerated catalyst can be controlled within the range of less than 1.0 wt%, so that the overall coke content distribution of the catalyst is narrow, thereby improving the activity of the catalyst and the selectivity of light olefins.
  • the activation process of the catalyst includes two steps: (1) Using steam and oxygen as the activation gas, the inactive coke and activated coke in the catalyst to be grown are converted into oxygen-containing hydrocarbons with smaller molecular weight Oxygen-containing hydrocarbon species and oxygen-free hydrocarbon species, wherein oxygen-containing hydrocarbon species have no catalytic activity, this step is completed in the first activation zone; At the same time, the molecular weight of coke is further reduced, that is, the coke in the catalyst is converted into species mainly composed of polymethylbenzene and polymethylnaphthalene. The steps are done in the second activation zone.
  • the activated gas used in the first step has strong oxidizing properties, which can decompose the inactive coke, but lead to the formation of a part of oxygen-containing hydrocarbon species that have no catalytic activity;
  • the active oxygenated hydrocarbon species are converted to catalytically active oxygen free hydrocarbon species.
  • the coke species in the regenerated catalyst were mainly polymethylbenzene and polymethylnaphthalene, and the ethylene selectivity was high.
  • the regeneration process of the catalyst is a coupling of exothermic reaction and endothermic reaction, and the first activation zone feedstock and the coke in the catalyst react in the first activation zone to generate CO and H 2 and other substances, releasing heat to raise the bed temperature; the raw materials in the second activation zone and the coke in the catalyst react in the second activation zone to generate substances such as CO and H 2 , this reaction is an endothermic reaction, and the heat required for the reaction is Supplied by an exothermic reaction in the first activation zone.
  • the raw material of the first activation zone is passed from the first activation zone distributor to the first activation zone of the fluidized bed regenerator, and the catalyst to be grown is passed from the conveying pipe of the reagent to be grown into the first activation zone of the regenerator.
  • Gas-solid separation equipment after gas-solid separation, the gas is discharged from the gas outlet of the first gas-solid separation equipment of the regenerator into the gas-solid separation zone of the fluidized bed regenerator, and the catalyst to be produced is discharged from the catalyst of the first gas-solid separation equipment of the regenerator. The outlet is discharged into the first activation zone of the fluidized bed regenerator.
  • the raw material of the first activation zone and the catalyst to be produced contact and chemically react in the first activation zone, and the inactive coke and active coke in the catalyst to be produced are converted into smaller molecular weights.
  • Oxygen-containing hydrocarbon species and non-oxygen hydrocarbon species are generated, and the product gas in the first activation zone is generated; the catalyst in the first activation zone passes through the 1-n first activation zone sub-sequences through the catalyst flow holes in the baffle plate.
  • the product gas of the first activation zone enters the gas-solid separation zone of the fluidized bed regenerator through the gas transport pipe of the first activation zone;
  • the raw materials of the second activation zone are passed from the second activation zone distributor to the second activation zone of the fluidized bed regenerator, and come into contact with the catalyst from the first activation zone and undergo a chemical reaction.
  • the hydrocarbon species are converted into catalytically active oxygen-free hydrocarbon species, and at the same time, the molecular weight of the coke is further reduced, that is, the coke in the catalyst is converted into species dominated by polymethylbenzene and polymethylnaphthalene, After passing through the second activation zone, the catalyst is called a regenerated catalyst.
  • the raw material of the second activation zone is converted into the product gas of the second activation zone, and then enters the gas-solid separation zone of the fluidized bed regenerator;
  • the product gas of the first activation zone and the product gas of the second activation zone are mixed in the gas-solid separation zone to form the product gas of the regenerator.
  • the product gas of the regenerator carries the catalyst and enters the second gas-solid separation equipment of the regenerator. After the gas-solid separation, it is divided into a regenerator.
  • regenerator product gas enters the regenerator gas collection chamber, and then enters the downstream regenerator product gas recycling system through the regenerator product gas delivery pipe, and the catalyst returns to the second activation zone of the fluidized bed regenerator;
  • the regenerated catalyst in the second activation zone enters the fluidized bed reactor through the regeneration inclined pipe, the regeneration slide valve and the regeneration agent conveying pipe after taking heat and cooling down.
  • the main components of the regenerator product gas are CO, H 2 and a small amount of CO 2 , wherein the content of CO and H 2 is greater than 90 wt %, and the content of CO 2 is less than 10 wt % (dry basis, excluding unconverted H 2 O), a mixed gas of CO and H 2 can be obtained after simple separation, and the mixed gas of CO and H 2 can be recycled as a raw material for methanol preparation. Therefore, in the technical solution of the present application, the mixed gas generated from methanol Coke is an intermediate product of this process, and the utilization rate of C atoms in the whole process is ⁇ 99%.
  • a method for preparing light olefins from oxygen-containing compounds adopts the above-mentioned device.
  • the method includes:
  • the unborn catalyst is passed into the unborn agent zone;
  • a part of the catalyst to be grown in the catalyst zone is returned to the fluidized bed reaction zone, and the other part of the catalyst to be grown enters the fluidized bed regenerator.
  • a part of the catalyst to be grown in the to-be-generated agent zone is returned to the fluidized bed reaction zone through the to-be-generated agent circulation pipe, and the other part of the to-be-grown catalyst is passed through the to-be-generated inclined pipe, the stripper of the fluidized bed reactor, and the prepared agent delivery pipe into the fluidized bed regenerator.
  • the regenerated catalyst obtained after the regenerated catalyst is regenerated by a fluidized bed regenerator enters the reaction zone of the fluidized bed reactor through a regenerating agent conveying pipe.
  • the raw material containing oxygenates enters the reaction zone of the fluidized-bed reactor through the fluidized-bed reactor distributor, and reacts to obtain a mixture containing light olefins and Stream A of the as-grown catalyst.
  • the stream A containing the light olefins and the to-be-grown catalyst enters the first gas-solid separation device of the fluidized bed reactor through the conveying pipe, and separates the gas containing the low-carbon olefins and the to-be-grown catalyst.
  • the light olefin-containing gas enters the gas collection chamber of the fluidized bed reactor.
  • the to-be-grown catalyst enters a fluidized bed regenerator after being stripped.
  • the fluidizing gas in the to-be-generating agent zone is selected from at least one of nitrogen and water vapor.
  • the raw material of the oxygen-containing compound is selected from at least one of methanol and dimethyl ether.
  • the ratio of the mass flow rate of the regenerated catalyst to the feed amount of the oxygenate compound is 0.3-1.0 ton catalyst/ton methanol.
  • the ratio of the agent to alcohol is 0.5-1.0 ton catalyst/ton methanol.
  • the process operating conditions of the reaction zone of the fluidized bed reactor are: the gas superficial linear velocity is 0.5-7.0m/s, the reaction temperature is 350-550°C, the reaction pressure is 100-500kPa, the bed The density is 100-500kg/m 3 .
  • the process operating conditions of the unborn agent zone of the fluidized bed reactor are: the gas superficial linear velocity is 0.1-1.0 m/s, the reaction temperature is 350-550 °C, and the reaction pressure is 100-500 kPa, The bed density is 200-800 kg/m 3 .
  • a stream A containing light olefins and the catalyst to be grown is obtained, and enters the first gas-solid flow of the fluidized bed reactor through a conveying pipe.
  • Separation equipment after gas-solid separation, it is divided into gas-phase stream B and solid-phase stream C, solid-phase stream C enters the waiting area, and the fluidized gas and solid-phase stream C in the waiting area form stream D, and stream D enters the fluidization area.
  • the second gas-solid separation equipment of the bed reactor after gas-solid separation, is divided into gas phase stream E and solid phase stream F, solid phase stream F returns to the unborn agent zone, and the unborn catalyst in the unborn agent zone enters the stream after stripping.
  • the regenerated catalyst after being regenerated by the fluidized bed regenerator enters the reaction zone of the fluidized bed reactor through the regenerating agent conveying pipe.
  • a part of the growing catalyst in the growing agent zone is returned to the bottom of the reaction zone of the fluidized bed reactor through a circulating pipe for the growing agent.
  • the solid phase stream C and the solid phase stream F contain a catalyst to be formed.
  • gas-phase stream B and gas-phase stream E are mixed in a fluidized bed reactor plenum to form a product gas;
  • the gas phase stream B contains light olefins.
  • the reaction zone belongs to the fast fluidization zone, the gas superficial linear velocity of the reaction zone can reach 7.0m/s, it has a relatively high methanol flux, the methanol processing capacity per unit volume of the equipment is large, and the methanol mass space velocity can be Reach 20h -1 ;
  • the waiting agent zone belongs to the bubbling fluidization zone, and the waiting agent zone is used for taking heat, reducing the temperature of the waiting catalyst, and transporting the low temperature waiting catalyst to the reaction zone, improving the bed of the reaction zone Density, control the bed temperature in the reaction zone, when the gas superficial linear velocity is 0.5-7.0m/s, the corresponding bed density is 500-100kg/m 3 .
  • the structure of the first gas-solid separation device of the fluidized bed reactor is directly connected to the conveying pipe, which realizes the rapid separation of the gas containing low-carbon olefins in the stream A and the catalyst to be produced, and avoids the need for the low-carbon olefins to be produced.
  • the further reaction generates hydrocarbon by-products with larger molecular weight.
  • the raw material containing oxygenates is passed from the distributor of the fluidized bed reactor into the reaction zone of the fluidized bed reactor, and contacts with the regenerated catalyst from the regenerant conveying pipe to generate low carbon
  • the stream A of the olefin and the catalyst to be produced, the stream A enters the first gas-solid separation equipment of the fluidized bed reactor through the conveying pipe, and after the gas-solid separation, it is divided into a gas-phase stream B and a solid-phase stream C.
  • the gas-phase stream B contains low-carbon
  • the gas of olefin, the solid phase stream C is the catalyst to be produced, the gas phase stream B enters the gas collecting chamber of the fluidized bed reactor, and the solid phase stream C enters the zone of the reagent to be grown;
  • the distributor leads into the unborn agent zone and contacts with the unborn catalyst.
  • the fluidized gas in the unborn agent zone and the unborn catalyst carried by it form a stream D, and the stream D enters the second gas-solid separation device of the fluidized bed reactor. After separation, it is divided into gas-phase stream E and solid-phase stream F.
  • Gas-phase stream E is the fluidizing gas in the agent zone to be generated
  • solid-phase stream F is the catalyst to be generated.
  • the gas-phase stream E enters the gas collecting chamber of the fluidized bed reactor, and the solid-phase stream
  • the stream F is returned to the unborn agent zone;
  • the gas phase stream B and the gas phase stream E are mixed in the gas collecting chamber of the fluidized bed reactor to form product gas, and the product gas enters the downstream section through the product gas conveying pipe;
  • a part of the unborn catalyst in the unborn agent zone Return to the bottom of the reaction zone of the fluidized bed reactor through the circulation pipe of the ungenerated agent and the circulation slide valve of the ungenerated agent, and another part of the catalyst to be generated enters the stripper of the fluidized bed reactor through the inclined pipe to be generated.
  • the raw catalyst enters the fluidized bed regenerator through the unborn spool valve and the unborn agent delivery pipe; the regenerated catalyst obtained after being regenerated by the fluidized bed regenerator enters the fluidized bed through the regeneration inclined pipe, the regeneration spool valve and the regeneration agent delivery pipe reactor.
  • agent-to-alcohol ratio refers to the ratio of the mass flow rate of the regenerated catalyst to the feed amount of the oxygenate.
  • the composition of the product gas is 38-55wt% ethylene, 37-54wt% propylene, ⁇ 6wt% C4 - C6 hydrocarbons and ⁇ 3wt% other components, and the other components are methane, Ethane, propane, hydrogen, CO and CO2 , etc., and the total selectivity of ethylene and propylene in the product gas is 92-97 wt%.
  • the production unit time consumption is expressed, and the mass of dimethyl ether in the oxygen-containing compound is equivalently converted into methanol mass based on the mass of element C, and the unit of production unit consumption is ton methanol/ton light olefin.
  • the production unit consumption is 2.4-2.5 tons of methanol/ton of light olefins.
  • the species of coke in the regenerated catalyst are mainly polymethylbenzene and polymethylnaphthalene, and the ethylene selectivity is high;
  • the perforated plate is used to suppress the back-mixing of the catalyst in the bed, and the uniformity of the coke distribution in the catalyst is improved;
  • the coke in the catalyst to be grown is converted into CO and H 2 , and CO and H 2 can be recycled as raw materials for preparing methanol, that is, the coke generated from methanol is an intermediate product of this process,
  • the utilization rate of C atoms in the whole process is ⁇ 99%.
  • FIG. 1 is a schematic diagram of an apparatus for preparing lower olefins (DMTO) from oxygenates according to an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a cross-section of the first activation zone in FIG. 1 .
  • 1-fluidized bed reactor 1-1-fluidized-bed reactor shell; 1-2-fluidized-bed reactor distributor; 1-3-transport pipe; 1-4-fluidized-bed reactor first Gas-solid separation equipment; 1-5-fluidized bed reactor gas collection chamber; 1-6-gas distributor in the waiting area; 1-7-fluidized bed reactor heat collector; 1-8-fluidized bed
  • the second gas-solid separation equipment of the reactor 1-9-product gas conveying pipe; 1-10-recycling pipe of regenerating agent; 1-11-recycling slide valve of regenerating agent; 1-12- oblique pipe of regenerating; 1- 13-fluidized bed reactor stripper; 1-14-waiting slide valve; 1-15-waiting agent conveying pipe;
  • 2-fluidized bed regenerator ; 2-1-regenerator shell; 2-2-regenerator first gas-solid separation equipment; 2-3-first activation zone distributor; 2-4-baffle plate; 2- 5- The first activation zone catalyst transport pipe; 2-6- The first activation zone gas transport pipe; 2-7- The second activation zone distributor; 2-8- Porous plate; 2-9- The fluidized bed regenerator Heater; 2-10-Regenerator second gas-solid separation equipment; 2-11-Regenerator gas collection chamber; 2-12-Regenerator product gas delivery pipe; 2-13-Regeneration inclined pipe; 2-14-Regeneration Spool valve; 2-15-Regenerant delivery pipe.
  • FIG. 1 a schematic diagram of an oxygenate-to-light olefin (DMTO) device is shown in Figures 1 and 2, and the device comprises a fluidized bed reactor (1) and a fluidized bed regenerator (2). ), which are described as follows:
  • the fluidized bed reactor (1) comprises: a fluidized bed reactor shell (1-1), a fluidized bed reactor distributor (1-2), a conveying pipe (1-3), The first gas-solid separation equipment (1-4) of the fluidized-bed reactor, the gas-collecting chamber (1-5) of the fluidized-bed reactor, the gas distributor (1-6) in the area to be generated, the fluidized-bed reactor takes Heater (1-7), second gas-solid separation equipment (1-8) of fluidized bed reactor, product gas conveying pipe (1-9), circulating pipe of unborn agent (1-10), circulating pipe of unborn agent Slide valve (1-11), inclined pipe for regeneration (1-12), stripper for fluidized bed reactor (1-13), slide valve for regeneration (1-14) and delivery pipe for regeneration agent (1- 15).
  • the lower part of the fluidized bed reactor (1) is the reaction zone, the middle part is the growth agent zone, and the upper part is the gas-solid separation zone.
  • the fluidized-bed reactor distributor (1-2) is located at the bottom of the reaction zone of the fluidized-bed reactor (1), and the conveying pipe (1-3) is located in the central area of the middle and upper parts of the fluidized-bed reactor (1), The bottom end of the conveying pipe (1-3) is connected to the top of the reaction zone, the upper part of the conveying pipe (1-3) is connected to the inlet of the first gas-solid separation device (1-4) of the fluidized bed reactor, and the fluidized bed
  • the first gas-solid separation device (1-4) of the reactor is located in the gas-solid separation zone of the fluidized bed reactor (1), and the gas outlet of the first gas-solid separation device (1-4) of the fluidized bed reactor is connected to the flow
  • the gas collecting chamber (1-5) of the fluidized bed reactor, the catalyst outlet of the first gas-solid separation device (1-4) of the fluidized bed reactor is located in the
  • the first gas-solid separation equipment (1-4) of the fluidized bed reactor adopts multiple groups of gas-solid cyclones, each group of gas-solid cyclones includes a first-stage gas-solid cyclone and a second-stage gas-solid cyclone Separator;
  • the second gas-solid separation equipment (1-8) of the fluidized bed reactor adopts multiple sets of gas-solid cyclone separators, each set of gas-solid cyclone separators includes a first-stage gas-solid cyclone separator and a second-stage gas-solid cyclone separator Gas-solid cyclone separator.
  • the fluidized bed regenerator (2) comprises: a regenerator shell (2-1), a first gas-solid separation device (2-2) for the regenerator, a first activation zone distributor (2-3) ), baffle plate (2-4), first activation zone catalyst transport pipe (2-5), first activation zone gas transport pipe (2-6), second activation zone distributor (2-7), perforated plate (2-8), fluidized bed regenerator heat collector (2-9), regenerator second gas-solid separation equipment (2-10), regenerator gas collection chamber (2-11), regenerator product gas delivery Pipe (2-12), regeneration inclined pipe (2-13), regeneration spool valve (2-14) and regeneration agent delivery pipe (2-15).
  • the fluidized bed regenerator (2) is divided into a second activation zone, a first activation zone and a gas-solid separation zone from bottom to top.
  • the first activation area is located in the annular area above the second activation area, and n baffles (2-4) are arranged in the first activation area, and the baffles (2-4) divide the first activation area into n first activation areas
  • Sub-regions, first activation region distributors (2-3) are independently set at the bottom of each first activation region subregion, the cross-section of the first activation region subregion is annular, and the cross-section of the first activation region subregion is fan-shaped , the sub-regions of the 1st-nth first activation region are arranged concentrically and sequentially, and the baffle plate (2-4) contains catalyst flow holes, but the baffle plates of the sub-regions of the first and the nth first activation region sub-regions No catalyst flow holes; the first gas-solid separation device (2-2) of the regenerator is located in the gas-solid separation zone of the fluidized bed regenerator (2), and the inlet of the first gas-solid separation device (2-2) of the regenerator is connected At the outlet of
  • the outlet is located in the second activation zone; the top of each sub-zone of the first activation zone is independently provided with a first activation zone gas delivery pipe (2-6), and the outlet of the first activation zone gas delivery pipe (2-6) is located at the gas-solid Separation zone; the second activation zone distributor (2-7) is located at the bottom of the second activation zone of the fluidized bed regenerator (2), m pieces of perforated plates (2-8) are arranged in the second activation zone, and the fluidized bed
  • the regenerator heat extractor (2-9) is located in the second activation zone; the regenerator second gas-solid separation device (2-10) and the regenerator gas collecting chamber (2-11) are located in the fluidized bed regenerator (2)
  • the gas-solid separation zone, the inlet of the second gas-solid separation device (2-10) of the regenerator is located in the gas-solid separation zone of the fluidized bed regenerator (2), and the gas of the second gas-solid separation device (2-10) of the regenerator
  • the outlet is connected to the regenerator gas collection chamber (2-11), the
  • the second gas-solid separation device (2-10) of the regenerator adopts multiple groups of gas-solid cyclones, each group of gas-solid cyclones includes a first-stage gas-solid cyclone and a second-stage gas-solid cyclone.
  • the method for preparing light olefins from oxygenated compounds described in the present application includes:
  • the oxygenate-containing feedstock is passed from the fluidized bed reactor distributor (1-2) into the reaction zone of the fluidized bed reactor (1), where it is brought into contact with the regenerated catalyst from the regenerant delivery pipe (2-15) , generates a stream A containing low-carbon olefins and a catalyst to be produced, and the stream A enters the first gas-solid separation device (1-4) of the fluidized bed reactor through the conveying pipe (1-3), and after the gas-solid separation, it is divided into gas phase Stream B and solid phase stream C, gas phase stream B is a gas containing light olefins, solid phase stream C is a catalyst to be generated, gas phase stream B enters the fluidized bed reactor gas collection chamber (1-5), solid phase stream C Enter the unborn agent zone; pass the fluidizing gas in the unborn agent zone from the gas distributor (1-6) in the unborn agent zone into the unborn agent zone, contact with the unborn catalyst, and the fluidizing gas in the unborn agent zone and its carrying
  • the catalyst to be formed forms a stream D
  • the gas-solid separation After the gas-solid separation, it is divided into a gas-phase stream E and a solid-phase stream F, and the gas-phase stream E is a to-be-generated stream.
  • the fluidizing gas in the agent zone, the solid phase stream F is the catalyst to be generated, the gas phase stream E enters the gas collecting chamber (1-5) of the fluidized bed reactor, and the solid phase stream F returns to the unborn agent zone; the gas phase stream B and the gas phase stream E
  • the product gas is formed by mixing in the gas collecting chamber (1-5) of the fluidized bed reactor, and the product gas enters the downstream section through the product gas conveying pipe (1-9); a part of the catalyst to be grown in the zone of the unborn agent is circulated through the unborn agent
  • the pipe (1-10) and the circulating slide valve (1-11) for the unborn catalyst return to the bottom of the reaction zone of the fluidized bed reactor (1), and another part of the unborn catalyst enters the flow through the inclined pipe (1-12) to be grown.
  • the raw material of the first activation zone is passed from the first activation zone distributor (2-3) into the first activation zone of the fluidized bed regenerator (2), and the catalyst to be grown is passed through the conveying pipe (1-15) of the reagent to be grown. into the first gas-solid separation device (2-2) of the regenerator, and after the gas-solid separation, the gas is discharged into the gas outlet of the first gas-solid separation device (2-2) of the regenerator into the gas of the fluidized bed regenerator (2).
  • the catalyst to be grown is discharged from the catalyst outlet of the first gas-solid separation device (2-2) of the regenerator into the first activation zone of the fluidized bed regenerator (2).
  • the first activation zone contacts and undergoes a chemical reaction, and the inactive coke and activated coke in the catalyst to be generated are converted into oxygen-containing hydrocarbon species and oxygen-free hydrocarbon species with smaller molecular weight, and the first activation zone product gas is generated;
  • the catalyst in an activation zone sequentially passes through the 1-n first activation zone sub-zones through the catalyst flow holes in the baffle plate (2-4), and then enters the fluidization through the first activation zone catalyst delivery pipe (2-5).
  • the catalytically active oxygen-containing hydrocarbon species are converted into catalytically active oxygen-free hydrocarbon species, and at the same time, the molecular weight of the coke is further reduced, that is, the coke in the catalyst is converted into polymethylbenzene and polymethylnaphthalene.
  • the catalyst after passing through the second activation zone, the catalyst is called regenerated catalyst.
  • the raw material of the second activation zone is converted into the product gas of the second activation zone, and then enters the fluidized bed regenerator (2 ) gas-solid separation zone; the product gas of the first activation zone and the product gas of the second activation zone are mixed in the gas-solid separation zone to form the product gas of the regenerator, and the product gas of the regenerator carries the catalyst and enters the second gas-solid separation equipment of the regenerator (2 -10), after gas-solid separation, it is divided into regenerator product gas and catalyst, the regenerator product gas enters the regenerator gas collection chamber (2-11), and then enters the downstream through the regenerator product gas delivery pipe (2-12)
  • the regenerator product gas recycling system the catalyst returns to the second activation zone of the fluidized bed regenerator (2); the regenerated catalyst in the second activation zone passes through the regeneration inclined pipe (2-13), the regeneration slide after taking heat and cooling down.
  • the first gas-solid separation device (2-2) of the regenerator adopts a gas-solid cyclone separator
  • the oxygen-containing compound is methanol;
  • the fluidizing gas in the regeneration zone is nitrogen;
  • the raw material of the first activation zone is 10wt% oxygen and 90wt% water vapor;
  • the raw material of the second activation zone is water vapor;
  • the active group in the catalyst It is divided into SAPO-34 molecular sieve;
  • the coke content in the regenerated catalyst is about 5wt%, the coke species contains polymethylbenzene and polymethylnaphthalene, and the mass of polymethylbenzene and polymethylnaphthalene is the content of the total coke mass About 72wt%, the mass of coke species with molecular weight>184 is about 19wt% in the total coke mass;
  • the interquartile range of the coke content distribution in the regenerated catalyst is about 0.9wt%;
  • the coke content in the as-grown catalyst about 9wt%;
  • the reaction zone of the fluidized bed reactor (1) belongs to the fast fluidization zone, and the process operating conditions of
  • the ratio of agent to alcohol is about 0.3 ton catalyst/ton methanol;
  • the composition of product gas is 55wt% ethylene, 37wt% propylene, 5wt% C4 - C6 hydrocarbons and 3wt% other components, other components It is methane, ethane, propane, hydrogen, CO and CO 2 , etc.; the production unit consumption is 2.50 tons of methanol/ton of light olefins.
  • the utilization rate of C atoms in the whole process was 99.0%.
  • the first gas-solid separation device (2-2) of the regenerator adopts a gas-solid cyclone separator
  • the oxygen-containing compounds are 82wt% methanol and 18wt% dimethyl ether;
  • the fluidizing gas in the regeneration zone is water vapor;
  • the first activation zone raw material is 20wt% air and 80wt% water vapor;
  • the second activation zone raw material is water vapor;
  • the active component in the catalyst is SAPO-34 molecular sieve;
  • the coke content in the regenerated catalyst is about 7wt%, and the coke species includes polymethylbenzene and polymethylnaphthalene, polymethylbenzene and polymethylnaphthalene
  • the content of the mass of the coke in the total mass of the coke is about 66wt%, the mass of the coke species with molecular weight>184 is about 26wt% in the total mass of the coke;
  • the interquartile difference of the coke content distribution in the regenerated catalyst is about 0.6wt% %;
  • the coke content in the catalyst to be grown is about 11wt%; the process
  • the ratio of agent to alcohol is about 0.5 ton catalyst/ton methanol;
  • the composition of product gas is 38wt% ethylene, 54wt% propylene, 6wt% C4 - C6 hydrocarbons and 2wt% other components, other components It is methane, ethane, propane, hydrogen, CO and CO 2 , etc.; the production unit consumption is 2.50 tons of methanol/ton of light olefins.
  • the utilization rate of C atoms in the whole process is 99.3%.
  • the first gas-solid separation device (2-2) of the regenerator adopts a gas-solid rapid separator
  • the oxygen-containing compound is dimethyl ether; the fluidizing gas in the regeneration zone is 5wt% nitrogen and 95wt% water vapor; the raw material of the first activation zone is 1wt% oxygen and 99wt% water vapor; the raw material of the second activation zone is water vapor; the active component in the catalyst is SAPO-34 molecular sieve; the coke content in the regenerated catalyst is about 9wt%, and the coke species includes polymethylbenzene and polymethylnaphthalene, polymethylbenzene and polymethylnaphthalene
  • the content of the mass of the coke in the total mass of the coke is about 79wt%, the mass of the coke species with molecular weight>184 is about 13wt% in the total mass of the coke; the interquartile difference of the coke content distribution in the regenerated catalyst is about 0.2wt% %; the coke content in the catalyst to be grown is about 12wt%; the process operating conditions of the reaction zone of the fluidized bed reactor
  • the ratio of agent to alcohol is about 0.8 ton catalyst/ton methanol;
  • the composition of product gas is 45wt% ethylene, 51wt% propylene, 3wt% C4 - C6 hydrocarbons and 1wt% other components, other components It is methane, ethane, propane, hydrogen, CO and CO 2 , etc.; the production unit consumption is 2.42 tons of methanol/ton of light olefins.
  • the utilization rate of C atoms in the whole process was 99.5%.
  • the first gas-solid separation device (2-2) of the regenerator adopts a gas-solid rapid separator
  • the oxygen-containing compound is methanol; the fluidizing gas in the regeneration zone is water vapor; the raw material in the first activation zone is 5 wt% air and 95 wt% water vapor; the raw material in the second activation zone is water vapor;
  • the component is SAPO-34 molecular sieve; the coke content in the regenerated catalyst is about 11 wt%, and the coke species contains polymethylbenzene and polymethylnaphthalene, and the mass of polymethylbenzene and polymethylnaphthalene in the total mass of coke
  • the content of coke species with molecular weight>184 is about 88wt% in the total mass of coke; the interquartile range of coke content distribution in the regenerated catalyst is about 0.1wt%;
  • the content is about 13wt%;
  • the process operating conditions of the reaction zone of the fluidized bed reactor (1) are: the gas superficial linear velocity is about 4.0m/s, the reaction temperature is about 500°C, the reaction pressure is about 200kP
  • the ratio of agent to alcohol is about 1.0 ton catalyst/ton methanol;
  • the composition of product gas is 51wt% ethylene, 46wt% propylene, 2wt% C4 - C6 hydrocarbons and 1wt% other components, other components It is methane, ethane, propane, hydrogen, CO and CO 2 , etc.; the production unit consumption is 2.40 tons of methanol/ton of light olefins.
  • the utilization rate of C atoms in the whole process is 99.6%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

一种流化床再生器(2)、制备低碳烯烃的装置及其应用。该流化床再生器(2)由下至上包括第二活化区、第一活化区和气固分离区;所述第二活化区和气固分离区轴向连通;所述第一活化区设置在所述第二活化区与气固分离区连接处的外周;所述第一活化区为环形腔体;所述第一活化区中沿径向设有n个挡板(2-4),所述n个挡板(2-4)将所述第一活化区分割为n个第一活化区子区;其中,n-1个所述挡板(2-4)上开设有催化剂流通孔,以使进入所述第一活化区的催化剂沿着环形方向流动。该再生器可以调节DMTO催化剂中的焦含量、焦含量分布以及焦物种,进而控制DMTO催化剂的操作窗口,提高低碳烯烃选择性,提高甲醇制烯烃技术的原子经济性。

Description

流化床再生器、制备低碳烯烃的装置及其应用 技术领域
本申请涉及一种流化床再生器、制备低碳烯烃的装置及其应用,属于化工催化领域。
背景技术
甲醇制烯烃技术(MTO)主要有中国科学院大连化学物理研究所的DMTO技术和美国UOP公司的MTO技术。2010年,采用DMTO技术的神华包头甲醇制烯烃工厂建成投产,此为MTO技术的全球首次工业化应用,截至2019年底,已有14套DMTO工业装置投产,低碳烯烃产能共计约800万吨/年。
最近几年,DMTO技术进一步发展,性能更加优良的新一代DMTO催化剂逐渐开始工业化应用,为DMTO工厂创造了更高的效益。新一代DMTO催化剂具有更高的甲醇处理能力和低碳烯烃选择性。
甲醇制烯烃技术一般采用SAPO-34分子筛催化剂,甲醇制烯烃过程低碳烯烃的高选择性是通过分子筛的酸性催化作用结合分子筛骨架结构中的孔口的限制作用共同实现的。甲醇转化过程同时伴随着酸性分子筛催化剂的结焦过程。现有的甲醇制烯烃工厂的甲醇结焦率为1.5-2.5wt%,即,甲醇中的3.3-5.5%的C原子转化为催化剂中的焦,焦在再生器中燃烧生成CO、CO 2和H 2O等物质后排放,C原子利用率仅为94.5-96.7%。随着技术的进步,甲醇制烯烃过程的低碳烯烃选择性大幅度提高,甲醇结焦率高、C原子利用率低已经成为抑制技术进步的瓶颈,因此,需要开发新的甲醇制烯烃技术,提高C原子利用率,提高技术的原子经济性。
发明内容
甲醇制烯烃过程同时伴随着酸性分子筛催化剂的结焦过程,在分子筛笼内形成焦物种,引发甲醇制烯烃的催化过程。催化剂结焦覆盖了分子筛的活性位,降低了催化剂的活性,但分子筛中的焦进一步限制了分子筛骨架结构中的孔口,提高了低碳烯烃的选择性。
本申请中所述的低碳烯烃是指乙烯和丙烯。申请人研究发现,影响DMTO催化剂的活性和低碳烯烃选择性的主要因素是催化剂中的焦含量、焦含量分布和焦物种。催化剂的平均焦含量相同时,焦含量分布窄,则低碳烯烃选择性高、活性高。催化剂中的焦物种包含多甲基芳烃和多甲基环烷烃等,其中,多甲基苯和多甲基萘能促进乙烯的生成。因此,控制催化剂中的焦含量、焦含量分布以及焦物种是控制DMTO催化剂的操作窗口、提高低碳烯烃选择性的关键。
甲醇制烯烃待生催化剂中的焦含量一般为7-13wt%,当焦含量高时,催化剂的活性大幅度下降。当前甲醇制烯烃工厂一般采用空气再生的方法恢复催化剂的活性,从而循环利用催化剂,在这个过程 中,焦在再生器中燃烧生成CO、CO 2和H 2O等物质后排放。实际上,待生催化剂中的焦可以分为两类,一类是分子量较大、石墨化程度高、没有催化活性的焦,可称之为非活性焦,一类是分子量较小、具有催化活性的多甲基芳烃和多甲基环烷烃,可称之为活性焦。采用空气作为再生介质时,由于空气具有强氧化性,非活性焦、活性焦和氧气发生深度氧化反应,主要生成CO、CO 2和H 2O等物质,很难实现焦的可控转化,难以控制催化剂中的焦含量、焦含量分布以及焦物种,因此,以空气为再生介质,催化剂中的焦含量<3wt%时,即,大部分的焦被氧化消除,催化剂才能恢复足够的催化活性。采用此种再生方案获得的再生催化剂的低碳烯烃选择性低、甲醇结焦率高、甲醇单耗高。采用水作为再生介质时,活性焦和水发生反应,大分子物种向小分子物种转化,在合适的条件下,活性焦可以转化为以多甲基苯和多甲基萘为主的物种。采用水和氧气共同作为再生介质时,非活性焦和活性焦在氧气和水的作用下,转化为分子量较小的含氧烃类物种和不含氧烃类物种,其中含氧烃类物种没有催化活性。含氧烃类物种在水蒸气、氢气、甲烷、乙烷、丙烷等物质的作用下可转化为具有催化活性的不含氧烃类物种。
因此,本申请提供了一种待生催化剂转化为再生催化剂的可控活化方法,并且所获得的再生催化剂具有高活性、高低碳烯烃选择性等特性,能够降低甲醇单耗、降低甲醇结焦率,提高甲醇制烯烃技术的原子经济性。
根据本申请的一个方面,提供了一种用于活化含氧化合物制备低碳烯烃的催化剂的流化床再生器。
一种用于活化含氧化合物制备低碳烯烃的催化剂的流化床再生器,所述流化床再生器由下至上包括第二活化区、第一活化区和气固分离区;
所述第二活化区和气固分离区轴向连通;
所述第一活化区设置在所述第二活化区与气固分离区连接处的外周;
所述第一活化区为环形腔体;
所述第一活化区中沿径向设有n个挡板,所述n个挡板将所述第一活化区分割为n个第一活化区子区;
其中,n-1个所述挡板上开设有催化剂流通孔,以使进入所述第一活化区的催化剂沿着环形方向流动。
可选地,在所述第一活化区中,所述n个挡板包括第1挡板、第2挡板至第n挡板;
所述第1挡板上未开设有所述催化剂流通孔;
所述第2至第n挡板上开设有所述催化剂流通孔;
所述第1挡板与所述第2挡板分割而成的第1活化区子区设有待生催化剂进口;
所述第1挡板与所述第n挡板分割而成的第n活化区子区设有第一活化区催化剂输送管;
所述第一活化区子区的下方设有第一活化区分布器;
所述第一活化区子区的顶部设有第一活化区气体输送管。
具体地,挡板上开设的催化剂流通孔可以为1个,或者也可以为多个,本申请不做严格限定。当设置多个催化剂流通孔时,催化剂流通孔彼此的相对位置本申请也不做严格限定,例如,多个催化剂流通孔可以平行设置,或者也可以无规则设置。
优选地,在每一个第一活化区子区的下方均设有第一活化区分布器。这样可以实现第一活化区原料的整体均匀进入第一活化区子区。
优选地,每一个第一活化区子区的顶部均设有第一活化区气体输送管。
具体地,所述第一活化区原料通过第一活化区分布器和待生催化剂接触反应。
可选地,所述第一活化区上部设置有再生器第一气固分离设备;
所述再生器第一气固分离设备通过所述待生催化剂进口与所述第一活化区连通。
具体地,所述待生催化剂经过第一气固分离设备进入第一活化区。
具体地,所述第一活化区设置第一活化区催化剂输送管,所述的第一活化区催化剂输送管的入口连接于第n第一活化区子区,第一活化区催化剂输送管的出口位于第二活化区。
可选地,再生器第一气固分离设备采用气固旋风分离器。
可选地,所述n的取值范围为:2≤n≤10。
可选地,所述第一活化区子区的横截面是扇环形。
可选地,所述第二活化区中沿水平方向设置有m块多孔板;
其中,1≤m≤10。
可选地,所述多孔板的开孔率为5-50%。
本申请中,第二活化区采用多孔板抑制催化剂在床层内的反混,提高催化剂中的焦分布的均匀性。
可选地,所述第二活化区的底部设置有第二活化区分布器。
可选地,所述流化床再生器包括再生器集气室、流化床再生器取热器;
所述再生器集气室位于所述流化床再生器的顶部;
所述再生器集气室的顶部设置有再生器产品气输送管;
所述气固分离区设置第二气固分离设备;
所述再生器集气室连接于第二气固分离设备的出口;
所述流化床再生器取热器位于所述第二活化区的下部。
具体地,第二活化区和气固分离区的连接处的内径由小至大。
具体地,流化床再生器的下壳体和上壳体的连接处的内径由小至大。
可选地,所述再生器第二气固分离设备采用一组或多组气固旋风分离器。
优选地,每组气固旋风分离器包含一个第一级气固旋风分离器和一个第二级气固旋风分离器。
作为一个优选的实施方式,所述流化床再生器由下至上分为第二活化区、第一活化区和气固分离区;
所述流化床再生器包含:再生器壳体,再生器第一气固分离设备,第一活化区分布器,挡板,第一活化区催化剂输送管,第一活化区气体输送管,第二活化区分布器,多孔板,流化床再生器取热器,再生器第二气固分离设备,再生器集气室,再生器产品气输送管,再生斜管,再生滑阀和再生剂输送管;
第一活化区位于第二活化区上方的环形区域,第一活化区内设置n个挡板,挡板将第一活化区分割为n个第一活化区子区,2≤n≤10,每个第一活化区子区的底部都独立设置第一活化区分布器,第一活化区的横截面是环形,第一活化区子区的横截面是扇环形,第1-n第一活化区子区同心依序排列,挡板中含有催化剂流通孔,但第1第一活化区子区和第n第一活化区子区间的挡板不含催化剂流通孔;
再生器第一气固分离设备位于流化床再生器的气固分离区,再生器第一气固分离设备的入口连接于待生剂输送管的出口,再生器第一气固分离设备的气体出口位于气固分离区,再生器第一气固分离设备的催化剂出口位于第1第一活化区子区;
第一活化区催化剂输送管的入口连接于第n第一活化区子区,第一活化区催化剂输送管的出口位于第二活化区;每个第一活化区子区的顶部都独立设置第一活化区气体输送管,第一活化区气体输送管的出口位于气固分离区;
第二活化区分布器位于流化床再生器的第二活化区的底部,第二活化区中设置m块多孔板,1≤m≤10,流化床再生器取热器位于第二活化区;
再生器第二气固分离设备和再生器集气室位于流化床再生器的气固分离区,再生器第二气固分离设备的入口位于流化床再生器的气固分离区,再生器第二气固分离设备的气体出口连接于再生器集气室,再生器第二气固分离设备的催化剂出口位于第二活化区,再生器产品气输送管连接于再生器集气室的顶部;
再生斜管的入口连接于第二活化区的下部,再生滑阀的入口连接于再生斜管的出口,再生滑阀的出口经管道连接于再生剂输送管的入口,再生剂输送管的出口连接于流化床反应器的反应区。
根据本申请的第二个方面,提供了一种用于含氧化合物制备低碳烯烃的装置。该装置为包含流化床反应器和流化床再生器的含氧化合物制低碳烯烃(DMTO)装置。
一种用于含氧化合物制备低碳烯烃的装置,包括流化床反应器和上述所述的流化床再生器。
可选地,所述装置包括待生斜管、流化床反应器汽提器、待生剂输送管、再生斜管和再生剂输送管;
待生剂区、待生斜管、流化床反应器汽提器、待生剂输送管、再生器第一气固分离设备依次连通;
第二活化区、再生斜管、再生剂输送管、流化床反应器的反应区依次连通。
具体地,待生斜管、流化床反应器汽提器、待生剂输送管依次相连;
再生斜管和再生剂输送管依次相连;
再生斜管的入口连接于第二活化区的下部;
在流化床反应器反应后的待生催化剂进入待生斜管,经待生剂输送管进入流化床再生器;
经流化床再生器再生后的再生催化剂进入再生斜管,经再生剂输送管进入流化床反应器。
可选地,所述流化床反应器汽提器、待生剂输送管通过待生滑阀相连。
可选地,所述再生斜管、再生剂输送管通过再生滑阀相连。
可选地,所述流化床反应器包括下壳体、输送管和上壳体;
所述下壳体围合成反应区;
所述输送管位于所述反应区的上方且与所述反应区连通;
所述输送管的外周设有上壳体;
所述上壳体与所述输送管围合形成空腔;
所述空腔自下至上分为待生剂区和气固分离区。
具体地,流化床反应器的反应区和输送管的连接处的内径由大至小。
具体地,流化床反应器的下壳体和上壳体的连接处的内径由小至大。
可选地,所述反应区属于快速流态化区。
可选地,所述待生剂区属于鼓泡流态化区。
本申请中,对反应区的流态化类型不作严格限定,优选反应区属于快速流态化区。反应区的气体表观线速度可以达到7.0m/s,具有较高的甲醇通量,设备单位体积的甲醇处理量大,甲醇质量空速可以达到20h -1。本申请中,对待生剂区的流态化类型不作严格限定,优选待生剂区属于鼓泡流态化区。待生剂区用于取热、降低待生催化剂的温度,并向反应区输送低温的待生催化剂,提高反应区的床层密度、控制反应区的床层温度,当气体表观线速度为0.5-7.0m/s时,相对应的床层密度为500-100kg/m 3
可选地,所述气固分离区设置有流化床反应器第一气固分离设备;
所述输送管的上部连接于流化床反应器第一气固分离设备的入口。
可选地,所述流化床反应器包括流化床反应器分布器,流化床反应器取热器,待生剂区气体分布器,流化床反应器集气室,流化床反应器第二气固分离设备;
所述流化床反应器分布器位于反应区的底部;
所述流化床反应器取热器位于待生剂区的下部;
所述待生剂区气体分布器位于待生剂区的下部;
流化床反应器第二气固分离设备和流化床反应器第一气固分离设备的气体出口和流化床反应器集气室相连;
所述流化床反应器集气室设置有产品气输送管;
流化床反应器第一气固分离设备和流化床反应器第二气固分离设备的催化剂出口和待生剂区相连。
具体地,所述含有含氧化合物的原料通过流化床反应器分布器和再生催化剂接触反应。
具体地,所述待生剂区流化气体通过待生剂区气体分布器和待生催化剂接触。
可选地,所述反应区和待生剂区之间通过待生剂循环管连通。
具体地,所述待生剂循环管的入口连接与待生区;
所述待生剂循环管的出口连接与反应区的底部。
可选地,所述待生剂循环管设置有待生剂循环滑阀。
可选地,所述流化床反应器第一气固分离设备采用一组或多组气固旋风分离器。
优选地,每组气固旋风分离器包含一个第一级气固旋风分离器和一个第二级气固旋风分离器。
可选地,所述流化床反应器第二气固分离设备采用一组或多组气固旋风分离器。
优选地,每组气固旋风分离器包含一个第一级气固旋风分离器和一个第二级气固旋风分离器。
作为一种优选的实施方式,所述流化床反应器包含:流化床反应器壳体,流化床反应器分布器,输送管,流化床反应器第一气固分离设备,流化床反应器集气室,待生剂区气体分布器,流化床反应器取热器,流化床反应器第二气固分离设备,产品气输送管,待生剂循环管,待生剂循环滑阀,待生斜管,流化床反应器汽提器,待生滑阀和待生剂输送管;
所述流化床反应器的下部是反应区,中部是待生剂区,上部是气固分离区;
所述流化床反应器分布器位于流化床反应器的反应区的底部,输送管位于流化床反应器中部和上部的中心区域,输送管的底端连接于反应区的顶端,输送管的上部连接于流化床反应器第一气固分离设备的入口,流化床反应器第一气固分离设备位于流化床反应器的气固分离区,流化床反应器第一气固分离设备的气体出口连接于流化床反应器集气室,流化床反应器第一气固分离设备的催化剂出口位于待生剂区,待生剂区气体分布器位于待生剂区的底部,流化床反应器取热器位于待生剂区,流化床反应器第二气固分离设备位于流化床反应器的气固分离区,流化床反应器第二气固分离设备的入口位于流化床反应器的气固分离区,流化床反应器第二气固分离设备的气体出口连接于流化床反应器集气室,流化床反应器第二气固分离设备的催化剂出口位于待生剂区,流化床反应器集气室位于流化床反应器的顶部,产品气输送管连接于流化床反应器集气室的顶部,待生剂循环管的入口连接于待生剂区,待生剂循环管的出口连接于流化床反应器的反应区的底部,待生剂循环管中设置待生剂循环滑阀,待生斜管的入口连接于待生剂区,待生斜管的出口连接于流化床反应器汽提器的上部,流化床反应器汽提器置于流化床反应器壳体之外,待生滑阀的入口经管道连接于流化床反应器汽提器的底部,待生滑阀的出口经管道连接于待生剂输送管的入口,待生剂输送管的出口连接于流化床再生器。
根据本申请的第三方面,提供一种活化含氧化合物制备低碳烯烃的催化剂的方法。
一种活化含氧化合物制备低碳烯烃的催化剂的方法,采用上述所述的流化床再生器。
可选地,所述方法包括:
将第一活化区原料与待生催化剂通入第一活化区中,所述待生催化剂沿着所述第一活化区子区以环形方向流动的同时,与第一活化区原料发生化学反应,生成部分活化催化剂;
将所述部分活化催化剂与第二活化区原料通入第二活化区中,发生化学反应,生成再生催化剂;
所述部分活化催化剂中的焦的组成中含有含氧烃类物种和不含氧烃类物种。
可选地,第一活化区原料通过第一活化区分布器进入第一活化区,与催化剂中的焦发生反应。
可选地,第二活化区原料通过第二活化区分布器进入第二活化区,与催化剂中的焦发生反应。
具体地,待生催化剂沿着设置在挡板上的催化剂流通孔以环形方向流动的同时,第一活化区原料由位于下方的第一活化区分布器进入第一活化区子区,与待生催化剂接触,将待生催化剂中的非活性焦和活性焦转化为分子量较小的含氧烃类物种和不含氧烃类物种,气相(包括未反应的第一活化区原料)由第一活化区上方的第一活化区气体输送管输送至气固分离区。
具体地,催化剂通过第一活化区催化剂输送管进入第二活化区,第二活化区原料由位于下方的第二活化区分布器进入第二活化区,与催化剂接触,将催化剂中的焦中所含的没有催化活性的含氧烃类物种转化为具有催化活性的不含氧烃类物种,气相(包括未反应的第二活化区原料)进入气固分离区。
可选地,所述待生催化剂中的焦与第一活化区原料发生化学反应,生成第一活化区产品气。
可选地,所述部分活化催化剂中的焦与第二活化区原料发生化学反应,生成第二活化区产品气。
可选地,第一活化区产品气和第二活化区产品气在气固分离区中混合形成再生器产品气。
可选地,再生器产品气携带催化剂进入再生器第二气固分离设备,经再生器第二气固分离设备分离得到再生器产品气和催化剂;
所述再生器产品气进入再生器集气室;
所述催化剂返回流化床再生器的第二活化区。
可选地,所述再生器产品气含有CO、H 2、CO 2
所述CO和H 2的含量大于90wt%。
可选地,所述第一活化区原料含有氧气、空气和水蒸气;
其中,氧气的质量分数0-10wt%;
空气的质量分数0-20wt%;
水蒸气的质量分数80-100wt%。
可选地,所述第二活化区原料为水蒸气。
可选地,所述待生催化剂中的焦含量为9-13wt%。
优选地,所述待生催化剂中的焦含量为10-12wt%。
可选地,所述再生催化剂中的焦含量为5-11wt%;
所述再生催化剂中的焦含量分布的四分位差小于1.0wt%。
可选地,所述再生催化剂中,焦物种中包含多甲基苯和多甲基萘;
多甲基苯和多甲基萘的质量和在焦总质量中的含量为≥60wt%;
分子量>184的焦物种的质量在焦总质量中的含量为≤30wt%;
其中,所述焦总质量是指焦物种的总质量。
本申请中,焦物种的类型,以及焦物种的含量非常重要,通过控制催化剂在第一活化区和第二活化区中的平均停留时间和停留时间分布控制催化剂中的焦含量及焦含量分布,实现了多甲基苯和多甲基萘在焦总质量中的含量≥60wt%的效果,提高了催化剂的活性,以及低碳烯烃选择性。
可选地,所述待生催化剂含有SAPO-34分子筛。
本申请中,催化剂中的活性组分是SAPO-34分子筛。
可选地,所述流化床再生器的第一活化区的工艺操作条件为:气体表观线速度为0.1-0.5m/s,温度为650-750℃,压力为100-500kPa,床层密度为400-700kg/m 3
可选地,所述流化床再生器的第二活化区的工艺操作条件为:气体表观线速度为0.1-0.5m/s,温度为550-700℃,压力为100-500kPa,床层密度为400-700kg/m 3
本申请中的流化床再生器的第一活化区包含n个第一活化区子区,催化剂仅能通过第一活化区中的挡板中的催化剂流通孔从上游子区依序流向下游子区,其有益效果包含:①可以通过改变工艺操作条件控制催化剂在第一活化区中的平均停留时间,因此,可以控制催化剂中的焦含量;②采用n个第一活化区子区的结构控制催化剂的停留时间分布,其停留时间分布近似于n个串联的全混釜反应器,因此,可以获得焦含量分布窄的再生催化剂。
本申请中,由于催化剂为粉体,所以催化剂的焦含量是指每个催化剂颗粒焦含量的均值,但是每个催化剂颗粒中的焦含量实际上是不一样的。本申请中,可以将再生催化剂中的焦含量分布的四分位差控制在小于1.0wt%的范围内,使得催化剂整体焦含量分布窄,从而提高催化剂的活性、以及低碳烯烃选择性。
本申请中的流化床再生器中,催化剂的活化过程包含两个步骤:①以水蒸气和氧气为活化气体将待生催化剂中的非活性焦和活性焦转化为分子量较小的含氧烃类物种和不含氧烃类物种,其中含氧烃类物种没有催化活性,此步骤在第一活化区完成;②以水蒸气为活化气体,将焦中所含的没有催化活性的含氧烃类物种转化为具有催化活性的不含氧烃类物种,与此同时,焦的分子量进一步变小,即,催化剂中的焦转化为以多甲基苯和多甲基萘为主的物种,此步骤在第二活化区完成。第一步中采用的活化气体具有较强的氧化性,可将非活性焦分解,但导致生成一部分没有催化活性的含氧烃类物种; 第二步采用非氧化性的活化气体进一步将没有催化活性的含氧烃类物种转化为具有催化活性的不含氧烃类物种。经过两步活化之后,再生催化剂中的焦的物种以多甲基苯和多甲基萘为主,乙烯选择性高。
本申请中的流化床再生器中,催化剂的再生过程是放热反应和吸热反应的耦合,第一活化区原料和催化剂中的焦在第一活化区中发生反应,生成CO和H 2等物质,释放热量将床层温度升高;第二活化区原料和催化剂中的焦在第二活化区中发生反应,生成CO和H 2等物质,此反应是吸热反应,反应所需热量由第一活化区中的放热反应供给。
作为一种优选的实施方式,将第一活化区原料从第一活化区分布器通入流化床再生器的第一活化区,将待生催化剂从待生剂输送管通入再生器第一气固分离设备,气固分离后,气体由再生器第一气固分离设备的气体出口排入流化床再生器的气固分离区,待生催化剂由再生器第一气固分离设备的催化剂出口排入流化床再生器的第一活化区,第一活化区原料和待生催化剂在第一活化区接触、发生化学反应,待生催化剂中的非活性焦和活性焦转化为分子量较小的含氧烃类物种和不含氧烃类物种,并生成第一活化区产品气;第一活化区中的催化剂经由挡板中的催化剂流通孔依序通过第1-n第一活化区子区,再经由第一活化区催化剂输送管进入流化床再生器的第二活化区;第一活化区产品气经由第一活化区气体输送管进入流化床再生器的气固分离区;将第二活化区原料从第二活化区分布器通入流化床再生器的第二活化区,与来自第一活化区的催化剂接触、发生化学反应,焦中所含的没有催化活性的含氧烃类物种转化为具有催化活性的不含氧烃类物种,与此同时,焦的分子量进一步变小,即,催化剂中的焦转化为以多甲基苯和多甲基萘为主的物种,经过第二活化区后,催化剂被称之为再生催化剂,在第二活化区中,第二活化区原料转化为第二活化区产品气,然后进入流化床再生器的气固分离区;第一活化区产品气和第二活化区产品气在气固分离区中混合形成再生器产品气,再生器产品气携带催化剂进入再生器第二气固分离设备,气固分离后,分为再生器产品气和催化剂,再生器产品气进入再生器集气室,然后再经由再生器产品气输送管进入下游的再生器产品气循环利用系统,催化剂返回流化床再生器的第二活化区;第二活化区的再生催化剂在取热、降温之后经由再生斜管、再生滑阀和再生剂输送管进入流化床反应器。
本申请中,再生器产品气的主要成分是CO、H 2以及少量的CO 2,其中,CO和H 2的含量大于90wt%,CO 2的含量小于10wt%(干基,不包含未转化的H 2O),经过简单分离之后即可获得CO和H 2的混合气体,CO和H 2的混合气体可以作为制备甲醇的原料循环利用,因此,在本申请的技术方案中,由甲醇生成的焦是本过程的中间产物,全过程中C原子利用率≥99%。
根据本申请的第四方面,提供一种含氧化合物制备低碳烯烃的方法。
一种含氧化合物制备低碳烯烃的方法,采用上述所述的装置。
可选地,所述方法包括:
将含有含氧化合物的原料与再生催化剂通入反应区,反应,得到含有低碳烯烃和待生催化剂的物流A;
将所述物流A气固分离后,将所述待生催化剂通入待生剂区;
待生剂区的一部分待生催化剂返回流化床反应区,另一部分待生催化剂进入流化床再生器。
具体地,待生剂区的一部分待生催化剂通过待生剂循环管返回流化床反应区,另一部分待生催化剂通过待生斜管、流化床反应器汽提器和待生剂输送管进入流化床再生器。
可选地,所述待生催化剂经流化床再生器再生后得到的再生催化剂,通过再生剂输送管进入流化床反应器的反应区。
可选地,再生催化剂进入流化床反应器的反应区的同时,含有含氧化合物的原料通过流化床反应器分布器进入流化床反应器的反应区,反应,得到含有低碳烯烃和待生催化剂的物流A。
可选地,含有低碳烯烃和待生催化剂的物流A经过输送管进入流化床反应器第一气固分离设备,分离得到含有低碳烯烃的气体和待生催化剂。
可选地,所述含有低碳烯烃的气体进入流化床反应器集气室。
可选地,所述待生催化剂经汽提后进入流化床再生器。
可选地,所述待生剂区流化气体选自氮气、水蒸气中的至少一种。
可选地,所述含氧化合物的原料选自甲醇、二甲醚中的至少一种。
可选地,所述再生催化剂的质量流量和所述含氧化合物的进料量的比值(剂醇比)为为0.3~1.0吨催化剂/吨甲醇。
优选地,所述剂醇比为0.5~1.0吨催化剂/吨甲醇。
可选地,所述流化床反应器的反应区的工艺操作条件为:气体表观线速度为0.5-7.0m/s,反应温度为350-550℃,反应压力为100-500kPa,床层密度为100-500kg/m 3
可选地,所述流化床反应器的待生剂区的工艺操作条件为:气体表观线速度为0.1-1.0m/s,反应温度为350-550℃,反应压力为100-500kPa,床层密度为200-800kg/m 3
可选地,含有含氧化合物的原料与再生催化剂在流化床反应器的反应区反应后获得含有低碳烯烃和待生催化剂的物流A,经过输送管进入流化床反应器第一气固分离设备,气固分离后,分为气相物流B和固相物流C,固相物流C进入待生剂区,待生剂区流化气体和固相物流C形成物流D,物流D进入流化床反应器第二气固分离设备,气固分离后,分为气相物流E和固相物流F,固相物流F返回待生剂区,待生剂区的待生催化剂经汽提后进入流化床再生器,经流化床再生器再生后的再生催化剂经再生剂输送管进入流化床反应器的反应区。
可选地,待生剂区的一部分待生催化剂经过待生剂循环管返回流化床反应器的反应区的底部。
可选地,所述固相物流C、固相物流F含有待生催化剂。
可选地,气相物流B和气相物流E在流化床反应器集气室中混合形成产品气;
所述气相物流B含有低碳烯烃。
本申请中,反应区属于快速流态化区,反应区的气体表观线速度可以达到7.0m/s,具有较高的甲醇通量,设备单位体积的甲醇处理量大,甲醇质量空速可以达到20h -1;待生剂区属于鼓泡流态化区,待生剂区用于取热、降低待生催化剂的温度,并向反应区输送低温的待生催化剂,提高反应区的床层密度、控制反应区的床层温度,当气体表观线速度为0.5-7.0m/s时,相对应的床层密度为500-100kg/m 3
本申请中,流化床反应器第一气固分离设备直接连接于输送管的结构,实现了物流A中含有低碳烯烃的气体和待生催化剂的快速分离,避免了低碳烯烃在待生催化剂的作用下进一步反应生成具有更大分子量的烃类副产品。
作为一种优选的实施方式,将含有含氧化合物的原料从流化床反应器分布器通入流化床反应器的反应区,与来自于再生剂输送管的再生催化剂接触,生成含有低碳烯烃和待生催化剂的物流A,物流A经过输送管进入流化床反应器第一气固分离设备,气固分离后,分为气相物流B和固相物流C,气相物流B是含有低碳烯烃的气体,固相物流C是待生催化剂,气相物流B进入流化床反应器集气室,固相物流C进入待生剂区;将待生剂区流化气体从待生剂区气体分布器通入待生剂区,和待生催化剂接触,待生剂区流化气体和其携带的待生催化剂形成物流D,物流D进入流化床反应器第二气固分离设备,气固分离后,分为气相物流E和固相物流F,气相物流E是待生剂区流化气体,固相物流F是待生催化剂,气相物流E进入流化床反应器集气室,固相物流F返回待生剂区;气相物流B和气相物流E在流化床反应器集气室中混合形成产品气,产品气经由产品气输送管进入下游工段;待生剂区的一部分待生催化剂经过待生剂循环管和待生剂循环滑阀返回流化床反应器的反应区的底部,另一部分待生催化剂经由待生斜管进入流化床反应器汽提器,汽提之后,待生催化剂再经由待生滑阀和待生剂输送管进入流化床再生器;经由流化床再生器再生后得到的再生催化剂经再生斜管、再生滑阀和再生剂输送管进入流化床反应器。
本申请中,“剂醇比”,是指再生催化剂的质量流量和所述含氧化合物的进料量的比值。本申请表述剂醇比时,将含氧化合物中的二甲醚质量依据C元素质量等同折算为甲醇质量计。
本申请所述的方法中,产品气的组成为38-55wt%乙烯,37-54wt%丙烯,≤6wt%C 4-C 6烃类和≤3wt%的其他组分,其他组分是甲烷、乙烷、丙烷、氢气、CO和CO 2等,并且乙烯和丙烯在产品气中的总选择性为92-97wt%。
本申请表述生产单耗时,将含氧化合物中的二甲醚质量依据C元素质量等同折算为甲醇质量计,生产单耗的单位为吨甲醇/吨低碳烯烃。
本申请所述的方法中,生产单耗为2.4-2.5吨甲醇/吨低碳烯烃。
本申请能产生的有益效果包括:
(1)再生催化剂中的焦的物种以多甲基苯和多甲基萘为主,乙烯选择性高;
(2)通过控制催化剂在第一活化区和第二活化区中的平均停留时间和停留时间分布控制催化剂中的焦含量及焦含量分布;
(3)采用多孔板抑制催化剂在床层内的反混,提高催化剂中的焦分布的均匀性;
(4)在活化待生催化剂的同时将待生催化剂中的焦转化为CO和H 2,CO和H 2可以作为制备甲醇的原料循环利用,即,甲醇生成的焦是本过程的中间产物,全过程中C原子利用率≥99%。
附图说明
图1为本申请根据本申请一个实施方案的含氧化合物制备低碳烯烃(DMTO)的装置的示意图。
图2为图1中第一活化区的横截面的示意图。
附图1和2中的附图标记说明如下:
1-流化床反应器;1-1-流化床反应器壳体;1-2-流化床反应器分布器;1-3-输送管;1-4-流化床反应器第一气固分离设备;1-5-流化床反应器集气室;1-6-待生剂区气体分布器;1-7-流化床反应器取热器;1-8-流化床反应器第二气固分离设备;1-9-产品气输送管;1-10-待生剂循环管;1-11-待生剂循环滑阀;1-12-待生斜管;1-13-流化床反应器汽提器;1-14-待生滑阀;1-15-待生剂输送管;
2-流化床再生器;2-1-再生器壳体;2-2-再生器第一气固分离设备;2-3-第一活化区分布器;2-4-挡板;2-5-第一活化区催化剂输送管;2-6-第一活化区气体输送管;2-7-第二活化区分布器;2-8-多孔板;2-9-流化床再生器取热器;2-10-再生器第二气固分离设备;2-11-再生器集气室;2-12-再生器产品气输送管;2-13-再生斜管;2-14-再生滑阀;2-15-再生剂输送管。
具体实施方式
下面结合实施例详述本申请,但本申请并不局限于这些实施例。
如无特别说明,本申请的实施例中的原料和催化剂均通过商业途径购买。
作为本申请的一种实施方式,含氧化合物制低碳烯烃(DMTO)装置的示意图如图1和图2所示,该装置包含流化床反应器(1)和流化床再生器(2),分述如下:
如图1所示,流化床反应器(1)包含:流化床反应器壳体(1-1),流化床反应器分布器(1-2),输送管(1-3),流化床反应器第一气固分离设备(1-4),流化床反应器集气室(1-5),待生剂区气体分布器(1-6),流化床反应器取热器(1-7),流化床反应器第二气固分离设备(1-8),产品气输送管(1-9),待生剂循环管(1-10),待生剂循环滑阀(1-11),待生斜管(1-12),流化床反应器汽提器(1-13),待生滑阀(1-14)和待生剂输送管(1-15)。流化床反应器(1)的下部是反应区,中部是待生剂区,上部是气固分离区。流化床反应器分布器(1-2)位于流化床反应器(1)的反应区的底部,输送管(1-3)位于流化床反应器(1)中部和上部的中心区域,输送管(1-3)的底端连接于反应区的顶端,输送管(1-3)的上部连接于流化床反应器第一气固分离设备(1-4)的入口,流化床反应器第一气固分离设 备(1-4)位于流化床反应器(1)的气固分离区,流化床反应器第一气固分离设备(1-4)的气体出口连接于流化床反应器集气室(1-5),流化床反应器第一气固分离设备(1-4)的催化剂出口位于待生剂区,待生剂区气体分布器(1-6)位于待生剂区的底部,流化床反应器取热器(1-7)位于待生剂区,流化床反应器第二气固分离设备(1-8)位于流化床反应器(1)的气固分离区,流化床反应器第二气固分离设备(1-8)的入口位于流化床反应器(1)的气固分离区,流化床反应器第二气固分离设备(1-8)的气体出口连接于流化床反应器集气室(1-5),流化床反应器第二气固分离设备(1-8)的催化剂出口位于待生剂区,流化床反应器集气室(1-5)位于流化床反应器(1)的顶部,产品气输送管(1-9)连接于流化床反应器集气室(1-5)的顶部,待生剂循环管(1-10)的入口连接于待生剂区,待生剂循环管(1-10)的出口连接于流化床反应器(1)的反应区的底部,待生剂循环管(1-10)中设置待生剂循环滑阀(1-11),待生斜管(1-12)的入口连接于待生剂区,待生斜管(1-12)的出口连接于流化床反应器汽提器(1-13)的上部,流化床反应器汽提器(1-13)置于流化床反应器壳体(1-1)之外,待生滑阀(1-14)的入口经管道连接于流化床反应器汽提器(1-13)的底部,待生滑阀(1-14)的出口经管道连接于待生剂输送管(1-15)的入口,待生剂输送管(1-15)的出口连接于流化床再生器(2)。流化床反应器第一气固分离设备(1-4)采用多组气固旋风分离器,每组气固旋风分离器包含一个第一级气固旋风分离器和一个第二级气固旋风分离器;流化床反应器第二气固分离设备(1-8)采用多组气固旋风分离器,每组气固旋风分离器包含一个第一级气固旋风分离器和一个第二级气固旋风分离器。
如图1所示,流化床再生器(2)包含:再生器壳体(2-1),再生器第一气固分离设备(2-2),第一活化区分布器(2-3),挡板(2-4),第一活化区催化剂输送管(2-5),第一活化区气体输送管(2-6),第二活化区分布器(2-7),多孔板(2-8),流化床再生器取热器(2-9),再生器第二气固分离设备(2-10),再生器集气室(2-11),再生器产品气输送管(2-12),再生斜管(2-13),再生滑阀(2-14)和再生剂输送管(2-15)。流化床再生器(2)由下至上分为第二活化区、第一活化区和气固分离区。第一活化区位于第二活化区上方的环形区域,第一活化区内设置n个挡板(2-4),挡板(2-4)将第一活化区分割为n个第一活化区子区,每个第一活化区子区的底部都独立设置第一活化区分布器(2-3),第一活化区的横截面是环形,第一活化区子区的横截面是扇环形,第1-n第一活化区子区同心依序排列,挡板(2-4)中含有催化剂流通孔,但第1第一活化区子区和第n第一活化区子区间的挡板不含催化剂流通孔;再生器第一气固分离设备(2-2)位于流化床再生器(2)的气固分离区,再生器第一气固分离设备(2-2)的入口连接于待生剂输送管(1-15)的出口,再生器第一气固分离设备(2-2)的气体出口位于气固分离区,再生器第一气固分离设备(2-2)的催化剂出口位于第1第一活化区子区;第一活化区催化剂输送管(2-5)的入口连接于第n第一活化区子区,第一活化区催化剂输送管(2-5)的出口位于第二活化区;每个第一活化区子区的顶部都独立设置第一活化区气体输送管(2-6),第一 活化区气体输送管(2-6)的出口位于气固分离区;第二活化区分布器(2-7)位于流化床再生器(2)的第二活化区的底部,第二活化区中设置m块多孔板(2-8),流化床再生器取热器(2-9)位于第二活化区;再生器第二气固分离设备(2-10)和再生器集气室(2-11)位于流化床再生器(2)的气固分离区,再生器第二气固分离设备(2-10)的入口位于流化床再生器(2)的气固分离区,再生器第二气固分离设备(2-10)的气体出口连接于再生器集气室(2-11),再生器第二气固分离设备(2-10)的催化剂出口位于第二活化区,再生器产品气输送管(2-12)连接于再生器集气室(2-11)的顶部;再生斜管(2-13)的入口连接于第二活化区的下部,再生滑阀(2-14)的入口连接于再生斜管(2-13)的出口,再生滑阀(2-14)的出口经管道连接于再生剂输送管(2-15)的入口,再生剂输送管(2-15)的出口连接于流化床反应器(1)的反应区。再生器第二气固分离设备(2-10)采用多组气固旋风分离器,每组气固旋风分离器包含一个第一级气固旋风分离器和一个第二级气固旋风分离器。
作为本申请的一个具体实施方案中,本申请所述的由含氧化合物制备低碳烯烃的方法包括:
将含有含氧化合物的原料从流化床反应器分布器(1-2)通入流化床反应器(1)的反应区,与来自于再生剂输送管(2-15)的再生催化剂接触,生成含有低碳烯烃和待生催化剂的物流A,物流A经过输送管(1-3)进入流化床反应器第一气固分离设备(1-4),气固分离后,分为气相物流B和固相物流C,气相物流B是含有低碳烯烃的气体,固相物流C是待生催化剂,气相物流B进入流化床反应器集气室(1-5),固相物流C进入待生剂区;将待生剂区流化气体从待生剂区气体分布器(1-6)通入待生剂区,和待生催化剂接触,待生剂区流化气体和其携带的待生催化剂形成物流D,物流D进入流化床反应器第二气固分离设备(1-8),气固分离后,分为气相物流E和固相物流F,气相物流E是待生剂区流化气体,固相物流F是待生催化剂,气相物流E进入流化床反应器集气室(1-5),固相物流F返回待生剂区;气相物流B和气相物流E在流化床反应器集气室(1-5)中混合形成产品气,产品气经由产品气输送管(1-9)进入下游工段;待生剂区的一部分待生催化剂经过待生剂循环管(1-10)和待生剂循环滑阀(1-11)返回流化床反应器(1)的反应区的底部,另一部分待生催化剂经由待生斜管(1-12)进入流化床反应器汽提器(1-13),汽提之后,待生催化剂再经由待生滑阀(1-14)和待生剂输送管(1-15)进入流化床再生器(2);
将第一活化区原料从第一活化区分布器(2-3)通入流化床再生器(2)的第一活化区,将待生催化剂从待生剂输送管(1-15)通入再生器第一气固分离设备(2-2),气固分离后,气体由再生器第一气固分离设备(2-2)的气体出口排入流化床再生器(2)的气固分离区,待生催化剂由再生器第一气固分离设备(2-2)的催化剂出口排入流化床再生器(2)的第一活化区,第一活化区原料和待生催化剂在第一活化区接触、发生化学反应,待生催化剂中的非活性焦和活性焦转化为分子量较小的含氧烃类物种和不含氧烃类物种,并生成第一活化区产品气;第一活化区中的催化剂经由挡板(2-4)中的催化剂流通孔依序通过第1-n第一活化区子区,再经由第一活化区催化剂输送管(2-5)进入流化床 再生器(2)的第二活化区;第一活化区产品气经由第一活化区气体输送管(2-6)进入流化床再生器(2)的气固分离区;将第二活化区原料从第二活化区分布器(2-7)通入流化床再生器(2)的第二活化区,与来自第一活化区的催化剂接触、发生化学反应,焦中所含的没有催化活性的含氧烃类物种转化为具有催化活性的不含氧烃类物种,与此同时,焦的分子量进一步变小,即,催化剂中的焦转化为以多甲基苯和多甲基萘为主的物种,经过第二活化区后,催化剂被称之为再生催化剂,在第二活化区中,第二活化区原料转化为第二活化区产品气,然后进入流化床再生器(2)的气固分离区;第一活化区产品气和第二活化区产品气在气固分离区中混合形成再生器产品气,再生器产品气携带催化剂进入再生器第二气固分离设备(2-10),气固分离后,分为再生器产品气和催化剂,再生器产品气进入再生器集气室(2-11),然后再经由再生器产品气输送管(2-12)进入下游的再生器产品气循环利用系统,催化剂返回流化床再生器(2)的第二活化区;第二活化区的再生催化剂在取热、降温之后经由再生斜管(2-13)、再生滑阀(2-14)和再生剂输送管(2-15)进入流化床反应器(1)。
为更好地说明本申请,便于理解本申请的技术方案,本申请的典型但非限制性的实施例如下:
实施例1
本实施方案采用图1和图2所示的装置,再生器第一气固分离设备(2-2)采用气固旋风分离器,流化床再生器(2)的第一活化区内设置2个挡板(2-4),即,n=2,挡板(2-4)将第一活化区分割为2个第一活化区子区,流化床再生器(2)的第二活化区内设置10块多孔板(2-8),即,m=10,多孔板(2-8)的开孔率为50%。
本实施方案中,含氧化合物是甲醇;待生剂区流化气体是氮气;第一活化区原料是10wt%氧气和90wt%水蒸气;第二活化区原料是水蒸气;催化剂中的活性组分是SAPO-34分子筛;再生催化剂中的焦含量约为5wt%,焦物种中包含多甲基苯和多甲基萘,多甲基苯和多甲基萘的质量在焦总质量中的含量约为72wt%,分子量>184的焦物种的质量在焦总质量中的含量约为19wt%;再生催化剂中的焦含量分布的四分位差约为0.9wt%;待生催化剂中的焦含量约为9wt%;流化床反应器(1)的反应区属于快速流态化区,流化床反应器(1)的反应区的工艺操作条件为:气体表观线速度约为7.0m/s,反应温度约为550℃,反应压力约为100kPa,床层密度约为100kg/m 3;流化床反应器(1)的待生剂区的工艺操作条件为:气体表观线速度约为1.0m/s,反应温度约为550℃,反应压力约为100kPa,床层密度约为200kg/m 3;流化床再生器(2)的第一活化区的工艺操作条件为:气体表观线速度为0.5m/s,温度为750℃,压力为100kPa,床层密度为400kg/m 3;流化床再生器(2)的第二活化区的工艺操作条件为:气体表观线速度为0.5m/s,温度为700℃,压力为100kPa,床层密度为400kg/m 3
本实施方案中,剂醇比约为0.3吨催化剂/吨甲醇;产品气的组成为55wt%乙烯,37wt%丙烯,5wt%C 4-C 6烃类和3wt%的其他组分,其他组分是甲烷、乙烷、丙烷、氢气、CO和CO 2等;生产单耗为2.50吨甲醇/吨低碳烯烃。全过程中C原子利用率是99.0%。
实施例2
本实施方案采用图1和图2所示的装置,再生器第一气固分离设备(2-2)采用气固旋风分离器,流化床再生器(2)的第一活化区内设置10个挡板(2-4),即,n=10,挡板(2-4)将第一活化区分割为10个第一活化区子区,流化床再生器(2)的第二活化区内设置1块多孔板(2-8),即,m=1,多孔板(2-8)的开孔率为5%。
本实施方案中,含氧化合物是82wt%甲醇和18wt%二甲醚;待生剂区流化气体是水蒸气;第一活化区原料是20wt%空气和80wt%水蒸气;第二活化区原料是水蒸气;催化剂中的活性组分是SAPO-34分子筛;再生催化剂中的焦含量约为7wt%,焦物种中包含多甲基苯和多甲基萘,多甲基苯和多甲基萘的质量在焦总质量中的含量约为66wt%,分子量>184的焦物种的质量在焦总质量中的含量约为26wt%;再生催化剂中的焦含量分布的四分位差约为0.6wt%;待生催化剂中的焦含量约为11wt%;流化床反应器(1)的反应区的工艺操作条件为:气体表观线速度约为0.5m/s,反应温度约为350℃,反应压力约为500kPa,床层密度约为500kg/m 3;流化床反应器(1)的待生剂区属于鼓泡流态化区,流化床反应器(1)的待生剂区的工艺操作条件为:气体表观线速度约为0.1m/s,反应温度约为350℃,反应压力约为500kPa,床层密度约为800kg/m 3;流化床再生器(2)的第一活化区的工艺操作条件为:气体表观线速度为0.3m/s,温度为700℃,压力为500kPa,床层密度为510kg/m 3;流化床再生器(2)的第二活化区的工艺操作条件为:气体表观线速度为0.3m/s,温度为550℃,压力为500kPa,床层密度为510kg/m 3
本实施方案中,剂醇比约为0.5吨催化剂/吨甲醇;产品气的组成为38wt%乙烯,54wt%丙烯,6wt%C 4-C 6烃类和2wt%的其他组分,其他组分是甲烷、乙烷、丙烷、氢气、CO和CO 2等;生产单耗为2.50吨甲醇/吨低碳烯烃。全过程中C原子利用率是99.3%。
实施例3
本实施方案采用图1和图2所示的装置,再生器第一气固分离设备(2-2)采用气固快速分离器,流化床再生器(2)的第一活化区内设置4个挡板(2-4),即,n=4,挡板(2-4)将第一活化区分割为4个第一活化区子区,流化床再生器(2)的第二活化区内设置6块多孔板(2-8),即,m=6,多孔板(2-8)的开孔率为30%。
本实施方案中,含氧化合物是二甲醚;待生剂区流化气体是5wt%氮气和95wt%水蒸气;第一活化区原料是1wt%氧气和99wt%水蒸气;第二活化区原料是水蒸气;催化剂中的活性组分是SAPO-34分子筛;再生催化剂中的焦含量约为9wt%,焦物种中包含多甲基苯和多甲基萘,多甲基苯和多甲基萘的质量在焦总质量中的含量约为79wt%,分子量>184的焦物种的质量在焦总质量中的含量约为13wt%;再生催化剂中的焦含量分布的四分位差约为0.2wt%;待生催化剂中的焦含量约为12wt%;流化床反应器(1)的反应区的工艺操作条件为:气体表观线速度约为3.0m/s,反应温度约为450℃, 反应压力约为300kPa,床层密度约为230kg/m 3;流化床反应器(1)的待生剂区的工艺操作条件为:气体表观线速度约为0.2m/s,反应温度约为450℃,反应压力约为300kPa,床层密度约为600kg/m 3;流化床再生器(2)的第一活化区的工艺操作条件为:气体表观线速度为0.2m/s,温度为680℃,压力为300kPa,床层密度为580kg/m 3;流化床再生器(2)的第二活化区的工艺操作条件为:气体表观线速度为0.2m/s,温度为630℃,压力为300kPa,床层密度为580kg/m 3
本实施方案中,剂醇比约为0.8吨催化剂/吨甲醇;产品气的组成为45wt%乙烯,51wt%丙烯,3wt%C 4-C 6烃类和1wt%的其他组分,其他组分是甲烷、乙烷、丙烷、氢气、CO和CO 2等;生产单耗为2.42吨甲醇/吨低碳烯烃。全过程中C原子利用率是99.5%。
实施例4
本实施方案采用图1和图2所示的装置,再生器第一气固分离设备(2-2)采用气固快速分离器,流化床再生器(2)的第一活化区内设置8个挡板(2-4),即,n=8,挡板(2-4)将第一活化区分割为8个第一活化区子区,流化床再生器(2)的第二活化区内设置4块多孔板(2-8),即,m=4,多孔板(2-8)的开孔率为20%。
本实施方案中,含氧化合物是甲醇;待生剂区流化气体是水蒸气;第一活化区原料是5wt%空气和95wt%水蒸气;第二活化区原料是水蒸气;催化剂中的活性组分是SAPO-34分子筛;再生催化剂中的焦含量约为11wt%,焦物种中包含多甲基苯和多甲基萘,多甲基苯和多甲基萘的质量在焦总质量中的含量约为88wt%,分子量>184的焦物种的质量在焦总质量中的含量约为7wt%;再生催化剂中的焦含量分布的四分位差约为0.1wt%;待生催化剂中的焦含量约为13wt%;流化床反应器(1)的反应区的工艺操作条件为:气体表观线速度约为4.0m/s,反应温度约为500℃,反应压力约为200kPa,床层密度约为160kg/m 3;流化床反应器(1)的待生剂区的工艺操作条件为:气体表观线速度约为0.5m/s,反应温度约为500℃,反应压力约为200kPa,床层密度约为300kg/m 3;流化床再生器(2)的第一活化区的工艺操作条件为:气体表观线速度为0.1m/s,温度为650℃,压力为200kPa,床层密度为700kg/m 3;流化床再生器(2)的第二活化区的工艺操作条件为:气体表观线速度为0.1m/s,温度为600℃,压力为200kPa,床层密度为700kg/m 3
本实施方案中,剂醇比约为1.0吨催化剂/吨甲醇;产品气的组成为51wt%乙烯,46wt%丙烯,2wt%C 4-C 6烃类和1wt%的其他组分,其他组分是甲烷、乙烷、丙烷、氢气、CO和CO 2等;生产单耗为2.40吨甲醇/吨低碳烯烃。全过程中C原子利用率是99.6%。
以上所述,仅是本申请的几个实施例,并非对本申请做任何形式的限制,虽然本申请以较佳实施例揭示如上,然而并非用以限制本申请,任何熟悉本专业的技术人员,在不脱离本申请技术方案范围内,利用上述揭示的技术内容做出些许的变动或修饰均等同于等效实施案例,均属于技术方案范围内。

Claims (36)

  1. 一种用于活化含氧化合物制备低碳烯烃的催化剂的流化床再生器,其特征在于,所述流化床再生器由下至上包括第二活化区、第一活化区和气固分离区;
    所述第二活化区和气固分离区轴向连通;
    所述第一活化区设置在所述第二活化区与气固分离区连接处的外周;
    所述第一活化区为环形腔体;
    所述第一活化区中沿径向设有n个挡板,所述n个挡板将所述第一活化区分割为n个第一活化区子区;
    其中,n-1个所述挡板上开设有催化剂流通孔,以使进入所述第一活化区的催化剂沿着环形方向流动。
  2. 根据权利要求1所述的流化床再生器,其特征在于,在所述第一活化区中,所述n个挡板包括第1挡板、第2挡板至第n挡板;
    所述第1挡板上未开设有所述催化剂流通孔;
    所述第2至第n挡板上开设有所述催化剂流通孔;
    所述第1挡板与所述第2挡板分割而成的第1活化区子区设有待生催化剂进口;
    所述第1挡板与所述第n挡板分割而成的第n活化区子区设有第一活化区催化剂输送管;
    所述第一活化区子区的下方设有第一活化区分布器;
    所述第一活化区子区的顶部设有第一活化区气体输送管。
  3. 根据权利要求1所述的流化床再生器,其特征在于,所述第一活化区上部设置有再生器第一气固分离设备;
    所述再生器第一气固分离设备通过所述待生催化剂进口与所述第一活化区连通。
  4. 根据权利要求1所述的流化床再生器,其特征在于,所述n的取值范围为:2≤n≤10。
  5. 根据权利要求1所述的流化床再生器,其特征在于,所述第一活化区子区的横截面是扇环形。
  6. 根据权利要求1所述的流化床再生器,其特征在于,所述第二活化区中沿水平方向设置有m块多孔板;
    其中,1≤m≤10。
  7. 根据权利要求6所述的流化床再生器,其特征在于,所述多孔板的开孔率为5-50%。
  8. 根据权利要求1所述的流化床再生器,其特征在于,所述第二活化区的底部设置有第二活化区分布器。
  9. 根据权利要求1所述的流化床再生器,其特征在于,所述流化床再生器包括再生器集气室、 流化床再生器取热器;
    所述再生器集气室位于所述流化床再生器的顶部;
    所述再生器集气室的顶部设置有再生器产品气输送管;
    所述气固分离区设置第二气固分离设备;
    所述再生器集气室连接于第二气固分离设备的出口;
    所述流化床再生器取热器位于所述第二活化区的下部。
  10. 一种用于含氧化合物制备低碳烯烃的装置,其特征在于,包括流化床反应器和流化床再生器;
    所述流化床再生器包括权利要求1至9任一项所述的流化床再生器中的至少一种。
  11. 根据权利要求10所述的装置,其特征在于,所述装置包括待生斜管、流化床反应器汽提器、待生剂输送管、再生斜管和再生剂输送管;
    待生剂区、待生斜管、流化床反应器汽提器、待生剂输送管、再生器第一气固分离设备依次连通;
    第二活化区、再生斜管、再生剂输送管、流化床反应器的反应区依次连通。
  12. 根据权利要求10所述的装置,其特征在于,所述流化床反应器包括下壳体、输送管和上壳体;
    所述下壳体围合成反应区;
    所述输送管位于所述反应区的上方且与所述反应区连通;
    所述输送管的外周设有上壳体;
    所述上壳体与所述输送管围合形成空腔;
    所述空腔自下至上分为待生剂区和气固分离区。
  13. 根据权利要求12所述的装置,其特征在于,所述反应区属于快速流态化区。
  14. 根据权利要求12所述的装置,其特征在于,所述待生剂区属于鼓泡流态化区。
  15. 根据权利要求12所述的装置,其特征在于,
    所述气固分离区设置有流化床反应器第一气固分离设备;
    所述输送管的上部连接于流化床反应器第一气固分离设备的入口。
  16. 根据权利要求12所述的装置,其特征在于,所述流化床反应器包括流化床反应器分布器,流化床反应器取热器,待生剂区气体分布器,流化床反应器集气室,流化床反应器第二气固分离设备;
    所述流化床反应器分布器位于反应区的底部;
    所述流化床反应器取热器位于待生剂区的下部;
    所述待生剂区气体分布器位于待生剂区的下部;
    流化床反应器第二气固分离设备和流化床反应器第一气固分离设备的气体出口和流化床反应器集气室相连;
    所述流化床反应器集气室设置有产品气输送管;
    流化床反应器第一气固分离设备和流化床反应器第二气固分离设备的催化剂出口和待生剂区相连。
  17. 根据权利要求12所述的装置,其特征在于,所述反应区和待生剂区之间通过待生剂循环管连通。
  18. 一种活化含氧化合物制备低碳烯烃的催化剂的方法,其特征在于,采用权利要求1至9任一项所述的流化床再生器中的至少一种。
  19. 根据权利要求18所述的方法,其特征在于,所述方法包括:
    将第一活化区原料与待生催化剂通入第一活化区中,所述待生催化剂沿着所述第一活化区子区以环形方向流动的同时,与第一活化区原料发生化学反应,生成部分活化催化剂;
    将所述部分活化催化剂与第二活化区原料通入第二活化区中,发生化学反应,生成再生催化剂;
    所述部分活化催化剂中的焦的组成中含有含氧烃类物种和不含氧烃类物种。
  20. 根据权利要求19所述的方法,其特征在于,所述第一活化区原料含有氧气、空气和水蒸气;
    其中,氧气的质量分数0-10wt%;
    空气的质量分数0-20wt%;
    水蒸气的质量分数80-100wt%。
  21. 根据权利要求19所述的方法,其特征在于,所述第二活化区原料为水蒸气。
  22. 根据权利要求19所述的方法,其特征在于,所述待生催化剂中的焦含量为9-13wt%。
  23. 根据权利要求19所述的方法,其特征在于,所述待生催化剂中的焦含量为10-12wt%。
  24. 根据权利要求19所述的方法,其特征在于,所述再生催化剂中的焦含量为5-11wt%;
    所述再生催化剂中的焦含量分布的四分位差小于1.0wt%。
  25. 根据权利要求19所述的方法,其特征在于,所述再生催化剂中,焦物种中包含多甲基苯和多甲基萘;
    多甲基苯和多甲基萘的质量和在焦总质量中的含量为≥60wt%;
    分子量>184的焦物种的质量在焦总质量中的含量为≤30wt%;
    其中,所述焦总质量是指焦物种的总质量。
  26. 根据权利要求19所述的方法,其特征在于,所述待生催化剂含有SAPO-34分子筛。
  27. 根据权利要求19所述的方法,其特征在于,所述流化床再生器的第一活化区的工艺操作条件为:气体表观线速度为0.1-0.5m/s,温度为650-750℃,压力为100-500kPa,床层密度为400-700kg/m 3
  28. 根据权利要求19所述的方法,其特征在于,所述流化床再生器的第二活化区的工艺操作条件为:气体表观线速度为0.1-0.5m/s,温度为550-700℃,压力为100-500kPa,床层密度为400-700kg/m 3
  29. 一种含氧化合物制备低碳烯烃的方法,其特征在于,采用权利要求10至17任一项所述的装置中的至少一种。
  30. 根据权利要求29所述的方法,其特征在于,所述方法包括:
    将含有含氧化合物的原料与再生催化剂通入反应区,反应,得到含有低碳烯烃和待生催化剂的物流A;
    将所述物流A气固分离后,将所述待生催化剂通入待生剂区;
    待生剂区的一部分待生催化剂返回流化床反应区,另一部分待生催化剂进入流化床再生器。
  31. 根据权利要求30所述的方法,其特征在于,所述待生剂区的流化气体选自氮气、水蒸气中的至少一种。
  32. 根据权利要求30所述的方法,其特征在于,所述含氧化合物的原料选自甲醇、二甲醚中的至少一种。
  33. 根据权利要求30所述的方法,其特征在于,所述再生催化剂的质量流量和所述含氧化合物的进料量的比值为0.3~1.0吨催化剂/吨甲醇。
  34. 根据权利要求30所述的方法,其特征在于,所述再生催化剂的质量流量和所述含氧化合物的进料量的比值为0.5~1.0吨催化剂/吨甲醇。
  35. 根据权利要求30所述的方法,其特征在于,所述流化床反应器的反应区的工艺操作条件为:气体表观线速度为0.5-7.0m/s,反应温度为350-550℃,反应压力为100-500kPa,床层密度为100-500kg/m 3
  36. 根据权利要求30所述的方法,其特征在于,所述流化床反应器的待生剂区的工艺操作条件为:气体表观线速度为0.1-1.0m/s,反应温度为350-550℃,反应压力为100-500kPa,床层密度为200-800kg/m 3
PCT/CN2020/121577 2020-10-16 2020-10-16 流化床再生器、制备低碳烯烃的装置及其应用 WO2022077460A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020227043991A KR20230013254A (ko) 2020-10-16 2020-10-16 유동상 재생기, 저탄소 올레핀을 제조하는 장치 및 그 응용
US17/777,052 US20220401905A1 (en) 2020-10-16 2020-10-16 Fluidized bed regenerator, device for preparing low-carbon olefins, and use thereof
PCT/CN2020/121577 WO2022077460A1 (zh) 2020-10-16 2020-10-16 流化床再生器、制备低碳烯烃的装置及其应用
EP20957238.7A EP4082655A4 (en) 2020-10-16 2020-10-16 FLUIDIZED BED REGENERATOR, APPARATUS FOR PREPARING LOW CARBON OLEFIN AND APPLICATION THEREOF
JP2022573395A JP7449415B2 (ja) 2020-10-16 2020-10-16 流動床再生器、軽オレフィンを調製する装置およびその応用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/121577 WO2022077460A1 (zh) 2020-10-16 2020-10-16 流化床再生器、制备低碳烯烃的装置及其应用

Publications (1)

Publication Number Publication Date
WO2022077460A1 true WO2022077460A1 (zh) 2022-04-21

Family

ID=81208865

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/121577 WO2022077460A1 (zh) 2020-10-16 2020-10-16 流化床再生器、制备低碳烯烃的装置及其应用

Country Status (5)

Country Link
US (1) US20220401905A1 (zh)
EP (1) EP4082655A4 (zh)
JP (1) JP7449415B2 (zh)
KR (1) KR20230013254A (zh)
WO (1) WO2022077460A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040186333A1 (en) * 2002-10-25 2004-09-23 Lattner James R. Fluid bed oxygenates to olefins reactor apparatus and process of controlling same
CN102463138A (zh) * 2010-11-17 2012-05-23 中国石油化工股份有限公司 Sapo-34催化剂的两段再生方法
EP2785459A1 (en) * 2011-11-28 2014-10-08 Shell Internationale Research Maatschappij B.V. Process for the oxidative regeneration of a deactivated catalyst and an apparatus therefor
CN104419468A (zh) * 2013-08-30 2015-03-18 中国石油化工股份有限公司 一种待生剂上焦炭气化方法
CN104672044A (zh) * 2013-12-03 2015-06-03 中国科学院大连化学物理研究所 一种含氧化合物制低碳烯烃的方法
CN106732823A (zh) * 2016-11-16 2017-05-31 青岛京润石化设计研究院有限公司 一种流化床催化剂再生方法
CN107540492A (zh) * 2016-06-29 2018-01-05 中国石油化工股份有限公司 由甲醇或二甲醚生产芳烃和低碳烯烃的方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6673978B2 (en) 2001-05-11 2004-01-06 Exxonmobil Chemical Patents Inc. Process for making olefins
US7179427B2 (en) 2002-11-25 2007-02-20 Abb Lummus Global Inc. Apparatus for countercurrent contacting of gas and solids
EP2070592A3 (en) 2007-12-05 2012-01-18 Uop Llc Apparatus and process for regenerating catalyst
CN102471420B (zh) 2009-07-24 2015-05-13 日本瑞翁株式会社 胶乳及粘接剂组合物
AU2013407180B2 (en) * 2013-12-03 2017-05-04 Dalian Institute Of Chemical Physics, Chinese Academy Of Sciences Method for preparing a light olefin using an oxygen-containing compound
GB2525399B (en) 2014-04-22 2016-05-18 Toshiba Res Europe Ltd An optical device
CN107540494A (zh) 2016-06-29 2018-01-05 中国石油化工股份有限公司 甲醇或二甲醚制备芳烃和低碳烯烃的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040186333A1 (en) * 2002-10-25 2004-09-23 Lattner James R. Fluid bed oxygenates to olefins reactor apparatus and process of controlling same
CN102463138A (zh) * 2010-11-17 2012-05-23 中国石油化工股份有限公司 Sapo-34催化剂的两段再生方法
EP2785459A1 (en) * 2011-11-28 2014-10-08 Shell Internationale Research Maatschappij B.V. Process for the oxidative regeneration of a deactivated catalyst and an apparatus therefor
CN104419468A (zh) * 2013-08-30 2015-03-18 中国石油化工股份有限公司 一种待生剂上焦炭气化方法
CN104672044A (zh) * 2013-12-03 2015-06-03 中国科学院大连化学物理研究所 一种含氧化合物制低碳烯烃的方法
CN107540492A (zh) * 2016-06-29 2018-01-05 中国石油化工股份有限公司 由甲醇或二甲醚生产芳烃和低碳烯烃的方法
CN106732823A (zh) * 2016-11-16 2017-05-31 青岛京润石化设计研究院有限公司 一种流化床催化剂再生方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4082655A4 *

Also Published As

Publication number Publication date
EP4082655A1 (en) 2022-11-02
US20220401905A1 (en) 2022-12-22
KR20230013254A (ko) 2023-01-26
JP7449415B2 (ja) 2024-03-13
JP2023530853A (ja) 2023-07-20
EP4082655A4 (en) 2023-04-26

Similar Documents

Publication Publication Date Title
WO2022077460A1 (zh) 流化床再生器、制备低碳烯烃的装置及其应用
WO2022077452A1 (zh) 流化床反应器、装置以及含氧化合物制备低碳烯烃的方法
WO2022077459A1 (zh) 再生装置、制备低碳烯烃的装置及其应用
CN114377729B (zh) 流化床再生器、制备低碳烯烃的装置及其应用
WO2021185168A1 (zh) 甲醇至烯烃的转化方法
CN114377730B (zh) 再生装置、制备低碳烯烃的装置及其应用
RU2815512C1 (ru) Устройство для регенерации, устройство для получения низкоуглеродистых олефинов и их применение
RU2807509C1 (ru) Регенератор с псевдоожиженным слоем, устройство для получения низкоуглеродистых олефинов и их применение
WO2022077458A1 (zh) 一种焦调控反应器、由含氧化合物制备低碳烯烃的装置和应用
CN114377624B (zh) 一种焦调控反应器、由含氧化合物制备低碳烯烃的装置和应用
CN114377621B (zh) 一种流化床反应器、装置以及应用
WO2022077454A1 (zh) 一种流化床反应器、装置以及应用
CN114377620B (zh) 流化床反应器、装置以及含氧化合物制备低碳烯烃的方法
RU2810794C1 (ru) Реактор с псевдоожиженным слоем, устройство и их применение
CN114377625B (zh) 焦调控反应器、装置及含氧化合物制备低碳烯烃的方法
WO2022077457A1 (zh) 焦调控反应器、装置及含氧化合物制备低碳烯烃的方法
RU2812664C1 (ru) Реактор для управления содержанием кокса, устройство для получения низкоуглеродистых олефинов из кислородсодержащего соединения и их применение
RU2798851C1 (ru) Реактор для управления содержанием кокса, а также устройство и способ получения низкоуглеродистых олефинов из кислородсодержащего соединения

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20957238

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020957238

Country of ref document: EP

Effective date: 20220727

ENP Entry into the national phase

Ref document number: 2022573395

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227043991

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE