WO2022077298A1 - Pdcch发送、pdcch接收方法和装置 - Google Patents

Pdcch发送、pdcch接收方法和装置 Download PDF

Info

Publication number
WO2022077298A1
WO2022077298A1 PCT/CN2020/120984 CN2020120984W WO2022077298A1 WO 2022077298 A1 WO2022077298 A1 WO 2022077298A1 CN 2020120984 W CN2020120984 W CN 2020120984W WO 2022077298 A1 WO2022077298 A1 WO 2022077298A1
Authority
WO
WIPO (PCT)
Prior art keywords
pdcch
time slots
terminal
pdcchs
time
Prior art date
Application number
PCT/CN2020/120984
Other languages
English (en)
French (fr)
Inventor
乔雪梅
刘洋
牟勤
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to CN202080002734.7A priority Critical patent/CN112449760B/zh
Priority to US18/032,156 priority patent/US20230397173A1/en
Priority to EP20957078.7A priority patent/EP4231718A4/en
Priority to PCT/CN2020/120984 priority patent/WO2022077298A1/zh
Publication of WO2022077298A1 publication Critical patent/WO2022077298A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0216Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave using a pre-established activity schedule, e.g. traffic indication frame
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0229Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a wanted signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/232Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the physical layer, e.g. DCI signalling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present disclosure relates to the field of communication technologies, and in particular, to a PDCCH transmission method, a PDCCH reception method, a PDCCH transmission apparatus, a PDCCH reception apparatus, an electronic device, and a computer-readable storage medium.
  • the embodiments of the present disclosure propose a PDCCH transmission method, a PDCCH reception method, a PDCCH transmission apparatus, a PDCCH reception apparatus, an electronic device, and a computer-readable storage medium to solve the technical problems in the related art.
  • a method for sending a physical downlink control channel is proposed, which is applicable to a base station, and the method includes:
  • the PDCCHs in at least two time slots in the plurality of time slots are consecutive in the time domain.
  • a method for receiving a physical downlink control channel PDCCH is proposed, which is applicable to a terminal, and the method includes:
  • the PDCCHs in at least two time slots in the plurality of time slots are consecutive in the time domain, and before receiving the two consecutive PDCCHs in the time domain, the terminal wakes up, and receives the two consecutive PDCCHs in the time domain During the process, the terminal remains awake, and after receiving two consecutive PDCCHs in the time domain, the terminal enters a micro-sleep state.
  • an apparatus for sending a physical downlink control channel PDCCH is provided, which is applicable to a base station, and the apparatus includes:
  • a sending module configured to send the PDCCH to the terminal in multiple time slots
  • the PDCCHs in at least two time slots in the plurality of time slots are consecutive in the time domain.
  • an apparatus for receiving a physical downlink control channel PDCCH which is applicable to a terminal, and the apparatus includes:
  • a receiving module configured to receive the PDCCH sent by the base station in multiple time slots
  • the PDCCHs in at least two time slots in the plurality of time slots are consecutive in the time domain, and before receiving the two consecutive PDCCHs in the time domain, the terminal wakes up, and receives the two consecutive PDCCHs in the time domain During the process, the terminal remains awake, and after receiving two consecutive PDCCHs in the time domain, the terminal enters a micro-sleep state.
  • an electronic device including:
  • memory for storing processor-executable instructions
  • the processor is configured to execute the above-mentioned PDCCH sending method.
  • an electronic device including:
  • memory for storing processor-executable instructions
  • the processor is configured to execute the above-mentioned PDCCH receiving method.
  • a computer-readable storage medium on which a computer program is stored, and when the program is executed by a processor, executes the steps in the above-mentioned PDCCH sending method.
  • a computer-readable storage medium on which a computer program is stored, and when the program is executed by a processor, executes the steps in the above-mentioned PDCCH receiving method.
  • the terminal when sending a PDCCH to a terminal in multiple time slots, by setting the PDCCHs in at least two of the time slots to be continuous in the time domain, when the terminal receives PDCCHs that are continuous in the time domain, Only going through the process of waking up and entering micro-sleep once, compared to discontinuously sending PDCCH to the terminal, can effectively reduce the power consumption of the terminal, and maintain the micro-sleep state for a longer time, which is conducive to meeting the power saving requirements of the terminal.
  • FIG. 1 is a schematic flowchart of a method for sending a PDCCH according to an embodiment of the present disclosure.
  • FIG. 2 is a schematic diagram of power consumption according to an embodiment of the present disclosure.
  • FIG. 3 is a schematic diagram of a PDCCH according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic diagram of another PDCCH according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic diagram of yet another PDCCH according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram of a DMRS according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic diagram of another DMRS according to an embodiment of the present disclosure.
  • 8A to 8E are schematic diagrams of several DMRSs according to embodiments of the present disclosure.
  • FIG. 9 is a schematic flowchart of a method for receiving a PDCCH according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic flowchart of another PDCCH receiving method according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic flowchart of another PDCCH receiving method according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic block diagram of a PDCCH sending apparatus according to an embodiment of the present disclosure.
  • FIG. 13 is a schematic block diagram of a PDCCH receiving apparatus according to an embodiment of the present disclosure.
  • FIG. 14 is a schematic block diagram of another PDCCH receiving apparatus according to an embodiment of the present disclosure.
  • FIG. 15 is a schematic block diagram of yet another PDCCH receiving apparatus according to an embodiment of the present disclosure.
  • FIG. 16 is a schematic block diagram of an apparatus for PDCCH transmission according to an embodiment of the present disclosure.
  • FIG. 17 is a schematic block diagram of an apparatus for PDCCH reception according to an embodiment of the present disclosure.
  • FIG. 1 is a schematic flowchart of a method for sending a PDCCH (Physical Downlink Control Channel, physical downlink control channel) according to an embodiment of the present disclosure.
  • the PDCCH sending method shown in this embodiment may be applicable to base stations, and the base stations include but are not limited to 4G base stations, 5G base stations, and 6G base stations.
  • the base station may communicate with a terminal that is a user equipment, and the terminal includes but is not limited to electronic devices such as mobile phones, tablet computers, wearable devices, sensors, and Internet of Things devices.
  • the terminal may be a terminal to which the PDCCH receiving method described in any subsequent embodiment is applicable.
  • the terminal reduces capability UE (reduced capability user equipment, redcap UE for short), or is referred to as NR-lite device.
  • This type of terminal is required to satisfy low complexity, low cost, power saving and a certain degree of coverage enhancement.
  • the terminal can be set to receive only the PDCCH in a slot, and enter a micro-sleep state during the period other than the PDCCH in the slot.
  • the PDCCH channel can be transmitted multiple times to increase the aggregation level and reduce the code rate.
  • the micro-sleep state refers to a state in which the terminal turns off some radio frequency components compared to the wake-up state to maintain relatively low power consumption.
  • the PDCCH sending method may include the following steps:
  • step S101 the PDCCH is sent to the terminal in multiple time slots
  • the PDCCHs in at least two time slots in the plurality of time slots are consecutive in the time domain.
  • the base station may transmit the PDCCH to the terminal in multiple time slots, and the multiple time slots may be all consecutive, or some of the time slots may be consecutive.
  • the PDCCHs in at least two time slots are consecutive in the time domain, for example, among the plurality of time slots, only the PDCCHs in the two time slots are consecutive in the time domain, or the PDCCHs in the plurality of time slots are consecutive in the time domain.
  • the PDCCHs in every two slots are consecutive in the time domain.
  • the PDCCHs referred to in all the embodiments of the present disclosure are continuous in the time domain, which may include two cases. One is that the number of symbols (such as OFDM symbols) spaced between PDCCHs in the time domain is 0, and the other is One case is that the number of symbols spaced between PDCCHs in the time domain is not 0, but is small, for example, less than or equal to a preset value, which can be set as required, such as 2, 3, 4, and so on.
  • a preset value which can be set as required, such as 2, 3, 4, and so on.
  • the PDCCH can be transmitted in multiple time slots, and then the terminal can receive the PDCCH in each time slot.
  • the terminal since the terminal is in the micro-sleep state during the period other than the PDCCH in each time slot, in order to receive the PDCCH, it needs to wake up first. After receiving the PDCCH, it re-enters the micro-sleep state. process, there is power consumption.
  • FIG. 2 is a schematic diagram of power consumption according to an embodiment of the present disclosure.
  • the base station sends the PDCCH to the terminal in 8 time slots, each time slot includes the PDCCH, and the PDCCH is located at the front end of the time slot.
  • the terminal Before receiving the PDCCH each time, the terminal needs to wake up first, thereby generating wake-up power consumption, and after receiving the PDCCH each time, the terminal needs to enter a micro-sleep state, thereby generating power consumption for entering the micro-sleep state. Then, based on the embodiment shown in FIG. 2 , there will be at least 7 power consumptions for waking up, and 8 power consumptions for entering the micro-sleep state. The total power consumption is relatively large, and it is difficult to meet the power saving requirements of the terminal.
  • the terminal when sending a PDCCH to a terminal in multiple time slots, by setting the PDCCHs in at least two of the time slots to be continuous in the time domain, when the terminal receives PDCCHs that are continuous in the time domain, Only going through the process of waking up and entering micro-sleep once, compared to discontinuously sending PDCCH to the terminal, can effectively reduce the power consumption of the terminal, and maintain the micro-sleep state for a longer time, which is conducive to meeting the power saving requirements of the terminal.
  • the PDCCH sent by the base station to the terminal may include the following two manners shown in FIG. 3 and FIG. 4 , or referred to as a pattern.
  • FIG. 3 is a schematic diagram of a PDCCH according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic diagram of another PDCCH according to an embodiment of the present disclosure.
  • the PDCCH of the base station to the terminal side in multiple time slots may be that the PDCCH in the odd-numbered time slots of the plurality of time slots is located at the end of the corresponding time slot, and the PDCCH in the even-numbered time slot is located at the corresponding time slot. front end of the gap.
  • the base station sends the PDCCH to the terminal in 8 time slots, and each time slot includes the PDCCH.
  • the PDCCH is located at the end of the time slot.
  • 4, 5, and 6 time slots the PDCCH is located at the front end of the time slot.
  • the PDCCH in the 1st slot and the 2nd slot is continuous in the time domain
  • the PDCCH in the 3rd slot and the 4th slot is continuous in the time domain
  • the PDCCH in the 5th slot and the 6th slot is continuous in the time domain It is continuous in the time domain
  • the PDCCH in the seventh and eighth time slots are continuous in the time domain.
  • the terminal can wake up before receiving, stay awake during the receiving process, and enter the micro-sleep state after receiving, then the power consumption is shown in Figure 3, there are four wake-up power consumption, and Compared with the embodiment shown in FIG. 2 , the power consumption of entering the micro-sleep state four times is reduced, so as to meet the power saving requirements of the terminal.
  • the PDCCH of the base station to the terminal side in multiple time slots may be that the PDCCH in the odd-numbered time slots of the plurality of time slots is located at the front end of the corresponding time slot, and the PDCCH in the even-numbered time slot is located at the corresponding time slot. end of the gap.
  • the base station sends the PDCCH to the terminal in 8 time slots, and each time slot includes the PDCCH. , 4, 5, and 6 time slots, the PDCCH is located at the end of the time slot.
  • the PDCCH in the second and third time slots are continuous in the time domain
  • the PDCCH in the fourth and fifth time slots are continuous in the time domain
  • the PDCCH in the sixth and seventh time slots are continuous in the time domain. continuous in time domain.
  • the terminal can wake up before receiving, stay awake during the receiving process, and enter a micro-sleep state after receiving, then the power consumption is shown in Figure 4, there are four wake-up power consumption, and Compared with the embodiment shown in FIG. 2 , the power consumption of entering the micro-sleep state four times is reduced, so as to meet the power saving requirements of the terminal.
  • the PDCCH may occupy 1 to 3 symbols in the time domain of the time slot. Taking the PDCCH occupying 3 symbols as an example, the PDCCH is located at the front end of the time slot, which means that the PDCCH is located in the first 3 symbols of the time slot, The PDCCH is located at the end of the time slot, which means that the PDCCH is located in the last three symbols of the time slot.
  • the PDCCHs in the multiple time slots correspond to the same transport block.
  • the PDCCH sent by the base station in multiple time slots may be for multiple transport blocks (Transport Block, TB for short), or may be for the same transport block.
  • the PDCCH can carry downlink control information (Downlink Control Information, DCI for short), and the DCI in each PDCCH can be the same, so the terminal can The PDCCH within the slots determines the DCI corresponding to the same transport block.
  • DCI Downlink Control Information
  • the PDCCHs in at least two time slots continuously include:
  • the PDCCHs in the at least two time slots are consecutive in the time domain, which may be that the number of symbols spaced between the PDCCHs in the at least two time slots in the time domain is 0.
  • the PDCCHs in at least two time slots continuously include:
  • the PDCCHs in the at least two time slots are continuous in the time domain, which may be that the number of symbols spaced between the PDCCHs in the at least two time slots in the time domain is greater than 0 and less than or equal to a preset value.
  • the terminal Since the PDCCHs in different time slots are continuous, the blind detection complexity will be increased for the terminal. For example, for the embodiment shown in FIG. 4 , after blindly detecting the PDCCH in the second time slot, the terminal needs to blindly immediately Check the PDCCH in the third time slot, which may be difficult to smoothly perform blind detection in the third time slot when the terminal processing capability is low.
  • the terminal is made After blind detection in one time slot, there is more time for processing, and then blind detection is performed in the next time slot, so as to be suitable for terminals with lower processing capabilities.
  • FIG. 5 is a schematic diagram of yet another PDCCH according to an embodiment of the present disclosure.
  • the PDCCH in the embodiment shown in FIG. 4 can be adjusted, and an interval is added between consecutive PDCCHs.
  • the terminal is in the second time slot.
  • the PDCCH is blindly detected in the time slot, there is still a certain interval in the third time slot. Even if the processing capacity is low, the processing can be completed, and then blind detection is performed in the third time slot, so as to be suitable for the processing capacity. lower terminal.
  • the terminal still maintains the awake state at the interval between consecutive PDCCHs.
  • the number of demodulation reference signals DMRS (Demodulation Reference Signal) in the PDCCH is the first number
  • the number of DMRSs in the PDCCH is the first number.
  • the quantity is the second quantity
  • the first number is smaller than the second number.
  • DCI and DMRS can be carried in the PDCCH.
  • One of the functions of DMRS can be used by the terminal to counter Doppler frequency offset. The faster the terminal moves, the greater the Doppler frequency offset, so it needs to A larger number of DMRSs can combat the Doppler frequency offset, but for a terminal that moves slowly or even does not move, the smaller the Doppler frequency offset is, the smaller the number of DMRSs can combat the Doppler frequency offset.
  • This embodiment can determine whether the location of the terminal is fixed, and the method of determining whether the location of the terminal is fixed may be determined by locating the terminal, or determined based on information reported by the terminal, or may be other feasible methods. Selection is required, which is not limited in this embodiment.
  • the number of DMRS in the PDCCH sent by the base station is the first number
  • the number of DMRS in the PDCCH sent by the base station is the second number
  • the first number may be smaller than the second number, that is, the number of DMRSs configured for terminals with fixed positions may be smaller than the number of DMRSs configured for terminals with non-fixed positions, thereby reducing the number of DMRSs carried in the PDCCH so that the PDCCH can carry More DCI and/or coded bits are beneficial to improve the probability of successful decoding of the PDCCH channel.
  • FIG. 6 is a schematic diagram of a DMRS according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic diagram of another DMRS according to an embodiment of the present disclosure.
  • the PDCCH configured by the base station as the terminal occupies 3 symbols in the time domain and 12 subcarriers in the frequency domain.
  • DMRS may be configured on subcarrier 1, subcarrier 5 and subcarrier 9, and there are and only DMRS on each symbol.
  • FIG. 7 for example, for a fixed terminal, DMRS may be configured on subcarrier 1, subcarrier 5 and subcarrier 9, but the DMRS is set every one symbol.
  • 8A to 8E are schematic diagrams of several DMRSs according to embodiments of the present disclosure.
  • positions of the DMRS in the time domain and frequency domain are not limited to those shown in FIGS. 6 and 7 , and can be set as required, including but not limited to those shown in any of the examples in FIGS. 8A to 8E .
  • FIG. 9 is a schematic flowchart of a method for receiving a PDCCH according to an embodiment of the present disclosure.
  • the PDCCH receiving method shown in this embodiment may be applicable to terminals, and the terminals include but are not limited to electronic devices such as mobile phones, tablet computers, wearable devices, sensors, and Internet of Things devices.
  • the terminal may communicate with a base station as a user equipment, and the base station includes but is not limited to a 4G base station, a 5G base station, and a 6G base station.
  • the base station may be a base station to which the PDCCH sending method described in any of the foregoing embodiments is applicable.
  • the terminal may be a terminal to which the PDCCH receiving method described in any subsequent embodiment is applicable.
  • the terminal reduces capability UE, or is called NR-lite device. This type of terminal is required to satisfy low complexity, low cost, power saving and a certain degree of coverage enhancement.
  • the terminal can be set to receive only the PDCCH in a time slot, and enter the micro-sleep state during the period other than the PDCCH in the time slot.
  • the PDCCH channel can be transmitted multiple times to increase the aggregation level and reduce the code rate.
  • the PDCCH receiving method may include the following steps:
  • step S901 receive the PDCCH sent by the base station in multiple time slots
  • the PDCCHs in at least two time slots in the plurality of time slots are consecutive in the time domain, and before receiving the two consecutive PDCCHs in the time domain, the terminal wakes up, and receives the two consecutive PDCCHs in the time domain During the process, the terminal remains awake, and after receiving two consecutive PDCCHs in the time domain, the terminal enters a micro-sleep state.
  • the base station may set the PDCCHs sent to the terminal in multiple time slots, and set the PDCCHs in at least two time slots to be continuous in the time domain, so that the terminal receives continuous PDCCHs in the time domain.
  • PDCCH wake up before receiving two consecutive PDCCHs in the time domain, keep awake during the process of receiving two consecutive PDCCHs in the time domain, and enter the micro-sleep state after receiving two consecutive PDCCHs in the time domain.
  • FIG. 10 is a schematic flowchart of another PDCCH receiving method according to an embodiment of the present disclosure. As shown in Figure 10, the method further includes:
  • step S1001 the downlink control information DCI corresponding to the same transport block is determined according to the PDCCHs in the multiple time slots.
  • the PDCCH sent by the base station in multiple time slots may be for multiple transport blocks, or may be for the same transport block.
  • the PDCCH can carry downlink control information, and the DCI in each PDCCH can be the same, then the terminal can determine the corresponding PDCCH according to the PDCCH in multiple time slots. DCI in the same transport block.
  • the PDCCHs in at least two time slots continuously include:
  • the number of symbols spaced by the PDCCH in the at least two time slots in the time domain is 0.
  • the PDCCHs in the at least two time slots are consecutive in the time domain, and the number of symbols that the PDCCHs in the at least two time slots are spaced in the time domain is 0.
  • the PDCCHs in at least two time slots continuously include:
  • the number of symbols spaced by the PDCCH in the at least two time slots in the time domain is greater than 0 and less than or equal to a preset value.
  • the PDCCHs in the at least two time slots are continuous in the time domain, which may be that the number of symbols spaced between the PDCCHs in the at least two time slots in the time domain is greater than 0 and less than or equal to a preset value.
  • the terminal Since the PDCCHs in different time slots are continuous, the blind detection complexity will be increased for the terminal. For example, for the embodiment shown in FIG. 4 , after blindly detecting the PDCCH in the second time slot, the terminal needs to blindly immediately Check the PDCCH in the third time slot, which may be difficult to smoothly perform blind detection in the third time slot when the terminal processing capability is low.
  • the continuous PDCCH can be set to have a small interval in the time domain, for example, the number of symbols in the interval is greater than 0 and less than or equal to the preset value, for example, the number of symbols in the interval is 2, 3, etc., accordingly, make The terminal may have more time for processing after blind detection in one time slot, and then perform blind detection in the next time slot, so as to be suitable for terminals with lower processing capabilities.
  • the number of times of blindly detecting the PDCCH in a single time slot is the first number, in response to the plurality of time slots.
  • the PDCCHs in each time slot in the slot are discontinuous in the time domain, and the number of times of blindly detecting the PDCCH in a single time slot is the second time;
  • the first number of times is less than the second number of times.
  • the terminal since the PDCCHs in different time slots are continuous, the blind detection complexity will be improved for the terminal. For example, for the embodiment shown in FIG. 4 , the terminal blindly detects the PDCCH in the second time slot After the PDCCH, the PDCCH in the third time slot needs to be blindly checked immediately, which may make it difficult to smoothly perform the blind check in the third time slot when the terminal processing capability is low.
  • the PDCCH from the base station to the terminal may be as in the above-mentioned embodiment, the PDCCHs in at least two time slots in the multiple time slots are continuous in the time domain, or the PDCCH in each time slot in the multiple time slots may be in the time domain. Discontinuous.
  • the complexity of blind detection is low, so more times of blind detection can be set for each time slot, such as the second time, while For the case where the PDCCHs in at least two time slots in multiple time slots are continuous in the time domain, the complexity of blind detection is relatively high, and a small number of blind detection times can be set for each time slot, such as the first time, also That is, the first number of times is less than the second number of times.
  • the number of blind detections in the time slots by the terminal is less, so that more capabilities can be used to process the continuous PDCCHs , which is beneficial for terminals with lower processing power.
  • FIG. 11 is a schematic flowchart of another PDCCH receiving method according to an embodiment of the present disclosure. As shown in Figure 11, the method further includes:
  • step S1101 joint channel estimation is performed according to demodulation reference signals DMRS obtained from two consecutive PDCCHs in the time domain.
  • the terminal can obtain the DMRS of the DCI from the two PDCCHs respectively, and then can perform joint channel estimation based on the DMRSs in the two PDCCHs, which is beneficial to improve the accuracy of channel decoding.
  • the number of DMRSs acquired from the PDCCH is the first number
  • the number of DMRSs acquired from the PDCCH is the first number
  • the first number is smaller than the second number.
  • DCI and DMRS can be carried in the PDCCH.
  • One of the functions of DMRS can be used by the terminal to counter Doppler frequency offset. The faster the terminal moves, the greater the Doppler frequency offset, so it needs to A larger number of DMRSs can combat the Doppler frequency offset, but for a terminal that moves slowly or even does not move, the smaller the Doppler frequency offset is, the smaller the number of DMRSs can combat the Doppler frequency offset.
  • This embodiment can determine whether the location of the terminal is fixed, and the method of determining whether the location of the terminal is fixed may be determined by locating the terminal, or determined based on information reported by the terminal, or may be other feasible methods. Selection is required, which is not limited in this embodiment.
  • the number of DMRSs in the PDCCH sent by the base station is the first number.
  • the second number that is, the number of DMRSs configured for terminals with fixed positions can be smaller than the number of DMRSs configured for terminals with unfixed positions, thereby reducing the number of DMRSs carried in the PDCCH, so that more DMRSs are carried in the PDCCH.
  • DCI and/or coded bits are beneficial to improve the probability of successful decoding of the PDCCH channel.
  • the present disclosure also provides embodiments of the PDCCH sending method and the PDCCH receiving apparatus.
  • FIG. 12 is a schematic block diagram of a PDCCH sending apparatus according to an embodiment of the present disclosure.
  • the PDCCH sending apparatus shown in this embodiment may be applicable to base stations, and the base stations include but are not limited to 4G base stations, 5G base stations, and 6G base stations.
  • the base station may communicate with a terminal that is a user equipment, and the terminal includes but is not limited to electronic devices such as mobile phones, tablet computers, wearable devices, sensors, and Internet of Things devices.
  • the PDCCH sending apparatus may include:
  • the sending module 1201 is configured to send the PDCCH to the terminal in multiple time slots;
  • the PDCCHs in at least two time slots in the plurality of time slots are consecutive in the time domain.
  • the PDCCHs in the multiple time slots correspond to the same transport block.
  • the PDCCH in the odd-numbered time slot is located at the end of the corresponding time slot, and the PDCCH in the even-numbered time slot is located at the front end of the corresponding time slot;
  • the PDCCH in odd-numbered time slots is located at the front end of the corresponding time slot, and the PDCCH in the even-numbered time slot is located at the end of the corresponding time slot.
  • the PDCCHs in at least two time slots continuously include:
  • the number of symbols spaced by the PDCCH in the at least two time slots in the time domain is 0.
  • the PDCCHs in at least two time slots continuously include:
  • the number of symbols spaced by the PDCCH in the at least two time slots in the time domain is greater than 0 and less than or equal to a preset value.
  • the number of demodulation reference signal DMRSs in the PDCCH is a first number, and in response to the location of the terminal being not fixed, the number of DMRSs in the PDCCH is a second number ;
  • the first number is smaller than the second number.
  • FIG. 13 is a schematic block diagram of a PDCCH receiving apparatus according to an embodiment of the present disclosure.
  • the PDCCH receiving apparatus shown in this embodiment may be applicable to terminals, and the terminals include but are not limited to electronic devices such as mobile phones, tablet computers, wearable devices, sensors, and Internet of Things devices.
  • the terminal may communicate with a base station as a user equipment, and the base station includes but is not limited to a 4G base station, a 5G base station, and a 6G base station.
  • the base station may be a base station to which the PDCCH sending method described in any of the foregoing embodiments is applicable.
  • the PDCCH receiving apparatus may include:
  • the receiving module 1301 is configured to receive the PDCCH sent by the base station in multiple time slots;
  • the PDCCHs in at least two time slots in the plurality of time slots are consecutive in the time domain, and before receiving the two consecutive PDCCHs in the time domain, the terminal wakes up, and receives the two consecutive PDCCHs in the time domain During the process, the terminal remains awake, and after receiving two consecutive PDCCHs in the time domain, the terminal enters a micro-sleep state.
  • FIG. 14 is a schematic block diagram of another PDCCH receiving apparatus according to an embodiment of the present disclosure. As shown in Figure 14, the device further includes:
  • the DCI determination module 1401 is configured to determine downlink control information DCI corresponding to the same transport block according to the PDCCHs in the multiple time slots.
  • the PDCCHs in at least two time slots continuously include:
  • the number of symbols spaced by the PDCCH in the at least two time slots in the time domain is 0.
  • the PDCCHs in at least two time slots continuously include:
  • the number of symbols spaced by the PDCCH in the at least two time slots in the time domain is greater than 0 and less than or equal to a preset value.
  • the number of times of blindly detecting the PDCCH in a single time slot is the first number, and in response to the plurality of time slots The PDCCH in each time slot in the slot is discontinuous in the time domain, and the number of times of blindly detecting the PDCCH in a single time slot is the second time;
  • the first number of times is less than the second number of times.
  • FIG. 15 is a schematic block diagram of yet another PDCCH receiving apparatus according to an embodiment of the present disclosure. As shown in Figure 15, the device further includes:
  • the channel estimation module 1501 is configured to perform joint channel estimation according to demodulation reference signals DMRS obtained from two consecutive PDCCHs in the time domain.
  • the number of DMRSs acquired from the PDCCH is the first number
  • the number of DMRSs acquired from the PDCCH is the first number
  • the first number is smaller than the second number.
  • Embodiments of the present disclosure also provide an electronic device, including:
  • memory for storing processor-executable instructions
  • the processor is configured to execute the PDCCH sending method described in any of the foregoing embodiments.
  • Embodiments of the present disclosure also provide an electronic device, including:
  • memory for storing processor-executable instructions
  • the processor is configured to execute the PDCCH receiving method described in any one of the above embodiments.
  • Embodiments of the present disclosure also provide a computer-readable storage medium, on which a computer program is stored, and when the program is executed by a processor, executes the steps in the PDCCH sending method described in any of the foregoing embodiments.
  • Embodiments of the present disclosure also provide a computer-readable storage medium, on which a computer program is stored, and when the program is executed by a processor, executes the steps in the PDCCH receiving method described in any of the foregoing embodiments.
  • FIG. 16 is a schematic block diagram of an apparatus 1600 for PDCCH transmission according to an embodiment of the present disclosure.
  • the apparatus 1600 may be provided as a base station.
  • apparatus 1600 includes a processing component 1622, a wireless transmit/receive component 1624, an antenna component 1626, and a signal processing portion specific to a wireless interface, which may further include one or more processors.
  • One of the processors in the processing component 1622 may be configured to implement the PDCCH sending method described in any of the foregoing embodiments.
  • FIG. 17 is a schematic block diagram of an apparatus 1700 for PDCCH reception according to an embodiment of the present disclosure.
  • apparatus 1700 may be a mobile phone, computer, digital broadcast terminal, messaging device, game console, tablet device, medical device, fitness device, personal digital assistant, and the like.
  • the apparatus 1700 may include one or more of the following components: a processing component 1702, a memory 1704, a power supply component 1706, a multimedia component 1708, an audio component 1710, an input/output (I/O) interface 1712, a sensor component 1714, And the communication component 1716.
  • the processing component 1702 generally controls the overall operation of the device 1700, such as operations associated with display, phone calls, data communications, camera operations, and recording operations.
  • the processing component 1702 may include one or more processors 1720 to execute instructions to complete all or part of the steps of the above-described PDCCH receiving method.
  • processing component 1702 may include one or more modules that facilitate interaction between processing component 1702 and other components.
  • processing component 1702 may include a multimedia module to facilitate interaction between multimedia component 1708 and processing component 1702.
  • Memory 1704 is configured to store various types of data to support operations at device 1700 . Examples of such data include instructions for any application or method operating on the device 1700, contact data, phonebook data, messages, pictures, videos, and the like. Memory 1704 may be implemented by any type of volatile or nonvolatile storage device or combination thereof, such as static random access memory (SRAM), electrically erasable programmable read only memory (EEPROM), erasable Programmable Read Only Memory (EPROM), Programmable Read Only Memory (PROM), Read Only Memory (ROM), Magnetic Memory, Flash Memory, Magnetic or Optical Disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read only memory
  • EPROM erasable Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Magnetic or Optical Disk Magnetic Disk
  • Power supply component 1706 provides power to various components of device 1700 .
  • Power supply components 1706 may include a power management system, one or more power supplies, and other components associated with generating, managing, and distributing power to device 1700 .
  • Multimedia component 1708 includes a screen that provides an output interface between the device 1700 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from a user.
  • the touch panel includes one or more touch sensors to sense touch, swipe, and gestures on the touch panel. The touch sensor may not only sense the boundaries of a touch or swipe action, but also detect the duration and pressure associated with the touch or swipe action.
  • the multimedia component 1708 includes a front-facing camera and/or a rear-facing camera. When the apparatus 1700 is in an operation mode, such as a shooting mode or a video mode, the front camera and/or the rear camera may receive external multimedia data. Each of the front and rear cameras can be a fixed optical lens system or have focal length and optical zoom capability.
  • Audio component 1710 is configured to output and/or input audio signals.
  • audio component 1710 includes a microphone (MIC) that is configured to receive external audio signals when device 1700 is in operating modes, such as call mode, recording mode, and voice recognition mode. The received audio signal may be further stored in memory 1704 or transmitted via communication component 1716.
  • audio component 1710 also includes a speaker for outputting audio signals.
  • the I/O interface 1712 provides an interface between the processing component 1702 and a peripheral interface module, which may be a keyboard, a click wheel, a button, or the like. These buttons may include, but are not limited to: home button, volume buttons, start button, and lock button.
  • Sensor assembly 1714 includes one or more sensors for providing status assessment of various aspects of device 1700 .
  • the sensor assembly 1714 can detect the open/closed state of the device 1700, the relative positioning of components, such as the display and keypad of the device 1700, and the sensor assembly 1714 can also detect a change in the position of the device 1700 or a component of the device 1700 , the presence or absence of user contact with the device 1700 , the orientation or acceleration/deceleration of the device 1700 and the temperature change of the device 1700 .
  • Sensor assembly 1714 may include a proximity sensor configured to detect the presence of nearby objects in the absence of any physical contact.
  • Sensor assembly 1714 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor assembly 1714 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • Communication component 1716 is configured to facilitate wired or wireless communication between apparatus 1700 and other devices.
  • Device 1700 may access wireless networks based on communication standards, such as WiFi, 2G or 3G, 4G LTE, 5G NR, or a combination thereof.
  • the communication component 1716 receives broadcast signals or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communication component 1716 also includes a near field communication (NFC) module to facilitate short-range communication.
  • the NFC module may be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • apparatus 1700 may be implemented by one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable A gate array (FPGA), a controller, a microcontroller, a microprocessor or other electronic components are implemented for implementing the above-mentioned PDCCH receiving method.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGA field programmable A gate array
  • controller a controller
  • microcontroller a microcontroller
  • microprocessor or other electronic components are implemented for implementing the above-mentioned PDCCH receiving method.
  • a non-transitory computer-readable storage medium including instructions such as a memory 1704 including instructions, is also provided, and the instructions are executable by the processor 1720 of the apparatus 1700 to complete the PDCCH receiving method described above.
  • the non-transitory computer-readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, and the like.

Abstract

本公开涉及物理下行控制信道PDCCH发送方法,适用于基站,所述方法包括:在多个时隙内向终端发送PDCCH;其中,所述多个时隙内至少两个时隙中的PDCCH在时域上连续。根据本公开的实施例,在多个时隙内向终端发送PDCCH时,通过将其中至少两个时隙中的PDCCH在时域上设置为连续,可以使得终端在接收时域上连续的PDCCH时,仅经历一次唤醒和进入微睡眠的过程,相对于非连续地向终端发送PDCCH,可以有效地降低终端的功率消耗,并且保持在微睡眠状态的时间更长,有利于满足终端节省功率的要求。

Description

PDCCH发送、PDCCH接收方法和装置 技术领域
本公开涉及通信技术领域,具体而言,涉及PDCCH发送方法、PDCCH接收方法、PDCCH发送装置、PDCCH接收装置、电子设备和计算机可读存储介质。
背景技术
在相关技术中,对于某些类型的终端而言,要求满足低复杂度、低造价、功率节省以及一定程度的覆盖增强。针对该类型终端的上述要求,需要对通信过程进行针对性的设计。
发明内容
有鉴于此,本公开的实施例提出了PDCCH发送方法、PDCCH接收方法、PDCCH发送装置、PDCCH接收装置、电子设备和计算机可读存储介质,以解决相关技术中的技术问题。
根据本公开实施例的第一方面,提出一种物理下行控制信道PDCCH发送方法,适用于基站,所述方法包括:
在多个时隙内向终端发送PDCCH;
其中,所述多个时隙内至少两个时隙中的PDCCH在时域上连续。
根据本公开实施例的第二方面,提出一种物理下行控制信道PDCCH接收方法,适用于终端,所述方法包括:
接收基站在多个时隙内发送的PDCCH;
其中,所述多个时隙内至少两个时隙中的PDCCH在时域上连续,在接收时域上连续的两个PDCCH之前,所述终端唤醒,在接收时域上连续的两个PDCCH的过程中所述终端保持唤醒,在接收时域上连续的两个PDCCH之后,所述终端进入微睡眠状态。
根据本公开实施例的第三方面,提出一种物理下行控制信道PDCCH发送装置,适用于基站,所述装置包括:
发送模块,被配置为在多个时隙内向终端发送PDCCH;
其中,所述多个时隙内至少两个时隙中的PDCCH在时域上连续。
根据本公开实施例的第四方面,提出一种物理下行控制信道PDCCH接收装置,适用于终端,所述装置包括:
接收模块,被配置为接收基站在多个时隙内发送的PDCCH;
其中,所述多个时隙内至少两个时隙中的PDCCH在时域上连续,在接收时域上连续的两个PDCCH之前,所述终端唤醒,在接收时域上连续的两个PDCCH的过程中所述终端保持唤醒,在接收时域上连续的两个PDCCH之后,所述终端进入微睡眠状态。
根据本公开实施例的第五方面,提出一种电子设备,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为执行上述PDCCH发送方法。
根据本公开实施例的第六方面,提出一种电子设备,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为执行上述PDCCH接收方法。
根据本公开实施例的第七方面,提出一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时执行上述PDCCH发送方法中的步骤。
根据本公开实施例的第八方面,提出一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时执行上述PDCCH接收方法中的步骤。
根据本公开的实施例,在多个时隙内向终端发送PDCCH时,通过将其中至少两个时隙中的PDCCH在时域上设置为连续,可以使得终端在接收时域上连续的PDCCH时,仅经历一次唤醒和进入微睡眠的过程,相对于非连续地向终端发送PDCCH,可以有效地降低终端的功率消耗,并且保持在微睡眠状态的时间更长,有利于满足终端节省功率的要求。
附图说明
为了更清楚地说明本公开实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是根据本公开的实施例示出的一种PDCCH发送方法的示意流程图。
图2是根据本公开的实施例示出的一种功率消耗示意图。
图3是根据本公开的实施例示出的一种PDCCH示意图。
图4是根据本公开的实施例示出的另一种PDCCH示意图。
图5是根据本公开的实施例示出的又一种PDCCH示意图。
图6是根据本公开的实施例示出的一种DMRS示意图。
图7是根据本公开的实施例示出的另一种DMRS示意图。
图8A至图8E是根据本公开的实施例示出的几种DMRS示意图。
图9是根据本公开的实施例示出的一种PDCCH接收方法的示意流程图。
图10是根据本公开的实施例示出的另一种PDCCH接收方法的示意流程图。
图11是根据本公开的实施例示出的另一种PDCCH接收方法的示意流程图。
图12是根据本公开的实施例示出的一种PDCCH发送装置的示意框图。
图13是根据本公开的实施例示出的一种PDCCH接收装置的示意框图。
图14是根据本公开的实施例示出的另一种PDCCH接收装置的示意框图。
图15是根据本公开的实施例示出的又一种PDCCH接收装置的示意框图。
图16是根据本公开的实施例示出的一种用于PDCCH发送的装置的示意框图。
图17是根据本公开的实施例示出的一种用于PDCCH接收的装置的示意框图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施 例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
图1是根据本公开的实施例示出的一种PDCCH(Physical Downlink Control Channel,物理下行控制信道)发送方法的示意流程图。本实施例所示的PDCCH发送方法可以适用于基站,所述基站包括但不限于4G基站、5G基站、6G基站。所述基站可以与作为用户设备的终端进行通信,所述终端包括但不限于手机、平板电脑、可穿戴设备、传感器、物联网设备等电子设备。
在一个实施例中,所述终端可以是后续任一实施例所述PDCCH接收方法所适用的终端。
在一个实施例中,所述终端reduced capability UE(降低能力的用户设备,简称redcap UE),或者称作NR-lite设备。该类型的终端要求满足低复杂度、低造价、功率节省以及一定程度的覆盖增强。
为了满足该类终端功率节省的要求,可以设置终端在一个时隙(slot)内只接收PDCCH,而在该时隙内PDCCH以外的时段则进入微睡眠(micro-sleep)状态。为了满足其覆盖增强的需求,可以对PDCCH信道进行多次传输,以增加聚合等级并降低码率。其中,微睡眠状态是指相对于唤醒状态终端关闭部分射频组件从而保持相对较低的功率消耗的状态。
如图1所示,所述PDCCH发送方法可以包括以下步骤:
在步骤S101中,在多个时隙内向终端发送PDCCH;
其中,所述多个时隙内至少两个时隙中的PDCCH在时域上连续。
在一个实施例中,基站可以在多个时隙内向终端发送PDCCH,所述多个时隙可以是全部连续的,或者其中部分时隙是连续的。在所述多个时隙内,至少两个时隙中的PDCCH在时域上连续,例如在多个时隙中只有两个时隙中的PDCCH在时域上连续,或者多个时隙中每两个时隙中的PDCCH在时域上连续。
需要说明的是,本公开所有实施例中所指的PDCCH在时域上连续,可以包括两种情况,一种情况是PDCCH之间时域上间隔的符号(例如OFDM符号)数量为0,另一种情况是PDCCH之间时域上间隔的符号数量不为0,但是较小,例如小于或等于预设值,预设值可以根据需要设置,例如可以是2、3、4等。
为了满足终端对于覆盖增强的需求,可以在多个时隙内传输PDCCH,那么终端在每个时隙中都可以接收到PDCCH。但是由于终端在每个时隙内PDCCH以外的时段处于微睡眠状态,为了接收PDCCH,需要先唤醒,在接收PDCCH之后,重新进入微睡眠状态,而终端每次唤醒和每次进入微睡眠状态的过程,都存在功率消耗。
图2是根据本公开的实施例示出的一种功率消耗示意图。
例如图2所示,基站在8个时隙中向终端发送PDCCH,每个时隙中都包含PDCCH,PDCCH位于时隙的前端。在每次接收PDCCH之前,终端需要先唤醒,从而产生唤醒的功率消耗,在每次接收PDCCH之后,终端需要进入微睡眠状态,从而产生进入微睡眠的功率消耗。那么基于图2所示的实施例,将至少存在7次唤醒的功率消耗,以及8次进入微睡眠状态的功率消耗,总的功率消耗较大,不易满足终端对于功率节省的要求。
根据本公开的实施例,在多个时隙内向终端发送PDCCH时,通过将其中至少两个时隙中的PDCCH在时域上设置为连续,可以使得终端在接收时域上连续的PDCCH时,仅经历一次唤醒和进入微睡眠的过程,相对于非连续地向终端发送PDCCH,可以有效地降低终端的功率消耗,并且保持在微睡眠状态的时间更长,有利于满足终端节省功率的要求。
在一个实施例中,基站向终端发送的PDCCH可以包括以下图3和图4所示的两种方式,或者称作pattern(图案)。
图3是根据本公开的实施例示出的一种PDCCH示意图。图4是根据本公开的实施例示出的另一种PDCCH示意图。
在一个实施例中,基站在多个时隙中向终端方的PDCCH,可以是所述多个时隙中奇数时隙内的PDCCH位于对应时隙的末端,偶数时隙内的PDCCH位于对应时隙的前端。
例如图3所示,基站在8个时隙中向终端发送PDCCH,每个时隙中都包含PDCCH,在第1、3、5、7时隙内,PDCCH位于时隙的末端,在第2、4、5、6时隙内,PDCCH位于时隙的前端。
那么第1个时隙和第2个时隙中PDCCH时域上连续,第3个时隙和第4个时隙中PDCCH时域上连续,第5个时隙和第6个时隙中PDCCH时域上连续,第7个时隙和第8个时隙中PDCCH时域上连续。
对于时域上连续的两个PDCCH,终端在接收之前可以唤醒,在接收过程中保持唤醒,在接收之后进入微睡眠状态,那么功率消耗如图3所示,存在4次唤醒的功率消耗,以及4次进入微睡眠状态的功率消耗,相对于图2所示的实施例,功率消耗降低,以便满足终端对于功率节省的要求。
在一个实施例中,基站在多个时隙中向终端方的PDCCH,可以是所述多个时隙中奇数时隙内的PDCCH位于对应时隙的前端,偶数时隙内的PDCCH位于对应时隙的末端。
例如图4所示,基站在8个时隙中向终端发送PDCCH,每个时隙中都包含PDCCH,在第1、3、5、7时隙内,PDCCH位于时隙的前端,在第2、4、5、6时隙内,PDCCH位于时隙的末端。
那么第2个时隙和第3个时隙中PDCCH时域上连续,第4个时隙和第5个时隙中PDCCH时域上连续,第6个时隙和第7个时隙中PDCCH时域上连续。
对于时域上连续的两个PDCCH,终端在接收之前可以唤醒,在接收过程中保持唤醒,在接收之后进入微睡眠状态,那么功率消耗如图4所示,存在4次唤醒的功率消耗,以及4次进入微睡眠状态的功率消耗,相对于图2所示的实施例,功率消耗降低,以便满足终端对于功率节省的要求。
在一个实施例中,PDCCH在时隙中时域上可以占用1至3个符号,以PDCCH占用3个符号为例,PDCCH位于时隙的前端,是指PDCCH位于时隙的前3个符号,PDCCH位于时隙的末端,是指PDCCH位于时隙的后3个符号。
可选地,所述多个时隙中的PDCCH对应于同一个传输块。
在一个实施例中,基站在多个时隙中发送的PDCCH可以是针对多个传输块(Transport Block,简称TB)的,也可以是针对同一个传输块的。
以多个时隙中的PDCCH对应同一个传输块为例,在PDCCH中可以携带有下行控制信息(Downlink Control Information,简称DCI),每个PDCCH中的DCI可以是相同的,那么终端可以根据多个时隙内的PDCCH确定对应于同一个传输块的DCI。
可选地,至少两个时隙中的PDCCH在时域上连续包括:
在一个实施例中,至少两个时隙中的PDCCH在时域上连续,可以是所述至少两个时隙中的PDCCH在时域上间隔的符号数量为0。
可选地,至少两个时隙中的PDCCH在时域上连续包括:
在一个实施例中,至少两个时隙中的PDCCH在时域上连续,可以是所述至少两个时隙中的PDCCH在时域上间隔的符号数量大于0且小于或等于预设值。
由于不同时隙中的PDCCH连续,对于终端而言,盲检复杂度会有所提高,例如针对图4所示的实施例,终端在盲检第2个时隙中的PDCCH后,需要立即盲检第3个时隙中的PDCCH,这在终端处理能力较低的情况下,可能难以顺利地在第3个时隙中进行盲检。
通过设置连续的PDCCH在时域上存在较小的间隔,例如间隔的符号的数量大于0且小于或等于预设值,例如间隔的符号的数量为2个、3个等,据此,使得终端可以在一个时隙中盲检后,有较多的时间进行处理,进而在下一个时隙中进行盲检,以便适用于处理能力较低的终端。
图5是根据本公开的实施例示出的又一种PDCCH示意图。
如图5所示,可以对图4所示实施例中的PDCCH进行调整,在连续的PDCCH之间添加间隔,以其中第2个时隙和第3个时隙为例,终端在第2个时隙中盲检到PDCCH后,到在第3个时隙还存在一定间隔,即使处理能力较低,也可以完成处理,进而再在第3个时隙中进行盲检,以便适用于处理能力较低的终端。
需要说明的是,对于这种情况,终端在连续的PDCCH之间的间隔处,仍然保持唤醒状态。
可选地,响应于所述终端的位置固定,所述PDCCH中解调参考信号DMRS(Demodulation Reference Signal)的数量为第一数量,响应于所述终端的位置不固定,所述PDCCH中DMRS的数量为第二数量;
其中,所述第一数量小于所述第二数量。
在一个实施例中,在PDCCH中可以携带DCI以及DMRS,其中,DMRS的作用之一可供终端对抗多普勒频偏,移动速度越快的终端,其多普勒频偏越大,因此需要数量较多的DMRS来对抗多普勒频偏,但是对于移动速度较慢甚至不移动的终端而言,其多普勒频偏越小,数量较少的DMRS即可对抗多普勒频偏。
本实施例可以确定终端的位置是否固定,其中,确定终端的位置是否固定的方式,可以是通过对终端进行定位来确定,或者基于终端上报的信息确定,还可以是其 他可行方式,具体可以根据需要选择,本实施例不作限制。
对于位置固定(stationary)的终端,例如stationary redcap UE,基站发送的PDCCH中的DMRS的数量为第一数量,对于位置不固定的终端,基站发送的PDCCH中的DMRS的数量为第二数量,第一数量可以小于第二数量,也即对于位置固定的终端配置的DMRS数量,相对于为位置不固定的终端配置的DMRS数量可以较少,从而减少PDCCH中携带的DMRS的数量,以便PDCCH中携带更多的DCI和/或编码比特,有利于来提高PDCCH信道解码成功的几率。
图6是根据本公开的实施例示出的一种DMRS示意图。图7是根据本公开的实施例示出的另一种DMRS示意图。
以基站为终端配置的PDCCH在时域上占3个符号,在频域上占12个子载波为例。如图6所示,例如针对位置不固定的终端而言,可以在子载波1、子载波5和子载波9上配置有DMRS,并且在每个符号上都和只有DMRS。如图7所示,例如针对固定的终端而言,可以在子载波1、子载波5和子载波9上配置有DMRS,但是每间隔一个符号设置DMRS。
可见,基于图7所示的实施例,PDCCH中的DMRS更少,相应的,PDCCH中的DCI更多。据此,可以提高PDCCH中DCI和/或编码比特的数量,有利于来提高PDCCH信道解码成功的几率。
图8A至图8E是根据本公开的实施例示出的几种DMRS示意图。
需要说明的是,DMRS在时域和频域的位置并不限于图6和图7所示的情况,可以根据需要进行设置,包括但不限于图8A至图8E中任一示例所示。
图9是根据本公开的实施例示出的一种PDCCH接收方法的示意流程图。本实施例所示的PDCCH接收方法可以适用于终端,所述终端包括但不限于手机、平板电脑、可穿戴设备、传感器、物联网设备等电子设备。所述终端可以作为用户设备与基站通信,所述基站包括但不限于4G基站、5G基站、6G基站。在一个实施例中,所述基站可以是上述任一实施例所述的PDCCH发送方法所适用的基站。
在一个实施例中,所述终端可以是后续任一实施例所述PDCCH接收方法所适用的终端。
在一个实施例中,所述终端reduced capability UE,或者称作NR-lite设备。该类型的终端要求满足低复杂度、低造价、功率节省以及一定程度的覆盖增强。
为了满足该类终端功率节省的要求,可以设置终端在一个时隙内只接收PDCCH,而在该时隙内PDCCH以外的时段则进入微睡眠状态。为了满足其覆盖增强的需求,可以对PDCCH信道进行多次传输,以增加聚合等级并降低码率。
如图9所示,所述PDCCH接收方法可以包括以下步骤:
在步骤S901中,接收基站在多个时隙内发送的PDCCH;
其中,所述多个时隙内至少两个时隙中的PDCCH在时域上连续,在接收时域上连续的两个PDCCH之前,所述终端唤醒,在接收时域上连续的两个PDCCH的过程中所述终端保持唤醒,在接收时域上连续的两个PDCCH之后,所述终端进入微睡眠状态。
根据本公开的实施例,基站可以对在多个时隙内向终端发送的PDCCH进行设置,设置其中至少两个时隙中的PDCCH在时域上设置为连续,从而终端在接收时域上连续的PDCCH时,在接收时域上连续的两个PDCCH之前唤醒,在接收时域上连续的两个PDCCH的过程中保持唤醒,在接收时域上连续的两个PDCCH之后进入微睡眠状态,从而仅经历一次唤醒和进入微睡眠的过程,相对于非连续地向终端发送PDCCH,可以有效地降低终端的功率消耗,并且保持在微睡眠状态的时间更长,有利于满足终端节省功率的要求。
图10是根据本公开的实施例示出的另一种PDCCH接收方法的示意流程图。如图10所示,所述方法还包括:
在步骤S1001中,根据所述多个时隙内的PDCCH确定对应于同一个传输块的下行控制信息DCI。
在一个实施例中,基站在多个时隙中发送的PDCCH可以是针对多个传输块的,也可以是针对同一个传输块的。
以多个时隙中的PDCCH对应同一个传输块为例,在PDCCH中可以携带有下行控制信息,每个PDCCH中的DCI可以是相同的,那么终端可以根据多个时隙内的PDCCH确定对应于同一个传输块的DCI。
可选地,至少两个时隙中的PDCCH在时域上连续包括:
所述至少两个时隙中的PDCCH在时域上间隔的符号数量为0。
在一个实施例中,至少两个时隙中的PDCCH在时域上连续,可以是所述至少 两个时隙中的PDCCH在时域上间隔的符号数量为0。
可选地,至少两个时隙中的PDCCH在时域上连续包括:
所述至少两个时隙中的PDCCH在时域上间隔的符号数量大于0且小于或等于预设值。
在一个实施例中,至少两个时隙中的PDCCH在时域上连续,可以是所述至少两个时隙中的PDCCH在时域上间隔的符号数量大于0且小于或等于预设值。
由于不同时隙中的PDCCH连续,对于终端而言,盲检复杂度会有所提高,例如针对图4所示的实施例,终端在盲检第2个时隙中的PDCCH后,需要立即盲检第3个时隙中的PDCCH,这在终端处理能力较低的情况下,可能难以顺利地在第3个时隙中进行盲检。
由于可以设置连续的PDCCH在时域上存在较小的间隔,例如间隔的符号的数量大于0且小于或等于预设值,例如间隔的符号的数量为2个、3个等,据此,使得终端可以在一个时隙中盲检后,有较多的时间进行处理,进而在下一个时隙中进行盲检,以便适用于处理能力较低的终端。
可选地,响应于所述多个时隙内至少两个时隙中的PDCCH在时域上连续,在单个时隙中盲检PDCCH的次数为第一次数,响应于所述多个时隙内每个时隙中的PDCCH在时域上不连续,在单个时隙中盲检PDCCH的次数为第二次数;
其中,所述第一次数小于所述第二次数。
在一个实施例中,由于不同时隙中的PDCCH连续,对于终端而言,盲检复杂度会有所提高,例如针对图4所示的实施例,终端在盲检第2个时隙中的PDCCH后,需要立即盲检第3个时隙中的PDCCH,这在终端处理能力较低的情况下,可能难以顺利地在第3个时隙中进行盲检。
基站向终端方的PDCCH可以如上述实施例,多个时隙内至少两个时隙中的PDCCH在时域上连续,还可以是多个时隙内每个时隙中的PDCCH在时域上不连续。对于多个时隙内每个时隙中的PDCCH在时域上不连续的情况,盲检复杂度较低,所以针对每个时隙可以设置较多的盲检次数,例如第二次数,而针对多个时隙内至少两个时隙中的PDCCH在时域上连续的情况,盲检复杂度较高,针对每个时隙可以设置较少的盲检次数,例如第一次数,也即第一次数小于第二次数。
据此,可以确保针对多个时隙内至少两个时隙中的PDCCH在时域上连续的情况,终端在时隙中盲检次数较少,以便将更多的能力用于处理连续的PDCCH,有利于适用于处理能力较低的终端。
图11是根据本公开的实施例示出的另一种PDCCH接收方法的示意流程图。如图11所示,所述方法还包括:
在步骤S1101中,根据从时域上连续的两个PDCCH中获取到的解调参考信号DMRS进行联合信道估计。
在一个实施例中,针对两个连续的PDCCH,终端可以从两个PDCCH中分别获取到DCI的DMRS,进而可以基于两个PDCCH中的DMRS进行联合信道估计,有利于提高信道解码的准确度。
可选地,响应于所述终端的位置固定,从所述PDCCH中获取到的DMRS的数量为第一数量,响应于所述终端的位置不固定,从所述PDCCH中获取到的DMRS的数量为第二数量;
其中,所述第一数量小于所述第二数量。
在一个实施例中,在PDCCH中可以携带DCI以及DMRS,其中,DMRS的作用之一可供终端对抗多普勒频偏,移动速度越快的终端,其多普勒频偏越大,因此需要数量较多的DMRS来对抗多普勒频偏,但是对于移动速度较慢甚至不移动的终端而言,其多普勒频偏越小,数量较少的DMRS即可对抗多普勒频偏。
本实施例可以确定终端的位置是否固定,其中,确定终端的位置是否固定的方式,可以是通过对终端进行定位来确定,或者基于终端上报的信息确定,还可以是其他可行方式,具体可以根据需要选择,本实施例不作限制。
对于位置固定的终端,例如stationary redcap UE,基站发送的PDCCH中的DMRS的数量为第一数量,对于位置不固定的终端,基站发送的PDCCH中的DMRS的数量为第二数量,第一数量可以小于第二数量,也即对于位置固定的终端配置的DMRS数量,相对于为位置不固定的终端配置的DMRS数量可以较少,从而减少PDCCH中携带的DMRS的数量,以便PDCCH中携带更多的DCI和/或编码比特,有利于来提高PDCCH信道解码成功的几率。
与前述的PDCCH发送方法和PDCCH接收方法的实施例相对应,本公开还提供了PDCCH发送方法和PDCCH接收装置的实施例。
图12是根据本公开的实施例示出的一种PDCCH发送装置的示意框图。本实施例所示的PDCCH发送装置可以适用于基站,所述基站包括但不限于4G基站、5G基站、6G基站。所述基站可以与作为用户设备的终端进行通信,所述终端包括但不限于手机、平板电脑、可穿戴设备、传感器、物联网设备等电子设备。
如图12所示,所述PDCCH发送装置可以包括:
发送模块1201,被配置为在多个时隙内向终端发送PDCCH;
其中,所述多个时隙内至少两个时隙中的PDCCH在时域上连续。
可选地,所述多个时隙中的PDCCH对应于同一个传输块。
可选地,所述多个时隙中奇数时隙内的PDCCH位于对应时隙的末端,偶数时隙内的PDCCH位于对应时隙的前端;
或者
所述多个时隙中奇数时隙内的PDCCH位于对应时隙的前端,偶数时隙内的PDCCH位于对应时隙的末端。
可选地,至少两个时隙中的PDCCH在时域上连续包括:
所述至少两个时隙中的PDCCH在时域上间隔的符号数量为0。
可选地,至少两个时隙中的PDCCH在时域上连续包括:
所述至少两个时隙中的PDCCH在时域上间隔的符号数量大于0且小于或等于预设值。
可选地,响应于所述终端的位置固定,所述PDCCH中解调参考信号DMRS的数量为第一数量,响应于所述终端的位置不固定,所述PDCCH中DMRS的数量为第二数量;
其中,所述第一数量小于所述第二数量。
图13是根据本公开的实施例示出的一种PDCCH接收装置的示意框图。本实施例所示的PDCCH接收装置可以适用于终端,所述终端包括但不限于手机、平板电脑、可穿戴设备、传感器、物联网设备等电子设备。所述终端可以作为用户设备与基站通信,所述基站包括但不限于4G基站、5G基站、6G基站。在一个实施例中,所述基站可以是上述任一实施例所述的PDCCH发送方法所适用的基站。
如图13所示,所述PDCCH接收装置可以包括:
接收模块1301,被配置为接收基站在多个时隙内发送的PDCCH;
其中,所述多个时隙内至少两个时隙中的PDCCH在时域上连续,在接收时域上连续的两个PDCCH之前,所述终端唤醒,在接收时域上连续的两个PDCCH的过程中所述终端保持唤醒,在接收时域上连续的两个PDCCH之后,所述终端进入微睡眠状态。
图14是根据本公开的实施例示出的另一种PDCCH接收装置的示意框图。如图14所示,所述装置还包括:
DCI确定模块1401,被配置为根据所述多个时隙内的PDCCH确定对应于同一个传输块的下行控制信息DCI。
可选地,至少两个时隙中的PDCCH在时域上连续包括:
所述至少两个时隙中的PDCCH在时域上间隔的符号数量为0。
可选地,至少两个时隙中的PDCCH在时域上连续包括:
所述至少两个时隙中的PDCCH在时域上间隔的符号数量大于0且小于或等于预设值。
可选地,响应于所述多个时隙内至少两个时隙中的PDCCH在时域上连续,在单个时隙中盲检PDCCH的次数为第一次数,响应于所述多个时隙内每个时隙中的PDCCH在时域上不连续,在单个时隙中盲检PDCCH的次数为第二次数;
其中,所述第一次数小于所述第二次数。
图15是根据本公开的实施例示出的又一种PDCCH接收装置的示意框图。如图15所示,所述装置还包括:
信道估计模块1501,被配置为根据从时域上连续的两个PDCCH中获取到的解调参考信号DMRS进行联合信道估计。
可选地,响应于所述终端的位置固定,从所述PDCCH中获取到的DMRS的数量为第一数量,响应于所述终端的位置不固定,从所述PDCCH中获取到的DMRS的数量为第二数量;
其中,所述第一数量小于所述第二数量。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在相关方法的实施例中进行了详细描述,此处将不做详细阐述说明。
对于装置实施例而言,由于其基本对应于方法实施例,所以相关之处参见方法实施例的部分说明即可。以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的模块可以是或者也可以不是物理上分开的,作为模块显示的部件可以是或者也可以不是物理模块,即可以位于一个地方,或者也可以分布到多个网络模块上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
本公开的实施例还提出一种电子设备,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为执行上述任一实施例所述的PDCCH发送方法。
本公开的实施例还提出一种电子设备,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为执行上述任一实施例所述的PDCCH接收方法。
本公开的实施例还提出一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时执行上述任一实施例所述的PDCCH发送方法中的步骤。
本公开的实施例还提出一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时执行上述任一实施例所述的PDCCH接收方法中的步骤。
如图16所示,图16是根据本公开的实施例示出的一种用于PDCCH发送的装置1600的示意框图。装置1600可以被提供为一基站。参照图16,装置1600包括处理组件1622、无线发射/接收组件1624、天线组件1626、以及无线接口特有的信号处理部分,处理组件1622可进一步包括一个或多个处理器。处理组件1622中的其中一个处理器可以被配置为实现上述任一实施例所述的PDCCH发送方法。
图17是根据本公开的实施例示出的一种用于PDCCH接收的装置1700的示意框图。例如,装置1700可以是移动电话,计算机,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图17,装置1700可以包括以下一个或多个组件:处理组件1702,存储器1704,电源组件1706,多媒体组件1708,音频组件1710,输入/输出(I/O)的接口1712,传感器组件1714,以及通信组件1716。
处理组件1702通常控制装置1700的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件1702可以包括一个或多个处理器1720来执行指令,以完成上述的PDCCH接收方法的全部或部分步骤。此外,处理组件1702可以包括一个或多个模块,便于处理组件1702和其他组件之间的交互。例如,处理组件1702可以包括多媒体模块,以方便多媒体组件1708和处理组件1702之间的交互。
存储器1704被配置为存储各种类型的数据以支持在装置1700的操作。这些数据的示例包括用于在装置1700上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器1704可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件1706为装置1700的各种组件提供电力。电源组件1706可以包括电源管理系统,一个或多个电源,及其他与为装置1700生成、管理和分配电力相关联的组件。
多媒体组件1708包括在所述装置1700和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件1708包括一个前置摄像头和/或后置摄像头。当装置1700处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件1710被配置为输出和/或输入音频信号。例如,音频组件1710包括一个麦克风(MIC),当装置1700处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在 存储器1704或经由通信组件1716发送。在一些实施例中,音频组件1710还包括一个扬声器,用于输出音频信号。
I/O接口1712为处理组件1702和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件1714包括一个或多个传感器,用于为装置1700提供各个方面的状态评估。例如,传感器组件1714可以检测到装置1700的打开/关闭状态,组件的相对定位,例如所述组件为装置1700的显示器和小键盘,传感器组件1714还可以检测装置1700或装置1700一个组件的位置改变,用户与装置1700接触的存在或不存在,装置1700方位或加速/减速和装置1700的温度变化。传感器组件1714可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件1714还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件1714还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件1716被配置为便于装置1700和其他设备之间有线或无线方式的通信。装置1700可以接入基于通信标准的无线网络,如WiFi,2G或3G,4G LTE、5G NR或它们的组合。在一个示例性实施例中,通信组件1716经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件1716还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,装置1700可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述PDCCH接收方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器1704,上述指令可由装置1700的处理器1720执行以完成上述PDCCH接收方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
本领域技术人员在考虑说明书及实践这里公开的公开后,将容易想到本公开的其它实施方案。本公开旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上对本公开实施例所提供的方法和装置进行了详细介绍,本文中应用了具体个例对本公开的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本公开的方法及其核心思想;同时,对于本领域的一般技术人员,依据本公开的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本公开的限制。

Claims (19)

  1. 一种物理下行控制信道PDCCH发送方法,其特征在于,适用于基站,所述方法包括:
    在多个时隙内向终端发送PDCCH;
    其中,所述多个时隙内至少两个时隙中的PDCCH在时域上连续。
  2. 根据权利要求1所述的方法,其特征在于,所述多个时隙中的PDCCH对应于同一个传输块。
  3. 根据权利要求1所述的方法,其特征在于,所述多个时隙中奇数时隙内的PDCCH位于对应时隙的末端,偶数时隙内的PDCCH位于对应时隙的前端;
    或者
    所述多个时隙中奇数时隙内的PDCCH位于对应时隙的前端,偶数时隙内的PDCCH位于对应时隙的末端。
  4. 根据权利要求1所述的方法,其特征在于,至少两个时隙中的PDCCH在时域上连续包括:
    所述至少两个时隙中的PDCCH在时域上间隔的符号数量为0。
  5. 根据权利要求1所述的方法,其特征在于,至少两个时隙中的PDCCH在时域上连续包括:
    所述至少两个时隙中的PDCCH在时域上间隔的符号数量大于0且小于或等于预设值。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,响应于所述终端的位置固定,所述PDCCH中解调参考信号DMRS的数量为第一数量,响应于所述终端的位置不固定,所述PDCCH中DMRS的数量为第二数量;
    其中,所述第一数量小于所述第二数量。
  7. 一种物理下行控制信道PDCCH接收方法,其特征在于,适用于终端,所述方法包括:
    接收基站在多个时隙内发送的PDCCH;
    其中,所述多个时隙内至少两个时隙中的PDCCH在时域上连续,在接收时域上连续的两个PDCCH之前,所述终端唤醒,在接收时域上连续的两个PDCCH的过程中所述终端保持唤醒,在接收时域上连续的两个PDCCH之后,所述终端进入微睡眠状态。
  8. 根据权利要求7所述的方法,其特征在于,所述方法还包括:
    根据所述多个时隙内的PDCCH确定对应于同一个传输块的下行控制信息DCI。
  9. 根据权利要求7所述的方法,其特征在于,至少两个时隙中的PDCCH在时域上连续包括:
    所述至少两个时隙中的PDCCH在时域上间隔的符号数量为0。
  10. 根据权利要求7所述的方法,其特征在于,至少两个时隙中的PDCCH在时域上连续包括:
    所述至少两个时隙中的PDCCH在时域上间隔的符号数量大于0且小于或等于预设值。
  11. 根据权利要求7所述的方法,其特征在于,响应于所述多个时隙内至少两个时隙中的PDCCH在时域上连续,在单个时隙中盲检PDCCH的次数为第一次数,响应于所述多个时隙内每个时隙中的PDCCH在时域上不连续,在单个时隙中盲检PDCCH的次数为第二次数;
    其中,所述第一次数小于所述第二次数。
  12. 根据权利要求7至11中任一项所述的方法,其特征在于,所述方法还包括:
    根据从时域上连续的两个PDCCH中获取到的解调参考信号DMRS进行联合信道估计。
  13. 根据权利要求7至11中任一项所述的方法,其特征在于,响应于所述终端的位置固定,从所述PDCCH中获取到的DMRS的数量为第一数量,响应于所述终端的位置不固定,从所述PDCCH中获取到的DMRS的数量为第二数量;
    其中,所述第一数量小于所述第二数量。
  14. 一种物理下行控制信道PDCCH发送装置,其特征在于,适用于基站,所述装置包括:
    发送模块,被配置为在多个时隙内向终端发送PDCCH;
    其中,所述多个时隙内至少两个时隙中的PDCCH在时域上连续。
  15. 一种物理下行控制信道PDCCH接收装置,其特征在于,适用于终端,所述装置包括:
    接收模块,被配置为接收基站在多个时隙内发送的PDCCH;
    其中,所述多个时隙内至少两个时隙中的PDCCH在时域上连续,在接收时域上连续的两个PDCCH之前,所述终端唤醒,在接收时域上连续的两个PDCCH的过程中所述终端保持唤醒,在接收时域上连续的两个PDCCH之后,所述终端进入微睡眠状态。
  16. 一种电子设备,其特征在于,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为执行权利要求1至6中任一项所述的PDCCH发送方法。
  17. 一种电子设备,其特征在于,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为执行权利要求7至13中任一项所述的PDCCH接收方法。
  18. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,该程序被处理器执行时执行权利要求1至6中任一项所述的PDCCH发送方法中的步骤。
  19. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,该程序被处理器执行时执行权利要求7至13中任一项所述的PDCCH接收方法中的步骤。
PCT/CN2020/120984 2020-10-14 2020-10-14 Pdcch发送、pdcch接收方法和装置 WO2022077298A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080002734.7A CN112449760B (zh) 2020-10-14 2020-10-14 Pdcch发送、pdcch接收方法和装置
US18/032,156 US20230397173A1 (en) 2020-10-14 2020-10-14 Pdcch transmission method and apparatus, and pdcch receiving method and apparatus
EP20957078.7A EP4231718A4 (en) 2020-10-14 2020-10-14 PDCCH TRANSMITTING METHOD AND APPARATUS AND PDCCH RECEIVING METHOD AND APPARATUS
PCT/CN2020/120984 WO2022077298A1 (zh) 2020-10-14 2020-10-14 Pdcch发送、pdcch接收方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/120984 WO2022077298A1 (zh) 2020-10-14 2020-10-14 Pdcch发送、pdcch接收方法和装置

Publications (1)

Publication Number Publication Date
WO2022077298A1 true WO2022077298A1 (zh) 2022-04-21

Family

ID=74739458

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/120984 WO2022077298A1 (zh) 2020-10-14 2020-10-14 Pdcch发送、pdcch接收方法和装置

Country Status (4)

Country Link
US (1) US20230397173A1 (zh)
EP (1) EP4231718A4 (zh)
CN (1) CN112449760B (zh)
WO (1) WO2022077298A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023283952A1 (zh) * 2021-07-16 2023-01-19 北京小米移动软件有限公司 信道监听方法及装置、存储介质
WO2023044602A1 (zh) * 2021-09-22 2023-03-30 北京小米移动软件有限公司 监听或发送物理下行控制信道的方法、装置及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107820318A (zh) * 2016-09-10 2018-03-20 北京信威通信技术股份有限公司 一种发送信息的方法及装置
CN110537386A (zh) * 2019-07-25 2019-12-03 北京小米移动软件有限公司 同步广播块的发送方法、接收方法、装置、设备及介质
CN110635877A (zh) * 2018-06-22 2019-12-31 维沃移动通信有限公司 系统消息的传输方法、终端设备和网络设备

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11147051B2 (en) * 2017-02-06 2021-10-12 Apple Inc. Transmission of group common PDCCH (physical downlink control channel) for NR (new radio)
CN109391387B (zh) * 2017-08-03 2022-05-17 维沃移动通信有限公司 解调参考信号传输方法、网络设备及计算机可读存储介质
KR20190076810A (ko) * 2017-12-22 2019-07-02 삼성전자주식회사 무선 셀룰라 통신 시스템에서 dmrs 정보 설정 방법 및 장치
CN110012524B (zh) * 2018-01-05 2022-02-08 维沃移动通信有限公司 时频同步方法、网络设备和终端
EP3651528A4 (en) * 2018-08-03 2020-09-23 LG Electronics Inc. -1- METHOD FOR SENDING AND RECEIVING DOWNLINK DATA CHANNELS IN A WIRELESS COMMUNICATION SYSTEM, AND CORRESPONDING DEVICES
CN110831125B (zh) * 2018-08-10 2021-08-27 华为技术有限公司 发送和接收寻呼消息的方法以及通信装置
WO2020091422A1 (ko) * 2018-11-02 2020-05-07 엘지전자 주식회사 무선 통신 시스템에서 단말에 의해 수행되는 pdcch 모니터링 수행 방법 및 상기 방법을 이용하는 단말
KR20200077895A (ko) * 2018-12-21 2020-07-01 삼성전자주식회사 무선 통신 시스템에서 하향링크 제어 채널 블라인드 디코딩 방법 및 장치
CN113923792A (zh) * 2019-01-08 2022-01-11 北京小米移动软件有限公司 下行数据发送方法、接收方法、装置和存储介质
WO2020211022A1 (zh) * 2019-04-17 2020-10-22 北京小米移动软件有限公司 终端睡眠状态控制方法、装置及计算机可读存储介质
CN111615179B (zh) * 2019-06-17 2021-07-16 维沃移动通信有限公司 Pdcch监听方法和终端

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107820318A (zh) * 2016-09-10 2018-03-20 北京信威通信技术股份有限公司 一种发送信息的方法及装置
CN110635877A (zh) * 2018-06-22 2019-12-31 维沃移动通信有限公司 系统消息的传输方法、终端设备和网络设备
CN110537386A (zh) * 2019-07-25 2019-12-03 北京小米移动软件有限公司 同步广播块的发送方法、接收方法、装置、设备及介质

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP4231718A4 *
TCL: "Preemption Indication Details for eMBB URLLC Multiplexing", 3GPP DRAFT; R1-1708266 - PREEMPTION_INDICATION_DETAILS_FOR_EMBB_URLLC_MULTIPLEXING_TCL, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Hangzhou, China; 20170515 - 20170519, 14 May 2017 (2017-05-14), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051273459 *

Also Published As

Publication number Publication date
CN112449760A (zh) 2021-03-05
US20230397173A1 (en) 2023-12-07
CN112449760B (zh) 2023-10-03
EP4231718A1 (en) 2023-08-23
EP4231718A4 (en) 2023-12-06

Similar Documents

Publication Publication Date Title
US11844136B2 (en) Discontinuous reception (DRX) parameter configuration method and device
CN106604376B (zh) 信道监听控制方法、装置和用户终端
US10031575B2 (en) Method and device for waking up MCU chip
US20210227467A1 (en) Method and device for transmitting wake-up signal, and method and device for paging demodulation
WO2020034074A1 (zh) 唤醒方法、唤醒装置、电子设备和计算机可读存储介质
WO2017028425A1 (zh) 节能模式启动方法和装置
US20230388070A1 (en) Trs/csi-rs configuration method and apparatus
US20210345443A1 (en) Discontinuous reception configuration method and device
CN112037787A (zh) 唤醒控制方法、装置及计算机可读存储介质
US20230292269A1 (en) Method and apparatus for determining offset indication, and method and apparatus for determining offset
CN108781133B (zh) 下行控制信令检测方法、装置及存储介质
WO2022077298A1 (zh) Pdcch发送、pdcch接收方法和装置
US20210314865A1 (en) Wake-up method, wake-up apparatus, electronic device, and computer-readable storage medium
JP2017531270A (ja) Mcuウェイクアップ方法及び装置
WO2020107402A1 (zh) 载波唤醒方法及装置
WO2022151280A1 (zh) 一种通信方法、装置及存储介质
WO2020042178A1 (zh) 载波激活方法、装置、设备、系统及存储介质
WO2019227318A1 (zh) 物理下行控制信道监测配置、监测方法及装置和基站
WO2019028856A1 (zh) 寻呼指示方法及装置
WO2019071462A1 (zh) 数据传输方法及装置
CN112187326A (zh) 天线控制方法、装置、设备及存储介质
US9894596B2 (en) Method and device for controlling access of smart device
US20240064699A1 (en) Paging early indication method and apparatus
WO2023000342A1 (zh) 一种寻呼监测方法、寻呼监测装置及存储介质
WO2022170499A1 (zh) 一种接收下行控制信息的方法、装置、设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20957078

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18032156

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020957078

Country of ref document: EP

Effective date: 20230515