WO2023283952A1 - 信道监听方法及装置、存储介质 - Google Patents

信道监听方法及装置、存储介质 Download PDF

Info

Publication number
WO2023283952A1
WO2023283952A1 PCT/CN2021/106905 CN2021106905W WO2023283952A1 WO 2023283952 A1 WO2023283952 A1 WO 2023283952A1 CN 2021106905 W CN2021106905 W CN 2021106905W WO 2023283952 A1 WO2023283952 A1 WO 2023283952A1
Authority
WO
WIPO (PCT)
Prior art keywords
configuration information
sending
pdcch
terminal
time point
Prior art date
Application number
PCT/CN2021/106905
Other languages
English (en)
French (fr)
Inventor
刘洋
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to CN202180002146.8A priority Critical patent/CN113661742B/zh
Priority to PCT/CN2021/106905 priority patent/WO2023283952A1/zh
Publication of WO2023283952A1 publication Critical patent/WO2023283952A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0203Power saving arrangements in the radio access network or backbone network of wireless communication networks
    • H04W52/0206Power saving arrangements in the radio access network or backbone network of wireless communication networks in access points, e.g. base stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present disclosure relates to the communication field, and in particular, to a channel monitoring method and device, and a storage medium.
  • 3GPP 3rd Generation Partnership Project, 3rd Generation Partnership Project
  • 3rd Generation Partnership Project has conducted a lot of discussions on terminal energy saving. However, currently these discussions are basically focused on terminals, and the energy saving of network-side devices still needs to be further explored.
  • embodiments of the present disclosure provide a channel monitoring method, device, and storage medium, which are applied to 5G (5th Generation Mobile Communication Technology, 5th generation mobile communication technology) NR (New Radio, new air interface)
  • 5G 5th Generation Mobile Communication Technology, 5th generation mobile communication technology
  • NR New Radio, new air interface
  • the scenario can also be applied to future 6G scenarios, which is not limited in this disclosure.
  • the purpose of saving energy consumption of the base station is achieved by discontinuously sending the PDCCH by the base station.
  • a channel monitoring method is provided, the method is performed by a base station, including:
  • the configuration information is used to configure a period of discontinuous transmission of the physical downlink control channel PDCCH;
  • the method also includes:
  • each cycle of discontinuously sending PDCCH includes an active period for sending PDCCH and a sleep period for stopping sending PDCCH; the configuration information is also used to configure the first duration of the active period and the sleep period. The second duration of the period.
  • the method further includes:
  • the determining a sending opportunity for sending the downlink data to the terminal based on the first configuration information includes:
  • the method also includes:
  • a channel monitoring method is provided, the method is executed by a terminal, including:
  • the method also includes:
  • each cycle of discontinuously sending the PDCCH includes an active period for sending the PDCCH and a sleep period for stopping sending the PDCCH;
  • the configuration information is also used to configure the first duration of the activation period and the second duration of the sleep period.
  • the method also includes:
  • the determining the target time point for initiating random access includes:
  • the determining the target time point for initiating random access includes:
  • the target time point is determined within the activation period configured by the first configuration information.
  • the determining to initiate random access at the first time point includes:
  • the determining to initiate random access at the first time point includes:
  • a channel monitoring device including:
  • the sending module is used to broadcast at least one configuration information, and the configuration information is used to configure a cycle duration of the discontinuous transmission physical downlink control channel PDCCH;
  • a processing module configured to determine to enter an energy-saving transmission mode for discontinuous transmission of the PDCCH
  • the sending module is further configured to send first indication information to a terminal in a connected state, where the first indication information is used to activate at least one first configuration information in the configuration information.
  • the processing module is further configured to determine to activate at least one second configuration information in the configuration information
  • the sending module is further configured to send second indication information to the terminal in the connected state, where the second indication information is used to activate the second configuration information.
  • each cycle of discontinuously sending PDCCH includes an active period for sending PDCCH and a sleep period for stopping sending PDCCH; the configuration information is also used to configure the first duration of the active period and the sleep period. The second duration of the period.
  • the device also includes:
  • a receiving module configured to receive downlink data sent by the core network device and corresponding to the terminal in the connected state
  • the processing module is further configured to determine a sending opportunity for sending the downlink data to the terminal in the connected state based on the first configuration information
  • the sending module is further configured to send the downlink data to the terminal in the connected state based on the sending opportunity.
  • the processing module is further configured to determine that the sending opportunity is within the activation period configured in the first configuration information.
  • the processing module is further configured to determine that it is in the sleep period configured by the first configuration information
  • the device also includes:
  • a receiving module configured to receive a random access request message sent by a terminal that is not in a connected state
  • the processing module is further configured to determine that the sleep period is over, and enter the activation period configured by the first configuration information
  • the sending module is further configured to send a random access response message to the terminal that is not in the connected state.
  • a channel monitoring device including:
  • a receiving module configured to receive at least one piece of configuration information broadcast by the base station, where the configuration information is used to configure a period of discontinuous transmission of the physical downlink control channel PDCCH;
  • the receiving module is further configured to receive first indication information sent by the base station, where the first indication information is used to activate at least one first configuration information in the configuration information;
  • a processing module configured to determine that the base station enters an energy-saving transmission mode based on the first indication information
  • the receiving module is further configured to discontinuously monitor the PDCCH based on the first configuration information.
  • the receiving module is also used for:
  • each cycle of discontinuously sending the PDCCH includes an active period for sending the PDCCH and a sleep period for stopping sending the PDCCH;
  • the configuration information is also used to configure the first duration of the activation period and the second duration of the sleep period.
  • the processing module is also used for:
  • the device also includes:
  • a sending module configured to send a random access request message to the base station at the target time point.
  • the processing module is also used for:
  • the processing module is also used for:
  • the target time point is determined within the activation period configured by the first configuration information.
  • the processing module is also used for:
  • the processing module is also used for:
  • a computer-readable storage medium where the storage medium stores a computer program, and the computer program is used to execute the channel monitoring method described in any one of the above-mentioned base stations.
  • a computer-readable storage medium stores a computer program, and the computer program is used to execute the channel monitoring method described in any one of the foregoing terminal side.
  • a communication device including:
  • memory for storing processor-executable instructions
  • the processor is configured to execute any one of the above channel monitoring methods on the base station side.
  • a communication device including:
  • memory for storing processor-executable instructions
  • the processor is configured to execute any one of the above-mentioned channel monitoring methods on the terminal side.
  • the base station may broadcast at least one piece of configuration information first, and the configuration information is used to configure a cycle duration of the discontinuous transmission of the physical downlink control channel PDCCH. Further, after entering the energy-saving transmission mode of discontinuously transmitting the PDCCH, the base station sends the first indication information to the terminal in the connected state, and activates the first configuration information in the at least one configuration information through the first indication information. The terminal may discontinuously monitor the PDCCH based on the first configuration information. In the present disclosure, the base station can send the PDCCH discontinuously, which achieves the purpose of saving energy consumption of the base station.
  • Fig. 1 is a schematic flowchart of a channel monitoring method according to an exemplary embodiment.
  • Fig. 2 is a schematic flowchart of another channel monitoring method according to an exemplary embodiment.
  • Fig. 3 is a schematic diagram showing configuration information according to an exemplary embodiment.
  • Fig. 4 is a schematic flowchart of another channel monitoring method according to an exemplary embodiment.
  • Fig. 5 is a schematic diagram showing a scenario of determining a sending opportunity according to an exemplary embodiment.
  • Fig. 6 is a schematic flowchart of another channel monitoring method according to an exemplary embodiment.
  • Fig. 7A to Fig. 7B are schematic diagrams showing scenarios of discontinuously sending a PDCCH according to an exemplary embodiment.
  • Fig. 8 is a schematic flowchart of another channel monitoring method according to an exemplary embodiment.
  • Fig. 9 is a schematic flowchart of another channel monitoring method according to an exemplary embodiment.
  • Fig. 10 is a schematic flowchart of another channel monitoring method according to an exemplary embodiment.
  • Fig. 11A to Fig. 11B are schematic diagrams showing scenarios of determining a target time point according to an exemplary embodiment.
  • Fig. 12 is a schematic flowchart of another channel monitoring method according to an exemplary embodiment.
  • Fig. 13 is a schematic flowchart of another channel monitoring method according to an exemplary embodiment.
  • Fig. 14 is a schematic flowchart of another channel monitoring method according to an exemplary embodiment.
  • Fig. 15 is a block diagram of a channel monitoring device according to an exemplary embodiment.
  • Fig. 16 is a block diagram of another channel monitoring device according to an exemplary embodiment.
  • Fig. 17 is a schematic structural diagram of a communication device according to an exemplary embodiment of the present disclosure.
  • Fig. 18 is a schematic structural diagram of another communication device according to an exemplary embodiment of the present disclosure.
  • first, second, third, etc. may be used in the present disclosure to describe various information, the information should not be limited to these terms. These terms are only used to distinguish information of the same type from one another. For example, without departing from the scope of the present disclosure, first information may also be called second information, and similarly, second information may also be called first information. Depending on the context, the word “if” as used herein may be interpreted as “at” or “when” or “in response to a determination.”
  • the channel monitoring method provided by the present disclosure will be introduced first from the base station side.
  • FIG. 1 is a flow chart of a channel monitoring method according to an embodiment, which can be used in a base station. The method may include the following steps:
  • step 101 broadcast at least one piece of configuration information.
  • the configuration information is used to configure a period of discontinuous transmission of a PDCCH (Physical Downlink Control Channel, Physical Downlink Control Channel).
  • a PDCCH Physical Downlink Control Channel
  • the period length of the discontinuous transmission of the PDCCH configured by each piece of configuration information may be different.
  • the base station may broadcast a system message including at least one piece of configuration information.
  • step 102 it is determined to enter an energy-saving transmission mode of discontinuously transmitting PDCCH.
  • the base station may determine to enter the energy-saving transmission mode of discontinuously transmitting the PDCCH when the system load is low.
  • the situation of low system load includes but not limited to the situation of low system load and/or low system traffic.
  • step 103 the first indication information is sent to the terminal in the connected state.
  • the first indication information is used to activate the first configuration information in at least one piece of configuration information.
  • the first indication information may be DCI (Downlink Control Information, downlink control information). That is, the base station notifies the terminal of the effective first configuration information through the DCI.
  • the first indication information may include but not limited to paging DCI, DCI based on PEI (Permanent Equipment Identifier, permanent equipment identifier).
  • the base station broadcasts three pieces of configuration information, and the correspondingly configured periods of discontinuous transmission of the PDCCH are t 1 , t 2 and t 3 .
  • the base station activates the first configuration information among the above three configuration information through the first instruction information, that is, the DCI instruction. Assuming that the cycle duration corresponding to the first configuration information is t 3 , the terminal will follow the cycle duration t 3. Monitor the PDCCH discontinuously.
  • the base station may broadcast at least one piece of configuration information first, and the configuration information is used to configure a cycle duration of the discontinuous transmission of the physical downlink control channel PDCCH. Further, after entering the energy-saving transmission mode of discontinuously transmitting the PDCCH, the base station sends the first indication information to the terminal in the connected state, and activates the first configuration information in the at least one configuration information through the first indication information. The terminal may discontinuously monitor the PDCCH based on the first configuration information. In the present disclosure, the base station can send the PDCCH discontinuously, which achieves the purpose of saving energy consumption of the base station.
  • FIG. 2 is a flow chart of a channel monitoring method according to an embodiment, which can be used in a base station, and the method may include the following steps:
  • step 201 broadcast at least one piece of configuration information.
  • the configuration information is used to configure a cycle duration of discontinuously sending the PDCCH.
  • the period length of the discontinuous transmission of the PDCCH configured by each piece of configuration information may be different.
  • the base station may broadcast a system message including at least one piece of configuration information.
  • step 202 it is determined to enter the energy-saving transmission mode of discontinuously transmitting PDCCH.
  • step 203 the first indication information is sent to the terminal in the connected state.
  • the first indication information is used to activate the first configuration information in at least one piece of configuration information.
  • the first indication information may be DCI. That is, the base station notifies the terminal of the effective first configuration information through the DCI.
  • step 204 it is determined to activate at least one second configuration information in the configuration information.
  • the second configuration information may be different from the previously activated first configuration information.
  • step 205 send second indication information to the terminal in the connected state.
  • the second indication information is used to activate the second configuration information.
  • the second indication information may also be DCI, and the second indication information includes but not limited to paging DCI and PEI-based DCI.
  • the number of configuration information broadcast by the base station is two
  • the second indication information may include an indication bit for indicating configuration information change.
  • the base station sets the bit value of the above indication bit as a preset value in the second indication information, so as to inform the terminal to activate the second configuration information different from the first configuration information.
  • the preset value may be "1" or "0", which is not limited in the present disclosure.
  • the second indication information may include an identifier of the second configuration information, and the terminal according to the second configuration information in the second indication information The identifier of the configuration information, and activates the second configuration information.
  • the second indication information may include an indication bit for indicating configuration information change and an identifier of the second configuration information at the same time.
  • the terminal determines that the configuration information is changed based on the indication bit, the terminal activates the second configuration information based on the identifier of the second configuration information.
  • the base station may activate the second configuration information through the second indication information, so that the terminal monitors the PDCCH discontinuously based on the second configuration information. While realizing the purpose of saving the energy consumption of the base station, the period length of the discontinuous PDCCH transmission can be flexibly adjusted according to the system load situation, and the availability is high.
  • each period of discontinuously sending the PDCCH includes an active period for sending the PDCCH and a sleep period for stopping sending the PDCCH.
  • the base station may be in an active (activated) state during the activation period, and may continuously send the PDCCH.
  • the base station may be in a sleep state during the sleep period, and may stop sending the PDCCH.
  • the sleep state of the base station can also refer to the behavior of the base station in the gap between discontinuous transmission of PDCCH, including but not limited to receiving the uplink data sent by the terminal.
  • At least one of data receiving a request message sent by a terminal (for example, receiving a random access request message sent by a terminal that is not in a connected state), and receiving downlink data sent by a core network device corresponding to a terminal in a connected state, etc. .
  • the configuration information may also be used to configure the first duration of the active period and the second duration of the sleep period.
  • the configuration information sent by the base station is used to configure the periodic duration t 1 of the discontinuous PDCCH transmission, the first duration t 11 of the active period, and the second duration t 12 of the sleep period.
  • the configuration information may also be used to configure the first duration of the active period and the second duration of the sleep period, so as to achieve the purpose of non-continuous transmission of the PDCCH by the base station and saving energy consumption of the base station.
  • FIG. 4 is a flow chart of a channel monitoring method according to an embodiment, which can be used in a base station. The method may include the following steps:
  • step 401 broadcast at least one piece of configuration information.
  • the configuration information is used to configure a cycle duration of discontinuously sending the PDCCH.
  • the period length of the discontinuous transmission of the PDCCH configured by each piece of configuration information may be different.
  • the base station may broadcast a system message including at least one piece of configuration information.
  • step 402 it is determined to enter the energy-saving transmission mode of discontinuously transmitting PDCCH.
  • step 403 the first indication information is sent to the terminal in the connected state.
  • the first indication information is used to activate the first configuration information in at least one piece of configuration information.
  • the first indication information may be DCI. That is, the base station notifies the terminal of the effective first configuration information through the DCI.
  • step 404 the downlink data corresponding to the terminal in the connected state sent by the core network device is received.
  • step 405 based on the first configuration information, determine a sending opportunity for sending the downlink data to the terminal in the connected state.
  • the base station may determine the sending opportunity based on the activated first configuration information. In a possible implementation manner, the base station may determine that the sending opportunity is within the activation period configured in the first configuration information.
  • step 406 based on the sending opportunity, the downlink data is sent to the terminal in the connected state.
  • the base station may send downlink data to the terminal based on the sending opportunity in the active period.
  • the base station can determine the timing of sending downlink data to the terminal in the connected state based on the activated first configuration information, so as to achieve a significant power saving effect on the base station side and save energy consumption of the base station.
  • FIG. 6 is a flowchart of a channel monitoring method according to an embodiment, which can be used in a base station. The method may include the following steps:
  • step 601 broadcast at least one piece of configuration information.
  • the configuration information is used to configure a cycle duration of discontinuously sending the PDCCH.
  • the period length of the discontinuous transmission of the PDCCH configured by each piece of configuration information may be different.
  • the base station may broadcast a system message including at least one piece of configuration information.
  • step 602 it is determined to enter the energy-saving transmission mode of discontinuously transmitting PDCCH.
  • step 603 the first indication information is sent to the terminal in the connected state.
  • the first indication information is used to activate the first configuration information in at least one piece of configuration information.
  • the first indication information may be DCI. That is, the base station notifies the terminal of the effective first configuration information through the DCI.
  • step 604 it is determined to be in the sleep period configured by the first configuration information.
  • step 605 a random access request message sent by a terminal not in the connected state is received.
  • the base station is in a sleep period, and at this time receives a random access request message sent by a terminal that is not in a connected state.
  • the random access request message may be Msg1 (Message1, message 1).
  • step 606 it is determined that the sleep period is over, and the activation period configured by the first configuration information is entered.
  • the base station may enter the activation period in advance in order not to affect the service of the terminal.
  • a random access response message is sent to the terminal not in the connected state.
  • the random access response message may be Msg2.
  • the base station when the base station receives a random access request message sent by a terminal that is not in the connected state during the sleep period, it can enter the activation period in advance and send a random access response message to the terminal that is not in the connected state to avoid affecting terminal services. , high availability.
  • FIG. 8 is a flow chart of a channel monitoring method according to an embodiment, which can be used in terminals, including but not limited to mobile phones, notebook computers, desktop Computers, unmanned equipment, large smart meters or water meters, etc., the method may include the following steps:
  • step 801 at least one piece of configuration information broadcast by a base station is received.
  • the configuration information is used to configure a cycle duration of discontinuously sending the PDCCH.
  • the period length of the discontinuous transmission of the PDCCH configured by each piece of configuration information may be different.
  • step 802 first indication information sent by the base station is received.
  • the first indication information is used to activate the first configuration information in at least one piece of configuration information.
  • the first indication information may be DCI, including but not limited to paging DCI and PEI-based DCI.
  • step 803 based on the first indication information, it is determined that the base station enters an energy-saving transmission mode.
  • the terminal determines that the base station enters an energy-saving transmission mode for discontinuously transmitting the PDCCH.
  • step 804 based on the first configuration information, monitor the PDCCH discontinuously.
  • the base station has entered the saving transmission mode, therefore, the terminal does not need to continuously monitor the PDCCH, and may discontinuously monitor the PDCCH based on the first configuration information.
  • the base station can discontinuously send the PDCCH, and the terminal monitors the PDCCH discontinuously based on the activated first configuration information, thereby achieving the purpose of saving energy consumption of the base station.
  • FIG. 9 is a flow chart of a channel monitoring method according to an embodiment, which can be used in a terminal, and the method may include the following steps:
  • step 901 at least one piece of configuration information broadcast by a base station is received.
  • the configuration information is used to configure a cycle duration of discontinuously sending the PDCCH.
  • the period length of the discontinuous transmission of the PDCCH configured by each piece of configuration information may be different.
  • step 902 first indication information sent by the base station is received.
  • the first indication information is used to activate the first configuration information in at least one piece of configuration information.
  • the first indication information may be DCI, including but not limited to paging DCI and PEI-based DCI.
  • step 903 based on the first indication information, it is determined that the base station enters an energy-saving transmission mode.
  • the terminal determines that the base station enters an energy-saving transmission mode for discontinuously transmitting the PDCCH.
  • step 904 based on the first configuration information, monitor the PDCCH discontinuously.
  • the terminal does not need to continuously monitor the PDCCH, and may discontinuously monitor the PDCCH based on the first configuration information.
  • step 905 receive second indication information sent by the base station.
  • the second indication information may be DCI, including but not limited to paging DCI and PEI-based DCI.
  • the second indication information includes an indication bit for indicating configuration information change. In another possible implementation manner, the second indication information includes an identifier of the second configuration information. In another possible implementation manner, the second indication information includes an indication bit for indicating configuration information change and an identifier of the second configuration information at the same time.
  • step 906 based on the second configuration information, monitor the PDCCH discontinuously.
  • the terminal may determine activated second configuration information according to the second indication information, so as to discontinuously monitor the PDCCH based on the second configuration information.
  • the terminal may activate the second configuration information based on the second indication information sent by the base station, so as to change the period of discontinuous monitoring of the PDCCH.
  • each cycle of discontinuously sending the PDCCH includes an active period for sending the PDCCH and a sleep period for stopping sending the PDCCH.
  • FIG. 10 is a flow chart of a channel monitoring method according to an embodiment, which can be used in a terminal. The method may include the following steps:
  • step 1001 at least one piece of configuration information broadcast by a base station is received.
  • the configuration information is used to configure a cycle duration of discontinuously sending the PDCCH.
  • the period length of the discontinuous transmission of the PDCCH configured by each piece of configuration information may be different.
  • step 1002 first indication information sent by the base station is received.
  • the first indication information is used to activate the first configuration information in at least one piece of configuration information.
  • the first indication information may be DCI, including but not limited to paging DCI, or PEI-based DCI.
  • step 1003 based on the first indication information, it is determined that the base station enters an energy-saving transmission mode.
  • step 1004 based on the first configuration information, monitor the PDCCH discontinuously.
  • step 1005 it is determined to initiate random access at the first time point.
  • the first time point is located within the sleep period configured by the first configuration information.
  • the terminal determines to communicate under the cellular network, and in the case of establishing an RRC (Radio Resource Control, radio resource control) connection with the base station at the first time point, determines to Random access is initiated at a point in time.
  • RRC Radio Resource Control, radio resource control
  • the terminal determines to switch from a WLAN (Wireless Local Area Network, wireless local area network) to a cellular network for communication at the first time point, and then the terminal determines to initiate random access at the first time point.
  • a WLAN Wireless Local Area Network, wireless local area network
  • step 1006 a target time point for initiating random access is determined.
  • the terminal belongs to URLLC (Ultra-reliable and Low Latency Communications, high-reliability and low-latency communications) terminal, and accordingly, the terminal service is a low-latency service.
  • URLLC Ultra-reliable and Low Latency Communications, high-reliability and low-latency communications
  • the terminal service is a low-latency service.
  • it may be determined that the URLLC terminal is a terminal that can initiate a random access request at any time.
  • the terminal may also use the first time point as the target time point for initiating random access, refer to Figure 11A shows.
  • the terminal belongs to other types of terminals except the URLLC terminal.
  • the terminal service does not belong to the low-latency service, and it can be determined that the terminal belongs to a terminal that cannot initiate random access at any time.
  • the first time point when the terminal initiates random access is within the sleep period during which the base station discontinuously transmits the PDCCH.
  • the target time point of access is shown in FIG. 11B .
  • step 1007 send a random access request message to the base station at the target time point.
  • the situation that the terminal communicates under the cellular network and the situation that the terminal switches between WLAN and the cellular network are considered at the same time, and the terminal can initiate random access at any time according to its own service type, or during the activation period Initiate a random access request. While saving the energy consumption of the base station, it avoids affecting the terminal business and has high availability.
  • FIG. 12 is a flow chart of a channel monitoring method according to an embodiment. The method may include the following steps:
  • step 1201 the base station broadcasts at least one piece of configuration information.
  • the configuration information is used to configure a cycle duration of the discontinuous transmission of the physical downlink control channel PDCCH.
  • step 1202 the base station determines to enter an energy-saving transmission mode of discontinuously transmitting the PDCCH.
  • step 1203 the base station sends first indication information to the terminal in the connected state.
  • the first indication information is used to activate at least one piece of first configuration information in the configuration information.
  • step 1204 the terminal monitors the PDCCH discontinuously based on the first configuration information.
  • the base station may discontinuously send the PDCCH, and the terminal may monitor the PDCCH discontinuously based on the first configuration information.
  • the purpose of saving energy consumption of the base station is achieved.
  • FIG. 13 is a flow chart of a channel monitoring method according to an embodiment. The method may include the following steps:
  • step 1301 the base station broadcasts at least one piece of configuration information.
  • the configuration information is used to configure a cycle duration of the discontinuous transmission of the physical downlink control channel PDCCH.
  • the base station determines to enter an energy-saving transmission mode of discontinuously transmitting the PDCCH.
  • step 1303 the base station sends first indication information to the terminal in the connected state.
  • the first indication information is used to activate at least one piece of first configuration information in the configuration information.
  • step 1304 the terminal monitors the PDCCH discontinuously based on the first configuration information.
  • step 1305 the base station determines to activate at least one second configuration information in the configuration information.
  • step 1306 the base station sends second indication information to the terminal in the connected state.
  • the second indication information is used to activate the second configuration information.
  • step 1307 the terminal monitors the PDCCH discontinuously based on the second configuration information.
  • the base station can activate the first configuration information through the first indication information, and activate the second configuration information through the second indication information when the configuration information is changed, so that the terminal can discontinuously monitor the PDCCH based on the second configuration information . While realizing the purpose of saving the energy consumption of the base station, the period length of the discontinuous PDCCH transmission can be flexibly adjusted according to the system load situation, and the availability is high.
  • FIG. 14 is a flow chart of a channel monitoring method according to an embodiment. The method may include the following steps:
  • step 1401 the terminal determines to initiate random access at a first time point.
  • the first time point is located within the sleep period configured by the first configuration information activated by the base station.
  • step 1402 the terminal determines a target time point for initiating random access.
  • the terminal may use the first time point as the target time point when the terminal service is a low-latency service. Or, in the case that the terminal service does not belong to the low-latency service, the terminal determines the target time point within the activation period configured in the first configuration information.
  • step 1403 the terminal sends a random access request message to the base station at the target time point.
  • step 1404 the base station sends a random access response message to the terminal.
  • the base station can directly send a random access response message to the terminal; if the base station is in the sleep period configured by the first configuration information, the base station can enter the Activate the period, and send a random access response message to the terminal.
  • the terminal can determine the target time point for initiating random access according to the terminal service, so as to save the energy consumption of the base station and avoid affecting the terminal service, thereby achieving high availability.
  • the present disclosure also provides embodiments of apparatuses for implementing application functions.
  • Fig. 15 is a block diagram of a channel monitoring device according to an exemplary embodiment, including:
  • the sending module 1501 is configured to broadcast at least one piece of configuration information, and the configuration information is used to configure a cycle duration of discontinuously sending the physical downlink control channel PDCCH;
  • a processing module 1502 configured to determine to enter an energy-saving transmission mode for discontinuous transmission of PDCCH
  • the sending module 1501 is further configured to send first indication information to a terminal in a connected state, where the first indication information is used to activate at least one first configuration information in the configuration information.
  • the processing module is further configured to determine to activate at least one second configuration information in the configuration information
  • the sending module is further configured to send second indication information to the terminal in the connected state, where the second indication information is used to activate the second configuration information.
  • each cycle of discontinuously sending PDCCH includes an active period for sending PDCCH, and a sleep period for stopping sending PDCCH; the configuration information is also used to configure the first duration of the active period and the The second duration of the sleep period.
  • the device also includes:
  • a receiving module configured to receive downlink data sent by the core network device and corresponding to the terminal in the connected state
  • the processing module is further configured to determine a sending opportunity for sending the downlink data to the terminal in the connected state based on the first configuration information
  • the sending module is further configured to send the downlink data to the terminal in the connected state based on the sending opportunity.
  • the processing module is further configured to determine that the sending opportunity is within the activation period configured in the first configuration information. In some optional embodiments, the processing module is further configured to determine that it is in the sleep period configured by the first configuration information;
  • the device also includes:
  • a receiving module configured to receive a random access request message sent by a terminal that is not in a connected state
  • the processing module is further configured to determine that the sleep period is over, and enter the activation period configured by the first configuration information
  • the sending module is further configured to send a random access response message to the terminal that is not in the connected state.
  • Fig. 16 is a block diagram of a channel monitoring device according to an exemplary embodiment, including:
  • the receiving module 1601 is configured to receive at least one piece of configuration information broadcast by the base station, where the configuration information is used to configure a period of discontinuous transmission of the physical downlink control channel PDCCH;
  • the receiving module 1601 is further configured to receive first indication information sent by the base station, where the first indication information is used to activate at least one first configuration information in the configuration information;
  • a processing module 1602 configured to determine that the base station enters an energy-saving transmission mode based on the first indication information
  • the receiving module 1601 is further configured to discontinuously monitor the PDCCH based on the first configuration information.
  • the receiving module is also used for:
  • each cycle of discontinuously sending the PDCCH includes an active period for sending the PDCCH and a sleep period for stopping sending the PDCCH;
  • the configuration information is also used to configure the first duration of the activation period and the second duration of the sleep period.
  • the processing module is also used for:
  • the device also includes:
  • a sending module configured to send a random access request message to the base station at the target time point.
  • the processing module is also used for:
  • the processing module is also used for:
  • the target time point is determined within the activation period configured by the first configuration information.
  • the processing module is also used for:
  • the processing module is also used for:
  • the device embodiment since it basically corresponds to the method embodiment, for relevant parts, please refer to the part of the description of the method embodiment.
  • the device embodiments described above are only illustrative, and the above-mentioned units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in a place, or can also be distributed to multiple network elements. Part or all of the modules can be selected according to actual needs to achieve the purpose of the disclosed solution. It can be understood and implemented by those skilled in the art without creative effort.
  • the present disclosure also provides a computer-readable storage medium, where the storage medium stores a computer program, and the computer program is used to execute any one of the above-mentioned channel monitoring methods on the base station side.
  • the present disclosure also provides a computer-readable storage medium, where the storage medium stores a computer program, and the computer program is used to execute any one of the above channel monitoring methods for the terminal side.
  • the present disclosure also provides a communication device, including:
  • memory for storing processor-executable instructions
  • the processor is configured to execute any one of the above channel monitoring methods on the base station side.
  • FIG. 17 is a schematic structural diagram of a communication device 1700 according to an exemplary embodiment.
  • Apparatus 1700 may be provided as a base station.
  • the device 1700 includes a processing component 1722 , a wireless transmitting/receiving component 1724 , an antenna component 1726 , and a signal processing part specific to a wireless interface.
  • the processing component 1722 may further include at least one processor.
  • One of the processors in the processing component 1722 may be configured to execute any one of the channel monitoring methods described above on the base station side.
  • the present disclosure also provides a communication device, including:
  • memory for storing processor-executable instructions
  • the processor is configured to execute any one of the above-mentioned channel monitoring methods on the terminal side.
  • Fig. 18 is a block diagram of a communication device 1800 according to an exemplary embodiment.
  • the communication device 1800 may be a terminal such as a mobile phone, a tablet computer, an e-book reader, a multimedia playback device, a wearable device, a vehicle user device, an ipad, a smart TV, or an unmanned driving device.
  • the communication device 1800 may include one or more of the following components: a processing component 1802, a memory 1804, a power supply component 1806, a multimedia component 1808, an audio component 1810, an input/output (I/O) interface 1812, a sensor component 1816, and communication component 1818.
  • a processing component 1802 a memory 1804, a power supply component 1806, a multimedia component 1808, an audio component 1810, an input/output (I/O) interface 1812, a sensor component 1816, and communication component 1818.
  • the processing component 1802 generally controls the overall operations of the communication device 1800, such as those associated with display, phone calls, data random access, camera operations, and recording operations.
  • the processing component 1802 may include one or more processors 1820 to execute instructions to complete all or part of the steps of the above channel monitoring method.
  • processing component 1802 may include one or more modules that facilitate interaction between processing component 1802 and other components.
  • processing component 1802 may include a multimedia module to facilitate interaction between multimedia component 1808 and processing component 1802 .
  • the processing component 1802 may read executable instructions from the memory, so as to implement the steps of a channel monitoring method provided in the foregoing embodiments.
  • the memory 1804 is configured to store various types of data to support operations at the communication device 1800 . Examples of such data include instructions for any application or method operating on the communication device 1800, contact data, phonebook data, messages, pictures, videos, and the like.
  • the memory 1804 can be implemented by any type of volatile or non-volatile memory device or their combination, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable Programmable Read Only Memory (EPROM), Programmable Read Only Memory (PROM), Read Only Memory (ROM), Magnetic Memory, Flash Memory, Magnetic or Optical Disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EPROM erasable Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Magnetic or Optical Disk Magnetic Disk
  • the power supply component 1806 provides power to various components of the communication device 1800 .
  • Power supply components 1806 may include a power management system, one or more power supplies, and other components associated with generating, managing, and distributing power for communications device 1800 .
  • the multimedia component 1808 includes a display screen that provides an output interface between the communication device 1800 and the user.
  • multimedia component 1808 includes a front camera and/or rear camera.
  • the front camera and/or the rear camera can receive external multimedia data.
  • Each front camera and rear camera can be a fixed optical lens system or have focal length and optical zoom capability.
  • the audio component 1810 is configured to output and/or input audio signals.
  • the audio component 1810 includes a microphone (MIC), which is configured to receive an external audio signal when the communication device 1800 is in an operation mode, such as a call mode, a recording mode, and a voice recognition mode. Received audio signals may be further stored in memory 1804 or sent via communication component 1818 .
  • the audio component 1810 also includes a speaker for outputting audio signals.
  • the I/O interface 1812 provides an interface between the processing component 1802 and a peripheral interface module, which may be a keyboard, a click wheel, a button, and the like. These buttons may include, but are not limited to: a home button, volume buttons, start button, and lock button.
  • Sensor assembly 1816 includes one or more sensors for providing various aspects of status assessment for communication device 1800 .
  • the sensor component 1816 can detect the open/closed state of the communication device 1800, the relative positioning of components, such as the display and keypad of the communication device 1800, the sensor component 1816 can also detect the communication device 1800 or a communication device 1800 Changes in position of components, presence or absence of user contact with communication device 1800 , communication device 1800 orientation or acceleration/deceleration and temperature changes in communication device 1800 .
  • Sensor assembly 1816 may include a proximity sensor configured to detect the presence of nearby objects in the absence of any physical contact.
  • Sensor assembly 1816 may also include optical sensors, such as CMOS or CCD image sensors, for use in imaging applications.
  • the sensor assembly 1816 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor or a temperature sensor.
  • the communication component 1818 is configured to facilitate wired or wireless communication between the communication apparatus 1800 and other devices.
  • the communication device 1800 can access wireless networks based on communication standards, such as Wi-Fi, 2G, 3G, 4G, 5G or 6G, or a combination thereof.
  • the communication component 1818 receives broadcast signals or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communication component 1818 also includes a near field communication (NFC) module to facilitate short-range communication.
  • the NFC module may be implemented based on Radio Frequency Identification (RFID) technology, Infrared Data Association (IrDA) technology, Ultra Wide Band (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID Radio Frequency Identification
  • IrDA Infrared Data Association
  • UWB Ultra Wide Band
  • Bluetooth Bluetooth
  • the communication device 1800 may be implemented by one or more Application Specific Integrated Circuits (ASICs), Digital Signal Processors (DSPs), Digital Signal Processing Devices (DSPDs), Programmable Logic Devices (PLDs), Field Programmable Realized by a programmable gate array (FPGA), a controller, a microcontroller, a microprocessor or other electronic components, and is used to execute any of the above-mentioned channel monitoring methods on the terminal side.
  • ASICs Application Specific Integrated Circuits
  • DSPs Digital Signal Processors
  • DSPDs Digital Signal Processing Devices
  • PLDs Programmable Logic Devices
  • FPGA Field Programmable Realized by a programmable gate array
  • controller a controller
  • microcontroller a microcontroller
  • microprocessor or other electronic components and is used to execute any of the above-mentioned channel monitoring methods on the terminal side.
  • non-transitory machine-readable storage medium including instructions, such as the memory 1804 including instructions, which can be executed by the processor 1820 of the communication device 1800 to implement the above channel monitoring method.
  • the non-transitory computer readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供一种信道监听方法及装置、存储介质,其中,所述信道监听方法包括:广播至少一个配置信息,所述配置信息用于配置非连续发送物理下行控制信道PDCCH的一个周期时长;确定进入非连续发送PDCCH的节能发送模式;向处于连接态的终端发送第一指示信息,所述第一指示信息用于激活至少一个所述配置信息中的第一配置信息。本公开中,基站可以通过非连续发送PDCCH,达到了节省基站能耗的目的。

Description

信道监听方法及装置、存储介质 技术领域
本公开涉及通信领域,尤其涉及信道监听方法及装置、存储介质。
背景技术
3GPP(3rd Generation Partnership Project,第3代合作伙伴计划)已经针对终端节能方面进行了很多讨论。但是,目前这些讨论基本都是针对终端而进行的,关于网络侧设备的节能仍需要进一步挖掘。
发明内容
为克服相关技术中存在的问题,本公开实施例提供一种信道监听方法及装置、存储介质,应用于5G(5th Generation Mobile Communication Technology,第5代移动通信技术)NR(New Radio,新空口)场景中,当然,也可以应用于未来的6G场景,本公开对此不作限定。本公开通过基站非连续发送PDCCH,达到节省基站能耗的目的。
根据本公开实施例的第一方面,提供一种信道监听方法,所述方法由基站执行,包括:
广播至少一个配置信息,所述配置信息用于配置非连续发送物理下行控制信道PDCCH的一个周期时长;
确定进入非连续发送PDCCH的节能发送模式;
向处于连接态的终端发送第一指示信息,所述第一指示信息用于激活至少一个所述配置信息中的第一配置信息。
在一些可选实施例中,所述方法还包括:
确定激活至少一个所述配置信息中的第二配置信息;
向所述处于连接态的终端发送第二指示信息,所述第二指示信息用于激活所述第二配置信息。
在一些可选实施例中,非连续发送PDCCH的每个周期包括发送PDCCH的激活时段和停止发送PDCCH的睡眠时段;所述配置信息还用于配置所述激活时段的第一时长和所述睡眠时段的第二时长。
在一些可选实施例中,所述向处于连接态的终端发送第一指示信息后,所述方法还包括:
接收核心网设备发送的与所述处于连接态的终端对应的下行数据;
基于所述第一配置信息,确定向所述处于连接态的终端发送所述下行数据的发送时机;
基于所述发送时机,向所述处于连接态的终端发送所述下行数据。
在一些可选实施例中,所述基于所述第一配置信息,确定向所述终端发送所述下行数据的发送时机,包括:
确定所述发送时机位于所述第一配置信息所配置的所述激活时段内。
在一些可选实施例中,所述方法还包括:
确定处于所述第一配置信息所配置的所述睡眠时段;
接收未处于连接态的终端发送的随机接入请求消息;
确定所述睡眠时段结束,且进入所述第一配置信息所配置的所述激活时段;
向所述未处于连接态的终端发送随机接入响应消息。
根据本公开实施例的第二方面,提供一种信道监听方法,所述方法由终端执行,包括:
接收基站广播的至少一个配置信息,所述配置信息用于配置非连续发送物理下行控制信道PDCCH的一个周期时长;
接收所述基站发送的第一指示信息,所述第一指示信息用于激活至少一个所述配置信息中的第一配置信息;
基于所述第一指示信息,确定所述基站进入节能发送模式;
基于所述第一配置信息,非连续监听PDCCH。
在一些可选实施例中,所述方法还包括:
接收所述基站发送的第二指示信息,所述第二指示信息用于激活至少一个所述配置信息中的第二配置信息;
基于所述第二配置信息,非连续监听PDCCH。
在一些可选实施例中,非连续发送PDCCH的每个周期包括发送PDCCH的激活时段和停止发送PDCCH的睡眠时段;
所述配置信息还用于配置所述激活时段的第一时长和所述睡眠时段的第二时长。
在一些可选实施例中,所述方法还包括:
确定在第一时间点发起随机接入,所述第一时间点位于所述第一配置信息所配置的所述睡眠时段内;
确定发起随机接入的目标时间点;
在所述目标时间点向所述基站发送随机接入请求消息。
在一些可选实施例中,所述确定发起随机接入的目标时间点,包括:
确定终端业务为低时延业务;
将所述第一时间点确定为所述目标时间点。
在一些可选实施例中,所述确定发起随机接入的目标时间点,包括:
确定终端业务不属于低时延业务;
在所述第一配置信息所配置的所述激活时段内,确定所述目标时间点。
在一些可选实施例中,所述确定在第一时间点发起随机接入,包括:
确定在蜂窝网络下进行通信,且在所述第一时间点与所述基站建立RRC连接;
确定在所述第一时间点发起随机接入。
在一些可选实施例中,所述确定在第一时间点发起随机接入,包括:
确定在所述第一时间点由无线局域网切换到蜂窝网络进行通信;
确定在所述第一时间点发起随机接入。
根据本公开实施例的第三方面,提供一种信道监听装置,包括:
发送模块,用于广播至少一个配置信息,所述配置信息用于配置非连 续发送物理下行控制信道PDCCH的一个周期时长;
处理模块,用于确定进入非连续发送PDCCH的节能发送模式;
所述发送模块,还用于向处于连接态的终端发送第一指示信息,所述第一指示信息用于激活至少一个所述配置信息中的第一配置信息。
在一些可选实施例中,所述处理模块,还用于确定激活至少一个所述配置信息中的第二配置信息;
所述发送模块,还用于向所述处于连接态的终端发送第二指示信息,所述第二指示信息用于激活所述第二配置信息。
在一些可选实施例中,非连续发送PDCCH的每个周期包括发送PDCCH的激活时段和停止发送PDCCH的睡眠时段;所述配置信息还用于配置所述激活时段的第一时长和所述睡眠时段的第二时长。
在一些可选实施例中,所述装置还包括:
接收模块,用于接收核心网设备发送的与所述处于连接态的终端对应的下行数据;
所述处理模块,还用于基于所述第一配置信息,确定向所述处于连接态的终端发送所述下行数据的发送时机;
所述发送模块,还用于基于所述发送时机,向所述处于连接态的终端发送所述下行数据。
在一些可选实施例中,所述处理模块,还用于确定所述发送时机位于所述第一配置信息所配置的所述激活时段内。
在一些可选实施例中,所述处理模块,还用于确定处于所述第一配置信息所配置的所述睡眠时段;
所述装置还包括:
接收模块,用于接收未处于连接态的终端发送的随机接入请求消息;
所述处理模块,还用于确定所述睡眠时段结束,且进入所述第一配置信息所配置的所述激活时段;
所述发送模块,还用于向所述未处于连接态的终端发送随机接入响应 消息。
根据本公开实施例的第四方面,提供一种信道监听装置,包括:
接收模块,用于接收基站广播的至少一个配置信息,所述配置信息用于配置非连续发送物理下行控制信道PDCCH的一个周期时长;
所述接收模块,还用于接收所述基站发送的第一指示信息,所述第一指示信息用于激活至少一个所述配置信息中的第一配置信息;
处理模块,用于基于所述第一指示信息,确定所述基站进入节能发送模式;
所述接收模块,还用于基于所述第一配置信息,非连续监听PDCCH。
在一些可选实施例中,所述接收模块,还用于:
接收所述基站发送的第二指示信息,所述第二指示信息用于激活至少一个所述配置信息中的第二配置信息;
基于所述第二配置信息,非连续监听PDCCH。
在一些可选实施例中,非连续发送PDCCH的每个周期包括发送PDCCH的激活时段和停止发送PDCCH的睡眠时段;
所述配置信息还用于配置所述激活时段的第一时长和所述睡眠时段的第二时长。
在一些可选实施例中,所述处理模块,还用于:
确定在第一时间点发起随机接入,所述第一时间点位于所述第一配置信息所配置的所述睡眠时段内;
确定发起随机接入的目标时间点;
所述装置还包括:
发送模块,用于在所述目标时间点向所述基站发送随机接入请求消息。
在一些可选实施例中,所述处理模块,还用于:
确定终端业务为低时延业务;
将所述第一时间点确定为所述目标时间点。
在一些可选实施例中,所述处理模块,还用于:
确定终端业务不属于低时延业务;
在所述第一配置信息所配置的所述激活时段内,确定所述目标时间点。
在一些可选实施例中,所述处理模块,还用于:
确定在蜂窝网络下进行通信,且在所述第一时间点与所述基站建立RRC连接;
确定在所述第一时间点发起随机接入。
在一些可选实施例中,所述处理模块,还用于:
确定在所述第一时间点由无线局域网切换到蜂窝网络进行通信;
确定在所述第一时间点发起随机接入。
根据本公开实施例的第五方面,提供一种计算机可读存储介质,所述存储介质存储有计算机程序,所述计算机程序用于执行上述基站任一项所述的信道监听方法。
根据本公开实施例的第六方面,提供一种计算机可读存储介质,所述存储介质存储有计算机程序,所述计算机程序用于执行上述终端侧任一项所述的信道监听方法。
根据本公开实施例的第七方面,提供一种通信装置,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为用于执行上述基站侧任一项所述的信道监听方法。
根据本公开实施例的第八方面,提供一种通信装置,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为用于执行上述终端侧任一项所述的信道监听方法。
本公开的实施例提供的技术方案可以包括以下有益效果:
本公开实施例中,基站可以先广播至少一个配置信息,配置信息用于 配置非连续发送物理下行控制信道PDCCH的一个周期时长。进一步地,基站在进入非连续发送PDCCH的节能发送模式后,向处于连接态的终端发送第一指示信息,通过第一指示信息激活至少一个配置信息中的第一配置信息。终端可以基于第一配置信息,非连续监听PDCCH。本公开中,基站可以非连续发送PDCCH,达到了节省基站能耗的目的。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本发明的实施例,并与说明书一起用于解释本发明的原理。
图1是根据一示例性实施例示出的一种信道监听方法流程示意图。
图2是根据一示例性实施例示出的另一种信道监听方法流程示意图。
图3是根据一示例性实施例示出的一种配置信息示意图。
图4是根据一示例性实施例示出的另一种信道监听方法流程示意图。
图5是根据一示例性实施例示出的一种确定发送时机的场景示意图。
图6是根据一示例性实施例示出的另一种信道监听方法流程示意图。
图7A至图7B是根据一示例性实施例示出的非连续发送PDCCH的场景示意图。
图8是根据一示例性实施例示出的另一种信道监听方法流程示意图。
图9是根据一示例性实施例示出的另一种信道监听方法流程示意图。
图10是根据一示例性实施例示出的另一种信道监听方法流程示意图。
图11A至图11B是根据一示例性实施例示出的确定目标时间点的场景示意图。
图12是根据一示例性实施例示出的另一种信道监听方法流程示意图。
图13是根据一示例性实施例示出的另一种信道监听方法流程示意图。
图14是根据一示例性实施例示出的另一种信道监听方法流程示意图。
图15是根据一示例性实施例示出的一种信道监听装置框图。
图16是根据一示例性实施例示出的另一种信道监听装置框图。
图17是本公开根据一示例性实施例示出的一种通信装置的一结构示意图。
图18是本公开根据一示例性实施例示出的另一种通信装置的一结构示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本发明相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本发明的一些方面相一致的装置和方法的例子。
在本公开使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开。在本公开和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含至少一个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
下面先从基站侧介绍一下本公开提供的信道监听方法。
本公开实施例提供了一种信道监听方法,参照图1所示,图1是根据一实施例示出的一种信道监听方法流程图,可以用于基站,该方法可以包 括以下步骤:
在步骤101中,广播至少一个配置信息。
在本公开实施例中,配置信息用于配置非连续发送PDCCH(Physical Downlink Control Channel,物理下行控制信道)的一个周期时长。基站广播多个配置信息的情况下,每个配置信息所配置的非连续发送PDCCH的周期时长可以不同。
在一个可能的实现方式中,基站可以广播包括至少一个配置信息的系统消息。
在步骤102中,确定进入非连续发送PDCCH的节能发送模式。
在一个可能的实现方式中,基站可以在系统低负荷的情况下,确定进入该非连续发送PDCCH的节能发送模式。其中,系统低负荷的情况包括但不限于系统负载较低,和/或系统业务量较少的情况。
在步骤103中,向处于连接态的终端发送第一指示信息。
在本公开实施例中,第一指示信息用于激活至少一个所述配置信息中的第一配置信息。
在一个可能的实现方式中,第一指示信息可以为DCI(Downlink Control Information,下行控制信息)。即基站通过DCI将生效的第一配置信息告知终端。可选地,第一指示信息可以包括但不限于寻呼DCI,基于PEI(Permanent Equipment Identifier,永久设备标识符)的DCI。
例如,基站广播了3个配置信息,对应配置的非连续发送PDCCH的周期时长分别为t 1、t 2和t 3。基站在进入节能发送模式后,通过第一指示信息,即DCI指示激活上述3个配置信息中的第一配置信息,假设第一配置信息对应的周期时长为t 3,则终端会按照周期时长t 3,非连续监听PDCCH。
上述实施例中,基站可以先广播至少一个配置信息,配置信息用于配置非连续发送物理下行控制信道PDCCH的一个周期时长。进一步地,基站在进入非连续发送PDCCH的节能发送模式后,向处于连接态的终端发送第一指示信息,通过第一指示信息激活至少一个配置信息中的第一配置 信息。终端可以基于第一配置信息,非连续监听PDCCH。本公开中,基站可以非连续发送PDCCH,达到了节省基站能耗的目的。
在一些可选实施例中,参照图2所示,图2是根据一实施例示出的一种信道监听方法流程图,可以用于基站,该方法可以包括以下步骤:
在步骤201中,广播至少一个配置信息。
在本公开实施例中,配置信息用于配置非连续发送PDCCH的一个周期时长。基站广播多个配置信息的情况下,每个配置信息所配置的非连续发送PDCCH的周期时长可以不同。
在一个可能的实现方式中,基站可以广播包括至少一个配置信息的系统消息。
在步骤202中,确定进入非连续发送PDCCH的节能发送模式。
在步骤203中,向处于连接态的终端发送第一指示信息。
在本公开实施例中,第一指示信息用于激活至少一个所述配置信息中的第一配置信息。
在一个可能的实现方式中,第一指示信息可以为DCI。即基站通过DCI将生效的第一配置信息告知终端。
在步骤204中,确定激活至少一个所述配置信息中的第二配置信息。
在本公开实施例中,第二配置信息与之前已经激活的第一配置信息可以不同。
在步骤205中,向所述处于连接态的终端发送第二指示信息。在本公开实施例中,所述第二指示信息用于激活所述第二配置信息。
在一个可能的实现方式中,第二指示信息也可以为DCI,第二指示信息包括但不限于寻呼DCI,基于PEI的DCI。
在一个可能的实现方式中,基站广播的配置信息的数目为两个,则第二指示信息可以包括用于指示配置信息变更的指示位。
例如,基站在第二指示信息中将上述指示位的比特值设置为预设值,来告知终端激活不同于第一配置信息的第二配置信息。其中,预设值可以 为“1”或“0”,本公开对此不作限定。
在另一个可能的实现方式中,基站广播的配置信息的数目为三个或三个以上,则所述第二指示信息中可以包括第二配置信息的标识,终端根据第二指示信息中第二配置信息的标识,激活第二配置信息。
在另一个可能的实现方式中,第二指示信息中可以同时包括用于指示配置信息变更的指示位,以及第二配置信息的标识。终端基于该指示位确定配置信息发生变更的情况下,基于第二配置信息的标识,激活第二配置信息。上述实施例中,基站在通过第一指示信息激活第一配置信息后,可以通过第二指示信息激活第二配置信息,以便终端基于第二配置信息,非连续监听PDCCH。在实现了节省基站能耗的目的的同时,可以根据系统负荷情况灵活调整非连续发送PDCCH的周期时长,可用性高。
在一些可选实施例中,非连续发送PDCCH的每个周期包括发送PDCCH的激活时段和停止发送PDCCH的睡眠时段。
其中,基站在激活时段内可以处于active(激活)状态,可以持续发送PDCCH。基站在睡眠时段内可以处于睡眠状态,可以停止发送PDCCH。在本公开实施例中,由于基站的功耗主要是由基站的发射行为造成的,基站处于睡眠状态也可以指基站在不连续发送PDCCH的间隙内的行为,包括但不限于接收终端发送的上行数据、接收终端发送的请求消息(例如接收未处于连接态的终端发送的随机接入请求消息等)、和接收核心网设备发送的与连接态的终端对应的下行数据等行为中的至少一项。
进一步地,配置信息还可以用于配置激活时段的第一时长和所述睡眠时段的第二时长。例如图3所示,基站发送的配置信息用于配置非连续发送PDCCH的周期时长t 1,激活时段的第一时长t 11,睡眠时段的第二时长t 12
上述实施例中,配置信息还可以用于配置激活时段的第一时长和睡眠时段的第二时长,从而实现基站非连续发送PDCCH,节省基站能耗的目的。
在一些可选实施例中,参照图4所示,图4是根据一实施例示出的一种信道监听方法流程图,可以用于基站,该方法可以包括以下步骤:
在步骤401中,广播至少一个配置信息。
在本公开实施例中,配置信息用于配置非连续发送PDCCH的一个周期时长。基站广播多个配置信息的情况下,每个配置信息所配置的非连续发送PDCCH的周期时长可以不同。
在一个可能的实现方式中,基站可以广播包括至少一个配置信息的系统消息。
在步骤402中,确定进入非连续发送PDCCH的节能发送模式。
在步骤403中,向处于连接态的终端发送第一指示信息。
在本公开实施例中,第一指示信息用于激活至少一个所述配置信息中的第一配置信息。
在一个可能的实现方式中,第一指示信息可以为DCI。即基站通过DCI将生效的第一配置信息告知终端。
在步骤404中,接收核心网设备发送的与所述处于连接态的终端对应的下行数据。
在步骤405中,基于所述第一配置信息,确定向所述处于连接态的终端发送所述下行数据的发送时机。
在本公开实施例中,基站可以基于激活的第一配置信息,确定该发送时机。在一个可能的实现方式中,基站可以确定发送时机位于所述第一配置信息所配置的所述激活时段内。
在步骤406中,基于所述发送时机,向所述处于连接态的终端发送所述下行数据。
参照图5所示,基站可以基于激活时段内的发送时机,将下行数据发送给终端。
上述实施例中,基站可以基于激活的第一配置信息,确定向处于连接态的终端发送下行数据的发送时机,在基站侧达到显著的省电效果,节省 了基站能耗。
在一些可选实施例中,参照图6所示,图6是根据一实施例示出的一种信道监听方法流程图,可以用于基站,该方法可以包括以下步骤:
在步骤601中,广播至少一个配置信息。
在本公开实施例中,配置信息用于配置非连续发送PDCCH的一个周期时长。基站广播多个配置信息的情况下,每个配置信息所配置的非连续发送PDCCH的周期时长可以不同。
在一个可能的实现方式中,基站可以广播包括至少一个配置信息的系统消息。
在步骤602中,确定进入非连续发送PDCCH的节能发送模式。
在步骤603中,向处于连接态的终端发送第一指示信息。
在本公开实施例中,第一指示信息用于激活至少一个所述配置信息中的第一配置信息。
在一个可能的实现方式中,第一指示信息可以为DCI。即基站通过DCI将生效的第一配置信息告知终端。
在步骤604中,确定处于所述第一配置信息所配置的所述睡眠时段。
在步骤605中,接收未处于连接态的终端发送的随机接入请求消息。
参照图7A所示,基站处于睡眠时段,此时接收到未处于连接态的终端发送的随机接入请求消息。其中,随机接入请求消息可以为Msg1(Message1,消息1)。
在步骤606中,确定所述睡眠时段结束,且进入所述第一配置信息所配置的所述激活时段。
参照图7B所示,基站在接收到终端发送的随机接入请求消息后,为了不影响终端业务,可以提前进入激活时段。
在步骤607中,向所述未处于连接态的终端发送随机接入响应消息。其中,随机接入响应消息可以为Msg2。
上述实施例中,基站在睡眠时段接收到未处于连接态的终端发送的随 机接入请求消息时,可以提前进入激活时段,向未处于连接态的终端发送随机接入响应消息,避免影响终端业务,可用性高。
下面再从终端侧介绍一下本公开提供的信道监听方法。
本公开实施例提供了一种信道监听方法,参照图8所示,图8是根据一实施例示出的一种信道监听方法流程图,可以用于终端,包括但不限于手机、笔记本电脑、台式电脑、无人驾驶设备、大型智能电表或水表等,该方法可以包括以下步骤:
在步骤801中,接收基站广播的至少一个配置信息。
在本公开实施例中,配置信息用于配置非连续发送PDCCH的一个周期时长。基站广播多个配置信息的情况下,每个配置信息所配置的非连续发送PDCCH的周期时长可以不同。
在步骤802中,接收所述基站发送的第一指示信息。
在本公开实施例中,第一指示信息用于激活至少一个所述配置信息中的第一配置信息。第一指示信息可以为DCI,包括但不限于寻呼DCI,基于PEI的DCI。
在步骤803中,基于所述第一指示信息,确定所述基站进入节能发送模式。
在本公开实施例中,终端基于接收到的第一指示信息,确定基站进入非连续发送PDCCH的节能发送模式。
在步骤804中,基于所述第一配置信息,非连续监听PDCCH。
在本公开实施例中,基站已经进入节省发送模式,因此,终端无需持续监听PDCCH,可以基于第一配置信息,非连续监听PDCCH。
上述实施例中,基站可以非连续发送PDCCH,终端基于激活的第一配置信息,非连续监听PDCCH,实现了节省基站能耗的目的。
在一些可选实施例中,参照图9所示,图9是根据一实施例示出的一种信道监听方法流程图,可以用于终端,该方法可以包括以下步骤:
在步骤901中,接收基站广播的至少一个配置信息。
在本公开实施例中,配置信息用于配置非连续发送PDCCH的一个周期时长。基站广播多个配置信息的情况下,每个配置信息所配置的非连续发送PDCCH的周期时长可以不同。
在步骤902中,接收所述基站发送的第一指示信息。
在本公开实施例中,第一指示信息用于激活至少一个所述配置信息中的第一配置信息。第一指示信息可以为DCI,包括但不限于寻呼DCI,基于PEI的DCI。
在步骤903中,基于所述第一指示信息,确定所述基站进入节能发送模式。
在本公开实施例中,终端基于接收到的第一指示信息,确定基站进入非连续发送PDCCH的节能发送模式。
在步骤904中,基于所述第一配置信息,非连续监听PDCCH。
在本公开实施例中,终端无需持续监听PDCCH,可以基于第一配置信息,非连续监听PDCCH。
在步骤905中,接收所述基站发送的第二指示信息。
在本公开实施例中,第二指示信息可以为DCI,包括但不限于寻呼DCI,基于PEI的DCI。
在一个可能的实现方式中,第二指示信息中包括用于指示配置信息变更的指示位。在另一个可能的实现方式中,第二指示信息中包括第二配置信息的标识。在另一个可能的实现方式中,第二指示信息中同时包括用于指示配置信息变更的指示位,以及第二配置信息的标识。
在步骤906中,基于所述第二配置信息,非连续监听PDCCH。
在本公开实施例中,终端可以根据第二指示信息确定激活的第二配置信息,从而基于第二配置信息,非连续监听PDCCH。
上述实施例中,终端可以基于基站发送的第二指示信息,激活第二配置信息,从而变更非连续监听PDCCH的周期时长。实现简便,可用性高。
在一些可选实施例中,非连续发送PDCCH的每个周期包括发送 PDCCH的激活时段和停止发送PDCCH的睡眠时段。
配置信息还可以用于配置激活时段的第一时长和所述睡眠时段的第二时长。在一些可选实施例中,参照图10所示,图10是根据一实施例示出的一种信道监听方法流程图,可以用于终端,该方法可以包括以下步骤:
在步骤1001中,接收基站广播的至少一个配置信息。
在本公开实施例中,配置信息用于配置非连续发送PDCCH的一个周期时长。基站广播多个配置信息的情况下,每个配置信息所配置的非连续发送PDCCH的周期时长可以不同。
在步骤1002中,接收所述基站发送的第一指示信息。
在本公开实施例中,第一指示信息用于激活至少一个所述配置信息中的第一配置信息。第一指示信息可以为DCI,包括但不限于寻呼DCI,或,基于PEI的DCI。
在步骤1003中,基于所述第一指示信息,确定所述基站进入节能发送模式。
在步骤1004中,基于所述第一配置信息,非连续监听PDCCH。
在步骤1005中,确定在第一时间点发起随机接入。
在本公开实施例中,所述第一时间点位于所述第一配置信息所配置的所述睡眠时段内。
在一个可能的实现方式中,终端确定在蜂窝网络下进行通信,且在所述第一时间点与所述基站建立RRC(Radio Resource Control,无线资源控制)连接的情况下,确定在所述第一时间点发起随机接入。
在另一个可能的实现方式中,终端确定在第一时间点由WLAN(Wireless Local Area Network,无线局域网)切换到蜂窝网络进行通信,那么终端确定在所述第一时间点发起随机接入。
在步骤1006中,确定发起随机接入的目标时间点。
在一个可能的实现方式中,该终端属于URLLC(Ultra-reliable and Low Latency Communications,高可靠和低延迟通信)终端,相应地,终端业务 为低时延业务。为了避免影响终端业务,可以确定该URLLC终端属于可以随时发起随机接入请求的终端。
在本公开实施例中,即使该URLLC终端发起随机接入的第一时间点位于基站非连续发送PDCCH的睡眠时段内,终端也可以将第一时间点作为发起随机接入的目标时间点,参照图11A所示。
在另一个可能的实现方式中,终端属于除了URLLC终端之外其他类型的终端,相应地,终端业务不属于低时延业务,可以确定该终端属于不可随时发起随机接入的终端。
在本公开实施例中,该终端发起随机接入第一时间点位于基站非连续发送PDCCH的睡眠时段内,因此,终端可以在基站非连续发送PDCCH的激活时段内,确定一个时间点作为发起随机接入的目标时间点,参照图11B所示。
在步骤1007中,在所述目标时间点向所述基站发送随机接入请求消息。
上述实施例中,同时考虑了终端在蜂窝网络下进行通信的情况,以及终端在WLAN和蜂窝网络之间切换的情况,且终端可以根据自身的业务类型,随时发起随机接入,或在激活时段内发起随机接入请求。在节省基站能耗的同时,避免影响终端业务,可用性高。
在一些可选实施例中,参照图12所示,图12是根据一实施例示出的一种信道监听方法流程图,该方法可以包括以下步骤:
在步骤1201中,基站广播至少一个配置信息。
在本公开实施例中,所述配置信息用于配置非连续发送物理下行控制信道PDCCH的一个周期时长。
在步骤1202中,基站确定进入非连续发送PDCCH的节能发送模式。
在步骤1203中,基站向处于连接态的终端发送第一指示信息。
在本公开实施例中,所述第一指示信息用于激活至少一个所述配置信息中的第一配置信息。
在步骤1204中,终端基于所述第一配置信息,非连续监听PDCCH。
上述实施例中,基站可以非连续发送PDCCH,终端可以基于第一配置信息,非连续监听PDCCH。达到了节省基站能耗的目的。
在一些可选实施例中,参照图13所示,图13是根据一实施例示出的一种信道监听方法流程图,该方法可以包括以下步骤:
在步骤1301中,基站广播至少一个配置信息。
在本公开实施例中,所述配置信息用于配置非连续发送物理下行控制信道PDCCH的一个周期时长。在步骤1302中,基站确定进入非连续发送PDCCH的节能发送模式。
在步骤1303中,基站向处于连接态的终端发送第一指示信息。
在本公开实施例中,所述第一指示信息用于激活至少一个所述配置信息中的第一配置信息。
在步骤1304中,终端基于所述第一配置信息,非连续监听PDCCH。
在步骤1305中,基站确定激活至少一个所述配置信息中的第二配置信息。
在步骤1306中,基站向所述处于连接态的终端发送第二指示信息。
在本公开实施例中,第二指示信息用于激活所述第二配置信息。
在步骤1307中,终端基于所述第二配置信息,非连续监听PDCCH。
上述实施例中,基站可以通过第一指示信息激活第一配置信息,在配置信息变更的情况下,可以通过第二指示信息激活第二配置信息,以便终端基于第二配置信息,非连续监听PDCCH。在实现了节省基站能耗的目的的同时,可以根据系统负荷情况灵活调整非连续发送PDCCH的周期时长,可用性高。
在一些可选实施例中,参照图14所示,图14是根据一实施例示出的一种信道监听方法流程图,该方法可以包括以下步骤:
在步骤1401中,终端确定在第一时间点发起随机接入。
其中,所述第一时间点位于基站激活的第一配置信息所配置的睡眠时段内。
在步骤1402中,终端确定发起随机接入的目标时间点。
终端可以在终端业务属于低时延业务的情况下,将第一时间点作为目标时间点。或者,终端在终端业务不属于低时延业务的情况下,在第一配置信息所配置的激活时段内确定目标时间点。
在步骤1403中,终端在所述目标时间点向所述基站发送随机接入请求消息。
在步骤1404中,基站向终端发送随机接入响应消息。
在本公开实施例中,如果基站处于第一配置信息所配置的激活时段,基站直接向终端发送随机接入响应消息即可,如果基站处于第一配置信息所配置的睡眠时段,基站可以提前进入激活时段,并向终端发送随机接入响应消息。上述实施例中,终端可以根据终端业务确定发起随机接入的目标时间点,在节省基站能耗的同时,避免影响终端业务,可用性高。
与前述应用功能实现方法实施例相对应,本公开还提供了应用功能实现装置的实施例。
参照图15,图15是根据一示例性实施例示出的一种信道监听装置框图,包括:
发送模块1501,用于广播至少一个配置信息,所述配置信息用于配置非连续发送物理下行控制信道PDCCH的一个周期时长;
处理模块1502,用于确定进入非连续发送PDCCH的节能发送模式;
所述发送模块1501,还用于向处于连接态的终端发送第一指示信息,所述第一指示信息用于激活至少一个所述配置信息中的第一配置信息。
在一些可选实施例中,所述处理模块,还用于确定激活至少一个所述配置信息中的第二配置信息;
所述发送模块,还用于向所述处于连接态的终端发送第二指示信息,所述第二指示信息用于激活所述第二配置信息。在一些可选实施例中,非连续发送PDCCH的每个周期包括发送PDCCH的激活时段,和停止发送PDCCH的睡眠时段;所述配置信息还用于配置所述激活时段的第一时长 和所述睡眠时段的第二时长。在一些可选实施例中,所述装置还包括:
接收模块,用于接收核心网设备发送的与所述处于连接态的终端对应的下行数据;
所述处理模块,还用于基于所述第一配置信息,确定向所述处于连接态的终端发送所述下行数据的发送时机;
所述发送模块,还用于基于所述发送时机,向所述处于连接态的终端发送所述下行数据。
在一些可选实施例中,所述处理模块,还用于确定所述发送时机位于所述第一配置信息所配置的所述激活时段内。在一些可选实施例中,所述处理模块,还用于确定处于所述第一配置信息所配置的所述睡眠时段;
所述装置还包括:
接收模块,用于接收未处于连接态的终端发送的随机接入请求消息;
所述处理模块,还用于确定所述睡眠时段结束,且进入所述第一配置信息所配置的所述激活时段;
所述发送模块,还用于向所述未处于连接态的终端发送随机接入响应消息。
参照图16,图16是根据一示例性实施例示出的一种信道监听装置框图,包括:
接收模块1601,用于接收基站广播的至少一个配置信息,所述配置信息用于配置非连续发送物理下行控制信道PDCCH的一个周期时长;
所述接收模块1601,还用于接收所述基站发送的第一指示信息,所述第一指示信息用于激活至少一个所述配置信息中的第一配置信息;
处理模块1602,用于基于所述第一指示信息,确定所述基站进入节能发送模式;
所述接收模块1601,还用于基于所述第一配置信息,非连续监听PDCCH。
在一些可选实施例中,所述接收模块,还用于:
接收所述基站发送的第二指示信息,所述第二指示信息用于激活至少一个所述配置信息中的第二配置信息;
基于所述第二配置信息,非连续监听PDCCH。
在一些可选实施例中,非连续发送PDCCH的每个周期包括发送PDCCH的激活时段和停止发送PDCCH的睡眠时段;
所述配置信息还用于配置所述激活时段的第一时长和所述睡眠时段的第二时长。
在一些可选实施例中,所述处理模块,还用于:
确定在第一时间点发起随机接入,所述第一时间点位于所述第一配置信息所配置的所述睡眠时段内;
确定发起随机接入的目标时间点;
所述装置还包括:
发送模块,用于在所述目标时间点向所述基站发送随机接入请求消息。
在一些可选实施例中,所述处理模块,还用于:
确定终端业务为低时延业务;
将所述第一时间点确定为所述目标时间点。
在一些可选实施例中,所述处理模块,还用于:
确定终端业务不属于低时延业务;
在所述第一配置信息所配置的所述激活时段内,确定所述目标时间点。
在一些可选实施例中,所述处理模块,还用于:
确定在蜂窝网络下进行通信,且在所述第一时间点与所述基站建立RRC连接;
确定在所述第一时间点发起随机接入。
在一些可选实施例中,所述处理模块,还用于:
确定在所述第一时间点由无线局域网切换到蜂窝网络进行通信;
确定在所述第一时间点发起随机接入。
对于装置实施例而言,由于其基本对应于方法实施例,所以相关之处 参见方法实施例的部分说明即可。以上所描述的装置实施例仅仅是示意性的,其中上述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本公开方案的目的。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
相应地,本公开还提供了一种计算机可读存储介质,所述存储介质存储有计算机程序,所述计算机程序用于执行上述用于基站侧任一所述的信道监听方法。
相应地,本公开还提供了一种计算机可读存储介质,所述存储介质存储有计算机程序,所述计算机程序用于执行上述用于终端侧任一所述的信道监听方法。
相应地,本公开还提供了一种通信装置,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为用于执行上述基站侧任一所述的信道监听方法。
如图17所示,图17是根据一示例性实施例示出的一种通信装置1700的一结构示意图。装置1700可以被提供为基站。参照图17,装置1700包括处理组件1722、无线发射/接收组件1724、天线组件1726、以及无线接口特有的信号处理部分,处理组件1722可进一步包括至少一个处理器。
处理组件1722中的其中一个处理器可以被配置为用于执行上述基站侧任一所述的信道监听方法。
相应地,本公开还提供了一种通信装置,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为用于执行上述终端侧任一所述的信道监听 方法。
图18是根据一示例性实施例示出的一种通信装置1800的框图。例如通信装置1800可以是手机、平板电脑、电子书阅读器、多媒体播放设备、可穿戴设备、车载用户设备、ipad、智能电视、无人驾驶设备等终端。
参照图18,通信装置1800可以包括以下一个或多个组件:处理组件1802,存储器1804,电源组件1806,多媒体组件1808,音频组件1810,输入/输出(I/O)接口1812,传感器组件1816,以及通信组件1818。
处理组件1802通常控制通信装置1800的整体操作,诸如与显示,电话呼叫,数据随机接入,相机操作和记录操作相关联的操作。处理组件1802可以包括一个或多个处理器1820来执行指令,以完成上述的信道监听方法的全部或部分步骤。此外,处理组件1802可以包括一个或多个模块,便于处理组件1802和其他组件之间的交互。例如,处理组件1802可以包括多媒体模块,以方便多媒体组件1808和处理组件1802之间的交互。又如,处理组件1802可以从存储器读取可执行指令,以实现上述各实施例提供的一种信道监听方法的步骤。
存储器1804被配置为存储各种类型的数据以支持在通信装置1800的操作。这些数据的示例包括用于在通信装置1800上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器1804可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件1806为通信装置1800的各种组件提供电力。电源组件1806可以包括电源管理系统,一个或多个电源,及其他与为通信装置1800生成、管理和分配电力相关联的组件。
多媒体组件1808包括在所述通信装置1800和用户之间的提供一个输出接口的显示屏。在一些实施例中,多媒体组件1808包括一个前置摄像头 和/或后置摄像头。当通信装置1800处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件1810被配置为输出和/或输入音频信号。例如,音频组件1810包括一个麦克风(MIC),当通信装置1800处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器1804或经由通信组件1818发送。在一些实施例中,音频组件1810还包括一个扬声器,用于输出音频信号。
I/O接口1812为处理组件1802和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件1816包括一个或多个传感器,用于为通信装置1800提供各个方面的状态评估。例如,传感器组件1816可以检测到通信装置1800的打开/关闭状态,组件的相对定位,例如所述组件为通信装置1800的显示器和小键盘,传感器组件1816还可以检测通信装置1800或通信装置1800一个组件的位置改变,用户与通信装置1800接触的存在或不存在,通信装置1800方位或加速/减速和通信装置1800的温度变化。传感器组件1816可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件1816还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件1816还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件1818被配置为便于通信装置1800和其他设备之间有线或无线方式的通信。通信装置1800可以接入基于通信标准的无线网络,如Wi-Fi,2G,3G,4G,5G或6G,或它们的组合。在一个示例性实施例中,通信组件1818经由广播信道接收来自外部广播管理系统的广播信号或广播相 关信息。在一个示例性实施例中,所述通信组件1818还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,通信装置1800可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述终端侧任一所述的信道监听方法。
在示例性实施例中,还提供了一种包括指令的非临时性机器可读存储介质,例如包括指令的存储器1804,上述指令可由通信装置1800的处理器1820执行以完成上述信道监听方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本公开旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或者惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (32)

  1. 一种信道监听方法,其特征在于,所述方法由基站执行,包括:
    广播至少一个配置信息,所述配置信息用于配置非连续发送物理下行控制信道PDCCH的一个周期时长;
    确定进入非连续发送PDCCH的节能发送模式;
    向处于连接态的终端发送第一指示信息,所述第一指示信息用于激活至少一个所述配置信息中的第一配置信息。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    确定激活至少一个所述配置信息中的第二配置信息;
    向所述处于连接态的终端发送第二指示信息,所述第二指示信息用于激活所述第二配置信息。
  3. 根据权利要求1所述的方法,其特征在于,非连续发送PDCCH的每个周期包括发送PDCCH的激活时段和停止发送PDCCH的睡眠时段;所述配置信息还用于配置所述激活时段的第一时长和所述睡眠时段的第二时长。
  4. 根据权利要求3所述的方法,其特征在于,所述向处于连接态的终端发送第一指示信息后,所述方法还包括:
    接收核心网设备发送的与所述处于连接态的终端对应的下行数据;
    基于所述第一配置信息,确定向所述处于连接态的终端发送所述下行数据的发送时机;
    基于所述发送时机,向所述处于连接态的终端发送所述下行数据。
  5. 根据权利要求4所述的方法,其特征在于,所述基于所述第一配置信息,确定向所述终端发送所述下行数据的发送时机,包括:
    确定所述发送时机位于所述第一配置信息所配置的所述激活时段内。
  6. 根据权利要求3所述的方法,其特征在于,所述方法还包括:
    确定处于所述第一配置信息所配置的所述睡眠时段;
    接收未处于连接态的终端发送的随机接入请求消息;
    确定所述睡眠时段结束,且进入所述第一配置信息所配置的所述激活时段;
    向所述未处于连接态的终端发送随机接入响应消息。
  7. 一种信道监听方法,其特征在于,所述方法由终端执行,包括:
    接收基站广播的至少一个配置信息,所述配置信息用于配置非连续发送物理下行控制信道PDCCH的一个周期时长;
    接收所述基站发送的第一指示信息,所述第一指示信息用于激活至少一个所述配置信息中的第一配置信息;
    基于所述第一指示信息,确定所述基站进入节能发送模式;
    基于所述第一配置信息,非连续监听PDCCH。
  8. 根据权利要求7所述的方法,其特征在于,所述方法还包括:
    接收所述基站发送的第二指示信息,所述第二指示信息用于激活至少一个所述配置信息中的第二配置信息;
    基于所述第二配置信息,非连续监听PDCCH。
  9. 根据权利要求7所述的方法,其特征在于,非连续发送PDCCH的每个周期包括发送PDCCH的激活时段和停止发送PDCCH的睡眠时段;
    所述配置信息还用于配置所述激活时段的第一时长和所述睡眠时段的第二时长。
  10. 根据权利要求9所述的方法,其特征在于,所述方法还包括:
    确定在第一时间点发起随机接入,所述第一时间点位于所述第一配置信息所配置的所述睡眠时段内;
    确定发起随机接入的目标时间点;
    在所述目标时间点向所述基站发送随机接入请求消息。
  11. 根据权利要求10所述的方法,其特征在于,所述确定发起随机接入的目标时间点,包括:
    确定终端业务为低时延业务;
    将所述第一时间点确定为所述目标时间点。
  12. 根据权利要求10所述的方法,其特征在于,所述确定发起随机接入的目标时间点,包括:
    确定终端业务不属于低时延业务;
    在所述第一配置信息所配置的所述激活时段内,确定所述目标时间点。
  13. 根据权利要求10所述的方法,其特征在于,所述确定在第一时间点发起随机接入,包括:
    确定在蜂窝网络下进行通信,且在所述第一时间点与所述基站建立RRC连接;
    确定在所述第一时间点发起随机接入。
  14. 根据权利要求10所述的方法,其特征在于,所述确定在第一时间点发起随机接入,包括:
    确定在所述第一时间点由无线局域网切换到蜂窝网络进行通信;
    确定在所述第一时间点发起随机接入。
  15. 一种信道监听装置,其特征在于,包括:
    发送模块,用于广播至少一个配置信息,所述配置信息用于配置非连续发送物理下行控制信道PDCCH的一个周期时长;
    处理模块,用于确定进入非连续发送PDCCH的节能发送模式;
    所述发送模块,还用于向处于连接态的终端发送第一指示信息,所述第一指示信息用于激活至少一个所述配置信息中的第一配置信息。
  16. 根据权利要求15所述的装置,其特征在于,
    所述处理模块,还用于确定激活至少一个所述配置信息中的第二配置信息;
    所述发送模块,还用于向所述处于连接态的终端发送第二指示信息,所述第二指示信息用于激活所述第二配置信息。
  17. 根据权利要求15所述的装置,其特征在于,非连续发送PDCCH的每个周期包括发送PDCCH的激活时段和停止发送PDCCH的睡眠时段; 所述配置信息还用于配置所述激活时段的第一时长和所述睡眠时段的第二时长。
  18. 根据权利要求17所述的装置,其特征在于,所述装置还包括:
    接收模块,用于接收核心网设备发送的与所述处于连接态的终端对应的下行数据;
    所述处理模块,还用于基于所述第一配置信息,确定向所述处于连接态的终端发送所述下行数据的发送时机;
    所述发送模块,还用于基于所述发送时机,向所述处于连接态的终端发送所述下行数据。
  19. 根据权利要求18所述的装置,其特征在于,
    所述处理模块,还用于确定所述发送时机位于所述第一配置信息所配置的所述激活时段内。
  20. 根据权利要求17所述的装置,其特征在于,
    所述处理模块,还用于确定处于所述第一配置信息所配置的所述睡眠时段;
    所述装置还包括:
    接收模块,用于接收未处于连接态的终端发送的随机接入请求消息;
    所述处理模块,还用于确定所述睡眠时段结束,且进入所述第一配置信息所配置的所述激活时段;
    所述发送模块,还用于向所述未处于连接态的终端发送随机接入响应消息。
  21. 一种信道监听装置,其特征在于,包括:
    接收模块,用于接收基站广播的至少一个配置信息,所述配置信息用于配置非连续发送物理下行控制信道PDCCH的一个周期时长;
    所述接收模块,还用于接收所述基站发送的第一指示信息,所述第一指示信息用于激活至少一个所述配置信息中的第一配置信息;
    处理模块,用于基于所述第一指示信息,确定所述基站进入节能发送 模式;
    所述接收模块,还用于基于所述第一配置信息,非连续监听PDCCH。
  22. 根据权利要求21所述的装置,其特征在于,所述接收模块,还用于:
    接收所述基站发送的第二指示信息,所述第二指示信息用于激活至少一个所述配置信息中的第二配置信息;
    基于所述第二配置信息,非连续监听PDCCH。
  23. 根据权利要求21所述的装置,其特征在于,非连续发送PDCCH的每个周期包括发送PDCCH的激活时段和停止发送PDCCH的睡眠时段;
    所述配置信息还用于配置所述激活时段的第一时长和所述睡眠时段的第二时长。
  24. 根据权利要求23所述的装置,其特征在于,所述处理模块,还用于:
    确定在第一时间点发起随机接入,所述第一时间点位于所述第一配置信息所配置的所述睡眠时段内;
    确定发起随机接入的目标时间点;
    所述装置还包括:
    发送模块,用于在所述目标时间点向所述基站发送随机接入请求消息。
  25. 根据权利要求24所述的装置,其特征在于,所述处理模块,还用于:
    确定终端业务为低时延业务;
    将所述第一时间点确定为所述目标时间点。
  26. 根据权利要求24所述的装置,其特征在于,所述处理模块,还用于:
    确定终端业务不属于低时延业务;
    在所述第一配置信息所配置的所述激活时段内,确定所述目标时间点。
  27. 根据权利要求24所述的装置,其特征在于,所述处理模块,还用 于:
    确定在蜂窝网络下进行通信,且在所述第一时间点与所述基站建立RRC连接;
    确定在所述第一时间点发起随机接入。
  28. 根据权利要求24所述的装置,其特征在于,所述处理模块,还用于:
    确定在所述第一时间点由无线局域网切换到蜂窝网络进行通信;
    确定在所述第一时间点发起随机接入。
  29. 一种计算机可读存储介质,其特征在于,所述存储介质存储有计算机程序,所述计算机程序用于执行上述权利要求1-6任一项所述的信道监听方法。
  30. 一种计算机可读存储介质,其特征在于,所述存储介质存储有计算机程序,所述计算机程序用于执行上述权利要求7-14任一项所述的信道监听方法。
  31. 一种通信装置,其特征在于,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为用于执行上述权利要求1-6任一项所述的信道监听方法。
  32. 一种通信装置,其特征在于,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为用于执行上述权利要求7-14任一项所述的信道监听方法。
PCT/CN2021/106905 2021-07-16 2021-07-16 信道监听方法及装置、存储介质 WO2023283952A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180002146.8A CN113661742B (zh) 2021-07-16 2021-07-16 信道监听方法及装置、存储介质
PCT/CN2021/106905 WO2023283952A1 (zh) 2021-07-16 2021-07-16 信道监听方法及装置、存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/106905 WO2023283952A1 (zh) 2021-07-16 2021-07-16 信道监听方法及装置、存储介质

Publications (1)

Publication Number Publication Date
WO2023283952A1 true WO2023283952A1 (zh) 2023-01-19

Family

ID=78494770

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/106905 WO2023283952A1 (zh) 2021-07-16 2021-07-16 信道监听方法及装置、存储介质

Country Status (2)

Country Link
CN (1) CN113661742B (zh)
WO (1) WO2023283952A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115103461B (zh) * 2022-08-24 2023-01-06 中国信息通信研究院 一种网络非连续发送和接收的方法和设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014121518A1 (en) * 2013-02-08 2014-08-14 Broadcom Corporation Enhanced paging operation for power saving mode
CN104025668A (zh) * 2012-12-27 2014-09-03 华为技术有限公司 传输控制方法、传输方法及设备
CN108184263A (zh) * 2013-06-09 2018-06-19 华为技术有限公司 一种确定ue激活时间的方法及装置
CN112088541A (zh) * 2020-07-16 2020-12-15 北京小米移动软件有限公司 一种寻呼信道监听方法、寻呼信道监听装置及存储介质
CN112399532A (zh) * 2019-08-16 2021-02-23 大唐移动通信设备有限公司 一种节能指示方法及其装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101489291B (zh) * 2003-03-27 2012-08-29 松下电器产业株式会社 间歇通讯方法及间歇通讯装置
CN101030809B (zh) * 2006-02-27 2011-04-13 华为技术有限公司 上行专用物理控制信道的传输方法
US20130258919A1 (en) * 2007-02-05 2013-10-03 Qualcomm Incorporated Flexible dtx and drx in a wireless communication system
JP5092945B2 (ja) * 2008-07-03 2012-12-05 富士通株式会社 基地局及び移動端末並びに方法
CN101742618B (zh) * 2008-11-14 2013-04-24 华为技术有限公司 一种确定非连续发射模式的方法、基站
US20140335858A1 (en) * 2013-05-08 2014-11-13 Electronics & Telecommunications Research Institute Cell search method for supporting discontinuous transmission and/or reception of base station
CN104219740B (zh) * 2013-05-31 2018-06-26 华为技术有限公司 激活状态处理方法及装置
CN104219774A (zh) * 2013-05-31 2014-12-17 华为技术有限公司 随机接入处理方法、基站及用户设备
WO2014205739A1 (zh) * 2013-06-27 2014-12-31 华为技术有限公司 数据接收方法、发送方法及设备
CN112205069B (zh) * 2019-05-08 2023-09-12 华为技术有限公司 一种非连续接收的方法、装置和系统
WO2021120014A1 (zh) * 2019-12-17 2021-06-24 Oppo广东移动通信有限公司 激活时段确认方法及装置
US20230397173A1 (en) * 2020-10-14 2023-12-07 Beijing Xiaomi Mobile Software Co., Ltd. Pdcch transmission method and apparatus, and pdcch receiving method and apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104025668A (zh) * 2012-12-27 2014-09-03 华为技术有限公司 传输控制方法、传输方法及设备
WO2014121518A1 (en) * 2013-02-08 2014-08-14 Broadcom Corporation Enhanced paging operation for power saving mode
CN108184263A (zh) * 2013-06-09 2018-06-19 华为技术有限公司 一种确定ue激活时间的方法及装置
CN112399532A (zh) * 2019-08-16 2021-02-23 大唐移动通信设备有限公司 一种节能指示方法及其装置
CN112088541A (zh) * 2020-07-16 2020-12-15 北京小米移动软件有限公司 一种寻呼信道监听方法、寻呼信道监听装置及存储介质

Also Published As

Publication number Publication date
CN113661742B (zh) 2024-02-13
CN113661742A (zh) 2021-11-16

Similar Documents

Publication Publication Date Title
US20230068554A1 (en) Communication processing method and apparatus, and storage medium
CN109496452B (zh) 省电信号监听方法及装置
US20230098973A1 (en) Direct link data transmission method and apparatus, and storage medium
WO2022178832A1 (zh) 信息传输方法、装置、通信设备和存储介质
US11297675B2 (en) Implementation method, device, user equipment, and base station for discontinuous reception
CN109451842B (zh) 用户设备省电方法、装置、用户设备和基站
WO2022104657A1 (zh) 下行控制信息加扰方法、装置、通信设备和存储介质
WO2021196133A1 (zh) Rrc状态改变的方法、装置、通信设备及存储介质
CN110771222B (zh) 寻呼配置方法、装置、通信设备及存储介质
WO2022126345A1 (zh) Drx配置方法及装置、通信设备和存储介质
JP7247374B2 (ja) モニタリング方法、シグナリング下り送信方法及び装置、通信機器及び記憶媒体
WO2022016530A1 (zh) 省电信号处理方法及装置、通信设备及存储介质
WO2022236507A1 (zh) 信号接收、发送方法、装置、用户设备、基站及存储介质
WO2023044626A1 (zh) 一种初始部分带宽确定方法、装置及存储介质
WO2022151436A1 (zh) 信息配置方法及装置、通信设备和存储介质
CN114128366A (zh) 寻呼参数确定方法、装置、通信设备和存储介质
WO2023283952A1 (zh) 信道监听方法及装置、存储介质
WO2021223226A1 (zh) 控制终端的方法及装置、存储介质
WO2022021033A1 (zh) 信息处理方法、装置、通信设备及存储介质
WO2023184121A1 (zh) 信息传输方法、装置、通信设备和存储介质
WO2023050350A1 (zh) Cfr的确定方法、装置、通信设备及存储介质
WO2022147730A1 (zh) 省电信号的处理方法及装置、通信设备及存储介质
WO2022082459A1 (zh) 通信方法及装置、网络设备、用户设备及存储介质
WO2022104512A1 (zh) 确定寻呼原因的方法及装置、存储介质
WO2022151217A1 (zh) 信息传输方法、装置、通信设备和存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21949735

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE