WO2021120014A1 - 激活时段确认方法及装置 - Google Patents

激活时段确认方法及装置 Download PDF

Info

Publication number
WO2021120014A1
WO2021120014A1 PCT/CN2019/126084 CN2019126084W WO2021120014A1 WO 2021120014 A1 WO2021120014 A1 WO 2021120014A1 CN 2019126084 W CN2019126084 W CN 2019126084W WO 2021120014 A1 WO2021120014 A1 WO 2021120014A1
Authority
WO
WIPO (PCT)
Prior art keywords
drx
terminal device
random access
serving cell
network device
Prior art date
Application number
PCT/CN2019/126084
Other languages
English (en)
French (fr)
Inventor
石聪
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to CN201980101118.4A priority Critical patent/CN114503711B/zh
Priority to PCT/CN2019/126084 priority patent/WO2021120014A1/zh
Publication of WO2021120014A1 publication Critical patent/WO2021120014A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • This application relates to communication technology, and in particular to a method and device for confirming an activation period.
  • Discontinuous Reception means that when there is no data transmission, the receiving circuit of the terminal device can be turned off to reduce power consumption and improve battery life.
  • a Media Access Control (MAC) entity is usually configured with a DRX.
  • the terminal device initiates non-competitive random access to try to obtain the random access response of the network device.
  • the terminal device When receiving the random access response of the network device, it enters the activation period to monitor the physical downlink control channel (PDCCH) on the serving cell corresponding to the DRX.
  • PDCCH physical downlink control channel
  • the embodiments of the present application provide a method and device for confirming an activation period, which can effectively determine the activation period of a terminal device when a MAC entity is configured with two DRXs.
  • an embodiment of the present application provides a method for confirming an activation period, including:
  • the terminal device sends a random access preamble to the network device in the first cell;
  • the terminal device monitors the physical downlink control channel PDCCH in the serving cell corresponding to the first discontinuous reception mechanism DRX group, where the first DRX
  • the serving cell corresponding to the group includes the first cell.
  • an activation period confirmation device including:
  • the sending module is configured to send the random access preamble to the network equipment in the first cell by the terminal equipment according to the instruction information sent by the network equipment;
  • the receiving module is configured to, if the terminal device receives the response information sent by the network device, the terminal device monitors the physical downlink control channel PDCCH in the serving cell corresponding to the first discontinuous reception mechanism DRX group, where: The serving cell corresponding to the first DRX group includes the first cell.
  • an embodiment of the present application provides an activation period confirmation device, which is characterized by comprising: a transceiver, a processor, and a memory;
  • the memory stores computer execution instructions
  • the processor executes the computer-executable instructions stored in the memory, so that the processor executes the activation period confirmation method according to any one of claims 1 to 11.
  • an embodiment of the present application provides a computer-readable storage medium, wherein the computer-readable storage medium stores a computer-executable instruction, and when the computer-executable instruction is executed by a processor, it is used to implement The activation period confirmation method according to any one of claims 1 to 11.
  • the activation period confirmation method includes: a terminal device sends a random access preamble to a network device in a first cell, and if the terminal device receives response information sent by the network device, the terminal device is The serving cell corresponding to the first discontinuous reception mechanism DRX group monitors the physical downlink control channel PDCCH, and the serving cell corresponding to the first DRX group includes the first cell.
  • the terminal device can correspond to In the case of at least two DRX groups, the activation period of the terminal device can be effectively determined.
  • FIG. 1 is a schematic diagram of a communication scenario provided by an embodiment of the application
  • FIG. 2 is a schematic diagram of the DRX cycle provided by an embodiment of the application.
  • Figure 3 is a schematic diagram of a serving cell provided by an embodiment of the application.
  • Figure 4 is a schematic diagram of the 4-step RACH process provided by an embodiment of the application.
  • Fig. 5 is a schematic diagram of a 2-step RACH process provided by an embodiment of the application.
  • FIG. 6 is a schematic flowchart of a method for confirming an activation period according to an embodiment of the application
  • FIG. 7 is a schematic diagram of a serving cell provided by an embodiment of the application.
  • FIG. 8 is a first schematic diagram of an activation period provided by an embodiment of this application.
  • FIG. 9 is a second schematic diagram of the activation period provided by an embodiment of the application.
  • FIG. 10 is a schematic structural diagram of an activation period confirmation device provided by an embodiment of the application.
  • FIG. 11 is a schematic structural diagram of an activation period confirmation device provided by an embodiment of the application.
  • Terminal equipment It is a kind of equipment with wireless transceiver function. Terminal devices can be deployed on land, including indoor or outdoor, handheld, wearable, or vehicle-mounted; they can also be deployed on water (such as ships, etc.); they can also be deployed in the air (such as airplanes, balloons, and satellites).
  • the terminal device may be a mobile phone (mobile phone), a tablet computer (Pad), a computer with wireless transceiver function, virtual reality (VR) terminal equipment, augmented reality (AR) terminal equipment, industrial Wireless terminals in control (industrial control), vehicle-mounted terminal equipment, wireless terminals in self-driving (self-driving), wireless terminal equipment in remote medical (remote medical), wireless terminal equipment in smart grid (smart grid), Wireless terminal equipment in transportation safety, wireless terminal equipment in smart city, wireless terminal equipment in smart home, wearable terminal equipment, etc.
  • VR virtual reality
  • AR augmented reality
  • industrial Wireless terminals in control industrial control
  • vehicle-mounted terminal equipment wireless terminals in self-driving (self-driving)
  • wireless terminal equipment in remote medical remote medical
  • wireless terminal equipment in smart grid smart grid
  • Wireless terminal equipment in transportation safety wireless terminal equipment in smart city, wireless terminal equipment in smart home, wearable terminal equipment, etc.
  • the terminal equipment involved in the embodiments of the present application may also be referred to as a terminal, user equipment (UE), access terminal equipment, vehicle-mounted terminal, industrial control terminal, UE unit, UE station, mobile station, mobile station, remote station , Remote terminal equipment, mobile equipment, UE terminal equipment, wireless communication equipment, UE agent or UE device, etc.
  • the terminal device can also be fixed or mobile.
  • Network equipment It is a device with wireless transceiver function deployed in the air.
  • the network device may have mobile characteristics, that is, the network device may be a mobile device.
  • the network equipment can be a satellite or a balloon station.
  • the satellite may be a low earth orbit (LEO) satellite, a medium earth orbit (MEO) satellite, a geostationary earth orbit (GEO) satellite, or a high elliptical orbit (High Elliptical Orbit, HEO). ) Satellite etc.
  • LEO low earth orbit
  • MEO medium earth orbit
  • GEO geostationary earth orbit
  • HEO high elliptical orbit
  • the orbital altitude range of LEO satellites is usually 500km to 1500km, and the orbital period (period of revolving around the earth) is about 1.5 hours to 2 hours.
  • the signal propagation delay of single-hop communication between users is about 20ms.
  • the single-hop communication delay between users refers to the transmission delay between the terminal device and the network device, or the delay between the network device and the transmission device.
  • the maximum visible time of the satellite is about 20 minutes.
  • the maximum visible time refers to the longest time that the beam of the satellite covers a certain area of the ground.
  • LEO satellites move relative to the ground. As the satellite moves, the ground area covered by it is also Changing.
  • the signal propagation distance of the LEO satellite is short, the link loss is small, and the requirement for the transmission power of the terminal equipment is not high.
  • the orbital height of GEO satellites is usually 35786km, and the orbital period is 24 hours.
  • the signal propagation delay of single-hop communication between users is about 250ms.
  • satellites can use multiple beams to cover the ground. For example, a satellite can form dozens or hundreds of beams to cover the ground, and one beam can cover dozens to hundreds of kilometers in diameter. Ground area.
  • Fig. 1 is a schematic diagram of a communication scenario provided by an embodiment of the application.
  • the network including the network device 101 and the terminal device 102 may also be called a non-terrestrial communication network (Non-Terrestrial Network, NTN), where NTN refers to a communication network between the terminal device and the satellite (also may be called a network device).
  • NTN non-terrestrial communication network
  • the terminal device can monitor the PDCCH non-continuously.
  • the DRX cycle (DRX cycle) can be preset by the network device, and a DRX cycle includes an active period (On Duration) and an inactive period.
  • the terminal device monitors the PDCCH during the active period, and the terminal device does not monitor the PDCCH during the inactive period.
  • the DRX cycle will be described with reference to FIG. 2.
  • Fig. 2 is a schematic diagram of the DRX cycle provided by an embodiment of the application. Refer to Figure 2.
  • the DRX cycle includes an active period and an inactive period.
  • the control entity that implements the DRX function is located in the MAC layer of the protocol stack, that is, the control entity used to implement the DRX function is the MAC entity.
  • each MAC entity corresponds to a DRX configuration.
  • the network device can configure DRX configuration parameters for the terminal device, and the terminal device can monitor the PDCCH non-continuously according to the DRX configuration parameter.
  • the DRX configuration parameters may include one or more of the following parameters:
  • -drx duration timer refers to a period of time during which the terminal device monitors the PDCCH at the beginning of the DRX cycle.
  • the drx duration timer is started when the drx start time offset after the start of a DRX cycle.
  • -drx-Slot Offset refers to the time delay between the time slot in which the drx duration timer is started in a subframe and the start time of the subframe.
  • drx-Inactivity Timer refers to a period of time that the terminal device continues to monitor the PDCCH after receiving the PDCCH indicating the uplink initial transmission scheduling or the downlink initial transmission scheduling.
  • the terminal device If the terminal device receives a PDCCH indicating downlink initial transmission or uplink initial transmission, the terminal starts or restarts the drx inactivation timer.
  • drx-HARQ-RTT-Timer DL refers to downlink HARQ retransmission The shortest time to wait before.
  • a downlink HARQ process corresponds to a downlink drx-HARQ-RTT timer.
  • the terminal device After completing the transmission of the HARQ process feedback for this downlink transmission, start the downlink drx-HARQ-RTT timer corresponding to the HARQ process, and stop the downlink drx retransmission timer corresponding to the HARQ process at the same time.
  • MAC media access control
  • drx-HARQ-RTT-Timer UL refers to the shortest time to wait before uplink HARQ retransmission.
  • An uplink HARQ process corresponds to an uplink drx-HARQ-RTT timer.
  • the terminal device If the terminal device receives a PDCCH indicating uplink transmission, or if the terminal sends a MAC PDU on the configured uplink authorization resource, the terminal starts the uplink drx-HARQ-RTT timer corresponding to the HARQ process after completing this uplink transmission , And stop the uplink drx retransmission timer (drx-Retransmission Timer UL) corresponding to the HARQ process at the same time.
  • drx-Retransmission Timer UL uplink drx-Retransmission Timer
  • drx-Retransmission Timer DL refers to the longest duration before receiving the downlink retransmission.
  • each downlink HARQ process corresponds to a drx downlink retransmission timer.
  • the terminal starts the downlink drx retransmission timer corresponding to this HARQ process.
  • drx-Retransmission Timer UL refers to the longest duration before the uplink retransmission is received.
  • Each uplink HARQ process corresponds to a drx downlink retransmission timer.
  • the terminal If the uplink drx-HARQ-RTT timer corresponding to a certain HARQ of the terminal equipment expires, the terminal starts the uplink drx retransmission timer corresponding to this HARQ process.
  • the long drx cycle and the drx long cycle start time offset define the subframes where the long drx cycle and the short drx cycle start.
  • drx-Short Cycle refers to the short drx cycle, which is an optional configuration.
  • -drx-Short Cycle Timer The duration of the short DRX cycle that the terminal device should follow.
  • timer length or “timer length” referred to in this application has the same meaning and refers to the duration of the timer.
  • “Timer length” and “timer length” can also be used. It is called “time window length of timer”, “time window length of timer”, “duration length of timer” and so on. In other words, after the timer is started, the timer expires after a certain period of time (the period is the length of the timer).
  • the DRX activation period includes the following situations, namely, in the following cases, it is the activation period of the DRX cycle:
  • Case 1 When any one of the following five timers is running, it is the active period of the DRX cycle.
  • the five timers include: drx duration timer, drx inactive timer, and downstream drx retransmission Timer, uplink drx retransmission timer, random access contention resolution timer (Random Access-Contention Resolution Timer).
  • Case 2 The terminal device sends a scheduling request (Scheduling Request, SR) on a physical uplink control channel (PUCCH) and is in a pending state.
  • SR scheduling request
  • PUCCH physical uplink control channel
  • Case 3 In the process of contention-based random access, the terminal has not received a cell radio network temporary identifier (C-RNTI) scrambled PDCCH indication after successfully receiving the random access response Initial transmission.
  • C-RNTI cell radio network temporary identifier
  • the terminal equipment is running during the drx-HARQ-RTT timer (uplink drx-HARQ-RTT timer or downlink drx-HARQ-RTT timer), and the drx-HARQ-RTT timer (uplink drx -During the offset period of the start time of the HARQ-RTT timer or the downlink drx-HARQ-RTT timer, the PDCCH is not monitored. After the timer expires, the terminal starts monitoring the uplink retransmission scheduling or determines whether to start monitoring the downlink retransmission scheduling according to the feedback situation. It should be noted that at the same moment, if any one of the five timers shown in the above case 1 is in the running state, and the drx-HARQ-RTT timer is also in the running state, the terminal device monitors the PDCCH.
  • the selection of the DRX cycle includes a balance between battery saving and delay.
  • the DRX long cycle can effectively extend the battery life of the terminal device; for example, when the terminal device is currently performing web page browsing, when the web page has been downloaded, if the terminal device continues to receive downlink data at this time, it will cause The power consumption of the terminal equipment increases; from another aspect, when there is new data to be transmitted, the short DRX cycle is beneficial to the terminal equipment to respond faster. For example, the terminal equipment currently needs to request another new web page. For each aspect of the demand, DRX long cycle and DRX short cycle are set at the same time.
  • the terminal device may determine the time to start the drx duration timer according to the currently used DRX cycle (DRX short cycle or DRX long cycle).
  • the drx duration timer is started.
  • the DRX cycle currently used by the terminal device is a long cycle
  • the drx duration timer is started at a time after the drx slot offset (drx-SlotOffset) slot at the beginning of the current subframe.
  • 5G NR next generation Radio
  • 5G NR further increases the system bandwidth on the basis of 4G.
  • the maximum bandwidth supported by a single carrier is 100MHz; for frequency bands above 6GHz, the maximum bandwidth supported by a single carrier is 400MHz.
  • 5G NR also supports Carrier Aggregation (CA) technology.
  • CA Carrier Aggregation
  • the terminal device has one primary serving cell (Primary Cell, PCell), and the network device can also configure one or more secondary serving cells (Secondary Cell, SCell) for the terminal device.
  • Primary Cell PCell
  • SCell Secondary Cell
  • the SCell has two states, activated and inactive. Only when the SCell is in the activated state, the terminal device can send and receive data on this SCell. Therefore, the terminal device can simultaneously be in the PCell and one or more activated ones.
  • the SCell monitors the PDCCH, and transmits and receives data, thereby increasing the data transmission rate.
  • FIG. 3 is a schematic diagram of the serving cell provided by an embodiment of this application.
  • the master cell group (Master Cell group, MCG) and the secondary cell group (Secondary Cell group, SCG) are concepts under dual connectivity (DC). It can be understood that the terminal device initiates random access ( The group where the serving cell of RACH (Random Access Channel) is located is the MCG. At the same time, it can be understood that if the dual link is not performed, the current cell group corresponds to the MCG.
  • MCG Master Cell group
  • SCG Secondary Cell group
  • Primary serving cell Primary Cell, PCell
  • secondary serving cell Secondary Cell, SCell
  • Primary and secondary serving cell Primary and secondary serving cell
  • PCell Under MCG, there may be many serving cells, one of which is used to initiate initial access to network equipment. This cell is called PCell, that is, PCell is the most "main" cell in MCG. , PCell under MCG and SCell under MCG are united through CA technology.
  • PSCell main cell under SCG
  • SCell main cell under SCG
  • CA technology a main cell under SCG
  • each MAC entity corresponds to a DRX configuration.
  • a DRX (Connected DRX, CDRX) enhanced method that is, a solution in which two DRX groups can be configured for one MAC entity, where one DRX group corresponds to one DRX configuration.
  • the network device can configure a drx-Inactivity Timer and drx-on Duration Timer for them. That is, the network device configures drx-InactivityTimer and drx-onDurationTimer for the two DRX groups respectively, and the remaining DRX configuration parameters are common configuration parameters of the two DRX groups.
  • serving cells corresponding to different DRX groups cannot be scheduled with each other.
  • a terminal device Under the current mechanism of a MAC entity corresponding to a DRX configuration, if a terminal device initiates a non-competitive random access on a serving cell, then it blindly checks the wireless network temporary on the SpCell (MCG PCell or SCG PSCell) Identifier (random access radio network temporary identifier, RA-RNTI). After successfully receiving the random access response sent by the network device, the terminal device can enter the Active Time (Active Time). At this time, the terminal device The PDCCH is monitored on the cell to receive data scheduling from the network side.
  • MCG PCell or SCG PSCell wireless network temporary on the SpCell
  • SCG PSCell wireless network temporary Identifier
  • RA-RNTI random access radio network temporary identifier
  • the embodiment of the present application provides a method for confirming the activation period, so that when a MAC entity is configured with 2 DRX groups, when a random access response from a network device is received, the terminal can be effectively determined
  • the active time of the device (Active Time).
  • the network device may generate a RACH configuration (also referred to as a random access configuration), and the terminal device may access the network device through a random access process according to the RACH configuration generated by the network device.
  • a RACH configuration also referred to as a random access configuration
  • the random access configuration includes the following information:
  • Frequency domain resource configuration or indication information indicating frequency domain resource configuration
  • Random access preamble configuration or indication information indicating random access preamble configuration.
  • Frequency domain resource configuration may also be referred to as RACH frequency domain resource configuration.
  • the frequency domain resource configuration can be used to indicate RACH frequency domain resources.
  • the frequency domain resource configuration may include the RACH starting frequency domain resource index, and the number of RACH resources that can be frequency-division multiplexed at the same time (ie the number of consecutive RACH frequency domain resources), and the frequency domain resource configuration indicates The RACH frequency domain resource is a continuous frequency domain resource.
  • Time domain resource configuration may also be referred to as RACH time domain resource configuration.
  • the time domain resource configuration can be used to indicate RACH time domain resources.
  • one RACH configuration index can be used to indicate the time domain resource configuration, and the RACH resource repetition period can be learned through the RACH configuration index, the number of ROs included in one RACH resource repetition period, and the duration of each RO.
  • RO corresponds to time domain resources, for example, one RACH time domain resource corresponds to one RO.
  • the random access preamble configuration may include a preamble root sequence. In this way, after the terminal device receives the preamble root sequence, the terminal device can cyclically shift the preamble root sequence to obtain a preamble group, and the preamble group includes at least one preamble.
  • the random access preamble configuration may also include a preamble group, and the preamble group includes at least one preamble.
  • the terminal device can initiate random access in a variety of possible scenarios.
  • the multiple possible scenarios can include at least one of the following scenarios: (1) The state of the terminal device is controlled from the radio resource ( Radio resource control, RRC) After the idle state is switched to the RRC connected state, the terminal device initiates random access during the process of establishing a wireless link with the network device. (2) After the wireless link between the terminal device and the network device fails, the terminal device and the network device initiate random access when the RRC connection is re-established. (3) When a terminal device needs to establish uplink synchronization with a new cell, it initiates random access.
  • RRC Radio resource control
  • Random access is initiated when the terminal device is in the RRC connected state but has not yet been configured with dedicated resources for sending scheduling requests on the physical uplink control channel (PUCCH).
  • PUCCH physical uplink control channel
  • Random access is initiated when the scheduling request fails.
  • Random access is initiated when RRC requests during synchronous reconfiguration.
  • random access is initiated.
  • Random access is initiated when time alignment is established when adding a second cell.
  • Random access is initiated when requesting other system information except for the master information block (MIB) and system information block (SIB). (11) Random access is initiated when the beam fails to recover.
  • MIB master information block
  • SIB system information block
  • random access can include four-step random access (also referred to as four-step random access channel, or simply referred to as 4-step RACH, contention random access) and two-step random access (also referred to as It is a two-step random access channel, or can also be referred to as 2-step RACH, non-competition random access for short), and the random access involved in the embodiment of this application is mainly two-step random access.
  • 4-step RACH also referred to as four-step random access channel, or simply referred to as 4-step RACH, contention random access
  • 2-step RACH non-competition random access for short
  • Fig. 4 is a schematic flow chart of 4-step RACH provided by an embodiment of the application.
  • the 4-step RACH has been defined in detail in the existing protocol TS38.300, and this application only briefly describes it. Referring to Figure 4, the method may include:
  • S401 The terminal device sends Msg1 to the network device.
  • Msg1 can also be called msg1 or MSG1.
  • Msg1 is used to transmit a random access preamble, and the random access preamble may also be referred to as a random access preamble sequence, or preamble, or preamble sequence.
  • the preamble and the time-frequency resources occupied by the preamble transmission are referred to as physical random access channel (PRACH) resources.
  • PRACH physical random access channel
  • the terminal device can select a PRACH resource, select a preamble, and send the selected preamble on the selected PRACH resource. If the random access method is based on non-contention random access, the base station can specify the PRACH resource and preamble, and the base station can estimate the timing advance (TA) based on the preamble sent by the terminal device, and the terminal device transmits Msg3. The required uplink grant size.
  • TA timing advance
  • a network device can broadcast available PRACH resources through system information.
  • the network device sends Msg2 to the terminal device.
  • Msg2 can also be called msg2 or MSG2.
  • Msg2 contains the time-frequency resource that the network device determines to the terminal device to send the payload (payload).
  • the terminal device After the terminal device sends Msg1, it can open a random access response time window (ra-Response Window), and monitor the random access radio network temporary identifier (RA-RNTI) within the random access response time window. ) Scrambled physical downlink control channel (physical downlink control channel, PDCCH).
  • ra-Response Window a random access response time window
  • RA-RNTI random access radio network temporary identifier
  • PDCCH Physical downlink control channel
  • the RA-RNTI is related to the PRACH time-frequency resources used by the terminal equipment to send Msg1.
  • RAR random access response
  • the subheader of the RAR contains a back-off indicator (BI), which is used to indicate the back-off time for retransmitting Msg1.
  • BI back-off indicator
  • RAPID in RAR the preamble index received by the network in response.
  • the payload of the RAR includes a timing advance group (TAG), which is used to adjust uplink timing.
  • TAG timing advance group
  • Uplink (UL) grant an uplink resource indication for scheduling Msg3.
  • C-RNTI Temporary cell radio network temporary identifier
  • the terminal If the terminal receives the PDCCH scrambled by the RAR-RNTI, and the RAR contains the preamble index sent by itself, the terminal considers that it has successfully received the random access response.
  • S403 The terminal device sends Msg3 to the network device.
  • Msg3 can also be called msg3, or MSG3.
  • Msg3 is the first scheduled transmission in the random access process, and the payload is sent, for example, an RRC connection request message, a tracking area update message, and so on.
  • Msg3 can notify the network device of what event triggered the RACH process. For example, if it is an initial access random process, the UE ID and establishment cause will be carried in Msg3; if it is RRC reestablishment, it will carry the connected UE identifier and establishment cause.
  • S404 The network device sends Msg4 to the terminal device.
  • Msg4 can also be called msg4, or MSG4.
  • Msg4 is used to indicate whether the terminal device successfully accesses the network device.
  • Msg4 can have the following two functions: one is to resolve competition conflicts. The other is that the network device transmits the RRC configuration message to the terminal device. There are two ways to resolve the contention conflict: one is that if the terminal device carries the C-RNTI in the Msg3, the Msg4 uses the PDCCH scrambled by the C-RNTI for scheduling. The other is that if the terminal device does not carry C-RNTI in Msg3, such as initial access, Msg4 uses TC-RNTI scrambled PDCCH scheduling. The conflict resolution is that the terminal device receives the PDSCH of Msg4 and matches the PDSCH in the PDSCH.
  • Common control channel common control channel, CCCH
  • SDU service data unit
  • Fig. 5 is a schematic diagram of a 2-step RACH process provided by an embodiment of the application. Referring to Figure 5, the method may include:
  • S501 The terminal device sends an MsgA to the network device.
  • MsgA can also be called msgA, or MSGA.
  • msgA includes preamble and payload (for example, RRC connection request message, tracking area update message, etc.).
  • the network device sends the msgB to the terminal device.
  • msgB can also be called MsgB, or MSGB, and is used to indicate whether the terminal device has successfully accessed the network device.
  • the main purpose of random access is to obtain uplink synchronization between terminal equipment and network equipment (cell).
  • the terminal device that receives the RAR can directly transmit Msg3, it does not need to monitor the PDCCH, and it does not need to consider whether the terminal device enters the activation period.
  • the network device After the terminal device receives the RAR, the network device also needs to schedule downlink data for the terminal device, so the terminal device needs to enter the active period to monitor the PDCCH.
  • FIG. 6 is a schematic flowchart of a method for confirming an activation period provided by an embodiment of the application. Referring to Figure 6, the method may include:
  • the terminal device sends a random access preamble to the network device in the first cell.
  • the terminal device receives the instruction information sent by the network device.
  • the instruction information may be, for example, PDCCH order.
  • the terminal device initiates random access to the network device in the first cell according to the instruction information sent by the network device.
  • the terminal device specifically performs non-contention random access.
  • the terminal device can send a random access preamble to the network device in the first cell, where the meaning of the terminal device sending in the first cell means that the terminal device is in the first cell
  • the random access preamble is transmitted on the resource corresponding to the first cell.
  • the first cell in this embodiment is one of multiple cells configured by the network device for the terminal device.
  • the indication information in this embodiment includes the identity of the first cell, that is, the first cell in this embodiment is indicated by the network device through the indication information, and the indication information in this embodiment is used to indicate that the terminal device is in The random access preamble is sent to the network device on the first cell.
  • the first cell in this embodiment may be, for example, pre-indicated by the network device; or, the first cell may also be pre-appointed through an agreement.
  • the implementation of the first cell in this embodiment The manner is not limited, as long as the first cell is one of the multiple cells configured by the network device for the terminal device.
  • the terminal device monitors the physical downlink control channel PDCCH in the serving cell corresponding to the first discontinuous reception mechanism DRX group, and the serving cell corresponding to the first DRX group includes the first DRX group One district.
  • the network device When the network device determines to accept the random access of the current terminal device, it will send response information to the terminal device.
  • the network device can send the response information to the terminal device through any serving cell corresponding to the terminal device.
  • the response in this embodiment is
  • the information is the response information corresponding to the random access preamble introduced in step S601, which is used to indicate that the current terminal device successfully establishes a connection.
  • the terminal device receives the response information sent by the network device, it can be determined that the random access process ends, and at this time the terminal device and the network device have successfully established a connection.
  • case 3 indicates that "after the terminal has successfully received the random access response, it has not yet received an initial transmission of the PDCCH indication scrambled by the C-RNTI". It is in the active period of the DRX cycle, which means that the current terminal device will monitor the PDCCH.
  • the terminal device corresponds to at least two DRX groups, where the MAC entity is used as a control entity for implementing the DRX function, that is to say, each MAC entity is configured with at least two DRX groups, and the network device is each Each DRX group is configured with respective corresponding serving cells, and the respective serving cells of at least two DRX corresponding to one MAC entity do not overlap.
  • the problem to be solved in this application is that when receiving the response information sent by the network device, when there are currently at least two DRX groups, because each DRX group corresponds to its respective serving cell and activation period, how to determine the terminal device’s Activation period.
  • the terminal device in this embodiment will monitor the PDCCH in the serving cell corresponding to the first DRX group, where the first DRX group is that its corresponding serving cell includes the DRX group of the first cell, which is not necessarily Which specific DRX group it is depends on which DRX group the first cell corresponds to.
  • the terminal device will monitor the PDCCH in the serving cell corresponding to that DRX.
  • DRX group1 corresponds to PCell and DRX group2 corresponds to SCell
  • the indication information sent by the network device indicates that the identity of the first cell is cell0.
  • cell0 is PCell, which means that the first cell corresponds to DRX group1.
  • the terminal device when the terminal device receives the response information sent by the network device, it will only monitor the PDCCH on the PCell, but not the PDCCH on the SCell.
  • the activation period confirmation method includes: a terminal device sends a random access preamble to a network device in a first cell, and if the terminal device receives response information sent by the network device, the terminal device is The serving cell corresponding to the first discontinuous reception mechanism DRX group monitors the physical downlink control channel PDCCH, and the serving cell corresponding to the first DRX group includes the first cell.
  • the terminal device can correspond to In the case of at least two DRX groups, the activation period of the terminal device can be effectively determined.
  • the following takes the terminal device corresponding to two DRX groups as an example to further introduce the activation period confirmation method provided in this application in further detail.
  • the terminal device corresponds to more than two DRX groups, its implementation The method is similar and will not be repeated here.
  • FIG. 7 is a schematic diagram of the serving cell provided by the embodiment of this application.
  • the terminal device corresponds to the first DRX group and the second DRX group.
  • the first DRX group in this embodiment is the DRX group corresponding to the first cell that sends the random access preamble, and it can be DRX group (group) 1, or it can also be DRX group 2. In this embodiment There is no restriction on this. Which DRX group the first DRX group is depends on which cell the first cell is; and the second DRX group is a DRX group other than the first DRX group.
  • the first DRX group is DRX group1
  • the second DRX group is DRX group2; or, the first DRX group can also be DRX group2, and the second DRX group can also be DRX group1.
  • the implementation methods are similar. Taking the first DRX group as DRX group1 and the second DRX group as DRX group2 as an example for description, the rest of the implementation manners will not be repeated here.
  • the frequency ranges of the serving cells corresponding to at least two DRX groups are different.
  • the current 5G frequency range definition includes: FR1 (450MHz-6000MHz, also known as Sub-6GHz) and FR2 (24250MHz-52600MHz, also known as Above-6GHz or millimeter wave).
  • FR1 450MHz-6000MHz, also known as Sub-6GHz
  • FR2 24250MHz-52600MHz, also known as Above-6GHz or millimeter wave.
  • the serving cell corresponding to the first DRX group (DRX group1) may belong to the first frequency range, for example
  • the serving cell corresponding to the second DRX group (DRX group2) may belong to the second frequency range, for example.
  • the first frequency range can be any one of FR1 and FR2, and the first frequency range can be any one of FR1 and FR2, as long as the first frequency range and the second frequency range are different from each other. Just overlap.
  • the first frequency range may also be FR1, and the first frequency range may be FR2; or, the first frequency range may also be FR2, and the first frequency range may be FR1.
  • the first frequency range may be FR1
  • the second frequency range may be FR1.
  • PCells are usually set to the frequency range corresponding to FR1, and SCells can be set to the frequency range corresponding to FR1 or the frequency range corresponding to FR2.
  • DRX group1 corresponds to FR1 and DRX group2 corresponds to FR2
  • the correspondence between DRX group and serving cell can be:
  • DRX group 1 corresponds to PCell and FR1SCell (0 or more);
  • DRX group 2 corresponds to FR2SCell (one or more).
  • the terminal device may receive the configuration information sent by the network device, where the configuration information includes DRX configuration parameters, serving cell parameters, PRACH parameters, etc.
  • the configuration information includes DRX configuration parameters, serving cell parameters, PRACH parameters, etc. This embodiment does not limit the specific implementation of the configuration parameters .
  • the DRX configuration parameters are used to configure two DRX groups for a MAC entity of the terminal device, namely DRX group 1 and DRX group 2 respectively.
  • the two DRX groups are configured with their corresponding drx-InactivityTimer and drx-onDurationTimer, which means that the two timers are configured independently; and, the rest of the two DRX groups
  • the DRX configuration parameters are common configuration parameters of two DRX groups.
  • the remaining DRX configuration parameters include timers other than drx-InactivityTimer and drx-onDurationTimer.
  • the first DRX group corresponds to the first activation period.
  • the terminal device may receive the first timer information configured by the network device, where the first timer information may include For any of the timers introduced above, the first activation period includes the running time indicated by the first timer information.
  • the second DRX group corresponds to a second activation period, which is implemented in a similar manner, that is, the activation periods of the two DRX groups are based on their corresponding timers and the cases 1, case 2, and cases described in the above embodiments. If Case 3 is determined, it can be determined according to actual needs.
  • the serving cell parameter includes the correspondence between the first DRX group and the serving cell, and the correspondence between the second DRX group and the serving cell.
  • the PRACH parameters include the time-frequency resource location and period for transmitting msg1.
  • the configuration information may also be used to configure random access resources, where the random access resources are resources used to transmit random access preambles.
  • random access resources can be configured on one or more SCells; alternatively, random access resources can also be configured on one or more PCells, which is not described in this embodiment. limit.
  • the terminal device can monitor the PDCCH of the serving cell corresponding to DRX group1 during the first activation period according to the timers of DRX group1, and can monitor the PDCCH of the serving cell corresponding to DRX group1 during the second activation period according to the timers of DRX group2 Monitor the PDCCH of the serving cell corresponding to DRX group2.
  • FIG. 8 is a schematic diagram of the activation period provided in an embodiment of the application
  • FIG. 9 is a diagram of the activation period provided in an embodiment of the application Diagram two.
  • the configuration information sent by the network device indicates that the terminal device is configured with two DRX groups, namely DRX group 1 and DRX group 2, where the serving cell corresponding to DRX group 1 is the PCell of FR1, and the service corresponding to DRX group 2
  • the cell is FR2 SCell.
  • DRX group1 is configured with drx-onDurationTimer1 and drx-InactivityTimer1
  • DRX group2 is configured with drx-onDurationTimer2 and drx-InactivityTimer2.
  • other DRX configuration parameters such as DRX cycle are the common configuration of 2 DRX groups.
  • the terminal device periodically starts drx-onDurationTimer1 according to the DRX cycle for DRX group1, and periodically starts drx-onDurationTimer2 according to the DRX cycle for DRX group2, so that the gray in Figure 8 can be obtained.
  • the activation period of the shaded example is the activation period of the shaded example.
  • the terminal device receives the instruction information (PDCCH order) sent by the network device, and triggers the non-contention random access (Contention Free Random Access, CFRA) (CFRA) process according to the instruction information.
  • the non-competition in this embodiment The random access procedure is mainly applied to a scenario where downlink data arrives and a certain serving cell of the terminal device is out of synchronization in the uplink.
  • the terminal device sends a random access preamble to the network device on the first cell to perform a non-contention random access procedure.
  • the terminal device After the terminal device receives the RAR sent by the network device, the terminal device only enters the activation period on the PCell, which is shown in Figure 8.
  • DRX group1 enters the active period, and the terminal device only monitors the PDCCH on the PCell at this time.
  • the terminal device after the terminal device receives the RAR sent by the network device, the terminal device only enters the activation period on the SCell, that is, Figure 9
  • the middle DRX group2 enters the activation period, and the terminal device only monitors the PDCCH on the SCell at this time.
  • the terminal device after receiving the instruction information from the network device, the terminal device sends a random access preamble on a specific first cell to initiate a non-competitive random access. After the terminal device receives the RAR sent by the network device, the terminal determines the DRX group corresponding to the first cell as the active period, that is, the terminal device monitors the PDCCH on the serving cell corresponding to the DRX group, and uses this
  • the activation period confirmation method provided in the application embodiment can not only ensure the scheduling performance, but also take into account the power saving of the terminal.
  • FIG. 10 is a schematic structural diagram of an activation period confirmation device provided by an embodiment of the application.
  • the activation period confirmation device 100 may include a sending module 1001 and a receiving module 1002, where:
  • the sending module 1001 is configured to send a random access preamble to the network device by the terminal device in the first cell according to the instruction information sent by the network device;
  • the receiving module 1002 is configured to, if the terminal device receives the response information sent by the network device, the terminal device monitors the physical downlink control channel PDCCH in the serving cell corresponding to the first discontinuous reception mechanism DRX group, where , The serving cell corresponding to the first DRX group includes the first cell.
  • the receiving module 1002 is further configured to:
  • the terminal device Before the terminal device sends the random access preamble to the network device in the first cell, the terminal device receives the indication information sent by the network device, where the indication information includes the identity of the first cell.
  • the terminal device corresponds to at least two DRX groups, and the at least two DRX groups include the first DRX group.
  • the at least two DRX groups further include the second DRX group.
  • the serving cells corresponding to the at least two DRX groups belong to different frequency ranges.
  • the serving cell corresponding to the first DRX group belongs to the first frequency range
  • the serving cell corresponding to the second DRX group belongs to the second frequency range.
  • the terminal device monitors the physical downlink control channel PDCCH in the serving cell corresponding to the first DRX group during the first activation period corresponding to the first DRX group.
  • the second DRX group corresponds to a second activation period.
  • the receiving module 1002 is further configured to:
  • the terminal device receives first timer information configured by the network device, and the first activation period includes the running time indicated by the first timer information.
  • the first timer information, the correspondence between the first DRX group and the serving cell, and the correspondence between the second DRX group and the serving cell are those of the network
  • the device is indicated by the configuration information.
  • the configuration information is also used to configure random access resources, where the random access resources are resources used to transmit the random access preamble.
  • the activation period confirmation device provided in the embodiments of the present application can execute the technical solutions shown in the foregoing method embodiments, and the implementation principles and beneficial effects are similar, and details are not described herein again.
  • FIG. 11 is a schematic structural diagram of an activation period confirmation device provided by an embodiment of the application.
  • the activation period confirmation device 20 may include: a transceiver 21, a memory 22, and a processor 23.
  • the transceiver 21 may include a transmitter and/or a receiver.
  • the transmitter can also be referred to as a transmitter, a transmitter, a transmitting port, or a transmitting interface
  • the receiver can also be referred to as a receiver, a receiver, a receiving port, or a receiving interface, and other similar descriptions.
  • the transceiver 21, the memory 22, and the processor 23 are connected to each other through a bus 24.
  • the memory 22 is used to store program instructions
  • the processor 23 is configured to execute program instructions stored in the memory, so as to enable the terminal device 20 to execute any of the activation period confirmation methods shown above.
  • the receiver of the transceiver 21 can be used to perform the receiving function of the terminal device in the activation period confirmation method described above.
  • An embodiment of the present application provides a computer-readable storage medium in which a computer-executable instruction is stored, and when the computer-executable instruction is executed by a processor, it is used to implement the above activation period confirmation method.
  • the embodiments of the present application may also provide a computer program product, which can be executed by a processor, and when the computer program product is executed, it can implement the activation period confirmation method executed by any of the terminal devices shown above.
  • the activation period confirmation device, computer-readable storage medium, and computer program product of the embodiment of the present application can execute the activation period confirmation method executed by the terminal device described above.
  • the specific implementation process and beneficial effects refer to the above, and will not be repeated here.
  • the disclosed system, device, and method can be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • the aforementioned computer program can be stored in a computer readable storage medium.
  • the computer program When the computer program is executed by the processor, it realizes the steps including the foregoing method embodiments; and the foregoing storage medium includes: ROM, RAM, magnetic disk, or optical disk and other media that can store program codes.

Abstract

本申请实施例提供一种激活时段确认方法及装置,该方法包括:终端设备在第一小区向网络设备发送随机接入前导,若所述终端设备接收到所述网络设备发送的响应信息,则所述终端设备在第一非连续接收机制DRX组所对应的服务小区中监听物理下行控制信道PDCCH,所述第一DRX组所对应的服务小区包括所述第一小区。通过在终端设备接收到网络设备发送的响应信息时,在第一DRX组所对应的服务小区中监听PDCCH,其中,第一DRX组为第一小区所对应的DRX组,从而可以在终端设备对应至少两个DRX组的情况下,能够有效确定终端设备的激活期。

Description

激活时段确认方法及装置 技术领域
本申请涉及通信技术,尤其涉及一种激活时段确认方法及装置。
背景技术
非连续接收(Discontinuous Reception,DRX)是指在没有数据传输的时候,可以关闭终端设备的接收电路来降低功耗,以提升电池的使用时间。
目前,现有技术中通常是一个媒体存取控制(Media Access Contro,MAC)实体配置有一个DRX,终端设备通过发起非竞争随机接入,以试图获取网络设备的随机接入响应,当终端设备接收到网络设备的随机接入响应时,其进入激活时段,以监听DRX对应的服务小区上的物理下行控制信道(Physical Downlink Control Channel,PDCCH)。
然而,当一个MAC实体配置有两个DRX时,在接收到网络设备的随机接入响应时,如何确定终端设备的激活时段,目前还没有有效的解决方案。
发明内容
本申请实施例提供一种激活时段确认方法及装置,该方法能够在一个MAC实体配置有两个DRX时,有效确定终端设备的激活时段。
第一方面,本申请实施例提供一种激活时段确认方法,包括:
根据网络设备发送的指示信息,终端设备在第一小区向网络设备发送随机接入前导;
若所述终端设备接收到所述网络设备发送的响应信息,则所述终端设备在第一非连续接收机制DRX组所对应的服务小区中监听物理下行控制信道PDCCH,其中,所述第一DRX组所对应的服务小区包括所述第一小区。
第二方面,本申请实施例提供一种激活时段确认装置,包括:
发送模块,用于根据网络设备发送的指示信息,终端设备在第一小区向网络设备发送随机接入前导;
接收模块,用于若所述终端设备接收到所述网络设备发送的响应信息,则所述终端设备在第一非连续接收机制DRX组所对应的服务小区中监听物理下行控制信道PDCCH,其中,所述第一DRX组所对应的服务小区包括所述第一小区。
第三方面,本申请实施例提供一种激活时段确认设备,其特征在于,包括:收发器、处理器、存储器;
所述存储器存储计算机执行指令;
所述处理器执行所述存储器存储的计算机执行指令,使得所述处理器执行如权利要求1至11任一项所述的激活时段确认方法。
第四方面,本申请实施例提供一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机执行指令,当所述计算机执行指令被处理器执行时用于实现如权利要求1至11任一项所述的激活时段确认方法。
本申请实施例提供的激活时段确认方法,包括:终端设备在第一小区向网络设备发送随机接入前导,若所述终端设备接收到所述网络设备发送的响应信息,则所述终端设备在第一非连续接收机制DRX组所对应的服务小区中监听物理下行控制信道PDCCH,所述第一DRX组所对应的服务小区包括所述第一小区。通过在终端设备接收到网络设备发送的响应信息时,在第一DRX组所对应的服务小区中监听PDCCH,其中,第一DRX组为第一小区所对应的DRX组,从而可以在终端设备对应至少两个DRX组的情况下,能够有效确定终端设备的激活期。
附图说明
图1为本申请实施例提供的通信场景的示意图;
图2为本申请实施例提供的DRX周期的示意图;
图3为本申请实施例提供的服务小区示意图;
图4为本申请实施例提供的4-step RACH的流程示意图;
图5为本申请实施例提供的2-step RACH的流程示意图;
图6为本申请实施例提供的激活时段确认方法的流程示意图;
图7为本申请实施例提供的服务小区示意图;
图8为本申请实施例提供的激活时段的示意图一;
图9为本申请实施例提供的激活时段的示意图二;
图10为本申请实施例提供的激活时段确认装置的结构示意图;
图11为本申请实施例提供的激活时段确认设备的结构示意图。
具体实施方式
为了便于理解,首先,对本申请所涉及的概念进行说明。
终端设备:是一种具有无线收发功能的设备。终端设备可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。所述终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,简称VR)终端设备、增强现实(augmented reality,简称AR)终端设备、工业控制(industrial control)中的无线终端、车载终端设备、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备、智慧家庭(smart home)中的无线终端设备、可穿戴终端设备等。本申请实施例所涉及的终端设备还可以称为终端、用户设备(user equipment,UE)、接入终端设备、车载终端、工业控制终端、UE单元、UE站、移动站、移动台、远方站、远程终端设备、移动设备、UE终端设备、无线通信设备、UE代理或UE装置等。终端设备也可以是固定的或者移动的。
网络设备:是一种部署在空中的、具有无线收发功能设备。网络设备可以具有移动特性,即,网络设备可以为移动的设备。可选的,网络设备可以为卫星、气球站。例如,卫星可以为低地球轨道(low earth orbit,LEO)卫星、中地球轨道(medium earth orbit,MEO)卫星、地球同步轨道(geostationary earth orbit,GEO)卫星、高椭圆轨道(High Elliptical Orbit,HEO)卫星等。例如,LEO卫星的轨道高度范围通常为500km~1500km,轨道周期(围绕 地球旋转的周期)约为1.5小时~2小时。用户间单跳通信的信号传播延迟约为20ms,用户间单跳通信时延是指终端设备到网络设备之间的传输时延,或者网络设备到传输设备之间的时延。最大卫星可视时间约为20分钟,最大可视时间是指卫星的波束覆盖地面某一片区域的最长时间,LEO卫星相对地面是移动的,随着卫星的移动,其覆盖到的地面区域也是变化的。LEO卫星的信号传播距离短,链路损耗少,对终端设备的发射功率要求不高。GEO卫星的轨道高度通常为35786km,轨道周期为24小时。用户间单跳通信的信号传播延迟约为250ms。为了保证卫星的覆盖以及提升通信网络的系统容量,卫星可以采用多波束覆盖地面,例如,一颗卫星可以形成几十或者几百个波束来覆盖地面,一个波束可以覆盖直径几十至几百公里的地面区域。
下面,结合图1,对本申请中的通信方法所适用的场景进行说明。
图1为本申请实施例提供的通信场景的示意图。请参见图1,包括网络设备101和终端设备102,网络设备101和终端设备102之间可以进行无线通信。包括网络设备101和终端设备102的网络还可以称为非地面通信网络(Non-Terrestrial Network,NTN),其中,NTN是指终端设备和卫星(还可以称为网络设备)之间的通信网络。
为了降低终端设备的功耗,终端设备可以非连续的监听PDCCH。可以由网络设备预先设置DRX周期(DRX cycle),一个DRX周期包括激活期(On Duration)和非激活期。终端设备在激活期内监听PDCCH,终端设备在非激活期内不监听PDCCH。下面,结合图2,对DRX周期进行说明。
图2为本申请实施例提供的DRX周期的示意图。请参见图2,DRX周期包括激活期和非激活期。
在实际应用过程中,实现DRX功能的控制实体位于协议栈的MAC层,也就是说,用于实现DRX功能的控制实体为MAC实体,目前,每个MAC实体对应有一个DRX配置,在本实施例中,网络设备可以为终端设备配置DRX配置参数,终端设备可以根据DRX配置参数非连续性的监听PDCCH。下面,对DRX配置参数可以包括如下参数中的一种或多种:
-drx持续时间定时器(drx-on Duration Timer):是指在DRX周期开始时,终端设备监听PDCCH的持续的一段时间。
在一个DRX周期开始后的drx起始时间偏移时启动drx持续时间定时器。
-drx时隙偏移(drx-Slot Offset):是指在一个子帧内启动drx持续时间定时器的时隙距离该子帧开始时刻的时延。
-drx非激活定时器(drx-Inactivity Timer):是指在接收到指示上行初传调度或者下行初传调度的PDCCH之后,终端设备继续监听PDCCH的持续的一段时间。
如果终端设备接收到一个指示下行初始传输或者上行初始传输的PDCCH,则终端启动或者重启drx非激活定时器。
-下行(down link,DL)drx混合自动重复请求(hybrid automatic repeat request,HARQ)往返传输时间(round trip time,RTT)定时器(drx-HARQ-RTT-Timer DL):是指下行HARQ重传之前等待的最短时长。广播进程之外,一个下行HARQ进程对应一个下行drx-HARQ-RTT定时器。
如果终端设备接收到一个指示下行传输的PDCCH,或者如果终端设备在配置的下行授权资源上接收到一个媒质接入控制(media access control,MAC)协议数据单元(protocol data unit,PDU),则终端在完成针对这次下行传输的HARQ进程反馈的传输之后启动该HARQ进程对应的下行drx-HARQ-RTT定时器,同时停止该HARQ进程对应的下行drx重传定时器。
-上行(up link,UL)drx-HARQ-RTT定时器(drx-HARQ-RTT-Timer UL):是指上行HARQ重传之前等待的最短时长。一个上行HARQ进程对应一个上行drx-HARQ-RTT定 时器。
如果终端设备接收到一个指示上行传输的PDCCH,或者如果终端在配置的上行授权资源上发送一个MAC PDU,则终端在完成这次上行传输之后启动该HARQ进程对应的上行drx-HARQ-RTT定时器,同时停止该HARQ进程对应的上行drx重传定时器(drx-Retransmission Timer UL)。
-下行drx重传定时器(drx-Retransmission Timer DL):是指接收到下行重传之前的持续的最长时长。除广播进程之外,每个下行HARQ进程对应一个drx下行重传定时器。
如果终端设备的某个HARQ对应的下行drx-HARQ-RTT定时器超时,并且使用这个HARQ进程传输的下行数据解码不成功,则终端启动这个HARQ进程对应的下行drx重传定时器。
-上行drx重传定时器(drx-Retransmission Timer UL):是指接收到上行重传之前的持续的最长时长。每个上行HARQ进程对应一个drx下行重传定时器。
如果终端设备的某个HARQ对应的上行drx-HARQ-RTT定时器超时,则终端启动这个HARQ进程对应的上行drx重传定时器。
-drx长周期起始时间偏移(drx-Long Cycle Start Offset):长drx周期和drx长周期起始时间偏移定义了长drx周期和短drx周期开始的子帧。
-drx短周期(drx-Short Cycle):是指短drx周期,为可选配置。
-drx短周期定时器(drx-Short Cycle Timer):终端设备应遵循的短DRX周期的持续时间。
需要说明的是,本申请所涉及的“定时器长度”或者“定时器的长度”具有相同的含义,是指定时器所持续的时长,“定时器长度”、“定时器的长度”还可以称为“定时器的时间窗长度”、“定时器的时间窗窗长”、“定时器的持续时长”等。换句话说,定时器在启动之后,经历一定时长(该时长为定时器的长度)之后,该定时器超时。
在实际应用过程中,如果终端配置了DRX,则终端需要在DRX的激活器监听PDCCH,其中,DRX激活期包括如下几种情况,即,在如下情况下,为DRX周期的激活期:
情况1:当如下5个定时器中的任何一个定时器处于运行状态时,为DRX周期的激活期,该5个定时器包括:drx持续时间定时器、drx非激活定时器、下行drx重传定时器、上行drx重传定时器、随机接入竞争解决定时器(Random Access-Contention Resolution Timer)。
情况2:终端设备在物理上行控制信道(physical uplink control channel,PUCCH)上发送了调度请求(Scheduling Request,SR),并处于等待(pending)状态。
情况3:在基于竞争的随机接入过程中,终端在成功接收到随机接入响应后还没有接收到小区无线网络临时标识(Cell Radio Network Temporary Identifier,C-RNTI)加扰的PDCCH指示的一次初始传输。
在实际应用过程中,终端设备在该drx-HARQ-RTT定时器(上行drx-HARQ-RTT定时器或者下行drx-HARQ-RTT定时器)运行期间,以及drx-HARQ-RTT定时器(上行drx-HARQ-RTT定时器或者下行drx-HARQ-RTT定时器)的起始时刻偏移期间,不监听PDCCH。等到该定时器超时后终端才开始监听上行重传调度或者根据反馈情况确定是否开始监听下行重传调度。需要说明的是,若在同一时刻,上述情况1中所示的5个定时器中的任意一个定时器处于运行状态,且drx-HARQ-RTT定时器也处于运行状态,则终端设备监听PDCCH。
在本实施例中,DRX周期的选择包含了电池节约和延迟之间的平衡。从一个方面来讲,DRX长周期可以有效延长终端设备的电池使用时间;例如终端设备当前正在执行网页浏览时,在网页已经下载完成时,此时若终端设备还是持续接收下行数据,则会导致终端设备的功耗增加;从另一个方面来讲,当有新的数据需要传输时,DRX短周期有利于终端设备 更快的响应,例如终端设备当前需要请求另一个新的网页,针对上述两个方面的需求,同时设置有DRX长周期和DRX短周期。
可选的,终端设备可以根据当前使用的DRX周期(DRX短周期或者DRX长周期)确定启动drx持续时间定时器的时间。
例如,若终端设备当前使用的DRX周期为短周期,且当前子帧满足:[(SFN(系统帧号)×10)+子帧标识(subframe number)]%DRX短周期=drx起始时间偏移%DRX短周期时,则启动drx持续时间定时器。
或者,若终端设备当前使用的DRX周期为长周期,且当前子帧满足:[(SFN×10)+子帧标识]%DRX长周期=drx起始时间偏移时,则启动drx持续时间定时器。在当前子帧开始的drx时隙偏移(drx-SlotOffset)个时隙之后的时刻启动drx持续时间定时器。
在对DRX配置进行介绍之后,因为本实施例提供的方法,会涉及到终端设备所对应的服务小区,因此下面对服务小区的各种实现方式进行简单介绍:
为了能够提供更大的数据传输速率,提升用户体验,5G NR(next generation Radio,下一代无线)在4G基础上进一步增大了系统带宽。在5G NR中,对于6GHz以下频段,单载波支持的最大带宽为100MHz;对于6GHz以上频段,单载波支持的最大带宽为400MHz。
与LTE系统相同的是,5G NR也支持载波聚合(Carrier Aggregation,CA)技术。对于支持CA特性的终端设备,该终端设备除了有一个主服务小区(Primary Cell,PCell),网络设备还可以为终端设备配置一个或者多个辅服务小区(Secondary Cell,SCell)。
其中,SCell有激活和非激活两种状态,只有当SCell处于激活状态时,终端设备才可以在这个SCell上进行数据的发送和接收,因此,终端设备可以同时在PCell和激活的一个或者多个SCell上监听PDCCH,并进行数据的发送和接收,从而提升数据传输速率。
在上述介绍的基础上,下面结合图3对本文涉及的服务小区的概念进行介绍,图3为本申请实施例提供的服务小区示意图。
参见图3,主小区组(Master Cell group,MCG)和辅小区组(Secondary Cell group,SCG)是双链接(DC,Dual connectivity)下的概念,可以理解的是,终端设备发起随机接入(RACH,Random Access Channel)的服务小区所在的组就是MCG。同时可以理解的是,如果没有进行双链接,则当前小区组就对应MCG。
假设现在进行了双链接,那么我们就有了MCG和SCG的概念。
接下来对主服务小区(Primary Cell,PCell)、辅服务小区(Secondary Cell,SCell)、主辅服务小区(Primary Secondary Cell,PSCell)这三个概念进行说明:
在MCG下,可能会有很多个服务小区,其中有一个用于向网络设备发起初始接入的服务小区,这个小区称为PCell,也就是说,PCell是MCG里面最“主要”的小区,其中,MCG下的PCell和MCG下的SCell是通过CA技术联合在一起的。
同样地,在SCG下也会有一个最主要的小区,也就是PSCell,其也可以理解为在SCG下发起初始接入的小区,其中,SCG下的PSCell和SCG下的SCell也是通过CA技术联合在一起的。
同时,因为很多信令只在PCell和PSCell上发送,为了描述方便,协议中也定义了一个概念sPCell(special Cell),其中,sPCell=PCell+PSCell。
基于上述介绍,下面对MAC实体和DRX配置的对应关系进行说明:
基于目前的NR标准,每个MAC实体对应一个DRX配置,然而在NR Rel-16的标准化过程中,在RAN2#108次会议已经同意一种在NRCA场景下的连接态下的DRX(Connected DRX,CDRX)增强方法,即针对一个MAC实体可以配置2个DRX组(group)的方案,其中,一个DRX group对应一个DRX配置。针对该DRX增强方法,目前已形成以下明确结论:
1、对于两个DRX group,网络设备可以为其配置一个drx-Inactivity Timer和drx-on  Duration Timer。也就是说,网络设备为2个DRX group分别配置drx-InactivityTimer和drx-onDurationTimer,其余的DRX配置参数为2个DRX group的公共配置参数。
2、不支持2个DRX group之间的跨载波调度。
也就是说,不同的DRX group对应的服务小区不能互相调度。
在目前一个MAC实体对应一个DRX配置的机制下,如果终端设备在某一个服务小区(serving cell)上发起了非竞争随机接入,接着在SpCell(MCG PCell或者SCG PSCell)上盲检无线网络临时标识(random access radio network temporary identifier,RA-RNTI),在成功收到网络设备发送的随机接入响应之后,终端设备可以进入激活期(Active Time),此时终端设备会在其对应的各个服务小区上监听PDCCH,以接收来自网络侧的数据调度。
然而,针对上述介绍的cDRX增强方法,在为一个MAC实体配置2个DRX group的情况下,若当前接收到网络设备的随机接入响应,应该如何确定终端设备的激活期(Active Time),目前还没有有效的解决方案。
为了解决上述技术问题,本申请实施例提供一种激活时段确认方法,以使得在一个MAC实体配置有2个DRX group的情况下,在接收到网络设备的随机接入响应时,可以有效确定终端设备的激活期(Active Time)。
因为本申请中会涉及到终端设备的随机接入过程,因此下面首先对随机接入过程进行简单说明:
具体的,在通信过程中,网络设备可以生成RACH配置(也可以称为随机接入配置),终端设备可以根据网络设备生成的RACH配置,通过随机接入过程接入网络设备。
其中,随机接入配置包括如下信息:
频域资源配置,或者指示频域资源配置的指示信息;
时域资源配置;
随机接入前导配置,或者指示随机接入前导配置的指示信息。
频域资源配置还可以称为RACH频域资源配置。频域资源配置可以用于指示RACH频域资源。例如,频域资源配置可以包括RACH起始频域资源索引、以及同一个时刻可以频分复用的RACH资源个数(即连续的RACH频域资源个数),该频域资源配置所指示的RACH频域资源为一段连续的频域资源。
时域资源配置还可以称为RACH时域资源配置。时域资源配置可以用于指示RACH时域资源。例如,可以通过1个RACH配置索引指示时域资源配置,通过该RACH配置索引可以获知RACH资源重复周期,一个RACH资源重复周期内包含的RO个数,每个RO的持续时间等。RO与时域资源对应,例如,一个RACH时域资源对应一个RO。
随机接入前导配置可以包括preamble根序列,这样,在终端设备接收到preamble根序列之后,终端设备可以对preamble根序列进行循环移位得到preamble组,preamble组中包括至少一个preamble。或者,随机接入前导配置中还可以包括preamble组,preamble组中包括至少一个preamble。
在实际应用过程中,终端设备可以在多种可能的场景下发起随机接入,例如,多种可能的场景可以包括如下场景中的至少一种:(1)终端设备的状态从无线资源控制(radio resource control,RRC)空闲态切换为RRC连接态后,终端设备与网络设备建立无线链路过程时发起随机接入。(2)在终端设备与网络设备之间的无线链路失败之后,终端设备与网络设备进行RRC连接重建立时发起随机接入。(3)当终端设备需要与新小区建立上行同步时发起随机接入。(4)当终端设备为RRC连接态,且上行不同步时,若有上行或下行数据到达,则发起随机接入。(5)当终端设备处于RRC连接态,但还未在物理上行链路控制信道(physical uplink control channel,PUCCH)上为终端设备配置专用的发送调度请求的资源时发起随机接入。(6)调度请求失败时发起随机接入。(7)同步重配置时的RRC请求时发起随机接入。(8)终端设备的状态从RRC非激活态切换到RRC连接态时发起随 机接入。(9)在增加第二个小区时建立时间对齐时发起随机接入。(10)请求除了主信息块(master information block,MIB)和系统信息快(system information block,SIB)的其他系统信息时发起随机接入。(11)波束失败恢复时发起随机接入。
其中,随机接入可以包括四步随机接入(还可以称为四步随机接入信道,或者,还可以简称为4-step RACH、竞争随机接入)和两步随机接入(还可以称为两步随机接入信道,或者还可以简称为2-step RACH、非竞争随机接入),而本申请实施例所涉及的随机接入主要是两步随机接入,为了便于理解,下面,分别对4-step RACH和2-step RACH的过程进行详细说明。
图4为本申请实施例提供的4-step RACH的流程示意图。4-step RACH在现有的协议TS38.300中已经详细定义,本申请只是简单进行了描述。请参见图4,该方法可以包括:
S401、终端设备向网络设备发送Msg1。
Msg1还可以称为msg1、或MSG1。
Msg1用于传输随机接入前导,随机接入前导还可以称为随机接入前导序列、或preamble、或preamble序列。
在本申请实施例中,preamble以及发送preamble所占用的时频资源称作为物理随机接入信道(physical random access channel,PRACH)资源。
可选的,终端设备可以选择PRACH资源、以及选取一个preamble,并在选择的PRACH资源上发送选取的preamble。若随机接入的方式为基于非竞争的随机接入,则可以由基站指定PRACH资源和preamble,基站可以基于终端设备发送的preamble估计定时提前量(timing advance,TA)、以及终端设备传输Msg3所需的上行授权大小。
例如,网络设备可以通过系统信息广播可用的PRACH资源。
S402、网络设备向终端设备发送Msg2。
Msg2还可以称为msg2、或MSG2。
其中,Msg2包含了网络设备确定给终端设备用于发送净荷(payload)所使用的时频资源。
终端设备发送Msg1之后,可以开启一个随机接入响应时间窗(ra-Response Window),在该随机接入响应时间窗内监测随机接入无线网络临时标识(random access radio network temporary identifier,RA-RNTI)加扰的物理下行控制信道(physical downlink control channel,PDCCH)。
其中,RA-RNTI与终端设备发送Msg1所使用的PRACH时频资源有关。
在终端设备成功接收到RA-RNTI加扰的PDCCH之后,终端设备能够获得该PDCCH调度的物理下行共享信道(physical downlink shared channel,PDSCH),其中包含了随机接入响应(random access response,RAR)。其中,RAR中可以包括如下信息:
RAR的子头中包含回退指示(back-off indicator,BI),用于指示重传Msg1的回退时间。
RAR中的RAPID:网络响应收到的preamble index。
RAR的净荷(payload)中包含定时提前组(timing advance group,TAG),用于调整上行定时。
上行(up link,UL)grant:用于调度Msg3的上行资源指示。
临时(temporary)小区无线网络临时标识(cell radio network temporary identifier,C-RNTI):用于加扰Msg4的PDCCH。
如果终端接收到RAR-RNTI加扰的PDCCH,并且RAR中包含了自己发送的preamble index,则终端认为成功接收了随机接入响应。
对于基于非竞争的随机接入,终端成功接收Msg2后,随机接入过程结束。对于基于竞争的随机接入,终端设备成功接收Msg2后,还需要继续传输Msg3和接收Msg4。
S403、终端设备向网络设备发送Msg3。
Msg3还可以称为msg3、或MSG3。
其中,Msg3是随机接入过程中的第一个调度传输,发送净荷(payload),例如,RRC连接请求消息、跟踪区域更新消息等。
Msg3可以通知网络设备该RACH过程是由什么事件触发。例如,如果是初始接入随机过程,则在Msg3中会携带UE ID和成立原因(establishment cause);如果是RRC重建,则会携带连接态UE标示和成立原因(establishment cause)。
需要说明的是,若不同的终端设备在S301中选择了相同的preamble并且在相同的时频资源上发送该preamble,则该不同的终端设备在相同的时频资源上发送净荷,进而导致资源使用冲突。
S404、网络设备向终端设备发送Msg4。
Msg4还可以称为msg4、或MSG4。
其中,Msg4用于指示该终端设备是否成功的接入到该网络设备。
Msg4可以具有如下两个作用:一个是解决竞争冲突。另一个是网络设备向终端设备传输RRC配置消息。竞争冲突解决有以下两种方式:一种是如果终端设备在Msg3中携带了C-RNTI,则Msg4用C-RNTI加扰的PDCCH调度。另一种是如果终端设备在Msg3中未携带C-RNTI,比如是初始接入,则Msg4用TC-RNTI加扰的PDCCH调度,冲突的解决是终端设备接收Msg4的PDSCH,通过匹配PDSCH中的公共控制信道(common control channel,CCCH)服务数据单元(service data unit,SDU)。
图5为本申请实施例提供的2-step RACH的流程示意图。请参见图5,该方法可以包括:
S501、终端设备向网络设备发送MsgA。
MsgA还可以称为msgA、或MSGA。
其中,msgA包含有preamble以及净荷(例如,RRC连接请求消息、跟踪区域更新消息等)。
S502、网络设备向终端设备发送msgB。
msgB还可以称为MsgB、或MSGB,用于指示该终端设备是否成功的接入到该网络设备。
从以上随机接入的过程可以看出,随机接入的主要目的就是终端设备与网络设备(小区)取得上行同步。
具体的,在竞争随机接入过程中,收到RAR的终端设备可以直接传输Msg3,其无需再监听PDCCH,也就无需考虑终端设备是否进入激活时段,然而,对于非竞争随机接入过程,在终端设备接收到RAR之后,网络设备还需要给终端设备调度下行数据,因此终端设备需要进入激活时段,以监听PDCCH。
在上述介绍的内容的基础上,下面通过具体实施例,对本申请所示的技术方案进行详细说明。需要说明的是,下面几个实施例可以独立存在,也可以相互结合,对于相同或相似的内容,在不同的实施例中不再重复说明。
图6为本申请实施例提供的激活时段确认方法的流程示意图。请参见图6,该方法可以包括:
S601、根据网络设备发送的指示信息,终端设备在第一小区向网络设备发送随机接入前导。
在本实施例中,终端设备接收网络设备所发送的指示信息,其中,指示信息例如可以为PDCCH order,终端设备根据网络设备发送的指示信息,在第一小区向网络设备发起随机接入,在本实施例中,终端设备具体进行的是非竞争随机接入。
在非竞争随机接入过程的一种可能的实现方式中,终端设备可以在第一小区向网络设 备发送随机接入前导preamble,其中,终端设备在第一小区发送的含义是指,终端设备在第一小区所对应的资源上进行随机接入前导的传输。
可以理解的是,本实施例中的第一小区是网络设备为终端设备所配置的多个小区中的一个。
本实施例中的指示信息中包括第一小区的标识,也就是说,本实施例中的第一小区是网络设备通过指示信息指示的,则本实施例中的指示信息用于指示终端设备在第一小区上向网络设备发送随机接入前导。
在另一种可能的实现方式中,本实施例中的第一小区例如可以为网络设备预先指示的;或者,第一小区还可以为预先通过协议约定的,本实施例对第一小区的实现方式不做限制,只要第一小区是网络设备为终端设备所配置的多个小区中的一个小区即可。
S602、若终端设备接收到网络设备发送的响应信息,则终端设备在第一非连续接收机制DRX组所对应的服务小区中监听物理下行控制信道PDCCH,第一DRX组所对应的服务小区包括第一小区。
当网络设备确定接受当前终端设备的随机接入时,会向终端设备发送响应信息,其中,网络设备可以通过终端设备对应的任一个服务小区,向终端设备发送响应信息,本实施例中的响应信息是上述步骤S601中所介绍的随机接入前导所对应的响应信息,其用于指示当前终端设备成功建立连接。
具体的,若终端设备接收到网络设备发送的响应信息,则可以确定随机接入过程结束,此时终端设备和网络设备已经成功建立连接。
根据上述介绍的DRX的激活期可知,其中的情况3说明了“终端在成功接收到随机接入响应后,还没有接收到C-RNTI加扰的PDCCH指示的一次初始传输”时,此时会处于DRX周期的激活期,也就是说当前终端设备会监听PDCCH。
在本实施例中,终端设备对应至少两个DRX组,其中,MAC实体作为用于实现DRX功能的控制实体,也就是说每个MAC实体配置有至少两个DRX组,其中,网络设备为每个DRX组都配置有各自对应的服务小区,一个MAC实体所对应的至少两个DRX各自对应的服务小区是不存在重叠的。
本申请要解决的问题是,在接收到网络设备发送的响应信息时,在当前存在至少两个DRX组的情况下,因为各个DRX组对应各自的服务小区以及激活期,应该如何确定终端设备的激活期。
具体的,本实施例中的终端设备会在第一DRX组所对应的服务小区中监听PDCCH,其中,第一DRX组为其所对应的服务小区包括第一小区的DRX组,其并不一定是具体的哪一个DRX组,其取决于第一小区对应于哪个DRX组。
也就是说,用于发送随机接入前导的服务小区属于哪个DRX所对应的服务小区,终端设备就会在那个DRX所对应的服务小区中监听PDCCH。
假设当前配置有DRX group1对应PCell,以及DRX group2对应SCell,以及网络设备发送的指示信息指示第一小区的标识为cell0,其中,cell0为PCell,也就是说第一小区对应DRX group1,这当前这种配置情况下,在终端设备接收到网络设备发送的响应信息时,其只会监听PCell上的PDCCH,而不会监听SCell上的PDCCH。
本申请实施例提供的激活时段确认方法,包括:终端设备在第一小区向网络设备发送随机接入前导,若所述终端设备接收到所述网络设备发送的响应信息,则所述终端设备在第一非连续接收机制DRX组所对应的服务小区中监听物理下行控制信道PDCCH,所述第一DRX组所对应的服务小区包括所述第一小区。通过在终端设备接收到网络设备发送的响应信息时,在第一DRX组所对应的服务小区中监听PDCCH,其中,第一DRX组为第一小区所对应的DRX组,从而可以在终端设备对应至少两个DRX组的情况下,能够有效确定终端设备的激活期。
在上述实施例的基础上,下面以终端设备对应两个DRX组为例,对本申请提供的激活时段确认方法进行进一步地详细介绍,至于终端设备对应的DRX组多于两个的情况,其实现方式类似,此处不再赘述。
首先结合图7对本申请实施例中DRX组和服务小区的对应关系进行说明,图7为本申请实施例提供的服务小区示意图。
参见图7,在本实施例中,终端设备对应第一DRX组和第二DRX组。
需要说明的是,本实施例中第一DRX组为发送随机接入前导的第一小区所对应的DRX组,其可以为DRX组(group)1,或者,还可以为DRX group2,本实施例对此不做限制,第一DRX组是哪个DRX组,具体取决于第一小区是哪个小区;以及,第二DRX组就是第一DRX之外的DRX组。
假设第一DRX组为DRX group1,则第二DRX组为DRX group2;或者,第一DRX组还可以为DRX group2,则第二DRX组还可以为DRX group1,其实现方式均是类似的,下面以第一DRX组为DRX group1,则第二DRX组为DRX group2为例进行说明,其余的实现方式此处不再赘述。
在本实施例中,至少两个DRX组对应的服务小区的频率范围不同。
在一种可能的实现方式中,目前5G频率范围定义包括:FR1(450MHz-6000MHz,又被称为Sub-6GHz)和FR2(24250MHz-52600MHz,又称为Above-6GHz或毫米波),在本实施例中,第一DRX组(DRX group1)对应的服务小区例如可以属于第一频率范围,第二DRX组(DRX group2)对应的服务小区例如可以属于第二频率范围。
在一种可能的实现方式中,第一频率范围可以为FR1、FR2中的任意一个,以及,第一频率范围可以为FR1、FR2中的任意一个,只要第一频率范围和第二频率范围不发生重叠即可。
也就是,第一频率范围还可以为FR1,第一频率范围为FR2;或者,第一频率范围还可以为FR2,第一频率范围为FR1,下面以第一频率范围为FR1,第二频率范围为FR2为例进行说明,其余的实现方式类似,本实施例中不再赘述。
目前,为了提高覆盖,通常PCell都设置为FR1对应的频率范围下,而SCell可以设置在FR1对应的频率范围下,也可以设置在FR2对应的频率范围下。
因此,若是DRX group1对应FR1,DRX group2对应FR2,则在一种可能的实现方式中,DRX group和服务小区之间的对应关系可以为:
a)DRX group 1对应PCell与FR1SCell(0个或者多个);
b)DRX group 2对应FR2SCell(1个或者多个)。
在一种可能的实现方式中,终端设备可以接收网络设备发送的配置信息,其中,配置信息包括DRX配置参数、服务小区参数、PRACH参数等,本实施例对配置参数的具体实现方式不做限制。
其中,DRX配置参数用于为终端设备的一个MAC实体配置2个DRX group,分别为DRX group1和DRX group2。
在一种可能的实现方式中,两个DRX group分别配置有各自对应的drx-InactivityTimer和drx-onDurationTimer,也就是说这两个定时器是各自独立配置的;以及,两个DRX group的其余的DRX配置参数为2个DRX group的公共配置参数,其中,其余的DRX配置参数包括除drx-InactivityTimer和drx-onDurationTimer之外的定时器。
则在本实施例中,第一DRX组对应有第一激活时段,在一种可能的实现方式中,终端设备可以接收网络设备配置的第一定时器信息,其中,第一定时器信息可以包括上述介绍的任一种定时器,则第一激活时段包括第一定时器信息所指示的运行时间。
以及,第二DRX组对应有第二激活时段,其实现方式类似,也就是说,两个DRX组的激活时段是根据其对应的各个定时器以及上述实施例中介绍的情况1、情况2、情况3 确定的,其可以根据实际需求进行确定。
其中,服务小区参数包括第一DRX组和服务小区之间的对应关系、第二DRX组和服务小区之间的对应关系。
其中,PRACH参数包括传输msg1的时频资源位置,周期等。
在本实施例中,配置信息还可以用于配置随机接入资源,其中,随机接入资源为用于传输随机接入前导码的资源。
在一种可能的实现方式中,可以在一个或者多个SCell上配置随机接入资源(contention free);或者,还可以在一个或者多个PCell上配置随机接入资源,本实施例对此不作限制。
终端设备根据配置信息的指示,可以根据DRX group1的各个定时器,在第一激活时段上监听DRX group1对应的服务小区的PDCCH,以及,可以根据DRX group2的各个定时器,在第二激活时段上监听DRX group2对应的服务小区的PDCCH.
下面结合图8以及图9对第一激活时段和第二激活时段分别进行介绍,其中,图8为本申请实施例提供的激活时段的示意图一,图9为本申请实施例提供的激活时段的示意图二。
在本实施例中,假设网络设备发送的配置信息指示为终端设备配置有两个DRX group,分别是DRX group1和DRX group2,其中,DRX group1对应的服务小区为FR1的PCell,DRX group2对应的服务小区为FR2的SCell。
以及,为DRX group1配置有drx-onDurationTimer1和drx-InactivityTimer1,为DRX group2配置有drx-onDurationTimer2和drx-InactivityTimer2。除此以外的其他DRX配置参数如DRX cycle等为2个DRX group的公共配置。
终端设备根据网络设备发送的配置信息,针对DRX group1,按照DRX周期来周期性的启动drx-onDurationTimer1,以及针对DRX group2,按照DRX周期来周期性的启动drx-onDurationTimer2,从而可以得到图8中灰色阴影所示例的激活期。
接着,终端设备接收网络设备发送的指示信息(PDCCH order),根据指示信息触发非竞争随机接入(Contention Free Random Acess,CFRA)(CFRA)流程,值得说明的是,本实施例中的非竞争随机接入流程主要应用于下行数据到达且终端设备的某一个服务小区上行失步的场景。
在本实施例中,终端设备在第一小区上向网络设备发送随机接入前导码,以执行非竞争随机接入过程。
在一种可能的实现方式中,假设发生CFRA的第一小区为FR1下的PCell,则终端设备在接收到网络设备发送的RAR之后,终端设备只在PCell上进入激活时段,也就是图8中DRX group1进入激活时段,终端设备此时只监听PCell上的PDCCH。
在另一种可能的实现方式中,假设发生CFRA的第一小区为FR2下的SCell,则终端设备在接收到网络设备发送的RAR之后,终端设备只在SCell上进入激活时段,也就是图9中DRX group2进入激活时段,终端设备此时只监听SCell上的PDCCH。
综上所述,本申请实施例提供的激活时段确认方法,终端设备在收到网络设备的指示信息之后,在某一个特定的第一小区上发送随机接入前导码,以发起非竞争随机接入,在终端设备接收到网络设备发送的RAR之后,终端将该第一小区所对应的DRX组确定为激活时段,也就是说,终端设备在该DRX组对应的服务小区上监听PDCCH,通过本申请实施例提供的激活时段确认方法,既可以保证调度性能,同时又兼顾了终端省电。
图10为本申请实施例提供的激活时段确认装置的结构示意图。请参见图10,该激活时段确认装置100可以包括发送模块1001以及接收模块1002,其中,
发送模块1001,用于根据网络设备发送的指示信息,终端设备在第一小区向网络设备发送随机接入前导;
接收模块1002,用于若所述终端设备接收到所述网络设备发送的响应信息,则所述终端设备在第一非连续接收机制DRX组所对应的服务小区中监听物理下行控制信道PDCCH,其中,所述第一DRX组所对应的服务小区包括所述第一小区。
在一种可能的实施方式中,所述接收模块1002还用于:
在终端设备在第一小区向网络设备发送随机接入前导之前,所述终端设备接收所述网络设备发送的指示信息,所述指示信息中包括所述第一小区的标识。
在一种可能的实施方式中,所述终端设备对应至少两个DRX组,所述至少两个DRX组包括所述第一DRX组。
在一种可能的实施方式中,所述至少两个DRX组还包括所述第二DRX组。
在一种可能的实施方式中,所述至少两个DRX组对应的服务小区所属的频率范围不同。
在一种可能的实施方式中,所述第一DRX组对应的服务小区属于第一频率范围;
所述第二DRX组对应的服务小区属于第二频率范围。
在一种可能的实施方式中,所述终端设备在所述第一DRX组对应第一激活时段内,在所述第一DRX组所对应的服务小区中监听物理下行控制信道PDCCH。
在一种可能的实施方式中,所述第二DRX组对应第二激活时段。
在一种可能的实施方式中,所述接收模块1002还用于:
所述终端设备接收所述网络设备配置的第一定时器信息,所述第一激活时段包括所述第一定时器信息指示的运行时间。
在一种可能的实施方式中,所述第一定时器信息、所述第一DRX组和服务小区之间的对应关系、所述第二DRX组和服务小区之间的对应关系是所述网络设备通过配置信息指示的。
在一种可能的实施方式中,所述配置信息还用于配置随机接入资源,其中,所述随机接入资源为用于传输所述随机接入前导码的资源。
本申请实施例提供的激活时段确认装置可以执行上述方法实施例所示的技术方案,其实现原理以及有益效果类似,此处不再进行赘述。
图11为本申请实施例提供的激活时段确认设备的结构示意图。请参见图11,激活时段确认设备20可以包括:收发器21、存储器22、处理器23。收发器21可包括:发射器和/或接收器。该发射器还可称为发送器、发射机、发送端口或发送接口等类似描述,接收器还可称为接收器、接收机、接收端口或接收接口等类似描述。示例性地,收发器21、存储器22、处理器23,各部分之间通过总线24相互连接。
存储器22用于存储程序指令;
处理器23用于执行该存储器所存储的程序指令,用以使得终端设备20执行上述任一所示的激活时段确认方法。
其中,收发器21的接收器,可用于执行上述激活时段确认方法中终端设备的接收功能。
本申请实施例提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机执行指令,当所述计算机执行指令被处理器执行时用于实现上述激活时段确认方法。
本申请实施例还可提供一种计算机程序产品,该计算机程序产品可以由处理器执行,在计算机程序产品被执行时,可实现上述任一所示的终端设备执行的激活时段确认方法。
本申请实施例的激活时段确认设备、计算机可读存储介质及计算机程序产品,可执行上述终端设备执行的激活时段确认方法,其具体的实现过程及有益效果参见上述,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的 划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
本领域普通技术人员可以理解:实现上述各方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成。前述的计算机程序可以存储于一计算机可读取存储介质中。该计算机程序在被处理器执行时,实现包括上述各方法实施例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (24)

  1. 一种激活时段确认方法,其特征在于,
    根据网络设备发送的指示信息,终端设备在第一小区向网络设备发送随机接入前导;
    若所述终端设备接收到所述网络设备发送的响应信息,则所述终端设备在第一非连续接收机制DRX组所对应的服务小区中监听物理下行控制信道PDCCH,其中,所述第一DRX组所对应的服务小区包括所述第一小区。
  2. 根据权利要求1所述的方法,其特征在于,终端设备在第一小区向网络设备发送随机接入前导之前,还包括:
    所述终端设备接收所述网络设备发送的指示信息,所述指示信息中包括所述第一小区的标识。
  3. 根据权利要求1或2所述的方法,其特征在于,所述终端设备对应至少两个DRX组,所述至少两个DRX组包括所述第一DRX组。
  4. 根据权利要求3所述的方法,其特征在于,所述至少两个DRX组还包括第二DRX组。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,所述至少两个DRX组对应的服务小区所属的频率范围不同。
  6. 根据权利要求4所述的方法,其特征在于,所述第一DRX组对应的服务小区属于第一频率范围;
    所述第二DRX组对应的服务小区属于第二频率范围。
  7. 根据权利要求1-6任一项所述的方法,其特征在于,所述终端设备在所述第一DRX组对应第一激活时段内,在所述第一DRX组所对应的服务小区中监听物理下行控制信道PDCCH。
  8. 根据权利要求7所述的方法,其特征在于,所述第二DRX组对应第二激活时段。
  9. 根据权利要求7所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收所述网络设备配置的第一定时器信息,所述第一激活时段包括所述第一定时器信息指示的运行时间。
  10. 根据权利要求9所述的方法,其特征在于,所述第一定时器信息、所述第一DRX组和服务小区之间的对应关系、所述第二DRX组和服务小区之间的对应关系是所述网络设备通过配置信息指示的。
  11. 根据权利要求10所述的方法,其特征在于,所述配置信息还用于配置随机接入资源,其中,所述随机接入资源为用于传输所述随机接入前导码的资源。
  12. 一种激活时段确认装置,其特征在于,
    发送模块,用于根据网络设备发送的指示信息,终端设备在第一小区向网络设备发送随机接入前导;
    接收模块,用于若所述终端设备接收到所述网络设备发送的响应信息,则所述终端设备在第一非连续接收机制DRX组所对应的服务小区中监听物理下行控制信道PDCCH,其中,所述第一DRX组所对应的服务小区包括所述第一小区。
  13. 根据权利要求12所述的装置,其特征在于,所述接收模块还用于:
    在终端设备在第一小区向网络设备发送随机接入前导之前,所述终端设备接收所述网络设备发送的指示信息,所述指示信息中包括所述第一小区的标识。
  14. 根据权利要求12或13所述的装置,其特征在于,所述终端设备对应至少两个DRX组,所述至少两个DRX组包括所述第一DRX组。
  15. 根据权利要求14所述的装置,其特征在于,所述至少两个DRX组还包括第二DRX组。
  16. 根据权利要求13-15任一项所述的装置,其特征在于,所述至少两个DRX组对应的服务小区所属的频率范围不同。
  17. 根据权利要求15所述的装置,其特征在于,所述第一DRX组对应的服务小区属于第一频率范围;
    所述第二DRX组对应的服务小区属于第二频率范围。
  18. 根据权利要求12-17任一项所述的装置,其特征在于,所述终端设备在所述第一DRX组对应第一激活时段内,在所述第一DRX组所对应的服务小区中监听物理下行控制信道PDCCH。
  19. 根据权利要求18所述的装置,其特征在于,所述第二DRX组对应第二激活时段。
  20. 根据权利要求18所述的装置,其特征在于,所述接收模块还用于:
    所述终端设备接收所述网络设备配置的第一定时器信息,所述第一激活时段包括所述第一定时器信息指示的运行时间。
  21. 根据权利要求20所述的装置,其特征在于,所述第一定时器信息、所述第一DRX组和服务小区之间的对应关系、所述第二DRX组和服务小区之间的对应关系是所述网络设备通过配置信息指示的。
  22. 根据权利要求21所述的装置,其特征在于,所述配置信息还用于配置随机接入资源,其中,所述随机接入资源为用于传输所述随机接入前导码的资源。
  23. 一种激活时段确认设备,其特征在于,包括:收发器、处理器、存储器;
    所述存储器存储计算机执行指令;
    所述处理器执行所述存储器存储的计算机执行指令,使得所述处理器执行如权利要求1至11任一项所述的激活时段确认方法。
  24. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机执行指令,当所述计算机执行指令被处理器执行时用于实现如权利要求1至11任一项所述的激活时段确认方法。
PCT/CN2019/126084 2019-12-17 2019-12-17 激活时段确认方法及装置 WO2021120014A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980101118.4A CN114503711B (zh) 2019-12-17 2019-12-17 激活时段确认方法及装置
PCT/CN2019/126084 WO2021120014A1 (zh) 2019-12-17 2019-12-17 激活时段确认方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/126084 WO2021120014A1 (zh) 2019-12-17 2019-12-17 激活时段确认方法及装置

Publications (1)

Publication Number Publication Date
WO2021120014A1 true WO2021120014A1 (zh) 2021-06-24

Family

ID=76476959

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/126084 WO2021120014A1 (zh) 2019-12-17 2019-12-17 激活时段确认方法及装置

Country Status (2)

Country Link
CN (1) CN114503711B (zh)
WO (1) WO2021120014A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113661742A (zh) * 2021-07-16 2021-11-16 北京小米移动软件有限公司 信道监听方法及装置、存储介质

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024065329A1 (zh) * 2022-09-28 2024-04-04 富士通株式会社 信息处理方法和装置
WO2024065462A1 (zh) * 2022-09-29 2024-04-04 Oppo广东移动通信有限公司 通信方法、终端设备和网络设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102215589A (zh) * 2010-04-09 2011-10-12 电信科学技术研究院 一种发送信道探测参考符号srs的方法、装置和系统
WO2016022059A1 (en) * 2014-08-07 2016-02-11 Telefonaktiebolaget L M Ericsson (Publ) Load power consumption management in discontinuous reception
CN109246826A (zh) * 2017-06-16 2019-01-18 华为技术有限公司 Drx配置方法、终端设备、网络设备和通信系统
CN109392181A (zh) * 2017-08-11 2019-02-26 华为技术有限公司 发送和接收随机接入前导码的方法和装置
CN109600843A (zh) * 2017-09-30 2019-04-09 华为技术有限公司 信息传输的方法及装置
CN109906578A (zh) * 2019-01-31 2019-06-18 北京小米移动软件有限公司 目标下行信号的接收方法、装置、设备及系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102215589A (zh) * 2010-04-09 2011-10-12 电信科学技术研究院 一种发送信道探测参考符号srs的方法、装置和系统
WO2016022059A1 (en) * 2014-08-07 2016-02-11 Telefonaktiebolaget L M Ericsson (Publ) Load power consumption management in discontinuous reception
CN109246826A (zh) * 2017-06-16 2019-01-18 华为技术有限公司 Drx配置方法、终端设备、网络设备和通信系统
CN109392181A (zh) * 2017-08-11 2019-02-26 华为技术有限公司 发送和接收随机接入前导码的方法和装置
CN109600843A (zh) * 2017-09-30 2019-04-09 华为技术有限公司 信息传输的方法及装置
CN109906578A (zh) * 2019-01-31 2019-06-18 北京小米移动软件有限公司 目标下行信号的接收方法、装置、设备及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ERICSSON, QUALCOMM INC., SAMSUNG, VERIZON, DEUTSCHE TELEKOM: "cDRX ENHANCEMENT for CA", 3GPP DRAFT; R2-1913196 CDRX ENHANCEMENT FOR CA, vol. RAN WG2, 18 October 2019 (2019-10-18), Chongqing, China, pages 1 - 13, XP051791208 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113661742A (zh) * 2021-07-16 2021-11-16 北京小米移动软件有限公司 信道监听方法及装置、存储介质
CN113661742B (zh) * 2021-07-16 2024-02-13 北京小米移动软件有限公司 信道监听方法及装置、存储介质

Also Published As

Publication number Publication date
CN114503711A (zh) 2022-05-13
CN114503711B (zh) 2023-06-27

Similar Documents

Publication Publication Date Title
CN108462998B (zh) 用于随机接入的基站、用户设备和方法
WO2021062726A1 (zh) 随机接入方法、终端设备、网络设备及存储介质
US20200100296A1 (en) Listen before Talk and Channel Access Priority Class for RACH in New Radio Unlicensed
JP6938777B2 (ja) Rrc接続モードでのランダムアクセスのための帯域幅部分操作
WO2021120014A1 (zh) 激活时段确认方法及装置
CN113228716A (zh) 用于随机接入过程的方法和设备
US20230247683A1 (en) User equipment, base station, and information transmission method
CN115997466A (zh) 用于小数据传输的方法和装置
WO2021142807A1 (zh) 两步随机接入msg a资源的配置方法及相关装置
CN102869112A (zh) 辅服务小区随机接入的方法和用户设备
US20220353855A1 (en) Random access resource configuration method and apparatus, device, and storage medium
US20230337289A1 (en) Wireless communication method and terminal device
US20220124824A1 (en) Method for random access and communication device
WO2021109140A1 (zh) 随机接入方法、资源配置方法、网络侧设备、用户设备
US20230077110A1 (en) Communication Method, Apparatus, and System
US20220408495A1 (en) Method and apparatus for small data transmission in a wireless communication system
US20240023042A1 (en) Method for small data transmission in rrc_inactive state and related devices
WO2022116099A1 (zh) 随机接入的触发控制方法、装置、设备及存储介质
WO2021207902A1 (zh) 数据传输方法及装置
WO2023082114A1 (zh) 通信方法及装置
WO2023097504A1 (zh) 通信方法、装置、设备、存储介质、芯片、产品及程序
WO2021102930A1 (zh) 通信方法、装置及设备
WO2022116093A1 (zh) 无线通信方法和设备
WO2023097421A1 (zh) 信息上报方法、装置、设备、存储介质及程序产品
WO2023019438A1 (zh) 通信方法、终端、网络设备、介质、芯片、产品及程序

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19956581

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19956581

Country of ref document: EP

Kind code of ref document: A1