WO2022077163A1 - 具有可变尺寸的挤出口的3d打印装置及其控制方法 - Google Patents

具有可变尺寸的挤出口的3d打印装置及其控制方法 Download PDF

Info

Publication number
WO2022077163A1
WO2022077163A1 PCT/CN2020/120405 CN2020120405W WO2022077163A1 WO 2022077163 A1 WO2022077163 A1 WO 2022077163A1 CN 2020120405 W CN2020120405 W CN 2020120405W WO 2022077163 A1 WO2022077163 A1 WO 2022077163A1
Authority
WO
WIPO (PCT)
Prior art keywords
channels
extrusion port
holes
row
printing device
Prior art date
Application number
PCT/CN2020/120405
Other languages
English (en)
French (fr)
Inventor
黄卫东
Original Assignee
苏州美梦机器有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州美梦机器有限公司 filed Critical 苏州美梦机器有限公司
Priority to CN202080085046.1A priority Critical patent/CN114761202B/zh
Priority to PCT/CN2020/120405 priority patent/WO2022077163A1/zh
Priority to JP2023521431A priority patent/JP2023545752A/ja
Priority to EP20956945.8A priority patent/EP4227069A4/en
Priority to CN202121507497.8U priority patent/CN215849702U/zh
Publication of WO2022077163A1 publication Critical patent/WO2022077163A1/zh
Priority to US18/192,026 priority patent/US20230234287A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/205Means for applying layers
    • B29C64/209Heads; Nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/02Small extruding apparatus, e.g. handheld, toy or laboratory extruders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/92Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/307Handling of material to be used in additive manufacturing
    • B29C64/321Feeding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/307Handling of material to be used in additive manufacturing
    • B29C64/343Metering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • B29C64/393Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92571Position, e.g. linear or angular
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/118Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using filamentary material being melted, e.g. fused deposition modelling [FDM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes

Definitions

  • the present application relates to the field of 3D printing, and more particularly, to a 3D printing device with a variable-size extrusion port and a control method thereof.
  • the diameter of the extrusion port of the traditional 3D printing device is usually fixed.
  • a 3D printing device with such an extrusion port has obvious advantages in terms of both printing accuracy and printing efficiency.
  • the 3D printing device still has room for further improvement.
  • a 3D printing device with an extrusion port of variable size comprising: a feeding part, which has an inlet and an outlet for materials; and a discharging part, which has an extrusion port, and the extrusion port can communicate with the output
  • the outlet of the material part is in fluid communication to extrude the material, and the extrusion port is divided into a plurality of channels;
  • the control part is used for controlling the The material conveying part and the material discharging part move relative to each other, so as to change the number of the holes communicating with the outlet of the material conveying part among the plurality of holes, so as to change the size of the extrusion port.
  • a 3D printing device comprising: a row of holes; a control part for controlling the row of holes to extrude a row of materials at the same time, to fill a region, and to control the flow of the row of holes On and off, to change the length of the one row of materials; wherein, the arrangement of the one row of channels enables the materials extruded from adjacent channels in the one row of channels to fuse with each other in the region.
  • a method for controlling a 3D printing device with a variable-sized extrusion port includes: a feeding part, which has an inlet and an outlet for materials; and a discharging part, which has an extrusion port, so The extrusion port can be in fluid communication with the outlet of the material conveying part to extrude the material, and the extrusion port is divided into a plurality of channels; the control method includes: controlling the extrusion port to perform a single-connection area on a piece of Filling; in the process of using the extrusion port to fill a single connected area, control the relative movement of the conveying part and the discharging part to change the relationship between the plurality of holes and the conveying part The number of channels that the outlet communicates with, thereby changing the size of the extrusion port.
  • a method for controlling a 3D printing device includes: a row of channels; the control method includes: controlling the row of channels to simultaneously extrude a row of materials to fill an area ; Control the on-off of the row of channels to change the length of the row of materials; wherein, the arrangement of the row of channels makes the material extruded from the adjacent channels in the row of channels in the region can be integrated with each other.
  • FIG. 1 is a schematic structural diagram of a 3D printing device provided in the first embodiment of the present application.
  • FIG. 2 is a partial enlarged view of the 3D printing device in FIG. 1 .
  • FIG. 3 is a schematic structural diagram of another 3D printing device provided in the first embodiment of the present application.
  • FIG. 4 is a schematic diagram of an arrangement of multiple rows of channels provided by the first embodiment of the present application.
  • FIG. 5 is a schematic diagram of another arrangement manner of the multi-row holes provided by the first embodiment of the present application.
  • FIG. 6 is a schematic diagram of various channel arrays with different pitches provided by the first embodiment of the present application.
  • FIG. 7 is an example diagram of a solid structure and a mesh structure printed by the various channel arrays in FIG. 6 .
  • FIG. 8 is an example diagram of a grid structure printed by the 3D printing device provided in the first embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a 3D printing device provided by the second embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of another 3D printing device provided by the second embodiment of the present application.
  • FIG. 11 is a side view of a 3D printing device with a sleeve combined with an inner cylinder structure provided by the second embodiment of the present application.
  • 12 and 13 are schematic diagrams of the arrangement of the multiple rows of holes provided by the second embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of another 3D printing device provided by the second embodiment of the present application.
  • FIG. 15 is a schematic structural diagram of a sleeve with a thick and large structure provided by the second embodiment of the present application.
  • FIG. 16 is a schematic flowchart of a control method of a 3D printing device provided by the third embodiment of the present application.
  • FIG. 17 is a schematic flowchart of a control method of another 3D printing device provided by the third embodiment of the present application.
  • the diameter of the extrusion port of the traditional 3D printing device is usually fixed.
  • a new type of extrusion port has gradually emerged, which can dynamically adjust the size of the extrusion port according to actual needs.
  • a 3D printing device with such an extrusion port has obvious advantages in terms of both printing accuracy and printing efficiency.
  • two loose blocks are usually arranged at the bottom of the 3D printing device in the related art (the gap between the two loose blocks is the extrusion port).
  • the gap between the two live blocks can be changed, thereby forming extrusion ports of different sizes.
  • specific descriptions of the related art refer to, for example, PCT/CN2017/083647 and PCT/CN2018/113069.
  • the above solution will squeeze the material at the extrusion port while changing the size of the extrusion port, resulting in uneven flow rate of the material, thereby reducing the printing quality.
  • the two flaps will move toward each other along the length of the extrusion port.
  • the opposite movement of the two live blocks will squeeze the material in the length direction of the extrusion port, which will cause the pressure to spread in the length direction of the extrusion port, resulting in uneven flow rate of the material in the length direction of the extrusion port.
  • the present application provides a 3D printing device.
  • the 3D printing device can use flowable materials (or molten materials) for 3D printing.
  • the size of the extrusion port of the 3D printing device is variable.
  • the 3D printing device may include a feeding part 10 and a discharging part 20.
  • the material in the 3D printing device can be transported to the discharging part 20 through the feeding part 10, and the material is extruded by the discharging part 20.
  • the delivery section 10 may include an inlet 11 and an outlet 12 for the material.
  • a conveying channel 13 may be provided between the inlet 11 and the outlet 12 .
  • Material can enter from inlet 11 , pass through feed channel 13 , and flow out from outlet 12 .
  • the material outlet 12 may be a groove, and the cross-sectional shape of the groove is not particularly limited in this embodiment of the present application, for example, it may be a long and narrow rectangular groove, or a trapezoid or other shapes.
  • the discharge part 20 has an extrusion port 21 .
  • the extrusion port 21 can be in fluid communication with the outlet 12 of the delivery section 10 to extrude the material.
  • the extrusion port 21 may be provided outside the outlet port 12 .
  • the extrusion port 21 can be used to fill an area.
  • the region can be a simply connected region.
  • the extrusion port 21 can fill the single-connected area by surface filling, that is, in the process of filling the single-connected area, the length of the extrusion port 21 can vary with the change of the contour line of the single-connected area, thereby Fill the single-connected region completely at one time.
  • the extrusion port 21 has a plurality of holes 211, or can be divided into a plurality of holes 211 (each hole can be a square hole or a round hole).
  • the extrusion port 21 may be segmented into a cell array having at least one row of cells.
  • the holes 211 may be separated by hole walls (or partitions).
  • the plurality of channels 211 can be closely arranged, so that the materials extruded from adjacent channels can be fused with each other (or connected with each other) in the filled area. Or, in other words, the arrangement of the plurality of holes 211 enables the materials extruded from adjacent holes in the plurality of holes 211 to be fused with each other on the printing platform (or the forming platform).
  • auxiliary means can also be used to ensure the fusion effect of the materials extruded from the plurality of channels 211 .
  • the embodiment of the present application does not specifically limit the wall thickness of the channels in the plurality of channels 211, the distance between the channels, or the tightness of the channel arrangement, which can be set according to the material and fluidity of the material.
  • the hole diameter of the channel is different, and the thickness of the printed layer formed by it will also be different.
  • the aperture can be 0.1mm or smaller to form an ultra-thin printing layer with a printing thickness of less than 0.1mm; for high-efficiency printing, the aperture can be 1mm or larger to form Print ultra-thick print layers with a thickness of more than 1mm.
  • the 3D printing apparatus may further include a control part 30 .
  • the control part 30 can be used to control the relative movement of the feeding part 10 and the feeding part 20 in the process of filling a single connected area with the extrusion port 21, so as to change the outlet 12 of the feeding part 10 in the plurality of holes 211
  • the number of communicating channels 211 changes the size of the extrusion port 21 .
  • the feeding part 10 is an inner cylinder
  • the discharging part 20 is a sleeve of the inner cylinder.
  • the control part 30 can be used to control the movement of the inner cylinder and the sleeve along the axial direction of the inner cylinder to change the length of the extrusion port 20 .
  • Fig. 1(a) Fig. 2(a) is a partial enlarged view of the area near the extrusion port 21 in the state shown in Fig. 1(a)
  • the extrusion port All the orifices 211 in 21 communicate with the outlet 12, and the length of the extrusion port 21 is the longest.
  • Fig. 2(b) is the area near the extrusion port 21 in the state shown in Fig. 1(b) .
  • Partially enlarged view part of the orifice 211 in the extrusion port 21 is blocked, and the material cannot be extruded, so that the length of the extrusion port 21 is shortened.
  • the feeding part 10 may be a cube, a cylinder or any other shape.
  • the discharging part 20 may be a shutter located outside the outlet 12 of the feeding part 10 .
  • the control part 30 can be used to control the relative movement of the feeding part 10 and the shutter 20 along the length direction of the extrusion port 21 .
  • all the orifices 211 in the extrusion port 21 communicate with the outlet port 12 , and the extrusion port 21 has the longest length.
  • the control part 30 controls the shutter to slide along the length direction of the discharge port 20 to the position shown in FIG.
  • the width of the extrusion port 21 can be changed by controlling the relative movement of the feeding part 10 and the discharging part 20 .
  • the plurality of channels 211 may form multiple rows of channels (2 channels are shown in FIG. 4 ).
  • the control part 30 can control the relative movement of the feeding part 10 and the discharging part 20 , so as to change the number of rows of holes in the conducting state, thereby changing the width of the extrusion port 21 .
  • the control part 30 controls the relative movement of the conveying part 10 and the discharging part 20 so that the outlet 12 of the conveying part 10 and the multiple rows of holes are in the positions shown in Fig. 4(b), one of the multiple rows of holes
  • the discharge channel is in fluid communication with the outlet 12, and the width h of the extrusion opening 21 is relatively small, which is equivalent to the diameter of one channel.
  • the control part 30 controls the relative movement of the conveying part 10 and the discharging part 20 so that the outlet 12 of the conveying part 10 and the multiple rows of orifices are in the positions shown in FIG. 4( c ), the width h of the extrusion opening 21 The width becomes wider, which is equivalent to the sum of the diameters of the two channels.
  • the printing thickness of a single layer can be changed by changing the width of the extrusion opening, so that the 3D printing device can achieve different printing efficiency and printing accuracy. For example, when printing accuracy requirements are low, the printing thickness of a single layer can be increased to improve printing efficiency; when fine printing is required, the printing thickness of a single layer can be reduced to improve printing accuracy.
  • the embodiment of the present application does not specifically limit the arrangement of the multi-row channels.
  • the staggered arrangement as shown in FIG. 5 can also be used. This arrangement is more compact, and Compared with the arrangement shown in FIG. 4 , the outline edges printed by the multi-row holes shown in FIG. 5 will also be different.
  • 3D printing it is often necessary to pause the printing process. For example, when printing to the contour edge of a section or area, it is necessary to pause the printing process, move the 3D printing device to a new printing starting point, and then resume printing. Since the materials used in 3D printing technology (such as polymer materials) usually have viscoelastic properties, when the material is stopped, the flow of the material usually does not stop abruptly, and the material will continue beyond the contour edge of the section or area to be printed. Build up, destroy the contour shape of the printed section or area, and reduce the geometric accuracy of the printed part.
  • control part 30 can also be used to move the plurality of holes 211 to outside the area where the outlet 12 of the material conveying part 10 is located (that is, the plurality of holes 211 and the outlet 12 are dislocated, so as to block the plurality of holes 211 ). multiple channels 211) to quickly shut down multiple channels 211 at the same time.
  • the outlet 12 of the delivery portion 10 can be designed as a narrow slot in width.
  • the control part 30 controls the inner cylinder or the sleeve to rotate a small angle around the axis of the inner cylinder, so that the plurality of holes 211 can leave the area where the outlet is located, thereby quickly stopping the extrusion process of the material.
  • control part 30 can control the conveying part 10 and the discharging part 20 to move to the positions shown in FIG. 4( a ). In this way, the outlet 12 is completely staggered from the rows of holes, the size of the extrusion port is 0, and the 3D printing device stops the extrusion of the material.
  • the design of the inner cylinder combined with the sleeve is easy to control, which is more helpful for the 3D printing device to quickly respond to the command to stop printing from the control system, so as to prevent the material from continuing to flow out after the system issues the command to stop printing. .
  • the control part 30 can control the relative movement of the feeding part 10 and the discharging part 20, and can also control the relative rotation of the feeding part 10 and the discharging part 20, which is different from the feeding part 10 and the discharging part 20.
  • the structure of the discharging part 10 is related to the structure of the discharging part 20, which is not limited in the embodiment of the present application. For example, assuming that the feeding part 10 and the discharging part 20 adopt the structure of the inner cylinder combined with the sleeve as shown in FIG. 1 , each row of holes in the multiple rows of holes can be arranged to be arranged along the axis direction of the inner cylinder, and different rows surround the inner cylinder.
  • the control part 30 can control the relative rotation of the inner cylinder and the sleeve around the axis of the inner cylinder, so as to change the number of rows of holes in communication with the outlet 12, thereby changing the width of the extrusion outlet.
  • the control part 30 can control the shielding plate 20 along the width direction of the extrusion port 21 move, thereby changing the width of the extrusion port 21 .
  • control of the length of the extrusion port 21 and the control of the width can be combined with each other, so that the size of the extrusion port 21 in each dimension can be flexibly changed according to actual needs.
  • the first channel array formed by a plurality of channels 211 is more suitable for printing a solid structure ( FIG. 6( a ) is an example of the first channel array, and the printed solid structure is shown in FIG. 7( a )).
  • a second channel array as shown in FIG. 6(b) or 6(c) may be configured for the 3D printing device based on the first channel array.
  • the channels in the second channel array are more sparsely arranged, so that the materials extruded from different channels in the second channel array are separated from each other on the printing platform. Therefore, each channel in the second channel array can be regarded as an independent extrusion port.
  • Fig. 7(b) and Fig. 7(c) are examples of mesh structures printed by the second channel array shown in Figs. 6(b) and 6(c), respectively.
  • the grid members that can be printed by the 3D printing device are not limited to the above forms. According to different appearance or structural requirements, the 3D printing device can be controlled to print grid components with different shapes, which can be realized by changing the movement mode of the 3D printing device. For example, when printing different layers, the 3D printing device can be deflected by a certain angle, and the setting of the deflection angle is not limited, and it can be any deflection angle.
  • the printing of the mesh structure shown in Fig. 7(b) or Fig. 7(c) is achieved by deflecting the movement direction of the 3D printing device by 90° when printing between layers.
  • the printing of the grid structure shown in Figure 8(a) is achieved by deflecting the movement direction of the 3D printing device by 45° when printing between layers.
  • different relative motion patterns may be used between the 3D printing device and the printing platform, for example, when printing the structure shown in FIG. 8(a), the relative movement between the 3D printing device and the printing platform
  • the mode is linear motion mode; when printing the structure shown in Figure 8(b), the relative motion mode between the 3D printing device and the printing platform is a linear motion mode combined with a curved motion mode; when printing the structure shown in Figure 8(c)
  • the relative motion mode between the 3D printing device and the printing platform is a pure curve motion mode.
  • the embodiments of the present application have no specific restrictions on the relative motion modes between the 3D printing device and the printing platform, and different motion modes can be freely combined to form grid members with various structures.
  • the control part 30 can control the first orifice array to be in fluid communication with the outlet 12 of the delivery part 10 , and can also control the second orifice array to be in fluid communication with the outlet 12 of the delivery part 10 .
  • the control portion 30 may select an array of orifices from the first array of orifices and the second array of orifices to be in fluid communication with the outlet 12 of the delivery portion 10 . For example, taking the solution of the inner cylinder combined with the sleeve shown in FIG.
  • the first array of holes and the second array of holes are located at different positions in the circumferential direction of the sleeve, and the control part 30 can control the relative rotation of the inner cylinder and the sleeve, Thereby a choice is made between a first array of wells and a second array of wells.
  • control part 30 to control the relative movement of the feeding part 10 and the discharging part 20 .
  • the feeding part 10 can be kept stationary and the movement of the feeding part 20 can be controlled; or, the feeding part 20 can be kept still and the feeding part 10 can be controlled to move; or both can be controlled to move at the same time.
  • control part 30 can control the length of the extrusion port 21 to follow the contour of the area to be filled changes, so as to complete the filling of the area at one time.
  • the 3D printing device provided in this application may refer to the 3D printing head, or may refer to the entire 3D printing system.
  • the control part of the 3D printing device can be realized by software, hardware or a combination of software and hardware.
  • printing, filling and coating are sometimes used interchangeably.
  • printing an area can mean coating an area or filling the area with material.
  • the main difference between the second embodiment and the first embodiment is that in the second embodiment, a plurality of orifices are also provided inside the outlet 12 of the material conveying part 10, and the plurality of orifices are referred to as upper Arrange holes.
  • the plurality of channels 211 in the discharge portion 20 in the first embodiment are referred to as lower rows of channels in the second embodiment.
  • the control part 30 in the second embodiment mainly controls the relative positions of the upper and lower rows of holes, so as to realize the adjustment of the length and/or width of the extrusion port 21 .
  • the second embodiment is similar to the other structures of the first embodiment.
  • the discharging part 20 in the second embodiment can also adopt the sleeve structure as shown in FIG. 1 or the shielding plate structure as shown in FIG. 3 . Therefore, For structures not described in detail in the second embodiment, reference may be made to the first embodiment.
  • the outlet 12 of the feeding part 10 has or is divided into an upper row of channels 121 , and a lower row of channels 211 are provided inside the extrusion outlet 21 .
  • the hole diameters of the upper row of holes 121 and the lower row of holes 211 may be the same or different.
  • a row of holes in the lower row of holes 211 that communicate with the upper row of holes 121 can extrude a row of materials (eg, a row of filamentous materials).
  • the control part 30 can control the relative movement (such as relative sliding) of the upper row of holes 121 and the lower row of holes 211 along the arrangement direction (or extension direction) of the upper row of holes 121 or the lower row of holes 211, so as to change the relationship between the lower row of holes 211 and the lower row of holes 211.
  • the number of channels connected to the upper row of channels 121 changes the length of the material extruded from the lower row of channels 211 .
  • 3D printing it is often necessary to pause the printing process. For example, when printing to the contour edge of a section or area, it is necessary to pause the printing process, move the 3D printing device to a new printing starting point, and then continue the subsequent printing process. Since the materials used in 3D printing technology (such as polymer materials) usually have viscoelastic properties, when the material is stopped, the flow of the material usually does not stop abruptly, and the material will continue beyond the contour edge of the section or area to be printed. Build up, destroy the contour shape of the printed section or area, and reduce the geometric accuracy of the printed part.
  • control part 30 can control the relative movement of the upper row of holes 121 and the lower row of holes 211, so that the upper row of holes 121 and the lower row of holes 211 are dislocated at the same time, thereby quickly shutting down the lower row of holes 211 , so that the lower row of channels 211 stops extruding the material outward at the same time.
  • control part 30 can control the inner cylinder 10 or the sleeve 20 to rotate a small angle around the axis of the inner cylinder 10, so that the upper row of holes 11 and the lower row of holes 12 can be simultaneously dislocation, thereby quickly stopping the extrusion process of the material.
  • the quick shut-off method of the lower row of holes 211 can refer to the process from FIG. 11( a ) to FIG.
  • Each of the rows of channels 211 includes multiple rows of channels, and the fast shut-off manner of the lower row of channels 211 can be referred to the process from FIG. 11( c ) to FIG. 11( d ).
  • the design of the inner cylinder combined with the sleeve is simple to control, which is more helpful for the 3D printing device to quickly respond to the stop printing command from the control part, and avoid the continuous flow of materials after the system issues the stop printing command.
  • different printing efficiency and printing accuracy can be achieved by changing the printing thickness of a single layer. For example, when printing accuracy requirements are low, the printing thickness of a single layer can be increased to improve printing efficiency; when fine printing is required, the printing thickness of a single layer can be reduced to improve printing accuracy.
  • both the upper row of holes 121 and the lower row of holes 211 may include multiple rows of holes.
  • the upper row of channels represented by the black circles in FIG. 12
  • the lower row of channels represented by the white circles in FIG. 12
  • the upper row of holes 121 and the lower row of holes 211 have a row of holes overlapping, and at this time, the printing thickness of a single layer is the width of one row of holes.
  • the upper row of holes 121 and the lower row of holes 211 have two rows of holes overlapping, and at this time, the printing thickness of a single layer is the width of the two rows of holes.
  • the control part 30 can control the upper row of holes 121 and the lower row of holes 211 to move along the width direction of the upper row of holes 121, thereby changing the number of rows of holes in the lower row of holes that can extrude materials.
  • the present application does not specifically limit the arrangement of the channel arrays.
  • the staggered arrangement shown in FIG. 13 may also be used.
  • the arrangement of the channel array shown in FIG. 13 makes the arrangement of the channels more compact. Compared with the channel array shown in FIG. 12 , the outline edges printed by the channel array shown in FIG. 13 will also be different.
  • the channel depths of the upper and lower rows of channels will be superimposed together, so the resistance of the material passing through the two rows of channels is relatively large.
  • the 3D printing device needs to provide higher pressure to extrude the material from the two rows of channels.
  • This problem is particularly prominent in high-precision printing occasions. This is because, in the case of high-precision printing, the diameter of the holes in the two rows of holes may be very small, for example, 0.1 mm or less.
  • the resistance may be very large, and a very high extrusion pressure is required to extrude the material from the channels at the required rate.
  • the high requirements of the two rows of holes on the extrusion pressure will lead to the large size and energy consumption of the entire material extrusion mechanism, which increases the cost of the 3D printing device.
  • a groove 50 may be dug in the inner wall of the feeding part 10 (the shape of the groove 50 is not limited to the rectangular groove shown in FIG.
  • the shape of the groove 50 can be designed as a circular arc).
  • the channel depth is reduced by the depth of one groove. Since the resistance of the material passing through the channel is proportional to the depth of the channel, this embodiment can reduce the resistance of the 3D printing device to extrude the material.
  • the depth of the channel can be reduced by thinning the wall of the barrel where the sleeve is located. For example, as shown in the leftmost figure in FIG. 14 , a part of the cylinder wall near the lower row of holes can be cut off in a certain arc shape.
  • control part 30 can control the length of the extrusion port 21 to follow the contour of the area to be filled changes, so as to complete the filling of the area at one time.
  • the shape of the sleeve 20 may be cylindrical, or may be other shapes.
  • the upper part of the sleeve 20 can be designed as a thick structure, so that the heater 60 can be conveniently installed therein.
  • the on-off control of the plurality of holes is performed by controlling the relative movement of the feeding part and the discharging part, but the present application is not limited to this.
  • the channel control of each channel can be performed directly and individually without the need to provide two parts of relative movement (ie, the aforementioned feeding part and the discharging part).
  • a separate switch can be provided for each channel, so as to individually control the on and off of each channel.
  • the third embodiment is a method embodiment, and the description of the method embodiment corresponds to the description of the apparatus embodiment. Therefore, for the parts not described in detail, reference may be made to the apparatus embodiment above.
  • FIG. 16 is a schematic flowchart of a control method of a 3D printing device with an extrusion port of variable size provided by the third embodiment of the present application.
  • the 3D printing device may include: a feeding part, which has an inlet and an outlet for materials; a feeding part, which has an extrusion port, and the extrusion port can be in fluid communication with the outlet of the feeding part to extrude the material, and the extrusion port is divided into multiple parts. a hole.
  • the control method of FIG. 16 may include steps S1610 and S1620.
  • step S1610 the extrusion port is controlled to fill a single connected area.
  • step S1620 in the process of filling a single communication area with the extrusion port, the relative movement of the feeding part and the discharging part is controlled, so as to change the number of the channels in the plurality of channels that communicate with the outlet of the feeding part, thereby Change the size of the extrusion port.
  • step S1620 may include: controlling the inner cylinder and the sleeve to move along the axial direction of the inner cylinder to change the length of the extrusion port.
  • the feeding part is an inner cylinder, and the feeding part is a sleeve of the inner cylinder; the plurality of channels include multiple rows of channels; step S1620 may include: controlling the rotation of the inner cylinder and the sleeve around the axis of the inner cylinder to change the The number of rows of channels in a connected state in multiple rows of channels, thereby changing the width of the extrusion port.
  • step S1620 may include: controlling the feeding part and the shielding plate to move relatively along the length direction and/or the width direction of the extrusion port.
  • the method of FIG. 16 may further include: moving the plurality of channels out of the area where the outlet of the material conveying portion is located, so as to shut off the plurality of channels at the same time.
  • materials extruded from multiple channels can be fused together in a single-connected region.
  • step S1610 may include: controlling the length of the extrusion port, so that the length of the extrusion port changes with the change of the contour line of the area, so that the area is completely filled at one time.
  • a plurality of holes form a lower row of holes, and an upper row of holes opposite to the lower row of holes is provided in the outlet of the material conveying part.
  • the inside of the feeding part has grooves, and the upper row of holes is in fluid communication with the inlet through the grooves.
  • FIG. 17 is a schematic flowchart of a control method of another 3D printing device provided by the third embodiment of the present application.
  • the 3D printing device may include: a row of channels, and the arrangement of the rows of channels enables the materials extruded from adjacent channels in the row of channels to be able to fuse with each other in an area.
  • the control method of FIG. 17 may include steps S1710 and S1720.
  • step S1710 a row of channels is controlled to extrude a row of materials at the same time, so as to fill a region.
  • step S1720 the on-off of a row of channels is controlled to change the length of a row of materials.

Abstract

一种具有可变尺寸的挤出口的3D打印装置及其控制方法。该3D打印装置包括:输料部分(10),具有物料的入口(11)和出口(12);出料部分(20),具有一挤出口(21),挤出口(21)能够与输料部分(10)的出口(12)中的流体连通,以挤出物料,挤出口(21)被分割成多个孔道(211);控制部分(30),用于在利用挤出口(21)对一块单连通区域进行填充的过程中,控制输料部分(10)和出料部分(20)相对运动,以改变多个孔道(211)中的与输料部分(10)的出口(12)连通的孔道(211)的数量,从而改变挤出口(21)的尺寸。该3D打印装置能够在挤出物料的过程中改变挤出口的尺寸,并能够避免挤出口尺寸改变引起物料流率不均的问题。

Description

具有可变尺寸的挤出口的3D打印装置及其控制方法 技术领域
本申请涉及3D打印领域,并且更具体地,涉及一种具有可变尺寸的挤出口的3D打印装置及其控制方法。
背景技术
传统3D打印装置的挤出口的口径通常是固定的。
随着3D打印技术的发展,逐渐出现了一种新型的挤出口,这种挤出口能够根据实际需要动态调节挤出口的尺寸。具有此类挤出口的3D打印装置在兼顾打印精度和打印效率方面具有明显优势。
但是,该3D打印装置仍然存在进一步提升的空间。
发明内容
第一方面,提供一种具有可变尺寸的挤出口的3D打印装置,包括:输料部分,具有物料的入口和出口;出料部分,具有一挤出口,所述挤出口能够与所述输料部分的出口流体连通,以挤出所述物料,所述挤出口被分割成多个孔道;控制部分,用于在利用所述挤出口对一块单连通区域进行填充的过程中,控制所述输料部分和所述出料部分相对运动,以改变所述多个孔道中的与所述输料部分的出口连通的孔道的数量,从而改变所述挤出口的尺寸。
第二方面,提供一种3D打印装置,包括:一排孔道;控制部分,用于控制所述一排孔道同时挤出一排物料,以对一块区域进行填充,并控制所述一排孔道的通断,以改变所述一排物料的长度;其中,所述一排孔道的排布使得所述一排孔道中的相邻孔道挤出的物料在所述区域中能够相互融合。
第三方面,提供一种具有可变尺寸的挤出口的3D打印装置的控制方法,所述3D打印装置包括:输料部分,具有物料的入口和出口;出料部分,具有一挤出口,所述挤出口能够与所述输料部分的出口流体连通,以挤出所述物料,所述挤出口被分割成多个孔道;所述控制方法包括:控制所述挤出口对一块单连通区域进行填充;在利用所述挤出口对一块单连通区域进行填充的过程中,控制所述输料部分和所述出料部分相对运动,以改变所述多个孔道中的与所述输料部分的出口连通的孔道的数量,从而改变所述挤出口的尺寸。
第四方面,提供一种3D打印装置的控制方法,所述3D打印装置包括:一排孔道;所述控制方法包括:控制所述一排孔道同时挤出一排物料,以对一块区域进行填充;控制所述一排孔道的通断,以改变所述一排物料的长度;其中,所述一排孔道的排布使得所一排孔道中的相邻孔道挤出的物料在所述区域中能够相互融合。
附图说明
图1是本申请第一实施例提供的一种3D打印装置的结构示意图。
图2是图1中的3D打印装置的局部放大图。
图3是本申请第一实施例提供的另一种3D打印装置的结构示意图。
图4是本申请第一实施例提供的多排孔道的一种排布方式的示意图。
图5是本申请第一实施例提供的多排孔道的另一种排布方式的示意图。
图6是本申请第一实施例提供的间距不同的多种孔道阵列的示意图。
图7是图6中的各种孔道阵列打印出的实心结构和网格结构的示例图。
图8是本申请第一实施例提供的3D打印装置打印出的网格结构的示例图。
图9是本申请第二实施例提供的一种3D打印装置的结构示意图。
图10是本申请第二实施例提供的另一种3D打印装置的结构示意图。
图11是本申请第二实施例提供的具有套筒结合内筒结构的3D打印装置的侧视图。
图12和13是本申请第二实施例提供的多排孔道的排布方式示意图。
图14是本申请第二实施例提供的又一3D打印装置的结构示意图。
图15是本申请第二实施例提供的具有厚大结构的套筒的结构示意图。
图16是本申请第三实施例提供的一种3D打印装置的控制方法的示意性流程图。
图17是本申请第三实施例提供的另一3D打印装置的控制方法的示意性流程图。
具体实施方式
传统3D打印装置的挤出口的口径通常是固定的。随着3D打印技术的发展,逐渐出现了一种新型的挤出口,这种挤出口能够根据实际需要动态调节挤出口的尺寸。具有此类挤出口的3D打印装置在兼顾打印精度和打印效率方面具有明显优势。
为了形成尺寸不同的挤出口,相关技术通常在3D打印装置的底部设置两个活块(两个活块之间的间隙即为挤出口)。该相关技术通过控制两个活块相对滑动,使得两个活块之间的间隙得以改变,从而形成了尺寸不同的挤出口。该相关技术的具体描述例如可以参见PCT/CN2017/083647和PCT/CN2018/113069。
但是,上述方案在改变挤出口尺寸的同时,也会在挤出口处对物料挤压,从而造成物料的流率不均匀,进而降低打印质量。例如,当希望减小挤出口的长度时,两个活块会沿挤出口的长度方向相向运动。两个活块的相向运动,会在挤出口的长度方向挤压物料,从而导致压力在挤出口的长度方向传播,造成物料在挤出口的长度方向上的流率不均匀。
第一实施例:
为解决上述问题,如图1所示,本申请提供一种3D打印装置。该3D打印装置可利用可流动态的物料(或熔融态的物料)进行3D打印。该3D打印装置的挤出口的尺寸可变。
该3D打印装置可以包括输料部分10和出料部分20。3D打印装置中的物料可通过输料部分10输送至出料部分20,并由出料部分20对物料进行挤出。
输料部分10可以包括物料的入口11和出口12。入口11和出口12之间可以设置有输料通道13。物料可以从入口11进入,通过输料通道13,并从出口12流出。物料的出口12可以是一个凹槽,本申请实施例对此凹槽的截面形状不作特别限制,例如可以是一个狭长的矩形槽,也可以是梯形或其它形状。
出料部分20具有一挤出口21。挤出口21能够与输料部分10的出口12中的流体连通,以挤出物料。例如,可以将挤出口21设置在出口12的外侧。
挤出口21可用于对一块区域进行填充。该区域可以是单连通区域。挤出口21可以 采用面填充的方式对该单连通区域进行填充,即在填充该单连通区域的过程中,该挤出口21的长度可以随着该单连通区域的轮廓线的变化而变化,从而将该单连通区域一次性填充完整。
挤出口21具有多个孔道211,或者可以被分割成多个孔道211(每个孔道可以是方孔,也可以是圆孔)。例如,挤出口21可以被分割成具有至少一排孔道的孔道阵列。孔道211之间可以通过孔壁(或隔板)相隔。该多个孔道211可以紧密排布,使得相邻孔道挤出的物料在被填充的区域中能够相互融合(或相互连接)。或者,换句话说,多个孔道211的排布使得该多个孔道211中的相邻孔道挤出的物料在打印平台(或称成型平台)上能够相互融合。例如,当多个孔道211各自挤出的物料被涂覆到打印平台时,由于相邻孔道挤出的物料彼此之间的距离很近,可以通过自重流淌形成相互连接的涂层(或称打印层)。当然,在有些实施例中,还可以采用一些辅助手段(如机械碾压的方式)确保该多个孔道211挤出的物料的融合效果。
需要说明的是,本申请实施例对多个孔道211中的孔道的壁厚、孔道之间的距离,或孔道排布的紧密程度不做具体限定,可以根据物料的材质和流动性设置。
孔道的孔径不同,其形成的打印层的厚度也会不同。例如,针对精密打印,孔道可以采用0.1mm或更小的孔径,以形成打印厚度小于0.1mm的超薄打印层;又如,针对高效率打印,孔道可以采用1mm或更大的孔径,以形成打印厚度在1mm以上的超厚打印层。
如图1所示,3D打印装置还可以包括控制部分30。控制部分30可用于在利用挤出口21对一块单连通区域进行填充的过程中,控制输料部分10和出料部分20相对运动,以改变多个孔道211中的与输料部分10的出口12连通的孔道211的数量,从而改变挤出口21的尺寸。
作为一个示例,如图1和图2所示,输料部分10为一内筒,出料部分20为该内筒的套筒。控制部分30可用于控制内筒和套筒沿内筒的轴线方向移动,以改变挤出口20的长度。例如,当内筒和套筒处于如图1(a)所示的位置(图2(a)为图1(a)所示状态下的挤出口21附近区域的局部放大图)时,挤出口21中的所有孔道211均与出口12连通,挤出口21的长度最长。当控制部分30控制内筒和套筒沿内筒的轴线滑动至如图1(b)所示的位置(图2(b)为图1(b)所示状态下的挤出口21附近区域的局部放大图)时,挤出口21中的部分孔道211被遮挡,无法挤出物料,从而使得挤出口21的长度变短。
作为另一个示例,如图3所示,输料部分10可以是正方体、圆柱体或其他任意形状。出料部分20可以是位于输料部分10的出口12的外侧的一遮挡板。控制部分30可用于控制输料部分10和遮挡板20沿挤出口21的长度方向相对移动。例如,当输料部分10和遮挡板20处于如图3(a)所示的位置时,挤出口21中的所有孔道211均与出口12连通,挤出口21的长度最长。当控制部分30控制遮挡板沿出料口20的长度方向滑动至如图3(b)所示的位置时,挤出口21中的部分孔道211被遮挡,挤出口21的长度变短。
上述两个示例是以改变挤出口21的长度为例进行举例说明的。在某些实施例中,可以通过控制输料部分10和出料部分20的相对运动,从而改变挤出口21的宽度。
作为一个示例,如图4所示,多个孔道211可以形成多排孔道(图4示出了2孔道)。控制部分30可以控制输料部分10和出料部分20相对运动,以改变处于导通状态的孔道的排数,从而改变挤出口21的宽度。当控制部分30对输料部分10和出料部分20的相 对运动的控制使得输料部分10的出口12与多排孔道处于如图4(b)所示的位置时,多排孔道中的一排孔道与出口12流体连通,挤出口21的宽度h的宽度较小,相当于一个孔道的直径。当控制部分30对输料部分10和出料部分20的相对运动的控制使得输料部分10的出口12与多排孔道处于如图4(c)所示的位置时,挤出口21的宽度h的宽度变宽,相当于两个孔道的直径之和。
3D打印中,通过改变挤出口的宽度可以改变单层的打印厚度,从而使得3D打印装置可实现不同的打印效率和打印精度。例如,当打印精度要求较低时,可以增加单层的打印厚度,以提高打印效率;当需要进行精细打印时,可以降低单层的打印厚度,以提升打印精度。
本申请实施例对多排孔道形成的排列方式不做具体限定,除了图4所示的矩形排列方式外,还可以采用如图5所示的交错排列方式,这种排列方式更为紧凑,与图4所示的排列方式相比,图5所示的多排孔道打印出的轮廓边缘也会有所区别。
在3D打印过程中,经常需要暂停打印过程。例如,当打印到某个截面或区域的轮廓边缘时,就需要暂停打印过程,把3D打印装置移动到新的打印起点位置,然后再继续打印。由于3D打印技术采用的物料(如高分子材料)通常具有粘弹性,当停止输送物料时,物料的流动通常不会骤然停止,这时物料就会在待打印截面或区域的轮廓边缘之外继续堆积,破坏打印截面或区域的轮廓形状,降低打印件的几何精度。
为了解决上述问题,在一些实施例中,控制部分30还可用于将多个孔道211移动至输料部分10的出口12所在区域之外(即将多个孔道211与出口12错位,以阻塞该多个孔道211),以快速地同时关断多个孔道211。
例如,在图1所示的实施例中,输料部分10的出口12可以设计成宽度很窄的一个狭槽。控制部分30控制内筒或套筒绕内筒的轴线转动一个很小的角度,就可以使多个孔道211离开出口所在区域,从而快速停止物料的挤出过程。
又如,在图3所示的实施例中,控制部分30控制遮挡板沿出料口20的长度方向滑动至如图3(c)所示的位置时,挤出口21中的全部孔道211均被遮挡,挤出口21的长度变为0。此时,该3D打印装置停止物料挤出。
如果多个孔道211具有如图4所示的多排孔道,则控制部分30可以控制输料部分10和出料部分20运动至如图4(a)所示的位置。这样一来,出口12与多排孔道完全错开,挤出口的尺寸为0,3D打印装置停止物料挤出。
上述控制3D打印装置停止出料的方案中,内筒结合套筒的设计方案控制简单,更加有助于3D打印装置快速响应控制系统的停止打印的指令,避免系统发出停止打印指令之后物料继续流出。
需要说明的是,在改变挤出口21宽度的过程中,控制部分30可以控制输料部分10和出料部分20相对移动,也可以控制输料部分10和出料部分20相对转动,这与输料部分10和出料部分20的结构有关,本申请实施例对此并不限定。例如,假设输料部分10和出料部分20采用如图1所示的内筒结合套筒的结构,可以将多排孔道中的每排孔道设置成沿内筒的轴线方向排列,不同排围绕内筒的周向分布。在这种情况下,控制部分30可以控制内筒和套筒绕内筒轴线的相对转动,以改变与出口12处于连通状态的孔道的排数,从而改变挤出口的宽度。又如,假设输料部分10和出料部分20采用如图3所示的在输料部分10的底部设置遮挡板20的结构,则控制部分30可以控制遮挡板20沿挤出 口21的宽度方向移动,从而改变挤出口21的宽度。
由于对孔道进行通断控制不会在挤出口的长度方向或宽度方向对物料形成挤压,因此,也就避免了物料流率不均的问题,从而可以提高打印质量。
需要说明的是,在某些实施例中,挤出口21的长度的控制和宽度的控制可以相互结合,从而可以根据实际需要灵活改变挤出口21在各个维度的尺寸。
多个孔道211形成的第一孔道阵列更加适合打印实心结构(图6(a)为第一孔道阵列的一个示例,其打印出的实心结构如图7(a)所示)。为了能够兼容网格打印,在某些实施例中,可以在第一孔道阵列基础上,为3D打印装置配置如图6(b)或6(c)所示的第二孔道阵列。与第一孔道阵列相比,第二孔道阵列中的孔道的排布更加稀疏,使得该第二孔道阵列中的不同孔道挤出的物料在打印平台上相互分离。因此,第二孔道阵列中的每个孔道可以视为一个独立的挤出口。图7(b)和图7(c)分别为图6(b)和6(c)所示的第二孔道阵列打印出的网格结构的示例。
3D打印装置能够打印出的网格构件并不限于上述形式。针对不同的外观或者结构需求,可以控制3D打印装置打印出形态不同的网格构件,具体可以通过改变3D打印装置的运动方式来实现。例如,在打印不同层时,3D打印装置可偏转一定的角度,偏转角度的设置没有限制,可以是任意的偏转角度。例如,图7(b)或图7(c)所示的网格结构的打印是通过在层间打印时,将3D打印装置的运动方向偏转90°而实现的。再例如,图8(a)所示的网格结构的打印是通过在层间打印时,将3D打印装置的运动方向偏转45°实现的。
此外,在一些实施例中,3D打印装置与打印平台之间可采用不同的相对运动模式,例如,在打印图8(a)所示的结构时,3D打印装置与打印平台之间的相对运动模式为直线运动模式;在打印图8(b)所示的结构时,3D打印装置与打印平台之间的相对运动模式为直线运动模式结合曲线运动模式;在打印图8(c)所示的结构时,3D打印装置与打印平台之间的相对运动模式为纯曲线运动模式。本申请实施例对于3D打印装置和打印平台之间的相对运动模式没有具体限制,不同运动模式可以自由组合,从而形成结构多样的网格构件。
控制部分30可以控制第一孔道阵列与输料部分10的出口12流体连通,也可以控制第二孔道阵列与输料部分10的出口12流体连通。换句话说,控制部分30可以从第一孔道阵列和第二孔道阵列中选择与输料部分10的出口12流体连通的孔道阵列。例如,以图1所示的内筒结合套筒方案为例,第一孔道阵列和第二孔道阵列分别位于套筒的周向的不同位置,控制部分30可以控制内筒和套筒相对旋转,从而在第一孔道阵列和第二孔道阵列之间进行选择。
还需要说明的是,控制部分30控制输料部分10和出料部分20相对运动的方式有很多。例如,可以保持输料部分10不动,控制出料部分20运动;或者,可以保持出料部分20不动,控制输料部分10运动;或者,也可以控制二者同时运动。
如果希望将该3D打印装置应用于如PCT/CN2017/083647或PCT/CN2018/113069描述的面成型场景,在打印过程中,控制部分30可以控制挤出口21的长度随着待填充的区域轮廓线的变化而变化,从而一次性完成该区域的填充。
本申请提供的3D打印装置可以指3D打印头,也可以指整个3D打印系统。该3D打印装置的控制部分可以通过软件、硬件或软硬结合的方式实现。
在本申请中,打印、填充、涂覆有时是可以互换的。例如,打印某个区域可以指涂覆某个区域或将物料填充至该区域中。
第二实施例:
第二实施例与第一实施例的主要不同之处在于,第二实施例在输料部分10的出口12内部也设置了多个孔道,该多个孔道在第二实施例中被称为上排孔道。第一实施例中的出料部分20中的多个孔道211在第二实施例中被称为下排孔道。也就是说,第二实施例中的控制部分30主要通过控制上下两排孔道的相对位置,从而实现挤出口21的长度和/或宽度尺寸的调整。第二实施例与第一实施例的其他结构类似,如第二实施例中的出料部分20也可以采用如图1所示的套筒结构或如图3所示的遮挡板结构,因此,第二实施例中未详细描述的结构可以参见第一实施例。
参见图9和图10,输料部分10的出口12具有或被划分成上排孔道121,挤出口21内部设置有下排孔道211。上排孔道121和下排孔道211的孔径可以相同,也可以有所差异。下排孔道211中的与上排孔道121连通的一排孔道可以挤出一排物料(如一排丝状的物料)。
控制部分30可以通过控制上排孔道121和下排孔道211沿上排孔道121或下排孔道211的排列方向(或延伸方向)相对移动(如相对滑动),以改变下排孔道211中的与上排孔道121连通的孔道的数量,从而改变下排孔道211挤出的物料的长度。
在3D打印过程中,经常需要暂停打印过程。例如,当打印到某个截面或区域的轮廓边缘时,就需要暂停打印过程,把3D打印装置移动到新的打印起点位置,然后再继续后续打印过程。由于3D打印技术采用的物料(如高分子材料)通常具有粘弹性,当停止输送物料时,物料的流动通常不会骤然停止,这时物料就会在待打印截面或区域的轮廓边缘之外继续堆积,破坏打印截面或区域的轮廓形状,降低打印件的几何精度。
为了解决上述问题,在一些实施例中,控制部分30可以控制上排孔道121和下排孔道211的相对运动,使上排孔道121和下排孔道211同时错位,从而快速关断下排孔道211,使得下排孔道211同时停止向外挤出物料。
例如,在图9所示的实施例中,控制部分30可以控制内筒10或套筒20绕内筒10的轴线转动一个很小的角度,就可以使上排孔道11和下排孔道12同时错位,从而快速停止物料的挤出过程。如果上排孔道121和下排孔道211均包括一排孔道,则下排孔道211的快速关断方式可以参见从图11(a)至图11(b)的过程;如果上排孔道121和下排孔道211均包括多排孔道,则下排孔道211的快速关断方式参见从图11(c)至图11(d)的过程。这种内筒结合套筒的设计方案控制简单,更加有助于3D打印装置快速响应控制部分的停止打印指令,避免系统发出停止打印指令之后物料继续流出。
3D打印中,通过改变单层的打印厚度可实现不同的打印效率和打印精度。例如,当打印精度要求较低时,可以增加单层的打印厚度,以提高打印效率;当需要进行精细打印时,可以降低单层的打印厚度,以提升打印精度。
为了能够对打印厚度进行调节,上排孔道121和下排孔道211均可以包含多排孔道。以图12为例,上排孔道(由图12中的黑色圆圈表示)和下排孔道(由图12中的白色圆圈表示)均为两排孔道。在图12(a)所示的状态下,所有上排孔道121和下排孔道211均不重合,所有孔道处于阻塞状态,物料无法流出。在图12(b)所示的状态下,上排孔道121与下排孔道211有一排孔道重合,此时,单层的打印厚度为一排孔道的宽度。在图12(c) 所示的状态下,上排孔道121与下排孔道211有两排孔道重合,此时,单层的打印厚度为两排孔道的宽度。控制部分30可以控制上排孔道121和下排孔道211沿上排孔道121的宽度方向移动,从而改变下排孔道中的能够挤出物料的孔道的排数。
本申请对孔道阵列的排列方式不做具体限定,除了图12所示的矩形排列方式外,还可以采用如图13所示的交错排列方式。图13所示的孔道阵列的排列方式使得孔道的排布更为紧凑,与图12所示的孔道阵列相比,利用图13所示的孔道阵列打印出的轮廓边缘也会有所区别。
上下两排孔道的孔道深度会叠加在一起,因此物料通过两排孔道所受的阻力较大。此时,3D打印装置需要提供较高的压力才能将物料从两排孔道中挤出。这种问题在高精密打印场合下显得尤为突出。这是因为,在高精密打印场合下,两排孔道中孔的直径可能非常小,例如0.1mm或更小。打印过程中,物料高速通过直径很小的两排孔道时的阻力可能会非常大,需要提供非常高的挤出压力才能将物料从孔道中以所需要的速率挤出。两排孔道对挤出压力的高要求会导致整个物料挤出机构的尺寸和能耗偏大,增加了3D打印装置的成本。
为了解决上述问题,如图14所示,在一些实施例中,可以在输料部分10的内壁挖一凹槽50(凹槽50的形状不限于图6所示的矩形凹槽,例如,也可以将凹槽50的形状设计成圆弧形)。这样,孔道深度就会减小一个凹槽的深度。由于物料通过孔道的阻力正比于孔道的深度,因此该实施例可以减小3D打印装置挤出物料的阻力。
此外,在另一些实施中,可通过将套筒所处位置的筒壁削薄,以减小孔道深度。例如,如图14最左侧的图所示,可以以一定的弧形削去下排孔道附近的一部分筒壁。
如果希望将该3D打印装置应用于如PCT/CN2017/083647或PCT/CN2018/113069描述的面成型场景,在打印过程中,控制部分30可以控制挤出口21的长度随着待填充的区域轮廓线的变化而变化,从而一次性完成该区域的填充。
在第一实施例或第二实施例中,套筒20的形状可以是圆筒形,也可以是其他形状。例如,如图15所示,套筒20的上部可以设计成厚大结构,这样可以方便地在其中安装加热器60。
第一实施例和第二实施例均通过控制输料部分和出料部分相对运动的方式对多个孔道进行通断控制,但本申请不限于此。在某些实施例中,可以直接地、单独地对各个孔道进行通道控制,而无需设置相对运动的两个部分(即前文提及的输料部分和出料部分)。例如,可以为每个孔道设置一个单独的开关,从而单独控制各个孔道的导通和关断。
第三实施例:
第三实施例是方法实施例,方法实施例的描述与装置实施例的描述相互对应,因此,未详细描述部分可以参见上文中装置实施例。
图16是本申请第三实施例提供的一种具有可变尺寸的挤出口的3D打印装置的控制方法的示意性流程图。该3D打印装置可以包括:输料部分,具有物料的入口和出口;出料部分,具有一挤出口,挤出口能够与输料部分的出口流体连通,以挤出物料,挤出口被分割成多个孔道。
图16的控制方法可以包括步骤S1610和步骤S1620。
在步骤S1610,控制挤出口对一块单连通区域进行填充。
在步骤S1620,在利用挤出口对一块单连通区域进行填充的过程中,控制输料部分 和出料部分相对运动,以改变多个孔道中的与输料部分的出口连通的孔道的数量,从而改变挤出口的尺寸。
可选地,输料部分为一内筒,出料部分为内筒的套筒;步骤S1620可以包括:控制内筒和套筒沿内筒的轴线方向移动,以改变挤出口的长度。
可选地,输料部分为一内筒,输料部分为内筒的套筒;多个孔道包括多排孔道;步骤S1620可以包括:控制内筒和套筒绕内筒的轴线转动,以改变多排孔道中的处于连通状态的孔道的排数,从而改变挤出口的宽度。
可选地,出料部分为位于输料部分的出口的外侧的一遮挡板;步骤S1620可以包括:控制输料部分和遮挡板沿挤出口的长度方向和/或宽度方向相对移动。
可选地,图16的方法还可包括:将多个孔道移动至输料部分的出口所在区域之外,以同时关断多个孔道。
可选地,多个孔道挤出的物料能够在单连通区域中融合在一起。
可选地,步骤S1610可以包括:控制挤出口的长度,使得挤出口的长度随着区域的轮廓线的变化而变化,从而将区域一次性填充完整。
可选地,多个孔道形成下排孔道,输料部分的出口中设置有与下排孔道相对的上排孔道。
可选地,输料部分的内部具有凹槽,上排孔道通过凹槽与入口流体连通。
图17是本申请第三实施例提供的另一3D打印装置的控制方法的示意性流程图。该3D打印装置可以包括:一排孔道,一排孔道的排布使得所一排孔道中的相邻孔道挤出的物料在区域中能够相互融合。
图17的控制方法可以包括步骤S1710和步骤S1720。
在步骤S1710,控制一排孔道同时挤出一排物料,以对一块区域进行填充。
在步骤S1720,控制一排孔道的通断,以改变一排物料的长度。

Claims (21)

  1. 一种具有可变尺寸的挤出口的3D打印装置,其特征在于,包括:
    输料部分,具有物料的入口和出口;
    出料部分,具有一挤出口,所述挤出口能够与所述输料部分的出口流体连通,以挤出所述物料,所述挤出口被分割成多个孔道;
    控制部分,用于在利用所述挤出口对一块单连通区域进行填充的过程中,控制所述输料部分和所述出料部分相对运动,以改变所述多个孔道中的与所述输料部分的出口连通的孔道的数量,从而改变所述挤出口的尺寸。
  2. 根据权利要求1所述的3D打印装置,其特征在于,所述输料部分为一内筒,所述出料部分为所述内筒的套筒;
    所述控制部分用于控制所述内筒和所述套筒沿所述内筒的轴线方向移动,以改变所述挤出口的长度。
  3. 根据权利要求1所述的3D打印装置,其特征在于,所述输料部分为一内筒,所述出料部分为所述内筒的套筒;
    所述多个孔道包括多排孔道;
    所述控制部分用于控制所述内筒和所述套筒绕所述内筒的轴线转动,以改变所述多排孔道中的处于连通状态的孔道的排数,从而改变所述挤出口的宽度。
  4. 根据权利要求1所述的3D打印装置,其特征在于,所述出料部分为位于所述输料部分的出口的外侧的一遮挡板;
    所述控制部分用于控制所述输料部分和所述遮挡板沿所述挤出口的长度方向和/或宽度方向相对移动。
  5. 根据权利要求1-4中任一项所述的3D打印装置,其特征在于,所述控制部分还用于将所述多个孔道移动至所述输料部分的出口所在区域之外,以同时关断所述多个孔道。
  6. 根据权利要求1-5中任一项所述的3D打印装置,其特征在于,所述多个孔道挤出的物料能够在所述单连通区域中融合在一起。
  7. 根据权利要求1-6中任一项所述的3D打印装置,其特征在于,所述控制部分用于控制所述挤出口的长度,使得所述挤出口的长度随着被填充的区域的轮廓线的变化而变化,从而将所述区域一次性填充完整。
  8. 根据权利要求1-7中任一项所述的3D打印装置,其特征在于,所述多个孔道形成下排孔道,所述输料部分的出口中设置有与所述下排孔道相对的上排孔道。
  9. 根据权利要求8所述的3D打印装置,其特征在于,所述输料部分的内部具有凹槽,所述上排孔道通过所述凹槽与所述入口流体连通。
  10. 一种3D打印装置,其特征在于,包括:
    一排孔道;
    控制部分,用于控制所述一排孔道同时挤出一排物料,以对一块区域进行填充,并控制所述一排孔道的通断,以改变所述一排物料的长度;
    其中,所述一排孔道的排布使得所述一排孔道中的相邻孔道挤出的物料在所述区域中能够相互融合。
  11. 根据权利要求10所述的3D打印装置,其特征在于,所述一排孔道属于第一孔 道阵列;
    所述3D打印装置还包括:
    第二孔道阵列,所述第二孔道阵列的排布使得所述第二孔道阵列中的不同孔道挤出的物料在打印平台上相互分离。
  12. 一种具有可变尺寸的挤出口的3D打印装置的控制方法,其特征在于,所述3D打印装置包括:
    输料部分,具有物料的入口和出口;
    出料部分,具有一挤出口,所述挤出口能够与所述输料部分的出口流体连通,以挤出所述物料,所述挤出口被分割成多个孔道;
    所述控制方法包括:
    控制所述挤出口对一块单连通区域进行填充;
    在利用所述挤出口对一块单连通区域进行填充的过程中,控制所述输料部分和所述出料部分相对运动,以改变所述多个孔道中的与所述输料部分的出口连通的孔道的数量,从而改变所述挤出口的尺寸。
  13. 根据权利要求12所述的控制方法,其特征在于,所述输料部分为一内筒,所述出料部分为所述内筒的套筒;
    所述控制所述输料部分和所述出料部分相对运动,包括:
    控制所述内筒和所述套筒沿所述内筒的轴线方向移动,以改变所述挤出口的长度。
  14. 根据权利要求12所述的控制方法,其特征在于,所述输料部分为一内筒,所述出料部分为所述内筒的套筒;
    所述多个孔道包括多排孔道;
    所述控制所述输料部分和所述出料部分相对运动,包括:
    控制所述内筒和所述套筒绕所述内筒的轴线转动,以改变所述多排孔道中的处于连通状态的孔道的排数,从而改变所述挤出口的宽度。
  15. 根据权利要求12所述的控制方法,其特征在于,所述出料部分为位于所述输料部分的出口的外侧的一遮挡板;
    所述控制所述输料部分和所述出料部分相对运动,包括:
    控制所述输料部分和所述遮挡板沿所述挤出口的长度方向和/或宽度方向相对移动。
  16. 根据权利要求12-15中任一项所述的控制方法,其特征在于,还包括:
    将所述多个孔道移动至所述输料部分的出口所在区域之外,以同时关断所述多个孔道。
  17. 根据权利要求12-16中任一项所述的控制方法,其特征在于,所述多个孔道挤出的物料能够在所述单连通区域中融合在一起。
  18. 根据权利要求12-17中任一项所述的控制方法,其特征在于,所述控制所述挤出口对一块单连通区域进行填充,包括:
    控制所述挤出口的长度,使得所述挤出口的长度随着所述区域的轮廓线的变化而变化,从而将所述区域一次性填充完整。
  19. 根据权利要求12-18中任一项所述的控制方法,其特征在于,所述多个孔道形成下排孔道,所述输料部分的出口中设置有与所述下排孔道相对的上排孔道。
  20. 根据权利要求19所述的控制方法,其特征在于,所述输料部分的内部具有凹槽, 所述上排孔道通过所述凹槽与所述入口流体连通。
  21. 一种3D打印装置的控制方法,其特征在于,所述3D打印装置包括:
    一排孔道;
    所述控制方法包括:
    控制所述一排孔道同时挤出一排物料,以对一块区域进行填充;
    控制所述一排孔道的通断,以改变所述一排物料的长度;
    其中,所述一排孔道的排布使得所述一排孔道中的相邻孔道挤出的物料在所述区域中能够相互融合。
PCT/CN2020/120405 2020-10-12 2020-10-12 具有可变尺寸的挤出口的3d打印装置及其控制方法 WO2022077163A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN202080085046.1A CN114761202B (zh) 2020-10-12 2020-10-12 具有可变尺寸的挤出口的3d打印装置及其控制方法
PCT/CN2020/120405 WO2022077163A1 (zh) 2020-10-12 2020-10-12 具有可变尺寸的挤出口的3d打印装置及其控制方法
JP2023521431A JP2023545752A (ja) 2020-10-12 2020-10-12 寸法可変の押出口を備える3d印刷装置及びその制御方法
EP20956945.8A EP4227069A4 (en) 2020-10-12 2020-10-12 3D PRINTING DEVICE WITH EXTRUSION PORT OF VARIABLE SIZE AND METHOD FOR CONTROLLING 3D PRINTING DEVICE
CN202121507497.8U CN215849702U (zh) 2020-10-12 2021-07-02 具有可变尺寸的挤出口的3d打印装置
US18/192,026 US20230234287A1 (en) 2020-10-12 2023-03-29 3d printing device with extrusion port having variable size and control method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/120405 WO2022077163A1 (zh) 2020-10-12 2020-10-12 具有可变尺寸的挤出口的3d打印装置及其控制方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/192,026 Continuation US20230234287A1 (en) 2020-10-12 2023-03-29 3d printing device with extrusion port having variable size and control method therefor

Publications (1)

Publication Number Publication Date
WO2022077163A1 true WO2022077163A1 (zh) 2022-04-21

Family

ID=80332723

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/120405 WO2022077163A1 (zh) 2020-10-12 2020-10-12 具有可变尺寸的挤出口的3d打印装置及其控制方法

Country Status (5)

Country Link
US (1) US20230234287A1 (zh)
EP (1) EP4227069A4 (zh)
JP (1) JP2023545752A (zh)
CN (2) CN114761202B (zh)
WO (1) WO2022077163A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022077163A1 (zh) * 2020-10-12 2022-04-21 苏州美梦机器有限公司 具有可变尺寸的挤出口的3d打印装置及其控制方法
CN117382170A (zh) * 2022-07-05 2024-01-12 苏州美梦机器有限公司 3d打印装置及方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05131468A (ja) * 1991-05-27 1993-05-28 Nippon Neemu Pureeto Kogyo Kk プラスチツク粘稠液鋳込み装置用ノズル分配器
CN1726121A (zh) * 2002-12-12 2006-01-25 里特机械公司 包括相对缝口板固定于限定位置并可从其垂直拆卸的喷嘴块的熔融物喷头
CN102481787A (zh) * 2009-08-21 2012-05-30 柯尼卡美能达喷墨技术株式会社 喷嘴板保持装置及喷墨头的制造方法
WO2016195620A1 (en) * 2015-05-29 2016-12-08 Hewlett-Packard Development Company, L.P. Priming agent distributors while generating three-dimensional objects
CN106945264A (zh) * 2017-03-23 2017-07-14 湖北工业大学 一种线阵喷射式fdm三维打印喷头及打印方法
CN107379519A (zh) * 2016-05-14 2017-11-24 罗天珍 群填充fdm 3d打印法及其群喷口挤出机总成
DE102016009631A1 (de) * 2016-08-10 2018-02-15 Reifenhäuser GmbH & Co. KG Maschinenfabrik Blaskopf für eine blasfolienanlage, injektionseinheitplatte, blasfolienanlage und verfahren zum herstellen einer folie auf einer blasfolienanlage sowie verwendung
DE102016012388A1 (de) * 2016-10-18 2018-04-19 Reifenhäuser GmbH & Co. KG Maschinenfabrik Verteilerplattenpaket für einen blaskopf einer blasfolienanlage, blaskopf, verfahren zum herstellen einer folie im blasfolienverfahren, verfahren zum umrüsten eines blaskopfes sowie blasfolienanlage
CN207972299U (zh) * 2018-01-22 2018-10-16 上海言诺建筑材料有限公司 3d打印喷嘴及3d打印设备
CN108943703A (zh) * 2017-05-18 2018-12-07 施乐公司 用于在具有固定打印头阵列的直达物体打印机中调节打印头操作的系统和方法
CN110091503A (zh) * 2019-03-29 2019-08-06 西北大学 适用于条形光斑的同轴送粉喷嘴
CN110696368A (zh) * 2019-09-23 2020-01-17 合肥海闻自动化设备有限公司 一种3d打印机旋转喷头控制方法
CN110891795A (zh) * 2017-02-27 2020-03-17 沃克索8股份有限公司 包括混合喷嘴的3d打印装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7374416B2 (en) * 2003-11-21 2008-05-20 Kimberly-Clark Worldwide, Inc. Apparatus and method for controlled width extrusion of filamentary curtain
CN105365221B (zh) * 2015-11-27 2018-05-15 范春潮 高速往复式彩色3d打印机
US10442174B2 (en) * 2015-12-08 2019-10-15 Xerox Corporation Material feeder for engineering polymer ejection system for additive manufacturing applications
CN109247014B (zh) * 2017-05-09 2020-12-04 黄卫东 3d打印头、3d打印设备和3d打印头的控制方法
DE202018101538U1 (de) * 2018-03-20 2018-04-09 Elkamet Kunststofftechnik Gmbh Vorrichtung zur Herstellung eines Endlosprodukts
US11000997B2 (en) * 2018-07-23 2021-05-11 Xerox Corporation System and method for preserving valve member travel in a multi-nozzle extruder
CN111386187B (zh) * 2018-10-31 2022-11-29 黄卫东 用于3d打印的设备及其控制方法
WO2022077163A1 (zh) * 2020-10-12 2022-04-21 苏州美梦机器有限公司 具有可变尺寸的挤出口的3d打印装置及其控制方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05131468A (ja) * 1991-05-27 1993-05-28 Nippon Neemu Pureeto Kogyo Kk プラスチツク粘稠液鋳込み装置用ノズル分配器
CN1726121A (zh) * 2002-12-12 2006-01-25 里特机械公司 包括相对缝口板固定于限定位置并可从其垂直拆卸的喷嘴块的熔融物喷头
CN102481787A (zh) * 2009-08-21 2012-05-30 柯尼卡美能达喷墨技术株式会社 喷嘴板保持装置及喷墨头的制造方法
WO2016195620A1 (en) * 2015-05-29 2016-12-08 Hewlett-Packard Development Company, L.P. Priming agent distributors while generating three-dimensional objects
CN107379519A (zh) * 2016-05-14 2017-11-24 罗天珍 群填充fdm 3d打印法及其群喷口挤出机总成
DE102016009631A1 (de) * 2016-08-10 2018-02-15 Reifenhäuser GmbH & Co. KG Maschinenfabrik Blaskopf für eine blasfolienanlage, injektionseinheitplatte, blasfolienanlage und verfahren zum herstellen einer folie auf einer blasfolienanlage sowie verwendung
DE102016012388A1 (de) * 2016-10-18 2018-04-19 Reifenhäuser GmbH & Co. KG Maschinenfabrik Verteilerplattenpaket für einen blaskopf einer blasfolienanlage, blaskopf, verfahren zum herstellen einer folie im blasfolienverfahren, verfahren zum umrüsten eines blaskopfes sowie blasfolienanlage
CN110891795A (zh) * 2017-02-27 2020-03-17 沃克索8股份有限公司 包括混合喷嘴的3d打印装置
CN106945264A (zh) * 2017-03-23 2017-07-14 湖北工业大学 一种线阵喷射式fdm三维打印喷头及打印方法
CN108943703A (zh) * 2017-05-18 2018-12-07 施乐公司 用于在具有固定打印头阵列的直达物体打印机中调节打印头操作的系统和方法
CN207972299U (zh) * 2018-01-22 2018-10-16 上海言诺建筑材料有限公司 3d打印喷嘴及3d打印设备
CN110091503A (zh) * 2019-03-29 2019-08-06 西北大学 适用于条形光斑的同轴送粉喷嘴
CN110696368A (zh) * 2019-09-23 2020-01-17 合肥海闻自动化设备有限公司 一种3d打印机旋转喷头控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4227069A4

Also Published As

Publication number Publication date
CN114761202B (zh) 2024-03-19
CN114761202A (zh) 2022-07-15
CN215849702U (zh) 2022-02-18
US20230234287A1 (en) 2023-07-27
EP4227069A1 (en) 2023-08-16
JP2023545752A (ja) 2023-10-31
EP4227069A4 (en) 2023-11-08

Similar Documents

Publication Publication Date Title
WO2022077163A1 (zh) 具有可变尺寸的挤出口的3d打印装置及其控制方法
US20230211370A1 (en) Dual Slot Die Coater
JP6669873B2 (ja) バイオプリンタースプレーヘッドアセンブリ及びバイオプリンター
JP2016153230A (ja) 押出ダイのランドチャネル長さを調整するシステム及び方法
KR20200114417A (ko) 듀얼 슬롯 다이 코터
CN215404525U (zh) 一种环形激光熔覆喷嘴
JP7376962B2 (ja) 3d印刷用装置及びその制御方法
US20230219112A1 (en) Dual Slot Die Coater Including Air Vent
US11772119B2 (en) Multi-slot die coater with improved manifold
US20230080280A1 (en) Multi-Slot Die Coater
KR20220156221A (ko) 전극 제조용 슬롯 다이 코터
CN115605295A (zh) 多狭缝模具涂布机
CN216001450U (zh) 具有多排挤出孔的3d打印装置
CN212316235U (zh) 光学薄膜用溅射阴极布气系统
KR101699944B1 (ko) 활물질 코팅장치 및 이에 적용되는 활물질 분배기
KR102646380B1 (ko) 다중 슬롯 다이 코터
US20230085121A1 (en) Multi-Slot Die Coater
US20230127081A1 (en) Slot Die Coater with Improved Coating Solution Flow
CN217514509U (zh) 能局部调节膜泡厚度的吹膜设备冷却风环
US20230133585A1 (en) Multi-Slot Die Coater
CN216800354U (zh) 多条纹极片的转移涂布机
CN220804089U (zh) 一种电池浆料涂布装置
US20230201861A1 (en) Slot Die Coater with Improved Coating Solution Flow
US20220274309A1 (en) Extruder and extrusion die
US6733589B2 (en) Extruding coating method and extruding coating apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20956945

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023521431

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020956945

Country of ref document: EP

Effective date: 20230512