WO2022075386A1 - Curable composition - Google Patents
Curable composition Download PDFInfo
- Publication number
- WO2022075386A1 WO2022075386A1 PCT/JP2021/037076 JP2021037076W WO2022075386A1 WO 2022075386 A1 WO2022075386 A1 WO 2022075386A1 JP 2021037076 W JP2021037076 W JP 2021037076W WO 2022075386 A1 WO2022075386 A1 WO 2022075386A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- curable composition
- weight
- parts
- calcium carbonate
- organic polymer
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/24—Acids; Salts thereof
- C08K3/26—Carbonates; Bicarbonates
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L101/00—Compositions of unspecified macromolecular compounds
- C08L101/02—Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
- C08L101/10—Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups containing hydrolysable silane groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L27/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
- C08L27/02—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L27/04—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing chlorine atoms
- C08L27/06—Homopolymers or copolymers of vinyl chloride
Definitions
- the present invention relates to a curable composition.
- Patent Document 1 discloses a curable composition comprising 100 parts by weight of an organic polymer having at least one hydrolyzable silicon group in the molecule and 10 to 500 parts by weight of a vinyl resin.
- Patent Document 2 contains 100 parts by weight of an organic polymer having at least one hydrolyzable silicon group in the molecule, 10 to 500 parts by weight of a vinyl resin, and 1 to 150 parts by weight of a polymer plasticizer.
- the curable composition is disclosed.
- One embodiment of the present invention has been made in view of the above problems, and an object thereof is to provide a novel curable composition having excellent initial fixing property.
- the present inventors have diligently studied to solve the above-mentioned problems.
- the curable composition containing a specific amount of each of an organic polymer having a hydrolyzable silicon group, calcium carbonate, and a polyvinyl chloride resin having a specific most frequent diameter is uniquely excellent in initial fixing property.
- the present invention was completed.
- the curable composition according to the embodiment of the present invention comprises 100 parts by weight of an organic polymer (A) having a hydrolyzable silicon group, 10 parts by weight to 500 parts by weight of a polyvinyl chloride resin (B), and calcium carbonate.
- A organic polymer having a hydrolyzable silicon group
- B polyvinyl chloride resin
- C calcium carbonate.
- Adhesives with excellent initial fixing properties are sometimes called high-tuck adhesives.
- An adhesive having excellent initial fixability exhibits excellent fixability (adhesiveness) even immediately after being taken out of the container. Therefore, an adhesive having excellent initial fixing property is preferably used in the construction of the interior of a building, for example, when a heavy glass plate or a decorative panel is fixed to a vertical surface such as a wall surface.
- the viscosity of the curable composition can affect the initial fixing property of the curable composition. That is, in order to improve the initial fixing property of the curable composition, it is necessary to have both the viscosity of the curable composition and the thixotropic property, and it is not enough to simply increase the viscosity of the curable composition. Therefore, in order to improve the initial fixing property of the curable composition, many studies are required both qualitatively and quantitatively.
- Patent Documents 1 and 2 are not sufficient from the viewpoint of initial fixing, and there is room for further improvement.
- the techniques described in Patent Documents 1 and 2 are not techniques related to high-tack adhesives, and do not provide useful information for the development of adhesives having excellent initial fixing properties, which are required by the present inventors. rice field. Therefore, the present inventors have made diligent studies to develop an adhesive having excellent initial fixing property without relying on the technical contents described in Patent Documents 1 and 2.
- the present inventors independently found the following findings and completed the present invention: an organic polymer having a hydrolyzable silicon group, calcium carbonate, and polyvinyl chloride having a specific most frequent diameter.
- a curable composition containing a specific amount of vinyl resin is excellent in initial fixing property.
- the "curable composition according to one embodiment of the present invention” may be hereinafter referred to as “the present curable composition", and is "an organic polymer (A) having a hydrolyzable silicon group”. May be hereinafter referred to as “organic polymer (A)".
- the present curable composition has the above-mentioned structure, it has an advantage of being excellent in initial fixing property. Further, since the present curable composition has the above-mentioned structure, it also has an advantage of being excellent in storage stability. Further, since the present curable composition has the above-mentioned structure, it is possible to provide a curable composition having excellent initial fixing property even when the amount of the organic polymer (A) is small. Therefore, the present curable composition also has the advantages of being inexpensive and economical.
- the organic polymer (A) is a polymer containing a hydrolyzable silicon group at the molecular end.
- the hydrolyzable silicon group is a functional group in which a reactive group such as an alkoxy group, a halogen atom, an acyloxy group, an alkenyloxy group, an amide group and an oxime group is bonded to a silicon group (Si group).
- the "hydrolyzable silicon group” may also be referred to as a "reactive silicon group", a "crosslinkable silicon group”, a "hydrolyzable silyl group”, a "reactive silyl group” or a "crosslinkable silyl group”. be.
- hydrolyzable silicon group examples include a trimethoxysilyl group, a triethoxysilyl group, a tris (2-propenyloxy) silyl group, a triacetoxysilyl group, a dimethoxymethylsilyl group, a diethoxymethylsilyl group and a dimethoxyethylsilyl group.
- methyldimethoxysilyl group, trimethoxysilyl group, triethoxysilyl group, (chloromethyl) dimethoxysilyl group, (methoxymethyl) dimethoxysilyl group, and (methoxymethyl) diethoxysilyl group show high activity.
- Methyldimethoxysilyl group, methyldiethoxysilyl group, and triethoxysilyl group are particularly preferable because of their excellent stability. Methyldiethoxysilyl groups and triethoxysilyl groups are particularly preferred because of their high safety. The trimethoxysilyl group, triethoxysilyl group, and dimethoxymethylsilyl group are particularly preferable because they are easy to produce.
- the organic polymer (A) preferably has an average of 1.2 to 5.0 hydrolyzable silicon groups per molecule, more preferably 1.2 to 4.0. It is more preferable to have 1.2 to 3.0 pieces.
- a curable composition having good curability can be provided. Therefore, in the cured product that the curable composition can provide, good rubber elasticity is obtained, and the resilience, durability, and / or creep resistance of the cured product are improved.
- the hydrolyzable silicon group may be at the main chain end or the side chain end of the organic polymer (A), or may be at both the main chain end and the side chain end.
- the hydrolyzable silicon group is present only at the end of the main chain of the organic polymer (A)
- the effective network length in the finally formed cured product becomes long, so that the strength and elongation are high.
- the method for introducing the hydrolyzable silicon group into the organic polymer may be a known method.
- the following methods I to III can be mentioned.
- Method I An organic polymer having a functional group such as a hydroxyl group is reacted with a compound having an unsaturated group and an active group exhibiting reactivity with the functional group to obtain an organic polymer having an unsaturated group. Then, the obtained organic polymer having an unsaturated group is reacted with a hydrosilane compound having a hydrolyzable silicon group by hydrosilylation.
- Examples of the compound having an unsaturated group used in Method I and an active group exhibiting reactivity with the functional group include unsaturated group-containing epoxy compounds such as allyl chloride, methallyl chloride, and allyl glycidyl ether. I can give it.
- hydrosilane compound used in Method I examples include, but are not limited to, halogenated silanes, alkoxysilanes, asyloxysilanes, and ketoximatesilanes.
- halogenated silanes examples include trichlorosilane, methyldichlorosilane, dimethylchlorosilane, and phenyldichlorosilane.
- alkoxysilanes examples include dialkoxysilanes and trialkoxysilanes. More specifically, as alkoxysilanes, trimethoxysilane, triethoxysilane, triisopropoxysilane, 1- [2- (trimethoxysilyl) ethyl] -1,1,3,3-tetramethyldisiloxane, di Examples thereof include ethoxymethylsilane, dimethoxymethylsilane, and phenyldimethoxysilane.
- acyloxysilanes examples include methyldiacetoxysilane and phenyldiacetoxysilane.
- ketoximatesilanes examples include bis (dimethylketoximate) methylsilane and bis (cyclohexylketoximate) methylsilane.
- dialkoxysilanes are (a) easy to proceed with the hydrosilylation reaction and (b) excellent in the balance between the storage stability and the hydrolysis rate of the obtained reaction product.
- trialkoxysilanes are preferable, and dimethoxymethylsilane, trimethoxysilane, and triethoxysilane are more preferable.
- Method II An organic weight having an unsaturated group obtained by subjecting a compound having a mercapto group and a hydrolyzable silicon group to a radical addition reaction in the presence of a radical initiator and / or a radical source in the same manner as in Method I.
- Examples include a method of introducing into an unsaturated radical site of coalescence.
- Examples of the compound having a mercapto group and a hydrolyzable silicon group used in Method II include ⁇ -mercaptopropyltrimethoxysilane, ⁇ -mercaptopropyltriethoxysilane, mercaptomethyltrimethoxysilane, and mercaptomethyltriethoxysilane. It can, but is not limited to these.
- Method III A compound having a hydrolyzable silicon group and a functional group exhibiting reactivity with the functional group is reacted with an organic polymer having a functional group such as a hydroxyl group, an epoxy group or an isocyanate group in the molecule.
- Examples of the compound having an isocyanate group reactive with a hydrolyzable silicon group and a hydroxyl group used in Method III include ⁇ -isocyanatepropyltrimethoxysilane, ⁇ -isocyanatepropyltriethoxysilane, and isocyanatemethyltrimethoxysilane. Examples thereof include, but are not limited to, isocyanate methyltriethoxysilane and isocyanatemethyldimethoxymethylsilane.
- the method of reacting an organic polymer having a hydroxyl group at the terminal with a hydrolyzable silicon group and a compound having an isocyanate group exhibiting reactivity with a hydroxyl group is relatively short. It is preferable because a high conversion rate can be obtained in the reaction time.
- the organic polymer having a hydrolyzable silicon group obtained by Method I has a lower viscosity than the organic polymer having a hydrolyzable silicon group obtained by Method III, and is a curable composition having good workability. Is obtained.
- the organic polymer having a hydrolyzable silicon group obtained by Method II may have a strong odor based on mercaptosilane. Therefore, method I is particularly preferable.
- the main chain skeleton of the organic polymer (A) (also simply referred to as the main chain) is not particularly limited.
- the main chain skeleton of the organic polymer (A) is, for example, (a) a polyoxyalkylene polymer containing a repeating unit derived from an alkylene oxide, (b) an ether / ester block copolymer, and (c) a vinyl-based monomer. Examples thereof include a vinyl-based polymer containing a repeating unit derived from, and (d) a diene-based polymer containing a repeating unit derived from a diene-based monomer.
- the main chain skeleton of the organic polymer (A) preferably contains a polyoxyalkylene polymer, and more preferably a polyoxyalkylene polymer.
- the curable composition has the advantage of exhibiting good adhesion to various types of adherends (sometimes referred to as substrates or adherends).
- repeating unit contained in the polyoxyalkylene polymer examples include a polyoxyethylene unit, a polyoxypropylene unit, a polyoxybutylene unit, and the like, and a polyoxypropylene unit is preferable.
- the repeating unit contained in the polyoxyalkylene polymer may be one or more selected from the group consisting of (a) polyoxyethylene units, polyoxypropylene units and polyoxybutylene units (b). ) It may contain one kind or two or more kinds of polyoxyalkylene units other than the above group.
- Examples of the method for synthesizing the polyoxyalkylene polymer include (a) a polymerization method using an alkali catalyst such as KOH, and (b) an organic aluminum compound shown in JP-A-61-215623 and porphyrin. Transition metal compound such as a (E) A polymerization method using a composite metal cyanide complex catalyst (for example, a zinc hexacyanocobaltate glyme complex catalyst) shown in (d), and (d) a polymerization method using a catalyst consisting of a polyphosphazene salt shown in JP-A-10-273512.
- a composite metal cyanide complex catalyst for example, a zinc hexacyanocobaltate glyme complex catalyst
- a polymerization method using a catalyst consisting of a polyphosphazene salt shown in JP-A-10-273512.
- Examples thereof include, but are not limited to, a polymerization method using a catalyst composed of a phosphazene compound shown in JP-A-11-060722.
- a polymerization method in which an alkylene oxide is reacted with an initiator in the presence of a composite metal cyanide complex catalyst is preferable because a polymer having a narrow molecular weight distribution can be obtained.
- complex metal cyanide complex catalyst examples include Zn 3 [Co (CN) 6 ] 2 (zinc hexacyanocovalent complex). Further, a catalyst in which an alcohol and / or ether is coordinated as an organic ligand to a zinc hexacyanocobaltate complex or the like can also be used.
- a compound having at least one active hydrogen group (hereinafter, also referred to as “active hydrogen-containing compound”) is preferable.
- the active hydrogen-containing compound includes (a) alcohols such as ethylene glycol, diethylene glycol, propylene glycol, glycerin, allyl alcohol, methanol, ethanol, propanol, butanol, pentanol, and hexanol, and (b) a number average molecular weight of 500 to 20,000. Examples include linear and / or branched polyether compounds.
- alkylene oxide examples include ethylene oxide, propylene oxide, and isobutylene oxide.
- the organic polymer (A) in one embodiment of the present invention may be linear or branched.
- the organic polymer (A) in one embodiment of the present invention is preferably a mixture of a linear organic polymer (A1) and a branched organic polymer (A2).
- the curable composition has an advantage that it can provide a cured product having excellent both high shear strength and high breaking elongation, that is, a cured product (adhesive layer) which is resistant to impact and vibration and has excellent durability.
- a cured product adheresive layer
- the organic polymer (A) is a mixture of a linear organic polymer (A1) and a branched organic polymer (A2), the resulting effective composition will be impact and It is resistant to vibration and can be suitably used as an adhesive having excellent durability.
- the organic polymer (A) is a mixture of a linear organic polymer (A1) and a branched organic polymer (A2)
- the weight ratio of the linear organic polymer (A1) to the branched organic polymer (A2) in the organic polymer (A) (weight of the organic polymer (A1) / organic polymer (A2)).
- the weight is not particularly limited, but is preferably 0.1 to 9.0, more preferably 0.3 to 5.0, and further preferably 0.4 to 4.0. It is preferably 1.0 to 3.0, and particularly preferably 1.0 to 3.0.
- the curable composition can provide a cured product (adhesive layer) that is superior in both high shear strength and high breaking elongation, in other words, resistant to impact and vibration, and excellent in durability. It has the advantage of.
- the number average molecular weight (Mn) of the organic polymer (A) is a value measured by gel permeation chromatography (GPC) (polystyrene equivalent), and is preferably 1,000 to 100,000, 2. 000 to 50,000 is more preferable, and 3,000 to 35,000 is particularly preferable. If the number average molecular weight is (a) less than 1,000, the elongation of the cured product tends to be insufficient, and if it exceeds (b) 100,000, the curable composition becomes highly viscous. In addition, it tends to be inconvenient in terms of workability.
- GPC gel permeation chromatography
- the molecular weight distribution (Mw / Mn) of the organic polymer (A) measured by GPC is preferably 2.0 or less, more preferably 1.5 or less, further preferably 1.4 or less, and 1.3 or less. It is particularly preferable, and 1.2 or less is most preferable.
- the organic polymer (A) a commercially available product can also be used.
- a commercially available product can also be used.
- Kaneka Corporation product name: Kaneka MS Polymer, and product name: Kaneka Cyril
- AGC Co., Ltd. product name: Exester
- Wacker product name: GENIOSIL. , Etc. have already been manufactured and sold for industrial use, and can be easily obtained and used as the organic polymer (A).
- the content of the organic polymer (A) in the present curable composition is not particularly limited.
- the content of the organic polymer (A) in the present curable composition is preferably 10% by weight to 25% by weight, preferably 11% by weight to 24% by weight, based on 100% by weight of the curable composition. More preferably, it is 12% by weight to 23% by weight, more preferably 13% by weight to 22% by weight, further preferably 14% by weight to 21% by weight, and further preferably 15% by weight to 20% by weight. It is particularly preferable to be% by weight. According to this configuration, the curable composition is inexpensive and therefore has the advantage of being economically superior.
- polyvinyl chloride resin As used herein, the term "polyvinyl chloride resin” is intended to be a resin having 50 mol% or more of structural units derived from vinyl chloride in 100 mol% of the structural units constituting the resin.
- the present inventors have independently found the following findings: (a) When the curable composition contains the polyvinyl chloride resin (B), the viscosity of the curable composition is significantly increased. The viscous property of the curable composition can be improved without the need for; and (b) the curable composition contains the polyvinyl chloride resin (B) and calcium carbonate, whereby the organic polymer (b) is used in the curable composition.
- the polyvinyl chloride resin (B) may be (a) a vinyl chloride homopolymer composed only of structural units derived from vinyl chloride, and (b) vinyl chloride and chloride copolymerizable with vinyl chloride. It may be a copolymer with a monomer other than vinyl (hereinafter, also referred to as monomer A).
- the polyvinyl chloride resin (B) may have a structural unit derived from vinyl chloride and a structural unit derived from the monomer A.
- Examples of the monomer A include vinyl acetate, vinylidene chloride, acrylic acid, acrylic acid ester, methacrylic acid, methacrylic acid ester, maleic acid, maleic acid ester, acrylonitrile and the like.
- the degree of polymerization of the polyvinyl chloride resin (B) is not particularly limited, but for example, the average degree of polymerization is preferably 200 to 10000, and more preferably 300 to 4000.
- the "most frequent diameter of the polyvinyl chloride resin (B)” is the most frequent obtained when the particle diameter of the primary particles of the polyvinyl chloride resin (B) is expressed by a frequency distribution on a volume basis. Intended for diameter.
- the "mode diameter” is sometimes referred to as the "mode diameter”.
- the most frequent diameter of the primary particles of the polyvinyl chloride resin (B) is, for example, a disk centrifugal particle using a latex containing the polyvinyl chloride resin (B) obtained in the manufacturing process of the polyvinyl chloride resin (B) as a sample. It can be obtained by measurement using a diameter distribution measuring device (CPS Disc Centrifuge manufactured by CPS Instruments).
- CPS Disc Centrifuge manufactured by CPS Instruments
- the mode of the polyvinyl chloride resin (B) is 0.10 ⁇ m to 0.50 ⁇ m, preferably 0.11 ⁇ m to 0.48 ⁇ m, and more preferably 0.12 ⁇ m to 0.46 ⁇ m. It is more preferably 0.13 ⁇ m to 0.44 ⁇ m, more preferably 0.14 ⁇ m to 0.42 ⁇ m, more preferably 0.15 ⁇ m to 0.40 ⁇ m, and 0.16 ⁇ m to 0.39 ⁇ m. It is more preferably 0.17 ⁇ m to 0.38 ⁇ m, and particularly preferably 0.18 ⁇ m to 0.37 ⁇ m. According to this configuration, the curable composition has the advantages of better initial fixation and better storage stability.
- the curable composition when the mode of the polyvinyl chloride resin (B) is 0.50 ⁇ m or less, the curable composition has an advantage of being excellent in storage stability. This is inferred as follows, but one embodiment of the present invention is not limited to the following inference: As the frequency of the polyvinyl chloride resin (B) increases, the aggregation of the polyvinyl chloride resin (B) is loosened during storage of the curable composition, and the loosened polyvinyl chloride resin (B) has a curable composition. Disperses evenly in the object. As a result, it is presumed that the larger the mode of the polyvinyl chloride resin (B), the greater the effect of increasing the viscosity of the curable composition by hydrogen bonding.
- the method for producing the polyvinyl chloride resin (B) is not particularly limited.
- a method for producing the polyvinyl chloride resin (B) a polymerization method such as an emulsion polymerization method or a fine suspension polymerization method is preferably used, and among them, the primary particle size of the polyvinyl chloride resin (B) is controlled to be small.
- the emulsification polymerization method is more preferably used because it is easy to carry out.
- the polyvinyl chloride resin (B) can be obtained by drying the latex obtained after the polymerization of the polyvinyl chloride resin by a spray drying method, a fluidized bed drying method or the like.
- the content of the polyvinyl chloride resin (B) in the present curable composition is 10 parts by weight to 500 parts by weight and 20 parts by weight to 450 parts by weight with respect to 100 parts by weight of the organic polymer (A). It is preferably 30 parts by weight to 400 parts by weight, more preferably 40 parts by weight to 350 parts by weight, more preferably 50 parts by weight to 300 parts by weight, and 60 parts by weight to 60 parts by weight. It is more preferably 250 parts by weight, and particularly preferably 70 parts by weight to 200 parts by weight. According to this composition, the curable composition has the advantage of being better at initial immobilization.
- Calcium carbonate (C) can function as a filler in the curable composition.
- the filler include known general-purpose fillers such as kaolin, aluminum hydroxide, aluminum oxide, fume silica, silica powder, glass filler, carbon black, hollow filler, and barium sulfate.
- this curable composition that contains calcium carbonate (C) as a filler is flexible and / or various adherends. It has the advantage of excellent adhesion to calcium.
- the present curable composition may further contain the above-mentioned general-purpose filler other than calcium carbonate (C).
- calcium carbonate (C).
- Coli colloidal calcium carbonate
- collagen carbonate and colloidal calcium carbonate have a smaller volume average particle size than heavy calcium carbonate.
- the BET specific surface area of calcium carbonate (C) is preferably 1 m 2 / g to 100 m 2 / g, more preferably 2 m 2 / g to 80 m 2 / g, and 5 m 2 / g to 50 m 2 / g. It is more preferably g.
- the BET specific surface area of calcium carbonate (C) is 1 m 2 / g or more, the thixotropic property of the curable composition becomes good.
- the BET specific surface area of calcium carbonate (C) is 100 m 2 / g or less, aggregation of calcium carbonate (C) with each other is restricted in the curable composition, and calcium carbonate (C) in the curable composition is restricted. Good dispersibility.
- the curable composition has good thixotropic properties.
- the BET specific surface area of calcium carbonate (C) is a value measured using a specific surface area measuring device (Macsorb HM model-1208 manufactured by Mountech Co., Ltd. or Flowsorb II2300 manufactured by Micromeritic Co., Ltd.).
- Calcium carbonate (C) may be calcium carbonate surface-treated with a surface treatment agent.
- the surface treatment agent is not particularly limited, and for example, a fatty acid-based compound is preferably used.
- the fatty acid-based compound is not particularly limited, and for example, one or more selected from the group consisting of fatty acids, fatty acid salts, fatty acid derivatives, and fatty acid derivative salts can be preferably mentioned.
- the fatty acid is not particularly limited, but saturated fatty acid, unsaturated fatty acid, alicyclic carboxylic acid and the like can be preferably used.
- the method for producing the surface-treated calcium carbonate (C) is not particularly limited, and the above-mentioned calcium carbonate is surface-treated (coated) with the above-mentioned fatty acid compound, and then dehydrated and dried according to a conventional method. Examples thereof include a method of pulverizing through a step such as crushing.
- the content of calcium carbonate (C) in the present curable composition is 150 parts by weight to 500 parts by weight, and more than 150 parts by weight and 500 parts by weight or less with respect to 100 parts by weight of the organic polymer (A). It is preferably 160 parts by weight to 500 parts by weight, more preferably 170 parts by weight to 500 parts by weight, more preferably 180 parts by weight to 500 parts by weight, and more preferably 190 parts by weight to 500 parts by weight. It is more preferably 500 parts by weight, particularly preferably 200 parts by weight to 500 parts by weight, and most preferably 250 parts by weight to 500 parts by weight. According to this composition, the curable composition has the advantage of being better at initial immobilization.
- the content of calcium carbonate (C) in the present curable composition is 170 parts by weight to 450 parts by weight with respect to 100 parts by weight of the organic polymer (A). It may be 180 parts by weight to 400 parts by weight, 190 parts by weight to 350 parts by weight, or 200 parts by weight to 300 parts by weight.
- the present curable composition may be, as calcium carbonate (C), for example, (a) calcium carbonate (C1) having a volume average particle size of 0.01 ⁇ m or more and less than 0.50 ⁇ m (for example, glued calcium carbonate or colloidal calcium carbonate). And (b) calcium carbonate (C2) having a volume average particle size of 0.50 ⁇ m to 10.00 ⁇ m (for example, heavy calcium carbonate without surface treatment) are preferably contained.
- the present curable composition is based on 100 parts by weight of the organic polymer (A).
- (I) (a) Calcium carbonate (C1) with a volume average particle diameter of 0.01 ⁇ m or more and less than 0.50 ⁇ m 0 parts by weight to 300 parts by weight, and (b) a volume average particle diameter of 0.50 ⁇ m to 10.00 ⁇ m. It is preferable to contain 0 part by volume to 500 parts by volume of calcium carbonate (C2).
- (Ii) (a) Calcium carbonate (C1) with a volume average particle diameter of 0.03 ⁇ m to 0.40 ⁇ m 0 parts by weight to 250 parts by weight, and (b) a volume average particle diameter of 0.50 ⁇ m to 10.00 ⁇ m.
- a certain calcium carbonate (C2) of 100 parts by volume to 500 parts by volume.
- (Iii) (a) Calcium carbonate (C1) with a volume average particle diameter of 0.05 ⁇ m to 0.20 ⁇ m 0 parts by weight to 200 parts by weight, and (b) a volume average particle diameter of 0.60 ⁇ m to 9.00 ⁇ m. It is more preferable to contain a certain calcium carbonate (C2) of 150 parts by volume to 500 parts by volume.
- the curable composition has the advantages of (a) being superior in initial fixing property and (b) being excellent in handleability because it is easily discharged from the storage container.
- the volume average particle size of calcium carbonate (C) is a value obtained by measuring by a laser light diffraction / scattering method. Further, “volume average particle size” is synonymous with "d50 particle size”.
- the ratio of the weight of calcium carbonate (C1) to the weight of calcium carbonate (C2) in calcium carbonate (C) is not particularly limited, but is not particularly limited, for example. It is preferably 1.0 or less, more preferably 0.9 or less, further preferably 0.8 or less, and particularly preferably 0.7 or less.
- the ratio ((B) / (C)) of the content of the polyvinyl chloride resin (B) to the content of calcium carbonate (C) in the present curable composition is 0.2 to 0.8. It is preferably 0.2 to 0.7, more preferably 0.2 to 0.6, and particularly preferably 0.2 to 0.5. According to this configuration, (a) the curable composition does not impair the ejection property, (b) the curable composition has a low specific density, and (c) the heat resistance and / or weather resistance of the cured product is impaired. It has advantages such as never. That is, when (B) / (C) is within the above-mentioned range, the curable composition has an advantage of exhibiting good high-tack adhesiveness.
- the curable composition having a low specific density means that even a curable composition having the same volume is lighter. Compared with the curable composition having a high specific density, the curable composition having a low specific density has an advantage that the production cost is low and the transportation and storage costs are also low.
- the present curable composition may further contain a dehydrating agent (D) in addition to the organic polymer (A), the polyvinyl chloride resin (B) and calcium carbonate (C).
- a dehydrating agent (D) in addition to the organic polymer (A), the polyvinyl chloride resin (B) and calcium carbonate (C).
- the curable composition contains the dehydrating agent (D)
- the curable composition has an advantage of being excellent in storage stability.
- the dehydrating agent (D) is not particularly limited, but is preferably a substance that absorbs water and / or moisture.
- Examples of the dehydrating agent (D) include vinylsilane compound, silicate compound, calcium oxide, zeolite compound and methyl orthoate. Among these, as the dehydrating agent (D), a vinylsilane compound and a silicate compound are preferable, and a vinylsilane compound is more preferable. According to this composition, the curable composition has the advantage of being superior in storage stability.
- Examples of the vinylsilane compound that can be used as the dehydrating agent (D) include vinyltrimethoxysilane, vinyltriethoxysilane, vinyltripropoxysilane, vinylmethyldimethoxysilane, vinylmethyldiethoxysilane, vinylmethyldipropoxysilane, and vinyldimethyl.
- Methoxysilane vinyldimethylethoxysilane, vinyldimethylpropoxysilane, vinylethyldimethoxysilane, vinylethyldiethoxysilane, vinylethyldipropoxysilane, vinyldiethylmethoxysilane, vinyldiethylethoxysilane, vinyldiethylpropoxysilane, vinylpropyldimethoxysilane, Examples include vinylpropyldiethoxysilane, vinylpropyldipropoxysilane, vinyldipropylmethoxysilane, vinyldipropylethoxysilane, vinyldipropylpropoxysilane, methylsilicate, methylsilicate condensate, ethylsilicate and ethylsilicate condensate.
- the curable composition has the advantage of being more excellent in storage stability.
- the content of the dehydrating agent (D) in the present curable composition is not particularly limited.
- the content of the dehydrating agent (D) in the present curable composition is preferably 2 parts by weight to 10 parts by weight, preferably 3 parts by weight to 8 parts by weight, based on 100 parts by weight of the organic polymer (A). It is more preferably 4 parts by weight to 6 parts by weight. According to this composition, the curable composition has the advantage of being superior in storage stability.
- the amount of water (water content) in the present curable composition is not particularly limited, but it is preferable that the amount is smaller because it is more excellent in storage stability.
- the amount of water (moisture content) in the present curable composition is preferably 200 ppm to 10000 ppm, more preferably 500 ppm to 8000 ppm, and more preferably 1000 ppm to 7000 ppm in 100 parts by weight of the curable composition. It is more preferably 1500 ppm to 6000 ppm, and particularly preferably 1500 ppm to 6000 ppm.
- the present curable composition may contain other components in addition to the above-mentioned components, if necessary.
- Other components include, but are not limited to, the following substances, for example: plasticizer; anti-dripping agent (sometimes referred to as thixotropic agent); adhesive-imparting agent; antioxidant.
- Photocurable substances Hollow fillers; Light stabilizers; Solvents and / or diluents; UV absorbers; Flame retardants; Curability modifiers; Lubricants; Colorants; Foaming agents; Antifungal materials.
- plasticizer examples include epoxy compounds, phthalate compounds, and polyether compounds.
- examples of the epoxy-based compound include epoxidized unsaturated fats and oils, epoxidized unsaturated fatty acid esters, alicyclic epoxy compounds, compounds shown in epichlorohydrin derivatives, and mixtures thereof.
- examples of phthalate ester compounds include dimethyl phthalate, diethyl phthalate, dibutyl phthalate, diisobutyl phthalate, dinormal hexyl phthalate, bis (2-ethylhexyl) phthalate, dinormal octyl phthalate, diisononyl phthalate, and phthalate.
- Examples thereof include dinonyl acid, diisodecyl phthalate, diisoundecyl phthalate, and bisbutylbenzyl phthalate.
- Examples of the polyether compound include polyoxypropylene diol, polyethylene glycol, polyoxybutylene glycol, and a copolymer of ethylene oxide and propylene oxide.
- One of these plasticizers may be used alone, or two or more thereof may be used in combination.
- the present curable composition contains a plasticizer, the curable composition has an advantage of being excellent in adhesiveness to various adherends.
- the anti-dripping agent examples include polyamide waxes; hydrogenated castor oil and hydrogenated castor oil derivatives; metal soaps such as calcium stearate, aluminum stearate, and barium stearate; and the like.
- One of these anti-dripping agents may be used alone, or two or more thereof may be used in combination.
- the present curable composition contains an anti-dripping agent, it has an advantage that sagging is prevented during construction of the curable composition, that is, an advantage that the workability of the curable composition is improved.
- the adhesive-imparting agent examples include aminosilane-based compounds, epoxysilane-based compounds, isocyanatesilane-based compounds, and acrylicsilane-based compounds.
- an aminosilane compound is preferable, and 3- (2-aminoethylamino) propyltrimethoxysilane is particularly preferable.
- One of these adhesive-imparting agents may be used alone, or two or more thereof may be used in combination.
- the curable composition contains an adhesive-imparting agent, the curable composition has an advantage that the adhesiveness to the adherend is improved and the strength of the cured product is also increased.
- antioxidants examples include hindered phenol compounds, monophenol compounds, polyphenol compounds and the like.
- a hindered phenolic compound is particularly preferable. These antioxidants may be used alone or in combination of two or more.
- the present curable composition contains an antioxidant, (a) the advantage that the deterioration of the curable composition can be delayed even when the curable composition is stored for a long period of time, and (b) the curable composition can be used. It has the advantage that the performance of the curable composition can be maintained even when stored under high temperature conditions.
- Examples of the curing catalyst include organic tin compounds, carboxylic acid metal salts, amine compounds, carboxylic acids, and alkoxy metals.
- organic tin compound examples include dibutyl tin dilaurate, dibutyl tin dioctanoate, dibutyl tin bis (butyl maleate), dibutyl tin diacetate, dibutyl tin oxide, dibutyl tin bis (acetylacetonate), and dioctyl tin bis (acetylacetate).
- dioctyl tin dilaurate dioctyl tin distearate, dioctyl tin diacetate, dioctyl tin oxide, reaction product of dibutyl tin oxide and silicate compound, reaction product of dioctyl tin oxide and silicate compound, dibutyl tin oxide and phthalate ester.
- Examples include the reactants of.
- the metal carboxylate salt examples include tin carboxylate, bismuth carboxylate, titanium carboxylate, zirconium carboxylate, iron carboxylate, and the like.
- carboxylic acid metal salt a salt obtained by appropriately combining the following carboxylic acid and various metals can also be used.
- amine compounds include amines such as octylamine, 2-ethylhexylamine, laurylamine, stearylamine, etc .; pyridine, 1,8-diazabicyclo [5,4,0] undecene-7 (DBU), 1, Nitrogen-containing heterocyclic compounds such as 5-diazabicyclo [4,3,0] nonen-5 (DBN); guanidines such as guanidine, phenylguanidine, diphenylguanidine; butylbiguanide, 1-o-tolylbiguanide and 1- Viguanides such as phenylbiguanide; amino group-containing silane coupling agents; ketimine compounds, and the like can be mentioned.
- amines such as octylamine, 2-ethylhexylamine, laurylamine, stearylamine, etc .
- DBU 1,8-diazabicyclo [5,4,0] undecene-7
- DBN Nitro
- carboxylic acid examples include acetic acid, propionic acid, butyric acid, 2-ethylhexanoic acid, lauric acid, stearic acid, oleic acid, linoleic acid, neodecanoic acid, and versatic acid.
- alkoxy metal examples include titanium compounds such as tetrabutyl titanate titanium tetrakis (acetylacetonate) and diisopropoxytitanium bis (ethylacetatete); aluminum tris (acetylacetonate), diisopropoxyaluminum ethylacetoacetate and the like.
- titanium compounds such as tetrabutyl titanate titanium tetrakis (acetylacetonate) and diisopropoxytitanium bis (ethylacetatete); aluminum tris (acetylacetonate), diisopropoxyaluminum ethylacetoacetate and the like.
- Aluminum compounds; zirconium compounds such as zirconium tetrakis (acetylacetonate), and the like.
- curing catalysts also referred to as silanol condensation catalysts
- fluorine anion-containing compounds such as fluorine anion-containing compounds, photoacid generators and photobase generators can also be used.
- an amine compound may be used in combination with the curing catalyst.
- amine compounds include known amine compounds such as octylamine, decylamine, laurylamine, oleylamine, and di-n-octylamine.
- colorant examples include pigments such as tin oxide, carbon black, titanium oxide, and red iron oxide.
- the curable composition has an advantage that it can be more preferably used by a high-tack adhesive.
- the method for producing the present curable composition is not particularly limited.
- the present curable composition is produced (prepared) by mixing an organic polymer (A), a polyvinyl chloride resin (B) and calcium carbonate (C), and optionally a dehydrating agent (D) and other components. can.
- the order in which the organic polymer (A), the polyvinyl chloride resin (B) and the calcium carbonate (C), and optionally the dehydrating agent (D) and other components are mixed is not particularly limited. Each component may be mixed one by one, or a plurality of components may be mixed at the same time.
- the mixing device used for producing the curable composition is not particularly limited, and a known mixing device such as a three-roll mill can be used.
- the curable composition does not need to be completely sealed and stored.
- a closed container such as a cartridge.
- the cartridge is not particularly limited, and examples thereof include an aluminum cartridge.
- a cured product can be obtained by curing the present curable composition.
- a cured product obtained by curing the present curable composition is also an embodiment of the present invention.
- the cured product according to the embodiment of the present invention is described in the above [2.
- Curable composition] is a cured product obtained by curing the curable composition described in the section. For example, by exposing the present curable composition to air at room temperature, the curable composition is cured by reacting with moisture in the air, and a cured product according to an embodiment of the present invention can be obtained. ..
- the present curable composition can be suitably used as a composition for an adhesive, for example, as a one-component adhesive. Since the present curable composition is excellent in initial fixing property, it can be particularly preferably used as a high-tack adhesive. Therefore, the curable composition and the adhesive according to one embodiment of the present invention, which will be described later, are used for vehicle bodies / parts of automobiles, body / parts of large vehicles such as trucks and buses, vehicle / parts of trains, and parts for aircraft. It can be particularly preferably used in the field of building materials such as marine parts, containers, electric / electronic parts, home appliances, various mechanical parts, mirrors, various decorative board panels, and sashes.
- Curable Composition includes the curable composition described in the section. Since the adhesive according to the embodiment of the present invention has the above-mentioned structure, it is excellent in initial fixing property. Therefore, the adhesive according to one embodiment of the present invention can be particularly preferably used as (a) a one-component adhesive and / or (b) a high-tack adhesive.
- the curable composition itself can be used as an adhesive according to an embodiment of the present invention.
- One embodiment of the present invention may have the following configuration.
- [1] Contains 100 parts by weight of an organic polymer (A) having a hydrolyzable silicon group, 10 parts by weight to 500 parts by weight of a polyvinyl chloride resin (B), and 150 parts by weight to 500 parts by weight of calcium carbonate (C). , A curable composition having a maximum frequency of the polyvinyl chloride resin (B) of 0.10 ⁇ m to 0.50 ⁇ m.
- the ratio ((B) / (C)) of the content of the polyvinyl chloride resin (B) to the content of the calcium carbonate (C) is 0.2 to 0.8, [1].
- the organic polymer (A) is any one of [1] to [3], which is a mixture of a linear organic polymer (A1) and a branched organic polymer (A2).
- the curable composition according to.
- the content of the calcium carbonate (C) is 250 parts by weight to 500 parts by weight with respect to 100 parts by weight of the organic polymer (A), in any one of [1] to [4].
- the curable composition according to description.
- the calcium carbonate (C) includes calcium carbonate (C1) having a volume average particle size of 0.05 ⁇ m to 0.15 ⁇ m and calcium carbonate (C2) having a volume average particle size of 0.70 ⁇ m to 5.00 ⁇ m. ), And the ratio of the weight of the calcium carbonate (C1) to the weight of the calcium carbonate (C2) (weight of the calcium carbonate (C1) / weight of the calcium carbonate (C2)) is 1.0 or less.
- the curable composition according to any one of [1] to [5].
- the initial fixability of the curable compositions obtained in Examples and Comparative Examples was measured by performing the following (1) to (4) in order.
- (1) A curable composition having a thickness of 3 mm was applied to one surface of the aluminum plate A;
- (2) The aluminum plate A was fixed so that the plate surface was parallel to the vertical direction;
- (3) Curability of another aluminum plate B having a length of 100 mm, a width of 25 mm, and a thickness of 3 mm is applied to the aluminum plate A so that the plate surface of the aluminum plate B and the plate surface of the aluminum plate A are parallel to each other.
- the lower 75 mm was in close contact with the aluminum plate A, and the upper 25 mm was not in close contact with the aluminum plate A; (4) Within 5 seconds after the aluminum plate B was brought into close contact with the aluminum plate A, only the springs were installed 25 mm above the aluminum plate B which was not in close contact with the aluminum plate A, and only the springs were pulled up.
- the maximum stress (g) exhibited by the spring scale was taken as the initial fixing property.
- Viscosity change (%) Viscosity after storage (mPa ⁇ s) / Initial viscosity (mPa ⁇ s) ⁇ 100. When the viscosity change was less than 200%, it was evaluated as excellent in storage stability, and when the viscosity change was 200% or more, it was evaluated as inferior in storage stability.
- the curable compositions obtained in Examples and Comparative Examples are stored in a closed plastic container after preparation in each Example and Comparative Example until the storage stability is evaluated. Was done.
- the curable composition was packed in a 3 mm thick sheet-like formwork at 23 ° C. and 50% relative humidity.
- the curable composition in the sheet-shaped mold was cured at 23 ° C. and 50% relative humidity for 3 days, and then the obtained cured product was cured in a 50 ° C. dryer for 4 days to obtain a sheet-shaped cured product. rice field.
- the obtained cured product was punched into a No. 3 dumbbell mold according to JIS K 6251 to obtain a test piece.
- a tensile test (tensile speed 200 mm / min) was performed using an autograph at 23 ° C. and 50% relative humidity, and 100% elongation modulus, stress at break (tensile strength TB), and The elongation at break (EB) was measured.
- the methanol solution of sodium methoxide is added to the reaction solution so as to have 1.2 molar equivalents of sodium methoxide with respect to 1 molar equivalent of the hydroxyl group at the terminal of the obtained polyoxypropylene (P-1). bottom. Methanol was distilled off from the obtained reaction solution by vacuum devolatile. Then, allyl chloride is added to the reaction solution so that the amount of allyl chloride is 1.5 molar equivalents with respect to 1 molar equivalent of the hydroxyl group at the terminal of polyoxypropylene (P-1) to obtain the hydroxyl group at the terminal. Converted to an allyl group.
- a platinum divinyldisiloxane complex solution was added to polyoxypropylene (Q-1) so as to be 50 ⁇ l of a platinum divinyldisiloxane complex solution (3 wt% isopropanol solution in terms of platinum) with respect to 500 g of polyoxypropylene. While stirring the obtained mixture, 4.5 g of dimethoxymethylsilane was slowly added dropwise to the mixture. After reacting the obtained mixed solution at 100 ° C. for 2 hours, unreacted dimethoxymethylsilane is distilled off under reduced pressure to obtain polyoxypropylene having a dimethoxymethylsilyl group at the terminal, which is a linear chain. An organic polymer (A1) in the form of a state was obtained. It was found that the number average molecular weight of the organic polymer (A1) was 25,500, and the organic polymer (A1) had an average of 0.7 dimethoxymethylsilyl groups at one terminal and an average of 1.4 in one molecule. rice field.
- the methanol solution of sodium methoxide is added to the reaction solution so as to have 1.2 molar equivalents of sodium methoxide with respect to 1 molar equivalent of the hydroxyl group at the terminal of the obtained polyoxypropylene (P-2). bottom. Methanol was distilled off from the obtained reaction solution by vacuum devolatile. Then, allyl chloride is added to the reaction solution so that the amount of allyl chloride is 1.5 molar equivalents with respect to 1 molar equivalent of the hydroxyl group at the terminal of polyoxypropylene (P-2) to obtain the hydroxyl group at the terminal. Converted to an allyl group.
- a platinum divinyldisiloxane complex solution was added to polyoxypropylene (Q-1) so as to be 50 ⁇ l of a platinum divinyldisiloxane complex solution (3 wt% isopropanol solution in terms of platinum) with respect to 500 g of polyoxypropylene. While stirring the obtained mixture, 8.9 g of dimethoxymethylsilane was slowly added dropwise to the mixture. After reacting the obtained mixed solution at 100 ° C. for 2 hours, unreacted dimethoxymethylsilane was distilled off under reduced pressure to obtain polyoxypropylene having a dimethoxymethylsilyl group at the terminal, which was branched. Organic polymer (A2) was obtained. It was found that the number average molecular weight of the organic polymer (A2) was 16400, and the organic polymer (A2) had an average of 0.7 dimethoxymethylsilyl groups at one terminal and an average of 2.1 in one molecule. rice field.
- the temperature of the mixed solution was raised to 47.6 ° C., and tert-butyl hydroperoxide adjusted to 0.3% (w / w) in advance was continuously added to the mixed solution for polymerization.
- 7.8 kg of a 10.8 wt% ammonium myristate aqueous solution is continuously added to the mixed solution from the time when the conversion rate from the monomer to the polymer reaches 5% to the time when it reaches 70%.
- the polymerization was carried out until the polymerization pressure was 0.15 MPa lower than the initial pressure (0.62 MPa).
- the monomer remaining in the mixed solution was recovered from the mixed solution to obtain a latex containing a vinyl chloride resin.
- the mode of the vinyl chloride resin in the obtained latex was 0.18 ⁇ m.
- the obtained latex was passed through a sieve having a mesh size of 100 mesh to remove coarse particles, and then the passed solution was spray-dried to obtain a polyvinyl chloride resin (B-1).
- the temperature of the mixed solution was raised to 44.5 ° C. to start polymerization. Polymerization was carried out until the polymerization pressure was 0.05 MPa lower than the initial pressure. Then, the monomer remaining in the mixed solution was recovered from the mixed solution to obtain a latex containing a vinyl chloride resin.
- the mode of the vinyl chloride resin in the obtained latex was 1.0 ⁇ m.
- the obtained latex was passed through a sieve having a mesh size of 100 mesh to remove coarse particles, and then the passed solution was spray-dried to obtain a polyvinyl chloride resin (B-3).
- Examples 1 to 3 and Comparative Examples 1 to 2 A curable composition was prepared as follows. First, among the components shown in Table 1, each component excluding the dehydrating agent (D), the anti-dripping agent, the adhesive-imparting agent, and the curing catalyst is weighed by weight as shown in Table 1, and the weighed components are put into a 3-roll mill. The mixture was subjected to a uniform dispersed paste. Then, the dispersed paste was dehydrated under reduced pressure conditions at 120 ° C. for 2 hours. After confirming that the water content of the dispersed paste reached 500 ppm or less, the dispersed paste was cooled until the temperature of the dispersed paste became 50 ° C. or less.
- the curable composition obtained in Examples 1 to 3 is a curable composition according to an embodiment of the present invention, and is also an adhesive according to an embodiment of the present invention.
- the curable compositions of Examples 1 to 3 and Comparative Example 1 had a viscosity change of less than 200% and were excellent in storage stability.
- the curable composition of Comparative Example 2 had a viscosity change of 200% or more and was inferior in storage stability.
- Example 1 As shown in Table 1, an example containing a specific amount of the organic polymer (A), a polyvinyl chloride resin (B) having a maximum frequency of 0.1 ⁇ m to 0.5 ⁇ m, and calcium carbonate (C), respectively. It was found that the curable compositions 1 to 3 were excellent in initial fixing property. Further, in Example 2 in which the ratio ((B) / (C)) of the content of the polyvinyl chloride resin (B) to the content of calcium carbonate (C) is 0.8 or less, (B) / ( It was found that the initial fixability was superior to that of Example 3 in which C) was 1.1. On the other hand, it was found that the curable compositions of Comparative Examples 1 and 2 containing the polyvinyl chloride resin (B) having a mode diameter of 1.0 ⁇ m were inferior in initial fixing property.
- the curable composition of Comparative Example 2 is inferior in storage stability, it is not suitable for (a) an adhesive application such as transportation and long-term storage in a store after the curable composition is produced. it is conceivable that.
- a curable composition was prepared as follows. First, among the components shown in Table 2, each component excluding the dehydrating agent (D), the anti-dripping agent, the adhesive-imparting agent, and the curing catalyst is weighed by weight as shown in Table 2, and the weighed components are put into a 3-roll mill. The mixture was subjected to a uniform dispersed paste. Then, the dispersed paste was dehydrated under reduced pressure conditions at 120 ° C. for 2 hours. After confirming that the water content of the dispersed paste reached 500 ppm or less, the dispersed paste was cooled until the temperature of the dispersed paste became 50 ° C. or less.
- the curable compositions obtained in Examples 4 to 8 are curable compositions according to an embodiment of the present invention, and are also adhesives according to an embodiment of the present invention.
- the curable compositions of Examples 4 to 8 had a viscosity change of less than 200% and were excellent in storage stability.
- the curable compositions of Examples 4 to 8 were also excellent in initial fixing property as in Examples 1 to 3.
- the curable compositions of Examples 4, 7 and 8 are a mixture of the organic polymer (A1) in which the organic polymer (A) is linear and the organic polymer (A2) in which the organic polymer (A) is branched.
- the organic polymer (A) is only a linear organic polymer (A1), and in the curable composition of Example 6, the organic polymer (A) is branched. Only the organic polymer (A2) of.
- the cured product obtained from the curable compositions of Examples 4, 7 and 8 has 100% elongation of the dumbbell physical properties as compared with the cured product obtained from the curable composition of Example 5. It was found to be excellent in breaking strength of modulus and shear strength. Further, it was found that the cured product obtained from the curable compositions of Examples 4, 7 and 8 was superior in breaking elongation of the dumbbell physical properties as compared with the cured product obtained from the curable composition of Example 6. .. That is, the cured product obtained from the curable compositions of Examples 4, 7 and 8 has an excellent 100% elongation modulus in dumbbell physical properties as compared with the cured product obtained from the curable compositions of Examples 5 and 6. And it was found that both shear strength and excellent breaking strength in shear strength can be achieved.
- the body / parts of an automobile the body / parts of a large vehicle such as a truck or a bus, the vehicle / parts of a train, the parts for an aircraft, the parts for a ship, the container, the electric / electronic parts, and the household appliances. It can be suitably used in the field of building materials such as products, various mechanical parts, mirrors, various decorative board panels, and sashes.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Adhesives Or Adhesive Processes (AREA)
Abstract
The present invention addresses the problem of providing a new curable composition having excellent initial fixing properties. A curable composition comprising: 100 parts by weight of an organic polymer (A) having a hydrolyzable silicon group; 10-500 parts by weight of a polyvinylchloride resin (B); and 150-500 parts by weight of calcium carbonate (C), wherein the most frequent size of the polyvinylchloride resin (B) is 0.1-0.5 μm.
Description
本発明は硬化性組成物に関する。
The present invention relates to a curable composition.
「加水分解性ケイ素基を有する有機重合体」は、室温においても湿分などによる加水分解性ケイ素基の加水分解反応などを伴うシロキサン結合の形成によって架橋することにより、ゴム状硬化物が得られるという性質を有することが知られている。加水分解性ケイ素基を有するポリオキシアルキレン系重合体は、すでに工業的に生産されており、シーリング材、接着剤、塗料などの用途の原料樹脂として広く使用されている。
The "organic polymer having a hydrolyzable silicon group" can be crosslinked by forming a siloxane bond accompanied by a hydrolysis reaction of the hydrolyzable silicon group due to moisture or the like even at room temperature to obtain a rubber-like cured product. It is known that it has the property of. Polyoxyalkylene-based polymers having a hydrolyzable silicon group have already been industrially produced and are widely used as raw material resins for applications such as sealants, adhesives and paints.
例えば、特許文献1には、分子中に少なくとも1個の加水分解性ケイ素基を有する有機重合体100重量部およびビニル系樹脂10~500重量部からなる硬化性組成物、が開示されている。
For example, Patent Document 1 discloses a curable composition comprising 100 parts by weight of an organic polymer having at least one hydrolyzable silicon group in the molecule and 10 to 500 parts by weight of a vinyl resin.
また、特許文献2には、分子中に少なくとも1個の加水分解性珪素基を有する有機重合体100重量部、ビニル系樹脂10~500重量部、及び高分子可塑剤1~150重量部を含有してなる硬化性組成物、が開示されている。
Further, Patent Document 2 contains 100 parts by weight of an organic polymer having at least one hydrolyzable silicon group in the molecule, 10 to 500 parts by weight of a vinyl resin, and 1 to 150 parts by weight of a polymer plasticizer. The curable composition is disclosed.
しかしながら、上述のような従来技術は初期固定性という観点からは、十分なものでなく、さらなる改善の余地があった。
However, the above-mentioned conventional technology is not sufficient from the viewpoint of initial fixing, and there is room for further improvement.
本発明の一実施形態は、前記問題点に鑑みなされたものであり、その目的は、初期固定性に優れる、新規の硬化性組成物を提供することである。
One embodiment of the present invention has been made in view of the above problems, and an object thereof is to provide a novel curable composition having excellent initial fixing property.
本発明者らは、前記課題を解決するため鋭意検討した。その結果、加水分解性ケイ素基を有する有機重合体、炭酸カルシウム、および特定の最頻径を有するポリ塩化ビニル樹脂を、各々特定量含有する硬化性組成物が、初期固定性に優れることを独自に見出し、本発明を完成させるに至った。
The present inventors have diligently studied to solve the above-mentioned problems. As a result, the curable composition containing a specific amount of each of an organic polymer having a hydrolyzable silicon group, calcium carbonate, and a polyvinyl chloride resin having a specific most frequent diameter is uniquely excellent in initial fixing property. The present invention was completed.
すなわち、本発明の一実施形態に係る硬化性組成物は、加水分解性ケイ素基を有する有機重合体(A)100重量部、ポリ塩化ビニル樹脂(B)10重量部~500重量部及び炭酸カルシウム(C)150重量部~500重量部を含有し、前記ポリ塩化ビニル樹脂(B)の最頻径が0.10μm~0.50μmである。
That is, the curable composition according to the embodiment of the present invention comprises 100 parts by weight of an organic polymer (A) having a hydrolyzable silicon group, 10 parts by weight to 500 parts by weight of a polyvinyl chloride resin (B), and calcium carbonate. (C) Contains 150 parts by weight to 500 parts by weight, and the most frequent diameter of the polyvinyl chloride resin (B) is 0.10 μm to 0.50 μm.
本発明の一実施形態によれば、初期固定性に優れる、新規の硬化性組成物を提供することができる、という効果を奏する。
According to one embodiment of the present invention, there is an effect that a novel curable composition having excellent initial fixing property can be provided.
本発明の一実施形態について以下に説明するが、本発明はこれに限定されるものではない。本発明は、以下に説明する各構成に限定されるものではなく、請求の範囲に示した範囲で種々の変更が可能である。また、異なる実施形態または実施例にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態または実施例についても、本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。なお、本明細書中に記載された学術文献および特許文献の全てが、本明細書中において参考文献として援用される。また、本明細書において特記しない限り、数値範囲を表す「A~B」は、「A以上(Aを含みかつAより大きい)B以下(Bを含みかつBより小さい)」を意図する。
An embodiment of the present invention will be described below, but the present invention is not limited thereto. The present invention is not limited to the configurations described below, and various modifications can be made within the scope of the claims. The technical scope of the present invention also includes embodiments or examples obtained by appropriately combining the technical means disclosed in different embodiments or examples. Further, by combining the technical means disclosed in each embodiment, new technical features can be formed. In addition, all the academic documents and patent documents described in the present specification are incorporated as references in the present specification. Further, unless otherwise specified in the present specification, "A to B" representing a numerical range is intended to be "A or more (including A and larger than A) and B or less (including B and smaller than B)".
〔1.本発明の一実施形態の技術的思想〕
本発明者らは、初期固定性に優れる硬化性組成物、例えば初期固定性に優れる接着剤を開発すべく、鋭意検討を行った。 [1. Technical Idea of One Embodiment of the Present Invention]
The present inventors have made diligent studies to develop a curable composition having excellent initial fixing property, for example, an adhesive having excellent initial fixing property.
本発明者らは、初期固定性に優れる硬化性組成物、例えば初期固定性に優れる接着剤を開発すべく、鋭意検討を行った。 [1. Technical Idea of One Embodiment of the Present Invention]
The present inventors have made diligent studies to develop a curable composition having excellent initial fixing property, for example, an adhesive having excellent initial fixing property.
初期固定性に優れる接着剤は、ハイタック接着剤と称される場合もある。初期固定性に優れる接着剤は、容器から取り出した直後においても、優れた固定性(接着性)を示す。そのため、初期固定性に優れる接着剤は、建築物の内装の施工において、例えば重たいガラス板または化粧パネルなどを壁面などの垂直面に固定するときに、好適に用いられる。
Adhesives with excellent initial fixing properties are sometimes called high-tuck adhesives. An adhesive having excellent initial fixability exhibits excellent fixability (adhesiveness) even immediately after being taken out of the container. Therefore, an adhesive having excellent initial fixing property is preferably used in the construction of the interior of a building, for example, when a heavy glass plate or a decorative panel is fixed to a vertical surface such as a wall surface.
硬化性組成物の初期固定性には、硬化性組成物の粘度のみならずチキソ性も影響を及ぼし得る。すなわち、硬化性組成物の初期固定性を向上させるためには、硬化性組成物の粘度とチキソ性との両立が必要であり、単に硬化性組成物の粘度を上げればよいものではない。それ故、硬化性組成物の初期固定性を向上させるためには、質的にも量的にも多くの検討が求められる。
Not only the viscosity of the curable composition but also the thixotropic property can affect the initial fixing property of the curable composition. That is, in order to improve the initial fixing property of the curable composition, it is necessary to have both the viscosity of the curable composition and the thixotropic property, and it is not enough to simply increase the viscosity of the curable composition. Therefore, in order to improve the initial fixing property of the curable composition, many studies are required both qualitatively and quantitatively.
上述したように、特許文献1および2に記載の技術は、初期固定性という観点からは、十分なものでなく、さらなる改善の余地があった。換言すれば、特許文献1および2に記載の技術は、ハイタック接着剤に関する技術ではなく、本発明者らが求める、初期固定性に優れる接着剤の開発には有益な情報を提供するものではなかった。それ故、本発明者らは、特許文献1および2に記載の技術内容に頼ることなく、初期固定性に優れる接着剤を開発すべく、鋭意検討を行った。その結果、本発明者らは、以下の知見を独自に見出し、本発明を完成させるに至った:加水分解性ケイ素基を有する有機重合体、炭酸カルシウム、および特定の最頻径を有するポリ塩化ビニル樹脂を、各々特定量含有する硬化性組成物が、初期固定性に優れること。
As described above, the techniques described in Patent Documents 1 and 2 are not sufficient from the viewpoint of initial fixing, and there is room for further improvement. In other words, the techniques described in Patent Documents 1 and 2 are not techniques related to high-tack adhesives, and do not provide useful information for the development of adhesives having excellent initial fixing properties, which are required by the present inventors. rice field. Therefore, the present inventors have made diligent studies to develop an adhesive having excellent initial fixing property without relying on the technical contents described in Patent Documents 1 and 2. As a result, the present inventors independently found the following findings and completed the present invention: an organic polymer having a hydrolyzable silicon group, calcium carbonate, and polyvinyl chloride having a specific most frequent diameter. A curable composition containing a specific amount of vinyl resin is excellent in initial fixing property.
〔2.硬化性組成物〕
本発明の一実施形態に係る硬化性組成物は、加水分解性ケイ素基を有する有機重合体(A)100重量部、ポリ塩化ビニル樹脂(B)10重量部~500重量部及び炭酸カルシウム(C)150重量部~500重量部を含有し、ポリ塩化ビニル樹脂(B)の最頻径が0.10μm~0.50μmである。 [2. Curable composition]
The curable composition according to one embodiment of the present invention comprises 100 parts by weight of an organic polymer (A) having a hydrolyzable silicon group, 10 parts by weight to 500 parts by weight of a polyvinyl chloride resin (B), and calcium carbonate (C). ) It contains 150 parts by weight to 500 parts by weight, and the most frequent diameter of the polyvinyl chloride resin (B) is 0.10 μm to 0.50 μm.
本発明の一実施形態に係る硬化性組成物は、加水分解性ケイ素基を有する有機重合体(A)100重量部、ポリ塩化ビニル樹脂(B)10重量部~500重量部及び炭酸カルシウム(C)150重量部~500重量部を含有し、ポリ塩化ビニル樹脂(B)の最頻径が0.10μm~0.50μmである。 [2. Curable composition]
The curable composition according to one embodiment of the present invention comprises 100 parts by weight of an organic polymer (A) having a hydrolyzable silicon group, 10 parts by weight to 500 parts by weight of a polyvinyl chloride resin (B), and calcium carbonate (C). ) It contains 150 parts by weight to 500 parts by weight, and the most frequent diameter of the polyvinyl chloride resin (B) is 0.10 μm to 0.50 μm.
本明細書において、「本発明の一実施形態に係る硬化性組成物」を、以下「本硬化性組成物」と称する場合があり、「加水分解性ケイ素基を有する有機重合体(A)」を、以下「有機重合体(A)」と称する場合がある。
In the present specification, the "curable composition according to one embodiment of the present invention" may be hereinafter referred to as "the present curable composition", and is "an organic polymer (A) having a hydrolyzable silicon group". May be hereinafter referred to as "organic polymer (A)".
本硬化性組成物は、前記構成を有するため、初期固定性に優れるという利点を有する。また、本硬化性組成物は、前記構成を有するため、貯蔵安定性に優れるという利点も有する。さらに、本硬化性組成物は、前記構成を有するため、有機重合体(A)の量が少ない場合であっても、初期固定性に優れる硬化性組成物を提供できる。それ故、本硬化性組成物は、安価であり、経済的であるという利点も有する。
Since the present curable composition has the above-mentioned structure, it has an advantage of being excellent in initial fixing property. Further, since the present curable composition has the above-mentioned structure, it also has an advantage of being excellent in storage stability. Further, since the present curable composition has the above-mentioned structure, it is possible to provide a curable composition having excellent initial fixing property even when the amount of the organic polymer (A) is small. Therefore, the present curable composition also has the advantages of being inexpensive and economical.
[2-1.有機重合体(A)]
有機重合体(A)は、加水分解性ケイ素基を分子末端に含有する重合体である。加水分解性ケイ素基は、ケイ素基(Si基)にアルコキシ基、ハロゲン原子、アシルオキシ基、アルケニルオキシ基、アミド基、オキシム基等の反応性基が結合した官能基である。「加水分解性ケイ素基」は、「反応性ケイ素基」、「架橋性ケイ素基」、「加水分解性シリル基」、「反応性シリル基」または「架橋性シリル基」と称される場合もある。 [2-1. Organic polymer (A)]
The organic polymer (A) is a polymer containing a hydrolyzable silicon group at the molecular end. The hydrolyzable silicon group is a functional group in which a reactive group such as an alkoxy group, a halogen atom, an acyloxy group, an alkenyloxy group, an amide group and an oxime group is bonded to a silicon group (Si group). The "hydrolyzable silicon group" may also be referred to as a "reactive silicon group", a "crosslinkable silicon group", a "hydrolyzable silyl group", a "reactive silyl group" or a "crosslinkable silyl group". be.
有機重合体(A)は、加水分解性ケイ素基を分子末端に含有する重合体である。加水分解性ケイ素基は、ケイ素基(Si基)にアルコキシ基、ハロゲン原子、アシルオキシ基、アルケニルオキシ基、アミド基、オキシム基等の反応性基が結合した官能基である。「加水分解性ケイ素基」は、「反応性ケイ素基」、「架橋性ケイ素基」、「加水分解性シリル基」、「反応性シリル基」または「架橋性シリル基」と称される場合もある。 [2-1. Organic polymer (A)]
The organic polymer (A) is a polymer containing a hydrolyzable silicon group at the molecular end. The hydrolyzable silicon group is a functional group in which a reactive group such as an alkoxy group, a halogen atom, an acyloxy group, an alkenyloxy group, an amide group and an oxime group is bonded to a silicon group (Si group). The "hydrolyzable silicon group" may also be referred to as a "reactive silicon group", a "crosslinkable silicon group", a "hydrolyzable silyl group", a "reactive silyl group" or a "crosslinkable silyl group". be.
加水分解性ケイ素基の具体例としては、トリメトキシシリル基、トリエトキシシリル基、トリス(2-プロペニルオキシ)シリル基、トリアセトキシシリル基、ジメトキシメチルシリル基、ジエトキシメチルシリル基、ジメトキシエチルシリル基、(クロロメチル)ジメトキシシリル基、(クロロメチル)ジエトキシシリル基、(メトキシメチル)ジメトキシシリル基、(メトキシメチル)ジエトキシシリル基、(N,N-ジエチルアミノメチル)ジメトキシシリル基、および(N,N-ジエチルアミノメチル)ジエトキシシリル基などが挙げられるが、これらに限定されない。これらの中では、メチルジメトキシシリル基、トリメトキシシリル基、トリエトキシシリル基、(クロロメチル)ジメトキシシリル基、(メトキシメチル)ジメトキシシリル基、および(メトキシメチル)ジエトキシシリル基が高い活性を示し、良好な機械物性を有する硬化物が得られるため好ましい。高い活性を示すことから、トリメトキシシリル基、(クロロメチル)ジメトキシシリル基、および(メトキシメチル)ジメトキシシリル基が特に好ましい。安定性に優れることから、メチルジメトキシシリル基、メチルジエトキシシリル基、およびトリエトキシシリル基が特に好ましい。安全性が高いことから、メチルジエトキシシリル基、およびトリエトキシシリル基が特に好ましい。トリメトキシシリル基、トリエトキシシリル基、およびジメトキシメチルシリル基は、製造が容易であるため特に好ましい。
Specific examples of the hydrolyzable silicon group include a trimethoxysilyl group, a triethoxysilyl group, a tris (2-propenyloxy) silyl group, a triacetoxysilyl group, a dimethoxymethylsilyl group, a diethoxymethylsilyl group and a dimethoxyethylsilyl group. Group, (chloromethyl) dimethoxysilyl group, (chloromethyl) diethoxysilyl group, (methoxymethyl) dimethoxysilyl group, (methoxymethyl) diethoxysilyl group, (N, N-diethylaminomethyl) dimethoxysilyl group, and ( N, N-diethylaminomethyl) diethoxysilyl group and the like can be mentioned, but the present invention is not limited thereto. Among these, methyldimethoxysilyl group, trimethoxysilyl group, triethoxysilyl group, (chloromethyl) dimethoxysilyl group, (methoxymethyl) dimethoxysilyl group, and (methoxymethyl) diethoxysilyl group show high activity. , It is preferable because a cured product having good mechanical properties can be obtained. Since it exhibits high activity, a trimethoxysilyl group, a (chloromethyl) dimethoxysilyl group, and a (methoxymethyl) dimethoxysilyl group are particularly preferable. Methyldimethoxysilyl group, methyldiethoxysilyl group, and triethoxysilyl group are particularly preferable because of their excellent stability. Methyldiethoxysilyl groups and triethoxysilyl groups are particularly preferred because of their high safety. The trimethoxysilyl group, triethoxysilyl group, and dimethoxymethylsilyl group are particularly preferable because they are easy to produce.
有機重合体(A)は、加水分解性ケイ素基を、1分子当たり平均して1.2個~5.0個有することが好ましく、1.2個~4.0個有することがより好ましく、1.2個~3.0個有することがさらに好ましい。有機重合体(A)が加水分解性ケイ素基を1分子あたり平均して1.2個以上有する場合、硬化性が良好である硬化性組成物を提供できる。そのため、当該硬化性組成物が提供し得る硬化物では、良好なゴム弾性が得られ、当該硬化物の復元性、耐久性および/または耐クリープ性が良好となる。加水分解性ケイ素基は有機重合体(A)の主鎖末端もしくは側鎖末端にあってもよいし、または、主鎖末端および側鎖末端の両方にあってもよい。特に、加水分解性ケイ素基が有機重合体(A)の主鎖末端にのみあるときは、最終的に形成される硬化物中における有効網目長が長くなるため、高強度、および高伸びであり、かつ低弾性率を示すゴム状硬化物が得られやすくなるため好ましい。
The organic polymer (A) preferably has an average of 1.2 to 5.0 hydrolyzable silicon groups per molecule, more preferably 1.2 to 4.0. It is more preferable to have 1.2 to 3.0 pieces. When the organic polymer (A) has 1.2 or more hydrolyzable silicon groups per molecule on average, a curable composition having good curability can be provided. Therefore, in the cured product that the curable composition can provide, good rubber elasticity is obtained, and the resilience, durability, and / or creep resistance of the cured product are improved. The hydrolyzable silicon group may be at the main chain end or the side chain end of the organic polymer (A), or may be at both the main chain end and the side chain end. In particular, when the hydrolyzable silicon group is present only at the end of the main chain of the organic polymer (A), the effective network length in the finally formed cured product becomes long, so that the strength and elongation are high. Moreover, it is preferable because a rubber-like cured product having a low elastic modulus can be easily obtained.
加水分解性ケイ素基の有機重合体への導入方法は公知の方法で行えばよい。例えば以下の方法I~IIIがあげられる。
The method for introducing the hydrolyzable silicon group into the organic polymer may be a known method. For example, the following methods I to III can be mentioned.
方法I:水酸基などの官能基を有する有機重合体に、不飽和基と前記官能基に対して反応性を示す活性基とを有する化合物を反応させ、不飽和基を有する有機重合体を得る。次いで、得られた不飽和基を有する有機重合体に、ヒドロシリル化によって、加水分解性ケイ素基を有するヒドロシラン化合物を反応させる。
Method I: An organic polymer having a functional group such as a hydroxyl group is reacted with a compound having an unsaturated group and an active group exhibiting reactivity with the functional group to obtain an organic polymer having an unsaturated group. Then, the obtained organic polymer having an unsaturated group is reacted with a hydrosilane compound having a hydrolyzable silicon group by hydrosilylation.
方法Iで用いる不飽和基と前記官能基に対して反応性を示す活性基とを有する化合物としては、例えば、塩化アリル、塩化メタリル、およびアリルグリシジルエーテルのような不飽和基含有エポキシ化合物などをあげることができる。
Examples of the compound having an unsaturated group used in Method I and an active group exhibiting reactivity with the functional group include unsaturated group-containing epoxy compounds such as allyl chloride, methallyl chloride, and allyl glycidyl ether. I can give it.
方法Iで用いるヒドロシラン化合物としては、例えば、ハロゲン化シラン類、アルコキシシラン類、アシロキシシラン類、ケトキシメートシラン類などをあげることができるが、これらに限定されるものではない。
Examples of the hydrosilane compound used in Method I include, but are not limited to, halogenated silanes, alkoxysilanes, asyloxysilanes, and ketoximatesilanes.
ハロゲン化シラン類としては、例えば、トリクロロシラン、メチルジクロロシラン、ジメチルクロロシラン、フェニルジクロロシランなどをあげることができる。
Examples of the halogenated silanes include trichlorosilane, methyldichlorosilane, dimethylchlorosilane, and phenyldichlorosilane.
アルコキシシラン類としては、例えば、ジアルコキシシラン類およびトリアルコキシシラン類などが挙げられる。アルコキシシラン類としてより具体的には、トリメトキシシラン、トリエトキシシラン、トリイソプロポキシシラン、1-[2-(トリメトキシシリル)エチル]-1,1,3,3-テトラメチルジシロキサン、ジエトキシメチルシラン、ジメトキシメチルシラン、フェニルジメトキシシランなどをあげることができる。
Examples of the alkoxysilanes include dialkoxysilanes and trialkoxysilanes. More specifically, as alkoxysilanes, trimethoxysilane, triethoxysilane, triisopropoxysilane, 1- [2- (trimethoxysilyl) ethyl] -1,1,3,3-tetramethyldisiloxane, di Examples thereof include ethoxymethylsilane, dimethoxymethylsilane, and phenyldimethoxysilane.
アシロキシシラン類としては、例えば、メチルジアセトキシシラン、フェニルジアセトキシシランなどをあげることができる。
Examples of the acyloxysilanes include methyldiacetoxysilane and phenyldiacetoxysilane.
ケトキシメートシラン類としては、例えば、ビス(ジメチルケトキシメート)メチルシラン、ビス(シクロヘキシルケトキシメート)メチルシランなどをあげることができる。
Examples of the ketoximatesilanes include bis (dimethylketoximate) methylsilane and bis (cyclohexylketoximate) methylsilane.
これらヒドロシラン化合物の中で、(a)ヒドロシリル化反応の進行のしやすさ、および(b)得られた反応生成物の貯蔵安定性と加水分解速度とのバランスに優れる観点から、ジアルコキシシラン類およびトリアルコキシシラン類が好ましく、ジメトキシメチルシラン、トリメトキシシラン、トリエトキシシランがより好ましい。
Among these hydrosilane compounds, dialkoxysilanes are (a) easy to proceed with the hydrosilylation reaction and (b) excellent in the balance between the storage stability and the hydrolysis rate of the obtained reaction product. And trialkoxysilanes are preferable, and dimethoxymethylsilane, trimethoxysilane, and triethoxysilane are more preferable.
方法II:メルカプト基および加水分解性ケイ素基を有する化合物を、ラジカル開始剤および/またはラジカル発生源存在下でのラジカル付加反応によって、方法Iと同様にして得られた不飽和基を有する有機重合体の不飽和基部位に導入する方法などをあげることができる。
Method II: An organic weight having an unsaturated group obtained by subjecting a compound having a mercapto group and a hydrolyzable silicon group to a radical addition reaction in the presence of a radical initiator and / or a radical source in the same manner as in Method I. Examples include a method of introducing into an unsaturated radical site of coalescence.
方法IIで用いるメルカプト基および加水分解性ケイ素基を有する化合物としては、例えば、γ-メルカプトプロピルトリメトキシシラン、γ-メルカプトプロピルトリエトキシシラン、メルカプトメチルトリメトキシシラン、メルカプトメチルトリエトキシシランなどをあげることができるが、これらに限定されるものではない。
Examples of the compound having a mercapto group and a hydrolyzable silicon group used in Method II include γ-mercaptopropyltrimethoxysilane, γ-mercaptopropyltriethoxysilane, mercaptomethyltrimethoxysilane, and mercaptomethyltriethoxysilane. It can, but is not limited to these.
方法III:分子中に水酸基、エポキシ基またはイソシアネート基などの官能基を有する有機重合体に、加水分解性ケイ素基と前記官能基に対して反応性を示す官能基とを有する化合物を反応させる。
Method III: A compound having a hydrolyzable silicon group and a functional group exhibiting reactivity with the functional group is reacted with an organic polymer having a functional group such as a hydroxyl group, an epoxy group or an isocyanate group in the molecule.
方法IIIのうち水酸基を有する有機重合体と、加水分解性ケイ素基および水酸基に対して反応性を示すイソシアネート基を有する化合物と、を反応させる方法としては、例えば、特開平3-47825号に示される方法などがあげられるが、これに限定されるものではない。
As a method of reacting an organic polymer having a hydroxyl group with a compound having a hydrolyzable silicon group and an isocyanate group exhibiting a hydroxyl group in Method III, for example, Japanese Patent Application Laid-Open No. 3-47825 is shown. However, the method is not limited to this.
方法IIIで用いる加水分解性ケイ素基および水酸基に対して反応性を示すイソシアネート基を有する化合物としては、例えば、γ-イソシアネートプロピルトリメトキシシラン、γ-イソシアネートプロピルトリエトキシシラン、イソシアネートメチルトリメトキシシラン、イソシアネートメチルトリエトキシシラン、イソシアネートメチルジメトキシメチルシランなどがあげられるが、これらに限定されるものではない。
Examples of the compound having an isocyanate group reactive with a hydrolyzable silicon group and a hydroxyl group used in Method III include γ-isocyanatepropyltrimethoxysilane, γ-isocyanatepropyltriethoxysilane, and isocyanatemethyltrimethoxysilane. Examples thereof include, but are not limited to, isocyanate methyltriethoxysilane and isocyanatemethyldimethoxymethylsilane.
上記の方法Iまたは方法IIIの中でも、末端に水酸基を有する有機重合体と、加水分解性ケイ素基および水酸基に対して反応性を示すイソシアネート基を有する化合物と、を反応させる方法は、比較的短い反応時間で高い転化率が得られるために好ましい。一方、方法Iで得られた加水分解性ケイ素基を有する有機重合体は、方法IIIで得られる加水分解性ケイ素基を有する有機重合体よりも低粘度であり、作業性の良い硬化性組成物が得られる。また、方法IIで得られる加水分解性ケイ素基を有する有機重合体は、メルカプトシランに基づく臭気が強いことがある。このため方法Iが特に好ましい。
Among the above methods I and III, the method of reacting an organic polymer having a hydroxyl group at the terminal with a hydrolyzable silicon group and a compound having an isocyanate group exhibiting reactivity with a hydroxyl group is relatively short. It is preferable because a high conversion rate can be obtained in the reaction time. On the other hand, the organic polymer having a hydrolyzable silicon group obtained by Method I has a lower viscosity than the organic polymer having a hydrolyzable silicon group obtained by Method III, and is a curable composition having good workability. Is obtained. Further, the organic polymer having a hydrolyzable silicon group obtained by Method II may have a strong odor based on mercaptosilane. Therefore, method I is particularly preferable.
有機重合体(A)の主鎖骨格(単に主鎖とも称する。)は、特に限定されない。有機重合体(A)の主鎖骨格は、例えば(a)アルキレンオキシドに由来する繰り返し単位を含むポリオキシアルキレン重合体、(b)エーテル/エステルブロック共重合体、(c)ビニル系単量体に由来する繰り返し単位を含むビニル系重合体、および(d)ジエン系単量体に由来する繰り返し単位を含むジエン系重合体、等が挙げられる。これらの中でも、有機重合体(A)の主鎖骨格は、ポリオキシアルキレン重合体を含むことが好ましく、ポリオキシアルキレン重合体であることがより好ましい。当該構成によると、硬化性組成物は、様々な種類の被接着物質(基材または被着体と称される場合もある。)に対して良好な接着性を示すという利点を有する。
The main chain skeleton of the organic polymer (A) (also simply referred to as the main chain) is not particularly limited. The main chain skeleton of the organic polymer (A) is, for example, (a) a polyoxyalkylene polymer containing a repeating unit derived from an alkylene oxide, (b) an ether / ester block copolymer, and (c) a vinyl-based monomer. Examples thereof include a vinyl-based polymer containing a repeating unit derived from, and (d) a diene-based polymer containing a repeating unit derived from a diene-based monomer. Among these, the main chain skeleton of the organic polymer (A) preferably contains a polyoxyalkylene polymer, and more preferably a polyoxyalkylene polymer. According to this configuration, the curable composition has the advantage of exhibiting good adhesion to various types of adherends (sometimes referred to as substrates or adherends).
ポリオキシアルキレン重合体に含まれる繰り返し単位としては、ポリオキシエチレン単位、ポリオキシプロピレン単位およびポリオキシブチレン単位等が挙げられ、好ましくは、ポリオキシプロピレン単位である。ポリオキシアルキレン重合体に含まれる繰り返し単位は、(a)ポリオキシエチレン単位、ポリオキシプロピレン単位およびポリオキシブチレン単位からなる群から選択される1種または2種以上であってもよく、(b)前記群以外のポリオキシアルキレン単位の1種または2種以上を含んでいてもよい。
Examples of the repeating unit contained in the polyoxyalkylene polymer include a polyoxyethylene unit, a polyoxypropylene unit, a polyoxybutylene unit, and the like, and a polyoxypropylene unit is preferable. The repeating unit contained in the polyoxyalkylene polymer may be one or more selected from the group consisting of (a) polyoxyethylene units, polyoxypropylene units and polyoxybutylene units (b). ) It may contain one kind or two or more kinds of polyoxyalkylene units other than the above group.
ポリオキシアルキレン系重合体の合成法としては、例えば、(a)KOHなどのアルカリ触媒による重合法、(b)特開昭61-215623号に示される有機アルミニウム化合物とポルフィリンとを反応させて得られる錯体などの遷移金属化合物-ポルフィリン錯体触媒による重合法、(c)特公昭46-27250号、特公昭59-15336号、US3278457号、US3278458号、US3278459号、US3427256号、US3427334号、US3427335号などに示される複合金属シアン化物錯体触媒(例えば、亜鉛ヘキサシアノコバルテートグライム錯体触媒)による重合法、(d)特開平10-273512号に示されるポリホスファゼン塩からなる触媒を用いる重合法、(e)特開平11-060722号に示されるホスファゼン化合物からなる触媒を用いる重合法、などをあげることができるが、これらに限定されるものではない。これら合成法の中では、複合金属シアン化物錯体触媒の存在下、開始剤にアルキレンオキシドを反応させる重合法が、分子量分布の狭い重合体を得られることから好ましい。
Examples of the method for synthesizing the polyoxyalkylene polymer include (a) a polymerization method using an alkali catalyst such as KOH, and (b) an organic aluminum compound shown in JP-A-61-215623 and porphyrin. Transition metal compound such as a (E) A polymerization method using a composite metal cyanide complex catalyst (for example, a zinc hexacyanocobaltate glyme complex catalyst) shown in (d), and (d) a polymerization method using a catalyst consisting of a polyphosphazene salt shown in JP-A-10-273512. Examples thereof include, but are not limited to, a polymerization method using a catalyst composed of a phosphazene compound shown in JP-A-11-060722. Among these synthetic methods, a polymerization method in which an alkylene oxide is reacted with an initiator in the presence of a composite metal cyanide complex catalyst is preferable because a polymer having a narrow molecular weight distribution can be obtained.
複合金属シアン化物錯体触媒としては、Zn3[Co(CN)6]2(亜鉛ヘキサシアノコバルテート錯体)などをあげることができる。また、亜鉛ヘキサシアノコバルテート錯体などにアルコールおよび/またはエーテルが有機配位子として配位した触媒も使用できる。
Examples of the complex metal cyanide complex catalyst include Zn 3 [Co (CN) 6 ] 2 (zinc hexacyanocovalent complex). Further, a catalyst in which an alcohol and / or ether is coordinated as an organic ligand to a zinc hexacyanocobaltate complex or the like can also be used.
開始剤としては、「少なくとも1個の活性水素基を有する化合物」(以下、「活性水素含有化合物」とも称する。)が好ましい。活性水素含有化合物は、(a)エチレングリコール、ジエチレングリコール、プロピレングリコール、グリセリン、アリルアルコール、メタノール、エタノール、プロパノール、ブタノール、ペンタノール、ヘキサノールなどのアルコール、(b)数平均分子量500~20,000の直鎖および/または分岐ポリエーテル化合物などをあげることができる。
As the initiator, "a compound having at least one active hydrogen group" (hereinafter, also referred to as "active hydrogen-containing compound") is preferable. The active hydrogen-containing compound includes (a) alcohols such as ethylene glycol, diethylene glycol, propylene glycol, glycerin, allyl alcohol, methanol, ethanol, propanol, butanol, pentanol, and hexanol, and (b) a number average molecular weight of 500 to 20,000. Examples include linear and / or branched polyether compounds.
アルキレンオキシドとしては、エチレンオキシド、プロピレンオキシド、イソブチレンオキシドなどをあげることができる。
Examples of the alkylene oxide include ethylene oxide, propylene oxide, and isobutylene oxide.
本発明の一実施形態における有機重合体(A)は、直鎖状または分岐状のいずれでもよい。本発明の一実施形態における有機重合体(A)は、直鎖状の有機重合体(A1)と、分岐状の有機重合体(A2)との混合物であることが好ましい。当該構成によると、硬化性組成物は、高せん断強度と高破断伸びとの両方に優れる硬化物、すなわち、衝撃および振動に強く、耐久性に優れた硬化物(接着層)を提供できるという利点を有する。換言すれば、有機重合体(A)が、直鎖状の有機重合体(A1)と、分岐状の有機重合体(A2)との混合物である場合、得られる効果性組成物は、衝撃および振動に強く、耐久性に優れた接着剤として好適に利用できる。
The organic polymer (A) in one embodiment of the present invention may be linear or branched. The organic polymer (A) in one embodiment of the present invention is preferably a mixture of a linear organic polymer (A1) and a branched organic polymer (A2). According to this structure, the curable composition has an advantage that it can provide a cured product having excellent both high shear strength and high breaking elongation, that is, a cured product (adhesive layer) which is resistant to impact and vibration and has excellent durability. Has. In other words, if the organic polymer (A) is a mixture of a linear organic polymer (A1) and a branched organic polymer (A2), the resulting effective composition will be impact and It is resistant to vibration and can be suitably used as an adhesive having excellent durability.
本発明の一実施形態において、有機重合体(A)が直鎖状の有機重合体(A1)と分岐状の有機重合体(A2)との混合物である場合について説明する。この場合、有機重合体(A)における直鎖状の有機重合体(A1)と分岐状の有機重合体(A2)との重量比率(有機重合体(A1)の重量/有機重合体(A2)の重量)は特に限定されないが、例えば、0.1~9.0であることが好ましく、0.3~5.0であることがより好ましく、0.4~4.0であることがさらに好ましく、1.0~3.0であることが特に好ましい。当該構成によると、硬化性組成物は、高せん断強度と高破断伸びとの両方により優れる硬化物、換言すれば、衝撃および振動により強く、耐久性により優れた硬化物(接着層)を提供できるという利点を有する。
In one embodiment of the present invention, a case where the organic polymer (A) is a mixture of a linear organic polymer (A1) and a branched organic polymer (A2) will be described. In this case, the weight ratio of the linear organic polymer (A1) to the branched organic polymer (A2) in the organic polymer (A) (weight of the organic polymer (A1) / organic polymer (A2)). The weight) is not particularly limited, but is preferably 0.1 to 9.0, more preferably 0.3 to 5.0, and further preferably 0.4 to 4.0. It is preferably 1.0 to 3.0, and particularly preferably 1.0 to 3.0. According to this configuration, the curable composition can provide a cured product (adhesive layer) that is superior in both high shear strength and high breaking elongation, in other words, resistant to impact and vibration, and excellent in durability. It has the advantage of.
有機重合体(A)の数平均分子量(Mn)は、ゲル浸透クロマトグラフィー(Gel permeation chromatography;GPC)(ポリスチレン換算)により測定される値であり、1,000~100,000が好ましく、2,000~50,000がより好ましく、3,000~35,000が特に好ましい。上記数平均分子量が、(a)1,000未満である場合、硬化物の伸びが不充分となる傾向があり、(b)100,000を越える場合、硬化性組成物が高粘度となるために作業性の点で不都合な傾向がある。GPCにより測定される、有機重合体(A)の分子量分布(Mw/Mn)は、2.0以下が好ましく、1.5以下がより好ましく、1.4以下がさらに好ましく、1.3以下が特に好ましく、1.2以下が最も好ましい。
The number average molecular weight (Mn) of the organic polymer (A) is a value measured by gel permeation chromatography (GPC) (polystyrene equivalent), and is preferably 1,000 to 100,000, 2. 000 to 50,000 is more preferable, and 3,000 to 35,000 is particularly preferable. If the number average molecular weight is (a) less than 1,000, the elongation of the cured product tends to be insufficient, and if it exceeds (b) 100,000, the curable composition becomes highly viscous. In addition, it tends to be inconvenient in terms of workability. The molecular weight distribution (Mw / Mn) of the organic polymer (A) measured by GPC is preferably 2.0 or less, more preferably 1.5 or less, further preferably 1.4 or less, and 1.3 or less. It is particularly preferable, and 1.2 or less is most preferable.
有機重合体(A)としては、市販品も利用できる。例えば、(a)(株)カネカ製、商品名:カネカMSポリマー、および商品名:カネカサイリル、(b)AGC(株)製、商品名:エクセスター、(c)Wacker社製、商品名:GENIOSIL、等が既に工業用に製造販売されており、有機重合体(A)として容易に入手および利用できる。
As the organic polymer (A), a commercially available product can also be used. For example, (a) Kaneka Corporation, product name: Kaneka MS Polymer, and product name: Kaneka Cyril, (b) AGC Co., Ltd., product name: Exester, (c) Wacker, product name: GENIOSIL. , Etc. have already been manufactured and sold for industrial use, and can be easily obtained and used as the organic polymer (A).
本硬化性組成物における有機重合体(A)の含有量は特に限定されない。本硬化性組成物における有機重合体(A)の含有量は、硬化性組成物100重量%中、10重量%~25重量%であることが好ましく、11重量%~24重量%であることがより好ましく、12重量%~23重量%であることがより好ましく、13重量%~22重量%であることがより好ましく、14重量%~21重量%であることがさらに好ましく、15重量%~20重量%であることが特に好ましい。当該構成によると、硬化性組成物は安価になるため、経済的に優れるという利点を有する。
The content of the organic polymer (A) in the present curable composition is not particularly limited. The content of the organic polymer (A) in the present curable composition is preferably 10% by weight to 25% by weight, preferably 11% by weight to 24% by weight, based on 100% by weight of the curable composition. More preferably, it is 12% by weight to 23% by weight, more preferably 13% by weight to 22% by weight, further preferably 14% by weight to 21% by weight, and further preferably 15% by weight to 20% by weight. It is particularly preferable to be% by weight. According to this configuration, the curable composition is inexpensive and therefore has the advantage of being economically superior.
[2-2.ポリ塩化ビニル樹脂(B)]
本明細書において、「ポリ塩化ビニル樹脂」とは、樹脂を構成する構造単位100モル%中、塩化ビニルに由来する構造単位を50モル%以上有する樹脂を意図する。 [2-2. Polyvinyl chloride resin (B)]
As used herein, the term "polyvinyl chloride resin" is intended to be a resin having 50 mol% or more of structural units derived from vinyl chloride in 100 mol% of the structural units constituting the resin.
本明細書において、「ポリ塩化ビニル樹脂」とは、樹脂を構成する構造単位100モル%中、塩化ビニルに由来する構造単位を50モル%以上有する樹脂を意図する。 [2-2. Polyvinyl chloride resin (B)]
As used herein, the term "polyvinyl chloride resin" is intended to be a resin having 50 mol% or more of structural units derived from vinyl chloride in 100 mol% of the structural units constituting the resin.
本発明者らは、鋭意検討の結果、以下の知見を独自に見出した:(a)硬化性組成物がポリ塩化ビニル樹脂(B)を含むことにより、硬化性組成物の粘度が著しく上昇することなく、硬化性組成物のチキソ性が向上し得ること;および(b)硬化性組成物がポリ塩化ビニル樹脂(B)と炭酸カルシウムと含むことにより、硬化性組成物において、有機重合体(A)の幅広い濃度範囲で、ハイタック接着剤に適したレオロジー挙動が発現すること。
As a result of diligent studies, the present inventors have independently found the following findings: (a) When the curable composition contains the polyvinyl chloride resin (B), the viscosity of the curable composition is significantly increased. The viscous property of the curable composition can be improved without the need for; and (b) the curable composition contains the polyvinyl chloride resin (B) and calcium carbonate, whereby the organic polymer (b) is used in the curable composition. A) A. A wide range of concentration ranges, the rheological behavior suitable for high-tack adhesives should be exhibited.
ポリ塩化ビニル樹脂(B)は、(a)塩化ビニルに由来する構造単位のみから構成される塩化ビニル単独重合体であってもよく、(b)塩化ビニルと、塩化ビニルと共重合可能な塩化ビニル以外の単量体(以下、単量体Aとも称する。)との共重合体であってもよい。ポリ塩化ビニル樹脂(B)は、塩化ビニルに由来する構造単位と単量体Aに由来する構造単位とを有していてもよい。
The polyvinyl chloride resin (B) may be (a) a vinyl chloride homopolymer composed only of structural units derived from vinyl chloride, and (b) vinyl chloride and chloride copolymerizable with vinyl chloride. It may be a copolymer with a monomer other than vinyl (hereinafter, also referred to as monomer A). The polyvinyl chloride resin (B) may have a structural unit derived from vinyl chloride and a structural unit derived from the monomer A.
単量体Aとしては、酢酸ビニル、塩化ビニリデン、アクリル酸、アクリル酸エステル、メタクリル酸、メタクリル酸エステル、マレイン酸、マレイン酸エステル、アクリロニトリルなどが挙げられる。
Examples of the monomer A include vinyl acetate, vinylidene chloride, acrylic acid, acrylic acid ester, methacrylic acid, methacrylic acid ester, maleic acid, maleic acid ester, acrylonitrile and the like.
ポリ塩化ビニル樹脂(B)の重合度は特に限定されないが、例えば、平均重合度が200~10000が好ましく、300~4000がより好ましい。
The degree of polymerization of the polyvinyl chloride resin (B) is not particularly limited, but for example, the average degree of polymerization is preferably 200 to 10000, and more preferably 300 to 4000.
本明細書において、「ポリ塩化ビニル樹脂(B)の最頻径」は、ポリ塩化ビニル樹脂(B)の一次粒子の粒子径を、体積基準で、頻度分布で表したときに得られる最頻径を意図する。「最頻径」は「モード径」と称される場合もある。ポリ塩化ビニル樹脂(B)の一次粒子の最頻径は、例えば、ポリ塩化ビニル樹脂(B)の製造過程で得られる、ポリ塩化ビニル樹脂(B)を含むラテックスを試料として、ディスク遠心式粒子径分布測定装置(CPS Instruments社製、CPS Disc Centrifuge)を用いて測定して得ることができる。換言すれば、「ポリ塩化ビニル樹脂(B)の最頻径」は、「ポリ塩化ビニル樹脂(B)の乾燥前の一次粒子の最頻径」ともいえる。
In the present specification, the "most frequent diameter of the polyvinyl chloride resin (B)" is the most frequent obtained when the particle diameter of the primary particles of the polyvinyl chloride resin (B) is expressed by a frequency distribution on a volume basis. Intended for diameter. The "mode diameter" is sometimes referred to as the "mode diameter". The most frequent diameter of the primary particles of the polyvinyl chloride resin (B) is, for example, a disk centrifugal particle using a latex containing the polyvinyl chloride resin (B) obtained in the manufacturing process of the polyvinyl chloride resin (B) as a sample. It can be obtained by measurement using a diameter distribution measuring device (CPS Disc Centrifuge manufactured by CPS Instruments). In other words, the "mode of the polyvinyl chloride resin (B)" can be said to be the "mode of the primary particles of the polyvinyl chloride resin (B) before drying".
ポリ塩化ビニル樹脂(B)の最頻径は、0.10μm~0.50μmであり、0.11μm~0.48μmであることが好ましく、0.12μm~0.46μmであることがより好ましく、0.13μm~0.44μmであることがより好ましく、0.14μm~0.42μmであることがより好ましく、0.15μm~0.40μmであることがより好ましく、0.16μm~0.39μmであることがより好ましく、0.17μm~0.38μmであることがさらに好ましく、0.18μm~0.37μmであることが特に好ましい。当該構成によると、硬化性組成物は、初期固定性により優れ、かつ貯蔵安定性に優れるという利点を有する。
The mode of the polyvinyl chloride resin (B) is 0.10 μm to 0.50 μm, preferably 0.11 μm to 0.48 μm, and more preferably 0.12 μm to 0.46 μm. It is more preferably 0.13 μm to 0.44 μm, more preferably 0.14 μm to 0.42 μm, more preferably 0.15 μm to 0.40 μm, and 0.16 μm to 0.39 μm. It is more preferably 0.17 μm to 0.38 μm, and particularly preferably 0.18 μm to 0.37 μm. According to this configuration, the curable composition has the advantages of better initial fixation and better storage stability.
特に、ポリ塩化ビニル樹脂(B)の最頻径が0.50μm以下である場合、硬化性組成物が貯蔵安定性に優れるという利点を有する。これは、以下のように推察されるが、本発明の一実施形態は以下の推察に限定されない:
ポリ塩化ビニル樹脂(B)の最頻径が大きくなるにつれて、硬化性組成物の貯蔵中にポリ塩化ビニル樹脂(B)の凝集がほぐれて、ほぐれたポリ塩化ビニル樹脂(B)が硬化性組成物中に均一に分散する。その結果、ポリ塩化ビニル樹脂(B)の最頻径が大きくなるほど、水素結合による硬化性組成物の粘度上昇効果が大きくなると推察される。換言すれば、ポリ塩化ビニル樹脂(B)の最頻径が大きくなるにつれて、硬化性組成物の貯蔵後の粘度が上昇する傾向があると推察される。一方、ポリ塩化ビニル樹脂(B)の最頻径が小さくなるにつれて、硬化性組成物の貯蔵前の状態で、ポリ塩化ビニル樹脂(B)は既に一次粒子に近い形で硬化性組成物中に分散する。その結果、そのため硬化性組成物の貯蔵前後で硬化性組成物の粘度変化が小さいものと推察される。 In particular, when the mode of the polyvinyl chloride resin (B) is 0.50 μm or less, the curable composition has an advantage of being excellent in storage stability. This is inferred as follows, but one embodiment of the present invention is not limited to the following inference:
As the frequency of the polyvinyl chloride resin (B) increases, the aggregation of the polyvinyl chloride resin (B) is loosened during storage of the curable composition, and the loosened polyvinyl chloride resin (B) has a curable composition. Disperses evenly in the object. As a result, it is presumed that the larger the mode of the polyvinyl chloride resin (B), the greater the effect of increasing the viscosity of the curable composition by hydrogen bonding. In other words, it is presumed that as the mode of the polyvinyl chloride resin (B) increases, the viscosity of the curable composition after storage tends to increase. On the other hand, as the mode of the polyvinyl chloride resin (B) becomes smaller, the polyvinyl chloride resin (B) is already contained in the curable composition in a form close to the primary particles in the state before storage of the curable composition. Spread. As a result, it is presumed that the change in viscosity of the curable composition is small before and after storage of the curable composition.
ポリ塩化ビニル樹脂(B)の最頻径が大きくなるにつれて、硬化性組成物の貯蔵中にポリ塩化ビニル樹脂(B)の凝集がほぐれて、ほぐれたポリ塩化ビニル樹脂(B)が硬化性組成物中に均一に分散する。その結果、ポリ塩化ビニル樹脂(B)の最頻径が大きくなるほど、水素結合による硬化性組成物の粘度上昇効果が大きくなると推察される。換言すれば、ポリ塩化ビニル樹脂(B)の最頻径が大きくなるにつれて、硬化性組成物の貯蔵後の粘度が上昇する傾向があると推察される。一方、ポリ塩化ビニル樹脂(B)の最頻径が小さくなるにつれて、硬化性組成物の貯蔵前の状態で、ポリ塩化ビニル樹脂(B)は既に一次粒子に近い形で硬化性組成物中に分散する。その結果、そのため硬化性組成物の貯蔵前後で硬化性組成物の粘度変化が小さいものと推察される。 In particular, when the mode of the polyvinyl chloride resin (B) is 0.50 μm or less, the curable composition has an advantage of being excellent in storage stability. This is inferred as follows, but one embodiment of the present invention is not limited to the following inference:
As the frequency of the polyvinyl chloride resin (B) increases, the aggregation of the polyvinyl chloride resin (B) is loosened during storage of the curable composition, and the loosened polyvinyl chloride resin (B) has a curable composition. Disperses evenly in the object. As a result, it is presumed that the larger the mode of the polyvinyl chloride resin (B), the greater the effect of increasing the viscosity of the curable composition by hydrogen bonding. In other words, it is presumed that as the mode of the polyvinyl chloride resin (B) increases, the viscosity of the curable composition after storage tends to increase. On the other hand, as the mode of the polyvinyl chloride resin (B) becomes smaller, the polyvinyl chloride resin (B) is already contained in the curable composition in a form close to the primary particles in the state before storage of the curable composition. Spread. As a result, it is presumed that the change in viscosity of the curable composition is small before and after storage of the curable composition.
ポリ塩化ビニル樹脂(B)の製造方法としては特に限定されない。ポリ塩化ビニル樹脂(B)の製造方法として、好ましくは乳化重合法または微細懸濁重合法といった重合方法が好適に用いられ、それらの中でもポリ塩化ビニル樹脂(B)の一次粒子径を小さく制御することが容易であることから、乳化重合法がより好適に用いられる。更に、ポリ塩化ビニル樹脂の重合後に得られるラテックスを噴霧乾燥法および流動床乾燥法等により乾燥することにより、ポリ塩化ビニル樹脂(B)が得られる。
The method for producing the polyvinyl chloride resin (B) is not particularly limited. As a method for producing the polyvinyl chloride resin (B), a polymerization method such as an emulsion polymerization method or a fine suspension polymerization method is preferably used, and among them, the primary particle size of the polyvinyl chloride resin (B) is controlled to be small. The emulsification polymerization method is more preferably used because it is easy to carry out. Further, the polyvinyl chloride resin (B) can be obtained by drying the latex obtained after the polymerization of the polyvinyl chloride resin by a spray drying method, a fluidized bed drying method or the like.
本硬化性組成物におけるポリ塩化ビニル樹脂(B)の含有量は、有機重合体(A)100重量部に対して、10重量部~500重量部であり、20重量部~450重量部であることが好ましく、30重量部~400重量部であることがより好ましく、40重量部~350重量部であることがより好ましく、50重量部~300重量部であることがより好ましく、60重量部~250重量部であることがさらに好ましく、70重量部~200重量部であることが特に好ましい。当該構成によると、硬化性組成物は初期固定性により優れるという利点を有する。
The content of the polyvinyl chloride resin (B) in the present curable composition is 10 parts by weight to 500 parts by weight and 20 parts by weight to 450 parts by weight with respect to 100 parts by weight of the organic polymer (A). It is preferably 30 parts by weight to 400 parts by weight, more preferably 40 parts by weight to 350 parts by weight, more preferably 50 parts by weight to 300 parts by weight, and 60 parts by weight to 60 parts by weight. It is more preferably 250 parts by weight, and particularly preferably 70 parts by weight to 200 parts by weight. According to this composition, the curable composition has the advantage of being better at initial immobilization.
[2-3.炭酸カルシウム(C)]
炭酸カルシウム(C)は、硬化性組成物において、フィラーとして機能し得る。フィラーとしては、炭酸カルシウム以外にも、カオリン、水酸化アルミニウム、酸化アルミニウム、ヒュームシリカ、シリカ粉末、ガラスフィラー、カーボンブラック、中空フィラー、硫酸バリウム等の公知の汎用フィラーが挙げられる。フィラーとして炭酸カルシウム(C)を含まず他の汎用フィラーを含む硬化性組成物と比較して、フィラーとして炭酸カルシウム(C)を含む本硬化性組成物は、柔軟性および/または各種被接着物質への接着性に優れるという利点を有する。なお、本硬化性組成物は、炭酸カルシウム(C)に加えて、炭酸カルシウム(C)以外の上述した汎用フィラーをさらに含んでいてもよい。 [2-3. Calcium carbonate (C)]
Calcium carbonate (C) can function as a filler in the curable composition. Examples of the filler include known general-purpose fillers such as kaolin, aluminum hydroxide, aluminum oxide, fume silica, silica powder, glass filler, carbon black, hollow filler, and barium sulfate. Compared to a curable composition that does not contain calcium carbonate (C) as a filler and contains other general purpose fillers, this curable composition that contains calcium carbonate (C) as a filler is flexible and / or various adherends. It has the advantage of excellent adhesion to calcium. In addition to calcium carbonate (C), the present curable composition may further contain the above-mentioned general-purpose filler other than calcium carbonate (C).
炭酸カルシウム(C)は、硬化性組成物において、フィラーとして機能し得る。フィラーとしては、炭酸カルシウム以外にも、カオリン、水酸化アルミニウム、酸化アルミニウム、ヒュームシリカ、シリカ粉末、ガラスフィラー、カーボンブラック、中空フィラー、硫酸バリウム等の公知の汎用フィラーが挙げられる。フィラーとして炭酸カルシウム(C)を含まず他の汎用フィラーを含む硬化性組成物と比較して、フィラーとして炭酸カルシウム(C)を含む本硬化性組成物は、柔軟性および/または各種被接着物質への接着性に優れるという利点を有する。なお、本硬化性組成物は、炭酸カルシウム(C)に加えて、炭酸カルシウム(C)以外の上述した汎用フィラーをさらに含んでいてもよい。 [2-3. Calcium carbonate (C)]
Calcium carbonate (C) can function as a filler in the curable composition. Examples of the filler include known general-purpose fillers such as kaolin, aluminum hydroxide, aluminum oxide, fume silica, silica powder, glass filler, carbon black, hollow filler, and barium sulfate. Compared to a curable composition that does not contain calcium carbonate (C) as a filler and contains other general purpose fillers, this curable composition that contains calcium carbonate (C) as a filler is flexible and / or various adherends. It has the advantage of excellent adhesion to calcium. In addition to calcium carbonate (C), the present curable composition may further contain the above-mentioned general-purpose filler other than calcium carbonate (C).
炭酸カルシウム(C)については特に制限はなく、例えば、(a)Ca(OH)2の水スラリーにCO2ガスを導入して生成させる膠質炭酸カルシウム、(b)石灰石を機械的に粉砕、分級して得られる重質炭酸カルシウム、および(c)コロイダル炭酸カルシウム(沈降炭酸カルシウムと称される場合もある)、等が挙げられる。一般的に、重質炭酸カルシウムと比較して膠質炭酸カルシウムおよびコロイダル炭酸カルシウムは、体積平均粒子径がより小さいものである。
There are no particular restrictions on calcium carbonate (C). For example, (a) calcium carbonate, which is produced by introducing CO 2 gas into an aqueous slurry of Ca (OH) 2 , and (b) limestone are mechanically crushed and classified. The heavy calcium carbonate thus obtained, and (c) colloidal calcium carbonate (sometimes referred to as precipitated calcium carbonate), and the like can be mentioned. In general, collagen carbonate and colloidal calcium carbonate have a smaller volume average particle size than heavy calcium carbonate.
炭酸カルシウム(C)のBET比表面積は、1m2/g~100m2/gであることが好ましく、2m2/g~80m2/gであることがより好ましく、5m2/g~50m2/gであることがさらに好ましい。炭酸カルシウム(C)のBET比表面積が1m2/g以上である場合、硬化性組成物のチキソ性が良好となる。炭酸カルシウム(C)のBET比表面積が100m2/g以下である場合、硬化性組成物中で、炭酸カルシウム(C)同士の凝集が制限され、硬化性組成物中における炭酸カルシウム(C)の分散性が良好となる。その結果、炭酸カルシウム(C)のBET比表面積が100m2/g以下である場合、硬化性組成物は良好なチキソ性を有する。本明細書において、炭酸カルシウム(C)のBET比表面積は比表面積測定装置(株式会社マウンテック社製マックソーブHM model-1208またはマイクロメリチック社製フローソーブII2300)を用いて測定した値である。
The BET specific surface area of calcium carbonate (C) is preferably 1 m 2 / g to 100 m 2 / g, more preferably 2 m 2 / g to 80 m 2 / g, and 5 m 2 / g to 50 m 2 / g. It is more preferably g. When the BET specific surface area of calcium carbonate (C) is 1 m 2 / g or more, the thixotropic property of the curable composition becomes good. When the BET specific surface area of calcium carbonate (C) is 100 m 2 / g or less, aggregation of calcium carbonate (C) with each other is restricted in the curable composition, and calcium carbonate (C) in the curable composition is restricted. Good dispersibility. As a result, when the BET specific surface area of calcium carbonate (C) is 100 m 2 / g or less, the curable composition has good thixotropic properties. In the present specification, the BET specific surface area of calcium carbonate (C) is a value measured using a specific surface area measuring device (Macsorb HM model-1208 manufactured by Mountech Co., Ltd. or Flowsorb II2300 manufactured by Micromeritic Co., Ltd.).
炭酸カルシウム(C)は、表面処理剤で表面処理された炭酸カルシウムであってもよい。表面処理剤としては、特に限定されないが、例えば、脂肪酸系化合物が好適に挙げられる。当該脂肪酸系化合物としては、特に限定されないが、例えば、脂肪酸、脂肪酸の塩、脂肪酸の誘導体、および脂肪酸の誘導体の塩からなる群から選ばれる1つ以上が好適に挙げられる。
Calcium carbonate (C) may be calcium carbonate surface-treated with a surface treatment agent. The surface treatment agent is not particularly limited, and for example, a fatty acid-based compound is preferably used. The fatty acid-based compound is not particularly limited, and for example, one or more selected from the group consisting of fatty acids, fatty acid salts, fatty acid derivatives, and fatty acid derivative salts can be preferably mentioned.
脂肪酸については特に限定されないが、飽和脂肪酸、不飽和脂肪酸、脂環族カルボン酸等が好ましく用いることができる。具体的には、カプロン酸、カプリル酸、ペラルゴン酸、カプリン酸、ウンデカン酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、アライン酸、ベヘン酸、リグノセリン酸、セロチン酸、モンタン酸、メリシン酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、オレイン酸、オブッシル酸、カルロレイン酸、ウンデシレン酸、リンデル酸、ツズ酸、フィゼテリン酸、モリストレイン酸、パルミトレイン酸、ペトロセリン酸、オレイン酸、エライジン酸、アスクレビン酸、バクセン酸、ガドレイン酸、ゴンドイン酸、セトレイン酸、エルカ酸、ブラシジン酸、セラコレイン酸、キシメン酸、ルメクエン酸、ソルビン酸、リノール酸、ステアリン酸ステアリル、ステアリン酸ラウリル、パルミチン酸ステアリル、パルミチン酸ラウリルなどが挙げられる。これらは単独もしくは2種以上組み合わせて用いることができる。前記脂肪酸のうち、パルミチン酸、ステアリン酸、オレイン酸が特に好ましい。
The fatty acid is not particularly limited, but saturated fatty acid, unsaturated fatty acid, alicyclic carboxylic acid and the like can be preferably used. Specifically, caproic acid, capric acid, pelargonic acid, capric acid, undecanoic acid, lauric acid, myristic acid, palmitic acid, stearic acid, alignment acid, behenic acid, lignoseric acid, cellotic acid, montanic acid, melicic acid, Lauric acid, myristic acid, palmitic acid, stearic acid, oleic acid, obscilic acid, carroleaic acid, undecylenic acid, linderic acid, tsuzuic acid, fizeteric acid, moristrenic acid, palmitreic acid, petroseric acid, oleic acid, ellaic acid , Asclebic acid, vacene acid, gadrain acid, gondoic acid, setreic acid, erucic acid, brushzic acid, seracholeic acid, ximenic acid, lumecic acid, sorbic acid, linoleic acid, stearyl stearate, lauryl stearate, stearyl palmitate, Examples include lauryl palmitate. These can be used alone or in combination of two or more. Of the fatty acids, palmitic acid, stearic acid, and oleic acid are particularly preferable.
表面処理された炭酸カルシウム(C)の製造方法としては、特に限定されず、上述した炭酸カルシウムを上述した脂肪酸系化合物を用いて表面処理(被覆)を行い、その後常法に従い、脱水、乾燥、粉砕等の工程を経て粉末化する方法が挙げられる。
The method for producing the surface-treated calcium carbonate (C) is not particularly limited, and the above-mentioned calcium carbonate is surface-treated (coated) with the above-mentioned fatty acid compound, and then dehydrated and dried according to a conventional method. Examples thereof include a method of pulverizing through a step such as crushing.
本硬化性組成物における炭酸カルシウム(C)の含有量は、有機重合体(A)100重量部に対して、150重量部~500重量部であり、150重量部より多く500重量部以下であることが好ましく、160重量部~500重量部であることがより好ましく、170重量部~500重量部であることがより好ましく、180重量部~500重量部であることがより好ましく、190重量部~500重量部であることがさらに好ましく、200重量部~500重量部であることが特に好ましく、250重量部~500重量部であることが最も好ましい。当該構成によると、硬化性組成物は初期固定性により優れるという利点を有する。また、炭酸カルシウム(C)の含有量を150重量部以上とすることにより、有機重合体(A)の含有量が少ない(例えば25重量%以下)にもかかわらず初期固定性に優れる硬化性組成物が可能になる。その結果、初期固定性に優れ、かつ安価な硬化性組成物を提供できるという利点を有する。硬化性組成物の初期固定性と生産コストの観点から、本硬化性組成物における炭酸カルシウム(C)の含有量は、有機重合体(A)100重量部に対して、170重量部~450重量部であってもよく、180重量部~400重量部であってもよく、190重量部~350重量部であってもよく、200重量部~300重量部であってもよい。
The content of calcium carbonate (C) in the present curable composition is 150 parts by weight to 500 parts by weight, and more than 150 parts by weight and 500 parts by weight or less with respect to 100 parts by weight of the organic polymer (A). It is preferably 160 parts by weight to 500 parts by weight, more preferably 170 parts by weight to 500 parts by weight, more preferably 180 parts by weight to 500 parts by weight, and more preferably 190 parts by weight to 500 parts by weight. It is more preferably 500 parts by weight, particularly preferably 200 parts by weight to 500 parts by weight, and most preferably 250 parts by weight to 500 parts by weight. According to this composition, the curable composition has the advantage of being better at initial immobilization. Further, by setting the content of calcium carbonate (C) to 150 parts by weight or more, a curable composition having excellent initial fixing property despite a small content of the organic polymer (A) (for example, 25% by weight or less). Things are possible. As a result, there is an advantage that a curable composition having excellent initial fixing property and being inexpensive can be provided. From the viewpoint of initial fixing property and production cost of the curable composition, the content of calcium carbonate (C) in the present curable composition is 170 parts by weight to 450 parts by weight with respect to 100 parts by weight of the organic polymer (A). It may be 180 parts by weight to 400 parts by weight, 190 parts by weight to 350 parts by weight, or 200 parts by weight to 300 parts by weight.
本硬化性組成物は、炭酸カルシウム(C)として、異なる体積平均粒子径を有する2種以上の炭酸カルシウムを組み合わせて使用することが好ましい。本硬化性組成物は、炭酸カルシウム(C)として、例えば、(a)体積平均粒子径が0.01μm以上0.50μm未満である炭酸カルシウム(C1)(例えば、膠質炭酸カルシウムまたはコロイダル炭酸カルシウム)と、(b)体積平均粒子径が0.50μm~10.00μmである炭酸カルシウム(C2)(例えば、表面無処理の重質炭酸カルシウム)と、を含むことが好ましい。
In this curable composition, it is preferable to use as calcium carbonate (C) in combination of two or more kinds of calcium carbonate having different volume average particle diameters. The present curable composition may be, as calcium carbonate (C), for example, (a) calcium carbonate (C1) having a volume average particle size of 0.01 μm or more and less than 0.50 μm (for example, glued calcium carbonate or colloidal calcium carbonate). And (b) calcium carbonate (C2) having a volume average particle size of 0.50 μm to 10.00 μm (for example, heavy calcium carbonate without surface treatment) are preferably contained.
本硬化性組成物は、有機重合体(A)100重量部に対して、
(i)(a)体積平均粒子径が0.01μm以上0.50μm未満である炭酸カルシウム(C1)0重量部~300重量部と、(b)体積平均粒子径が0.50μm~10.00μmである炭酸カルシウム(C2)0重量部~500重量部と、を含むことが好ましく、
(ii)(a)体積平均粒子径が0.03μm~0.40μmである炭酸カルシウム(C1)0重量部~250重量部と、(b)体積平均粒子径が0.50μm~10.00μmである炭酸カルシウム(C2)100重量部~500重量部と、を含むことがより好ましく、
(iii)(a)体積平均粒子径が0.05μm~0.20μmである炭酸カルシウム(C1)0重量部~200重量部と、(b)体積平均粒子径が0.60μm~9.00μmである炭酸カルシウム(C2)150重量部~500重量部と、を含むことがさらに好ましく、
(iv)(a)体積平均粒子径が0.05μm~0.15μmである炭酸カルシウム(C1)0重量部~150重量部と、(b)体積平均粒子径が0.70μm~5.00μmである炭酸カルシウム(C2)150重量部~500重量部と、を含むことが特に好ましい。
当該構成によると、硬化性組成物は、(a)初期固定性により優れるとともに、(b)保存容器からの吐出が容易であるため取り扱い性にも優れるという利点を有する。なお、本明細書において炭酸カルシウム(C)の体積平均粒子径は、レーザー光回折散乱法により測定して得られた値とする。また、「体積平均粒子径」は、「d50粒径」と同義である。 The present curable composition is based on 100 parts by weight of the organic polymer (A).
(I) (a) Calcium carbonate (C1) with a volume average particle diameter of 0.01 μm or more and less than 0.50 μm 0 parts by weight to 300 parts by weight, and (b) a volume average particle diameter of 0.50 μm to 10.00 μm. It is preferable to contain 0 part by volume to 500 parts by volume of calcium carbonate (C2).
(Ii) (a) Calcium carbonate (C1) with a volume average particle diameter of 0.03 μm to 0.40 μm 0 parts by weight to 250 parts by weight, and (b) a volume average particle diameter of 0.50 μm to 10.00 μm. It is more preferable to contain a certain calcium carbonate (C2) of 100 parts by volume to 500 parts by volume.
(Iii) (a) Calcium carbonate (C1) with a volume average particle diameter of 0.05 μm to 0.20 μm 0 parts by weight to 200 parts by weight, and (b) a volume average particle diameter of 0.60 μm to 9.00 μm. It is more preferable to contain a certain calcium carbonate (C2) of 150 parts by volume to 500 parts by volume.
(Iv) (a) Calcium carbonate (C1) with a volume average particle diameter of 0.05 μm to 0.15 μm 0 parts by weight to 150 parts by weight, and (b) a volume average particle diameter of 0.70 μm to 5.00 μm. It is particularly preferable to contain a certain calcium carbonate (C2) of 150 parts by volume to 500 parts by volume.
According to this structure, the curable composition has the advantages of (a) being superior in initial fixing property and (b) being excellent in handleability because it is easily discharged from the storage container. In the present specification, the volume average particle size of calcium carbonate (C) is a value obtained by measuring by a laser light diffraction / scattering method. Further, "volume average particle size" is synonymous with "d50 particle size".
(i)(a)体積平均粒子径が0.01μm以上0.50μm未満である炭酸カルシウム(C1)0重量部~300重量部と、(b)体積平均粒子径が0.50μm~10.00μmである炭酸カルシウム(C2)0重量部~500重量部と、を含むことが好ましく、
(ii)(a)体積平均粒子径が0.03μm~0.40μmである炭酸カルシウム(C1)0重量部~250重量部と、(b)体積平均粒子径が0.50μm~10.00μmである炭酸カルシウム(C2)100重量部~500重量部と、を含むことがより好ましく、
(iii)(a)体積平均粒子径が0.05μm~0.20μmである炭酸カルシウム(C1)0重量部~200重量部と、(b)体積平均粒子径が0.60μm~9.00μmである炭酸カルシウム(C2)150重量部~500重量部と、を含むことがさらに好ましく、
(iv)(a)体積平均粒子径が0.05μm~0.15μmである炭酸カルシウム(C1)0重量部~150重量部と、(b)体積平均粒子径が0.70μm~5.00μmである炭酸カルシウム(C2)150重量部~500重量部と、を含むことが特に好ましい。
当該構成によると、硬化性組成物は、(a)初期固定性により優れるとともに、(b)保存容器からの吐出が容易であるため取り扱い性にも優れるという利点を有する。なお、本明細書において炭酸カルシウム(C)の体積平均粒子径は、レーザー光回折散乱法により測定して得られた値とする。また、「体積平均粒子径」は、「d50粒径」と同義である。 The present curable composition is based on 100 parts by weight of the organic polymer (A).
(I) (a) Calcium carbonate (C1) with a volume average particle diameter of 0.01 μm or more and less than 0.50 μm 0 parts by weight to 300 parts by weight, and (b) a volume average particle diameter of 0.50 μm to 10.00 μm. It is preferable to contain 0 part by volume to 500 parts by volume of calcium carbonate (C2).
(Ii) (a) Calcium carbonate (C1) with a volume average particle diameter of 0.03 μm to 0.40 μm 0 parts by weight to 250 parts by weight, and (b) a volume average particle diameter of 0.50 μm to 10.00 μm. It is more preferable to contain a certain calcium carbonate (C2) of 100 parts by volume to 500 parts by volume.
(Iii) (a) Calcium carbonate (C1) with a volume average particle diameter of 0.05 μm to 0.20 μm 0 parts by weight to 200 parts by weight, and (b) a volume average particle diameter of 0.60 μm to 9.00 μm. It is more preferable to contain a certain calcium carbonate (C2) of 150 parts by volume to 500 parts by volume.
(Iv) (a) Calcium carbonate (C1) with a volume average particle diameter of 0.05 μm to 0.15 μm 0 parts by weight to 150 parts by weight, and (b) a volume average particle diameter of 0.70 μm to 5.00 μm. It is particularly preferable to contain a certain calcium carbonate (C2) of 150 parts by volume to 500 parts by volume.
According to this structure, the curable composition has the advantages of (a) being superior in initial fixing property and (b) being excellent in handleability because it is easily discharged from the storage container. In the present specification, the volume average particle size of calcium carbonate (C) is a value obtained by measuring by a laser light diffraction / scattering method. Further, "volume average particle size" is synonymous with "d50 particle size".
炭酸カルシウム(C)における、炭酸カルシウム(C2)の重量に対する炭酸カルシウム(C1)の重量の比率(炭酸カルシウム(C1)の重量/炭酸カルシウム(C2)の重量)は、特に限定されないが、例えば、1.0以下であることが好ましく、0.9以下であることがより好ましく、0.8以下であることがさらに好ましく、0.7以下であることが特に好ましい。
The ratio of the weight of calcium carbonate (C1) to the weight of calcium carbonate (C2) in calcium carbonate (C) (weight of calcium carbonate (C1) / weight of calcium carbonate (C2)) is not particularly limited, but is not particularly limited, for example. It is preferably 1.0 or less, more preferably 0.9 or less, further preferably 0.8 or less, and particularly preferably 0.7 or less.
本硬化性組成物におけるポリ塩化ビニル樹脂(B)の含有量と炭酸カルシウム(C)の含有量との比((B)/(C))は、0.2~0.8であることが好ましく、0.2~0.7であることがより好ましく、0.2~0.6であることがさらに好ましく、0.2~0.5であることが特に好ましい。当該構成によると、(a)硬化性組成物の吐出性を損なうことがない、(b)硬化性組成物が低比重である、並びに(c)硬化物の耐熱性および/または耐候性を損なうことがない、などの利点を有する。すなわち、(B)/(C)が前述した範囲内である場合、硬化性組成物は良好なハイタック接着性を発現するという利点を有する。また、硬化性組成物が低比重であるとは、同じ体積を有する硬化性組成物であってもより軽いことを意図する。高比重である硬化性組成物と比較して、低比重である硬化性組成物は生産コストが低く、かつ輸送および保管コストもより少ないという利点を有する。
The ratio ((B) / (C)) of the content of the polyvinyl chloride resin (B) to the content of calcium carbonate (C) in the present curable composition is 0.2 to 0.8. It is preferably 0.2 to 0.7, more preferably 0.2 to 0.6, and particularly preferably 0.2 to 0.5. According to this configuration, (a) the curable composition does not impair the ejection property, (b) the curable composition has a low specific density, and (c) the heat resistance and / or weather resistance of the cured product is impaired. It has advantages such as never. That is, when (B) / (C) is within the above-mentioned range, the curable composition has an advantage of exhibiting good high-tack adhesiveness. Further, the fact that the curable composition has a low specific density means that even a curable composition having the same volume is lighter. Compared with the curable composition having a high specific density, the curable composition having a low specific density has an advantage that the production cost is low and the transportation and storage costs are also low.
[2-4.脱水剤(D)]
本硬化性組成物は、有機重合体(A)、ポリ塩化ビニル樹脂(B)および炭酸カルシウム(C)に加えて、さらに脱水剤(D)を含んでいてもよい。本硬化性組成物が脱水剤(D)を含む場合、硬化性組成物は貯蔵安定性に優れるという利点を有する。 [2-4. Dehydrating agent (D)]
The present curable composition may further contain a dehydrating agent (D) in addition to the organic polymer (A), the polyvinyl chloride resin (B) and calcium carbonate (C). When the present curable composition contains the dehydrating agent (D), the curable composition has an advantage of being excellent in storage stability.
本硬化性組成物は、有機重合体(A)、ポリ塩化ビニル樹脂(B)および炭酸カルシウム(C)に加えて、さらに脱水剤(D)を含んでいてもよい。本硬化性組成物が脱水剤(D)を含む場合、硬化性組成物は貯蔵安定性に優れるという利点を有する。 [2-4. Dehydrating agent (D)]
The present curable composition may further contain a dehydrating agent (D) in addition to the organic polymer (A), the polyvinyl chloride resin (B) and calcium carbonate (C). When the present curable composition contains the dehydrating agent (D), the curable composition has an advantage of being excellent in storage stability.
脱水剤(D)としては、特に限定されないが、水分および/または湿分を吸収する物質であることが好ましい。脱水剤(D)としては、例えば、ビニルシラン化合物、シリケート化合物、酸化カルシウム、ゼオライト系化合物およびオルト蟻酸メチルなどが挙げられる。これらの中でも、脱水剤(D)としては、ビニルシラン化合物およびシリケート化合物が好ましく、ビニルシラン化合物がより好ましい。当該構成によると、硬化性組成物は貯蔵安定性により優れるという利点を有する。
The dehydrating agent (D) is not particularly limited, but is preferably a substance that absorbs water and / or moisture. Examples of the dehydrating agent (D) include vinylsilane compound, silicate compound, calcium oxide, zeolite compound and methyl orthoate. Among these, as the dehydrating agent (D), a vinylsilane compound and a silicate compound are preferable, and a vinylsilane compound is more preferable. According to this composition, the curable composition has the advantage of being superior in storage stability.
脱水剤(D)として使用され得るビニルシラン化合物としては、例えば、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリプロポキシシラン、ビニルメチルジメトキシシラン、ビニルメチルジエトキシシラン、ビニルメチルジプロポキシシラン、ビニルジメチルメトキシシラン、ビニルジメチルエトキシシラン、ビニルジメチルプロポキシシラン、ビニルエチルジメトキシシラン、ビニルエチルジエトキシシラン、ビニルエチルジプロポキシシラン、ビニルジエチルメトキシシラン、ビニルジエチルエトキシシラン、ビニルジエチルプロポキシシラン、ビニルプロピルジメトキシシラン、ビニルプロピルジエトキシシラン、ビニルプロピルジプロポキシシラン、ビニルジプロピルメトキシシラン、ビニルジプロピルエトキシシラン、ビニルジプロピルプロポキシシラン、メチルシリケート、メチルシリケートの縮合物、エチルシリケートおよびエチルシリケートの縮合物などが挙げられる。これらの中でも、脱水剤(D)として使用され得るビニルシラン化合物としては、ビニルトリメトキシシランおよびエチルシリケートの縮合物が好ましく、ビニルトリメトキシシランがより好ましい。当該構成によると、硬化性組成物は貯蔵安定性にさらに優れるという利点を有する。
Examples of the vinylsilane compound that can be used as the dehydrating agent (D) include vinyltrimethoxysilane, vinyltriethoxysilane, vinyltripropoxysilane, vinylmethyldimethoxysilane, vinylmethyldiethoxysilane, vinylmethyldipropoxysilane, and vinyldimethyl. Methoxysilane, vinyldimethylethoxysilane, vinyldimethylpropoxysilane, vinylethyldimethoxysilane, vinylethyldiethoxysilane, vinylethyldipropoxysilane, vinyldiethylmethoxysilane, vinyldiethylethoxysilane, vinyldiethylpropoxysilane, vinylpropyldimethoxysilane, Examples include vinylpropyldiethoxysilane, vinylpropyldipropoxysilane, vinyldipropylmethoxysilane, vinyldipropylethoxysilane, vinyldipropylpropoxysilane, methylsilicate, methylsilicate condensate, ethylsilicate and ethylsilicate condensate. Be done. Among these, as the vinylsilane compound that can be used as the dehydrating agent (D), a condensate of vinyltrimethoxysilane and ethyl silicate is preferable, and vinyltrimethoxysilane is more preferable. According to this composition, the curable composition has the advantage of being more excellent in storage stability.
本硬化性組成物における脱水剤(D)の含有量は、特に限定されない。本硬化性組成物における脱水剤(D)の含有量は、有機重合体(A)100重量部に対して、2重量部~10重量部であることが好ましく、3重量部~8重量部であることがより好ましく、4重量部~6重量部であることがさらに好ましい。当該構成によると、硬化性組成物は貯蔵安定性により優れるという利点を有する。
The content of the dehydrating agent (D) in the present curable composition is not particularly limited. The content of the dehydrating agent (D) in the present curable composition is preferably 2 parts by weight to 10 parts by weight, preferably 3 parts by weight to 8 parts by weight, based on 100 parts by weight of the organic polymer (A). It is more preferably 4 parts by weight to 6 parts by weight. According to this composition, the curable composition has the advantage of being superior in storage stability.
本硬化性組成物における水の量(水分量)は、特に限定されるものではないが、貯蔵安定性により優れることから、少ないほど好ましい。本硬化性組成物における水の量(水分量)は、硬化性組成物100重量部中、200ppm~10000ppmであることが好ましく、500ppm~8000ppmであることがより好ましく、1000ppm~7000ppmであることがさらに好ましく、1500ppm~6000ppmであることが特に好ましい。
The amount of water (water content) in the present curable composition is not particularly limited, but it is preferable that the amount is smaller because it is more excellent in storage stability. The amount of water (moisture content) in the present curable composition is preferably 200 ppm to 10000 ppm, more preferably 500 ppm to 8000 ppm, and more preferably 1000 ppm to 7000 ppm in 100 parts by weight of the curable composition. It is more preferably 1500 ppm to 6000 ppm, and particularly preferably 1500 ppm to 6000 ppm.
[2-5.その他の成分]
本硬化性組成物は、上述した成分以外に、必要に応じてその他の成分を含んでいてもよい。その他の成分としては、特に限定されないが、例えば以下のような物質が挙げられる:可塑剤;垂れ防止剤(チキソ性付与剤と称される場合もある。);接着性付与剤;酸化防止剤;光硬化性物質;中空フィラー;光安定剤;溶剤および/または希釈剤;紫外線吸収剤;難燃剤;硬化性調整剤;滑剤;着色剤;発泡剤;防カビ材。 [2-5. Other ingredients]
The present curable composition may contain other components in addition to the above-mentioned components, if necessary. Other components include, but are not limited to, the following substances, for example: plasticizer; anti-dripping agent (sometimes referred to as thixotropic agent); adhesive-imparting agent; antioxidant. Photocurable substances; Hollow fillers; Light stabilizers; Solvents and / or diluents; UV absorbers; Flame retardants; Curability modifiers; Lubricants; Colorants; Foaming agents; Antifungal materials.
本硬化性組成物は、上述した成分以外に、必要に応じてその他の成分を含んでいてもよい。その他の成分としては、特に限定されないが、例えば以下のような物質が挙げられる:可塑剤;垂れ防止剤(チキソ性付与剤と称される場合もある。);接着性付与剤;酸化防止剤;光硬化性物質;中空フィラー;光安定剤;溶剤および/または希釈剤;紫外線吸収剤;難燃剤;硬化性調整剤;滑剤;着色剤;発泡剤;防カビ材。 [2-5. Other ingredients]
The present curable composition may contain other components in addition to the above-mentioned components, if necessary. Other components include, but are not limited to, the following substances, for example: plasticizer; anti-dripping agent (sometimes referred to as thixotropic agent); adhesive-imparting agent; antioxidant. Photocurable substances; Hollow fillers; Light stabilizers; Solvents and / or diluents; UV absorbers; Flame retardants; Curability modifiers; Lubricants; Colorants; Foaming agents; Antifungal materials.
可塑剤としては、例えば、エポキシ系化合物、フタル酸エステル系化合物、ポリエーテル系化合物などが挙げられる。エポキシ系化合物としては、エポキシ化不飽和油脂類、エポキシ化不飽和脂肪酸エステル類、脂環族エポキシ化合物類、エピクロルヒドリン誘導体に示す化合物およびそれらの混合物などが挙げられる。フタル酸エステル系化合物としては、フタル酸ジメチル、フタル酸ジエチル、フタル酸ジブチル、フタル酸ジイソブチル、フタル酸ジノルマルヘキシル、フタル酸ビス(2-エチルヘキシル)、フタル酸ジノルマルオクチル、フタル酸ジイソノニル、フタル酸ジノニル、フタル酸ジイソデシル、フタル酸ジイソウンデシル、フタル酸ビスブチルベンジルなどが挙げられる。ポリエーテル系化合物としては、ポリオキシプロピレンジオール、ポリエチレングリコール、ポリオキシブチレングリコール、およびエチレンオキシドとプロピレンオキシドとの共重合物などが挙げられる。これら可塑剤は1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。本硬化性組成物が可塑剤を含む場合、硬化性組成物は、各種被接着物質に対する接着性に優れるという利点を有する。
Examples of the plasticizer include epoxy compounds, phthalate compounds, and polyether compounds. Examples of the epoxy-based compound include epoxidized unsaturated fats and oils, epoxidized unsaturated fatty acid esters, alicyclic epoxy compounds, compounds shown in epichlorohydrin derivatives, and mixtures thereof. Examples of phthalate ester compounds include dimethyl phthalate, diethyl phthalate, dibutyl phthalate, diisobutyl phthalate, dinormal hexyl phthalate, bis (2-ethylhexyl) phthalate, dinormal octyl phthalate, diisononyl phthalate, and phthalate. Examples thereof include dinonyl acid, diisodecyl phthalate, diisoundecyl phthalate, and bisbutylbenzyl phthalate. Examples of the polyether compound include polyoxypropylene diol, polyethylene glycol, polyoxybutylene glycol, and a copolymer of ethylene oxide and propylene oxide. One of these plasticizers may be used alone, or two or more thereof may be used in combination. When the present curable composition contains a plasticizer, the curable composition has an advantage of being excellent in adhesiveness to various adherends.
垂れ防止剤としては、例えば、ポリアミドワックス類;水添ひまし油および水添ひまし油誘導体類;ステアリン酸カルシウム、ステアリン酸アルミニウム、ステアリン酸バリウムなどの金属石鹸類;などがあげられる。これら垂れ防止剤は1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。本硬化性組成物が垂れ防止剤を含む場合、硬化性組成物の施工時に垂れが防止されるという利点、すなわち硬化性組成物の作業性が良好となるという利点を有する。
Examples of the anti-dripping agent include polyamide waxes; hydrogenated castor oil and hydrogenated castor oil derivatives; metal soaps such as calcium stearate, aluminum stearate, and barium stearate; and the like. One of these anti-dripping agents may be used alone, or two or more thereof may be used in combination. When the present curable composition contains an anti-dripping agent, it has an advantage that sagging is prevented during construction of the curable composition, that is, an advantage that the workability of the curable composition is improved.
接着性付与剤としては、アミノシラン系化合物、エポキシシラン系化合物、イソシアネートシラン系化合物、アクリルシラン系化合物などをあげることができる。接着性付与剤としては、アミノシラン系化合物が好ましく、3-(2-アミノエチルアミノ)プロピルトリメトキシシランが特に好ましい。これら接着性付与剤は1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。本硬化性組成物が接着性付与剤を含む場合、硬化性組成物は、被接着物質との接着性が向上し、また硬化物の強度も上がる、という利点を有する。
Examples of the adhesive-imparting agent include aminosilane-based compounds, epoxysilane-based compounds, isocyanatesilane-based compounds, and acrylicsilane-based compounds. As the adhesiveness-imparting agent, an aminosilane compound is preferable, and 3- (2-aminoethylamino) propyltrimethoxysilane is particularly preferable. One of these adhesive-imparting agents may be used alone, or two or more thereof may be used in combination. When the present curable composition contains an adhesive-imparting agent, the curable composition has an advantage that the adhesiveness to the adherend is improved and the strength of the cured product is also increased.
酸化防止剤としては、ヒンダードフェノール系化合物、モノフェノール系化合物、ポリフェノール系化合物などをあげることができる。酸化防止剤としては特にヒンダードフェノール系化合物が好ましい。これら酸化防止剤は1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。本硬化性組成物が酸化防止剤を含む場合、(a)硬化性組成物を長期間保管する場合でも硬化性組成物の劣化を遅らせることができるという利点、および(b)硬化性組成物を高温条件下に保管する場合でも硬化性組成物の性能を維持できるという利点を有する。
Examples of the antioxidant include hindered phenol compounds, monophenol compounds, polyphenol compounds and the like. As the antioxidant, a hindered phenolic compound is particularly preferable. These antioxidants may be used alone or in combination of two or more. When the present curable composition contains an antioxidant, (a) the advantage that the deterioration of the curable composition can be delayed even when the curable composition is stored for a long period of time, and (b) the curable composition can be used. It has the advantage that the performance of the curable composition can be maintained even when stored under high temperature conditions.
硬化触媒としては、例えば有機錫化合物、カルボン酸金属塩、アミン化合物、カルボン酸、アルコキシ金属、などが挙げられる。
Examples of the curing catalyst include organic tin compounds, carboxylic acid metal salts, amine compounds, carboxylic acids, and alkoxy metals.
有機錫化合物の具体例としては、ジブチル錫ジラウレート、ジブチル錫ジオクタノエート、ジブチル錫ビス(ブチルマレエート)、ジブチル錫ジアセテート、ジブチル錫オキサイド、ジブチル錫ビス(アセチルアセトナート)、ジオクチル錫ビス(アセチルアセトナート)、ジオクチル錫ジラウレート、ジオクチル錫ジステアレート、ジオクチル錫ジアセテート、ジオクチル錫オキサイド、ジブチル錫オキサイドとシリケート化合物との反応物、ジオクチル錫オキサイドとシリケート化合物との反応物、ジブチル錫オキサイドとフタル酸エステルとの反応物などが挙げられる。
Specific examples of the organic tin compound include dibutyl tin dilaurate, dibutyl tin dioctanoate, dibutyl tin bis (butyl maleate), dibutyl tin diacetate, dibutyl tin oxide, dibutyl tin bis (acetylacetonate), and dioctyl tin bis (acetylacetate). Nart), dioctyl tin dilaurate, dioctyl tin distearate, dioctyl tin diacetate, dioctyl tin oxide, reaction product of dibutyl tin oxide and silicate compound, reaction product of dioctyl tin oxide and silicate compound, dibutyl tin oxide and phthalate ester. Examples include the reactants of.
カルボン酸金属塩の具体例としては、カルボン酸錫、カルボン酸ビスマス、カルボン酸チタン、カルボン酸ジルコニウム、カルボン酸鉄、などが挙げられる。カルボン酸金属塩としては、下記のカルボン酸と各種金属とを適宜組み合わせて得られる塩も使用できる。
Specific examples of the metal carboxylate salt include tin carboxylate, bismuth carboxylate, titanium carboxylate, zirconium carboxylate, iron carboxylate, and the like. As the carboxylic acid metal salt, a salt obtained by appropriately combining the following carboxylic acid and various metals can also be used.
アミン化合物の具体例としては、オクチルアミン、2-エチルヘキシルアミン、ラウリルアミン、ステアリルアミン、などのアミン類;ピリジン、1,8-ジアザビシクロ[5,4,0]ウンデセン-7(DBU)、1,5-ジアザビシクロ[4,3,0]ノネン-5(DBN)、などの含窒素複素環式化合物;グアニジン、フェニルグアニジン、ジフェニルグアニジンなどのグアニジン類;ブチルビグアニド、1-o-トリルビグアニドや1-フェニルビグアニドなどのビグアニド類;アミノ基含有シランカップリング剤;ケチミン化合物、などが挙げられる。
Specific examples of amine compounds include amines such as octylamine, 2-ethylhexylamine, laurylamine, stearylamine, etc .; pyridine, 1,8-diazabicyclo [5,4,0] undecene-7 (DBU), 1, Nitrogen-containing heterocyclic compounds such as 5-diazabicyclo [4,3,0] nonen-5 (DBN); guanidines such as guanidine, phenylguanidine, diphenylguanidine; butylbiguanide, 1-o-tolylbiguanide and 1- Viguanides such as phenylbiguanide; amino group-containing silane coupling agents; ketimine compounds, and the like can be mentioned.
カルボン酸の具体例としては、酢酸、プロピオン酸、酪酸、2-エチルヘキサン酸、ラウリン酸、ステアリン酸、オレイン酸、リノール酸、ネオデカン酸、バーサチック酸などが挙げられる。
Specific examples of the carboxylic acid include acetic acid, propionic acid, butyric acid, 2-ethylhexanoic acid, lauric acid, stearic acid, oleic acid, linoleic acid, neodecanoic acid, and versatic acid.
アルコキシ金属の具体例としては、テトラブチルチタネートチタンテトラキス(アセチルアセトナート)、ジイソプロポキシチタンビス(エチルアセトセテート)などのチタン化合物;アルミニウムトリス(アセチルアセトナート)、ジイソプロポキシアルミニウムエチルアセトアセテートなどのアルミニウム化合物類;ジルコニウムテトラキス(アセチルアセトナート)などのジルコニウム化合物類、などが挙げられる。
Specific examples of the alkoxy metal include titanium compounds such as tetrabutyl titanate titanium tetrakis (acetylacetonate) and diisopropoxytitanium bis (ethylacetatete); aluminum tris (acetylacetonate), diisopropoxyaluminum ethylacetoacetate and the like. Aluminum compounds; zirconium compounds such as zirconium tetrakis (acetylacetonate), and the like.
その他の硬化触媒(シラノール縮合触媒とも称される)として、フッ素アニオン含有化合物、光酸発生剤および光塩基発生剤も使用できる。
As other curing catalysts (also referred to as silanol condensation catalysts), fluorine anion-containing compounds, photoacid generators and photobase generators can also be used.
また、硬化触媒の活性を上げるために、アミン系化合物を硬化触媒と組み合わせて使用しても良い。このようなアミン系化合物としては、オクチルアミン、デシルアミン、ラウリルアミン、オレイルアミン、ジ-n-オクチルアミンなど、公知のアミン系化合物が挙げられる。
Further, in order to increase the activity of the curing catalyst, an amine compound may be used in combination with the curing catalyst. Examples of such amine compounds include known amine compounds such as octylamine, decylamine, laurylamine, oleylamine, and di-n-octylamine.
着色剤としては、酸化スズ、カーボンブラック、酸化チタン、ベンガラなどの顔料、などが挙げられる。
Examples of the colorant include pigments such as tin oxide, carbon black, titanium oxide, and red iron oxide.
[2-6.初期固定性]
本硬化性組成物は、初期固定性に優れる。硬化性組成物の初期固定性の測定方法は、実施例にて詳述する。 [2-6. Initial fixation]
The present curable composition is excellent in initial fixing property. The method for measuring the initial fixability of the curable composition will be described in detail in Examples.
本硬化性組成物は、初期固定性に優れる。硬化性組成物の初期固定性の測定方法は、実施例にて詳述する。 [2-6. Initial fixation]
The present curable composition is excellent in initial fixing property. The method for measuring the initial fixability of the curable composition will be described in detail in Examples.
本硬化性組成物の初期固定性は、大きいほど好ましく、例えば、100gより大きいことが好ましく、150g以上であることがより好ましく、200g以上であることがより好ましく、250g以上であることがより好ましく、300g以上であることがより好ましく、350g以上であることがより好ましく、400g以上であることがより好ましく、450g以上であることがさらに好ましく、500g以上であることが特に好ましい。当該構成によると、硬化性組成物をハイタック接着剤により好適に利用できるという利点を有する。
The larger the initial fixing property of the present curable composition is, the more preferable it is, for example, it is preferably larger than 100 g, more preferably 150 g or more, more preferably 200 g or more, and even more preferably 250 g or more. , 300 g or more, more preferably 350 g or more, more preferably 400 g or more, further preferably 450 g or more, and particularly preferably 500 g or more. According to this structure, the curable composition has an advantage that it can be more preferably used by a high-tack adhesive.
[2-7.製造方法]
本硬化性組成物の製造方法としては、特に限定されない。本硬化性組成物は、有機重合体(A)、ポリ塩化ビニル樹脂(B)および炭酸カルシウム(C)、並びに任意で脱水剤(D)およびその他の成分を混合することにより、製造(調製)できる。有機重合体(A)、ポリ塩化ビニル樹脂(B)および炭酸カルシウム(C)、並びに任意で脱水剤(D)およびその他の成分を混合する順番は特に限定されない。1つずつ順に各成分を混合してもよく、複数の成分を同時に混合してもよい。硬化性組成物の製造に使用される混合装置としては、特に限定されず、3本ロールミルなどの公知の混合装置を使用できる。 [2-7. Production method]
The method for producing the present curable composition is not particularly limited. The present curable composition is produced (prepared) by mixing an organic polymer (A), a polyvinyl chloride resin (B) and calcium carbonate (C), and optionally a dehydrating agent (D) and other components. can. The order in which the organic polymer (A), the polyvinyl chloride resin (B) and the calcium carbonate (C), and optionally the dehydrating agent (D) and other components are mixed is not particularly limited. Each component may be mixed one by one, or a plurality of components may be mixed at the same time. The mixing device used for producing the curable composition is not particularly limited, and a known mixing device such as a three-roll mill can be used.
本硬化性組成物の製造方法としては、特に限定されない。本硬化性組成物は、有機重合体(A)、ポリ塩化ビニル樹脂(B)および炭酸カルシウム(C)、並びに任意で脱水剤(D)およびその他の成分を混合することにより、製造(調製)できる。有機重合体(A)、ポリ塩化ビニル樹脂(B)および炭酸カルシウム(C)、並びに任意で脱水剤(D)およびその他の成分を混合する順番は特に限定されない。1つずつ順に各成分を混合してもよく、複数の成分を同時に混合してもよい。硬化性組成物の製造に使用される混合装置としては、特に限定されず、3本ロールミルなどの公知の混合装置を使用できる。 [2-7. Production method]
The method for producing the present curable composition is not particularly limited. The present curable composition is produced (prepared) by mixing an organic polymer (A), a polyvinyl chloride resin (B) and calcium carbonate (C), and optionally a dehydrating agent (D) and other components. can. The order in which the organic polymer (A), the polyvinyl chloride resin (B) and the calcium carbonate (C), and optionally the dehydrating agent (D) and other components are mixed is not particularly limited. Each component may be mixed one by one, or a plurality of components may be mixed at the same time. The mixing device used for producing the curable composition is not particularly limited, and a known mixing device such as a three-roll mill can be used.
本硬化性組成物は、完全に密閉して保存する必要はない。本硬化性組成物を長期保存する場合には、硬化性組成物をカートリッジのような密閉容器に保存することが好ましい。カートリッジとしては特に限定されないが、例えばアルミニウムカートリッジが好適に挙げられる。
The curable composition does not need to be completely sealed and stored. When the present curable composition is stored for a long period of time, it is preferable to store the curable composition in a closed container such as a cartridge. The cartridge is not particularly limited, and examples thereof include an aluminum cartridge.
〔3.硬化物〕
本硬化性組成物を硬化させることにより、硬化物を得ることができる。本硬化性組成物を硬化させてなる硬化物もまた、本発明の一実施形態である。本発明の一実施形態に係る硬化物は、前記〔2.硬化性組成物〕の項に記載の硬化性組成物を硬化してなる硬化物である。例えば、本硬化性組成物を、室温下で空気下に晒すことにより、空気中の水分と反応して硬化性組成物が硬化し、本発明の一実施形態に係る硬化物を得ることができる。 [3. Hardened product]
A cured product can be obtained by curing the present curable composition. A cured product obtained by curing the present curable composition is also an embodiment of the present invention. The cured product according to the embodiment of the present invention is described in the above [2. Curable composition] is a cured product obtained by curing the curable composition described in the section. For example, by exposing the present curable composition to air at room temperature, the curable composition is cured by reacting with moisture in the air, and a cured product according to an embodiment of the present invention can be obtained. ..
本硬化性組成物を硬化させることにより、硬化物を得ることができる。本硬化性組成物を硬化させてなる硬化物もまた、本発明の一実施形態である。本発明の一実施形態に係る硬化物は、前記〔2.硬化性組成物〕の項に記載の硬化性組成物を硬化してなる硬化物である。例えば、本硬化性組成物を、室温下で空気下に晒すことにより、空気中の水分と反応して硬化性組成物が硬化し、本発明の一実施形態に係る硬化物を得ることができる。 [3. Hardened product]
A cured product can be obtained by curing the present curable composition. A cured product obtained by curing the present curable composition is also an embodiment of the present invention. The cured product according to the embodiment of the present invention is described in the above [2. Curable composition] is a cured product obtained by curing the curable composition described in the section. For example, by exposing the present curable composition to air at room temperature, the curable composition is cured by reacting with moisture in the air, and a cured product according to an embodiment of the present invention can be obtained. ..
〔4.用途〕
本硬化性組成物は、接着剤用の組成物として好適に利用でき、例えば一液型接着剤として好適に利用できる。本硬化性組成物は、初期固定性に優れるため、ハイタック接着剤として特に好適に利用できる。そのため、本硬化性組成物、および後述する本発明の一実施形態に係る接着剤は、自動車の車体・部品、トラック、バス等の大型車両の車体・部品、列車の車両・部品、航空機用部品、船舶用部品、コンテナ、電機・電子部品、家電製品、各種機械部品、鏡、各種化粧板パネル、サッシ等の建材分野において特に好適に利用できる。 [4. Use]
The present curable composition can be suitably used as a composition for an adhesive, for example, as a one-component adhesive. Since the present curable composition is excellent in initial fixing property, it can be particularly preferably used as a high-tack adhesive. Therefore, the curable composition and the adhesive according to one embodiment of the present invention, which will be described later, are used for vehicle bodies / parts of automobiles, body / parts of large vehicles such as trucks and buses, vehicle / parts of trains, and parts for aircraft. It can be particularly preferably used in the field of building materials such as marine parts, containers, electric / electronic parts, home appliances, various mechanical parts, mirrors, various decorative board panels, and sashes.
本硬化性組成物は、接着剤用の組成物として好適に利用でき、例えば一液型接着剤として好適に利用できる。本硬化性組成物は、初期固定性に優れるため、ハイタック接着剤として特に好適に利用できる。そのため、本硬化性組成物、および後述する本発明の一実施形態に係る接着剤は、自動車の車体・部品、トラック、バス等の大型車両の車体・部品、列車の車両・部品、航空機用部品、船舶用部品、コンテナ、電機・電子部品、家電製品、各種機械部品、鏡、各種化粧板パネル、サッシ等の建材分野において特に好適に利用できる。 [4. Use]
The present curable composition can be suitably used as a composition for an adhesive, for example, as a one-component adhesive. Since the present curable composition is excellent in initial fixing property, it can be particularly preferably used as a high-tack adhesive. Therefore, the curable composition and the adhesive according to one embodiment of the present invention, which will be described later, are used for vehicle bodies / parts of automobiles, body / parts of large vehicles such as trucks and buses, vehicle / parts of trains, and parts for aircraft. It can be particularly preferably used in the field of building materials such as marine parts, containers, electric / electronic parts, home appliances, various mechanical parts, mirrors, various decorative board panels, and sashes.
〔5.接着剤〕
本発明の一実施形態に係る接着剤は、前記〔2.硬化性組成物〕の項に記載の硬化性組成物を含む。本発明の一実施形態に係る接着剤は、上述した構成を有するため、初期固定性に優れる。そのため、本発明の一実施形態に係る接着剤は、(a)1液型接着剤として、および/または、(b)ハイタック接着剤として、特に好適に利用できる。本硬化性組成物そのものを、本発明の一実施形態に係る接着剤として利用できる。 [5. glue〕
The adhesive according to one embodiment of the present invention is described in [2. Curable Composition] includes the curable composition described in the section. Since the adhesive according to the embodiment of the present invention has the above-mentioned structure, it is excellent in initial fixing property. Therefore, the adhesive according to one embodiment of the present invention can be particularly preferably used as (a) a one-component adhesive and / or (b) a high-tack adhesive. The curable composition itself can be used as an adhesive according to an embodiment of the present invention.
本発明の一実施形態に係る接着剤は、前記〔2.硬化性組成物〕の項に記載の硬化性組成物を含む。本発明の一実施形態に係る接着剤は、上述した構成を有するため、初期固定性に優れる。そのため、本発明の一実施形態に係る接着剤は、(a)1液型接着剤として、および/または、(b)ハイタック接着剤として、特に好適に利用できる。本硬化性組成物そのものを、本発明の一実施形態に係る接着剤として利用できる。 [5. glue〕
The adhesive according to one embodiment of the present invention is described in [2. Curable Composition] includes the curable composition described in the section. Since the adhesive according to the embodiment of the present invention has the above-mentioned structure, it is excellent in initial fixing property. Therefore, the adhesive according to one embodiment of the present invention can be particularly preferably used as (a) a one-component adhesive and / or (b) a high-tack adhesive. The curable composition itself can be used as an adhesive according to an embodiment of the present invention.
本発明の一実施形態は、以下のような構成であってもよい。
One embodiment of the present invention may have the following configuration.
〔1〕加水分解性ケイ素基を有する有機重合体(A)100重量部、ポリ塩化ビニル樹脂(B)10重量部~500重量部及び炭酸カルシウム(C)150重量部~500重量部を含有し、前記ポリ塩化ビニル樹脂(B)の最頻径が0.10μm~0.50μmである、硬化性組成物。
[1] Contains 100 parts by weight of an organic polymer (A) having a hydrolyzable silicon group, 10 parts by weight to 500 parts by weight of a polyvinyl chloride resin (B), and 150 parts by weight to 500 parts by weight of calcium carbonate (C). , A curable composition having a maximum frequency of the polyvinyl chloride resin (B) of 0.10 μm to 0.50 μm.
〔2〕さらに脱水剤(D)2重量部~10重量部を含有する、〔1〕に記載の硬化性組成物。
[2] The curable composition according to [1], which further contains 2 parts by weight to 10 parts by weight of the dehydrating agent (D).
〔3〕前記ポリ塩化ビニル樹脂(B)の含有量と前記炭酸カルシウム(C)の含有量との比((B)/(C))が0.2~0.8である、〔1〕または〔2〕に記載の硬化性組成物。
[3] The ratio ((B) / (C)) of the content of the polyvinyl chloride resin (B) to the content of the calcium carbonate (C) is 0.2 to 0.8, [1]. Alternatively, the curable composition according to [2].
〔4〕前記有機重合体(A)は、直鎖状の有機重合体(A1)と分岐状の有機重合体(A2)との混合物である、〔1〕~〔3〕の何れか1つに記載の硬化性組成物。
[4] The organic polymer (A) is any one of [1] to [3], which is a mixture of a linear organic polymer (A1) and a branched organic polymer (A2). The curable composition according to.
〔5〕前記炭酸カルシウム(C)の含有量は、前記有機重合体(A)100重量部に対して250重量部~500重量部である、〔1〕~〔4〕の何れか1つに記載の硬化性組成物。
[5] The content of the calcium carbonate (C) is 250 parts by weight to 500 parts by weight with respect to 100 parts by weight of the organic polymer (A), in any one of [1] to [4]. The curable composition according to description.
〔6〕前記炭酸カルシウム(C)は、体積平均粒子径が0.05μm~0.15μmである炭酸カルシウム(C1)と、体積平均粒子径が0.70μm~5.00μmである炭酸カルシウム(C2)と、を含み、前記炭酸カルシウム(C2)の重量に対する前記炭酸カルシウム(C1)の重量の比率(前記炭酸カルシウム(C1)の重量/前記炭酸カルシウム(C2)の重量)は、1.0以下である、〔1〕~〔5〕の何れか1つに記載の硬化性組成物。
[6] The calcium carbonate (C) includes calcium carbonate (C1) having a volume average particle size of 0.05 μm to 0.15 μm and calcium carbonate (C2) having a volume average particle size of 0.70 μm to 5.00 μm. ), And the ratio of the weight of the calcium carbonate (C1) to the weight of the calcium carbonate (C2) (weight of the calcium carbonate (C1) / weight of the calcium carbonate (C2)) is 1.0 or less. The curable composition according to any one of [1] to [5].
〔7〕〔1〕~〔6〕の何れか1つに記載の硬化性組成物を硬化してなる硬化物。
[7] A cured product obtained by curing the curable composition according to any one of [1] to [6].
〔8〕〔1〕~〔6〕の何れか1つに記載の硬化性組成物を含む、接着剤。
[8] An adhesive containing the curable composition according to any one of [1] to [6].
以下に、具体的な実施例をあげて本発明の一実施形態をより詳細に説明する。本発明は、下記実施例に限定されるものではない。
Hereinafter, one embodiment of the present invention will be described in more detail with reference to specific examples. The present invention is not limited to the following examples.
<材料>
各実施例および比較例において使用した各材料は、以下の通りである。 <Material>
The materials used in each example and comparative example are as follows.
各実施例および比較例において使用した各材料は、以下の通りである。 <Material>
The materials used in each example and comparative example are as follows.
(有機重合体(A))
・有機重合体A1;後述する合成例1で得られる有機重合体
・有機重合体A2;後述する合成例2で得られる有機重合体
(ポリ塩化ビニル樹脂(B))
・ポリ塩化ビニル樹脂(B1);後述する合成例3で得られるポリ塩化ビニル樹脂
・ポリ塩化ビニル樹脂(B2);後述する合成例4で得られるポリ塩化ビニル樹脂
・ポリ塩化ビニル樹脂(B3);後述する合成例5で得られるポリ塩化ビニル樹脂
(炭酸カルシウム(C))
・炭酸カルシウム(C1);Neolight SP(竹原化学工業製、コロイダル炭酸カルシウム(体積平均粒子径0.08μm))
・炭酸カルシウム(C2);Omya 1T(Omyacarb製、重質炭酸カルシウム(d50粒径2.00μm))
(脱水剤(D))
・A-171;Momentive製、ビニルトリメトキシシラン
(可塑剤)
・ポリオキシプロピレンジオール(分子量約3000)
(垂れ防止剤)
・ディスパロン308;楠本化成製、水添ひまし油誘導体類
(酸化防止剤)
・Irganox1010:BASF製ヒンダードフェノール系酸化防止剤
・ノクラック NS-6:大内新興化学工業製ヒンダードフェノール系酸化防止剤
(粘着性付与剤)
・A-1120:Momentive製、3-(2-アミノエチルアミノ)プロピルトリメトキシシラン
(硬化触媒)
・U303;日東化成製、ジブチル錫系化合物
・MSCAT02;日本化学産業製、ジブチル錫系化合物
(着色剤)
・R820;石原製産業製、酸化チタン
<評価方法>
実施例および比較例における各評価方法について、以下説明する。 (Organic polymer (A))
-Organic polymer A1; Organic polymer obtained in Synthesis Example 1 described later-Organic polymer A2; Organic polymer obtained in Synthesis Example 2 described later (polyvinyl chloride resin (B))
-Polyvinyl chloride resin (B1); polyvinyl chloride resin / polyvinyl chloride resin (B2) obtained in Synthetic Example 3 described later; polyvinyl chloride resin / polyvinyl chloride resin (B3) obtained in Synthetic Example 4 described later. The polyvinyl chloride resin (calcium carbonate (C)) obtained in Synthesis Example 5 described later.
-Calcium carbonate (C1); Neolite SP (Made by Takehara Chemical Industry, colloidal calcium carbonate (volume average particle size 0.08 μm))
-Calcium carbonate (C2); Omya 1T (manufactured by Omyacarb, heavy calcium carbonate (d50 particle size 2.00 μm))
(Dehydrating agent (D))
-A-171; Momentive, vinyltrimethoxysilane (plasticizer)
-Polyoxypropylene diol (molecular weight about 3000)
(Anti-sagging agent)
・ Disparon 308; Kusumoto Kasei, hydrogenated castor oil derivatives (antioxidant)
-Irganox 1010: BASF's hindered phenolic antioxidant-Nocrack NS-6: Ouchi Shinko Kagaku Kogyo's hindered phenolic antioxidant (adhesive-imparting agent)
A-1120: Momentive, 3- (2-aminoethylamino) propyltrimethoxysilane (curing catalyst)
U303; Nitto Kasei, dibutyl tin compound ・ MSCAT02; Nihon Kagaku Sangyo, dibutyl tin compound (colorant)
・ R820; Titanium oxide manufactured by Ishihara Sangyo <Evaluation method>
Each evaluation method in Examples and Comparative Examples will be described below.
・有機重合体A1;後述する合成例1で得られる有機重合体
・有機重合体A2;後述する合成例2で得られる有機重合体
(ポリ塩化ビニル樹脂(B))
・ポリ塩化ビニル樹脂(B1);後述する合成例3で得られるポリ塩化ビニル樹脂
・ポリ塩化ビニル樹脂(B2);後述する合成例4で得られるポリ塩化ビニル樹脂
・ポリ塩化ビニル樹脂(B3);後述する合成例5で得られるポリ塩化ビニル樹脂
(炭酸カルシウム(C))
・炭酸カルシウム(C1);Neolight SP(竹原化学工業製、コロイダル炭酸カルシウム(体積平均粒子径0.08μm))
・炭酸カルシウム(C2);Omya 1T(Omyacarb製、重質炭酸カルシウム(d50粒径2.00μm))
(脱水剤(D))
・A-171;Momentive製、ビニルトリメトキシシラン
(可塑剤)
・ポリオキシプロピレンジオール(分子量約3000)
(垂れ防止剤)
・ディスパロン308;楠本化成製、水添ひまし油誘導体類
(酸化防止剤)
・Irganox1010:BASF製ヒンダードフェノール系酸化防止剤
・ノクラック NS-6:大内新興化学工業製ヒンダードフェノール系酸化防止剤
(粘着性付与剤)
・A-1120:Momentive製、3-(2-アミノエチルアミノ)プロピルトリメトキシシラン
(硬化触媒)
・U303;日東化成製、ジブチル錫系化合物
・MSCAT02;日本化学産業製、ジブチル錫系化合物
(着色剤)
・R820;石原製産業製、酸化チタン
<評価方法>
実施例および比較例における各評価方法について、以下説明する。 (Organic polymer (A))
-Organic polymer A1; Organic polymer obtained in Synthesis Example 1 described later-Organic polymer A2; Organic polymer obtained in Synthesis Example 2 described later (polyvinyl chloride resin (B))
-Polyvinyl chloride resin (B1); polyvinyl chloride resin / polyvinyl chloride resin (B2) obtained in Synthetic Example 3 described later; polyvinyl chloride resin / polyvinyl chloride resin (B3) obtained in Synthetic Example 4 described later. The polyvinyl chloride resin (calcium carbonate (C)) obtained in Synthesis Example 5 described later.
-Calcium carbonate (C1); Neolite SP (Made by Takehara Chemical Industry, colloidal calcium carbonate (volume average particle size 0.08 μm))
-Calcium carbonate (C2); Omya 1T (manufactured by Omyacarb, heavy calcium carbonate (d50 particle size 2.00 μm))
(Dehydrating agent (D))
-A-171; Momentive, vinyltrimethoxysilane (plasticizer)
-Polyoxypropylene diol (molecular weight about 3000)
(Anti-sagging agent)
・ Disparon 308; Kusumoto Kasei, hydrogenated castor oil derivatives (antioxidant)
-Irganox 1010: BASF's hindered phenolic antioxidant-Nocrack NS-6: Ouchi Shinko Kagaku Kogyo's hindered phenolic antioxidant (adhesive-imparting agent)
A-1120: Momentive, 3- (2-aminoethylamino) propyltrimethoxysilane (curing catalyst)
U303; Nitto Kasei, dibutyl tin compound ・ MSCAT02; Nihon Kagaku Sangyo, dibutyl tin compound (colorant)
・ R820; Titanium oxide manufactured by Ishihara Sangyo <Evaluation method>
Each evaluation method in Examples and Comparative Examples will be described below.
(初期固定性)
実施例および比較例にて得られた硬化性組成物の初期固定性は、以下の(1)~(4)を順に行い測定した:
(1)アルミ板Aの板面の一方の面に3mmの厚さで硬化性組成物を塗布した;
(2)当該アルミ板Aを、板面が鉛直方向と平行になるように固定した;
(3)縦100mm×横25mm×厚さ3mmの別のアルミ板Bを、アルミ板Bの板面とアルミ板Aの板面とが平行になるように、アルミ板Aに塗布された硬化性組成物を介してアルミ板Aと密着させた(すなわち、アルミ板B-硬化性組成物-アルミ板Aがこの順で水平方向に積層した積層体が得られた)。このとき、(a)アルミ板Bとアルミ板Aとの密着は、アルミ板Bをアルミ板Aの硬化性組成物に手で押当てることで行い、かつ(b)アルミ板Bの縦100mmのうち、下部75mmをアルミ板Aと密着させ、上部25mmをアルミ板Aと密着させなかった;
(4)アルミ板Bをアルミ板Aと密着させてから5秒以内に、アルミ板Aと密着していないアルミ板Bの上部25mmにばねばかりを設置し、ばねばかりを上部に引き上げた。
ばねばかりが示す最大応力(g)を初期固定性とした。 (Initial fixation)
The initial fixability of the curable compositions obtained in Examples and Comparative Examples was measured by performing the following (1) to (4) in order.
(1) A curable composition having a thickness of 3 mm was applied to one surface of the aluminum plate A;
(2) The aluminum plate A was fixed so that the plate surface was parallel to the vertical direction;
(3) Curability of another aluminum plate B having a length of 100 mm, a width of 25 mm, and a thickness of 3 mm is applied to the aluminum plate A so that the plate surface of the aluminum plate B and the plate surface of the aluminum plate A are parallel to each other. It was brought into close contact with the aluminum plate A via the composition (that is, a laminate in which the aluminum plate B-curable composition-aluminum plate A was laminated in this order in the horizontal direction was obtained). At this time, (a) the aluminum plate B and the aluminum plate A are brought into close contact with each other by manually pressing the aluminum plate B against the curable composition of the aluminum plate A, and (b) the length of the aluminum plate B is 100 mm. Of these, the lower 75 mm was in close contact with the aluminum plate A, and the upper 25 mm was not in close contact with the aluminum plate A;
(4) Within 5 seconds after the aluminum plate B was brought into close contact with the aluminum plate A, only the springs were installed 25 mm above the aluminum plate B which was not in close contact with the aluminum plate A, and only the springs were pulled up.
The maximum stress (g) exhibited by the spring scale was taken as the initial fixing property.
実施例および比較例にて得られた硬化性組成物の初期固定性は、以下の(1)~(4)を順に行い測定した:
(1)アルミ板Aの板面の一方の面に3mmの厚さで硬化性組成物を塗布した;
(2)当該アルミ板Aを、板面が鉛直方向と平行になるように固定した;
(3)縦100mm×横25mm×厚さ3mmの別のアルミ板Bを、アルミ板Bの板面とアルミ板Aの板面とが平行になるように、アルミ板Aに塗布された硬化性組成物を介してアルミ板Aと密着させた(すなわち、アルミ板B-硬化性組成物-アルミ板Aがこの順で水平方向に積層した積層体が得られた)。このとき、(a)アルミ板Bとアルミ板Aとの密着は、アルミ板Bをアルミ板Aの硬化性組成物に手で押当てることで行い、かつ(b)アルミ板Bの縦100mmのうち、下部75mmをアルミ板Aと密着させ、上部25mmをアルミ板Aと密着させなかった;
(4)アルミ板Bをアルミ板Aと密着させてから5秒以内に、アルミ板Aと密着していないアルミ板Bの上部25mmにばねばかりを設置し、ばねばかりを上部に引き上げた。
ばねばかりが示す最大応力(g)を初期固定性とした。 (Initial fixation)
The initial fixability of the curable compositions obtained in Examples and Comparative Examples was measured by performing the following (1) to (4) in order.
(1) A curable composition having a thickness of 3 mm was applied to one surface of the aluminum plate A;
(2) The aluminum plate A was fixed so that the plate surface was parallel to the vertical direction;
(3) Curability of another aluminum plate B having a length of 100 mm, a width of 25 mm, and a thickness of 3 mm is applied to the aluminum plate A so that the plate surface of the aluminum plate B and the plate surface of the aluminum plate A are parallel to each other. It was brought into close contact with the aluminum plate A via the composition (that is, a laminate in which the aluminum plate B-curable composition-aluminum plate A was laminated in this order in the horizontal direction was obtained). At this time, (a) the aluminum plate B and the aluminum plate A are brought into close contact with each other by manually pressing the aluminum plate B against the curable composition of the aluminum plate A, and (b) the length of the aluminum plate B is 100 mm. Of these, the lower 75 mm was in close contact with the aluminum plate A, and the upper 25 mm was not in close contact with the aluminum plate A;
(4) Within 5 seconds after the aluminum plate B was brought into close contact with the aluminum plate A, only the springs were installed 25 mm above the aluminum plate B which was not in close contact with the aluminum plate A, and only the springs were pulled up.
The maximum stress (g) exhibited by the spring scale was taken as the initial fixing property.
(貯蔵安定性の評価方法)
実施例および比較例にて得られた硬化性組成物について、硬化性組成物が調製された直後(具体的には、調製されてから7日以内)に、B型粘度を用いて2rpmの条件で硬化性組成物の粘度を測定し、初期粘度(mPa・s)とした。当該硬化性組成物を、330mlのペーパーアルミニウムカートリッジに充填した。硬化性組成物が充填されたカートリッジを、50℃に設定された乾燥機中で4週間保存した。
保存後の硬化性組成物の粘度をB型粘度を用いて2rpmの条件で測定し、保存後粘度(mPa・s)とした。下記式により、粘度変化(%)を算出した。
粘度変化(%)=保存後粘度(mPa・s)/初期粘度(mPa・s)×100。
粘度変化が200%未満である場合、貯蔵安定性に優れると評価し、粘度変化が200%以上である場合、貯蔵安定性に劣ると評価した。
なお、実施例および比較例にて得られた硬化性組成物は、各実施例および比較例にて調製後、貯蔵安定性の評価が実施されるまでの間、プラスチック製の密閉容器内に保管された。 (Evaluation method of storage stability)
For the curable compositions obtained in Examples and Comparative Examples, immediately after the curable composition was prepared (specifically, within 7 days after the preparation), the condition of 2 rpm using the B-type viscosity was used. The viscosity of the curable composition was measured and used as the initial viscosity (mPa · s). The curable composition was filled in a 330 ml paper aluminum cartridge. Cartridges filled with the curable composition were stored in a dryer set at 50 ° C. for 4 weeks.
The viscosity of the curable composition after storage was measured using the B-type viscosity under the condition of 2 rpm, and the viscosity after storage (mPa · s) was obtained. The viscosity change (%) was calculated by the following formula.
Viscosity change (%) = Viscosity after storage (mPa · s) / Initial viscosity (mPa · s) × 100.
When the viscosity change was less than 200%, it was evaluated as excellent in storage stability, and when the viscosity change was 200% or more, it was evaluated as inferior in storage stability.
The curable compositions obtained in Examples and Comparative Examples are stored in a closed plastic container after preparation in each Example and Comparative Example until the storage stability is evaluated. Was done.
実施例および比較例にて得られた硬化性組成物について、硬化性組成物が調製された直後(具体的には、調製されてから7日以内)に、B型粘度を用いて2rpmの条件で硬化性組成物の粘度を測定し、初期粘度(mPa・s)とした。当該硬化性組成物を、330mlのペーパーアルミニウムカートリッジに充填した。硬化性組成物が充填されたカートリッジを、50℃に設定された乾燥機中で4週間保存した。
保存後の硬化性組成物の粘度をB型粘度を用いて2rpmの条件で測定し、保存後粘度(mPa・s)とした。下記式により、粘度変化(%)を算出した。
粘度変化(%)=保存後粘度(mPa・s)/初期粘度(mPa・s)×100。
粘度変化が200%未満である場合、貯蔵安定性に優れると評価し、粘度変化が200%以上である場合、貯蔵安定性に劣ると評価した。
なお、実施例および比較例にて得られた硬化性組成物は、各実施例および比較例にて調製後、貯蔵安定性の評価が実施されるまでの間、プラスチック製の密閉容器内に保管された。 (Evaluation method of storage stability)
For the curable compositions obtained in Examples and Comparative Examples, immediately after the curable composition was prepared (specifically, within 7 days after the preparation), the condition of 2 rpm using the B-type viscosity was used. The viscosity of the curable composition was measured and used as the initial viscosity (mPa · s). The curable composition was filled in a 330 ml paper aluminum cartridge. Cartridges filled with the curable composition were stored in a dryer set at 50 ° C. for 4 weeks.
The viscosity of the curable composition after storage was measured using the B-type viscosity under the condition of 2 rpm, and the viscosity after storage (mPa · s) was obtained. The viscosity change (%) was calculated by the following formula.
Viscosity change (%) = Viscosity after storage (mPa · s) / Initial viscosity (mPa · s) × 100.
When the viscosity change was less than 200%, it was evaluated as excellent in storage stability, and when the viscosity change was 200% or more, it was evaluated as inferior in storage stability.
The curable compositions obtained in Examples and Comparative Examples are stored in a closed plastic container after preparation in each Example and Comparative Example until the storage stability is evaluated. Was done.
(ダンベル物性の測定方法)
23℃および相対湿度50%下で、上記硬化性組成物を3mm厚のシート状型枠に充填した。シート状型枠内の硬化性組成物を、23℃および相対湿度50%下で3日間硬化させた後、得られた硬化物を50℃乾燥機内で4日間養生し、シート状硬化物を得た。
得られた硬化物をJIS K 6251に従って3号ダンベル型に打ち抜き試験片を得た。得られた試験片を用い、23℃および相対湿度50%下で、オートグラフを用いて引張試験(引張速度200mm/分)を行い、100%伸長モジュラス、破断時応力(引張強度TB)、及び破断時伸び(EB)を測定した。 (Measuring method of dumbbell physical properties)
The curable composition was packed in a 3 mm thick sheet-like formwork at 23 ° C. and 50% relative humidity. The curable composition in the sheet-shaped mold was cured at 23 ° C. and 50% relative humidity for 3 days, and then the obtained cured product was cured in a 50 ° C. dryer for 4 days to obtain a sheet-shaped cured product. rice field.
The obtained cured product was punched into a No. 3 dumbbell mold according to JIS K 6251 to obtain a test piece. Using the obtained test piece, a tensile test (tensile speed 200 mm / min) was performed using an autograph at 23 ° C. and 50% relative humidity, and 100% elongation modulus, stress at break (tensile strength TB), and The elongation at break (EB) was measured.
23℃および相対湿度50%下で、上記硬化性組成物を3mm厚のシート状型枠に充填した。シート状型枠内の硬化性組成物を、23℃および相対湿度50%下で3日間硬化させた後、得られた硬化物を50℃乾燥機内で4日間養生し、シート状硬化物を得た。
得られた硬化物をJIS K 6251に従って3号ダンベル型に打ち抜き試験片を得た。得られた試験片を用い、23℃および相対湿度50%下で、オートグラフを用いて引張試験(引張速度200mm/分)を行い、100%伸長モジュラス、破断時応力(引張強度TB)、及び破断時伸び(EB)を測定した。 (Measuring method of dumbbell physical properties)
The curable composition was packed in a 3 mm thick sheet-like formwork at 23 ° C. and 50% relative humidity. The curable composition in the sheet-shaped mold was cured at 23 ° C. and 50% relative humidity for 3 days, and then the obtained cured product was cured in a 50 ° C. dryer for 4 days to obtain a sheet-shaped cured product. rice field.
The obtained cured product was punched into a No. 3 dumbbell mold according to JIS K 6251 to obtain a test piece. Using the obtained test piece, a tensile test (tensile speed 200 mm / min) was performed using an autograph at 23 ° C. and 50% relative humidity, and 100% elongation modulus, stress at break (tensile strength TB), and The elongation at break (EB) was measured.
(せん断強度)
被着体として、アセトンで脱脂したSUS304、2枚を使用した。23℃および相対湿度50%下で、1枚の被着体上に、塗布面積25mm×25mmで、厚さ50μmで上記硬化性組成物を塗布した。その直後、硬化性組成物を塗布した被着体に、もう1枚の被着体を、硬化性組成物を介して貼りあわせた(密着させた)。当該被着体を、85℃および相対湿度85%下で3日間放置することにより、被着体間の硬化性組成物を硬化させた。得られた被着体について、オートグラフを用いて引張せん断試験(引張速度50mm/分)を行い、破断時応力(TB)を測定した。 (Shear strength)
As the adherend, two sheets of SUS304 degreased with acetone were used. The curable composition was applied onto a single adherend at 23 ° C. and 50% relative humidity with a coating area of 25 mm × 25 mm and a thickness of 50 μm. Immediately after that, another adherend was attached (adhered) to the adherend coated with the curable composition via the curable composition. The adherend was allowed to stand at 85 ° C. and 85% relative humidity for 3 days to cure the curable composition between the adherends. The obtained adherend was subjected to a tensile shear test (tensile speed 50 mm / min) using an autograph, and the stress at break (TB) was measured.
被着体として、アセトンで脱脂したSUS304、2枚を使用した。23℃および相対湿度50%下で、1枚の被着体上に、塗布面積25mm×25mmで、厚さ50μmで上記硬化性組成物を塗布した。その直後、硬化性組成物を塗布した被着体に、もう1枚の被着体を、硬化性組成物を介して貼りあわせた(密着させた)。当該被着体を、85℃および相対湿度85%下で3日間放置することにより、被着体間の硬化性組成物を硬化させた。得られた被着体について、オートグラフを用いて引張せん断試験(引張速度50mm/分)を行い、破断時応力(TB)を測定した。 (Shear strength)
As the adherend, two sheets of SUS304 degreased with acetone were used. The curable composition was applied onto a single adherend at 23 ° C. and 50% relative humidity with a coating area of 25 mm × 25 mm and a thickness of 50 μm. Immediately after that, another adherend was attached (adhered) to the adherend coated with the curable composition via the curable composition. The adherend was allowed to stand at 85 ° C. and 85% relative humidity for 3 days to cure the curable composition between the adherends. The obtained adherend was subjected to a tensile shear test (tensile speed 50 mm / min) using an autograph, and the stress at break (TB) was measured.
(合成例1)
(有機重合体(A1)の調製)
数平均分子量が約4500のポリオキシプロピレングリコールを開始剤として使用し、亜鉛ヘキサシアノコバルテートグライム錯体触媒の存在下にて、プロピレンオキサイドの重合を行った。かかる重合により、末端に水酸基を有する数平均分子量25500、分子量分布Mw/Mn=1.26のポリオキシプロピレン(P-1)を得た。次に、得られたポリオキシプロピレン(P-1)を含む反応溶液に、ナトリウムメトキシドを28%(w/w)の濃度で含むメタノール溶液を添加した。ここで、ナトリウムメトキシドのメタノール溶液は、得られたポリオキシプロピレン(P-1)の末端の水酸基1モル当量に対して1.2モル当量のナトリウムメトキシドとなるように、反応溶液に添加した。得られた反応溶液から、真空脱揮によりメタノールを留去した。その後、ポリオキシプロピレン(P-1)の末端の水酸基1モル当量に対して、1.5モル当量の塩化アリルの量となるように、反応溶液に塩化アリルを添加して、末端の水酸基をアリル基に変換した。続いて、減圧脱揮により反応溶液から未反応の塩化アリルを除去し、未精製のポリオキシプロピレンを得た。得られた未精製のポリオキシプロピレンを、n-ヘキサンおよび水と混合攪拌した後、遠心分離により得られた混合液から水を除去し、ヘキサン溶液を得た。得られたヘキサン溶液からヘキサンを減圧脱揮することにより、ポリオキシプロピレン中の金属塩を除去した。以上の操作により、末端にアリル基を有するポリオキシプロピレン(Q-1)を得た。ポリオキシプロピレン500gに対して白金ジビニルジシロキサン錯体溶液(白金換算で3重量%のイソプロパノール溶液)50μlとなるように、ポリオキシプロピレン(Q-1)に白金ジビニルジシロキサン錯体溶液を添加した。得られた混合液を撹拌しながら、ジメトキシメチルシラン4.5gを混合液中にゆっくりと滴下した。得られた混合液を100℃で2時間反応させた後、混合液から未反応のジメトキシメチルシランを減圧下留去する事により、末端にジメトキシメチルシリル基を有するポリオキシプロピレンであり、直鎖状である有機重合体(A1)を得た。有機重合体(A1)の数平均分子量は25500であり、有機重合体(A1)はジメトキシメチルシリル基を1つの末端に平均0.7個、1分子中に平均1.4個有することが分かった。 (Synthesis Example 1)
(Preparation of organic polymer (A1))
Propylene oxide was polymerized in the presence of a zinc hexacyanocovalent glyme complex catalyst using polyoxypropylene glycol having a number average molecular weight of about 4500 as an initiator. By such polymerization, polyoxypropylene (P-1) having a number average molecular weight of 25500 and a molecular weight distribution of Mw / Mn = 1.26 having a hydroxyl group at the terminal was obtained. Next, a methanol solution containing sodium methoxide at a concentration of 28% (w / w) was added to the obtained reaction solution containing polyoxypropylene (P-1). Here, the methanol solution of sodium methoxide is added to the reaction solution so as to have 1.2 molar equivalents of sodium methoxide with respect to 1 molar equivalent of the hydroxyl group at the terminal of the obtained polyoxypropylene (P-1). bottom. Methanol was distilled off from the obtained reaction solution by vacuum devolatile. Then, allyl chloride is added to the reaction solution so that the amount of allyl chloride is 1.5 molar equivalents with respect to 1 molar equivalent of the hydroxyl group at the terminal of polyoxypropylene (P-1) to obtain the hydroxyl group at the terminal. Converted to an allyl group. Subsequently, unreacted allyl chloride was removed from the reaction solution by vacuum volatilization to obtain unpurified polyoxypropylene. The obtained unpurified polyoxypropylene was mixed and stirred with n-hexane and water, and then water was removed from the mixed solution obtained by centrifugation to obtain a hexane solution. The metal salt in polyoxypropylene was removed by devolatile hexane from the obtained hexane solution under reduced pressure. By the above operation, polyoxypropylene (Q-1) having an allyl group at the terminal was obtained. A platinum divinyldisiloxane complex solution was added to polyoxypropylene (Q-1) so as to be 50 μl of a platinum divinyldisiloxane complex solution (3 wt% isopropanol solution in terms of platinum) with respect to 500 g of polyoxypropylene. While stirring the obtained mixture, 4.5 g of dimethoxymethylsilane was slowly added dropwise to the mixture. After reacting the obtained mixed solution at 100 ° C. for 2 hours, unreacted dimethoxymethylsilane is distilled off under reduced pressure to obtain polyoxypropylene having a dimethoxymethylsilyl group at the terminal, which is a linear chain. An organic polymer (A1) in the form of a state was obtained. It was found that the number average molecular weight of the organic polymer (A1) was 25,500, and the organic polymer (A1) had an average of 0.7 dimethoxymethylsilyl groups at one terminal and an average of 1.4 in one molecule. rice field.
(有機重合体(A1)の調製)
数平均分子量が約4500のポリオキシプロピレングリコールを開始剤として使用し、亜鉛ヘキサシアノコバルテートグライム錯体触媒の存在下にて、プロピレンオキサイドの重合を行った。かかる重合により、末端に水酸基を有する数平均分子量25500、分子量分布Mw/Mn=1.26のポリオキシプロピレン(P-1)を得た。次に、得られたポリオキシプロピレン(P-1)を含む反応溶液に、ナトリウムメトキシドを28%(w/w)の濃度で含むメタノール溶液を添加した。ここで、ナトリウムメトキシドのメタノール溶液は、得られたポリオキシプロピレン(P-1)の末端の水酸基1モル当量に対して1.2モル当量のナトリウムメトキシドとなるように、反応溶液に添加した。得られた反応溶液から、真空脱揮によりメタノールを留去した。その後、ポリオキシプロピレン(P-1)の末端の水酸基1モル当量に対して、1.5モル当量の塩化アリルの量となるように、反応溶液に塩化アリルを添加して、末端の水酸基をアリル基に変換した。続いて、減圧脱揮により反応溶液から未反応の塩化アリルを除去し、未精製のポリオキシプロピレンを得た。得られた未精製のポリオキシプロピレンを、n-ヘキサンおよび水と混合攪拌した後、遠心分離により得られた混合液から水を除去し、ヘキサン溶液を得た。得られたヘキサン溶液からヘキサンを減圧脱揮することにより、ポリオキシプロピレン中の金属塩を除去した。以上の操作により、末端にアリル基を有するポリオキシプロピレン(Q-1)を得た。ポリオキシプロピレン500gに対して白金ジビニルジシロキサン錯体溶液(白金換算で3重量%のイソプロパノール溶液)50μlとなるように、ポリオキシプロピレン(Q-1)に白金ジビニルジシロキサン錯体溶液を添加した。得られた混合液を撹拌しながら、ジメトキシメチルシラン4.5gを混合液中にゆっくりと滴下した。得られた混合液を100℃で2時間反応させた後、混合液から未反応のジメトキシメチルシランを減圧下留去する事により、末端にジメトキシメチルシリル基を有するポリオキシプロピレンであり、直鎖状である有機重合体(A1)を得た。有機重合体(A1)の数平均分子量は25500であり、有機重合体(A1)はジメトキシメチルシリル基を1つの末端に平均0.7個、1分子中に平均1.4個有することが分かった。 (Synthesis Example 1)
(Preparation of organic polymer (A1))
Propylene oxide was polymerized in the presence of a zinc hexacyanocovalent glyme complex catalyst using polyoxypropylene glycol having a number average molecular weight of about 4500 as an initiator. By such polymerization, polyoxypropylene (P-1) having a number average molecular weight of 25500 and a molecular weight distribution of Mw / Mn = 1.26 having a hydroxyl group at the terminal was obtained. Next, a methanol solution containing sodium methoxide at a concentration of 28% (w / w) was added to the obtained reaction solution containing polyoxypropylene (P-1). Here, the methanol solution of sodium methoxide is added to the reaction solution so as to have 1.2 molar equivalents of sodium methoxide with respect to 1 molar equivalent of the hydroxyl group at the terminal of the obtained polyoxypropylene (P-1). bottom. Methanol was distilled off from the obtained reaction solution by vacuum devolatile. Then, allyl chloride is added to the reaction solution so that the amount of allyl chloride is 1.5 molar equivalents with respect to 1 molar equivalent of the hydroxyl group at the terminal of polyoxypropylene (P-1) to obtain the hydroxyl group at the terminal. Converted to an allyl group. Subsequently, unreacted allyl chloride was removed from the reaction solution by vacuum volatilization to obtain unpurified polyoxypropylene. The obtained unpurified polyoxypropylene was mixed and stirred with n-hexane and water, and then water was removed from the mixed solution obtained by centrifugation to obtain a hexane solution. The metal salt in polyoxypropylene was removed by devolatile hexane from the obtained hexane solution under reduced pressure. By the above operation, polyoxypropylene (Q-1) having an allyl group at the terminal was obtained. A platinum divinyldisiloxane complex solution was added to polyoxypropylene (Q-1) so as to be 50 μl of a platinum divinyldisiloxane complex solution (3 wt% isopropanol solution in terms of platinum) with respect to 500 g of polyoxypropylene. While stirring the obtained mixture, 4.5 g of dimethoxymethylsilane was slowly added dropwise to the mixture. After reacting the obtained mixed solution at 100 ° C. for 2 hours, unreacted dimethoxymethylsilane is distilled off under reduced pressure to obtain polyoxypropylene having a dimethoxymethylsilyl group at the terminal, which is a linear chain. An organic polymer (A1) in the form of a state was obtained. It was found that the number average molecular weight of the organic polymer (A1) was 25,500, and the organic polymer (A1) had an average of 0.7 dimethoxymethylsilyl groups at one terminal and an average of 1.4 in one molecule. rice field.
(合成例2)
(有機重合体(A2)の調製)
数平均分子量が約4500のポリオキシプロピレントリオールを開始剤として使用し、亜鉛ヘキサシアノコバルテートグライム錯体触媒の存在下にて、プロピレンオキサイドの重合を行った。かかる重合により、末端に水酸基を有する数平均分子量16400、分子量分布Mw/Mn=1.31のポリオキシプロピレン(P-2)を得た。次に、得られたポリオキシプロピレン(P-2)を含む反応溶液に、ナトリウムメトキシドを28%(w/w)の濃度で含むメタノール溶液を添加した。ここで、ナトリウムメトキシドのメタノール溶液は、得られたポリオキシプロピレン(P-2)の末端の水酸基1モル当量に対して1.2モル当量のナトリウムメトキシドとなるように、反応溶液に添加した。得られた反応溶液から、真空脱揮によりメタノールを留去した。その後、ポリオキシプロピレン(P-2)の末端の水酸基1モル当量に対して、1.5モル当量の塩化アリルの量となるように、反応溶液に塩化アリルを添加して、末端の水酸基をアリル基に変換した。続いて、減圧脱揮により反応溶液から未反応の塩化アリルを除去し、未精製のポリオキシプロピレンを得た。得られた未精製のポリオキシプロピレンを、n-ヘキサンおよび水と混合攪拌した後、遠心分離により得られた混合液から水を除去し、ヘキサン溶液を得た。得られたヘキサン溶液からヘキサンを減圧脱揮することにより、ポリオキシプロピレン中の金属塩を除去した。以上の操作により、末端にアリル基を有するポリオキシプロピレン(Q-2)を得た。ポリオキシプロピレン500gに対して白金ジビニルジシロキサン錯体溶液(白金換算で3重量%のイソプロパノール溶液)50μlとなるように、ポリオキシプロピレン(Q-1)に白金ジビニルジシロキサン錯体溶液を添加した。得られた混合液を撹拌しながら、ジメトキシメチルシラン8.9gを混合液中にゆっくりと滴下した。得られた混合液を100℃で2時間反応させた後、混合液から未反応のジメトキシメチルシランを減圧下留去する事により、末端にジメトキシメチルシリル基を有するポリオキシプロピレンであり、分岐状である有機重合体(A2)を得た。有機重合体(A2)の数平均分子量は16400であり、有機重合体(A2)はジメトキシメチルシリル基を1つの末端に平均0.7個、1分子中に平均2.1個有することが分かった。 (Synthesis Example 2)
(Preparation of organic polymer (A2))
Polyoxypropylene triol having a number average molecular weight of about 4500 was used as an initiator, and propylene oxide was polymerized in the presence of a zinc hexacyanocobaltate grime complex catalyst. By such polymerization, polyoxypropylene (P-2) having a number average molecular weight of 16400 and a molecular weight distribution of Mw / Mn = 1.31 having a hydroxyl group at the terminal was obtained. Next, a methanol solution containing sodium methoxide at a concentration of 28% (w / w) was added to the obtained reaction solution containing polyoxypropylene (P-2). Here, the methanol solution of sodium methoxide is added to the reaction solution so as to have 1.2 molar equivalents of sodium methoxide with respect to 1 molar equivalent of the hydroxyl group at the terminal of the obtained polyoxypropylene (P-2). bottom. Methanol was distilled off from the obtained reaction solution by vacuum devolatile. Then, allyl chloride is added to the reaction solution so that the amount of allyl chloride is 1.5 molar equivalents with respect to 1 molar equivalent of the hydroxyl group at the terminal of polyoxypropylene (P-2) to obtain the hydroxyl group at the terminal. Converted to an allyl group. Subsequently, unreacted allyl chloride was removed from the reaction solution by vacuum volatilization to obtain unpurified polyoxypropylene. The obtained unpurified polyoxypropylene was mixed and stirred with n-hexane and water, and then water was removed from the mixed solution obtained by centrifugation to obtain a hexane solution. The metal salt in polyoxypropylene was removed by devolatile hexane from the obtained hexane solution under reduced pressure. By the above operation, polyoxypropylene (Q-2) having an allyl group at the terminal was obtained. A platinum divinyldisiloxane complex solution was added to polyoxypropylene (Q-1) so as to be 50 μl of a platinum divinyldisiloxane complex solution (3 wt% isopropanol solution in terms of platinum) with respect to 500 g of polyoxypropylene. While stirring the obtained mixture, 8.9 g of dimethoxymethylsilane was slowly added dropwise to the mixture. After reacting the obtained mixed solution at 100 ° C. for 2 hours, unreacted dimethoxymethylsilane was distilled off under reduced pressure to obtain polyoxypropylene having a dimethoxymethylsilyl group at the terminal, which was branched. Organic polymer (A2) was obtained. It was found that the number average molecular weight of the organic polymer (A2) was 16400, and the organic polymer (A2) had an average of 0.7 dimethoxymethylsilyl groups at one terminal and an average of 2.1 in one molecule. rice field.
(有機重合体(A2)の調製)
数平均分子量が約4500のポリオキシプロピレントリオールを開始剤として使用し、亜鉛ヘキサシアノコバルテートグライム錯体触媒の存在下にて、プロピレンオキサイドの重合を行った。かかる重合により、末端に水酸基を有する数平均分子量16400、分子量分布Mw/Mn=1.31のポリオキシプロピレン(P-2)を得た。次に、得られたポリオキシプロピレン(P-2)を含む反応溶液に、ナトリウムメトキシドを28%(w/w)の濃度で含むメタノール溶液を添加した。ここで、ナトリウムメトキシドのメタノール溶液は、得られたポリオキシプロピレン(P-2)の末端の水酸基1モル当量に対して1.2モル当量のナトリウムメトキシドとなるように、反応溶液に添加した。得られた反応溶液から、真空脱揮によりメタノールを留去した。その後、ポリオキシプロピレン(P-2)の末端の水酸基1モル当量に対して、1.5モル当量の塩化アリルの量となるように、反応溶液に塩化アリルを添加して、末端の水酸基をアリル基に変換した。続いて、減圧脱揮により反応溶液から未反応の塩化アリルを除去し、未精製のポリオキシプロピレンを得た。得られた未精製のポリオキシプロピレンを、n-ヘキサンおよび水と混合攪拌した後、遠心分離により得られた混合液から水を除去し、ヘキサン溶液を得た。得られたヘキサン溶液からヘキサンを減圧脱揮することにより、ポリオキシプロピレン中の金属塩を除去した。以上の操作により、末端にアリル基を有するポリオキシプロピレン(Q-2)を得た。ポリオキシプロピレン500gに対して白金ジビニルジシロキサン錯体溶液(白金換算で3重量%のイソプロパノール溶液)50μlとなるように、ポリオキシプロピレン(Q-1)に白金ジビニルジシロキサン錯体溶液を添加した。得られた混合液を撹拌しながら、ジメトキシメチルシラン8.9gを混合液中にゆっくりと滴下した。得られた混合液を100℃で2時間反応させた後、混合液から未反応のジメトキシメチルシランを減圧下留去する事により、末端にジメトキシメチルシリル基を有するポリオキシプロピレンであり、分岐状である有機重合体(A2)を得た。有機重合体(A2)の数平均分子量は16400であり、有機重合体(A2)はジメトキシメチルシリル基を1つの末端に平均0.7個、1分子中に平均2.1個有することが分かった。 (Synthesis Example 2)
(Preparation of organic polymer (A2))
Polyoxypropylene triol having a number average molecular weight of about 4500 was used as an initiator, and propylene oxide was polymerized in the presence of a zinc hexacyanocobaltate grime complex catalyst. By such polymerization, polyoxypropylene (P-2) having a number average molecular weight of 16400 and a molecular weight distribution of Mw / Mn = 1.31 having a hydroxyl group at the terminal was obtained. Next, a methanol solution containing sodium methoxide at a concentration of 28% (w / w) was added to the obtained reaction solution containing polyoxypropylene (P-2). Here, the methanol solution of sodium methoxide is added to the reaction solution so as to have 1.2 molar equivalents of sodium methoxide with respect to 1 molar equivalent of the hydroxyl group at the terminal of the obtained polyoxypropylene (P-2). bottom. Methanol was distilled off from the obtained reaction solution by vacuum devolatile. Then, allyl chloride is added to the reaction solution so that the amount of allyl chloride is 1.5 molar equivalents with respect to 1 molar equivalent of the hydroxyl group at the terminal of polyoxypropylene (P-2) to obtain the hydroxyl group at the terminal. Converted to an allyl group. Subsequently, unreacted allyl chloride was removed from the reaction solution by vacuum volatilization to obtain unpurified polyoxypropylene. The obtained unpurified polyoxypropylene was mixed and stirred with n-hexane and water, and then water was removed from the mixed solution obtained by centrifugation to obtain a hexane solution. The metal salt in polyoxypropylene was removed by devolatile hexane from the obtained hexane solution under reduced pressure. By the above operation, polyoxypropylene (Q-2) having an allyl group at the terminal was obtained. A platinum divinyldisiloxane complex solution was added to polyoxypropylene (Q-1) so as to be 50 μl of a platinum divinyldisiloxane complex solution (3 wt% isopropanol solution in terms of platinum) with respect to 500 g of polyoxypropylene. While stirring the obtained mixture, 8.9 g of dimethoxymethylsilane was slowly added dropwise to the mixture. After reacting the obtained mixed solution at 100 ° C. for 2 hours, unreacted dimethoxymethylsilane was distilled off under reduced pressure to obtain polyoxypropylene having a dimethoxymethylsilyl group at the terminal, which was branched. Organic polymer (A2) was obtained. It was found that the number average molecular weight of the organic polymer (A2) was 16400, and the organic polymer (A2) had an average of 0.7 dimethoxymethylsilyl groups at one terminal and an average of 2.1 in one molecule. rice field.
(合成例3)
(ポリ塩化ビニル樹脂(B-1)の調製)
容器内を予め脱気したジャケット付き300Lステンレス製撹拌機付き耐圧容器に、塩化ビニル単量体100kg、イオン交換水100kg、ミリスチン酸175g、28%(w/w)アンモニア水溶液1.3L、ナトリウム-ホルムアルデヒド-スルホキシレート(ロンガリット社製)85g、硫酸第一鉄1.5gおよびエチレンジアミン四酢酸-2-ナトリウム2.5gを仕込んだ。その後、混合溶液を47.6℃に昇温し、予め0.3%(w/w)に調整したtert-ブチルヒドロペルオキシドを混合溶液内に連続追加することにより重合を行った。ここで、単量体から重合体への転化率が5%に到達してから70%に到達するまでの間、10.8wt%のミリスチン酸アンモニウム水溶液7.8kgを混合溶液内に連続追加することにより、重合圧力が初期圧(0.62MPa)より0.15MPa低下するまで重合した。その後、混合溶液内に残存する単量体を混合溶液から回収して、塩化ビニル樹脂を含むラテックスを得た。得られたラテックスにおける塩化ビニル樹脂の最頻径は0.18μmであった。得られたラテックスを目開き100メッシュの篩に通して粗粒を除去した後、通過した溶液を噴霧乾燥することにより、ポリ塩化ビニル樹脂(B-1)を得た。 (Synthesis Example 3)
(Preparation of polyvinyl chloride resin (B-1))
In a pressure-resistant container with a 300L stainless steel stirrer with a jacket that has been degassed in advance, 100 kg of vinyl chloride monomer, 100 kg of ion-exchanged water, 175 g of myristic acid, 1.3 L of 28% (w / w) aqueous ammonia solution, sodium- 85 g of formaldehyde-sulfoxylate (manufactured by Longarit), 1.5 g of ferrous sulfate and 2.5 g of ethylenediaminetetraacetic acid-2-sodium were charged. Then, the temperature of the mixed solution was raised to 47.6 ° C., and tert-butyl hydroperoxide adjusted to 0.3% (w / w) in advance was continuously added to the mixed solution for polymerization. Here, 7.8 kg of a 10.8 wt% ammonium myristate aqueous solution is continuously added to the mixed solution from the time when the conversion rate from the monomer to the polymer reaches 5% to the time when it reaches 70%. As a result, the polymerization was carried out until the polymerization pressure was 0.15 MPa lower than the initial pressure (0.62 MPa). Then, the monomer remaining in the mixed solution was recovered from the mixed solution to obtain a latex containing a vinyl chloride resin. The mode of the vinyl chloride resin in the obtained latex was 0.18 μm. The obtained latex was passed through a sieve having a mesh size of 100 mesh to remove coarse particles, and then the passed solution was spray-dried to obtain a polyvinyl chloride resin (B-1).
(ポリ塩化ビニル樹脂(B-1)の調製)
容器内を予め脱気したジャケット付き300Lステンレス製撹拌機付き耐圧容器に、塩化ビニル単量体100kg、イオン交換水100kg、ミリスチン酸175g、28%(w/w)アンモニア水溶液1.3L、ナトリウム-ホルムアルデヒド-スルホキシレート(ロンガリット社製)85g、硫酸第一鉄1.5gおよびエチレンジアミン四酢酸-2-ナトリウム2.5gを仕込んだ。その後、混合溶液を47.6℃に昇温し、予め0.3%(w/w)に調整したtert-ブチルヒドロペルオキシドを混合溶液内に連続追加することにより重合を行った。ここで、単量体から重合体への転化率が5%に到達してから70%に到達するまでの間、10.8wt%のミリスチン酸アンモニウム水溶液7.8kgを混合溶液内に連続追加することにより、重合圧力が初期圧(0.62MPa)より0.15MPa低下するまで重合した。その後、混合溶液内に残存する単量体を混合溶液から回収して、塩化ビニル樹脂を含むラテックスを得た。得られたラテックスにおける塩化ビニル樹脂の最頻径は0.18μmであった。得られたラテックスを目開き100メッシュの篩に通して粗粒を除去した後、通過した溶液を噴霧乾燥することにより、ポリ塩化ビニル樹脂(B-1)を得た。 (Synthesis Example 3)
(Preparation of polyvinyl chloride resin (B-1))
In a pressure-resistant container with a 300L stainless steel stirrer with a jacket that has been degassed in advance, 100 kg of vinyl chloride monomer, 100 kg of ion-exchanged water, 175 g of myristic acid, 1.3 L of 28% (w / w) aqueous ammonia solution, sodium- 85 g of formaldehyde-sulfoxylate (manufactured by Longarit), 1.5 g of ferrous sulfate and 2.5 g of ethylenediaminetetraacetic acid-2-sodium were charged. Then, the temperature of the mixed solution was raised to 47.6 ° C., and tert-butyl hydroperoxide adjusted to 0.3% (w / w) in advance was continuously added to the mixed solution for polymerization. Here, 7.8 kg of a 10.8 wt% ammonium myristate aqueous solution is continuously added to the mixed solution from the time when the conversion rate from the monomer to the polymer reaches 5% to the time when it reaches 70%. As a result, the polymerization was carried out until the polymerization pressure was 0.15 MPa lower than the initial pressure (0.62 MPa). Then, the monomer remaining in the mixed solution was recovered from the mixed solution to obtain a latex containing a vinyl chloride resin. The mode of the vinyl chloride resin in the obtained latex was 0.18 μm. The obtained latex was passed through a sieve having a mesh size of 100 mesh to remove coarse particles, and then the passed solution was spray-dried to obtain a polyvinyl chloride resin (B-1).
(合成例4)
(ポリ塩化ビニル樹脂(B-2)の調製)
耐圧容器に仕込むミリスチン酸量を70gに変更した以外は、製造例1と同じ操作にて塩化ビニル樹脂を含むラテックスを得た。得られたラテックスにおける塩化ビニル樹脂の最頻径は0.37μmであった。得られたラテックスを目開き100メッシュの篩に通して粗粒を除去した後、通過した溶液を噴霧乾燥することにより、ポリ塩化ビニル樹脂(B-2)を得た。 (Synthesis Example 4)
(Preparation of polyvinyl chloride resin (B-2))
A latex containing a vinyl chloride resin was obtained by the same operation as in Production Example 1 except that the amount of myristic acid charged in the pressure-resistant container was changed to 70 g. The mode of the vinyl chloride resin in the obtained latex was 0.37 μm. The obtained latex was passed through a sieve having a mesh size of 100 mesh to remove coarse particles, and then the passed solution was spray-dried to obtain a polyvinyl chloride resin (B-2).
(ポリ塩化ビニル樹脂(B-2)の調製)
耐圧容器に仕込むミリスチン酸量を70gに変更した以外は、製造例1と同じ操作にて塩化ビニル樹脂を含むラテックスを得た。得られたラテックスにおける塩化ビニル樹脂の最頻径は0.37μmであった。得られたラテックスを目開き100メッシュの篩に通して粗粒を除去した後、通過した溶液を噴霧乾燥することにより、ポリ塩化ビニル樹脂(B-2)を得た。 (Synthesis Example 4)
(Preparation of polyvinyl chloride resin (B-2))
A latex containing a vinyl chloride resin was obtained by the same operation as in Production Example 1 except that the amount of myristic acid charged in the pressure-resistant container was changed to 70 g. The mode of the vinyl chloride resin in the obtained latex was 0.37 μm. The obtained latex was passed through a sieve having a mesh size of 100 mesh to remove coarse particles, and then the passed solution was spray-dried to obtain a polyvinyl chloride resin (B-2).
(合成例5)
(ポリ塩化ビニル樹脂(B-3)の調整)
ジャケット付き300Lステンレス製撹拌機付き耐圧容器に、イオン交換水100kg、直鎖ドデシルベンゼンスルホン酸ナトリウム790g、ステアリルアルコール270g、ステアリン酸270g、およびt-ブチルペルオキシネオドデカノエート60gを仕込んだ。その後、耐圧容器を脱気した。次いで、塩化ビニル単量体100kgを耐圧容器内に追加し、耐圧容器内の混合溶液を30分間ホモジナイズし均質化した。その後、混合溶液を44.5℃に昇温して重合を開始した。重合圧力が初期圧より0.05MPa低下するまで重合した。その後、混合溶液内に残存する単量体を混合溶液から回収して、塩化ビニル樹脂を含むラテックスを得た。得られたラテックスにおける塩化ビニル樹脂の最頻径は1.0μmであった。得られたラテックスを目開き100メッシュの篩に通して粗粒を除去した後、通過した溶液を噴霧乾燥することにより、ポリ塩化ビニル樹脂(B-3)を得た。 (Synthesis Example 5)
(Adjustment of polyvinyl chloride resin (B-3))
A 300 L stainless steel stirrer-equipped pressure vessel with a jacket was charged with 100 kg of ion-exchanged water, 790 g of linear sodium dodecylbenzene sulfonate, 270 g of stearyl alcohol, 270 g of stearic acid, and 60 g of t-butylperoxyneododecanoate. After that, the pressure-resistant container was degassed. Next, 100 kg of vinyl chloride monomer was added into the pressure-resistant container, and the mixed solution in the pressure-resistant container was homogenized and homogenized for 30 minutes. Then, the temperature of the mixed solution was raised to 44.5 ° C. to start polymerization. Polymerization was carried out until the polymerization pressure was 0.05 MPa lower than the initial pressure. Then, the monomer remaining in the mixed solution was recovered from the mixed solution to obtain a latex containing a vinyl chloride resin. The mode of the vinyl chloride resin in the obtained latex was 1.0 μm. The obtained latex was passed through a sieve having a mesh size of 100 mesh to remove coarse particles, and then the passed solution was spray-dried to obtain a polyvinyl chloride resin (B-3).
(ポリ塩化ビニル樹脂(B-3)の調整)
ジャケット付き300Lステンレス製撹拌機付き耐圧容器に、イオン交換水100kg、直鎖ドデシルベンゼンスルホン酸ナトリウム790g、ステアリルアルコール270g、ステアリン酸270g、およびt-ブチルペルオキシネオドデカノエート60gを仕込んだ。その後、耐圧容器を脱気した。次いで、塩化ビニル単量体100kgを耐圧容器内に追加し、耐圧容器内の混合溶液を30分間ホモジナイズし均質化した。その後、混合溶液を44.5℃に昇温して重合を開始した。重合圧力が初期圧より0.05MPa低下するまで重合した。その後、混合溶液内に残存する単量体を混合溶液から回収して、塩化ビニル樹脂を含むラテックスを得た。得られたラテックスにおける塩化ビニル樹脂の最頻径は1.0μmであった。得られたラテックスを目開き100メッシュの篩に通して粗粒を除去した後、通過した溶液を噴霧乾燥することにより、ポリ塩化ビニル樹脂(B-3)を得た。 (Synthesis Example 5)
(Adjustment of polyvinyl chloride resin (B-3))
A 300 L stainless steel stirrer-equipped pressure vessel with a jacket was charged with 100 kg of ion-exchanged water, 790 g of linear sodium dodecylbenzene sulfonate, 270 g of stearyl alcohol, 270 g of stearic acid, and 60 g of t-butylperoxyneododecanoate. After that, the pressure-resistant container was degassed. Next, 100 kg of vinyl chloride monomer was added into the pressure-resistant container, and the mixed solution in the pressure-resistant container was homogenized and homogenized for 30 minutes. Then, the temperature of the mixed solution was raised to 44.5 ° C. to start polymerization. Polymerization was carried out until the polymerization pressure was 0.05 MPa lower than the initial pressure. Then, the monomer remaining in the mixed solution was recovered from the mixed solution to obtain a latex containing a vinyl chloride resin. The mode of the vinyl chloride resin in the obtained latex was 1.0 μm. The obtained latex was passed through a sieve having a mesh size of 100 mesh to remove coarse particles, and then the passed solution was spray-dried to obtain a polyvinyl chloride resin (B-3).
(実施例1~3、および比較例1~2)
以下のように硬化性組成物を作成した。まず表1に示す各成分のうち、脱水剤(D)、垂れ防止剤、接着性付与剤、硬化触媒を除く各成分を表1に示す重量部量りとり、量り取った成分を3本ロールミルに供し、均一な分散ペーストを得た。その後、120℃2時間、減圧条件下で分散ペーストの脱水を行った。分散ペーストの水分量が500ppm以下に到達したことを確認した後、分散ペーストの温度が50℃以下になるまで分散ペーストを冷却した。その後、分散ペーストに、残りの成分を添加し、得られた混合物を攪拌および脱泡操作に供し、硬化性組成物を得た。得られた硬化性組成物は、アルミニウムカートリッジに充填した。得られた硬化性組成物について、上述した方法により、初期固定性と貯蔵安定性を評価した。初期固定性の結果を表1に示す。なお、実施例1~3で得られた硬化性組成物は、本発明の一実施形態に係る硬化性組成物であり、かつ、本発明の一実施形態に係る接着剤でもある。 (Examples 1 to 3 and Comparative Examples 1 to 2)
A curable composition was prepared as follows. First, among the components shown in Table 1, each component excluding the dehydrating agent (D), the anti-dripping agent, the adhesive-imparting agent, and the curing catalyst is weighed by weight as shown in Table 1, and the weighed components are put into a 3-roll mill. The mixture was subjected to a uniform dispersed paste. Then, the dispersed paste was dehydrated under reduced pressure conditions at 120 ° C. for 2 hours. After confirming that the water content of the dispersed paste reached 500 ppm or less, the dispersed paste was cooled until the temperature of the dispersed paste became 50 ° C. or less. Then, the remaining components were added to the dispersed paste, and the obtained mixture was subjected to stirring and defoaming operations to obtain a curable composition. The obtained curable composition was filled in an aluminum cartridge. The obtained curable composition was evaluated for initial immobility and storage stability by the method described above. The results of initial fixation are shown in Table 1. The curable composition obtained in Examples 1 to 3 is a curable composition according to an embodiment of the present invention, and is also an adhesive according to an embodiment of the present invention.
以下のように硬化性組成物を作成した。まず表1に示す各成分のうち、脱水剤(D)、垂れ防止剤、接着性付与剤、硬化触媒を除く各成分を表1に示す重量部量りとり、量り取った成分を3本ロールミルに供し、均一な分散ペーストを得た。その後、120℃2時間、減圧条件下で分散ペーストの脱水を行った。分散ペーストの水分量が500ppm以下に到達したことを確認した後、分散ペーストの温度が50℃以下になるまで分散ペーストを冷却した。その後、分散ペーストに、残りの成分を添加し、得られた混合物を攪拌および脱泡操作に供し、硬化性組成物を得た。得られた硬化性組成物は、アルミニウムカートリッジに充填した。得られた硬化性組成物について、上述した方法により、初期固定性と貯蔵安定性を評価した。初期固定性の結果を表1に示す。なお、実施例1~3で得られた硬化性組成物は、本発明の一実施形態に係る硬化性組成物であり、かつ、本発明の一実施形態に係る接着剤でもある。 (Examples 1 to 3 and Comparative Examples 1 to 2)
A curable composition was prepared as follows. First, among the components shown in Table 1, each component excluding the dehydrating agent (D), the anti-dripping agent, the adhesive-imparting agent, and the curing catalyst is weighed by weight as shown in Table 1, and the weighed components are put into a 3-roll mill. The mixture was subjected to a uniform dispersed paste. Then, the dispersed paste was dehydrated under reduced pressure conditions at 120 ° C. for 2 hours. After confirming that the water content of the dispersed paste reached 500 ppm or less, the dispersed paste was cooled until the temperature of the dispersed paste became 50 ° C. or less. Then, the remaining components were added to the dispersed paste, and the obtained mixture was subjected to stirring and defoaming operations to obtain a curable composition. The obtained curable composition was filled in an aluminum cartridge. The obtained curable composition was evaluated for initial immobility and storage stability by the method described above. The results of initial fixation are shown in Table 1. The curable composition obtained in Examples 1 to 3 is a curable composition according to an embodiment of the present invention, and is also an adhesive according to an embodiment of the present invention.
貯蔵安定性について、実施例1~3および比較例1の硬化性組成物は、粘度変化が200%未満であり、貯蔵安定性に優れるものであった。一方、比較例2の硬化性組成物は、粘度変化が200%以上であり、貯蔵安定性に劣るものであった。
Regarding storage stability, the curable compositions of Examples 1 to 3 and Comparative Example 1 had a viscosity change of less than 200% and were excellent in storage stability. On the other hand, the curable composition of Comparative Example 2 had a viscosity change of 200% or more and was inferior in storage stability.
比較例2の硬化性組成物は貯蔵安定性に劣るものであるため、硬化性組成物が製造された後に、(a)輸送および店舗に長期間保管されるような接着剤用途には適さないと考えられる。
Since the curable composition of Comparative Example 2 is inferior in storage stability, it is not suitable for (a) an adhesive application such as transportation and long-term storage in a store after the curable composition is produced. it is conceivable that.
(実施例4~8)
以下のように硬化性組成物を作成した。まず表2に示す各成分のうち、脱水剤(D)、垂れ防止剤、接着性付与剤、硬化触媒を除く各成分を表2に示す重量部量りとり、量り取った成分を3本ロールミルに供し、均一な分散ペーストを得た。その後、120℃2時間、減圧条件下で分散ペーストの脱水を行った。分散ペーストの水分量が500ppm以下に到達したことを確認した後、分散ペーストの温度が50℃以下になるまで分散ペーストを冷却した。その後、分散ペーストに、残りの成分を添加し、得られた混合物を攪拌および脱泡操作に供し、硬化性組成物を得た。得られた硬化性組成物は、アルミニウムカートリッジに充填した。得られた硬化性組成物について、上述した方法により、初期固定性および貯蔵安定性を評価した。また、当該硬化性組成物の硬化物について、上述した方法により、ダンベル物性およびせん断強度を評価した。初期固定性、ダンベル物性およびせん断強度の結果を表1に示す。なお、実施例4~8で得られた硬化性組成物は、本発明の一実施形態に係る硬化性組成物であり、かつ、本発明の一実施形態に係る接着剤でもある。 (Examples 4 to 8)
A curable composition was prepared as follows. First, among the components shown in Table 2, each component excluding the dehydrating agent (D), the anti-dripping agent, the adhesive-imparting agent, and the curing catalyst is weighed by weight as shown in Table 2, and the weighed components are put into a 3-roll mill. The mixture was subjected to a uniform dispersed paste. Then, the dispersed paste was dehydrated under reduced pressure conditions at 120 ° C. for 2 hours. After confirming that the water content of the dispersed paste reached 500 ppm or less, the dispersed paste was cooled until the temperature of the dispersed paste became 50 ° C. or less. Then, the remaining components were added to the dispersed paste, and the obtained mixture was subjected to stirring and defoaming operations to obtain a curable composition. The obtained curable composition was filled in an aluminum cartridge. The obtained curable composition was evaluated for initial immobility and storage stability by the method described above. In addition, the dumbbell physical properties and shear strength of the cured product of the curable composition were evaluated by the above-mentioned method. The results of initial fixation, dumbbell physical properties and shear strength are shown in Table 1. The curable compositions obtained in Examples 4 to 8 are curable compositions according to an embodiment of the present invention, and are also adhesives according to an embodiment of the present invention.
以下のように硬化性組成物を作成した。まず表2に示す各成分のうち、脱水剤(D)、垂れ防止剤、接着性付与剤、硬化触媒を除く各成分を表2に示す重量部量りとり、量り取った成分を3本ロールミルに供し、均一な分散ペーストを得た。その後、120℃2時間、減圧条件下で分散ペーストの脱水を行った。分散ペーストの水分量が500ppm以下に到達したことを確認した後、分散ペーストの温度が50℃以下になるまで分散ペーストを冷却した。その後、分散ペーストに、残りの成分を添加し、得られた混合物を攪拌および脱泡操作に供し、硬化性組成物を得た。得られた硬化性組成物は、アルミニウムカートリッジに充填した。得られた硬化性組成物について、上述した方法により、初期固定性および貯蔵安定性を評価した。また、当該硬化性組成物の硬化物について、上述した方法により、ダンベル物性およびせん断強度を評価した。初期固定性、ダンベル物性およびせん断強度の結果を表1に示す。なお、実施例4~8で得られた硬化性組成物は、本発明の一実施形態に係る硬化性組成物であり、かつ、本発明の一実施形態に係る接着剤でもある。 (Examples 4 to 8)
A curable composition was prepared as follows. First, among the components shown in Table 2, each component excluding the dehydrating agent (D), the anti-dripping agent, the adhesive-imparting agent, and the curing catalyst is weighed by weight as shown in Table 2, and the weighed components are put into a 3-roll mill. The mixture was subjected to a uniform dispersed paste. Then, the dispersed paste was dehydrated under reduced pressure conditions at 120 ° C. for 2 hours. After confirming that the water content of the dispersed paste reached 500 ppm or less, the dispersed paste was cooled until the temperature of the dispersed paste became 50 ° C. or less. Then, the remaining components were added to the dispersed paste, and the obtained mixture was subjected to stirring and defoaming operations to obtain a curable composition. The obtained curable composition was filled in an aluminum cartridge. The obtained curable composition was evaluated for initial immobility and storage stability by the method described above. In addition, the dumbbell physical properties and shear strength of the cured product of the curable composition were evaluated by the above-mentioned method. The results of initial fixation, dumbbell physical properties and shear strength are shown in Table 1. The curable compositions obtained in Examples 4 to 8 are curable compositions according to an embodiment of the present invention, and are also adhesives according to an embodiment of the present invention.
貯蔵安定性について、実施例4~8の硬化性組成物は、粘度変化が200%未満であり、貯蔵安定性に優れるものであった。
Regarding storage stability, the curable compositions of Examples 4 to 8 had a viscosity change of less than 200% and were excellent in storage stability.
本発明の一実施形態によれば、初期固定性に優れる、新規の硬化性組成物を提供することができる。そのため、本発明の一実施形態は、自動車の車体・部品、トラック、バス等の大型車両の車体・部品、列車の車両・部品、航空機用部品、船舶用部品、コンテナ、電機・電子部品、家電製品、各種機械部品、鏡、各種化粧板パネル、サッシ等の建材分野において好適に利用できる。
According to one embodiment of the present invention, it is possible to provide a novel curable composition having excellent initial fixing property. Therefore, in one embodiment of the present invention, the body / parts of an automobile, the body / parts of a large vehicle such as a truck or a bus, the vehicle / parts of a train, the parts for an aircraft, the parts for a ship, the container, the electric / electronic parts, and the household appliances. It can be suitably used in the field of building materials such as products, various mechanical parts, mirrors, various decorative board panels, and sashes.
Claims (8)
- 加水分解性ケイ素基を有する有機重合体(A)100重量部、ポリ塩化ビニル樹脂(B)10重量部~500重量部及び炭酸カルシウム(C)150重量部~500重量部を含有し、
前記ポリ塩化ビニル樹脂(B)の最頻径が0.10μm~0.50μmである、硬化性組成物。 It contains 100 parts by weight of an organic polymer (A) having a hydrolyzable silicon group, 10 parts by weight to 500 parts by weight of a polyvinyl chloride resin (B), and 150 parts by weight to 500 parts by weight of calcium carbonate (C).
A curable composition having a mode diameter of the polyvinyl chloride resin (B) of 0.10 μm to 0.50 μm. - さらに脱水剤(D)2重量部~10重量部を含有する、請求項1に記載の硬化性組成物。 The curable composition according to claim 1, further containing 2 parts by weight to 10 parts by weight of the dehydrating agent (D).
- 前記ポリ塩化ビニル樹脂(B)の含有量と前記炭酸カルシウム(C)の含有量との比((B)/(C))が0.2~0.8である、請求項1または2に記載の硬化性組成物。 The ratio ((B) / (C)) of the content of the polyvinyl chloride resin (B) to the content of the calcium carbonate (C) is 0.2 to 0.8, according to claim 1 or 2. The curable composition according to description.
- 前記有機重合体(A)は、直鎖状の有機重合体(A1)と分岐状の有機重合体(A2)との混合物である、請求項1~3の何れか1項に記載の硬化性組成物。 The curability according to any one of claims 1 to 3, wherein the organic polymer (A) is a mixture of a linear organic polymer (A1) and a branched organic polymer (A2). Composition.
- 前記炭酸カルシウム(C)の含有量は、前記有機重合体(A)100重量部に対して250重量部~500重量部である、請求項1~4の何れか1項に記載の硬化性組成物。 The curable composition according to any one of claims 1 to 4, wherein the content of the calcium carbonate (C) is 250 parts by weight to 500 parts by weight with respect to 100 parts by weight of the organic polymer (A). thing.
- 前記炭酸カルシウム(C)は、体積平均粒子径が0.05μm~0.15μmである炭酸カルシウム(C1)と、体積平均粒子径が0.70μm~5.00μmである炭酸カルシウム(C2)と、を含み、
前記炭酸カルシウム(C2)の重量に対する前記炭酸カルシウム(C1)の重量の比率(前記炭酸カルシウム(C1)の重量/前記炭酸カルシウム(C2)の重量)は、1.0以下である、請求項1~5の何れか1項に記載の硬化性組成物。 The calcium carbonate (C) includes calcium carbonate (C1) having a volume average particle diameter of 0.05 μm to 0.15 μm and calcium carbonate (C2) having a volume average particle diameter of 0.70 μm to 5.00 μm. Including
The ratio of the weight of the calcium carbonate (C1) to the weight of the calcium carbonate (C2) (weight of the calcium carbonate (C1) / weight of the calcium carbonate (C2)) is 1.0 or less, claim 1. The curable composition according to any one of 5 to 5. - 請求項1~6の何れか1項に記載の硬化性組成物を硬化してなる硬化物。 A cured product obtained by curing the curable composition according to any one of claims 1 to 6.
- 請求項1~6の何れか1項に記載の硬化性組成物を含む、接着剤。 An adhesive containing the curable composition according to any one of claims 1 to 6.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022555548A JPWO2022075386A1 (en) | 2020-10-08 | 2021-10-07 | |
CN202180054578.3A CN116234874B (en) | 2020-10-08 | 2021-10-07 | Curable composition |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020170697 | 2020-10-08 | ||
JP2020-170697 | 2020-10-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022075386A1 true WO2022075386A1 (en) | 2022-04-14 |
Family
ID=81126979
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/037076 WO2022075386A1 (en) | 2020-10-08 | 2021-10-07 | Curable composition |
Country Status (3)
Country | Link |
---|---|
JP (1) | JPWO2022075386A1 (en) |
CN (1) | CN116234874B (en) |
WO (1) | WO2022075386A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63225654A (en) * | 1986-10-09 | 1988-09-20 | Kanegafuchi Chem Ind Co Ltd | Curable composition |
JPH02102237A (en) * | 1988-10-07 | 1990-04-13 | Kanegafuchi Chem Ind Co Ltd | Curable composition |
JPH0439344A (en) * | 1990-06-05 | 1992-02-10 | Kanegafuchi Chem Ind Co Ltd | Resin composition |
JPH09302169A (en) * | 1996-05-08 | 1997-11-25 | Kanegafuchi Chem Ind Co Ltd | Composite rubber particle and composite rubbery graft copolymer particle |
JP2009029972A (en) * | 2007-07-28 | 2009-02-12 | Tajima Roofing Co Ltd | One component curable resin composition and asphalt roofing waterproof structure |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5290847A (en) * | 1986-10-09 | 1994-03-01 | Kanegafuchi Kagaku Kogyo Kabushiki Kaisha | Curable composition |
JP4249075B2 (en) * | 2004-04-16 | 2009-04-02 | 新第一塩ビ株式会社 | Vinyl chloride plastisol composition and foam molded article |
JP5210685B2 (en) * | 2008-03-31 | 2013-06-12 | 株式会社カネカ | Method for producing reactive silicon group-containing organic polymer composition, method for adjusting fluidity, and joint structure using the organic polymer composition |
-
2021
- 2021-10-07 WO PCT/JP2021/037076 patent/WO2022075386A1/en active Application Filing
- 2021-10-07 CN CN202180054578.3A patent/CN116234874B/en active Active
- 2021-10-07 JP JP2022555548A patent/JPWO2022075386A1/ja active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63225654A (en) * | 1986-10-09 | 1988-09-20 | Kanegafuchi Chem Ind Co Ltd | Curable composition |
JPH02102237A (en) * | 1988-10-07 | 1990-04-13 | Kanegafuchi Chem Ind Co Ltd | Curable composition |
JPH0439344A (en) * | 1990-06-05 | 1992-02-10 | Kanegafuchi Chem Ind Co Ltd | Resin composition |
JPH09302169A (en) * | 1996-05-08 | 1997-11-25 | Kanegafuchi Chem Ind Co Ltd | Composite rubber particle and composite rubbery graft copolymer particle |
JP2009029972A (en) * | 2007-07-28 | 2009-02-12 | Tajima Roofing Co Ltd | One component curable resin composition and asphalt roofing waterproof structure |
Also Published As
Publication number | Publication date |
---|---|
CN116234874A (en) | 2023-06-06 |
CN116234874B (en) | 2024-07-19 |
JPWO2022075386A1 (en) | 2022-04-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6527589B2 (en) | Curable composition | |
EP2527406B1 (en) | Curable composition | |
JP6475615B2 (en) | Curable composition and cured product thereof | |
JP6356123B2 (en) | Curable composition | |
US10072132B2 (en) | Curable composition | |
EP2894199B1 (en) | Curable composition | |
WO2004031299A1 (en) | One-part curable composition | |
WO2009133811A1 (en) | Room temperature-curable composition and cured product thereof | |
WO2008032539A1 (en) | MOISTURE-CURABLE POLYMER HAVING SiF GROUP AND CURABLE COMPOSITION CONTAINING THE SAME | |
WO2017138463A1 (en) | Curable composition having improved water-resistant adhesiveness | |
JP6527599B2 (en) | Method of manufacturing laminate, and laminate | |
JP2011063669A (en) | Curable composition | |
JP5210685B2 (en) | Method for producing reactive silicon group-containing organic polymer composition, method for adjusting fluidity, and joint structure using the organic polymer composition | |
WO2012036109A1 (en) | Curable composition | |
JP4556821B2 (en) | Hydrolyzable silyl group-containing oxyalkylene polymer and method for producing curable composition | |
JP2024009271A (en) | Polyoxyalkylene-based polymer and curable composition | |
JP2018197329A (en) | Room temperature-curable composition | |
JP2001011190A (en) | Hydrolyzable silicon-containing organic polymer, its production and hardenable composition | |
US20230027947A1 (en) | Mixture of polyoxyalkylene polymers and curable composition | |
JP6818540B2 (en) | Curable composition | |
JP2019073680A (en) | Curable composition | |
WO2022075386A1 (en) | Curable composition | |
WO2023171425A1 (en) | Polyoxyalkylene-based polymer mixture and curable composition | |
JP2021195547A (en) | Composition having improved storage stability | |
WO2024190202A1 (en) | Curable composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21877685 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022555548 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21877685 Country of ref document: EP Kind code of ref document: A1 |