JP2018197329A - Room temperature-curable composition - Google Patents

Room temperature-curable composition Download PDF

Info

Publication number
JP2018197329A
JP2018197329A JP2017103424A JP2017103424A JP2018197329A JP 2018197329 A JP2018197329 A JP 2018197329A JP 2017103424 A JP2017103424 A JP 2017103424A JP 2017103424 A JP2017103424 A JP 2017103424A JP 2018197329 A JP2018197329 A JP 2018197329A
Authority
JP
Japan
Prior art keywords
group
curable composition
polymer
weight
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017103424A
Other languages
Japanese (ja)
Inventor
雄 板野
Yu Itano
雄 板野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2017103424A priority Critical patent/JP2018197329A/en
Publication of JP2018197329A publication Critical patent/JP2018197329A/en
Pending legal-status Critical Current

Links

Landscapes

  • Aftertreatments Of Artificial And Natural Stones (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

To provide a room temperature-curable composition that contains a hydrolyzable silicon group, and gives a cured product having excellent water-resistant adhesion particularly to concrete (mortar), wherein the curable composition has less load on the environment and human bodies.SOLUTION: A curable composition contains an organic polymer (A) having a hydrolyzable silicon group, and a cashew nutshell liquid derivative (B) having a phenolic hydroxyl group. In the curable composition, relative to 100 pts.wt. of the organic polymer (A), the cashew nutshell derivative (B) is 50-200 pts.wt. In the curable composition, the main chain of the organic polymer (A) is preferably a polyoxyalkylene (A1) and/or (meth) acrylate polymer (A2). There is also provided a structural adhesion body of the curable composition and mortar.EFFECT: The curable composition has water-resistant adhesion to concrete (mortar).SELECTED DRAWING: None

Description

本発明は、ケイ素原子上に水酸基または加水分解性基を有し、シロキサン結合を形成し得るケイ素基(以下、「反応性ケイ素基」ともいう。)を有する有機重合体を含む硬化性組成物に関する。   The present invention relates to a curable composition comprising an organic polymer having a hydroxyl group or a hydrolyzable group on a silicon atom and having a silicon group capable of forming a siloxane bond (hereinafter also referred to as “reactive silicon group”). About.

分子中に少なくとも1個の加水分解性ケイ素基を有する有機重合体は、室温においても湿分等によってシリル基が加水分解し、さらに縮合反応によってシロキサン結合が3次元的に形成され、ゴム状硬化物が得られることが知られている。 有機重合体中には人体への影響が懸念される化合物が使用されておらず、近年、人体や環境への負荷が小さい環境適合型技術としても注目を集めており、適用範囲の拡大が期待されている。   An organic polymer having at least one hydrolyzable silicon group in the molecule has a silyl group hydrolyzed by moisture or the like even at room temperature, and a siloxane bond is formed three-dimensionally by a condensation reaction. It is known that things can be obtained. Organic polymers do not contain compounds that are likely to affect the human body, and in recent years, they are also attracting attention as environmentally friendly technologies that have a low impact on the human body and the environment. Has been.

例えば、反応性ケイ素基を有するポリオキシアルキレン重合体は、シーリング材、接着剤、塗料などの用途に広く使用されている。対象となる被着基材は多種にわたるが、その中でもコンクリート(モルタル)、木材などの多孔質基材は難接着基材として知られており、特に耐水試験後における接着性の低下などがしばしば課題として挙げられる。
ここで、カルダノール、カシューナッツ油、カシューナッツ殻液などの非鉱物油及びその誘導体が、シロキサン配合物用の有機増量剤として使用できることが知られている(特許文献1)。また、ポリエステル系樹脂に、フェノール性水酸基をエステル化した誘導体を可塑剤として配合することで、柔軟性、耐ブリード性に優れた樹脂組成物が提供されることが知られている(特許文献2)。さらに、反応性ケイ素基を有する有機重合体に、芳香族系の可塑剤を配合することで、様々な基材に対して良好な接着性を有する硬化性組成物を提供することが知られている(特許文献3)。しかしながら、多孔質基材に対する接着性は検討されておらず、耐水試験後の接着性低下の課題解決には至っていない。
For example, polyoxyalkylene polymers having reactive silicon groups are widely used for applications such as sealing materials, adhesives, and paints. There are a wide variety of target substrates, but among them, porous substrates such as concrete (mortar) and wood are known as difficult-to-adhere substrates. As mentioned.
Here, it is known that non-mineral oils such as cardanol, cashew nut oil, cashew nut shell liquid and derivatives thereof can be used as organic extenders for siloxane blends (Patent Document 1). Further, it is known that a resin composition excellent in flexibility and bleed resistance is provided by blending a polyester resin with a derivative obtained by esterifying a phenolic hydroxyl group as a plasticizer (Patent Document 2). ). Furthermore, it is known to provide a curable composition having good adhesion to various substrates by blending an aromatic plasticizer with an organic polymer having a reactive silicon group. (Patent Document 3). However, the adhesion to the porous substrate has not been studied, and the problem of the decrease in adhesion after the water resistance test has not been solved.

特表2010−506034号公報Special table 2010-506034 gazette 特開2010−064967号公報JP 2010-0664967 A 特開2004−323843号公報JP 2004-323843 A

本発明の目的は、加水分解性ケイ素基を有する有機重合体からなる硬化性組成物であって、多孔質基材、特にコンクリート(モルタル)への耐水接着性が良好な組成物を提供することにある。 An object of the present invention is to provide a curable composition comprising an organic polymer having a hydrolyzable silicon group, which has good water-resistant adhesion to a porous substrate, particularly concrete (mortar). It is in.

本発明者らは、加水分解性ケイ素基を有する有機重合体(A)に、フェノール性水酸基を有するカシューナッツ殻液誘導体(B)を含有させることが前記課題の解決に有効であることを見出した。
すなわち、本発明は
(1)加水分解性ケイ素基を有する有機重合体(A)、及びフェノール性水酸基を有するカシューナッツ殻液誘導体(B)を含有する硬化性組成物、
(2)成分(B)が成分(A)100重量部に対して50〜200重量部であることを特徴とする(1)に記載の硬化性組成物、
(3)成分(A)の有機重合体の主鎖が、ポリオキシアルキレン(A1)及び/または(メタ)アクリル酸エステル系重合体(A2)であることを特徴とする(1)または(2)に記載の硬化性組成物、
(4)(1)〜(3)のいずれかに記載の硬化性組成物とモルタルとの接着構造体、
に関する。
The present inventors have found that it is effective for solving the above-mentioned problems to include a cashew nut shell liquid derivative (B) having a phenolic hydroxyl group in an organic polymer (A) having a hydrolyzable silicon group. .
That is, the present invention provides (1) a curable composition containing an organic polymer (A) having a hydrolyzable silicon group, and a cashew nut shell liquid derivative (B) having a phenolic hydroxyl group,
(2) The curable composition according to (1), wherein the component (B) is 50 to 200 parts by weight with respect to 100 parts by weight of the component (A),
(3) The main chain of the organic polymer of component (A) is polyoxyalkylene (A1) and / or (meth) acrylic acid ester polymer (A2), (1) or (2 ), The curable composition according to
(4) Adhesive structure of the curable composition according to any one of (1) to (3) and mortar,
About.

本発明の硬化性組成物は、良好な耐水接着性を有する。   The curable composition of the present invention has good water-resistant adhesion.

以下、本発明について詳細に説明する。
本発明の(A)成分である加水分解性ケイ基を有する有機重合体としては特に制限はなく、例えばその主鎖骨格は一般に知られているオキシアルキレン系重合体、(メタ)アクリル酸エステル系重合体、飽和炭化水素系重合体、ポリエステル系重合体等の有機重合体を使用することができる。その中でも低温特性、可とう性、その他成分への相溶性の良さから、オキシアルキレン系重合体が特に好ましく、以下の重合体(A)の説明では、代表例としてオキシアルキレン系重合体を主鎖骨格とするものについて記述する。
Hereinafter, the present invention will be described in detail.
There is no restriction | limiting in particular as an organic polymer which has a hydrolyzable silicic group which is (A) component of this invention, For example, the main chain skeleton is generally known oxyalkylene type polymer, (meth) acrylic acid ester type Organic polymers such as polymers, saturated hydrocarbon polymers, and polyester polymers can be used. Of these, oxyalkylene polymers are particularly preferred because of their low temperature characteristics, flexibility, and compatibility with other components. In the following explanation of polymer (A), oxyalkylene polymers are used as representative examples. Describe what is considered a case.

反応性ケイ素基含有ポリオキシアルキレン系重合体は、以下の一般式(1)で表される反応性ケイ素基を有する。
−SiR 3−a (1)
(式中、Rは、炭素数1〜20の置換あるいは非置換の炭化水素基を表す。Xはそれぞれ独立に水酸基または加水分解性基を表す。aは0または1を示す。)。
The reactive silicon group-containing polyoxyalkylene polymer has a reactive silicon group represented by the following general formula (1).
-SiR 1 a X 3-a (1)
(In the formula, R 1 represents a substituted or unsubstituted hydrocarbon group having 1 to 20 carbon atoms. X independently represents a hydroxyl group or a hydrolyzable group. A represents 0 or 1.).

一般式(1)中のRとしては、具体的には、例えば、例えばメチル基、エチル基等のアルキル基;シクロヘキシル基等のシクロアルキル基;フェニル基等のアリール基;ベンジル基等のアラルキル基や、R’がメチル基、フェニル基等である−OSi(R’)で示されるトリオルガノシロキシ基;フルオロメチル基、ジフルオロメチル基などのフルオロアルキル基;クロロメチル基、1−クロロエチル基などのクロロアルキル基;メトキシメチル基、エトキシメチル基、フェノキシメチル基、1−メトキシエチル基などのアルコキシアルキル基;アミノメチル基、N−メチルアミノメチル基、N,N−ジメチルアミノメチル基などのアミノアルキル基;アセトキシメチル基、メチルカルバメート基、2−シアノエチル基などがあげられる。これらの中では、原料の入手性からメチル基がより好ましい。 Specific examples of R 1 in the general formula (1) include, for example, an alkyl group such as a methyl group or an ethyl group; a cycloalkyl group such as a cyclohexyl group; an aryl group such as a phenyl group; an aralkyl such as a benzyl group; A triorganosiloxy group represented by —OSi (R ′) 3 in which R ′ is a methyl group, a phenyl group or the like; a fluoroalkyl group such as a fluoromethyl group or a difluoromethyl group; a chloromethyl group, a 1-chloroethyl group Chloroalkyl groups such as; methoxymethyl group, ethoxymethyl group, phenoxymethyl group, 1-methoxyethyl group and other alkoxyalkyl groups; aminomethyl group, N-methylaminomethyl group, N, N-dimethylaminomethyl group and the like Aminoalkyl group; acetoxymethyl group, methyl carbamate group, 2-cyanoethyl group and the like. Among these, a methyl group is more preferable in view of availability of raw materials.

一般式(1)中のXで表される加水分解性基としては、公知の加水分解性基があげられ、具体的には、例えば、水素、ハロゲン、アルコキシ基、アルケニルオキシ基、アリールオキシ基、アシルオキシ基、ケトキシメート基、アミノ基、アミド基、酸アミド基、アミノオキシ基、メルカプト基などがあげられる。これらの中では、ハロゲン、アルコキシ基、アルケニルオキシ基、アシルオキシ基が活性が高いため好ましく、加水分解性が穏やかで取扱いやすいことからメトキシ基、エトキシ基などのアルコキシ基がより好ましく、メトキシ基、エトキシ基が特に好ましい。またエトキシ基やイソプロペノキシ基は、反応により脱離する化合物がそれぞれエタノール、アセトンであり、安全性の点で好ましい。   Examples of the hydrolyzable group represented by X in the general formula (1) include known hydrolyzable groups. Specific examples include hydrogen, halogen, alkoxy groups, alkenyloxy groups, and aryloxy groups. Acyloxy group, ketoximate group, amino group, amide group, acid amide group, aminooxy group, mercapto group and the like. Among these, halogen, alkoxy group, alkenyloxy group, and acyloxy group are preferable because of their high activity, and alkoxy groups such as methoxy group and ethoxy group are more preferable because they are mildly hydrolyzable and easy to handle. The group is particularly preferred. In addition, the ethoxy group and the isopropenoxy group are preferably removed from the reaction by ethanol and acetone, respectively, from the viewpoint of safety.

一般式(1)で表わされる反応性ケイ素基としては、具体的には、トリメトキシシリル基、トリエトキシシリル基、トリス(2−プロペニルオキシ)シリル基、トリアセトキシシリル基、ジメトキシメチルシリル基、ジエトキシメチルシリル基、ジイソプロポキシメチルシリル基、(クロロメチル)ジメトキシシリル基、(メトキシメチル)ジメトキシシリル基、(メトキシメチル)ジエトキシシリル基、(エトキシメチル)ジメトキシシリル基が好ましい。これらの中では、ジメトキシメチルシリル基、トリメトキシシリル基が強度の高い硬化物が得られるため好ましい。
ポリオキシアルキレン系重合体は、比較的ガラス転移温度が低く、得られる硬化物が耐寒性に優れる。また、透湿性が高く1液型組成物にした場合に深部硬化性に優れ、更に接着性にも優れるといった特徴を有する。
Specific examples of the reactive silicon group represented by the general formula (1) include a trimethoxysilyl group, a triethoxysilyl group, a tris (2-propenyloxy) silyl group, a triacetoxysilyl group, a dimethoxymethylsilyl group, A diethoxymethylsilyl group, diisopropoxymethylsilyl group, (chloromethyl) dimethoxysilyl group, (methoxymethyl) dimethoxysilyl group, (methoxymethyl) diethoxysilyl group, and (ethoxymethyl) dimethoxysilyl group are preferred. Among these, dimethoxymethylsilyl group and trimethoxysilyl group are preferable because a cured product having high strength can be obtained.
The polyoxyalkylene polymer has a relatively low glass transition temperature, and the resulting cured product is excellent in cold resistance. In addition, when it is made into a one-component composition with high moisture permeability, it has a feature that it is excellent in deep part curability and further excellent in adhesiveness.

具体的には、ポリオキシエチレン、ポリオキシプロピレン、ポリオキシブチレン、ポリオキシテトラメチレン、ポリオキシエチレン−ポリオキシプロピレン共重合体、ポリオキシプロピレン−ポリオキシブチレン共重合体等のポリオキシアルキレン系重合体などがあげられる。   Specifically, polyoxyalkylene heavy polymers such as polyoxyethylene, polyoxypropylene, polyoxybutylene, polyoxytetramethylene, polyoxyethylene-polyoxypropylene copolymer, polyoxypropylene-polyoxybutylene copolymer, etc. For example, coalescence.

ポリオキシアルキレン系重合体の主鎖構造は、1種類だけの繰り返し単位からなってもよいし、2種類以上の繰り返し単位からなってもよい。   The main chain structure of the polyoxyalkylene polymer may consist of only one type of repeating unit or may consist of two or more types of repeating units.

特にシーラント、接着剤などに使用される場合には、オキシプロピレンの繰り返し単位を重合体主鎖構造の50重量%以上、好ましくは80重量%以上有するポリオキシプロピレン系重合体から成るものが非晶質であることや比較的低粘度である点から好ましい。   In particular, when used in sealants, adhesives, etc., an amorphous material is a polyoxypropylene polymer having a repeating unit of oxypropylene of 50% by weight or more, preferably 80% by weight or more of the polymer main chain structure. From the viewpoint of quality and relatively low viscosity.

重合体の主鎖構造は、発明の効果を損なわない範囲で、オキシアルキレン構造以外の重合体構造を有していてもよい。   The main chain structure of the polymer may have a polymer structure other than the oxyalkylene structure as long as the effects of the invention are not impaired.

重合体の主鎖構造は、直鎖状であってもよいし、分岐鎖を有していてもよい。より高強度の硬化物を得たい場合には、分岐鎖状の重合体であることが好ましい。より高伸びの硬化物を得たい場合には、直鎖状であることが好ましい。重合体が分岐鎖を有する場合には、分岐鎖数が1〜4個が好ましく、分岐鎖数が1個が最も好ましい。   The main chain structure of the polymer may be linear or may have a branched chain. When it is desired to obtain a cured product with higher strength, it is preferably a branched polymer. When it is desired to obtain a cured product having a higher elongation, it is preferably linear. When the polymer has a branched chain, the number of branched chains is preferably 1 to 4, and the number of branched chains is most preferably 1.

ポリオキシアルキレン系重合体は、開始剤の存在下、重合触媒を用いて、環状エーテル化合物の開環重合反応により得られるものが好ましい。   The polyoxyalkylene polymer is preferably obtained by a ring-opening polymerization reaction of a cyclic ether compound using a polymerization catalyst in the presence of an initiator.

環状エーテル化合物としては、エチレンオキシド、プロピレンオキシド、ブチレンオキシド、テトラメチレンオキシド、テトラヒドロフランなどが挙げられる。これら環状エーテル化合物は1種のみでもよく、2種以上を組合せて用いてもよい。これら環状エーテル化合物のなかでは、非晶質で比較的低粘度なポリエーテル重合体を得られることから、特にプロピレンオキシドを用いることが好ましい。   Examples of the cyclic ether compound include ethylene oxide, propylene oxide, butylene oxide, tetramethylene oxide, and tetrahydrofuran. These cyclic ether compounds may be used alone or in combination of two or more. Among these cyclic ether compounds, it is particularly preferable to use propylene oxide because an amorphous and relatively low viscosity polyether polymer can be obtained.

開始剤としては、具体的には、エチレングリコール、プロピレングリコール、ブタンジオール、ヘキサメチレングリコール、ネオペンチルグリコール、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール、グリセリン、トリメチロールメタン、トリメチロールプロパン、ペンタエリスリトール、ソルビトールなどのアルコール類;数平均分子量が300〜4,000であって、ポリオキシプロピレンジオール、ポリオキシプロピレントリオール、ポリオキシエチレンジオール、ポリオキシエチレントリオールなどのポリオキシアルキレン系重合体などがあげられる。   Specific examples of the initiator include ethylene glycol, propylene glycol, butanediol, hexamethylene glycol, neopentyl glycol, diethylene glycol, dipropylene glycol, triethylene glycol, glycerin, trimethylolmethane, trimethylolpropane, pentaerythritol, Alcohols such as sorbitol; number average molecular weights of 300 to 4,000, and polyoxyalkylene polymers such as polyoxypropylene diol, polyoxypropylene triol, polyoxyethylene diol, and polyoxyethylene triol .

ポリオキシアルキレン系重合体の合成法としては、例えば、KOHのようなアルカリ触媒による重合法、特開昭61−215623号に示される有機アルミニウム化合物とポルフィリンとを反応させて得られる錯体のような遷移金属化合物−ポルフィリン錯体触媒による重合法、特公昭46−27250号、特公昭59−15336号、米国特許3278457号、米国特許3278458号、米国特許3278459号、米国特許3427256号、米国特許3427334号、米国特許3427335号等に示される複合金属シアン化物錯体触媒による重合法、特開平10−273512号に例示されるポリホスファゼン塩からなる触媒を用いる重合法、特開平11−060722号に例示されるホスファゼン化合物からなる触媒を用いる重合法等、があげられ、特に限定されるものではないが、製造コストや、分子量分布の狭い重合体が得られることなどの理由から、複合金属シアン化物錯体触媒による重合法がより好ましい。   Examples of the method for synthesizing the polyoxyalkylene polymer include a polymerization method using an alkali catalyst such as KOH, and a complex obtained by reacting an organoaluminum compound and porphyrin as disclosed in JP-A-61-215623. Polymerization method using transition metal compound-porphyrin complex catalyst, Japanese Patent Publication No. 46-27250, Japanese Patent Publication No. 59-15336, US Pat. No. 3,278,457, US Pat. No. 3,278,458, US Pat. No. 3,278,459, US Pat. No. 3,427,256, US Pat. No. 3,427,334, Polymerization method using double metal cyanide complex catalyst as shown in U.S. Pat. No. 3,427,335, polymerization method using catalyst comprising polyphosphazene salt exemplified in JP-A-10-273512, phosphazene exemplified in JP-A-11-060722 Using a compound catalyst Polymerization method, can be mentioned, but not particularly limited, manufacturing cost and, because of such the polymer having a narrow molecular weight distribution is obtained, by the polymerization method is more preferred composite metal cyanide complex catalyst.

重合体の分子量分布(Mw/Mn)は特に限定されないが、狭いことが好ましく、2.0未満が好ましく、1.6以下がより好ましく、1.5以下がさらに好ましく、1.4以下が特に好ましい。   The molecular weight distribution (Mw / Mn) of the polymer is not particularly limited, but is preferably narrow, preferably less than 2.0, more preferably 1.6 or less, further preferably 1.5 or less, and particularly preferably 1.4 or less. preferable.

重合体の数平均分子量は、GPCによるポリスチレン換算で、下限は8,000以上が好ましく、9,000以上がより好ましく、10,000以上が特に好ましい。上限は、50,000以下が好ましく、35,000以下がより好ましく、30,000以下が特に好ましい。重合体の数平均分子量が小さいと粘度が低いため硬化性組成物を使用する際の作業性がよくなる。一方で、得られる硬化物が硬くなり、伸び特性が低下する傾向がある。分子量が大きすぎると、反応性ケイ素基濃度が低くなりすぎ、硬化速度が遅くなる可能性がある。また、粘度が高くなりすぎ、取扱いが困難となる傾向がある。   The number average molecular weight of the polymer is preferably 8,000 or more, more preferably 9,000 or more, and particularly preferably 10,000 or more, in terms of polystyrene by GPC. The upper limit is preferably 50,000 or less, more preferably 35,000 or less, and particularly preferably 30,000 or less. When the number average molecular weight of the polymer is small, the viscosity is low, so that the workability when using the curable composition is improved. On the other hand, the hardened | cured material obtained becomes hard and there exists a tendency for an elongation characteristic to fall. If the molecular weight is too large, the reactive silicon group concentration may be too low, and the curing rate may be slow. Also, the viscosity tends to be too high and handling tends to be difficult.

反応性ケイ素基の導入方法は特に限定されず、公知の方法を利用することができる。以下に導入方法を例示する。   The method for introducing the reactive silicon group is not particularly limited, and a known method can be used. The introduction method is illustrated below.

(i)ヒドロシリル化:先ず、原料となる重合体(前駆重合体と記すこともある)に不飽和結合を導入し、この不飽和結合に対してヒドロシラン化合物をヒドロシリル化反応により付加させる方法である。不飽和結合の導入方法は任意の方法を利用できるが、例えば、水酸基などの官能基を有する前駆重合体に、この官能基に対して反応性を示す基および不飽和基を有する化合物を反応させ、不飽和基含有重合体を得る方法や、不飽和結合を有する重合性モノマーを共重合させる方法がある。   (I) Hydrosilylation: First, an unsaturated bond is introduced into a raw material polymer (sometimes referred to as a precursor polymer), and a hydrosilane compound is added to the unsaturated bond by a hydrosilylation reaction. . Any method can be used for introducing the unsaturated bond. For example, a precursor polymer having a functional group such as a hydroxyl group is allowed to react with a compound having reactivity with this functional group and a compound having an unsaturated group. There are a method for obtaining an unsaturated group-containing polymer and a method for copolymerizing a polymerizable monomer having an unsaturated bond.

(ii)反応性基含有重合体(前駆重合体)とシランカップリング剤との反応:水酸基、アミノ基、不飽和結合などの反応性基を有する前駆重合体と、その反応性基と反応して結合を形成し得る基および反応性ケイ素基の両方を有する化合物(シランカップリング剤とも呼ばれる)とを反応させる方法である。前駆重合体の反応性基とシランカップリング剤の反応性基の組合せとしては、水酸基とイソシアネート基、水酸基とエポキシ基、アミノ基とイソシアネート基、アミノ基とチオイソシアネート基、アミノ基とエポキシ基、アミノ基とアクリル構造とのマイケル付加、カルボン酸基とエポキシ基、不飽和結合とメルカプト基などが挙げられるがこれに限らない。   (Ii) Reaction of a reactive group-containing polymer (precursor polymer) with a silane coupling agent: reacting with the precursor polymer having a reactive group such as a hydroxyl group, an amino group, or an unsaturated bond, and the reactive group. And a compound having both a group capable of forming a bond and a reactive silicon group (also called a silane coupling agent). As a combination of the reactive group of the precursor polymer and the reactive group of the silane coupling agent, a hydroxyl group and an isocyanate group, a hydroxyl group and an epoxy group, an amino group and an isocyanate group, an amino group and a thioisocyanate group, an amino group and an epoxy group, Examples include, but are not limited to, Michael addition of amino group and acrylic structure, carboxylic acid group and epoxy group, unsaturated bond and mercapto group.

(i)の方法は、反応が簡便で、反応性ケイ素基の導入量の調整や、得られる反応性ケイ素基含有重合体の物性が安定であるため好ましい。(ii)の方法は反応の選択肢が多く、反応性ケイ素基導入率を高めることが容易で好ましい。   The method (i) is preferable because the reaction is simple, the adjustment of the amount of reactive silicon groups introduced, and the physical properties of the resulting reactive silicon group-containing polymer are stable. The method (ii) has many reaction options, and it is easy and preferable to increase the rate of introduction of reactive silicon groups.

(i)の方法で使用されるヒドロシラン化合物の一部を例示する。トリクロロシラン、ジクロロメチルシラン、ジクロロフェニルシラン、(メトキシメチル)ジクロロシランなどのハロゲン化シラン類;ジメトキシメチルシラン、ジエトキシメチルシラン、トリメトキシシラン、トリエトキシシラン、(クロロメチル)ジメトキシシラン、(メトキシメチル)ジメトキシシランなどのアルコキシシラン類;トリイソプロペニロキシシラン、(クロロメチル)ジイソプロペニロキシシラン、(メトキシメチル)ジイソプロペニロキシシランなどのイソプロペニロキシシラン類(脱アセトン型)などがあげられる。   A part of hydrosilane compound used by the method of (i) is illustrated. Halogenated silanes such as trichlorosilane, dichloromethylsilane, dichlorophenylsilane, (methoxymethyl) dichlorosilane; dimethoxymethylsilane, diethoxymethylsilane, trimethoxysilane, triethoxysilane, (chloromethyl) dimethoxysilane, (methoxymethyl) ) Alkoxysilanes such as dimethoxysilane; isopropenyloxysilanes (deacetone type) such as triisopropenyloxysilane, (chloromethyl) diisopropenyloxysilane, (methoxymethyl) diisopropenyloxysilane, etc. .

(ii)の方法で使用できるシランカップリング剤としては、以下の化合物があげられる。不飽和結合と反応する、3−メルカプトプロピルトリメトキシシラン、3−メルカプトプロピルジメトキシメチルシラン、3−メルカプトプロピルトリエトキシシラン、メルカプトメチルトリエトキシシラン、メルカプトメチルジメトキシメチルシランなどのメルカプトシラン類;水酸基と反応する、3−イソシアネートプロピルトリメトキシシラン、3−イソシアネートプロピルジメトキシメチルシラン、3−イソシアネートプロピルトリエトキシシラン、イソシアネートメチルトリメトキシシラン、イソシアネートメチルトリエトキシシラン、イソシアネートメチルジメトキシメチルシランなどのイソシアネートシラン類;水酸基、アミノ基、カルボン酸基と反応する、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルジメトキシメチルシラン、3−グリシドキシプロピルトリエトキシシラン、グリシドキシメチルトリメトキシシラン、グリシドキシメチルトリエトキシシラン、グリシドキシメチルジメトキシメチルシランなどのエポキシシラン類;イソシアネート基、チオイソシアネート基と反応する、3−アミノプロピルトリメトキシシラン、3−アミノプロピルジメトキシメチルシラン、3−アミノプロピルトリエトキシシラン、3−(2−アミノエチル)プロピルトリメトキシシラン、3−(2−アミノエチル)プロピルジメトキシメチルシラン、3−(2−アミノエチル)プロピルトリエトキシシラン、3−(N−エチルアミノ)−2−メチルプロピルトリメトキシシラン、3−ウレイドプロピルトリメトキシシラン、3−ウレイドプロピルトリエトキシシラン、N−フェニル−3−アミノプロピルトリメトキシシラン、N−ベンジル−3−アミノプロピルトリメトキシシラン、N−シクロヘキシルアミノメチルトリエトキシシラン、N−シクロヘキシルアミノメチルジエトキシメチルシラン、N−フェニルアミノメチルトリメトキシシラン、(2−アミノエチル)アミノメチルトリメトキシシラン、N,N'−ビス[3−(トリメトキシシリル)プロピル]エチレンジアミン、ビス(3−(トリメトキシシリル)プロピル)アミンなどのアミノシラン類;3−ヒドロキシプロピルトリメトキシシラン、ヒドロキシメチルトリエトキシシランなどのヒドロキシアルキルシラン類など。上記のシランカップリング剤は一例であり、類似の反応を利用または応用してシリル基を導入することができる。   Examples of the silane coupling agent that can be used in the method (ii) include the following compounds. Mercaptosilanes that react with unsaturated bonds, such as 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyldimethoxymethylsilane, 3-mercaptopropyltriethoxysilane, mercaptomethyltriethoxysilane, mercaptomethyldimethoxymethylsilane; Reactive isocyanate silanes such as 3-isocyanatopropyltrimethoxysilane, 3-isocyanatopropyldimethoxymethylsilane, 3-isocyanatopropyltriethoxysilane, isocyanatemethyltrimethoxysilane, isocyanatemethyltriethoxysilane, isocyanatemethyldimethoxymethylsilane; 3-glycidoxypropyltrimethoxysilane, 3-glycidoxy, which reacts with hydroxyl, amino and carboxylic acid groups Epoxy silanes such as propyl dimethoxymethylsilane, 3-glycidoxypropyltriethoxysilane, glycidoxymethyltrimethoxysilane, glycidoxymethyltriethoxysilane, glycidoxymethyldimethoxymethylsilane; isocyanate group, thioisocyanate 3-aminopropyltrimethoxysilane, 3-aminopropyldimethoxymethylsilane, 3-aminopropyltriethoxysilane, 3- (2-aminoethyl) propyltrimethoxysilane, 3- (2-aminoethyl) which react with groups Propyl dimethoxymethylsilane, 3- (2-aminoethyl) propyltriethoxysilane, 3- (N-ethylamino) -2-methylpropyltrimethoxysilane, 3-ureidopropyltrimethoxysilane, 3-ureidopropi Triethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, N-benzyl-3-aminopropyltrimethoxysilane, N-cyclohexylaminomethyltriethoxysilane, N-cyclohexylaminomethyldiethoxymethylsilane, N-phenyl Aminomethyltrimethoxysilane, (2-aminoethyl) aminomethyltrimethoxysilane, N, N′-bis [3- (trimethoxysilyl) propyl] ethylenediamine, bis (3- (trimethoxysilyl) propyl) amine, etc. Aminosilanes; hydroxyalkylsilanes such as 3-hydroxypropyltrimethoxysilane and hydroxymethyltriethoxysilane; The above silane coupling agent is an example, and a silyl group can be introduced by utilizing or applying a similar reaction.

重合体の主鎖骨格中には本発明の効果を大きく損なわない範囲でウレタン結合成分等の他の成分を含んでいてもよい。ウレタン結合成分としては特に限定されないが、イソシアネート基と活性水素基との反応により生成する基(以下、アミドセグメントともいう)を挙げることができる。   The main chain skeleton of the polymer may contain other components such as a urethane bond component as long as the effects of the present invention are not significantly impaired. Although it does not specifically limit as a urethane bond component, The group (henceforth an amide segment) produced | generated by reaction with an isocyanate group and an active hydrogen group can be mentioned.

主鎖にウレタン結合やエステル結合を含有する重合体を含む硬化性組成物を硬化させた硬化物は、水素結合の作用等により、高い硬度が得られたり、強度が向上するなどの効果が得られる場合がある。一方で、ウレタン結合は熱などにより開裂する可能性もある。そのような特性を本発明の硬化性組成物に付与する目的で、重合体にアミドセグメントを導入したり、敢えてアミドセグメントを排除することもできる。アミドセグメントを有するポリオキシアルキレン系重合体は、粘度が高くなる傾向がある。また、アミドセグメントを有するポリオキシアルキレン系重合体は、硬化性が向上する場合もある。   A cured product obtained by curing a curable composition containing a polymer containing a urethane bond or an ester bond in the main chain has such effects as high hardness and improved strength due to the action of hydrogen bonds. May be. On the other hand, the urethane bond may be cleaved by heat or the like. For the purpose of imparting such characteristics to the curable composition of the present invention, an amide segment can be introduced into the polymer, or the amide segment can be excluded. A polyoxyalkylene polymer having an amide segment tends to have a high viscosity. In addition, the polyoxyalkylene polymer having an amide segment may be improved in curability.

前記アミドセグメントは一般式(2):
−NR−C(=O)− (2)
(Rは炭素数1〜10の有機基または水素原子を表す)で表される基である。
The amide segment has the general formula (2):
-NR < 3 > -C (= O)-(2)
(R 3 represents an organic group having 1 to 10 carbon atoms or a hydrogen atom).

前記アミドセグメントとしては、具体的には、イソシアネート基とヒドロキシ基との反応、または、アミノ基とカーボネートとの反応により生成するウレタン基;イソシアネート基とアミノ基との反応により生成する尿素基;イソシアネート基とメルカプト基との反応により生成するチオウレタン基などを挙げることができる。また、本発明では、上記ウレタン基、尿素基、および、チオウレタン基中の活性水素が、更にイソシアネート基と反応して生成する基も、一般式(2)の基に含まれる。   Specifically, as the amide segment, a urethane group formed by a reaction between an isocyanate group and a hydroxy group or a reaction between an amino group and a carbonate; a urea group formed by a reaction between an isocyanate group and an amino group; And a thiourethane group generated by the reaction of a group and a mercapto group. In the present invention, groups generated by the reaction of the active hydrogen in the urethane group, urea group, and thiourethane group with an isocyanate group are also included in the group of the general formula (2).

アミドセグメントと反応性ケイ素基を有するポリオキシアルキレン系重合体の工業的に容易な製造方法を例示すると、末端に活性水素含有基を有するポリオキシアルキレン系重合体に、過剰のポリイソシアネート化合物を反応させて、ポリウレタン系主鎖の末端にイソシアネート基を有する重合体とした後、あるいは同時に、該イソシアネート基の全部または一部に一般式(3):
Z−R−SiR 3−a (3)
(R、X、aは前記と同じ。Rは2価の有機基であり、より好ましくは炭素原子数1から20の炭化水素基である。Zは、ヒドロキシ基、カルボキシ基、メルカプト基およびアミノ基(1級または2級)から選ばれた活性水素含有基である)で表されるケイ素化合物のZ基を反応させる方法により製造されるものを挙げることができる。
An example of an industrially easy production method of a polyoxyalkylene polymer having an amide segment and a reactive silicon group is illustrated by reacting an excess polyisocyanate compound with a polyoxyalkylene polymer having an active hydrogen-containing group at the terminal. Or a polymer having an isocyanate group at the terminal of the polyurethane main chain, or at the same time, all or part of the isocyanate group is represented by the general formula (3):
Z—R 4 —SiR 1 a X 3-a (3)
(R 1 , X, and a are the same as described above. R 4 is a divalent organic group, more preferably a hydrocarbon group having 1 to 20 carbon atoms. Z is a hydroxy group, a carboxy group, or a mercapto group. And an amino group (which is an active hydrogen-containing group selected from primary or secondary)) and those produced by a method of reacting a Z group of a silicon compound.

また、末端に活性水素含有基を有するポリオキシアルキレン系重合体に一般式(4):
O=C=N−R−SiR 3−a (4)
(R、R、X、aは前記と同じ。)で示される反応性ケイ素基含有イソシアネート化合物とを反応させることにより製造されるものを挙げることができる。
Further, the polyoxyalkylene polymer having an active hydrogen-containing group at the terminal is represented by the general formula (4):
O = C = N-R 4 -SiR 1 a X 3-a (4)
(R 4 , R 1 , X, and a are the same as described above), and those produced by reacting with a reactive silicon group-containing isocyanate compound.

一般式(3)のケイ素化合物としては特に限定はないが、具体的に例示すると、γ−アミノプロピルジメトキシメチルシラン、γ−アミノプロピルトリメトキシシラン、N−(β−アミノエチル)−γ−アミノプロピルトリメトキシシラン、N−(β−アミノエチル)−γ−アミノプロピルジメトキシメチルシラン、(N−フェニル)−γ−アミノプロピルトリメトキシシラン、N−エチルアミノイソブチルトリメトキシシラン等のアミノ基含有シラン類;γ−ヒドロキシプロピルトリメトキシシラン等のヒドロキシ基含有シラン類;γ−メルカプトプロピルトリメトキシシラン、メルカプトメチルトリエトキシシラン等のメルカプト基含有シラン類;等が挙げられる。また、特開平6−211879号(米国特許5364955号)、特開平10−53637号(米国特許5756751号)、特開平10−204144号(EP0831108)、特開2000−169544号、特開2000−169545号に記載されている様に、各種のα,β−不飽和カルボニル化合物と一級アミノ基含有シランとのMichael付加反応物、または、各種の(メタ)アクリロイル基含有シランと一級アミノ基含有化合物とのMichael付加反応物もまた、一般式(3)のケイ素化合物として用いることができる。   Although there is no limitation in particular as a silicon compound of General formula (3), when it illustrates concretely, (gamma) -aminopropyl dimethoxymethylsilane, (gamma) -aminopropyl trimethoxysilane, N-((beta) -aminoethyl) -gamma-amino Amino group-containing silane such as propyltrimethoxysilane, N- (β-aminoethyl) -γ-aminopropyldimethoxymethylsilane, (N-phenyl) -γ-aminopropyltrimethoxysilane, N-ethylaminoisobutyltrimethoxysilane Hydroxy group-containing silanes such as γ-hydroxypropyltrimethoxysilane; mercapto group-containing silanes such as γ-mercaptopropyltrimethoxysilane and mercaptomethyltriethoxysilane; JP-A-6-2111879 (US Pat. No. 5,364,955), JP-A-10-53637 (US Pat. No. 5,757,751), JP-A-10-204144 (EP0831108), JP-A 2000-169544, JP-A 2000-169545. As described in the above, Michael addition reaction products of various α, β-unsaturated carbonyl compounds and primary amino group-containing silanes, or various (meth) acryloyl group-containing silanes and primary amino group-containing compounds, The Michael addition reaction product of can also be used as the silicon compound of general formula (3).

一般式(4)の反応性ケイ素基含有イソシアネート化合物としては特に限定はないが、具体的に例示すると、γ−トリメトキシシリルプロピルイソシアネート、γ−トリエトキシシリルプロピルイソシアネート、γ−メチルジメトキシシリルプロピルイソシアネート、γ−メチルジエトキシシリルプロピルイソシアネート、γ−(メトキシメチル)ジメトキシシリルプロピルイソシアネート、トリメトキシシリルメチルイソシアネート、トリエトキシメチルシリルメチルイソシアネート、ジメトキシメチルシリルメチルイソシアネート、ジエトキシメチルシリルメチルイソシアネート、(メトキシメチル)ジメトキシシリルメチルイソシアネート等が挙げられる。   The reactive silicon group-containing isocyanate compound represented by the general formula (4) is not particularly limited, but specific examples include γ-trimethoxysilylpropyl isocyanate, γ-triethoxysilylpropyl isocyanate, and γ-methyldimethoxysilylpropyl isocyanate. , Γ-methyldiethoxysilylpropyl isocyanate, γ- (methoxymethyl) dimethoxysilylpropyl isocyanate, trimethoxysilylmethyl isocyanate, triethoxymethylsilylmethyl isocyanate, dimethoxymethylsilylmethyl isocyanate, diethoxymethylsilylmethyl isocyanate, (methoxymethyl ) Dimethoxysilylmethyl isocyanate and the like.

重合体の主鎖骨格中にアミドセグメントを含む場合、アミドセグメントは1分子あたり平均で、1〜10個が好ましく、1.5〜5個がより好ましく、2〜3個が特に好ましい。1個よりも少ない場合には、硬化性が十分ではない場合があり、10個よりも大きい場合には、重合体が高粘度となり取り扱い難くなる可能性がある。   When the main chain skeleton of the polymer contains an amide segment, the average number of amide segments per molecule is preferably 1 to 10, more preferably 1.5 to 5, and particularly preferably 2 to 3. When the number is less than 1, the curability may not be sufficient. When the number is more than 10, the polymer may have a high viscosity and may be difficult to handle.

硬化性組成物の粘度を低くしたり、作業性を改善することなどを目的とする場合、重合体には実質的にアミドセグメントを含まないことが好ましい。   For the purpose of reducing the viscosity of the curable composition or improving workability, it is preferable that the polymer does not substantially contain an amide segment.

重合体は、1つの末端部位に2個以上の反応性ケイ素基を含有していてもよい。具体的な製法については特許文献(WO2013/18020)を参考にできる。   The polymer may contain two or more reactive silicon groups at one terminal site. For a specific production method, it is possible to refer to a patent document (WO2013 / 18020).

重合体の反応性ケイ素基の1分子当たりの平均個数は、下限は、1.2個以上が好ましく、1.3個以上がより好ましく、1.5個以上が最も好ましい。上限は、6.0個以下が好ましく、5.5個以下がより好ましく、5.0個以下が最も好ましい。反応性ケイ素基数が1.2個以下では高強度の硬化物が得られなくなる可能性があるため好ましくない。反応性ケイ素基数が6.0個以上では高伸びの硬化物が得られなくなる可能性があるため好ましくない。   The lower limit of the average number of reactive silicon groups in the polymer per molecule is preferably 1.2 or more, more preferably 1.3 or more, and most preferably 1.5 or more. The upper limit is preferably 6.0 or less, more preferably 5.5 or less, and most preferably 5.0 or less. If the number of reactive silicon groups is 1.2 or less, a high-strength cured product may not be obtained. If the number of reactive silicon groups is 6.0 or more, a cured product having a high elongation may not be obtained, which is not preferable.

重合体の反応性ケイ素基の平均個数は、反応性ケイ素基が直接結合した炭素上のプロトンを高分解能H−NMR測定法により定量する方法により求めた平均個数と定義している。本発明における重合体中の反応性ケイ素基の平均個数の計算においては前駆重合体に対し、反応性ケイ素基を導入した際に、反応性ケイ素基が導入されなかった前駆重合体および副反応によって得られる、反応性ケイ素基が導入されていない重合体についても、同一の主鎖構造を有する重合体の成分の一部とみなして、反応性ケイ素基の一分子中の平均個数を計算する際の母数(分子数)に含めて計算を行う。 The average number of reactive silicon groups in the polymer is defined as the average number obtained by a method of quantifying protons on carbon directly bonded with reactive silicon groups by high resolution 1 H-NMR measurement. In the calculation of the average number of reactive silicon groups in the polymer in the present invention, when the reactive silicon group is introduced into the precursor polymer, the precursor polymer and side reaction in which no reactive silicon group is introduced. When calculating the average number of reactive silicon groups in one molecule, the resulting polymer without a reactive silicon group is regarded as a part of the polymer component having the same main chain structure. The calculation is included in the parameter (number of molecules).

本発明の重合体は1種のみで使用してもよく、2種以上を併用して使用してもかまわない。   The polymer of the present invention may be used alone or in combination of two or more.

本発明では、フェノール性水酸基を有するフェノール性水酸基を有するカシューナッツ殻液誘導体(B)を加えることで、硬化物のコンクリート(モルタル)への耐水接着性を飛躍的に高めることができる。
カシューナッツ殻液とは、カシューナッツ殻油又はカシューナッツオイルとも呼ばれている。カシューナッツトリー(Anacardium accidentale L.,ウルシ科)の実の殻に含まれている油状の液体である。シューナッツトリー(Anacardium accidentale L.,ウルシ科)の実の殻からカシューナッツ殻液を採取する方法として溶剤抽出法と加熱法があり、産地では主として加熱法が用いられる。即ち、カシューナッツ殻液は、カシューナッツの殻を乾留するか、又は、カシューナッツの殻から直接、溶剤抽出することによって得られる。カシューナッツ殻液の成分としては、抽出法の場合はアナカルド酸とカルドールが主成分であり、加熱法の時は、カルダノールとカルドールが主成分である。
In the present invention, by adding the cashew nut shell liquid derivative (B) having a phenolic hydroxyl group having a phenolic hydroxyl group, the water-resistant adhesion of the cured product to concrete (mortar) can be dramatically improved.
Cashew nut shell liquid is also called cashew nut shell oil or cashew nut oil. An oily liquid contained in the shell of cashew nut tree (Anacardium accidentale L., Ursiaceae). There are a solvent extraction method and a heating method as a method for collecting cashew nut shell liquid from the husks of peanut tree (Anacardium accidentale L., Ursiaceae), and the heating method is mainly used in the production area. That is, the cashew nut shell liquid can be obtained by dry distillation of the cashew nut shell or by solvent extraction directly from the cashew nut shell. As components of cashew nut shell liquid, anacardic acid and cardol are the main components in the extraction method, and cardanol and cardol are the main components in the heating method.

(B)成分は(A)成分100重量部に対して5〜500重量部が好ましく、20〜300重量部がより好ましく、50〜200部が特に好ましい。(B)成分が少ない場合、得られる硬化物の耐水接着性が不十分になり、逆に多すぎる場合には、硬化物の弾性率が小さくなりすぎて接着強度が低下することや、硬化時間が遅くなるといった課題が生じる場合がある。   Component (B) is preferably 5 to 500 parts by weight, more preferably 20 to 300 parts by weight, and particularly preferably 50 to 200 parts by weight per 100 parts by weight of component (A). (B) When there are few components, the water-resistant adhesiveness of the hardened | cured material obtained becomes inadequate, and conversely when too large, the elasticity modulus of hardened | cured material becomes small too much and adhesive strength falls, or hardening time There is a case where a problem such as a slowdown occurs.

本発明の硬化性組成物には、反応性ケイ素基を有する重合体(A)の硬化触媒を使用する。   In the curable composition of the present invention, a curing catalyst for the polymer (A) having a reactive silicon group is used.

硬化触媒としては、公知のものを任意に使用することができ、たとえば、カルボン酸錫、カルボン酸鉛、カルボン酸ビスマス、カルボン酸カリウム、カルボン酸カルシウム、カルボン酸バリウム、カルボン酸チタン、カルボン酸ジルコニウム、カルボン酸ハフニウム、カルボン酸バナジウム、カルボン酸マンガン、カルボン酸鉄、カルボン酸コバルト、カルボン酸ニッケル、カルボン酸セリウムなどのカルボン酸金属塩;テトラブチルチタネート、テトラプロピルチタネート、チタンテトラキス(アセチルアセトナート)、ビス(アセチルアセトナート)ジイソプロポキシチタン、ジイソプロポキシチタンビス(エチルアセトセテート)などのチタン化合物;ジブチル錫ジラウレート、ジブチル錫マレエート、ジブチル錫フタレート、ジブチル錫ジオクタノエート、ジブチル錫ビス(2−エチルヘキサノエート)、ジブチル錫ビス(メチルマレエート)、ジブチル錫ビス(エチルマレエート)、ジブチル錫ビス(ブチルマレエート)、ジブチル錫ビス(オクチルマレエート)、ジブチル錫ビス(トリデシルマレエート)、ジブチル錫ビス(ベンジルマレエート)、ジブチル錫ジアセテート、ジオクチル錫ビス(エチルマレエート)、ジオクチル錫ビス(オクチルマレエート)、ジブチル錫ジメトキサイド、ジブチル錫ビス(ノニルフェノキサイド)、ジブテニル錫オキサイド、ジブチル錫オキサイド、ジブチル錫ビス(アセチルアセトナート)、モノブチルスズトリジブチル錫ビス(エチルアセトアセトナート)、ジブチル錫オキサイドとシリケート化合物との反応物、ジオクチル錫ビス(ネオデカノエート)、ジオクチル錫ジラウレート、ジブチル錫オキサイドとフタル酸エステルとの反応物、ジオクチル錫塩と正珪酸エチルとの反応物などの有機錫系化合物;アルミニウムトリス(アセチルアセトナート)、アルミニウムトリス(エチルアセトアセテート)、ジイソプロポキシアルミニウムエチルアセトアセテートなどのアルミニウム化合物類;ジルコニウムテトラキス(アセチルアセトナート)などのジルコニウム化合物類;テトラブトキシハフニウムなどの各種金属アルコキシド類;有機酸性リン酸エステル類;トリフルオロメタンスルホン酸などの有機スルホン酸類;塩酸、リン酸、ボロン酸などの無機酸類、DBU、グアニジンなどのアミジン化合物などがあげられる。   As the curing catalyst, known ones can be arbitrarily used. For example, tin carboxylate, lead carboxylate, bismuth carboxylate, potassium carboxylate, calcium carboxylate, barium carboxylate, titanium carboxylate, zirconium carboxylate , Metal carboxylates such as hafnium carboxylate, vanadium carboxylate, manganese carboxylate, iron carboxylate, cobalt carboxylate, nickel carboxylate, cerium carboxylate; tetrabutyl titanate, tetrapropyl titanate, titanium tetrakis (acetylacetonate) , Titanium compounds such as bis (acetylacetonato) diisopropoxytitanium, diisopropoxytitanium bis (ethylacetocetate); dibutyltin dilaurate, dibutyltin maleate, dibutyltin phthalate, dibuty Tin dioctanoate, dibutyltin bis (2-ethylhexanoate), dibutyltin bis (methylmaleate), dibutyltin bis (ethylmaleate), dibutyltin bis (butylmaleate), dibutyltin bis (octylmaleate) , Dibutyltin bis (tridecyl maleate), dibutyltin bis (benzyl maleate), dibutyltin diacetate, dioctyltin bis (ethyl maleate), dioctyltin bis (octylmaleate), dibutyltin dimethoxide, dibutyltin bis (Nonylphenoxide), dibutenyl tin oxide, dibutyltin oxide, dibutyltin bis (acetylacetonate), monobutyltin tridibutyltin bis (ethylacetoacetonate), reaction product of dibutyltin oxide and silicate compound, dioctyl Organotin compounds such as bis (neodecanoate), dioctyltin dilaurate, reaction product of dibutyltin oxide and phthalate, reaction product of dioctyltin salt and normal ethyl silicate; aluminum tris (acetylacetonate), aluminum tris ( Aluminum compounds such as ethyl acetoacetate) and diisopropoxy aluminum ethyl acetoacetate; Zirconium compounds such as zirconium tetrakis (acetylacetonate); Various metal alkoxides such as tetrabutoxyhafnium; Organic acidic phosphates; Trifluoromethane Organic sulfonic acids such as sulfonic acid; inorganic acids such as hydrochloric acid, phosphoric acid and boronic acid; and amidine compounds such as DBU and guanidine.

本発明の硬化性組成物を加熱硬化によって硬化させる場合には、公知の加熱硬化型触媒を使用することがでるが、モノブチルスズトリス(2−エチルヘキサノエート)(商品名:SCAT24(日東化成製)等)、テトラブチルアンモニウムアセテート(商品名:Catana N416(SACHEM製)等)やテトラブチルホスホニウムアセテート(商品名:Catana N563(SACHEM製)等)に代表されるオニウム塩、ジルコニウムトリス(2−エチルヘキサノエート)等の触媒を使用することで、室温での貯蔵安定性と高温での硬化活性のバランスがよく、泡の混入が少ない良好な硬化物を得ることができる。   When the curable composition of the present invention is cured by heat curing, a known heat-curable catalyst can be used. Monobutyltin tris (2-ethylhexanoate) (trade name: SCAT24 (Nitto Kasei) ), Tetrabutylammonium acetate (trade name: Catana N416 (manufactured by SACHEM), etc.) and tetrabutylphosphonium acetate (trade name: Catana N563 (manufactured by SACHEM), etc.), onium salts, zirconium tris (2- By using a catalyst such as ethylhexanoate), a good cured product with a good balance between storage stability at room temperature and curing activity at high temperature and with less mixing of bubbles can be obtained.

本発明の硬化性組成物には、可塑剤を添加してもよい。可塑剤の添加により、硬化性組成物の粘度やスランプ性および硬化性組成物を硬化して得られる硬化物の硬度、引張り強度、伸びなどの機械特性が調整できる。可塑剤の具体例としては、ジブチルフタレート、ジイソノニルフタレート(DINP)、ジヘプチルフタレート、ジ(2−エチルヘキシル)フタレート、ジイソデシルフタレート(DIDP)、ブチルベンジルフタレートなどのフタル酸エステル化合物;ビス(2−エチルヘキシル)−1,4−ベンゼンジカルボキシレートなどのテレフタル酸エステル化合物(具体的には、商品名:EASTMAN168(EASTMAN CHEMICAL製));1,2−シクロヘキサンジカルボン酸ジイソノニルエステルなどの非フタル酸エステル化合物(具体的には、商品名:Hexamoll DINCH(BASF製));アジピン酸ジオクチル、セバシン酸ジオクチル、セバシン酸ジブチル、コハク酸ジイソデシル、アセチルクエン酸トリブチルなどの脂肪族多価カルボン酸エステル化合物;オレイン酸ブチル、アセチルリシノール酸メチルなどの不飽和脂肪酸エステル化合物;アルキルスルホン酸フェニルエステル(具体的には、商品名:Mesamoll(LANXESS製));トリクレジルホスフェート、トリブチルホスフェートなどのリン酸エステル化合物;トリメリット酸エステル化合物;塩素化パラフィン;アルキルジフェニル、部分水添ターフェニルなどの炭化水素系油;プロセスオイル;エポキシ化大豆油、エポキシステアリン酸ベンジルなどのエポキシ可塑剤;スルホン酸アミド可塑剤(商品名:Ketjenflex(Axcentive製)、トップサイザー(富士アドケミカル製))などをあげることができる。
本発明の硬化性組成物は加熱硬化によっても硬化性組成物が得られるが、その場合、スルホン酸アミド系可塑剤を使用することで、硬化物の発泡が抑制され、また硬化性を促進させることができる。
A plasticizer may be added to the curable composition of the present invention. By adding a plasticizer, the viscosity, slump property of the curable composition, and mechanical properties such as hardness, tensile strength, and elongation of the cured product obtained by curing the curable composition can be adjusted. Specific examples of the plasticizer include dibutyl phthalate, diisononyl phthalate (DINP), diheptyl phthalate, di (2-ethylhexyl) phthalate, diisodecyl phthalate (DIDP), butyl benzyl phthalate and the like; bis (2-ethylhexyl) ) Terephthalic acid ester compounds such as 1,4-benzenedicarboxylate (specifically, trade name: EASTMAN 168 (manufactured by EASTMAN CHEMICAL)); non-phthalic acid ester compounds such as 1,2-cyclohexanedicarboxylic acid diisononyl ester ( Specifically, trade name: Hexamol DINCH (manufactured by BASF)); dioctyl adipate, dioctyl sebacate, dibutyl sebacate, diisodecyl succinate, tributy acetyl citrate Aliphatic carboxylic acid ester compounds such as; unsaturated fatty acid ester compounds such as butyl oleate and methyl acetyl ricinoleate; alkylsulfonic acid phenyl esters (specifically, trade name: Mesamol (manufactured by LANXESS)); Phosphate ester compounds such as zil phosphate and tributyl phosphate; Trimellitic ester compounds; Chlorinated paraffins; Hydrocarbon oils such as alkyldiphenyls and partially hydrogenated terphenyls; Process oils; Epoxidized soybean oil, Epoxy benzyl stearate, etc. Epoxy plasticizers; sulfonic acid amide plasticizers (trade names: Ketjenflex (manufactured by Axentive), topsizer (manufactured by Fuji Ad Chemical)), and the like.
The curable composition of the present invention can also be obtained by heat curing. In that case, by using a sulfonic acid amide plasticizer, foaming of the cured product is suppressed, and the curability is promoted. be able to.

高分子可塑剤も使用することができる。高分子可塑剤を使用すると低分子可塑剤を使用した場合に比較して、初期の物性を長期にわたり維持することができる。更に、該硬化物にアルキド塗料を塗付した場合の乾燥性(塗装性)を改良できる。高分子可塑剤の具体例としては、ビニル系モノマーを種々の方法で重合して得られるビニル系重合体;ジエチレングリコールジベンゾエート、トリエチレングリコールジベンゾエート、ペンタエリスリトールエステル等のポリアルキレングリコールのエステル類;セバシン酸、アジピン酸、アゼライン酸、フタル酸等の2塩基酸とエチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ジプロピレングリコール等の2価アルコールから得られるポリエステル系可塑剤;数平均分子量500以上、更には1,000以上のポリエチレングリコールポリプロピレングリコール、ポリテトラメチレングリコール等のポリエーテルポリオールあるいはこれらポリエーテルポリオールのヒドロキシ基をエステル基、エーテル基などに変換した誘導体等のポリエーテル類;ポリスチレンやポリ−α−メチルスチレン等のポリスチレン類;ポリブタジエン、ポリブテン、ポリイソブチレン、ブタジエン−アクリロニトリル、ポリクロロプレン等があげられるが、これらに限定されるものではない。   Polymer plasticizers can also be used. When a high molecular plasticizer is used, the initial physical properties can be maintained over a long period of time compared to the case where a low molecular plasticizer is used. Furthermore, the drying property (paintability) when an alkyd paint is applied to the cured product can be improved. Specific examples of the polymer plasticizer include vinyl polymers obtained by polymerizing vinyl monomers by various methods; esters of polyalkylene glycols such as diethylene glycol dibenzoate, triethylene glycol dibenzoate, and pentaerythritol ester; Polyester plasticizers obtained from dibasic acids such as sebacic acid, adipic acid, azelaic acid and phthalic acid and dihydric alcohols such as ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol and dipropylene glycol; number average molecular weight of 500 or more Furthermore, more than 1,000 polyether polyols such as polyethylene glycol polypropylene glycol and polytetramethylene glycol, or the hydroxy group of these polyether polyols are esterified Polyethers such as derivatives converted to ether groups; polystyrenes such as polystyrene and poly-α-methylstyrene; polybutadiene, polybutene, polyisobutylene, butadiene-acrylonitrile, polychloroprene, and the like. It is not something.

可塑剤の使用量は、(A)成分100重量部に対して、5〜150重量部が好ましく、10〜120重量部がより好ましく、特に20〜100重量部が好ましい。5重量部未満では可塑剤としての効果が発現しなくなり、150重量部を超えると硬化物の機械強度が不足する。可塑剤は、単独で使用してもよく、2種以上を併用してもよい。また低分子可塑剤と高分子可塑剤を併用してもよい。なお、これら可塑剤は重合体製造時に配合することも可能である。   The amount of the plasticizer used is preferably 5 to 150 parts by weight, more preferably 10 to 120 parts by weight, and particularly preferably 20 to 100 parts by weight with respect to 100 parts by weight of the component (A). If it is less than 5 parts by weight, the effect as a plasticizer will not be exhibited, and if it exceeds 150 parts by weight, the mechanical strength of the cured product will be insufficient. A plasticizer may be used independently and may use 2 or more types together. Further, a low molecular plasticizer and a high molecular plasticizer may be used in combination. These plasticizers can also be blended at the time of polymer production.

本発明の組成物には溶剤または希釈剤を添加することができる。溶剤及び希釈剤としては、特に限定されないが、脂肪族炭化水素、芳香族炭化水素、脂環族炭化水素、ハロゲン化炭化水素、アルコール、エステル、ケトン、エーテルなどを使用することができる。溶剤または希釈剤を使用する場合、組成物を屋内で使用した時の空気への汚染の問題から、溶剤の沸点は、150℃以上が好ましく、200℃以上がより好ましく、250℃以上が特に好ましい。上記溶剤または希釈剤は単独で用いてもよく、2種以上併用してもよい。   A solvent or diluent can be added to the composition of the present invention. Although it does not specifically limit as a solvent and a diluent, Aliphatic hydrocarbon, aromatic hydrocarbon, alicyclic hydrocarbon, halogenated hydrocarbon, alcohol, ester, ketone, ether etc. can be used. When a solvent or diluent is used, the boiling point of the solvent is preferably 150 ° C. or higher, more preferably 200 ° C. or higher, and particularly preferably 250 ° C. or higher because of the problem of air pollution when the composition is used indoors. . The said solvent or diluent may be used independently and may be used together 2 or more types.


本発明の硬化性組成物は、シランカップリング剤、シランカップリング剤の反応物、またはシランカップリング剤以外の化合物を接着性付与剤として添加することができる。

In the curable composition of the present invention, a silane coupling agent, a reaction product of the silane coupling agent, or a compound other than the silane coupling agent can be added as an adhesion promoter.

そのようなシランカップリング剤の具体例としては、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルトリエトキシシラン、γ−グリシドキシプロピルメチルジメトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリエトキシシラン等のエポキシ基含有シラン類;γ−アミノプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、γ−アミノプロピルメチルジメトキシシラン、γ−アミノプロピルメチルジエトキシシラン、N−β−アミノエチル−γ−アミノプロピルトリメトキシシラン、N−β−アミノエチル−γ−アミノプロピルメチルジメトキシシラン、N−β−アミノエチル−γ−アミノプロピルトリエトキシシラン、N−β−アミノエチル−γ−アミノプロピルメチルジエトキシシラン、γ−ウレイドプロピルトリメトキシシラン、N−フェニル−γ−アミノプロピルトリメトキシシラン、N−ベンジル−γ−アミノプロピルトリメトキシシラン、N−ビニルベンジル−γ−アミノプロピルトリエトキシシラン、(アミノメチル)ジメトキシメチルシラン、(アミノメチル)トリメトキシシラン、(フェニルアミノメチル)ジメトキシメチルシラン、(フェニルアミノメチル)トリメトキシシラン、ビス(3−トリメトキシシリルプロピル)アミン等のアミノ基含有シランカップリング剤;γ−イソシアネートプロピルトリメトキシシラン、γ−イソシアネートプロピルトリエトキシシラン、γ−イソシアネートプロピルメチルジエトキシシラン、γ−イソシアネートプロピルメチルジメトキシシラン、α−イソシアネートメチルトリメトキシシラン、α−イソシアネートメチルジメトキシメチルシラン等のイソシアネート基含有シラン類;γ−メルカプトプロピルトリメトキシシラン、γ−メルカプトプロピルトリエトキシシラン、γ−メルカプトプロピルメチルジメトキシシラン、γ−メルカプトプロピルメチルジエトキシシラン等のメルカプト基含有シラン類;β−カルボキシエチルトリエトキシシラン、β−カルボキシエチルフェニルビス(β−メトキシエトキシ)シラン、N−β−(カルボキシメチル)アミノエチル−γ−アミノプロピルトリメトキシシラン等のカルボキシシラン類;ビニルトリメトキシシラン、ビニルトリエトキシシラン、γ−メタクリロイルオキシプロピルメチルジメトキシシラン、γ−アクリロイルオキシプロピルメチルトリエトキシシラン等のビニル型不飽和基含有シラン類;γ−クロロプロピルトリメトキシシラン等のハロゲン含有シラン類;トリス(トリメトキシシリル)イソシアヌレート等のイソシアヌレートシラン類;メチル(N−ジメトキシメチルシリルメチル)カルバメート、メチル(N−トリメトキシシリルメチル)カルバメート、メチル(N−ジメトキシメチルシリルプロピル)カルバメート、メチル(N−トリメトキシシリルプロピル)カルバメート等のカルバメートシラン類;(メトキシメチル)ジメトキシメチルシラン、(メトキシメチル)トリメトキシシラン、(エトキシメチル)トリメトキシシラン、(フェノキシメチル)トリメトキシシラン等のアルコキシ基含有シラン類;3−(トリメトキシシリル)プロピル無水コハク酸、3−(トリエトキシシリル)プロピル無水コハク酸等の酸無水物含有シラン類等を挙げることができる。また、これらの部分縮合物や、これらを変性した誘導体である、アミノ変性シリルポリマー、シリル化アミノポリマー、不飽和アミノシラン錯体、フェニルアミノ長鎖アルキルシラン、アミノシリル化シリコーン、シリル化ポリエステル等もシランカップリング剤として用いることができる。これらのシランカップリング剤は単独で用いても良いし、組合わせて用いても良い。シランカップリング剤の反応物としては、イソシアネートシランと水酸基含有化合物、アミノ基含有化合物との反応物;アミノシランのマイケル付加反応物;アミノシランとエポキシ基含有化合物との反応物、エポキシシランとカルボン酸基含有化合物、アミノ基含有化合物との反応物なども挙げられる。   Specific examples of such silane coupling agents include γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropyltriethoxysilane, γ-glycidoxypropylmethyldimethoxysilane, β- (3,4- Epoxy group-containing silanes such as epoxycyclohexyl) ethyltrimethoxysilane, β- (3,4-epoxycyclohexyl) ethyltriethoxysilane; γ-aminopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, γ-aminopropyl Methyldimethoxysilane, γ-aminopropylmethyldiethoxysilane, N-β-aminoethyl-γ-aminopropyltrimethoxysilane, N-β-aminoethyl-γ-aminopropylmethyldimethoxysilane, N-β-aminoethyl- γ-aminopropyltriethoxy N-β-aminoethyl-γ-aminopropylmethyldiethoxysilane, γ-ureidopropyltrimethoxysilane, N-phenyl-γ-aminopropyltrimethoxysilane, N-benzyl-γ-aminopropyltrimethoxysilane, N-vinylbenzyl-γ-aminopropyltriethoxysilane, (aminomethyl) dimethoxymethylsilane, (aminomethyl) trimethoxysilane, (phenylaminomethyl) dimethoxymethylsilane, (phenylaminomethyl) trimethoxysilane, bis (3 -Trimethoxysilylpropyl) amine-containing amino group-containing silane coupling agent; γ-isocyanatopropyltrimethoxysilane, γ-isocyanatopropyltriethoxysilane, γ-isocyanatopropylmethyldiethoxysilane, γ-isocyanate Isocyanate group-containing silanes such as anatepropylmethyldimethoxysilane, α-isocyanatemethyltrimethoxysilane, α-isocyanatemethyldimethoxymethylsilane; γ-mercaptopropyltrimethoxysilane, γ-mercaptopropyltriethoxysilane, γ-mercaptopropyl Mercapto group-containing silanes such as methyldimethoxysilane and γ-mercaptopropylmethyldiethoxysilane; β-carboxyethyltriethoxysilane, β-carboxyethylphenylbis (β-methoxyethoxy) silane, N-β- (carboxymethyl) Carboxysilanes such as aminoethyl-γ-aminopropyltrimethoxysilane; vinyltrimethoxysilane, vinyltriethoxysilane, γ-methacryloyloxypropylmethyldimethoxy Lan, vinyl-type unsaturated group-containing silanes such as γ-acryloyloxypropylmethyltriethoxysilane; halogen-containing silanes such as γ-chloropropyltrimethoxysilane; isocyanurate silanes such as tris (trimethoxysilyl) isocyanurate Carbamate silanes such as methyl (N-dimethoxymethylsilylmethyl) carbamate, methyl (N-trimethoxysilylmethyl) carbamate, methyl (N-dimethoxymethylsilylpropyl) carbamate, methyl (N-trimethoxysilylpropyl) carbamate; Alkoxy group-containing silanes such as (methoxymethyl) dimethoxymethylsilane, (methoxymethyl) trimethoxysilane, (ethoxymethyl) trimethoxysilane, (phenoxymethyl) trimethoxysilane; 3- ( Can be exemplified trimethoxy silyl) propyl succinic anhydride, 3- (acid anhydride-containing silane such as triethoxy silyl) propyl succinic anhydride and the like. In addition, these partial condensates and derivatives thereof, such as amino-modified silyl polymers, silylated amino polymers, unsaturated aminosilane complexes, phenylamino long-chain alkylsilanes, aminosilylated silicones, silylated polyesters, etc. It can be used as a ring agent. These silane coupling agents may be used alone or in combination. As the reaction product of the silane coupling agent, a reaction product of isocyanate silane and a hydroxyl group-containing compound, an amino group-containing compound; a Michael addition reaction product of aminosilane; a reaction product of an aminosilane and an epoxy group-containing compound, an epoxy silane and a carboxylic acid group Examples thereof include a reaction product with a containing compound and an amino group-containing compound.

シランカップリング剤の使用量は、(A)成分100重量部に対して、0.1〜20重量部が好ましく、特に0.5〜10重量部が好ましい。   0.1-20 weight part is preferable with respect to 100 weight part of (A) component, and, as for the usage-amount of a silane coupling agent, 0.5-10 weight part is especially preferable.

シランカップリング剤以外の接着性付与剤の具体例としては、特に限定されないが、例えば、エポキシ樹脂、フェノール樹脂、硫黄、アルキルチタネート類、芳香族ポリイソシアネート等が挙げられる。上記接着性付与剤は1種類のみで使用しても良いし、2種類以上混合使用しても良い。これら接着性付与剤は添加することにより被着体に対する接着性を改善することができる。   Specific examples of the adhesion-imparting agent other than the silane coupling agent are not particularly limited, and examples thereof include epoxy resins, phenol resins, sulfur, alkyl titanates, and aromatic polyisocyanates. The adhesiveness-imparting agent may be used alone or in combination of two or more. By adding these adhesion-imparting agents, the adhesion to the adherend can be improved.

また、本発明の組成物には、シリケートを添加することができる。このシリケートは、架橋剤として作用し、本発明の硬化性組成物から得られる硬化物の復元性、耐久性、および、耐クリープ性を改善する機能を有する。また更に、接着性および耐水接着性、高温高湿条件での接着耐久性を改善する効果も有する。シリケートとしてはテトラアルコキシシランおよびアルキルアルコキシシランまたはそれらの部分加水分解縮合物が使用できる。   Moreover, a silicate can be added to the composition of this invention. This silicate acts as a cross-linking agent and has a function of improving the restorability, durability, and creep resistance of the cured product obtained from the curable composition of the present invention. Furthermore, it has the effect of improving adhesiveness, water-resistant adhesiveness, and adhesive durability under high temperature and high humidity conditions. As the silicate, tetraalkoxysilane and alkylalkoxysilane or partial hydrolysis condensates thereof can be used.

シリケートの具体例としては、たとえばテトラメトキシシラン、テトラエトキシシラン、エトキシトリメトキシシラン、ジメトキシジエトキシシラン、メトキシトリエトキシシラン、テトラ−n−プロポキシシラン、テトラ−i−プロポキシシラン、テトラ−n−ブトキシシラン、テトラ−i−ブトキシシラン、テトラ−t−ブトキシシランなどのテトラアルコキシシラン(テトラアルキルシリケート)、および、それらの部分加水分解縮合物があげられる。   Specific examples of the silicate include tetramethoxysilane, tetraethoxysilane, ethoxytrimethoxysilane, dimethoxydiethoxysilane, methoxytriethoxysilane, tetra-n-propoxysilane, tetra-i-propoxysilane, and tetra-n-butoxy. Examples thereof include tetraalkoxysilanes (tetraalkyl silicates) such as silane, tetra-i-butoxysilane, and tetra-t-butoxysilane, and partial hydrolysis condensates thereof.

テトラアルコキシシランの部分加水分解縮合物は、本発明の復元性、耐久性、および、耐クリープ性の改善効果がテトラアルコキシシランよりも大きい為により好ましい。   The partial hydrolysis-condensation product of tetraalkoxysilane is more preferable because the restoring effect, durability, and creep resistance improvement effect of the present invention are greater than those of tetraalkoxysilane.

前記テトラアルコキシシランの部分加水分解縮合物としては、たとえば通常の方法でテトラアルコキシシランに水を添加し、部分加水分解させて縮合させたものがあげられる。また、オルガノシリケート化合物の部分加水分解縮合物は、市販のものを用いることができる。このような縮合物としては、例えば、メチルシリケート51、エチルシリケート40(いずれもコルコート(株)製)等が挙げられる。   Examples of the partially hydrolyzed condensate of tetraalkoxysilane include those obtained by adding water to tetraalkoxysilane and condensing it by partial hydrolysis. A commercially available product can be used as the partially hydrolyzed condensate of the organosilicate compound. Examples of such condensates include methyl silicate 51 and ethyl silicate 40 (both manufactured by Colcoat Co., Ltd.).

シリケートを使用する場合、その使用量は(A)成分100重量部に対して0.1〜20重量部、好ましくは0.5〜10重量部である。   When using a silicate, the usage-amount is 0.1-20 weight part with respect to 100 weight part of (A) component, Preferably it is 0.5-10 weight part.

本発明の硬化性組成物には、(C)成分以外に種々の充填剤を配合することができる。充填剤としては、ヒュームドシリカ、沈降性シリカ、結晶性シリカ、溶融シリカ、ドロマイト、無水ケイ酸、含水ケイ酸、水酸化アルミニウム、およびカーボンブラックのような補強性充填剤;重質炭酸カルシウム、膠質炭酸カルシウム、炭酸マグネシウム、ケイソウ土、酸化チタン、有機ベントナイト、酸化第二鉄、アルミニウム微粉末、フリント粉末、酸化亜鉛、活性亜鉛華、PVC粉末、PMMA粉末など樹脂粉末のような充填剤;石綿、ガラス繊維およびフィラメントのような繊維状充填剤等が挙げられる。   In the curable composition of the present invention, various fillers can be blended in addition to the component (C). As fillers, reinforcing fillers such as fumed silica, precipitated silica, crystalline silica, fused silica, dolomite, anhydrous silicic acid, hydrous silicic acid, aluminum hydroxide, and carbon black; heavy calcium carbonate, Filler like resin powder such as colloidal calcium carbonate, magnesium carbonate, diatomaceous earth, titanium oxide, organic bentonite, ferric oxide, aluminum fine powder, flint powder, zinc oxide, activated zinc white, PVC powder, PMMA powder; asbestos And fibrous fillers such as glass fibers and filaments.

充填剤は、特開2001−181532号公報に記載されているように、酸化カルシウムなどの脱水剤と均一に混合した後、気密性素材で構成された袋に封入し、適当な時間放置することにより予め脱水乾燥することも可能である。この低水分量充填剤を使用することにより、特に一液型組成物とする場合、貯蔵安定性を改良することができる。   As described in Japanese Patent Application Laid-Open No. 2001-181532, the filler is uniformly mixed with a dehydrating agent such as calcium oxide, and then sealed in a bag made of an airtight material and left for an appropriate time. It is also possible to dehydrate and dry in advance. By using this low water content filler, storage stability can be improved particularly when a one-component composition is used.

これら充填剤の使用により強度の高い硬化物を得たい場合には、主にヒュームドシリカ、沈降性シリカ、結晶性シリカ、溶融シリカ、ドロマイト、無水ケイ酸、含水ケイ酸およびカーボンブラック、水酸化アルミニウム、表面処理微細炭酸カルシウム、および活性亜鉛華などから選ばれる充填剤が好ましく、その使用量は(A)成分100重量部に対して、1〜200重量部が好ましい。   When you want to obtain a cured product with high strength by using these fillers, fumed silica, precipitated silica, crystalline silica, fused silica, dolomite, silicic anhydride, hydrous silicic acid and carbon black, hydroxylation A filler selected from aluminum, surface-treated fine calcium carbonate, activated zinc white and the like is preferable, and the amount used is preferably 1 to 200 parts by weight per 100 parts by weight of component (A).

また、低強度で破断伸びが大である硬化物を得たい場合には、主に酸化チタン、重質炭酸カルシウムなどの炭酸カルシウム、炭酸マグネシウム、酸化第二鉄、酸化亜鉛、およびシラスバルーンなどから選ばれる充填剤を、(A)成分100重量部に対して5〜200重量部の範囲で使用すれば好ましい結果が得られる。なお、一般的に炭酸カルシウムは、比表面積の値が大きいほど硬化物の破断強度、破断伸び、接着性の改善効果は大きくなる。炭酸カルシウムを使用する場合、表面処理微細炭酸カルシウムと重質炭酸カルシウムなどの粒径が大きい炭酸カルシウムを併用することが望ましい。表面処理微細炭酸カルシウムの粒径は0.5μm以下が好ましく、表面処理は脂肪酸や脂肪酸塩で処理されていることが好ましい。また、粒径が大きい炭酸カルシウムの粒径は1μm以上が好ましく表面処理されていないものを用いることができる。表面処理した炭酸カルシウム粉を製造するための表面処理剤としては、パルミチン酸、カプリル酸、カプリン酸、ラウリン酸、ステアリン酸、アラキジン酸、ベヘン酸、リグノセリン酸、オレイン酸、リノール酸、リノレン酸等に代表される脂肪酸や不飽和脂肪酸、及び、ロジン酸系化合物等のカルボン酸及びそのエステル、ヘキサメチルジシラザン、クロロシラン、アミノシラン等のシラン化合物、パラフィン系化合物などが挙げられるが、これらに限定されるわけではない。なかでも、表面処理剤がカルボン酸であると、硬化性シリコーン系樹脂組成物とした場合に、一層硬化遅延が生じにくくなることから好ましい。さらに、カルボン酸のなかでも飽和脂肪酸又は不飽和脂肪酸が、より一層硬化遅延が生じにくくなることから、特に好ましい。もちろんこれら充填剤は1種類のみで使用してもよいし、2種類以上混合使用してもよい。脂肪酸表面処理膠質炭酸カルシウムと表面処理がされていない重質炭酸カルシウムなど粒径が1μm以上の炭酸カルシウムを併用して用いることもできる。   If you want to obtain a cured product with low strength and high elongation at break, mainly from calcium carbonate such as titanium oxide and heavy calcium carbonate, magnesium carbonate, ferric oxide, zinc oxide, and Shirasu balloon When the selected filler is used in the range of 5 to 200 parts by weight with respect to 100 parts by weight of the component (A), preferable results are obtained. In general, calcium carbonate has a greater effect of improving the breaking strength, breaking elongation, and adhesiveness of the cured product as the value of the specific surface area increases. When calcium carbonate is used, it is desirable to use a combination of surface treated fine calcium carbonate and heavy calcium carbonate such as heavy calcium carbonate. The particle diameter of the surface-treated fine calcium carbonate is preferably 0.5 μm or less, and the surface treatment is preferably treated with a fatty acid or a fatty acid salt. Moreover, the particle size of calcium carbonate having a large particle size is preferably 1 μm or more, and an untreated surface can be used. Surface treatment agents for producing surface-treated calcium carbonate powder include palmitic acid, caprylic acid, capric acid, lauric acid, stearic acid, arachidic acid, behenic acid, lignoceric acid, oleic acid, linoleic acid, linolenic acid, etc. Carboxylic acids such as fatty acids and unsaturated fatty acids, rosin acid compounds and esters thereof, silane compounds such as hexamethyldisilazane, chlorosilane, and aminosilane, paraffin compounds, and the like. I don't mean. Especially, when a surface treating agent is carboxylic acid, when it is set as a curable silicone type resin composition, since it becomes difficult to produce hardening delay further, it is preferable. Further, among the carboxylic acids, saturated fatty acids or unsaturated fatty acids are particularly preferred because they are much less likely to cause curing delay. Of course, these fillers may be used alone or in combination of two or more. Fatty acid surface-treated colloidal calcium carbonate and heavy calcium carbonate that has not been surface-treated such as calcium carbonate having a particle size of 1 μm or more can be used in combination.

充填剤の使用量は、(A)成分100重量部に対して、1〜300重量部が好ましく、特に10〜200重量部が好ましい。   The amount of the filler used is preferably 1 to 300 parts by weight, particularly preferably 10 to 200 parts by weight, based on 100 parts by weight of component (A).

組成物の作業性(キレなど)向上や硬化物表面を艶消し状にするために、有機バルーン、無機バルーンを添加してもよい。これらの充填剤は表面処理することもでき、1種類のみで使用しても良いし、2種類以上混合使用することもできる。作業性(キレなど)向上には、バルーンの粒径は0.1mm以下が好ましい。硬化物表面を艶消し状にするためには、5〜300μmが好ましい。   An organic balloon or an inorganic balloon may be added in order to improve the workability (such as sharpness) of the composition and to make the surface of the cured product matt. These fillers can be surface-treated, and may be used alone or in combination of two or more. In order to improve workability (such as sharpness), the balloon particle size is preferably 0.1 mm or less. In order to make the surface of the cured product matt, 5-300 μm is preferable.

本発明の硬化性組成物には、必要に応じてタレを防止し、作業性を良くするためにタレ防止剤を添加しても良い。また、タレ防止剤としては特に限定されないが、例えば、ポリアミドワックス類;水添ヒマシ油誘導体類;ステアリン酸カルシウム、ステアリン酸アルミニウム、ステアリン酸バリウム等の金属石鹸類等が挙げられる。また、特開平11−349916号公報に記載されているような粒子径10〜500μmのゴム粉末や、特開2003−155389号公報に記載されているような有機質繊維を用いると、チクソ性が高く作業性の良好な組成物が得られる。これらタレ防止剤は単独で用いてもよく、2種以上併用してもよい。
タレ防止剤の使用量は、(A)成分100重量部に対して、0.1〜20重量部が好ましい。
An anti-sagging agent may be added to the curable composition of the present invention as necessary to prevent sagging and improve workability. The sagging inhibitor is not particularly limited, and examples thereof include polyamide waxes; hydrogenated castor oil derivatives; metal soaps such as calcium stearate, aluminum stearate, and barium stearate. Further, when rubber powder having a particle size of 10 to 500 μm as described in JP-A-11-349916 or organic fiber as described in JP-A-2003-155389 is used, thixotropy is high. A composition having good workability can be obtained. These anti-sagging agents may be used alone or in combination of two or more.
The amount of the sagging inhibitor used is preferably 0.1 to 20 parts by weight per 100 parts by weight of component (A).

本発明の硬化性組成物には、酸化防止剤(老化防止剤)を使用することができる。酸化防止剤を使用すると硬化物の耐候性を高めることができる。酸化防止剤としてはヒンダードフェノール系、モノフェノール系、ビスフェノール系、ポリフェノール系が例示できるが、特にヒンダードフェノール系が好ましい。同様に、チヌビン622LD,チヌビン144; CHIMASSORB944LD,CHIMASSORB119FL(以上いずれもチバ・ジャパン株式会社製);アデカスタブLA−57,アデカスタブLA−62, アデカスタブLA−67,アデカスタブLA−63,アデカスタブLA−68(以上いずれも株式会社ADEKA製); サノールLS−770, サノールLS−765,サノールLS−292, サノールLS−2626,サノールLS−1114,サノールLS−744(以上いずれも三共ライフテック株式会社製)に示されたヒンダードアミン系光安定剤を使用することもできる。酸化防止剤の具体例は特開平4−283259号公報や特開平9−194731号公報にも記載されている。   An antioxidant (antiaging agent) can be used in the curable composition of the present invention. If an antioxidant is used, the weather resistance of the cured product can be increased. Examples of the antioxidant include hindered phenols, monophenols, bisphenols, and polyphenols, with hindered phenols being particularly preferred. Similarly, Tinuvin 622LD, Tinuvin 144; CHIMASSORB 944LD, CHIMASSORB 119FL (all of which are manufactured by Ciba Japan Co., Ltd.); All are manufactured by ADEKA Corporation); Sanol LS-770, Sanol LS-765, Sanol LS-292, Sanol LS-2626, Sanol LS-1114, Sanol LS-744 (all of which are manufactured by Sankyo Lifetech Co., Ltd.) Hindered amine light stabilizers can also be used. Specific examples of the antioxidant are also described in JP-A-4-283259 and JP-A-9-194731.

酸化防止剤の使用量は、(A)成分100重量部に対して、0.1〜10重量部が好ましく、特に0.2〜5重量部が好ましい。   0.1-10 weight part is preferable with respect to 100 weight part of (A) component, and, as for the usage-amount of antioxidant, 0.2-5 weight part is especially preferable.

本発明の硬化性組成物には、光安定剤を使用することができる。光安定剤を使用すると硬化物の光酸化劣化を防止できる。光安定剤としてベンゾトリアゾール系、ヒンダードアミン系、ベンゾエート系化合物等が例示できるが、特にヒンダードアミン系が好ましい。   A light stabilizer can be used in the curable composition of the present invention. Use of a light stabilizer can prevent photooxidation degradation of the cured product. Examples of the light stabilizer include benzotriazole, hindered amine, and benzoate compounds, with hindered amines being particularly preferred.

光安定剤の使用量は、(A)成分100重量部に対して、0.1〜10重量部が好ましく、特に0.2〜5重量部が好ましい。   0.1-10 weight part is preferable with respect to 100 weight part of (A) component, and, as for the usage-amount of a light stabilizer, 0.2-5 weight part is especially preferable.

本発明の硬化性組成物に光硬化性物質を配合する場合、特に不飽和アクリル系化合物を用いる場合、特開平5−70531号公報に記載されているようにヒンダードアミン系光安定剤として3級アミン含有ヒンダードアミン系光安定剤を用いるのが組成物の保存安定性改良のために好ましい。3級アミン含有ヒンダードアミン系光安定剤としてはチヌビン622LD,チヌビン144;CHIMASSORB119FL(以上いずれもチバ・ジャパン株式会社製);アデカスタブLA−57,LA−62,LA−67,LA−63(以上いずれも株式会社ADEKA製);サノールLS−765,LS−292,LS−2626,LS−1114,LS−744(以上いずれも三共ライフテック株式会社製)などの光安定剤が例示できる。   When a photocurable substance is blended in the curable composition of the present invention, particularly when an unsaturated acrylic compound is used, a tertiary amine is used as a hindered amine light stabilizer as described in JP-A-5-70531. It is preferable to use a contained hindered amine light stabilizer for improving the storage stability of the composition. As tertiary amine-containing hindered amine light stabilizers, Tinuvin 622LD, Tinuvin 144; CHIMASSORB119FL (all are manufactured by Ciba Japan Co., Ltd.); Adeka Stub LA-57, LA-62, LA-67, LA-63 (all above) Light stabilizers such as SANOL LS-765, LS-292, LS-2626, LS-1114, and LS-744 (all of which are manufactured by Sankyo Lifetech Co., Ltd.).

本発明の硬化性組成物には、紫外線吸収剤を使用することができる。紫外線吸収剤を使用すると硬化物の表面耐候性を高めることができる。紫外線吸収剤としてはベンゾフェノン系、ベンゾトリアゾール系、サリチレート系、置換トリル系及び金属キレート系化合物、SABO STAB UV312(SABO社製)として市販されているようなオキサニリド系化合物等が例示できるが、特にベンゾトリアゾール系が好ましく、市販名チヌビンP、チヌビン213、チヌビン234、チヌビン326、チヌビン327、チヌビン328、チヌビン329、チヌビン571(以上、BASF社製)が挙げられる。2−(2H−1,2,3−ベンゾトリアゾール−2−イル)−フェノール系化合物が特に好ましい。さらに、フェノール系やヒンダードフェノール系酸化防止剤とヒンダードアミン系光安定剤とベンゾトリアゾール系紫外線吸収剤を併用して使用するのが好ましい。
紫外線吸収剤の使用量は、(A)成分100重量部に対して、0.1〜10重量部が好ましく、特に0.2〜5重量部が好ましい。
上記酸化防止剤、光安定剤、紫外線吸収剤は、使用温度、暴露環境、透明性要求等に応じて、適宜選択できる。
An ultraviolet absorber can be used for the curable composition of the present invention. When the ultraviolet absorber is used, the surface weather resistance of the cured product can be enhanced. Examples of UV absorbers include benzophenone-based, benzotriazole-based, salicylate-based, substituted tolyl-based and metal chelate-based compounds, and oxanilide-based compounds commercially available as SABO STAB UV312 (manufactured by SABO). Triazole type is preferable, and commercially available names Tinuvin P, Tinuvin 213, Tinuvin 234, Tinuvin 326, Tinuvin 327, Tinuvin 328, Tinuvin 329, Tinuvin 571 (above, manufactured by BASF) are mentioned. 2- (2H-1,2,3-benzotriazol-2-yl) -phenolic compounds are particularly preferred. Furthermore, it is preferable to use a phenolic or hindered phenolic antioxidant, a hindered amine light stabilizer, and a benzotriazole ultraviolet absorber in combination.
0.1-10 weight part is preferable with respect to 100 weight part of (A) component, and, as for the usage-amount of a ultraviolet absorber, 0.2-5 weight part is especially preferable.
The antioxidant, light stabilizer, and ultraviolet absorber can be appropriately selected according to the use temperature, exposure environment, transparency requirements, and the like.

本発明の硬化性組成物には、必要に応じて生成する硬化物の引張特性を調整する物性調整剤を添加しても良い。物性調整剤としては特に限定されないが、例えば、フェノキシトリメチルシラン、メチルトリメトキシシラン、ジメチルジメトキシシラン、トリメチルメトキシシラン、n−プロピルトリメトキシシラン等のアルキルアルコキシシラン類;ジフェニルジメトキシシラン、フェニルトリメトキシシランなどのアリールアルコキシシラン類;ジメチルジイソプロペノキシシラン、メチルトリイソプロペノキシシラン、γ−グリシドキシプロピルメチルジイソプロペノキシシラン等のアルキルイソプロペノキシシラン;トリス(トリメチルシリル)ボレート、トリス(トリエチルシリル)ボレートなどのトリアルキルシリルボレート類;シリコーンワニス類;ポリシロキサン類等が挙げられる。前記物性調整剤を用いることにより、本発明の組成物を硬化させた時の硬度を上げたり、逆に硬度を下げ、破断伸びを出したりし得る。上記物性調整剤は単独で用いてもよく、2種以上併用してもよい。   You may add the physical property modifier which adjusts the tensile characteristic of the hardened | cured material produced | generated as needed to the curable composition of this invention. Although it does not specifically limit as a physical property modifier, For example, alkyl alkoxysilanes, such as phenoxytrimethylsilane, methyltrimethoxysilane, dimethyldimethoxysilane, trimethylmethoxysilane, n-propyltrimethoxysilane; diphenyldimethoxysilane, phenyltrimethoxysilane Arylalkoxysilanes such as dimethyldiisopropenoxysilane, methyltriisopropenoxysilane, γ-glycidoxypropylmethyldiisopropenoxysilane, and other alkylisopropenoxysilanes; tris (trimethylsilyl) borate, tris (triethyl) And trialkylsilyl borates such as silyl) borate; silicone varnishes; polysiloxanes and the like. By using the physical property modifier, it is possible to increase the hardness when the composition of the present invention is cured, or to decrease the hardness and break elongation. The said physical property modifier may be used independently and may be used together 2 or more types.

特に、加水分解により分子内に1価のシラノール基を有する化合物を生成する化合物は硬化物の表面のべたつきを悪化させずに硬化物のモジュラスを低下させる作用を有する。特にトリメチルシラノールを生成する化合物が好ましい。加水分解により分子内に1価のシラノール基を有する化合物を生成する化合物としては、特開平5−117521号公報に記載されている化合物をあげることができる。また、ヘキサノール、オクタノール、デカノールなどのアルキルアルコールの誘導体であって加水分解によりトリメチルシラノールなどのRSiOHを生成するシリコン化合物を生成する化合物、特開平11−241029号公報に記載されているトリメチロールプロパン、グリセリン、ペンタエリスリトールあるいはソルビトールなどの水酸基数が3以上の多価アルコールの誘導体であって加水分解によりトリメチルシラノールなどのRSiOHを生成するシリコン化合物を生成する化合物をあげることができる。 In particular, a compound that generates a compound having a monovalent silanol group in the molecule by hydrolysis has an action of reducing the modulus of the cured product without deteriorating the stickiness of the surface of the cured product. Particularly preferred are compounds that produce trimethylsilanol. As a compound which produces | generates the compound which has a monovalent silanol group in a molecule | numerator by hydrolysis, the compound described in Unexamined-Japanese-Patent No. 5-117521 can be mention | raise | lifted. In addition, derivatives of alkyl alcohols such as hexanol, octanol, decanol, and the like, which generate a silicon compound that generates R 3 SiOH such as trimethylsilanol by hydrolysis, trimethylol described in JP-A-11-241029 Examples thereof include compounds that are derivatives of polyhydric alcohols having 3 or more hydroxyl groups such as propane, glycerin, pentaerythritol, sorbitol, and the like, which generate silicon compounds that generate R 3 SiOH such as trimethylsilanol by hydrolysis.

また、特開平7−258534号公報に記載されているようなオキシプロピレン重合体の誘導体であって加水分解によりトリメチルシラノールなどのRSiOHを生成するシリコン化合物を生成する化合物もあげることができる。さらに特開平6−279693号公報に記載されている架橋可能な加水分解性ケイ素含有基と加水分解によりモノシラノール含有化合物となりうるケイ素含有基を有するポリオキシアルキレン系重合体を使用することもできる。 Further, there may be mentioned also compounds which produce a silicon compound that produces R 3 SiOH such as trimethyl silanol a derivative of oxypropylene polymer as described in JP-A-7-258534 by hydrolyzing. Furthermore, a polyoxyalkylene polymer having a crosslinkable hydrolyzable silicon-containing group and a silicon-containing group that can be converted into a monosilanol-containing compound by hydrolysis as described in JP-A-6-279893 can also be used.

本発明には、基材への接着性や密着性を高める目的、あるいはその他必要に応じて粘着付与樹脂を添加できる。粘着付与樹脂としては、特に制限はなく通常使用されているものを使うことが出来る。   In the present invention, a tackifying resin can be added for the purpose of enhancing the adhesion and adhesion to the substrate, or as necessary. The tackifying resin is not particularly limited, and those that are usually used can be used.

具体例としては、テルペン系樹脂、芳香族変性テルペン樹脂およびこれを水素添加した水素添加テルペン樹脂、テルペン類をフェノール類と共重合させたテルペン−フェノール樹脂、フェノール樹脂、変性フェノール樹脂、キシレン−フェノール樹脂、シクロペンタジエン−フェノール樹脂、クマロンインデン樹脂、ロジン系樹脂、ロジンエステル樹脂、水添ロジンエステル樹脂、キシレン樹脂、低分子量ポリスチレン系樹脂、スチレン共重合体樹脂、石油樹脂(例えば、C5炭化水素樹脂、C9炭化水素樹脂、C5C9炭化水素共重合樹脂等)、水添石油樹脂、DCPD樹脂等が挙げられる。これらは単独で用いても良く、2種以上を併用しても良い。   Specific examples include terpene resins, aromatic modified terpene resins and hydrogenated terpene resins obtained by hydrogenation thereof, terpene-phenol resins obtained by copolymerizing terpenes with phenols, phenol resins, modified phenol resins, xylene-phenols. Resin, cyclopentadiene-phenol resin, coumarone indene resin, rosin resin, rosin ester resin, hydrogenated rosin ester resin, xylene resin, low molecular weight polystyrene resin, styrene copolymer resin, petroleum resin (for example, C5 hydrocarbon) Resin, C9 hydrocarbon resin, C5C9 hydrocarbon copolymer resin, etc.), hydrogenated petroleum resin, DCPD resin and the like. These may be used alone or in combination of two or more.

スチレン系ブロック共重合体及びその水素添加物としては、特に限定されず、例えば、スチレン−ブタジエン−スチレンブロック共重合体(SBS)、スチレン−イソプレン−スチレンブロック共重合体(SIS)、スチレン−エチレンブチレン−スチレンブロック共重合体(SEBS)、スチレン−エチレンプロピレン−スチレンブロック共重合体(SEPS)、スチレン−イソブチレン−スチレンブロック共重合体(SIBS)などが挙げられる。   The styrenic block copolymer and its hydrogenated product are not particularly limited. For example, styrene-butadiene-styrene block copolymer (SBS), styrene-isoprene-styrene block copolymer (SIS), styrene-ethylene. Examples include butylene-styrene block copolymer (SEBS), styrene-ethylenepropylene-styrene block copolymer (SEPS), and styrene-isobutylene-styrene block copolymer (SIBS).

このなかでも、重合体及び可塑剤との相溶性が高く、高い密着効果が得られることからテルペン−フェノール樹脂が好ましい。一方、色調が重要とされる場合は、炭化水素樹脂が好ましい。   Among these, a terpene-phenol resin is preferable because of high compatibility with the polymer and the plasticizer and high adhesion effect. On the other hand, when the color tone is important, a hydrocarbon resin is preferable.

粘着付与樹脂の使用量は(A)成分100重量部に対して2〜100重量部が好ましく、5〜50重量部であることがより好ましく、5〜30部であることがさらに好ましい。2重量部より少ないと基材への接着、密着効果が得られにくく、また100重量部を超えると硬化性組成物の粘度が高くなりすぎ取扱いが困難となる場合がある。   The amount of the tackifying resin used is preferably 2 to 100 parts by weight, more preferably 5 to 50 parts by weight, even more preferably 5 to 30 parts by weight per 100 parts by weight of component (A). If the amount is less than 2 parts by weight, it is difficult to obtain adhesion and adhesion to the substrate, and if it exceeds 100 parts by weight, the viscosity of the curable composition may be too high and handling may be difficult.

本発明の組成物においてはエポキシ基を含有する化合物を使用できる。エポキシ基を有する化合物を使用すると硬化物の復元性を高めることができる。エポキシ基を有する化合物としてはエポキシ化不飽和油脂類、エポキシ化不飽和脂肪酸エステル類、脂環族エポキシ化合物類、エピクロルヒドリン誘導体に示す化合物及びそれらの混合物等が例示できる。 具体的には、エポキシ化大豆油、エポキシ化あまに油、ビス(2−エチルヘキシル)−4,5−エポキシシクロヘキサン−1,2−ジカーボキシレート(E−PS)、エポキシオクチルステアレ−ト、エポキシブチルステアレ−ト等があげられる。これらのなかではE−PSが特に好ましい。エポキシ化合物は(A)成分100重量部に対して0.5〜50重量部の範囲で使用するのがよい。   In the composition of the present invention, a compound containing an epoxy group can be used. When a compound having an epoxy group is used, the restorability of the cured product can be improved. Examples of the compound having an epoxy group include epoxidized unsaturated fats and oils, epoxidized unsaturated fatty acid esters, alicyclic epoxy compounds, compounds shown in epichlorohydrin derivatives, and mixtures thereof. Specifically, epoxidized soybean oil, epoxidized linseed oil, bis (2-ethylhexyl) -4,5-epoxycyclohexane-1,2-dicarboxylate (E-PS), epoxy octyl stearate And epoxybutyl stearate. Of these, E-PS is particularly preferred. The epoxy compound is preferably used in the range of 0.5 to 50 parts by weight per 100 parts by weight of component (A).

本発明の組成物には光硬化性物質を使用できる。光硬化性物資を使用すると硬化物表面に光硬化性物質の皮膜が形成され、硬化物のべたつきや硬化物の耐候性を改善できる。光硬化性物質とは、光の作用によってかなり短時間に分子構造が化学変化をおこし硬化などの物性的変化を生ずるものである。この種の化合物には有機単量体、オリゴマー、樹脂或いはそれらを含む組成物等多くのものが知られており、市販の任意のものを採用し得る。代表的なものとしては、不飽和アクリル系化合物、ポリケイ皮酸ビニル類あるいはアジド化樹脂等が使用できる。不飽和アクリル系化合物としては、アクリル系又はメタクリル系不飽和基を1ないし数個有するモノマー、オリゴマー或いはそれ等の混合物であって、プロピレン(又はブチレン、エチレン)グリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)ジメタクリレート等の単量体又は分子量10,000以下のオリゴエステルが例示される。具体的には、例えば特殊アクリレート(2官能)のアロニックスM−210、アロニックスM−215、アロニックスM−220、アロニックスM−233、アロニックスM−240, アロニックスM−245; (3官能)のアロニックスM305、アロニックスM−309、アロニックスM−310、アロニックスM−315、アロニックスM−320、アロニックスM−325、及び(多官能)のアロニックスM−400 などが例示できるが、特にアクリル官能基を含有する化合物が好ましく、また1分子中に平均して3個以上の同官能基を含有する化合物が好ましい。(以上アロニックスはいずれも東亜合成化学工業株式会社の製品である。)。   A photocurable material can be used in the composition of the present invention. When a photocurable material is used, a film of a photocurable material is formed on the surface of the cured product, and the stickiness of the cured product and the weather resistance of the cured product can be improved. A photocurable substance is a substance in which the molecular structure undergoes a chemical change in a very short time due to the action of light, resulting in a change in physical properties such as curing. Many compounds such as organic monomers, oligomers, resins or compositions containing them are known as this type of compound, and any commercially available compound can be adopted. Representative examples include unsaturated acrylic compounds, polyvinyl cinnamates, azide resins, and the like. Unsaturated acrylic compounds include monomers, oligomers or mixtures thereof having one or several acrylic or methacrylic unsaturated groups, including propylene (or butylene, ethylene) glycol di (meth) acrylate, neopentyl Examples thereof include monomers such as glycol di (meth) dimethacrylate and oligoesters having a molecular weight of 10,000 or less. Specifically, for example, special acrylate (bifunctional) Aronix M-210, Aronix M-215, Aronix M-220, Aronix M-233, Aronix M-240, Aronix M-245; (Trifunctional) Aronix M305 , Aronix M-309, Aronix M-310, Aronix M-315, Aronix M-320, Aronix M-325, Aronix M-400 (polyfunctional), etc. In addition, a compound containing an average of 3 or more functional groups per molecule is preferable. (All Aronix is a product of Toa Gosei Chemical Co., Ltd.)

ポリケイ皮酸ビニル類としては、シンナモイル基を感光基とする感光性樹脂でありポリビニルアルコールをケイ皮酸でエステル化したものの他、多くのポリケイ皮酸ビニル誘導体が例示される。アジド化樹脂は、アジド基を感光基とする感光性樹脂として知られており、通常はジアジド化合物を感光剤として加えたゴム感光液の他、「感光性樹脂」(昭和47年3月17日出版、印刷学会出版部発行、第93頁〜、第106頁〜、第117頁〜)に詳細な例示があり、これらを単独又は混合し、必要に応じて増感剤を加えて使用することができる。なお、ケトン類、ニトロ化合物などの増感剤やアミン類などの促進剤を添加すると、効果が高められる場合がある。光硬化性物質は(A)成分100重量部に対して0.1〜20重量部、好ましくは0.5〜10重量部の範囲で使用するのがよく、0.1重量部以下では耐候性を高める効果はなく、20重量部以上では硬化物が硬くなりすぎて、ヒビ割れを生じる傾向がある。   Examples of the polyvinyl cinnamates include photosensitive resins having a cinnamoyl group as a photosensitive group, and those obtained by esterifying polyvinyl alcohol with cinnamic acid, as well as many polyvinyl cinnamate derivatives. The azide resin is known as a photosensitive resin having an azide group as a photosensitive group. Usually, in addition to a rubber photosensitive solution in which a diazide compound is added as a photosensitive agent, a “photosensitive resin” (March 17, 1972). There are detailed examples in Publishing, Publishing Society of Printing Press, page 93-, page 106-, page 117-), these may be used alone or in combination, and a sensitizer may be added as necessary. Can do. Note that the addition of a sensitizer such as ketones or nitro compounds or an accelerator such as amines may enhance the effect. The photocurable substance is used in an amount of 0.1 to 20 parts by weight, preferably 0.5 to 10 parts by weight, based on 100 parts by weight of component (A). When the amount is 20 parts by weight or more, the cured product tends to be too hard and tends to crack.

本発明の組成物には酸素硬化性物質を使用することができる。酸素硬化性物質には空気中の酸素と反応し得る不飽和化合物を例示でき、空気中の酸素と反応して硬化物の表面付近に硬化皮膜を形成し表面のべたつきや硬化物表面へのゴミやホコリの付着を防止するなどの作用をする。酸素硬化性物質の具体例には、キリ油、アマニ油などで代表される乾性油や、該化合物を変性してえられる各種アルキッド樹脂;乾性油により変性されたアクリル系重合体、エポキシ系樹脂、シリコン樹脂;ブタジエン、クロロプレン、イソプレン、1,3−ペンタジエンなどのジエン系化合物を重合または共重合させてえられる1,2−ポリブタジエン、1,4−ポリブタジエン、C5〜C8ジエンの重合体などの液状重合体や、これらジエン系化合物と共重合性を有するアクリロニトリル、スチレンなどの単量体とをジエン系化合物が主体となるように共重合させてえられるNBR、SBRなどの液状共重合体や、さらにはそれらの各種変性物(マレイン化変性物、ボイル油変性物など)などが挙げられる。これらは単独で用いてもよく、2種以上併用してもよい。これらのうちではキリ油や液状ジエン系重合体がとくに好ましい。又、酸化硬化反応を促進する触媒や金属ドライヤーを併用すると効果が高められる場合がある。これらの触媒や金属ドライヤーとしては、ナフテン酸コバルト、ナフテン酸鉛、ナフテン酸ジルコニウム、オクチル酸コバルト、オクチル酸ジルコニウム等の金属塩や、アミジン化合物等が例示される。酸素硬化性物質の使用量は、(A)成分100重量部に対して0.1〜20重量部の範囲で使用するのがよく、さらに好ましくは0.5〜10重量部である。前記使用量が0.1重量部未満になると汚染性の改善が充分でなくなり、20重量部をこえると硬化物の引張り特性などが損なわれる傾向が生ずる。特開平3−160053号公報に記載されているように酸素硬化性物質は光硬化性物質と併用して使用するのがよい。   An oxygen curable substance can be used in the composition of the present invention. Examples of the oxygen curable substance include unsaturated compounds that can react with oxygen in the air. The oxygen curable substance reacts with oxygen in the air to form a cured film near the surface of the cured product. And prevents dust from adhering. Specific examples of the oxygen curable substance include drying oils typified by drill oil and linseed oil, various alkyd resins obtained by modifying the compounds; acrylic polymers and epoxy resins modified with drying oils , Silicone resin; 1,2-polybutadiene, 1,4-polybutadiene, C5-C8 diene polymer obtained by polymerizing or copolymerizing diene compounds such as butadiene, chloroprene, isoprene, 1,3-pentadiene, etc. Liquid polymers, liquid copolymers such as NBR and SBR obtained by copolymerizing monomers such as acrylonitrile and styrene copolymerizable with these diene compounds so that the main component is a diene compound, Further, various modified products thereof (maleinized modified products, boiled oil modified products, etc.) and the like can be mentioned. These may be used alone or in combination of two or more. Of these, drill oil and liquid diene polymers are particularly preferable. Moreover, the effect may be enhanced if a catalyst for promoting the oxidative curing reaction or a metal dryer is used in combination. Examples of these catalysts and metal dryers include metal salts such as cobalt naphthenate, lead naphthenate, zirconium naphthenate, cobalt octylate, zirconium octylate, and amidine compounds. The amount of the oxygen curable substance used is preferably 0.1 to 20 parts by weight, more preferably 0.5 to 10 parts by weight with respect to 100 parts by weight of component (A). If the amount used is less than 0.1 parts by weight, the improvement of the contamination is not sufficient, and if it exceeds 20 parts by weight, the tensile properties of the cured product tend to be impaired. As described in JP-A-3-160053, the oxygen curable substance is preferably used in combination with a photocurable substance.

本発明の組成物にはエポキシ樹脂を添加することができる。エポキシ樹脂を添加した組成物は特に接着剤、殊に外壁タイル用接着剤として好ましい。エポキシ樹脂としてはエピクロルヒドリン−ビスフェノールA型エポキシ樹脂、エピクロルヒドリン−ビスフェノールF型エポキシ樹脂、テトラブロモビスフェノールAのグリシジルエーテルなどの難燃型エポキシ樹脂、ノボラック型エポキシ樹脂、水添ビスフェノールA型エポキシ樹脂、ビスフェノールAプロピレンオキシド付加物のグリシジルエーテル型エポキシ樹脂、p−オキシ安息香酸グリシジルエーテルエステル型エポキシ樹脂、m−アミノフェノール系エポキシ樹脂、ジアミノジフェニルメタン系エポキシ樹脂、ウレタン変性エポキシ樹脂、各種脂環式エポキシ樹脂、N,N−ジグリシジルアニリン、N,N−ジグリシジル−o−トルイジン、トリグリシジルイソシアヌレート、ポリアルキレングリコールジグリシジルエーテル、グリセリンなどのごとき多価アルコールのグリシジルエーテル、ヒダントイン型エポキシ樹脂、石油樹脂などのごとき不飽和重合体のエポキシ化物などが例示されるが、これらに限定されるものではなく、一般に使用されているエポキシ樹脂が使用されうる。エポキシ基を少なくとも分子中に2個含有するものが、硬化に際し反応性が高く、また硬化物が3次元的網目をつくりやすいなどの点から好ましい。さらに好ましいものとしてはビスフェノールA型エポキシ樹脂類またはノボラック型エポキシ樹脂などがあげられる。これらのエポキシ樹脂の使用割合は、重量比で重合体(A)/エポキシ樹脂=100/1〜1/100の範囲である。重合体(A)/エポキシ樹脂の割合が1/100未満になると、エポキシ樹脂硬化物の衝撃強度や強靱性の改良効果がえられがたくなり、重合体(A)/エポキシ樹脂の割合が100/1をこえると、重合体硬化物の強度が不十分となる。好ましい使用割合は、硬化性樹脂組成物の用途などにより異なるため一概には決められないが、たとえばエポキシ樹脂硬化物の耐衝撃性、可撓性、強靱性、剥離強度などを改善する場合には、エポキシ樹脂100重量部に対して、重合体及びを1〜100重量部、さらに好ましくは5〜100重量部使用するのがよい。一方、硬化物の強度を改善する場合には、(A)成分100重量部に対してエポキシ樹脂を1〜200重量部、さらに好ましくは5〜100重量部使用するのがよい。   An epoxy resin can be added to the composition of the present invention. A composition to which an epoxy resin is added is particularly preferred as an adhesive, particularly as an adhesive for exterior wall tiles. Epoxy hydrin-bisphenol A type epoxy resin, epichlorohydrin-bisphenol F type epoxy resin, flame retardant type epoxy resin such as glycidyl ether of tetrabromobisphenol A, novolac type epoxy resin, hydrogenated bisphenol A type epoxy resin, bisphenol A Glycidyl ether type epoxy resin of propylene oxide adduct, p-oxybenzoic acid glycidyl ether ester type epoxy resin, m-aminophenol type epoxy resin, diaminodiphenylmethane type epoxy resin, urethane-modified epoxy resin, various alicyclic epoxy resins, N , N-diglycidylaniline, N, N-diglycidyl-o-toluidine, triglycidyl isocyanurate, polyalkylene glycol diglycidyl ether Examples include glycidyl ethers of polyhydric alcohols such as glycerin, epoxidized products of unsaturated polymers such as hydantoin type epoxy resins, petroleum resins, etc., but are not limited to these, and generally used epoxies Resins can be used. Those containing at least two epoxy groups in the molecule are preferred because they are highly reactive during curing and the cured product easily forms a three-dimensional network. More preferred are bisphenol A type epoxy resins or novolac type epoxy resins. The use ratio of these epoxy resins is in the range of polymer (A) / epoxy resin = 100/1 to 1/100 by weight ratio. When the ratio of the polymer (A) / epoxy resin is less than 1/100, the effect of improving the impact strength and toughness of the cured epoxy resin is hardly obtained, and the ratio of the polymer (A) / epoxy resin is 100. When the ratio exceeds / 1, the strength of the polymer cured product becomes insufficient. The preferred use ratio varies depending on the use of the curable resin composition and cannot be determined unconditionally. For example, when improving the impact resistance, flexibility, toughness, peel strength, etc. of the cured epoxy resin The polymer is used in an amount of 1 to 100 parts by weight, more preferably 5 to 100 parts by weight, based on 100 parts by weight of the epoxy resin. On the other hand, when improving the intensity | strength of hardened | cured material, it is good to use 1-200 weight part of epoxy resins with respect to 100 weight part of (A) component, More preferably, it is 5-100 weight part.

エポキシ樹脂を添加する場合、本発明の組成物には、エポキシ樹脂を硬化させる硬化剤を併用できることは当然である。使用し得るエポキシ樹脂硬化剤としては、特に制限はなく、一般に使用されているエポキシ樹脂硬化剤を使用できる。具体的には、例えば、トリエチレンテトラミン、テトラエチレンペンタミン、ジエチルアミノプロピルアミン、N−アミノエチルピペリジン、m−キシリレンジアミン、m−フェニレンジアミン、ジアミノジフェニルメタン、ジアミノジフェニルスルホン、イソホロンジアミン、アミン末端ポリエーテル等の一級、二級アミン類;2,4,6−トリス(ジメチルアミノメチル)フェノール、トリプロピルアミンのような三級アミン類、及び、これら三級アミン類の塩類;ポリアミド樹脂類;イミダゾール類;ジシアンジアミド類;三弗化硼素錯化合物類、無水フタル酸、ヘキサヒドロ無水フタル酸、テトラヒドロ無水フタル酸、ドデシニル無水琥珀酸、無水ピロメリット酸、無水クロレン酸等のような無水カルボン酸類;アルコール類;フェノール類;カルボン酸類;アルミニウム又はジルコニウムのジケトン錯化合物等の化合物を例示することができるが、これらに限定されるものではない。また、硬化剤も単独でも2種以上併用してもよい。   When an epoxy resin is added, the composition of the present invention can naturally be used in combination with a curing agent that cures the epoxy resin. There is no restriction | limiting in particular as an epoxy resin hardening | curing agent which can be used, The epoxy resin hardening | curing agent generally used can be used. Specifically, for example, triethylenetetramine, tetraethylenepentamine, diethylaminopropylamine, N-aminoethylpiperidine, m-xylylenediamine, m-phenylenediamine, diaminodiphenylmethane, diaminodiphenylsulfone, isophoronediamine, amine-terminated poly Primary and secondary amines such as ether; tertiary amines such as 2,4,6-tris (dimethylaminomethyl) phenol and tripropylamine, and salts of these tertiary amines; polyamide resins; imidazole Dicyandiamides; boron trifluoride complex compounds, phthalic anhydride, hexahydrophthalic anhydride, tetrahydrophthalic anhydride, dodecynyl succinic anhydride, pyromellitic anhydride, chlorenic anhydride, etc .; alcohols ; Fe Lumpur acids; carboxylic acids; but the compound of diketone complex compounds of aluminum or zirconium, or the like can be exemplified, but the invention is not limited thereto. Further, the curing agents may be used alone or in combination of two or more.

エポキシ樹脂の硬化剤を使用する場合、その使用量はエポキシ樹脂100重量部に対し、0.1〜300重量部の範囲である。   When the epoxy resin curing agent is used, the amount used is in the range of 0.1 to 300 parts by weight with respect to 100 parts by weight of the epoxy resin.

エポキシ樹脂の硬化剤としてケチミンを用いることができる。ケチミンは、水分のない状態では安定に存在し、水分によって一級アミンとケトンに分解され、生じた一級アミンがエポキシ樹脂の室温硬化性の硬化剤となる。ケチミンを用いると1液型の組成物を得ることができる。このようなケチミンとしては、アミジン化合物とカルボニル化合物との縮合反応により得ることができる。   Ketimine can be used as a curing agent for the epoxy resin. Ketimine is stably present in the absence of moisture, and is decomposed into primary amines and ketones by moisture, and the resulting primary amine becomes a room temperature curable curing agent for the epoxy resin. When ketimine is used, a one-component composition can be obtained. Such a ketimine can be obtained by a condensation reaction between an amidine compound and a carbonyl compound.

ケチミンの合成には公知のアミジン化合物、カルボニル化合物を用いればよいが、たとえばアミジン化合物としてはエチレンジアミン、プロピレンジアミン、トリメチレンジアミン、テトラメチレンジアミン、1,3−ジアミノブタン、2,3−ジアミノブタン、ペンタメチレンジアミン、2,4−ジアミノペンタン、ヘキサメチレンジアミン、p−フェニレンジアミン、p,p’−ビフェニレンジアミンなどのジアミン;1,2,3−トリアミノプロパン、トリアミノベンゼン、トリス(2−アミノエチル)アミン、テトラ(アミノメチル)メタンなどの多価アミン;ジエチレントリアミン、トリエチレントリアミン、テトラエチレンペンタミンなどのポリアルキレンポリアミン;ポリオキシアルキレン系ポリアミン;γ−アミノプロピルトリエトキシシラン、N−(β−アミノエチル)−γ−アミノプロピルトリメトキシシラン、N−(β−アミノエチル)−γ−アミノプロピルメチルジメトキシシランなどのアミノシラン;などが使用されうる。また、カルボニル化合物としてはアセトアルデヒド、プロピオンアルデヒド、n−ブチルアルデヒド、イソブチルアルデヒド、ジエチルアセトアルデヒド、グリオキサール、ベンズアルデヒド等のアルデヒド類;シクロペンタノン、トリメチルシクロペンタノン、シクロヘキサノン、トリメチルシクロヘキサノン等の環状ケトン類;アセトン、メチルエチルケトン、メチルプロピルケトン、メチルイソプロピルケトン、メチルイソブチルケトン、ジエチルケトン、ジプロピルケトン、ジイソプロピルケトン、ジブチルケトン、ジイソブチルケトン等の脂肪族ケトン類;アセチルアセトン、アセト酢酸メチル、アセト酢酸エチル、マロン酸ジメチル、マロン酸ジエチル、マロン酸メチルエチル、ジベンゾイルメタン等のβ−ジカルボニル化合物;などが使用できる。   For the synthesis of ketimine, known amidine compounds and carbonyl compounds may be used. For example, as amidine compounds, ethylenediamine, propylenediamine, trimethylenediamine, tetramethylenediamine, 1,3-diaminobutane, 2,3-diaminobutane, Diamines such as pentamethylenediamine, 2,4-diaminopentane, hexamethylenediamine, p-phenylenediamine, p, p'-biphenylenediamine; 1,2,3-triaminopropane, triaminobenzene, tris (2-amino Polyethylamines such as ethyl) amine and tetra (aminomethyl) methane; polyalkylenepolyamines such as diethylenetriamine, triethylenetriamine and tetraethylenepentamine; polyoxyalkylene-based polyamines; γ-aminopropyl Triethoxysilane, N-(beta-aminoethyl)-.gamma.-aminopropyltrimethoxysilane, N-(beta-aminoethyl)-.gamma.-aminopropyl aminosilane such as methyldimethoxysilane; and may be used. Examples of the carbonyl compound include aldehydes such as acetaldehyde, propionaldehyde, n-butyraldehyde, isobutyraldehyde, diethylacetaldehyde, glyoxal and benzaldehyde; cyclic ketones such as cyclopentanone, trimethylcyclopentanone, cyclohexanone and trimethylcyclohexanone; acetone , Aliphatic ketones such as methyl ethyl ketone, methyl propyl ketone, methyl isopropyl ketone, methyl isobutyl ketone, diethyl ketone, dipropyl ketone, diisopropyl ketone, dibutyl ketone, diisobutyl ketone; acetylacetone, methyl acetoacetate, ethyl acetoacetate, dimethyl malonate , Β-dicarbonyl compounds such as diethyl malonate, methyl ethyl malonate, dibenzoylmethane And the like can be used.

本発明の硬化性組成物には、ポリリン酸アンモニウム、トリクレジルホスフェートなどのリン系難燃剤、水酸化アルミニウム、水酸化マグネシウム、および、熱膨張性黒鉛などの難燃剤を添加することができる。上記難燃剤は単独で用いてもよく、2種以上併用してもよい。   To the curable composition of the present invention, a phosphorus-based flame retardant such as ammonium polyphosphate and tricresyl phosphate, a flame retardant such as aluminum hydroxide, magnesium hydroxide, and thermally expandable graphite can be added. The said flame retardant may be used independently and may be used together 2 or more types.

難燃剤は(A)成分100重量部に対して、5〜400質量部、好ましくは50〜200質量部の範囲で使用される。
本発明の硬化性組成物には、硬化性組成物又は硬化物の諸物性の調整を目的として、必要に応じて各種添加剤を添加してもよい。このような添加物の例としては、たとえば、ラジカル禁止剤、金属不活性化剤、オゾン劣化防止剤、リン系過酸化物分解剤、滑剤、顔料、発泡剤、溶剤、防かび剤などがあげられる。これらの各種添加剤は単独で用いてもよく、2種類以上を併用してもよい。本明細書にあげた添加剤の具体例以外の具体例は、たとえば、特公平4−69659号、特公平7−108928号、特開昭63−254149号、特開昭64−22904号、特開2001−72854号の各公報などに記載されている。
The flame retardant is used in the range of 5 to 400 parts by weight, preferably 50 to 200 parts by weight, per 100 parts by weight of component (A).
Various additives may be added to the curable composition of the present invention as necessary for the purpose of adjusting various physical properties of the curable composition or the cured product. Examples of such additives include radical inhibitors, metal deactivators, ozone degradation inhibitors, phosphorus peroxide decomposers, lubricants, pigments, foaming agents, solvents, fungicides, and the like. It is done. These various additives may be used alone or in combination of two or more. Specific examples other than the specific examples of the additives listed in the present specification include, for example, JP-B-4-69659, JP-B-7-108928, JP-A-63-254149, JP-A-62-2904, It is described in Japanese Laid-Open Patent Publication No. 2001-72854.

本発明の硬化性組成物は、すべての配合成分を予め配合密封保存し、施工後空気中の湿気により硬化する1成分型として調製することも可能であり、硬化剤として別途硬化触媒、充填材、可塑剤、水等の成分を配合しておき、該配合材と重合体組成物を使用前に混合する2成分型として調製することもできる。   The curable composition of the present invention can also be prepared as a one-component type in which all the blended components are pre-blended and sealed and cured by moisture in the air after construction. It is also possible to prepare a two-component type in which components such as a plasticizer and water are blended and the compounding material and the polymer composition are mixed before use.

硬化性組成物が1成分型の場合、すべての配合成分が予め配合されるため、水分を含有する配合成分は予め脱水乾燥してから使用するか、また配合混練中に減圧などにより脱水するのが好ましい。前記硬化性組成物が2成分型の場合、反応性ケイ素基を有する重合体を含有する主剤に硬化触媒を配合する必要がないので配合剤中には若干の水分が含有されていてもゲル化の心配は少ないが、長期間の貯蔵安定性を必要とする場合には脱水乾燥するのが好ましい。脱水、乾燥方法としては粉状などの固状物の場合は加熱乾燥法、液状物の場合は減圧脱水法または合成ゼオライト、活性アルミナ、シリカゲルなどを使用した脱水法が好適である。また、イソシアネート化合物を少量配合してイソシアネート基と水とを反応させて脱水してもよい。かかる脱水乾燥法に加えてメタノール、エタノールなどの低級アルコール;n−プロピルトリメトキシシラン、ビニルトリメトキシシラン、ビニルメチルジメトキシシラン、γ−メルカプトプロピルメチルジメトキシシラン、γ−メルカプトプロピルメチルジエトキシシラン、γ−グリシドキシプロピルトリメトキシシランなどのアルコキシシラン化合物を添加することにより、さらに貯蔵安定性は向上する。   When the curable composition is of a one-component type, all the ingredients are pre-blended, so the water-containing ingredients are dehydrated and dried before use, or dehydrated during decompression or the like during compounding and kneading. Is preferred. When the curable composition is a two-component type, it is not necessary to add a curing catalyst to the main component containing a polymer having a reactive silicon group, so gelation is possible even if some moisture is contained in the compounding agent. However, when long-term storage stability is required, dehydration and drying are preferable. As the dehydration and drying method, a heat drying method is preferable in the case of a solid substance such as a powder, and a dehydration method using a reduced pressure dehydration method or a synthetic zeolite, activated alumina, silica gel or the like is preferable in the case of a liquid material. Alternatively, a small amount of an isocyanate compound may be blended to react with an isocyanate group and water for dehydration. In addition to the dehydration drying method, lower alcohols such as methanol and ethanol; n-propyltrimethoxysilane, vinyltrimethoxysilane, vinylmethyldimethoxysilane, γ-mercaptopropylmethyldimethoxysilane, γ-mercaptopropylmethyldiethoxysilane, γ -Storage stability is further improved by adding an alkoxysilane compound such as glycidoxypropyltrimethoxysilane.

脱水剤、特にビニルトリメトキシシランなどの水と反応し得るケイ素化合物の使用量は、(A)成分100重量部に対して、0.1〜20重量部が好ましく、特に0.5〜10重量部が好ましい。   The amount of the silicon compound capable of reacting with water such as a dehydrating agent, particularly vinyltrimethoxysilane, is preferably 0.1 to 20 parts by weight, particularly 0.5 to 10 parts by weight per 100 parts by weight of component (A). Part is preferred.

本発明の硬化性組成物の調製法には特に限定はなく、例えば上記した成分を配合し、ミキサーやロールやニーダーなどを用いて常温または加熱下で混練したり、適した溶剤を少量使用して成分を溶解させ、混合したりするなどの通常の方法が採用されうる。   The method for preparing the curable composition of the present invention is not particularly limited. For example, the above-described components are blended and kneaded using a mixer, roll, kneader or the like at room temperature or under heating, or a small amount of a suitable solvent is used. Ordinary methods such as dissolving and mixing the components may be employed.

本発明の硬化性組成物は、粘着剤、建造物・船舶・自動車・道路などのシーリング材、接着剤、型取剤、防振材、制振材、防音材、発泡材料、塗料、吹付材、塗膜防水剤などに使用できる。本発明の硬化性組成物を硬化して得られる硬化物は、耐水接着性が良好の為に、これらのなかでも、シーリング材、接着剤として用いることがより好ましい。   The curable composition of the present invention is a pressure-sensitive adhesive, a sealing material for buildings, ships, automobiles, roads, etc., an adhesive, a mold preparation, a vibration-proof material, a vibration-damping material, a sound-proof material, a foam material, a paint, and a spray material Can be used for waterproofing coating film. Since the cured product obtained by curing the curable composition of the present invention has good water-resistant adhesion, among these, it is more preferable to use it as a sealing material or an adhesive.

また、太陽電池裏面封止材などの電気・電子部品材料、電線・ケーブル用絶縁被覆材などの電気絶縁材料、弾性接着剤、コンタクト型接着剤、スプレー型シール材、クラック補修材、タイル張り用接着剤、粉体塗料、注型材料、医療用ゴム材料、医療用粘着剤、医療機器シール材、食品包装材、サイジングボードなどの外装材の目地用シーリング材、コーティング材、プライマー、電磁波遮蔽用導電性材料、熱伝導性材料、ホットメルト材料、電気電子用ポッティング剤、フィルム、ガスケット、各種成形材料、および、網入りガラスや合わせガラス端面(切断部)の防錆・防水用封止材、自動車部品、電機部品、各種機械部品などにおいて使用される液状シール剤などの様々な用途に利用可能である。更に、単独あるいはプライマーの助けをかりてガラス、磁器、木材、金属、樹脂成形物などの如き広範囲の基質に密着しうるので、種々のタイプの密封組成物および接着組成物としても使用可能である。また、本発明の硬化性組成物は、内装パネル用接着剤、外装パネル用接着剤、タイル張り用接着剤、石材張り用接着剤、天井仕上げ用接着剤、床仕上げ用接着剤、壁仕上げ用接着剤、車両パネル用接着剤、電気・電子・精密機器組立用接着剤、ダイレクトグレージング用シーリング材、複層ガラス用シーリング材、SSG工法用シーリング材、または、建築物のワーキングジョイント用シーリング材、としても使用可能である。   Also, electrical and electronic parts materials such as solar cell backside sealing materials, electrical insulation materials such as insulation coating materials for electric wires and cables, elastic adhesives, contact type adhesives, spray type sealing materials, crack repair materials, and tiles Adhesives, powder paints, casting materials, medical rubber materials, medical adhesives, medical device sealing materials, food packaging materials, sealing materials for joints of exterior materials such as sizing boards, coating materials, primers, electromagnetic wave shielding Conductive materials, thermal conductive materials, hot melt materials, potting agents for electrical and electronic use, films, gaskets, various molding materials, and anti-rust / waterproof sealing materials for meshed glass and laminated glass end faces (cut parts), It can be used for various applications such as liquid sealants used in automobile parts, electrical parts, various machine parts and the like. Furthermore, since it can adhere to a wide range of substrates such as glass, porcelain, wood, metal and resin moldings alone or with the help of a primer, it can be used as various types of sealing compositions and adhesive compositions. . Further, the curable composition of the present invention includes an adhesive for interior panels, an adhesive for exterior panels, an adhesive for tiles, an adhesive for stonework, an adhesive for ceiling finishing, an adhesive for floor finishing, and an adhesive for wall finishing. Adhesives, adhesives for vehicle panels, adhesives for electrical / electronic / precision equipment assembly, sealing materials for direct glazing, sealing materials for multi-layer glass, sealing materials for SSG construction methods, or sealing materials for building working joints, Can also be used.

以下に、具体的な実施例をあげて本発明をより詳細に説明するが、本発明は、下記実施例に限定されるものではない。

(合成例)
数平均分子量が約3,000のポリオキシプロピレントリオールと約3,000のポリオキシプロピレンジオールを開始剤とし、亜鉛ヘキサシアノコバルテートグライム錯体触媒にてプロピレンオキサイドの重合を行い、数平均分子量14,000のポリオキシプロピレントリオールを得た。続いてこの水酸基末端ポリオキシプロピレントリオールの水酸基に対して1.2倍当量のNaOMeのメタノール溶液を添加してメタノールを留去し、さらに3−クロロ−1−プロペンを水酸基に対して1.2当量添加して末端の水酸基をアリル基に変換した。次に得られたアリル基末端ポリオキシプロピレン500gに対して白金ジビニルジシロキサン錯体(白金換算で3重量%のイソプロパノール溶液)50μlを加え、撹拌しながら、DMS(ジメトキシシラン)6.7gをゆっくりと滴下した。その混合溶液を90℃で2時間反応させた後、未反応のDMSを減圧下留去することで1分子あたりのケイ素基が平均1.7個である反応性ケイ素基含有ポリオキシプロピレン重合体(A)を得た。
Hereinafter, the present invention will be described in more detail with reference to specific examples, but the present invention is not limited to the following examples.

(Synthesis example)
Using a polyoxypropylene triol having a number average molecular weight of about 3,000 and a polyoxypropylene diol having a number of about 3,000 as an initiator, propylene oxide is polymerized with a zinc hexacyanocobaltate glyme complex catalyst to obtain a number average molecular weight of 14,000. Of polyoxypropylene triol was obtained. Subsequently, a methanol solution of NaOMe equivalent to 1.2 times equivalent to the hydroxyl group of the hydroxyl-terminated polyoxypropylene triol was added to distill off the methanol, and 3-chloro-1-propene was further added to the hydroxyl group to 1.2%. An equivalent amount was added to convert the terminal hydroxyl group into an allyl group. Next, 50 μl of platinum divinyldisiloxane complex (3 wt% isopropanol solution in terms of platinum) is added to 500 g of the allyl group-terminated polyoxypropylene obtained, and 6.7 g of DMS (dimethoxysilane) is slowly added while stirring. It was dripped. After reacting the mixed solution at 90 ° C. for 2 hours, unreacted DMS is distilled off under reduced pressure, whereby a reactive silicon group-containing polyoxypropylene polymer having an average of 1.7 silicon groups per molecule is obtained. (A) was obtained.

得られた反応性ケイ素基含有有機重合体を用いて、表1に示す各成分を、同表に示す配合量で量りとり、自転公転型攪拌機(商品名SPEED MIXER DAC400FVZ)を用いて、2300回転で混合攪拌を行い硬化性組成物を得た。このようにして得られた硬化性組成物を使用し、物性評価を行った。    Using the obtained reactive silicon group-containing organic polymer, each component shown in Table 1 was weighed in the blending amount shown in the same table, and rotated 2300 times using a rotation and revolution type stirrer (trade name: SPEED MIXER DAC400FVZ). The mixture was stirred to obtain a curable composition. Using the curable composition thus obtained, physical properties were evaluated.

Figure 2018197329
Figure 2018197329

表1に示すように、フェノール性水酸基を有するカシューナッツ殻液誘導体を使用することで、モルタル耐水接着性が良好な硬化物を得ることができた。フェノール性水酸基を有していないカシューナッツ殻液誘導体を用いた場合ではそのような効果は得られず、フェノール性水酸基が耐水接着性改善に寄与していると考えられる。その原因としては、フェノール性水酸基によってモルタルとの親和性が向上するためであると考えている。 As shown in Table 1, by using a cashew nut shell liquid derivative having a phenolic hydroxyl group, it was possible to obtain a cured product having good mortar water resistance adhesion. In the case of using a cashew nut shell liquid derivative that does not have a phenolic hydroxyl group, such an effect cannot be obtained, and it is considered that the phenolic hydroxyl group contributes to improvement of water-resistant adhesion. The cause is considered to be that the affinity with mortar is improved by the phenolic hydroxyl group.

尚、表1〜3において各配合剤は下記の通りである。
Ultra LITE 2023:Cardolite製フェノール性水酸基を有するカルダノールを主成分とするカシューナッツ殻液誘導体。
LITE 2100R:フェノール性水酸基を有し芳香環上にアルキル置換基を有する変性カルダノールを主成分とするカシューナッツ殻液誘導体。
GX−5166:フェノール性水酸基部分がエトキシ化された変性カルダノールを主成分とするカシューナッツ殻液誘導体。
LITE 2020:フェノール性水酸基部分がヒドロキシエチル化された変性カルダノールを主成分とするカシューナッツ殻液誘導体。
DINP:ジェイプラス製フタル酸ジイソノニル
Socal U1S2:Solvay製重質炭酸カルシウム
RFK−2:Tronox製酸化チタン
Crayvallac SLX:Arkema製アミドワックス
チヌビン770:BASF製ヒンダードアミン系光安定剤
チヌビン326:BASF製ベンゾトリアゾール系紫外線吸収剤
VTMO:エボニック製ビニルトリメトキシシラン
AMMO:エボニック製アミノプロピルトリメトキシシラン
DAMO:エボニック製ジメチルアミノプロピルトリメトキシシラン
TIB KAT 223:TIBケミカル製ジオクチルスズジセチルアセトネート
In Tables 1 to 3, each compounding agent is as follows.
Ultra LITE 2023: Cashew nut shell liquid derivative mainly composed of cardanol having a phenolic hydroxyl group manufactured by Cardolite.
LITE 2100R: Cashew nut shell liquid derivative mainly composed of a modified cardanol having a phenolic hydroxyl group and an alkyl substituent on the aromatic ring.
GX-5166: Cashew nut shell liquid derivative mainly composed of a modified cardanol in which the phenolic hydroxyl group is ethoxylated.
LITE 2020: Cashew nut shell liquid derivative mainly composed of modified cardanol in which the phenolic hydroxyl group is hydroxyethylated.
DINP: Diplusonyl phthalate manufactured by J-Plus Socal U1S2: Heavy calcium carbonate manufactured by Solvay RFK-2: Tranox titanium oxide Crayvallac SLX: Arkema amide wax tinuvin 770: BASF hindered amine light stabilizer Tinuvin 326: Benztriazole manufactured by BASF UV absorber VTMO: Evonik vinyltrimethoxysilane AMMO: Evonik aminopropyltrimethoxysilane DAMO: Evonik dimethylaminopropyltrimethoxysilane TIB KAT 223: TIB Chemical dioctyltin dicetylacetonate

Claims (4)

加水分解性ケイ素基を有する有機重合体(A)、及びフェノール性水酸基を有するカシューナッツ殻液誘導体(B)を含有する硬化性組成物。   A curable composition comprising an organic polymer (A) having a hydrolyzable silicon group and a cashew nut shell liquid derivative (B) having a phenolic hydroxyl group. 成分(B)が成分(A)100重量部に対して50〜200重量部であることを特徴とする請求項1に記載の硬化性組成物。   Component (B) is 50-200 weight part with respect to 100 weight part of component (A), The curable composition of Claim 1 characterized by the above-mentioned. 成分(A)の有機重合体の主鎖が、ポリオキシアルキレン(A1)及び/または(メタ)アクリル酸エステル系重合体(A2)であることを特徴とする請求項1または2に記載の硬化性組成物。 The main chain of the organic polymer of component (A) is polyoxyalkylene (A1) and / or (meth) acrylic acid ester polymer (A2), curing according to claim 1 or 2 Sex composition. 請求項1〜3のいずれかに記載の硬化性組成物とモルタルとの接着構造体。
The adhesion structure of the curable composition and mortar in any one of Claims 1-3.
JP2017103424A 2017-05-25 2017-05-25 Room temperature-curable composition Pending JP2018197329A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017103424A JP2018197329A (en) 2017-05-25 2017-05-25 Room temperature-curable composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017103424A JP2018197329A (en) 2017-05-25 2017-05-25 Room temperature-curable composition

Publications (1)

Publication Number Publication Date
JP2018197329A true JP2018197329A (en) 2018-12-13

Family

ID=64662949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017103424A Pending JP2018197329A (en) 2017-05-25 2017-05-25 Room temperature-curable composition

Country Status (1)

Country Link
JP (1) JP2018197329A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111393597A (en) * 2020-05-29 2020-07-10 广州五行材料科技有限公司 Siloxane modified cardanol derivative prepolymer and preparation method and application thereof
JPWO2020235006A1 (en) * 2019-05-21 2020-11-26
WO2023074667A1 (en) * 2021-10-27 2023-05-04 Henkel Ag & Co. Kgaa Adhesive for laminates

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020235006A1 (en) * 2019-05-21 2020-11-26
WO2020235006A1 (en) * 2019-05-21 2020-11-26 アロン化成株式会社 Thermoplastic elastomer composition for damping member
JP7239691B2 (en) 2019-05-21 2023-03-14 アロン化成株式会社 Thermoplastic elastomer composition for damping member
CN111393597A (en) * 2020-05-29 2020-07-10 广州五行材料科技有限公司 Siloxane modified cardanol derivative prepolymer and preparation method and application thereof
WO2023074667A1 (en) * 2021-10-27 2023-05-04 Henkel Ag & Co. Kgaa Adhesive for laminates

Similar Documents

Publication Publication Date Title
JP5002262B2 (en) Curable composition
JP6275036B2 (en) POLYMER HAVING TERMINAL STRUCTURE HAVING MULTIPLE REACTIVE SILICON GROUPS, PROCESS FOR PRODUCING THE SAME AND USE
JP6356123B2 (en) Curable composition
JP6527589B2 (en) Curable composition
JP5080006B2 (en) Curable composition
JP5744759B2 (en) Curable composition
JP6603582B2 (en) Curable composition
JP6261966B2 (en) Curable composition
WO2014192914A1 (en) Curable composition, and cured product thereof
JP6317672B2 (en) Curable composition
JP6682227B2 (en) Curable composition
JP2014114434A (en) Curable composition
WO2015105122A1 (en) Curable composition
JP4480457B2 (en) Curable composition
JP2012214755A (en) Curing composition
JP2014234396A (en) Room temperature-curable composition and cured product thereof
JP6253372B2 (en) Curable composition
JP2018197329A (en) Room temperature-curable composition
WO2017138463A1 (en) Curable composition having improved water-resistant adhesiveness
JP2014001358A (en) Curable composition
JP2014198791A (en) Curable composition
JP5564312B2 (en) Curable composition
JP2009035607A (en) Curable organic polymer and curable composition containing the same