WO2022075268A1 - Program for predicting frequency of plumbing area related problems - Google Patents

Program for predicting frequency of plumbing area related problems Download PDF

Info

Publication number
WO2022075268A1
WO2022075268A1 PCT/JP2021/036651 JP2021036651W WO2022075268A1 WO 2022075268 A1 WO2022075268 A1 WO 2022075268A1 JP 2021036651 W JP2021036651 W JP 2021036651W WO 2022075268 A1 WO2022075268 A1 WO 2022075268A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
information
association
frequency
troubles
Prior art date
Application number
PCT/JP2021/036651
Other languages
French (fr)
Japanese (ja)
Inventor
綾子 澤田
Original Assignee
Assest株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2020168930A external-priority patent/JP2022061135A/en
Priority claimed from JP2020168929A external-priority patent/JP2022061134A/en
Application filed by Assest株式会社 filed Critical Assest株式会社
Publication of WO2022075268A1 publication Critical patent/WO2022075268A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply

Definitions

  • the present invention relates to a water-related trouble occurrence frequency prediction program.
  • Examples of water problems in building structures such as buildings, condominiums, and detached houses include clogging of toilets, water leaks, malfunctions, clogging of kitchens and washrooms, water leaks, malfunctions, clogging of bath drains, and showers. There is a water leak in the faucet or a malfunction. Since there are many cases where water problems in such building structures cannot be solved by the residents alone, there are many cases where a specialist is dispatched and the work is outsourced.
  • the present invention has been devised in view of the above-mentioned problems, and an object thereof is to predict the frequency of water troubles in a building structure on a regional basis. To provide a forecasting program.
  • the water-related trouble occurrence frequency prediction program is a water-related trouble occurrence frequency prediction program that predicts the occurrence frequency of water-related troubles in a building structure on a regional basis, and is a construction that predicts the occurrence frequency of water-related troubles.
  • the information acquisition step to acquire the area identification information to specify the structure or the area where it is located, the reference sales data of the contractor dispatched to deal with the water supply trouble in each area, and the occurrence of the water supply trouble.
  • a higher degree of association is set with the reference sales data corresponding to the past sales data of the region in the region-specific information acquired in the above information acquisition step by referring to the degree of association with the frequency in three or more stages. It is characterized by having a computer execute a search step for searching for the frequency of troubles around water.
  • FIG. 1 It is a block diagram which shows the whole structure of the system to which this invention is applied. It is a figure which shows the specific configuration example of a search device. It is a figure for demonstrating the operation of this invention. It is a figure for demonstrating the operation of this invention. It is a figure for demonstrating the operation of this invention. It is a figure for demonstrating the operation of this invention. It is a figure for demonstrating the operation of this invention. It is a figure for demonstrating the operation of this invention. It is a figure for demonstrating the operation of this invention. It is a figure for demonstrating the operation of this invention. It is a figure for demonstrating the operation of this invention. It is a figure for demonstrating the operation of this invention. It is a figure for demonstrating the operation of this invention. It is a figure for demonstrating the operation of this invention. It is a figure for demonstrating the operation of this invention. It is a figure for demonstrating the operation of this invention. It is a figure for demonstrating the operation of this invention. It is
  • FIG. 1 is a block diagram showing an overall configuration of a water trouble occurrence frequency system 1 in which a water trouble occurrence frequency prediction program to which the present invention is applied is implemented.
  • the water trouble occurrence frequency system 1 includes an information acquisition unit 9, a search device 2 connected to the information acquisition unit 9, and a database 3 connected to the search device 2.
  • the information acquisition unit 9 is a device for a person using this system to input various commands and information, and specifically, is composed of a keyboard, buttons, a touch panel, a mouse, a switch, and the like.
  • the information acquisition unit 9 is not limited to a device for inputting text information, and may be configured by a device such as a microphone that can detect voice and convert it into text information. Further, the information acquisition unit 9 may be configured as an image pickup device capable of taking an image of a camera or the like.
  • the information acquisition unit 9 may be configured by a scanner having a function of recognizing a character string from a paper-based document. Further, the information acquisition unit 9 may be integrated with the search device 2 described later. The information acquisition unit 9 outputs the detected information to the search device 2.
  • the information acquisition unit 9 may be configured by means for specifying the position information by scanning the map information. Further, the information acquisition unit 9 may be composed of an illuminance sensor for measuring a temperature sensor, a humidity sensor, and a wind direction sensor. Further, the information acquisition unit 9 may be configured by a communication interface for acquiring data about the weather from the Japan Meteorological Agency or a private weather forecast company. Further, the information acquisition unit 9 may be composed of a body sensor that is attached to the body to detect body data, and the body sensor detects, for example, body temperature, heart rate, blood pressure, number of steps, walking speed, and acceleration. It may be composed of a sensor for the purpose. Further, the body sensor may acquire biometric data of not only humans but also animals. Further, the information acquisition unit 9 may be configured as a device for acquiring information such as drawings by scanning or reading from a database. In addition to these, the information acquisition unit 9 may be configured by an odor sensor that detects odors and scents.
  • the information acquisition unit 9 is dispatched to deal with water-related troubles, such as sales data for each region recorded in the database of a company that solves problems by actually performing work, the number of dispatches for each region, and the like. It may be configured by means for acquiring the dispatch frequency data calculated according to the above.
  • Database 3 stores various information necessary for performing the frequency of water troubles.
  • the information necessary for determining the frequency of water-related troubles is the sales data for reference of the vendors dispatched for the water-related troubles in each region, and the reference of the vendors dispatched for the water-related troubles in each region.
  • Dispatch frequency data, reference refusal rate of vendors requested to respond to water problems, reference population estimation data in each region, reference geographical information in each region, reference troubles related to the type of trouble in each region Type information, reference statistical information on the types of building structures in each area, etc. are accumulated in relation to the frequency of water-related troubles as output data.
  • the database 3 in addition to the reference sales data and the reference dispatch frequency data of the vendor, the reference rejection rate of the vendor, the population estimation data for reference, the geographical information for reference, and the trouble type for reference are stored in the database 3. Any one or more of the information and the reference statistical information regarding the type of the building structure and the frequency of occurrence of troubles around the water are stored in association with each other.
  • the search device 2 is composed of, for example, an electronic device such as a personal computer (PC), but is embodied in any other electronic device such as a mobile phone, a smartphone, a tablet terminal, a wearable terminal, etc., in addition to the PC. It may be the one to be converted. The user can obtain a search solution by the search device 2.
  • PC personal computer
  • FIG. 2 shows a specific configuration example of the search device 2.
  • the search device 2 performs wired communication or wireless communication with a control unit 24 for controlling the entire search device 2 and an operation unit 25 for inputting various control commands via an operation button, a keyboard, or the like.
  • a communication unit 26 for the purpose, a determination unit 27 for making various judgments, and a storage unit 28 for storing a program for performing a search to be executed represented by a hard disk or the like are connected to the internal bus 21, respectively. .. Further, a display unit 23 as a monitor that actually displays information is connected to the internal bus 21.
  • the control unit 24 is a so-called central control unit for controlling each component mounted in the search device 2 by transmitting a control signal via the internal bus 21. Further, the control unit 24 transmits various control commands via the internal bus 21 according to the operation via the operation unit 25.
  • the operation unit 25 is embodied by a keyboard or a touch panel, and an execution command for executing a program is input from the user.
  • the operation unit 25 notifies the control unit 24 of the execution command.
  • the control unit 24, including the discrimination unit 27, executes a desired processing operation in cooperation with each component.
  • the operation unit 25 may be embodied as the information acquisition unit 9 described above.
  • the discrimination unit 27 discriminates the search solution.
  • the discriminating unit 27 reads out various information stored in the storage unit 28 and various information stored in the database 3 as necessary information when executing the discriminating operation.
  • the discriminating unit 27 may be controlled by artificial intelligence. This artificial intelligence may be based on any well-known artificial intelligence technology.
  • the display unit 23 is configured by a graphic controller that creates a display image based on the control by the control unit 24.
  • the display unit 23 is realized by, for example, a liquid crystal display (LCD) or the like.
  • the storage unit 28 When the storage unit 28 is composed of a hard disk, predetermined information is written to each address based on the control by the control unit 24, and is read out as needed. Further, the storage unit 28 stores a program for executing the present invention. This program will be read and executed by the control unit 24.
  • the water-related trouble occurrence frequency system for example, as shown in FIG. 3, there are three or more stages of reference sales data of a vendor dispatched to deal with water-related troubles in each region and the occurrence frequency of water-related troubles. It is assumed that the degree of association is set in advance.
  • a contractor dispatched to deal with water problems in each area is actually a site dispatched to a request for water problems from a resident of a building structure (building, condominium, detached house, apartment, etc.). It is a contractor who performs repair work at. Problems around water include clogging of toilets, water leaks, malfunctions, clogging of kitchens and washrooms, water leaks, malfunctions, clogging of bath drains, water leaks of showers and faucets, and malfunctions.
  • Such vendors often manage sales in each region.
  • the unit of each area may be classified in detail into a region, a prefecture, a municipality, a town, a street number, a number, and even a building or a condominium unit. Sales are managed on a yearly, monthly, weekly, daily, etc. basis.
  • the reference sales data for each region of such a trader is acquired for the learning data.
  • this reference sales data may be represented by the average value or standard deviation of a certain period such as yearly, monthly, weekly, daily, etc., or may be represented by fluctuation trend data or fluctuation transition data. good.
  • the frequency of water-related troubles indicates how often water-related troubles can occur in each region.
  • the frequency of occurrence of this water trouble may be composed of any denominator such as yearly, monthly, weekly, daily, and five-year units.
  • the occurrence of water-related troubles may be counted as one time each time the resident of the building structure notifies the contractor that there was a water-related trouble.
  • the frequency of such troubles around water can be obtained after the fact by counting the frequency of such troubles around the water and recording it in the database held by the vendor.
  • the frequency of troubles around water is organized by region as described above.
  • the input data is the reference sales data P01, P02, and P03 in each region.
  • the reference sales data P01, P02, and P03 as such input data are linked to the frequency of troubles around the water as output.
  • the reference sales data P01, P02, and P03 are related to each other through the degree of association of three or more levels with respect to the trouble occurrence frequencies A to D around the water as the output solution.
  • the frequency of occurrence of this trouble is shown, for example, A is 5 times a month, B is 20 times a month, and the like, but this is not limited to the monthly frequency, and may be any period unit frequency.
  • the sales data for reference is arranged on the left side via this degree of association, and the frequency of troubles around each water is arranged on the right side via the degree of association.
  • the degree of association indicates the degree of trouble occurrence frequency and the degree of relevance to the reference sales data arranged on the left side.
  • this degree of association is an index showing what kind of trouble occurrence frequency each reference sales data is likely to be associated with, and selects the most probable trouble occurrence frequency for each reference sales data. It shows the accuracy above.
  • w13 to w19 are shown as the degree of association. These w13 to w19 are shown in 10 stages as shown in Table 1 below, and the closer to 10 points, the higher the degree of relevance of each combination as an intermediate node to the frequency of trouble occurrence as output. On the contrary, the closer to one point, the lower the degree of relation between each combination as an intermediate node and the frequency of trouble occurrence as an output.
  • the search device 2 acquires in advance the degree of association w13 to w19 of three or more stages shown in FIG. That is, the search device 2 accumulates a past data set as to which of the reference sales data of each region and the trouble occurrence frequency in that case is adopted and evaluated in determining the actual search solution. By analyzing and analyzing these, the degree of association shown in FIG. 3 is created.
  • This analysis may be performed by artificial intelligence.
  • analysis is performed from past sales and various data of trouble occurrence frequency. If the annual average sales in the area P01 are 5.6 million yen and there are many cases of trouble occurrence frequency A, the degree of association that leads to the evaluation of this trouble occurrence frequency is set higher, and the trouble occurrence frequency B is set. If there are many cases, set a higher degree of association that leads to the evaluation of the frequency of trouble occurrence.
  • the trouble occurrence frequency A and the trouble occurrence frequency C are linked, but from the previous case, the degree of association of w13 connected to the trouble occurrence frequency A is set to 7 points, and the trouble occurs.
  • the degree of association of w14 connected to the occurrence frequency C is set to 2 points.
  • the degree of association shown in FIG. 3 may be composed of the nodes of the neural network in artificial intelligence. That is, the weighting coefficient for the output of the node of this neural network corresponds to the above-mentioned degree of association.
  • the network is not limited to a neural network, and may be composed of all decision-making factors constituting artificial intelligence.
  • reference sales data for each region is input as input data, trouble occurrence frequency is output as output data, and at least one hidden layer between the input node and the output node is output. May be provided and machine learning may be performed.
  • the above-mentioned degree of association is set in either one or both of the input node and the hidden layer node, and this is the weight of each node, and the output is selected based on this. Then, when this degree of association exceeds a certain threshold value, the output may be selected.
  • Such degree of association is what is called learned data in artificial intelligence. After creating such learned data through a data set of sales data for reference in each region before and the frequency of troubles around water, it is necessary to actually determine the frequency of troubles in the future. The trouble occurrence frequency will be searched using the above-mentioned learned data.
  • These data sets may be created by reading from a database managed by the vendor.
  • the degree of association shown in FIG. 3 (Table 1) acquired in advance is referred to.
  • the trouble occurrence frequency B is associated with w15 and the trouble occurrence frequency C is associated with the association degree w16 through the association degree.
  • the trouble occurrence frequency B having the highest degree of association is selected as the optimum solution.
  • it is not essential to select the one with the highest degree of association as the optimum solution, and the trouble occurrence frequency C in which the degree of association itself is recognized although the degree of association is low may be selected as the optimum solution.
  • an output solution to which the arrows are not connected may be selected, and any other output solution may be selected in any other priority as long as it is based on the degree of association.
  • the collation of sales data and reference sales data is based on whether or not the sales average is within the range of ⁇ 10% if these data are represented by the sales average for a certain period. It may be determined whether they are the same or similar. Further, as long as the sales data is shown in a time-series transition graph, it may be determined based on the similarity of the trends.
  • the reference refusal rate is the probability that a resident of a building structure actually requested a dispatch based on a water supply trouble to the contractor, and the contractor could not accept the request and refused it. ..
  • This refusal rate is expressed by the number of refusals for the number of dispatch requests.
  • the number of dispatch requests, the number of times of refusal, and each region are managed by the contractor on the database 3.
  • the refusal rate can be obtained by reading the number of refusals for the number of dispatch requests from the database 3 for the area where the refusal rate is actually desired to be known.
  • the frequency of water-related troubles depends on the sales in the area, as well as the refusal rate, because if the number of dispatch requests is too large, there are many cases of refusal. Therefore, by combining the reference rejection rate with the learning data in addition to the reference sales data, the trouble occurrence frequency can be determined with higher accuracy. Therefore, in addition to the reference sales data, the reference rejection rate is combined to form the above-mentioned degree of association.
  • the input data is, for example, reference sales data P01 to P03 and reference refusal rate P14 to 17.
  • the intermediate node shown in FIG. 5 is a combination of the reference sales data and the reference rejection rate as such input data.
  • Each intermediate node is further linked to the output. In this output, the frequency of trouble occurrence as an output solution is displayed.
  • Each combination of reference sales data and reference rejection rate (intermediate node) is associated with each other through three or more levels of association with the frequency of trouble occurrence as this output solution.
  • the reference sales data and the reference rejection rate are arranged on the left side through this degree of association, and the trouble occurrence frequency is arranged on the right side through this degree of association.
  • the degree of association indicates the degree of trouble occurrence frequency and the degree of relevance to the reference sales data and the reference rejection rate arranged on the left side.
  • this degree of association is an index showing what kind of trouble occurrence frequency each reference sales data and reference rejection rate are likely to be associated with, and is based on the reference sales data and reference rejection rate. It shows the accuracy in selecting the most probable trouble occurrence frequency. Therefore, the optimum trouble occurrence frequency is searched for by combining these reference sales data and the reference rejection rate.
  • w13 to w22 are shown as the degree of association. As shown in Table 1, these w13 to w22 are shown in 10 stages, and the closer to 10 points, the higher the degree of relevance of each combination as an intermediate node to the output, and conversely, 1 point. The closer they are, the less relevant each combination as an intermediate node is to the output.
  • the search device 2 acquires in advance the degree of association w13 to w22 of three or more stages shown in FIG. That is, the search device 2 accumulates past data as to which of the reference sales data, the reference rejection rate, and the frequency of trouble occurrence in that case is suitable for determining the actual search solution. By analyzing and analyzing these, the degree of association shown in FIG. 5 is created.
  • This analysis may be performed by artificial intelligence.
  • the trouble occurrence frequency is analyzed from the past data. If there are many cases where the trouble occurrence frequency is A, the degree of association leading to this trouble occurrence frequency A is set higher, and if there are many cases of trouble occurrence frequency B and there are few cases of trouble occurrence frequency A, trouble occurs. The degree of association leading to the occurrence frequency B is set high, and the degree of association leading to the trouble occurrence frequency A is set low.
  • the output of the trouble occurrence frequency A and the trouble occurrence frequency B is linked, but from the previous case, the degree of association of w13 connected to the trouble occurrence frequency A is set to 7 points and the trouble occurrence frequency B is set.
  • the degree of association of the connected w14 is set to 2 points.
  • the degree of association shown in FIG. 5 may be composed of the nodes of the neural network in artificial intelligence. That is, the weighting coefficient for the output of the node of this neural network corresponds to the above-mentioned degree of association.
  • the network is not limited to a neural network, and may be composed of all decision-making factors constituting artificial intelligence. Other than that, the configuration related to artificial intelligence is the same as the description in FIG.
  • the node 61b is a node in which the reference sales data P01 is combined with the reference rejection rate P14, and the trouble occurrence frequency C has a connection degree of w15 and the trouble occurrence frequency E.
  • the degree of association is w16.
  • the node 61c is a node in which the reference rejection rates P15 and P17 are combined with respect to the reference sales data P02, and the degree of association of the trouble occurrence frequency B is w17 and the degree of association of the trouble occurrence frequency D is w18. ..
  • Such degree of association is what is called learned data in artificial intelligence. After creating such learned data, when actually determining the trouble occurrence frequency from now on, the above-mentioned learned data will be used. In such a case, the area where the trouble occurrence frequency is actually to be determined is input in the same manner. Then, the sales data and the error rate organized for each region in the database 3 are acquired.
  • the degree of association shown in FIG. 5 (Table 1) acquired in advance is referred to.
  • the node 61d is associated via the degree of association.
  • the node 61d is associated with the trouble occurrence frequency C by w19 and the trouble occurrence frequency D by the association degree w20.
  • the trouble occurrence frequency C having the highest degree of association is selected as the optimum solution.
  • Table 2 below shows an example of the degree of association w1 to w12 extending from the input.
  • the intermediate node 61 may be selected based on the degree of association w1 to w12 extending from this input. That is, the larger the degree of association w1 to w12, the heavier the weighting in the selection of the intermediate node 61 may be. However, the association degrees w1 to w12 may all have the same value, and the weightings in the selection of the intermediate node 61 may all be the same.
  • the combination with the reference population estimation data instead of the above-mentioned reference rejection rate and the frequency of trouble occurrence for the combination have three or more levels of association.
  • the solution may be searched based on the above.
  • This reference population estimation data which is added as an explanatory variable instead of the reference rejection rate, shows the population estimation in the area, and is the population pyramid (a diagram showing the distribution of population by age group and gender) and its time series.
  • This data may include the transition, the number of in-migrants, the number of out-migrants, the number of in-migrant households, the number of out-migrant households in the area, and the classification by occupation for each population.
  • the frequency of troubles is affected by such population estimates in addition to sales data. The larger the elderly population, the more often it is not possible to deal with clogged toilets, etc., and the chances of requesting dispatch may increase. In addition, as the number of in-migrants-the number of out-migrants increases, the population is increasing, and it is possible that the frequency of troubles will increase accordingly.
  • Such reference population estimation data is managed in the database 3 for each region.
  • the combination with the reference geographical information instead of the above-mentioned reference rejection rate and the frequency of trouble occurrence for the combination have three or more levels of association.
  • the solution may be searched based on the above.
  • This reference geographic information which is added as an explanatory variable instead of the reference rejection rate, indicates all geographic information in the area, including rivers, presence or absence of the sea, location, distance, area, and how many meters above sea level. , Information on contour lines, information on roads, relative positional relationship of building structures to rivers, etc. Such reference geographical information is managed in the database 3 for each region.
  • Such geographical information also affects the frequency of water troubles. If it is close to a river, there is a high possibility that problems around the water will occur, so by combining this with sales data for reference, the frequency of problems can be determined through the degree of association. The discrimination accuracy can be improved.
  • sales data and geographical information in the area where the trouble occurrence frequency is actually determined are acquired. Search for the optimal trouble occurrence frequency based on newly acquired sales data and geographical information. In such a case, the trouble occurrence frequency is searched based on the above-mentioned method with reference to the degree of association acquired in advance.
  • the combination with the reference trouble type information instead of the above-mentioned reference rejection rate and the trouble occurrence frequency for the combination have three or more levels of association.
  • the solution may be searched based on the above.
  • This reference trouble type information which is added as an explanatory variable instead of the reference refusal rate, indicates information on all types of trouble in the area.
  • the types of this trouble are classified into types such as clogging of toilets, water leaks, malfunctions, clogging of kitchens and washrooms, water leaks, malfunctions, clogging of bath drains, water leaks of showers and faucets, malfunctions, etc. ing.
  • Such reference trouble type information is managed in the database 3 for each region.
  • Such trouble type information also affects the frequency of water troubles. Since the frequency of troubles may differ depending on whether there are many water leaks in the water pipes or the clogging of the drainage outlet, this can be combined with the sales data for reference to determine the frequency of troubles through the degree of association. , The discrimination accuracy can be improved.
  • the sales data in the area where the trouble occurrence frequency is actually determined and the trouble type information are acquired. Search for the optimum trouble occurrence frequency based on the newly acquired sales data and trouble type information. In such a case, the trouble occurrence frequency is searched based on the above-mentioned method with reference to the degree of association acquired in advance.
  • the combination with the reference statistical information instead of the above-mentioned reference rejection rate and the frequency of trouble occurrence for the combination have three or more levels of association.
  • the solution search may be performed based on the above.
  • This reference statistical information which is added as an explanatory variable instead of the reference refusal rate, is statistical information regarding the type of building structure in the area.
  • the types of building structures are statistically based on the age and construction method (lightweight steel frame, heavy steel frame, reinforced concrete structure, wooden structure, etc.) of each building structure. Has been analyzed. Each of these types, construction methods, and age ratios are statistically analyzed to facilitate comparative analysis between regions.
  • Such reference statistical information is managed in the database 3 for each region.
  • this statistical information may be composed of statistical information regarding the age of building structures in the area.
  • Such statistical information also affects the frequency of water troubles.
  • sales data and statistical information in the area where the trouble occurrence frequency is actually determined are acquired. Search for the optimal trouble occurrence frequency based on newly acquired sales data and statistical information. In such a case, the trouble occurrence frequency is searched based on the above-mentioned method with reference to the degree of association acquired in advance.
  • reference information As a substitute for the above-mentioned reference information (reference rejection rate, reference population estimation data, reference geographical information, reference trouble type information, reference statistical information, etc.), it is related to the timing when reference sales data was acquired.
  • Reference time information may be used.
  • the reference time information referred to here is composed of all data indicating the time such as month, week, day, season, etc. as the time when the reference sales data is acquired. Since there is a time when water troubles are likely to occur at this time as well, it affects the frequency of water troubles, so it is possible to realize a more accurate solution search by making a judgment including this.
  • the area-specific information for specifying the building structure for predicting the frequency of occurrence of water-related troubles or the area where the area-specific information is located, and the time information regarding the time when the area-specific information was acquired are acquired.
  • the trouble around the water is based on the above-mentioned degree of association. Search for the frequency of occurrence of.
  • the weather at the time when the area specific information was acquired may be used as a substitute for the above-mentioned reference information (reference rejection rate, reference population estimation data, reference geographical information, reference trouble type information, reference statistical information, etc.).
  • Reference weather information for reference may be used.
  • the reference weather information referred to here is all information related to the weather at the time when the reference sales data was acquired, and is composed of all data related to climate, temperature, humidity, weather, wind direction, wind speed, thunderstorm, typhoon, drought, etc. Will be done. Since the weather is also a factor that affects water problems, this is added to the explanatory variables.
  • the area-specific information for specifying the building structure for predicting the frequency of water-related troubles or the area where the area-specific information is located and the weather information regarding the weather at the time when the area-specific information is acquired are acquired.
  • the trouble around the water is based on the above-mentioned degree of association. Search for the frequency of occurrence of.
  • the degree of association is expressed by a 10-step evaluation, but it is not limited to this, and it may be expressed by a degree of association of 3 or more levels, and conversely, it may be expressed by 3 or more levels. For example, 100 steps or 1000 steps may be used.
  • this degree of association does not include those expressed in two stages, that is, whether or not they are related to each other, either 1 or 0.
  • the present invention having the above-mentioned configuration, anyone can easily determine and search for the frequency of trouble occurrence without any special skill or experience. Further, according to the present invention, it is possible to make a judgment of this search solution with higher accuracy than that made by a human being. Further, by configuring the above-mentioned degree of association with artificial intelligence (neural network or the like), it is possible to further improve the discrimination accuracy by learning this.
  • artificial intelligence neural network or the like
  • the above-mentioned input data and output data may not be completely the same in the process of learning, so that the input data and the output data may be classified by type. That is, the information P01, P02, ... P15, 16, ... That constitute the input data are classified according to the criteria classified in advance on the system side or the user side according to the content of the information, and the classified inputs. A dataset may be created between the data and the output data and trained.
  • the degree of association in addition to the reference sales data, the reference rejection rate of the vendor, the reference population estimation data, the reference geographical information, the reference trouble type information, and the reference statistical information regarding the type of the building structure.
  • the degree of association includes the reference rejection rate of the vendor, the reference population estimation data, the reference geographical information, the reference trouble type information, the reference statistical information regarding the type of building structure, and the reference. It may be composed of a combination of any two or more of the time information and the reference weather information.
  • the degree of association is the reference sales data or, in addition to this, the reference rejection rate of the contractor, the reference population estimation data, the reference geographical information, the reference trouble type information, and the reference statistical information regarding the type of the building structure. , Any one or more of the reference time information and the reference weather information, and other factors may be added to this combination to form the degree of association.
  • the present invention determines the frequency of trouble occurrence based on the degree of association between two or more types of information, the reference information U and the reference information V.
  • the reference information U is the reference sales data
  • the reference information V is the reference rejection rate of the vendor, the reference population estimation data, the reference geographical information, the reference trouble type information, and the reference regarding the type of the building structure. It shall be one of the statistical information.
  • the output obtained for the reference information U may be used as the input data as it is, and may be associated with the output (trouble occurrence frequency) via the intermediate node 61 in combination with the reference information V.
  • reference information U reference sales data
  • this is used as an input as it is, and the degree of association with other reference information V is used.
  • the output (frequency of trouble occurrence) may be searched.
  • the warning information such as an alarm, an alarm, etc. based on the trouble occurrence frequency may be transmitted.
  • the optimum solution search is performed through the degree of association set in three or more stages.
  • the degree of association can be described by, for example, a numerical value from 0 to 100% in addition to the above-mentioned 10 steps, but is not limited to this, and any step can be described as long as it can be described by a numerical value of 3 or more steps. It may be configured.
  • the degree of association is high under the situation where there are multiple possible candidates for the search solution. It is also possible to search and display in order. If the user can be displayed in descending order of the degree of association in this way, it is possible to preferentially display more probable search solutions.
  • the present invention it is possible to judge without overlooking the discrimination result of the extremely low output such as the degree of association of 1%. It warns the user that even a judgment result with an extremely low degree of association is connected as a slight sign, and may be useful as the judgment result once every tens or hundreds of times. be able to.
  • the search policy can be determined by the method of setting the threshold value by performing the search based on the degree of association of three or more stages. If the threshold value is lowered, even if the above-mentioned degree of association is 1%, it can be picked up without omission, but it is unlikely that a more appropriate discrimination result can be detected favorably, and a lot of noise may be picked up. be. On the other hand, if the threshold value is raised, there is a high possibility that the optimum search solution can be detected with high probability, but the degree of association is usually low and it is passed through, but it is suitable to appear once in tens or hundreds of times. Sometimes the solution is overlooked. It is possible to decide which one should be emphasized based on the ideas of the user side and the system side, but it is possible to increase the degree of freedom in selecting the points to be emphasized.
  • the above-mentioned degree of association may be updated.
  • This update may reflect information provided, for example, via a public communication network such as the Internet.
  • a public communication network such as the Internet.
  • the degree of association is increased or decreased according to these.
  • this update is equivalent to learning in terms of artificial intelligence. It can be said that it is a learning act because it acquires new data and reflects it in the learned data.
  • the process of first creating a trained model and the above-mentioned update may use not only supervised learning but also unsupervised learning, deep learning, reinforcement learning, and the like.
  • unsupervised learning instead of reading and learning the data set of input data and output data, information corresponding to the input data is read and trained, and the degree of association related to the output data is self-formed from there. You may let it.
  • the data set of the reference refusal rate and the frequency of occurrence of troubles around water is learned.
  • the input data is the reference refusal rates P01, P02, and P03 in each region.
  • the reference rejection rates P01, P02, and P03 as such input data are linked to the frequency of troubles around water as an output.
  • the reference refusal rates P01, P02, and P03 are related to each other through the degree of association of three or more levels with respect to the trouble occurrence frequencies A to D around the water as the output solution.
  • the reference refusal rate is arranged on the left side through this degree of association, and the frequency of troubles around each water is arranged on the right side through this degree of association.
  • the degree of association indicates the degree of trouble occurrence frequency and the degree of relevance to the reference refusal rate arranged on the left side. In other words, this degree of association is an index showing what kind of trouble occurrence frequency each reference rejection rate is likely to be associated with, and the most probable trouble occurrence frequency is selected for each reference rejection rate. It shows the accuracy above. In the example of FIG. 7, w13 to w19 are shown as the degree of association.
  • w13 to w19 are shown in 10 stages as shown in Table 1 below, and the closer to 10 points, the higher the degree of relevance of each combination as an intermediate node to the frequency of trouble occurrence as output. On the contrary, the closer to one point, the lower the degree of relation between each combination as an intermediate node and the frequency of trouble occurrence as an output.
  • the search device 2 acquires in advance the degree of association w13 to w19 having three or more stages. That is, the search device 2 accumulates a past data set as to which of the reference refusal rate of each region and the frequency of trouble occurrence in that case is adopted and evaluated in determining the actual search solution. , By analyzing and analyzing these, the degree of association is created.
  • this degree of association may be composed of the nodes of the neural network in artificial intelligence. That is, the weighting coefficient for the output of the node of this neural network corresponds to the above-mentioned degree of association.
  • the network is not limited to a neural network, and may be composed of all decision-making factors constituting artificial intelligence.
  • the reference refusal rate of each region is input as input data, the trouble occurrence frequency is output as output data, and at least one hidden layer between the input node and the output node is output. May be provided and machine learning may be performed.
  • the above-mentioned degree of association is set in either one or both of the input node and the hidden layer node, and this is the weight of each node, and the output is selected based on this. Then, when this degree of association exceeds a certain threshold value, the output may be selected.
  • Such degree of association is what is called learned data in artificial intelligence. After creating such learned data through a data set of the reference refusal rate of each region before and the frequency of troubles around water, it is necessary to actually determine the frequency of troubles from now on. The trouble occurrence frequency will be searched using the above-mentioned learned data.
  • These data sets may be created by reading from a database managed by the vendor.
  • the degree of association acquired in advance is referred to.
  • the trouble occurrence frequency B is associated with the association degree w15 and the trouble occurrence frequency C is associated with the association degree w16 via the association degree.
  • the trouble occurrence frequency B having the highest degree of association is selected as the optimum solution.
  • it is not essential to select the one with the highest degree of association as the optimum solution, and the trouble occurrence frequency C in which the degree of association itself is recognized although the degree of association is low may be selected as the optimum solution.
  • an output solution to which the arrows are not connected may be selected, and any other output solution may be selected in any other priority as long as it is based on the degree of association.
  • the collation of the refusal rate and the refusal rate for reference is based on whether or not the sales average is within the range of ⁇ 10% if these data are represented by the sales average for a certain period. It may be determined whether they are the same or similar. Further, as long as the refusal rate is shown in the time-series transition graph, it may be discriminated based on the similarity of the trends.
  • this embodiment it may be focused on a certain area. Then, it may predict how often water troubles may occur in the area.
  • the reference timing information and the data set of the frequency of occurrence of water troubles are learned.
  • the input data is reference timing information P01, P02, P03 in each region.
  • the reference timing information P01, P02, and P03 as such input data are linked to the frequency of troubles around the water as an output.
  • the reference timing information P01, P02, and P03 are related to each other through the degree of association of three or more levels with respect to the trouble occurrence frequencies A to D around the water as the output solution.
  • the reference timing information is arranged on the left side via this degree of association, and the frequency of troubles around each water is arranged on the right side via the degree of association.
  • the degree of association indicates the degree of trouble occurrence frequency and the degree of relevance to the reference timing information arranged on the left side. In other words, this degree of association is an index showing what kind of trouble occurrence frequency each reference timing information is likely to be associated with, and selects the most probable trouble occurrence frequency for each reference timing information. It shows the accuracy above. In the example of FIG. 9, w13 to w19 are shown as the degree of association.
  • w13 to w19 are shown in 10 stages as shown in Table 1 below, and the closer to 10 points, the higher the degree of relevance of each combination as an intermediate node to the frequency of trouble occurrence as output. On the contrary, the closer to one point, the lower the degree of relation between each combination as an intermediate node and the frequency of trouble occurrence as an output.
  • the search device 2 acquires in advance the degree of association w13 to w19 of three or more stages shown in FIG. That is, the search device 2 accumulates a past data set as to which of the reference timing information of each region and the trouble occurrence frequency in that case is adopted and evaluated in determining the actual search solution. , By analyzing and analyzing these, the degree of association is created.
  • this degree of association may be composed of the nodes of the neural network in artificial intelligence. That is, the weighting coefficient for the output of the node of this neural network corresponds to the above-mentioned degree of association.
  • the network is not limited to a neural network, and may be composed of all decision-making factors constituting artificial intelligence.
  • Such degree of association is what is called learned data in artificial intelligence. After creating such learned data through the data set of the reference timing information of each region before and the frequency of troubles around the water, in order to actually determine the frequency of troubles newly from now on. The trouble occurrence frequency will be searched using the above-mentioned learned data.
  • These data sets may be created by reading from a database managed by the vendor.
  • the degree of association shown in FIG. 9 (Table 1) acquired in advance is referred to.
  • the trouble occurrence frequency B is associated with w15 and the trouble occurrence frequency C is associated with the association degree w16 via the association degree.
  • the trouble occurrence frequency B having the highest degree of association is selected as the optimum solution.
  • it is not essential to select the solution having the highest degree of association as the optimum solution, and the trouble occurrence frequency C in which the degree of association itself is recognized although the degree of association is low may be selected as the optimum solution.
  • an output solution to which the arrows are not connected may be selected, and any other output solution may be selected in any other priority as long as it is based on the degree of association.
  • the collation of the timing information and the reference timing information is based on whether or not the sales average is within the range of ⁇ 10% if these data are represented by the sales average for a certain period. It may be determined whether they are the same or similar. Further, if the time information is shown in a time-series transition graph, it may be discriminated based on the similarity of the trends.
  • both the first embodiment and the second embodiment are not limited to the above-described embodiment, and as shown in FIG. 10, for example, the reference information as the keynote and the frequency of occurrence of troubles around water.
  • the solution search is performed based on the degree of association between the reference information according to the newly acquired information and the frequency of occurrence of troubles around the water in three or more stages.
  • the reference information that is the basis is all the above-mentioned reference information (reference sales data, reference rejection rate, reference population estimation data, reference geographical information, reference trouble type information, reference statistical information, reference. Time of use information, weather information for reference, etc.) can be applied.
  • the solution search is performed based on the above-mentioned method.
  • the search solution obtained through the degree of association may be further modified based on other reference information, or the weighting may be changed.
  • the other reference information referred to here corresponds to any reference information other than the reference information which is the keynote when any of the above-mentioned reference information is used as the keynote reference information.
  • the frequency B of the trouble around the water was previously determined in the certain reference geographical information F.
  • the search solution B as the frequency of occurrence of the trouble around the water is subjected to the processing of increasing the weight, in other words, the water around. It is set in advance to perform a process that leads to the search solution B of the frequency of occurrence of the trouble.
  • the other reference information G is an analysis result that suggests the search solution C as the frequency of occurrence of troubles around water
  • the reference information F is the search as the frequency of occurrence of troubles around water. It is assumed that the analysis result suggests the solution D.
  • the actually acquired information is the same as or similar to the reference information G
  • a process of increasing the weighting of the occurrence frequency C of the trouble around the water is performed.
  • the actually acquired information is the same as or similar to the reference information F
  • a process of increasing the weighting of the occurrence frequency D of the trouble around the water is performed. That is, the degree of association itself, which leads to the frequency of troubles around water, may be controlled based on the reference information F to H.
  • the search solution obtained may be modified based on the reference information F to H.
  • how to correct the frequency of water troubles as a search solution based on the reference information F to H should reflect what was designed on the system side each time. Become.
  • the reference information is not limited to the case where it is composed of any one type, and the solution search may be performed based on two or more types of reference information. Similarly, in such a case, the more the case leads to the frequency of occurrence of water troubles suggested by the reference information, the higher the modification of the discrimination type as the search solution obtained through the degree of association may be made.
  • the reference information is any reference information (reference sales data, reference rejection rate, reference population estimation data, reference geographical information, reference trouble type information, reference) in the first embodiment and the second embodiment.
  • Reference information includes any reference information in the first and second embodiments other than the underlying reference information.
  • the other reference information includes any reference information in the other first embodiment and the second embodiment.
  • the frequency of water troubles can be estimated by searching for a solution in the same way.
  • the trouble around the water occurs with respect to the search solution obtained through the degree of association through further other reference information (reference information F, G, H, etc.).
  • the frequency may be modified.
  • the degree of association may be learned by combining not only 1 but also 2 or more other reference information.
  • the degree of association may be formed between only the reference information that is the keynote and the frequency of occurrence of troubles around water.
  • This reference information as a keynote is any reference information (reference sales data, reference rejection rate, reference population estimation data, reference geographical information, reference trouble type) in the first embodiment and the second embodiment.
  • Information, reference statistical information, reference time information, reference weather information, etc.) are also applicable.
  • the solution search method of FIG. 12 is omitted below by quoting the explanation of FIG.

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Economics (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Strategic Management (AREA)
  • Human Resources & Organizations (AREA)
  • General Physics & Mathematics (AREA)
  • Marketing (AREA)
  • Tourism & Hospitality (AREA)
  • General Business, Economics & Management (AREA)
  • Health & Medical Sciences (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Entrepreneurship & Innovation (AREA)
  • General Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • General Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Computational Linguistics (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • Biomedical Technology (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • Primary Health Care (AREA)
  • Development Economics (AREA)
  • Game Theory and Decision Science (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

[Problem] To predict, on a regional basis, the frequency of plumbing area related problems in buildings/structures. [Solution] A program for predicting the frequency of plumbing area related problems predicts, on a regional basis, the frequency of with which plumbing area related problems occur in buildings/structures, wherein the program causes a computer to execute: an information acquisition step of acquiring region-specific information for specifying a building/structure or a region where the building/ structure is located, for which the frequency of plumbing area related problems is to be predicted; and a search step of searching for the frequency of plumbing area related problems for which a higher degree of association has been set with reference sales data corresponding to past sales data for the region in the region specific information acquired in the information acquisition step, by referring to three or more levels of association between the frequency of plumbing area related problems and the reference sales data of companies that have been dispatched to deal with the plumbing area related problems in each region.

Description

水回りトラブル発生頻度予測プログラムWater trouble occurrence frequency prediction program
 本発明は、水回りトラブル発生頻度予測プログラムに関する。 The present invention relates to a water-related trouble occurrence frequency prediction program.
 ビルやマンション、戸建住宅等の建築構造物における水回りトラブルの例としては、トイレのつまり、水漏れ、故障、キッチンや洗面所のつまり、水漏れ、故障、風呂の排水口のつまりやシャワーや蛇口の水漏れ、故障等がある。このような建築構造物における水回りトラブルは、その居住者のみで解決できない場合も多々あることから専門業者に出動してもらい、作業を委託するケースが多い。 Examples of water problems in building structures such as buildings, condominiums, and detached houses include clogging of toilets, water leaks, malfunctions, clogging of kitchens and washrooms, water leaks, malfunctions, clogging of bath drains, and showers. There is a water leak in the faucet or a malfunction. Since there are many cases where water problems in such building structures cannot be solved by the residents alone, there are many cases where a specialist is dispatched and the work is outsourced.
 しかしながら、近年における専門業者の人手不足が深刻化しており、居住者が連絡をしてもなかなか対応してもらえないケースが増加している。特にトイレのつまりの場合には、つまりが解消しない限りトイレを使用することができなくなり、業者の出動が遅れる場合には、通常の生活に大きな支障をきたす場合がある。トイレ以外のキッチンや洗面所のつまりや水漏れも同様である。このような水回りのトラブルは、より早めの対応が必要になり場合が多いことから、これに対応する業者も、対応する地域毎の人員配置の最適化等、尽力している。 However, in recent years, the labor shortage of specialists has become more serious, and there are an increasing number of cases where residents are unable to respond even if they contact them. Especially in the case of a clogged toilet, the toilet cannot be used unless the clog is cleared, and if the dispatch of the contractor is delayed, it may seriously hinder normal life. The same applies to clogging and water leaks in kitchens and washrooms other than toilets. Since it is often necessary to deal with such water-related troubles earlier, the companies that deal with them are also making efforts such as optimizing the staffing for each corresponding region.
 実際に水回りの対応を行うために、どの地域にどれだけの人員を配置するかを考えたとき、各地域における水回りのトラブルの発生頻度を予測する必要がある。しかしながら、このような水回りのトラブルの発生頻度を地域毎に予測するための技術が未だ案出されていないのが現状であった。 When considering how many people should be assigned to which area in order to actually deal with water around, it is necessary to predict the frequency of water around troubles in each area. However, the current situation is that a technique for predicting the frequency of such water troubles in each region has not yet been devised.
 そこで本発明は、上述した問題点に鑑みて案出されたものであり、その目的とするところは、建築構造物内における水回りのトラブルの発生頻度を地域単位で予測する水回りトラブル発生頻度予測プログラムを提供することにある。 Therefore, the present invention has been devised in view of the above-mentioned problems, and an object thereof is to predict the frequency of water troubles in a building structure on a regional basis. To provide a forecasting program.
 本発明に係る水回りトラブル発生頻度予測プログラムは、建築構造物内における水回りのトラブルの発生頻度を地域単位で予測する水回りトラブル発生頻度予測プログラムにおいて、水回りトラブルの発生頻度を予測する建築構造物又はそれが立地する地域を特定するための地域特定情報を取得する情報取得ステップと、各地域における水回りトラブル対応に対して出動した業者の参照用売上データと、水回りのトラブルの発生頻度との3段階以上の連関度を参照し、上記情報取得ステップにおいて取得した地域特定情報における地域の過去の売上データに対応する参照用売上データとの間でより高い連関度が設定されている水回りのトラブルの発生頻度を探索する探索ステップとをコンピュータに実行させることを特徴とする。 The water-related trouble occurrence frequency prediction program according to the present invention is a water-related trouble occurrence frequency prediction program that predicts the occurrence frequency of water-related troubles in a building structure on a regional basis, and is a construction that predicts the occurrence frequency of water-related troubles. The information acquisition step to acquire the area identification information to specify the structure or the area where it is located, the reference sales data of the contractor dispatched to deal with the water supply trouble in each area, and the occurrence of the water supply trouble. A higher degree of association is set with the reference sales data corresponding to the past sales data of the region in the region-specific information acquired in the above information acquisition step by referring to the degree of association with the frequency in three or more stages. It is characterized by having a computer execute a search step for searching for the frequency of troubles around water.
 特段のスキルや経験が無くても、人手に頼ることなく、建築構造物内における水回りのトラブルの発生頻度を地域単位で予測することができる。 Even if you do not have any special skills or experience, you can predict the frequency of water problems in building structures on a regional basis without relying on human hands.
本発明を適用したシステムの全体構成を示すブロック図である。It is a block diagram which shows the whole structure of the system to which this invention is applied. 探索装置の具体的な構成例を示す図である。It is a figure which shows the specific configuration example of a search device. 本発明の動作について説明するための図である。It is a figure for demonstrating the operation of this invention. 本発明の動作について説明するための図である。It is a figure for demonstrating the operation of this invention. 本発明の動作について説明するための図である。It is a figure for demonstrating the operation of this invention. 本発明の動作について説明するための図である。It is a figure for demonstrating the operation of this invention. 本発明の動作について説明するための図である。It is a figure for demonstrating the operation of this invention. 本発明の動作について説明するための図である。It is a figure for demonstrating the operation of this invention. 本発明の動作について説明するための図である。It is a figure for demonstrating the operation of this invention. 本発明の動作について説明するための図である。It is a figure for demonstrating the operation of this invention. 本発明の動作について説明するための図である。It is a figure for demonstrating the operation of this invention. 本発明の動作について説明するための図である。It is a figure for demonstrating the operation of this invention.
 以下、本発明を適用した水回りトラブル発生頻度予測プログラムについて、図面を参照しながら詳細に説明をする。 Hereinafter, the water-related trouble occurrence frequency prediction program to which the present invention is applied will be described in detail with reference to the drawings.
 図1は、本発明を適用した水回りトラブル発生頻度予測プログラムが実装される水回りトラブル発生頻度システム1の全体構成を示すブロック図である。水回りトラブル発生頻度システム1は、情報取得部9と、情報取得部9に接続された探索装置2と、探索装置2に接続されたデータベース3とを備えている。 FIG. 1 is a block diagram showing an overall configuration of a water trouble occurrence frequency system 1 in which a water trouble occurrence frequency prediction program to which the present invention is applied is implemented. The water trouble occurrence frequency system 1 includes an information acquisition unit 9, a search device 2 connected to the information acquisition unit 9, and a database 3 connected to the search device 2.
 情報取得部9は、本システムを活用する者が各種コマンドや情報を入力するためのデバイスであり、具体的にはキーボードやボタン、タッチパネル、マウス、スイッチ等により構成される。情報取得部9は、テキスト情報を入力するためのデバイスに限定されるものではなく、マイクロフォン等のような音声を検知してこれをテキスト情報に変換可能なデバイスで構成されていてもよい。また情報取得部9は、カメラ等の画像を撮影可能な撮像装置として構成されていてもよい。情報取得部9は、紙媒体の書類から文字列を認識できる機能を備えたスキャナで構成されていてもよい。また情報取得部9は、後述する探索装置2と一体化されていてもよい。情報取得部9は、検知した情報を探索装置2へと出力する。また情報取得部9は地図情報をスキャニングすることで位置情報を特定する手段により構成されていてもよい。また情報取得部9は、温度センサ、湿度センサ、風向センサ、を測るための照度センサで構成されていてもよい。また情報取得部9は、天候についてのデータを気象庁や民間の天気予報会社から取得する通信インターフェースで構成されていてもよい。また情報取得部9は身体に装着して身体のデータを検出するための身体センサで構成されていてもよく、この身体センサは、例えば体温、心拍数、血圧、歩数、歩く速度、加速度を検出するためのセンサで構成されていてもよい。また身体センサは人間のみならず動物の生体データを取得するものであってもよい。また情報取得部9は図面等の情報をスキャニングしたり、或いはデータベースから読み出すことで取得するデバイスとして構成されていてもよい。情報取得部9は、これら以外に臭気や香りを検知する臭気センサにより構成されていてもよい。 The information acquisition unit 9 is a device for a person using this system to input various commands and information, and specifically, is composed of a keyboard, buttons, a touch panel, a mouse, a switch, and the like. The information acquisition unit 9 is not limited to a device for inputting text information, and may be configured by a device such as a microphone that can detect voice and convert it into text information. Further, the information acquisition unit 9 may be configured as an image pickup device capable of taking an image of a camera or the like. The information acquisition unit 9 may be configured by a scanner having a function of recognizing a character string from a paper-based document. Further, the information acquisition unit 9 may be integrated with the search device 2 described later. The information acquisition unit 9 outputs the detected information to the search device 2. Further, the information acquisition unit 9 may be configured by means for specifying the position information by scanning the map information. Further, the information acquisition unit 9 may be composed of an illuminance sensor for measuring a temperature sensor, a humidity sensor, and a wind direction sensor. Further, the information acquisition unit 9 may be configured by a communication interface for acquiring data about the weather from the Japan Meteorological Agency or a private weather forecast company. Further, the information acquisition unit 9 may be composed of a body sensor that is attached to the body to detect body data, and the body sensor detects, for example, body temperature, heart rate, blood pressure, number of steps, walking speed, and acceleration. It may be composed of a sensor for the purpose. Further, the body sensor may acquire biometric data of not only humans but also animals. Further, the information acquisition unit 9 may be configured as a device for acquiring information such as drawings by scanning or reading from a database. In addition to these, the information acquisition unit 9 may be configured by an odor sensor that detects odors and scents.
 また、情報取得部9は、水回りトラブル対応に対して出動し、実際に作業を行うことで問題解決を行う業者のデータベースに記録されている地域毎の売り上げデータや、地域毎の出動回数等に応じて算出した出動頻度データを取得するための手段で構成されていてもよい。 In addition, the information acquisition unit 9 is dispatched to deal with water-related troubles, such as sales data for each region recorded in the database of a company that solves problems by actually performing work, the number of dispatches for each region, and the like. It may be configured by means for acquiring the dispatch frequency data calculated according to the above.
 データベース3は、水回りトラブル発生頻度を行う上で必要な様々な情報が蓄積される。水回りトラブル発生頻度を行う上で必要な情報としては、各地域における水回りトラブル対応に対して出動した業者の参照用売上データ、各地域における水回りトラブル対応に対して出動した業者の参照用出動頻度データ、水回りトラブル対応のために出動要請された業者の参照用断り率、各地域における参照用人口推計データ、各地域における参照用地理的情報、各地域におけるトラブルの種類に関する参照用トラブル種類情報、各地域における建築構造物の種類に関する参照用統計情報等が、出力データとしての水回りのトラブルの発生頻度との関係において蓄積されている。 Database 3 stores various information necessary for performing the frequency of water troubles. The information necessary for determining the frequency of water-related troubles is the sales data for reference of the vendors dispatched for the water-related troubles in each region, and the reference of the vendors dispatched for the water-related troubles in each region. Dispatch frequency data, reference refusal rate of vendors requested to respond to water problems, reference population estimation data in each region, reference geographical information in each region, reference troubles related to the type of trouble in each region Type information, reference statistical information on the types of building structures in each area, etc. are accumulated in relation to the frequency of water-related troubles as output data.
 つまり、データベース3には、このような業者の参照用売上データ、業者の参照用出動頻度データに加え、業者の参照用断り率、参照用人口推計データ、参照用地理的情報、参照用トラブル種類情報、建築構造物の種類に関する参照用統計情報の何れか1以上と、水回りのトラブルの発生頻度が互いに紐づけられて記憶されている。 That is, in the database 3, in addition to the reference sales data and the reference dispatch frequency data of the vendor, the reference rejection rate of the vendor, the population estimation data for reference, the geographical information for reference, and the trouble type for reference are stored in the database 3. Any one or more of the information and the reference statistical information regarding the type of the building structure and the frequency of occurrence of troubles around the water are stored in association with each other.
 探索装置2は、例えば、パーソナルコンピュータ(PC)等を始めとした電子機器で構成されているが、PC以外に、携帯電話、スマートフォン、タブレット型端末、ウェアラブル端末等、他のあらゆる電子機器で具現化されるものであってもよい。ユーザは、この探索装置2による探索解を得ることができる。 The search device 2 is composed of, for example, an electronic device such as a personal computer (PC), but is embodied in any other electronic device such as a mobile phone, a smartphone, a tablet terminal, a wearable terminal, etc., in addition to the PC. It may be the one to be converted. The user can obtain a search solution by the search device 2.
 図2は、探索装置2の具体的な構成例を示している。この探索装置2は、探索装置2全体を制御するための制御部24と、操作ボタンやキーボード等を介して各種制御用の指令を入力するための操作部25と、有線通信又は無線通信を行うための通信部26と、各種判断を行う判別部27と、ハードディスク等に代表され、実行すべき検索を行うためのプログラムを格納するための記憶部28とが内部バス21にそれぞれ接続されている。さらに、この内部バス21には、実際に情報を表示するモニタとしての表示部23が接続されている。 FIG. 2 shows a specific configuration example of the search device 2. The search device 2 performs wired communication or wireless communication with a control unit 24 for controlling the entire search device 2 and an operation unit 25 for inputting various control commands via an operation button, a keyboard, or the like. A communication unit 26 for the purpose, a determination unit 27 for making various judgments, and a storage unit 28 for storing a program for performing a search to be executed represented by a hard disk or the like are connected to the internal bus 21, respectively. .. Further, a display unit 23 as a monitor that actually displays information is connected to the internal bus 21.
  制御部24は、内部バス21を介して制御信号を送信することにより、探索装置2内に実装された各構成要素を制御するためのいわゆる中央制御ユニットである。また、この制御部24は、操作部25を介した操作に応じて各種制御用の指令を内部バス21を介して伝達する。 The control unit 24 is a so-called central control unit for controlling each component mounted in the search device 2 by transmitting a control signal via the internal bus 21. Further, the control unit 24 transmits various control commands via the internal bus 21 according to the operation via the operation unit 25.
 操作部25は、キーボードやタッチパネルにより具現化され、プログラムを実行するための実行命令がユーザから入力される。この操作部25は、上記実行命令がユーザから入力された場合には、これを制御部24に通知する。この通知を受けた制御部24は、判別部27を始め、各構成要素と協調させて所望の処理動作を実行していくこととなる。この操作部25は、前述した情報取得部9として具現化されるものであってもよい。 The operation unit 25 is embodied by a keyboard or a touch panel, and an execution command for executing a program is input from the user. When the execution command is input by the user, the operation unit 25 notifies the control unit 24 of the execution command. Upon receiving this notification, the control unit 24, including the discrimination unit 27, executes a desired processing operation in cooperation with each component. The operation unit 25 may be embodied as the information acquisition unit 9 described above.
 判別部27は、探索解を判別する。この判別部27は、判別動作を実行するに当たり、必要な情報として記憶部28に記憶されている各種情報や、データベース3に記憶されている各種情報を読み出す。この判別部27は、人工知能により制御されるものであってもよい。この人工知能はいかなる周知の人工知能技術に基づくものであってもよい。 The discrimination unit 27 discriminates the search solution. The discriminating unit 27 reads out various information stored in the storage unit 28 and various information stored in the database 3 as necessary information when executing the discriminating operation. The discriminating unit 27 may be controlled by artificial intelligence. This artificial intelligence may be based on any well-known artificial intelligence technology.
  表示部23は、制御部24による制御に基づいて表示画像を作り出すグラフィックコントローラにより構成されている。この表示部23は、例えば、液晶ディスプレイ(LCD)等によって実現される。 The display unit 23 is configured by a graphic controller that creates a display image based on the control by the control unit 24. The display unit 23 is realized by, for example, a liquid crystal display (LCD) or the like.
  記憶部28は、ハードディスクで構成される場合において、制御部24による制御に基づき、各アドレスに対して所定の情報が書き込まれるとともに、必要に応じてこれが読み出される。また、この記憶部28には、本発明を実行するためのプログラムが格納されている。このプログラムは制御部24により読み出されて実行されることになる。 When the storage unit 28 is composed of a hard disk, predetermined information is written to each address based on the control by the control unit 24, and is read out as needed. Further, the storage unit 28 stores a program for executing the present invention. This program will be read and executed by the control unit 24.
 上述した構成からなる水回りトラブル発生頻度システム1における動作について説明をする。 The operation in the water trouble occurrence frequency system 1 having the above-mentioned configuration will be described.
 水回りトラブル発生頻度システム1では、例えば図3に示すように、各地域における水回りトラブル対応に対して出動した業者の参照用売上データと、水回りのトラブルの発生頻度との3段階以上の連関度が予め設定されていることが前提となる。各地域における水回りトラブル対応に対して出動した業者とは、建築構造物(ビル、マンション、戸建住宅、アパート等)の居住者からの水回りトラブルの要請に対して出動して実際に現場で修復作業を行う業者である。水回りのトラブルとは、トイレのつまり、水漏れ、故障、キッチンや洗面所のつまり、水漏れ、故障、風呂の排水口のつまりやシャワーや蛇口の水漏れ、故障等がある。このような業者は、各地域毎に売上を管理している場合が多い。個々でいう地域の単位は、地方、県、市区町村、更には、町、番地、号、更にはビルやマンション単位まで詳細に分類されていても良い。売上は、年単位、月単位、週単位、日単位等で管理されている。このような業者の地域単位での参照用売上データを先ずは学習用データのために取得する。またこの参照用売上データは、年単位、月単位、週単位、日単位等、ある期間の平均値や標準偏差で表されてもよいし、変動傾向、変動推移のデータで表されていてもよい。 In the water-related trouble occurrence frequency system 1, for example, as shown in FIG. 3, there are three or more stages of reference sales data of a vendor dispatched to deal with water-related troubles in each region and the occurrence frequency of water-related troubles. It is assumed that the degree of association is set in advance. A contractor dispatched to deal with water problems in each area is actually a site dispatched to a request for water problems from a resident of a building structure (building, condominium, detached house, apartment, etc.). It is a contractor who performs repair work at. Problems around water include clogging of toilets, water leaks, malfunctions, clogging of kitchens and washrooms, water leaks, malfunctions, clogging of bath drains, water leaks of showers and faucets, and malfunctions. Such vendors often manage sales in each region. The unit of each area may be classified in detail into a region, a prefecture, a municipality, a town, a street number, a number, and even a building or a condominium unit. Sales are managed on a yearly, monthly, weekly, daily, etc. basis. First, the reference sales data for each region of such a trader is acquired for the learning data. In addition, this reference sales data may be represented by the average value or standard deviation of a certain period such as yearly, monthly, weekly, daily, etc., or may be represented by fluctuation trend data or fluctuation transition data. good.
 水回りのトラブルの発生頻度は、各地域において、水回りのトラブルの発生がどの頻度で起こり得るかを示すものである。この水回りトラブルの発生頻度は、年単位、月単位、週単位、日単位、5年単位等、いかなる分母で構成されていてもよい。水回りのトラブル発生は、建築構造物の居住者から実際に業者に対して水回りトラブルがあった旨の連絡がある都度、1回分としてカウントしてもよい。このような水回りのトラブル発生頻度は、業者自身がカウントしておき、保有しているデータベースに記録しておくことで、事後的な取得が可能となる。この水回りのトラブル発生頻度は、上述した地域単位で整理されている。 The frequency of water-related troubles indicates how often water-related troubles can occur in each region. The frequency of occurrence of this water trouble may be composed of any denominator such as yearly, monthly, weekly, daily, and five-year units. The occurrence of water-related troubles may be counted as one time each time the resident of the building structure notifies the contractor that there was a water-related trouble. The frequency of such troubles around water can be obtained after the fact by counting the frequency of such troubles around the water and recording it in the database held by the vendor. The frequency of troubles around water is organized by region as described above.
 図3の例では、入力データとして、各地域における参照用売上データP01、P02、P03であるものとする。このような入力データとしての参照用売上データP01、P02、P03は、出力としての水回りのトラブル発生頻度に連結している。 In the example of FIG. 3, it is assumed that the input data is the reference sales data P01, P02, and P03 in each region. The reference sales data P01, P02, and P03 as such input data are linked to the frequency of troubles around the water as output.
 参照用売上データP01、P02、P03は、この出力解としての水回りのトラブル発生頻度A~Dに対して3段階以上の連関度を通じて互いに連関しあっている。このトラブル発生頻度は、例えばAが月5回、Bが月20回等のように示されているが、これも月単位の頻度に限らず、いかなる期間単位の頻度とされていてもよい。参照用売上データがこの連関度を介して左側に配列し、各水回りのトラブル発生頻度が連関度を介して右側に配列している。連関度は、左側に配列された参照用売上データに対して、何れのトラブル発生頻度と関連性が高いかの度合いを示すものである。換言すれば、この連関度は、各参照用売上データが、いかなるトラブル発生頻度に紐付けられる可能性が高いかを示す指標であり、各参照用売上データについて最も確からしいトラブル発生頻度を選択する上での的確性を示すものである。図3の例では、連関度としてw13~w19が示されている。このw13~w19は以下の表1に示すように10段階で示されており、10点に近いほど、中間ノードとしての各組み合わせが出力としてのトラブル発生頻度と互いに関連度合いが高いことを示しており、逆に1点に近いほど中間ノードとしての各組み合わせが出力としてのトラブル発生頻度と互いに関連度合いが低いことを示している。 The reference sales data P01, P02, and P03 are related to each other through the degree of association of three or more levels with respect to the trouble occurrence frequencies A to D around the water as the output solution. The frequency of occurrence of this trouble is shown, for example, A is 5 times a month, B is 20 times a month, and the like, but this is not limited to the monthly frequency, and may be any period unit frequency. The sales data for reference is arranged on the left side via this degree of association, and the frequency of troubles around each water is arranged on the right side via the degree of association. The degree of association indicates the degree of trouble occurrence frequency and the degree of relevance to the reference sales data arranged on the left side. In other words, this degree of association is an index showing what kind of trouble occurrence frequency each reference sales data is likely to be associated with, and selects the most probable trouble occurrence frequency for each reference sales data. It shows the accuracy above. In the example of FIG. 3, w13 to w19 are shown as the degree of association. These w13 to w19 are shown in 10 stages as shown in Table 1 below, and the closer to 10 points, the higher the degree of relevance of each combination as an intermediate node to the frequency of trouble occurrence as output. On the contrary, the closer to one point, the lower the degree of relation between each combination as an intermediate node and the frequency of trouble occurrence as an output.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 探索装置2は、このような図3に示す3段階以上の連関度w13~w19を予め取得しておく。つまり探索装置2は、実際の探索解の判別を行う上で、各地域の参照用売上データと、その場合のトラブル発生頻度の何れが採用、評価されたか、過去のデータセットを蓄積しておき、これらを分析、解析することで図3に示す連関度を作り上げておく。 The search device 2 acquires in advance the degree of association w13 to w19 of three or more stages shown in FIG. That is, the search device 2 accumulates a past data set as to which of the reference sales data of each region and the trouble occurrence frequency in that case is adopted and evaluated in determining the actual search solution. By analyzing and analyzing these, the degree of association shown in FIG. 3 is created.
 例えば、過去において地域における参照用売上データがある折れ線グラフで示される変動推移で示されるものであるものとする。このような、ある折れ線グラフで示される参照用売上データの場合に、実際にその地域における水回りのトラブル発生頻度は、Aが最も多かったものとする。このようなデータセットを集めて分析することにより、各地域の参照用売上データとの連関度が強くなる。 For example, it is assumed that the sales data for reference in the past is shown by the fluctuation transition shown by the line graph. In the case of such reference sales data shown by a certain line graph, it is assumed that A actually has the highest frequency of water troubles in the area. By collecting and analyzing such data sets, the degree of association with reference sales data in each region becomes stronger.
 この分析、解析は人工知能により行うようにしてもよい。かかる場合には、例えば参照用売上データP01である場合に、過去の売上と、トラブル発生頻度の各種データから分析する。地域P01での売上が年平均で560万円である場合に、トラブル発生頻度Aの事例が多い場合には、このトラブル発生頻度の評価につながる連関度をより高く設定し、トラブル発生頻度Bの事例が多い場合には、このトラブル発生頻度の評価につながる連関度をより高く設定する。例えば地域P01についての参照用売上データの例では、トラブル発生頻度Aと、トラブル発生頻度Cにリンクしているが、以前の事例からトラブル発生頻度Aにつながるw13の連関度を7点に、トラブル発生頻度Cにつながるw14の連関度を2点に設定している。 This analysis may be performed by artificial intelligence. In such a case, for example, in the case of reference sales data P01, analysis is performed from past sales and various data of trouble occurrence frequency. If the annual average sales in the area P01 are 5.6 million yen and there are many cases of trouble occurrence frequency A, the degree of association that leads to the evaluation of this trouble occurrence frequency is set higher, and the trouble occurrence frequency B is set. If there are many cases, set a higher degree of association that leads to the evaluation of the frequency of trouble occurrence. For example, in the example of the reference sales data for the region P01, the trouble occurrence frequency A and the trouble occurrence frequency C are linked, but from the previous case, the degree of association of w13 connected to the trouble occurrence frequency A is set to 7 points, and the trouble occurs. The degree of association of w14 connected to the occurrence frequency C is set to 2 points.
 また、この図3に示す連関度は、人工知能におけるニューラルネットワークのノードで構成されるものであってもよい。即ち、このニューラルネットワークのノードが出力に対する重み付け係数が、上述した連関度に対応することとなる。またニューラルネットワークに限らず、人工知能を構成するあらゆる意思決定因子で構成されるものであってもよい。 Further, the degree of association shown in FIG. 3 may be composed of the nodes of the neural network in artificial intelligence. That is, the weighting coefficient for the output of the node of this neural network corresponds to the above-mentioned degree of association. Further, the network is not limited to a neural network, and may be composed of all decision-making factors constituting artificial intelligence.
 かかる場合には、図4に示すように、入力データとして各地域の参照用売上データが入力され、出力データとしてトラブル発生頻度が出力され、入力ノードと出力ノードの間に少なくとも1以上の隠れ層が設けられ、機械学習させるようにしてもよい。入力ノード又は隠れ層ノードの何れか一方又は両方において上述した連関度が設定され、これが各ノードの重み付けとなり、これに基づいて出力の選択が行われる。そして、この連関度がある閾値を超えた場合に、その出力を選択するようにしてもよい。 In such a case, as shown in FIG. 4, reference sales data for each region is input as input data, trouble occurrence frequency is output as output data, and at least one hidden layer between the input node and the output node is output. May be provided and machine learning may be performed. The above-mentioned degree of association is set in either one or both of the input node and the hidden layer node, and this is the weight of each node, and the output is selected based on this. Then, when this degree of association exceeds a certain threshold value, the output may be selected.
 このような連関度が、人工知能でいうところの学習済みデータとなる。このような学習済みデータを、以前の各地域の参照用売上データと、水回りのトラブルの発生頻度とのデータセットを通じて作った後に、実際にこれから新たにトラブル発生頻度の判別を行う上で、上述した学習済みデータを利用してトラブル発生頻度を探索することとなる。これらのデータセットは、業者が管理しているデータベースから読み出すことで作成するようにしてもよい。 Such degree of association is what is called learned data in artificial intelligence. After creating such learned data through a data set of sales data for reference in each region before and the frequency of troubles around water, it is necessary to actually determine the frequency of troubles in the future. The trouble occurrence frequency will be searched using the above-mentioned learned data. These data sets may be created by reading from a database managed by the vendor.
 新たにトラブル発生頻度を探索する場合には、探索したい地域の入力を受け付ける。地域毎にそれぞれ過去の売上データが紐付けられて記憶されていることから、地域の入力を受け付けた場合、これに紐づけられている売上データを読み出すことで取得することができる。 When searching for a new trouble occurrence frequency, accept the input of the area you want to search. Since the past sales data is associated and stored for each region, when the input of the region is accepted, it can be acquired by reading the sales data associated with the region.
 次にこの読みだした売上データを参照用売上データと照合する。かかる場合には、予め取得した図3(表1)に示す連関度を参照する。例えば、新たに取得した売上データがP02と同一かこれに類似するものである場合には、連関度を介してトラブル発生頻度Bがw15、トラブル発生頻度Cが連関度w16で関連付けられている。かかる場合には、連関度の最も高いトラブル発生頻度Bを最適解として選択する。但し、最も連関度の高いものを最適解として選択することは必須ではなく、連関度は低いものの連関性そのものは認められるトラブル発生頻度Cを最適解として選択するようにしてもよい。また、これ以外に矢印が繋がっていない出力解を選択してもよいことは勿論であり、連関度に基づくものであれば、その他いかなる優先順位で選択されるものであってもよい。 Next, collate this read sales data with the reference sales data. In such a case, the degree of association shown in FIG. 3 (Table 1) acquired in advance is referred to. For example, when the newly acquired sales data is the same as or similar to P02, the trouble occurrence frequency B is associated with w15 and the trouble occurrence frequency C is associated with the association degree w16 through the association degree. In such a case, the trouble occurrence frequency B having the highest degree of association is selected as the optimum solution. However, it is not essential to select the one with the highest degree of association as the optimum solution, and the trouble occurrence frequency C in which the degree of association itself is recognized although the degree of association is low may be selected as the optimum solution. In addition to this, it goes without saying that an output solution to which the arrows are not connected may be selected, and any other output solution may be selected in any other priority as long as it is based on the degree of association.
 ちなみに、売上データと参照用売上データの照合は、仮にこれらのデータが、ある期間の売上平均で表されている場合には、その売上平均が±10%の範囲内に入っているか否かで同一及び類似であるか否かを判別するようにしてもよい。また、売上データが時系列的推移グラフで示されるものであれば、その傾向の類似性に基づいて判別されるものであってもよい。 By the way, the collation of sales data and reference sales data is based on whether or not the sales average is within the range of ± 10% if these data are represented by the sales average for a certain period. It may be determined whether they are the same or similar. Further, as long as the sales data is shown in a time-series transition graph, it may be determined based on the similarity of the trends.
 このようにして、新たに取得する売上データから、最も好適なトラブル発生頻度を探索し、ユーザに表示することができる。この探索結果を見ることにより、その地域で、今後どのようなトラブル発生頻度になりえるかを事前に判別することができ、地域毎の作業員の配置を検討することができる。 In this way, it is possible to search for the most suitable trouble occurrence frequency from the newly acquired sales data and display it to the user. By looking at this search result, it is possible to determine in advance what kind of trouble occurrence frequency may occur in the area in the future, and it is possible to consider the allocation of workers in each area.
 図5の例では、参照用売上データと、参照用断り率との組み合わせの連関度が形成される例である。参照用断り率とは、実際に建築構造物の居住者から水回りトラブルに基づく出動要請が業者に対してあり、これに対して業者側が受任をすることができず断りを入れた確率である。この断り率は、出動要請数に対する断りを入れた回数で表される。出動要請数、断りを入れた回数、地域毎に業者がデータベース3上において管理している。この実際に断り率を知りたい地域に対して、データベース3からこれらの出動要請数に対する断りを入れた回数を読み出すことで、断り率を得ることができる。 In the example of FIG. 5, the degree of association between the reference sales data and the reference rejection rate is formed. The reference refusal rate is the probability that a resident of a building structure actually requested a dispatch based on a water supply trouble to the contractor, and the contractor could not accept the request and refused it. .. This refusal rate is expressed by the number of refusals for the number of dispatch requests. The number of dispatch requests, the number of times of refusal, and each region are managed by the contractor on the database 3. The refusal rate can be obtained by reading the number of refusals for the number of dispatch requests from the database 3 for the area where the refusal rate is actually desired to be known.
 水回りのトラブルの発生頻度は、その地域における売上に加え、あまりに出動要請件数が多い場合には、断りを入れる場合が多くなることから、その断り率にも依拠する。このため、参照用売上データに加えて、参照用断り率を学習データに組み合わせ判断することで、トラブル発生頻度をより高精度に判別することができる。このため、参照用売上データに加えて、参照用断り率を組み合わせて上述した連関度を形成しておく。 The frequency of water-related troubles depends on the sales in the area, as well as the refusal rate, because if the number of dispatch requests is too large, there are many cases of refusal. Therefore, by combining the reference rejection rate with the learning data in addition to the reference sales data, the trouble occurrence frequency can be determined with higher accuracy. Therefore, in addition to the reference sales data, the reference rejection rate is combined to form the above-mentioned degree of association.
 図5の例では、入力データとして例えば参照用売上データP01~P03、参照用断り率P14~17であるものとする。このような入力データとしての、参照用売上データに対して、参照用断り率が組み合わさったものが、図5に示す中間ノードである。各中間ノードは、更に出力に連結している。この出力においては、出力解としての、トラブル発生頻度が表示されている。 In the example of FIG. 5, it is assumed that the input data is, for example, reference sales data P01 to P03 and reference refusal rate P14 to 17. The intermediate node shown in FIG. 5 is a combination of the reference sales data and the reference rejection rate as such input data. Each intermediate node is further linked to the output. In this output, the frequency of trouble occurrence as an output solution is displayed.
 参照用売上データと参照用断り率との各組み合わせ(中間ノード)は、この出力解としての、トラブル発生頻度に対して3段階以上の連関度を通じて互いに連関しあっている。参照用売上データと参照用断り率がこの連関度を介して左側に配列し、トラブル発生頻度が連関度を介して右側に配列している。連関度は、左側に配列された参照用売上データと参照用断り率に対して、トラブル発生頻度と関連性が高いかの度合いを示すものである。換言すれば、この連関度は、各参照用売上データと参照用断り率が、いかなるトラブル発生頻度に紐付けられる可能性が高いかを示す指標であり、参照用売上データと参照用断り率から最も確からしいトラブル発生頻度を選択する上での的確性を示すものである。このため、これらの参照用売上データと参照用断り率の組み合わせで、最適なトラブル発生頻度を探索していくこととなる。 Each combination of reference sales data and reference rejection rate (intermediate node) is associated with each other through three or more levels of association with the frequency of trouble occurrence as this output solution. The reference sales data and the reference rejection rate are arranged on the left side through this degree of association, and the trouble occurrence frequency is arranged on the right side through this degree of association. The degree of association indicates the degree of trouble occurrence frequency and the degree of relevance to the reference sales data and the reference rejection rate arranged on the left side. In other words, this degree of association is an index showing what kind of trouble occurrence frequency each reference sales data and reference rejection rate are likely to be associated with, and is based on the reference sales data and reference rejection rate. It shows the accuracy in selecting the most probable trouble occurrence frequency. Therefore, the optimum trouble occurrence frequency is searched for by combining these reference sales data and the reference rejection rate.
 図5の例では、連関度としてw13~w22が示されている。このw13~w22は表1に示すように10段階で示されており、10点に近いほど、中間ノードとしての各組み合わせが出力と互いに関連度合いが高いことを示しており、逆に1点に近いほど中間ノードとしての各組み合わせが出力と互いに関連度合いが低いことを示している。 In the example of FIG. 5, w13 to w22 are shown as the degree of association. As shown in Table 1, these w13 to w22 are shown in 10 stages, and the closer to 10 points, the higher the degree of relevance of each combination as an intermediate node to the output, and conversely, 1 point. The closer they are, the less relevant each combination as an intermediate node is to the output.
 探索装置2は、このような図5に示す3段階以上の連関度w13~w22を予め取得しておく。つまり探索装置2は、実際の探索解の判別を行う上で、参照用売上データと参照用断り率、並びにその場合のトラブル発生頻度が何れが見合うものであったか、過去のデータを蓄積しておき、これらを分析、解析することで図5に示す連関度を作り上げておく。 The search device 2 acquires in advance the degree of association w13 to w22 of three or more stages shown in FIG. That is, the search device 2 accumulates past data as to which of the reference sales data, the reference rejection rate, and the frequency of trouble occurrence in that case is suitable for determining the actual search solution. By analyzing and analyzing these, the degree of association shown in FIG. 5 is created.
 この分析、解析は人工知能により行うようにしてもよい。かかる場合には、例えば参照用売上データP01で、参照用断り率P16である場合に、そのトラブル発生頻度を過去のデータから分析する。トラブル発生頻度がAの事例が多い場合には、このトラブル発生頻度Aにつながる連関度をより高く設定し、トラブル発生頻度Bの事例が多く、トラブル発生頻度Aの事例が少ない場合には、トラブル発生頻度Bにつながる連関度を高くし、トラブル発生頻度Aにつながる連関度を低く設定する。例えば中間ノード61aの例では、トラブル発生頻度Aとトラブル発生頻度Bの出力にリンクしているが、以前の事例からトラブル発生頻度Aにつながるw13の連関度を7点に、トラブル発生頻度Bにつながるw14の連関度を2点に設定している。 This analysis may be performed by artificial intelligence. In such a case, for example, in the reference sales data P01 and the reference rejection rate P16, the trouble occurrence frequency is analyzed from the past data. If there are many cases where the trouble occurrence frequency is A, the degree of association leading to this trouble occurrence frequency A is set higher, and if there are many cases of trouble occurrence frequency B and there are few cases of trouble occurrence frequency A, trouble occurs. The degree of association leading to the occurrence frequency B is set high, and the degree of association leading to the trouble occurrence frequency A is set low. For example, in the example of the intermediate node 61a, the output of the trouble occurrence frequency A and the trouble occurrence frequency B is linked, but from the previous case, the degree of association of w13 connected to the trouble occurrence frequency A is set to 7 points and the trouble occurrence frequency B is set. The degree of association of the connected w14 is set to 2 points.
 また、この図5に示す連関度は、人工知能におけるニューラルネットワークのノードで構成されるものであってもよい。即ち、このニューラルネットワークのノードが出力に対する重み付け係数が、上述した連関度に対応することとなる。またニューラルネットワークに限らず、人工知能を構成するあらゆる意思決定因子で構成されるものであってもよい。その他、人工知能に関する構成は、図4における説明と同様である。 Further, the degree of association shown in FIG. 5 may be composed of the nodes of the neural network in artificial intelligence. That is, the weighting coefficient for the output of the node of this neural network corresponds to the above-mentioned degree of association. Further, the network is not limited to a neural network, and may be composed of all decision-making factors constituting artificial intelligence. Other than that, the configuration related to artificial intelligence is the same as the description in FIG.
 図5に示す連関度の例で、ノード61bは、参照用売上データP01に対して、参照用断り率P14の組み合わせのノードであり、トラブル発生頻度Cの連関度がw15、トラブル発生頻度Eの連関度がw16となっている。ノード61cは、参照用売上データP02に対して、参照用断り率P15、P17の組み合わせのノードであり、トラブル発生頻度Bの連関度がw17、トラブル発生頻度Dの連関度がw18となっている。 In the example of the degree of association shown in FIG. 5, the node 61b is a node in which the reference sales data P01 is combined with the reference rejection rate P14, and the trouble occurrence frequency C has a connection degree of w15 and the trouble occurrence frequency E. The degree of association is w16. The node 61c is a node in which the reference rejection rates P15 and P17 are combined with respect to the reference sales data P02, and the degree of association of the trouble occurrence frequency B is w17 and the degree of association of the trouble occurrence frequency D is w18. ..
 このような連関度が、人工知能でいうところの学習済みデータとなる。このような学習済みデータを作った後に、実際にこれからトラブル発生頻度を判別する際において、上述した学習済みデータを利用して行うこととなる。かかる場合には、実際にトラブル発生頻度を判別しようとする地域を同様に入力する。そしてデータベース3内にある、各地域毎に整理されている売上データと誤り率を取得する。 Such degree of association is what is called learned data in artificial intelligence. After creating such learned data, when actually determining the trouble occurrence frequency from now on, the above-mentioned learned data will be used. In such a case, the area where the trouble occurrence frequency is actually to be determined is input in the same manner. Then, the sales data and the error rate organized for each region in the database 3 are acquired.
 このようにして新たに取得した売上データ、誤り率に基づいて、最適なトラブル発生頻度を探索する。かかる場合には、予め取得した図5(表1)に示す連関度を参照する。例えば、新たに取得した売上データがP02と同一かこれに類似するものである場合であって、誤り率がP17と同一か類似である場合には、連関度を介してノード61dが関連付けられており、このノード61dは、トラブル発生頻度Cがw19、トラブル発生頻度Dが連関度w20で関連付けられている。かかる場合には、連関度の最も高いトラブル発生頻度Cを最適解として選択する。但し、最も連関度の高いものを最適解として選択することは必須ではなく、連関度は低いものの連関性そのものは認められるトラブル発生頻度Dを最適解として選択するようにしてもよい。また、これ以外に矢印が繋がっていない出力解を選択してもよいことは勿論であり、連関度に基づくものであれば、その他いかなる優先順位で選択されるものであってもよい。 Search for the optimum trouble occurrence frequency based on the newly acquired sales data and error rate in this way. In such a case, the degree of association shown in FIG. 5 (Table 1) acquired in advance is referred to. For example, if the newly acquired sales data is the same as or similar to P02 and the error rate is the same as or similar to P17, the node 61d is associated via the degree of association. The node 61d is associated with the trouble occurrence frequency C by w19 and the trouble occurrence frequency D by the association degree w20. In such a case, the trouble occurrence frequency C having the highest degree of association is selected as the optimum solution. However, it is not essential to select the one with the highest degree of association as the optimum solution, and the trouble occurrence frequency D in which the degree of association itself is recognized although the degree of association is low may be selected as the optimum solution. In addition to this, it goes without saying that an output solution to which the arrows are not connected may be selected, and any other output solution may be selected in any other priority as long as it is based on the degree of association.
 また、入力から伸びている連関度w1~w12の例を以下の表2に示す。 Table 2 below shows an example of the degree of association w1 to w12 extending from the input.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 この入力から伸びている連関度w1~w12に基づいて中間ノード61が選択されていてもよい。つまり連関度w1~w12が大きいほど、中間ノード61の選択における重みづけを重くしてもよい。しかし、この連関度w1~w12は何れも同じ値としてもよく、中間ノード61の選択における重みづけは何れも全て同一とされていてもよい。 The intermediate node 61 may be selected based on the degree of association w1 to w12 extending from this input. That is, the larger the degree of association w1 to w12, the heavier the weighting in the selection of the intermediate node 61 may be. However, the association degrees w1 to w12 may all have the same value, and the weightings in the selection of the intermediate node 61 may all be the same.
 なお、本発明によれば、上述した参照用売上データに加え、上述した参照用断り率の代わりに参照用人口推計データとの組み合わせと、当該組み合わせに対するトラブル発生頻度との3段階以上の連関度に基づいて解探索を行うようにしてもよい。 According to the present invention, in addition to the above-mentioned reference sales data, the combination with the reference population estimation data instead of the above-mentioned reference rejection rate and the frequency of trouble occurrence for the combination have three or more levels of association. The solution may be searched based on the above.
 参照用断り率の代わりに説明変数として加えられるこの参照用人口推計データは、その地域における人口推計を示すものであり、人口ピラミッド(年代層、男女別に人口の分布が描かれた図)並びにその時系列的推移、その地域における転入数、転出数、転入家庭数、転出家庭数、また各人口毎の職業別分類等もこのデータに含めてもよい。トラブル発生頻度は、売上データに加え、このような人口推計にも影響を受ける。高齢者人口が多いほど、トイレのつまり等に対応することができない場合が多く、出動要請の機会が増加する場合がある。また転入数-転出数がプラスに多いほど、人口が増加しており、これに応じてトラブル発生頻度も高くなることが考えられる。このような参照用人口推計データは、各地域単位でデータベース3内にて管理されている。 This reference population estimation data, which is added as an explanatory variable instead of the reference rejection rate, shows the population estimation in the area, and is the population pyramid (a diagram showing the distribution of population by age group and gender) and its time series. This data may include the transition, the number of in-migrants, the number of out-migrants, the number of in-migrant households, the number of out-migrant households in the area, and the classification by occupation for each population. The frequency of troubles is affected by such population estimates in addition to sales data. The larger the elderly population, the more often it is not possible to deal with clogged toilets, etc., and the chances of requesting dispatch may increase. In addition, as the number of in-migrants-the number of out-migrants increases, the population is increasing, and it is possible that the frequency of troubles will increase accordingly. Such reference population estimation data is managed in the database 3 for each region.
 このような人口推計もトラブル発生頻度に影響を及ぼすことから、参照用売上データと組み合わせ、連関度を通じてトラブル発生頻度を判別することで、判別精度を向上させることができる。解探索時には、実際にそのトラブル発生頻度の判別対象の地域を入力することで、その地域における売上データと、人口推計データとを取得する。新たに取得した売上データと、人口推計データに基づいて、最適なトラブル発生頻度を探索する。かかる場合には、予め取得した連関度を参照し、上述した方法に基づいてトラブル発生頻度を探索する。 Since such population estimation also affects the frequency of trouble occurrence, it is possible to improve the discrimination accuracy by combining it with sales data for reference and determining the frequency of trouble occurrence through the degree of association. At the time of solution search, by actually inputting the area to be determined for the trouble occurrence frequency, the sales data and the population estimation data in that area are acquired. Search for the optimal trouble occurrence frequency based on newly acquired sales data and population estimation data. In such a case, the trouble occurrence frequency is searched based on the above-mentioned method with reference to the degree of association acquired in advance.
 なお、本発明によれば、上述した参照用売上データに加え、上述した参照用断り率の代わりに参照用地理的情報との組み合わせと、当該組み合わせに対するトラブル発生頻度との3段階以上の連関度に基づいて解探索を行うようにしてもよい。 According to the present invention, in addition to the above-mentioned reference sales data, the combination with the reference geographical information instead of the above-mentioned reference rejection rate and the frequency of trouble occurrence for the combination have three or more levels of association. The solution may be searched based on the above.
 参照用断り率の代わりに説明変数として加えられるこの参照用地理的情報は、その地域におけるあらゆる地理的情報を示すものであり、河川、海の有無や位置、距離、面積、海抜何メートルあるか、また等高線の情報、道路に関する情報、河川に対する建築構造物の相対的位置関係等、の情報である。このような参照用地理的情報は、各地域単位でデータベース3内にて管理されている。 This reference geographic information, which is added as an explanatory variable instead of the reference rejection rate, indicates all geographic information in the area, including rivers, presence or absence of the sea, location, distance, area, and how many meters above sea level. , Information on contour lines, information on roads, relative positional relationship of building structures to rivers, etc. Such reference geographical information is managed in the database 3 for each region.
 このような地理的情報も水回りトラブル発生頻度に影響を及ぼす。河川に近い場合には、これに応じて水回りのトラブルが発生する可能性が高くなる場合があることから、これを参照用売上データと組み合わせ、連関度を通じてトラブル発生頻度を判別することで、判別精度を向上させることができる。解探索時には、実際にそのトラブル発生頻度の判別対象の地域における売上データと、地理的情報とを取得する。新たに取得した売上データと、地理的情報に基づいて、最適なトラブル発生頻度を探索する。かかる場合には、予め取得した連関度を参照し、上述した方法に基づいてトラブル発生頻度を探索する。 Such geographical information also affects the frequency of water troubles. If it is close to a river, there is a high possibility that problems around the water will occur, so by combining this with sales data for reference, the frequency of problems can be determined through the degree of association. The discrimination accuracy can be improved. At the time of solution search, sales data and geographical information in the area where the trouble occurrence frequency is actually determined are acquired. Search for the optimal trouble occurrence frequency based on newly acquired sales data and geographical information. In such a case, the trouble occurrence frequency is searched based on the above-mentioned method with reference to the degree of association acquired in advance.
 なお、本発明によれば、上述した参照用売上データに加え、上述した参照用断り率の代わりに参照用トラブル種類情報との組み合わせと、当該組み合わせに対するトラブル発生頻度との3段階以上の連関度に基づいて解探索を行うようにしてもよい。 According to the present invention, in addition to the above-mentioned reference sales data, the combination with the reference trouble type information instead of the above-mentioned reference rejection rate and the trouble occurrence frequency for the combination have three or more levels of association. The solution may be searched based on the above.
 参照用断り率の代わりに説明変数として加えられるこの参照用トラブル種類情報は、その地域におけるあらゆるトラブルの種類に関する情報を示すものである。このトラブルの種類としては、トイレのつまり、水漏れ、故障、キッチンや洗面所のつまり、水漏れ、故障、風呂の排水口のつまりやシャワーや蛇口の水漏れ、故障等、の種類が分類されている。このような参照用トラブル種類情報は、各地域単位でデータベース3内にて管理されている。 This reference trouble type information, which is added as an explanatory variable instead of the reference refusal rate, indicates information on all types of trouble in the area. The types of this trouble are classified into types such as clogging of toilets, water leaks, malfunctions, clogging of kitchens and washrooms, water leaks, malfunctions, clogging of bath drains, water leaks of showers and faucets, malfunctions, etc. ing. Such reference trouble type information is managed in the database 3 for each region.
 このようなトラブル種類情報も水回りトラブル発生頻度に影響を及ぼす。水道管の水漏れが多いのか、或いは排水口のつまりが多いのかで、トラブルの頻度も異なる場合があることから、これを参照用売上データと組み合わせ、連関度を通じてトラブル発生頻度を判別することで、判別精度を向上させることができる。解探索時には、実際にそのトラブル発生頻度の判別対象の地域における売上データと、トラブル種類情報とを取得する。新たに取得した売上データと、トラブル種類情報に基づいて、最適なトラブル発生頻度を探索する。かかる場合には、予め取得した連関度を参照し、上述した方法に基づいてトラブル発生頻度を探索する。 Such trouble type information also affects the frequency of water troubles. Since the frequency of troubles may differ depending on whether there are many water leaks in the water pipes or the clogging of the drainage outlet, this can be combined with the sales data for reference to determine the frequency of troubles through the degree of association. , The discrimination accuracy can be improved. At the time of solution search, the sales data in the area where the trouble occurrence frequency is actually determined and the trouble type information are acquired. Search for the optimum trouble occurrence frequency based on the newly acquired sales data and trouble type information. In such a case, the trouble occurrence frequency is searched based on the above-mentioned method with reference to the degree of association acquired in advance.
 なお、本発明によれば、上述した参照用売上データに加え、上述した参照用断り率の代わりに参照用統計情報との組み合わせと、当該組み合わせに対するトラブル発生頻度との3段階以上の連関度に基づいて解探索を行うようにしてもよい。 According to the present invention, in addition to the above-mentioned reference sales data, the combination with the reference statistical information instead of the above-mentioned reference rejection rate and the frequency of trouble occurrence for the combination have three or more levels of association. The solution search may be performed based on the above.
 参照用断り率の代わりに説明変数として加えられるこの参照用統計情報は、その地域における建築構造物の種類に関する統計情報である。建築構造物の種類とは、ビル、マンション、戸建て住宅、アパート等といった大分類に加えて、各建築構造物の築年数や建築方法(軽量鉄骨、重量鉄骨、鉄筋コンクリート造、木造等)が統計的に分析されている。これらの各種類や建築方法、築年数の割合が各地域間で比較分析しやすいように統計的に分析されている。このような参照用統計情報は、各地域単位でデータベース3内にて管理されている。また、この統計情報は、その地域の建築構造物の築年数に関する統計情報で構成されるものであってもよい。 This reference statistical information, which is added as an explanatory variable instead of the reference refusal rate, is statistical information regarding the type of building structure in the area. In addition to major categories such as buildings, condominiums, detached houses, and apartments, the types of building structures are statistically based on the age and construction method (lightweight steel frame, heavy steel frame, reinforced concrete structure, wooden structure, etc.) of each building structure. Has been analyzed. Each of these types, construction methods, and age ratios are statistically analyzed to facilitate comparative analysis between regions. Such reference statistical information is managed in the database 3 for each region. In addition, this statistical information may be composed of statistical information regarding the age of building structures in the area.
 このような統計情報も水回りトラブル発生頻度に影響を及ぼす。築年数が長いほど水道管の水漏れが多く、排水口のつまりが多い場合があることから、これを参照用売上データと組み合わせ、連関度を通じてトラブル発生頻度を判別することで、判別精度を向上させることができる。解探索時には、実際にそのトラブル発生頻度の判別対象の地域における売上データと、統計情報とを取得する。新たに取得した売上データと、統計情報に基づいて、最適なトラブル発生頻度を探索する。かかる場合には、予め取得した連関度を参照し、上述した方法に基づいてトラブル発生頻度を探索する。 Such statistical information also affects the frequency of water troubles. The longer the building is, the more water leaks in the water pipes and the more clogging of the drainage outlet. Therefore, by combining this with the sales data for reference and determining the frequency of trouble occurrence through the degree of association, the discrimination accuracy is improved. Can be made to. At the time of solution search, sales data and statistical information in the area where the trouble occurrence frequency is actually determined are acquired. Search for the optimal trouble occurrence frequency based on newly acquired sales data and statistical information. In such a case, the trouble occurrence frequency is searched based on the above-mentioned method with reference to the degree of association acquired in advance.
 また、上述した参照用情報(参照用断り率、参照用人口推計データ、参照用地理的情報、参照用トラブル種類情報、参照用統計情報等)の代替として、参照用売上データを取得した時期に関する参照用時期情報を利用するようにしてもよい。ここでいう参照用時期情報とは、その参照用売上データを取得した時期として、月、週、日、季節等、時期を示すあらゆるデータで構成される。この時期についても、水回りトラブルの発生しやすい時期があることから、水回りトラブルの発生頻度に影響を及ぼすため、これを含めて判断することでより高精度な解探索が実現できる。 In addition, as a substitute for the above-mentioned reference information (reference rejection rate, reference population estimation data, reference geographical information, reference trouble type information, reference statistical information, etc.), it is related to the timing when reference sales data was acquired. Reference time information may be used. The reference time information referred to here is composed of all data indicating the time such as month, week, day, season, etc. as the time when the reference sales data is acquired. Since there is a time when water troubles are likely to occur at this time as well, it affects the frequency of water troubles, so it is possible to realize a more accurate solution search by making a judgment including this.
 かかる場合には、過去において各地域における水回りトラブル対応に対して出動した業者の参照用売上データと、上記参照用売上データを取得した時期に関する参照用時期情報とを有する組み合わせと、水回りのトラブルの発生頻度との3段階以上の連関度をあらかじめ取得しておく。そして、水回りトラブルの発生頻度を予測する建築構造物又はそれが立地する地域を特定するための地域特定情報と、地域特定情報を取得した時期に関する時期情報を取得する。次に、取得した地域特定情報における地域の過去の売上データに対応する参照用売上データと、取得した時期情報に対応する参照用時期情報とに基づき、上述した連関度に基づいて水回りのトラブルの発生頻度を探索する。 In such a case, a combination having reference sales data of a trader who has been dispatched to deal with water circulation troubles in each region in the past and reference timing information regarding the time when the above reference sales data was acquired, and water circulation Acquire in advance the degree of association with the frequency of trouble occurrence at three or more levels. Then, the area-specific information for specifying the building structure for predicting the frequency of occurrence of water-related troubles or the area where the area-specific information is located, and the time information regarding the time when the area-specific information was acquired are acquired. Next, based on the reference sales data corresponding to the past sales data of the region in the acquired region specific information and the reference timing information corresponding to the acquired timing information, the trouble around the water is based on the above-mentioned degree of association. Search for the frequency of occurrence of.
 また、上述した参照用情報(参照用断り率、参照用人口推計データ、参照用地理的情報、参照用トラブル種類情報、参照用統計情報等)の代替として、地域特定情報を取得した時期の天候に関する参照用天候情報を利用するようにしてもよい。ここでいう参照用天候情報とは、その参照用売上データを取得した時期における天候に関するあらゆる情報であり、気候、温度、湿度、天気、風向き、風速、雷雨、台風、旱魃等に関するあらゆるデータで構成される。天候も水回りトラブルに影響を及ぼすファクターであることから、これを説明変数に加えたものである。 In addition, as a substitute for the above-mentioned reference information (reference rejection rate, reference population estimation data, reference geographical information, reference trouble type information, reference statistical information, etc.), the weather at the time when the area specific information was acquired. Reference weather information for reference may be used. The reference weather information referred to here is all information related to the weather at the time when the reference sales data was acquired, and is composed of all data related to climate, temperature, humidity, weather, wind direction, wind speed, thunderstorm, typhoon, drought, etc. Will be done. Since the weather is also a factor that affects water problems, this is added to the explanatory variables.
 かかる場合には、過去において各地域における水回りトラブル対応に対して出動した業者の参照用売上データと、上記参照用売上データを取得した時期の天候に関する参照用天候情報とを有する組み合わせと、水回りのトラブルの発生頻度との3段階以上の連関度をあらかじめ取得しておく。そして、水回りトラブルの発生頻度を予測する建築構造物又はそれが立地する地域を特定するための地域特定情報と、地域特定情報を取得した時期の天候に関する天候情報を取得する。次に、取得した地域特定情報における地域の過去の売上データに対応する参照用売上データと、取得した天候情報に対応する参照用天候情報とに基づき、上述した連関度に基づいて水回りのトラブルの発生頻度を探索する。 In such a case, a combination having reference sales data of a trader who has been dispatched to deal with water problems in each region in the past and reference weather information regarding the weather at the time when the above reference sales data was acquired, and water. Obtain in advance the degree of association with the frequency of occurrence of troubles around you in three or more stages. Then, the area-specific information for specifying the building structure for predicting the frequency of water-related troubles or the area where the area-specific information is located and the weather information regarding the weather at the time when the area-specific information is acquired are acquired. Next, based on the reference sales data corresponding to the past sales data of the region in the acquired region specific information and the reference weather information corresponding to the acquired weather information, the trouble around the water is based on the above-mentioned degree of association. Search for the frequency of occurrence of.
 上述した連関度においては、10段階評価で連関度を表現しているが、これに限定されるものではなく、3段階以上の連関度で表現されていればよく、逆に3段階以上であれば100段階でも1000段階でも構わない。一方、この連関度は、2段階、つまり互いに連関しているか否か、1又は0の何れかで表現されるものは含まれない。 In the above-mentioned degree of association, the degree of association is expressed by a 10-step evaluation, but it is not limited to this, and it may be expressed by a degree of association of 3 or more levels, and conversely, it may be expressed by 3 or more levels. For example, 100 steps or 1000 steps may be used. On the other hand, this degree of association does not include those expressed in two stages, that is, whether or not they are related to each other, either 1 or 0.
 上述した構成からなる本発明によれば、特段のスキルや経験が無くても、誰でも手軽にトラブル発生頻度の判別・探索を行うことができる。また本発明によれば、この探索解の判断を、人間が行うよりも高精度に行うことが可能となる。更に、上述した連関度を人工知能(ニューラルネットワーク等)で構成することにより、これを学習させることでその判別精度を更に向上させることが可能となる。 According to the present invention having the above-mentioned configuration, anyone can easily determine and search for the frequency of trouble occurrence without any special skill or experience. Further, according to the present invention, it is possible to make a judgment of this search solution with higher accuracy than that made by a human being. Further, by configuring the above-mentioned degree of association with artificial intelligence (neural network or the like), it is possible to further improve the discrimination accuracy by learning this.
 なお、上述した入力データ、及び出力データは、学習させる過程で完全に同一のものが存在しない場合も多々あることから、これらの入力データと出力データを類型別に分類した情報であってもよい。つまり、入力データを構成する情報P01、P02、・・・・P15、16、・・・は、その情報の内容に応じて予めシステム側又はユーザ側において分類した基準で分類し、その分類した入力データと出力データとの間でデータセットを作り、学習させるようにしてもよい。 Note that the above-mentioned input data and output data may not be completely the same in the process of learning, so that the input data and the output data may be classified by type. That is, the information P01, P02, ... P15, 16, ... That constitute the input data are classified according to the criteria classified in advance on the system side or the user side according to the content of the information, and the classified inputs. A dataset may be created between the data and the output data and trained.
 なお、上述した連関度では、参照用売上データに加え、業者の参照用断り率、参照用人口推計データ、参照用地理的情報、参照用トラブル種類情報、建築構造物の種類に関する参照用統計情報の何れかとの組み合わせで構成されている場合を例にとり説明をしたが、これに限定されるものではない。つまり連関度は、参照用売上データに加え、業者の参照用断り率、参照用人口推計データ、参照用地理的情報、参照用トラブル種類情報、建築構造物の種類に関する参照用統計情報、参照用時期情報、参照用天候情報の何れか2以上との組み合わせで構成されていてもよい。また連関度は、参照用売上データ又は、これに加えて業者の参照用断り率、参照用人口推計データ、参照用地理的情報、参照用トラブル種類情報、建築構造物の種類に関する参照用統計情報、参照用時期情報、参照用天候情報の何れか1以上に加え、他のファクターがこの組み合わせに加わって連関度が形成されていてもよい。 In the above-mentioned degree of association, in addition to the reference sales data, the reference rejection rate of the vendor, the reference population estimation data, the reference geographical information, the reference trouble type information, and the reference statistical information regarding the type of the building structure. Although the explanation has been given by taking the case of being configured in combination with any of the above as an example, the present invention is not limited to this. In other words, in addition to the reference sales data, the degree of association includes the reference rejection rate of the vendor, the reference population estimation data, the reference geographical information, the reference trouble type information, the reference statistical information regarding the type of building structure, and the reference. It may be composed of a combination of any two or more of the time information and the reference weather information. In addition, the degree of association is the reference sales data or, in addition to this, the reference rejection rate of the contractor, the reference population estimation data, the reference geographical information, the reference trouble type information, and the reference statistical information regarding the type of the building structure. , Any one or more of the reference time information and the reference weather information, and other factors may be added to this combination to form the degree of association.
 いずれの場合も、その連関度の参照情報に合わせたデータの入力がなされ、その連関度を利用してトラブル発生頻度を求める。 In either case, data is input according to the reference information of the degree of association, and the frequency of trouble occurrence is calculated using the degree of association.
 また本発明は、図6に示すように参照用情報Uと参照用情報Vという2種類以上の情報の組み合わせの連関度に基づいてトラブル発生頻度を判別するものである。この参照用情報Uが参照用売上データであり、参照用情報Vが業者の参照用断り率、参照用人口推計データ、参照用地理的情報、参照用トラブル種類情報、建築構造物の種類に関する参照用統計情報の何れかであるものとする。 Further, as shown in FIG. 6, the present invention determines the frequency of trouble occurrence based on the degree of association between two or more types of information, the reference information U and the reference information V. The reference information U is the reference sales data, and the reference information V is the reference rejection rate of the vendor, the reference population estimation data, the reference geographical information, the reference trouble type information, and the reference regarding the type of the building structure. It shall be one of the statistical information.
 このとき、参照用情報Uについて得られた出力をそのまま入力データとして、参照用情報Vとの組み合わせの中間ノード61を介して出力(トラブル発生頻度)と関連付けられていてもよい。例えば、参照用情報U(参照用売上データ)について、図3に示すように出力解を出した後、これをそのまま入力として、他の参照用情報Vとの間での連関度を利用し、出力(トラブル発生頻度)を探索するようにしてもよい。 At this time, the output obtained for the reference information U may be used as the input data as it is, and may be associated with the output (trouble occurrence frequency) via the intermediate node 61 in combination with the reference information V. For example, for reference information U (reference sales data), after outputting an output solution as shown in FIG. 3, this is used as an input as it is, and the degree of association with other reference information V is used. The output (frequency of trouble occurrence) may be searched.
 また本発明によれば、出力としてトラブル発生頻度を出力解として得る代わりに、トラブル発生頻度に基づいた警報、アラーム等を始めとする注意喚起情報を発信するようにしてもよい。トラブル発生頻度が高いほど、注意喚起情報の注意喚起度合が高くなる様にする。これにより外部に対して生徒が危険な状態にあることに対する注意喚起を効率的に行うことができる。 Further, according to the present invention, instead of obtaining the trouble occurrence frequency as an output solution, the warning information such as an alarm, an alarm, etc. based on the trouble occurrence frequency may be transmitted. The higher the frequency of troubles, the higher the degree of alerting of the alerting information. As a result, it is possible to efficiently alert the outside to the fact that the student is in a dangerous state.
 また、本発明によれば、3段階以上に設定されている連関度を介して最適な解探索を行う点に特徴がある。連関度は、上述した10段階以外に、例えば0~100%までの数値で記述することができるが、これに限定されるものではなく3段階以上の数値で記述できるものであればいかなる段階で構成されていてもよい。 Further, according to the present invention, there is a feature that the optimum solution search is performed through the degree of association set in three or more stages. The degree of association can be described by, for example, a numerical value from 0 to 100% in addition to the above-mentioned 10 steps, but is not limited to this, and any step can be described as long as it can be described by a numerical value of 3 or more steps. It may be configured.
 このような3段階以上の数値で表される連関度に基づいて最も確からしいトラブル発生頻度、を判別することで、探索解の可能性の候補として複数考えられる状況下において、当該連関度の高い順に探索して表示することも可能となる。このように連関度の高い順にユーザに表示できれば、より確からしい探索解を優先的に表示することも可能となる。 By determining the most probable trouble occurrence frequency based on the degree of association expressed by the numerical values of three or more stages, the degree of association is high under the situation where there are multiple possible candidates for the search solution. It is also possible to search and display in order. If the user can be displayed in descending order of the degree of association in this way, it is possible to preferentially display more probable search solutions.
 これに加えて、本発明によれば、連関度が1%のような極めて低い出力の判別結果も見逃すことなく判断することができる。連関度が極めて低い判別結果であっても僅かな兆候として繋がっているものであり、何十回、何百回に一度は、その判別結果として役に立つ場合もあることをユーザに対して注意喚起することができる。 In addition to this, according to the present invention, it is possible to judge without overlooking the discrimination result of the extremely low output such as the degree of association of 1%. It warns the user that even a judgment result with an extremely low degree of association is connected as a slight sign, and may be useful as the judgment result once every tens or hundreds of times. be able to.
 更に本発明によれば、このような3段階以上の連関度に基づいて探索を行うことにより、閾値の設定の仕方で、探索方針を決めることができるメリットがある。閾値を低くすれば、上述した連関度が1%のものであっても漏れなく拾うことができる反面、より適切な判別結果を好適に検出できる可能性が低く、ノイズを沢山拾ってしまう場合もある。一方、閾値を高くすれば、最適な探索解を高確率で検出できる可能性が高い反面、通常は連関度は低くてスルーされるものの何十回、何百回に一度は出てくる好適な解を見落としてしまう場合もある。いずれに重きを置くかは、ユーザ側、システム側の考え方に基づいて決めることが可能となるが、このような重点を置くポイントを選ぶ自由度を高くすることが可能となる。 Further, according to the present invention, there is a merit that the search policy can be determined by the method of setting the threshold value by performing the search based on the degree of association of three or more stages. If the threshold value is lowered, even if the above-mentioned degree of association is 1%, it can be picked up without omission, but it is unlikely that a more appropriate discrimination result can be detected favorably, and a lot of noise may be picked up. be. On the other hand, if the threshold value is raised, there is a high possibility that the optimum search solution can be detected with high probability, but the degree of association is usually low and it is passed through, but it is suitable to appear once in tens or hundreds of times. Sometimes the solution is overlooked. It is possible to decide which one should be emphasized based on the ideas of the user side and the system side, but it is possible to increase the degree of freedom in selecting the points to be emphasized.
 更に本発明では、上述した連関度を更新させるようにしてもよい。この更新は、例えばインターネットを始めとした公衆通信網を介して提供された情報を反映させるようにしてもよい。また参照用売上データを初めとする各参照用情報を取得し、これらに対するトラブル発生頻度に関する知見、情報、データを取得した場合、これらに応じて連関度を上昇させ、或いは下降させる。 Further, in the present invention, the above-mentioned degree of association may be updated. This update may reflect information provided, for example, via a public communication network such as the Internet. In addition, when each reference information such as reference sales data is acquired and knowledge, information, and data regarding the frequency of trouble occurrence for these are acquired, the degree of association is increased or decreased according to these.
 係る場合には、その参照用売上データを初めとする各参照用情報と実際にあったか否か、またその危険度や兆候の判別結果の事例を収集し、その事例の数に応じて連関度を上昇させ、或いは下降させる。このとき、上述した売上データ、断り率、人口推計データ、地理的情報、トラブル種類情報、建築構造物の種類に関する参照用統計情報、時期情報、天候情報を取得して、判別を行った際に、これらに基づいて更新を行うようにしてもよい。 In such a case, collect the reference information including the reference sales data and the case of the judgment result of the degree of danger and the sign, and the degree of association according to the number of cases. Raise or lower. At this time, when the above-mentioned sales data, refusal rate, population estimation data, geographical information, trouble type information, reference statistical information regarding the type of building structure, time information, and weather information are acquired and determined. , The update may be performed based on these.
 つまり、この更新は、人工知能でいうところの学習に相当する。新たなデータを取得し、これを学習済みデータに反映させることを行っているため、学習行為といえるものである。 In other words, this update is equivalent to learning in terms of artificial intelligence. It can be said that it is a learning act because it acquires new data and reflects it in the learned data.
 また学習済モデルを最初に作り上げる過程、及び上述した更新は、教師あり学習のみならず、教師なし学習、ディープラーニング、強化学習等を用いるようにしてもよい。教師なし学習の場合には、入力データと出力データのデータセットを読み込ませて学習させる代わりに、入力データに相当する情報を読み込ませて学習させ、そこから出力データに関連する連関度を自己形成させるようにしてもよい。 In addition, the process of first creating a trained model and the above-mentioned update may use not only supervised learning but also unsupervised learning, deep learning, reinforcement learning, and the like. In the case of unsupervised learning, instead of reading and learning the data set of input data and output data, information corresponding to the input data is read and trained, and the degree of association related to the output data is self-formed from there. You may let it.
 第2実施形態
 以下、第2実施形態について説明をする。この第2実施形態を実行する上では、第1実施形態において使用するトラブル発生頻度予測システム1、情報取得部9、探索装置2、データベース3を同様に使用する。これらの各構成の説明は、第1実施形態の説明を引用することで以下での説明を省略する。
Second Embodiment Hereinafter, the second embodiment will be described. In executing this second embodiment, the trouble occurrence frequency prediction system 1, the information acquisition unit 9, the search device 2, and the database 3 used in the first embodiment are similarly used. The description of each of these configurations will be omitted below by citing the description of the first embodiment.
 第2実施形態では、参照用断り率と、水回りのトラブルの発生頻度のデータセットを学習させる。 In the second embodiment, the data set of the reference refusal rate and the frequency of occurrence of troubles around water is learned.
 図7の例では、入力データとして、各地域における参照用断り率P01、P02、P03であるものとする。このような入力データとしての参照用断り率P01、P02、P03は、出力としての水回りのトラブル発生頻度に連結している。 In the example of FIG. 7, it is assumed that the input data is the reference refusal rates P01, P02, and P03 in each region. The reference rejection rates P01, P02, and P03 as such input data are linked to the frequency of troubles around water as an output.
 参照用断り率P01、P02、P03は、この出力解としての水回りのトラブル発生頻度A~Dに対して3段階以上の連関度を通じて互いに連関しあっている。参照用断り率がこの連関度を介して左側に配列し、各水回りのトラブル発生頻度が連関度を介して右側に配列している。連関度は、左側に配列された参照用断り率に対して、何れのトラブル発生頻度と関連性が高いかの度合いを示すものである。換言すれば、この連関度は、各参照用断り率が、いかなるトラブル発生頻度に紐付けられる可能性が高いかを示す指標であり、各参照用断り率について最も確からしいトラブル発生頻度を選択する上での的確性を示すものである。図7の例では、連関度としてw13~w19が示されている。このw13~w19は以下の表1に示すように10段階で示されており、10点に近いほど、中間ノードとしての各組み合わせが出力としてのトラブル発生頻度と互いに関連度合いが高いことを示しており、逆に1点に近いほど中間ノードとしての各組み合わせが出力としてのトラブル発生頻度と互いに関連度合いが低いことを示している。 The reference refusal rates P01, P02, and P03 are related to each other through the degree of association of three or more levels with respect to the trouble occurrence frequencies A to D around the water as the output solution. The reference refusal rate is arranged on the left side through this degree of association, and the frequency of troubles around each water is arranged on the right side through this degree of association. The degree of association indicates the degree of trouble occurrence frequency and the degree of relevance to the reference refusal rate arranged on the left side. In other words, this degree of association is an index showing what kind of trouble occurrence frequency each reference rejection rate is likely to be associated with, and the most probable trouble occurrence frequency is selected for each reference rejection rate. It shows the accuracy above. In the example of FIG. 7, w13 to w19 are shown as the degree of association. These w13 to w19 are shown in 10 stages as shown in Table 1 below, and the closer to 10 points, the higher the degree of relevance of each combination as an intermediate node to the frequency of trouble occurrence as output. On the contrary, the closer to one point, the lower the degree of relation between each combination as an intermediate node and the frequency of trouble occurrence as an output.
 探索装置2は、このような3段階以上の連関度w13~w19を予め取得しておく。つまり探索装置2は、実際の探索解の判別を行う上で、各地域の参照用断り率と、その場合のトラブル発生頻度の何れが採用、評価されたか、過去のデータセットを蓄積しておき、これらを分析、解析することで連関度を作り上げておく。 The search device 2 acquires in advance the degree of association w13 to w19 having three or more stages. That is, the search device 2 accumulates a past data set as to which of the reference refusal rate of each region and the frequency of trouble occurrence in that case is adopted and evaluated in determining the actual search solution. , By analyzing and analyzing these, the degree of association is created.
 また、この連関度は、人工知能におけるニューラルネットワークのノードで構成されるものであってもよい。即ち、このニューラルネットワークのノードが出力に対する重み付け係数が、上述した連関度に対応することとなる。またニューラルネットワークに限らず、人工知能を構成するあらゆる意思決定因子で構成されるものであってもよい。 Further, this degree of association may be composed of the nodes of the neural network in artificial intelligence. That is, the weighting coefficient for the output of the node of this neural network corresponds to the above-mentioned degree of association. Further, the network is not limited to a neural network, and may be composed of all decision-making factors constituting artificial intelligence.
 かかる場合には、図8に示すように、入力データとして各地域の参照用断り率が入力され、出力データとしてトラブル発生頻度が出力され、入力ノードと出力ノードの間に少なくとも1以上の隠れ層が設けられ、機械学習させるようにしてもよい。入力ノード又は隠れ層ノードの何れか一方又は両方において上述した連関度が設定され、これが各ノードの重み付けとなり、これに基づいて出力の選択が行われる。そして、この連関度がある閾値を超えた場合に、その出力を選択するようにしてもよい。 In such a case, as shown in FIG. 8, the reference refusal rate of each region is input as input data, the trouble occurrence frequency is output as output data, and at least one hidden layer between the input node and the output node is output. May be provided and machine learning may be performed. The above-mentioned degree of association is set in either one or both of the input node and the hidden layer node, and this is the weight of each node, and the output is selected based on this. Then, when this degree of association exceeds a certain threshold value, the output may be selected.
 このような連関度が、人工知能でいうところの学習済みデータとなる。このような学習済みデータを、以前の各地域の参照用断り率と、水回りのトラブルの発生頻度とのデータセットを通じて作った後に、実際にこれから新たにトラブル発生頻度の判別を行う上で、上述した学習済みデータを利用してトラブル発生頻度を探索することとなる。これらのデータセットは、業者が管理しているデータベースから読み出すことで作成するようにしてもよい。 Such degree of association is what is called learned data in artificial intelligence. After creating such learned data through a data set of the reference refusal rate of each region before and the frequency of troubles around water, it is necessary to actually determine the frequency of troubles from now on. The trouble occurrence frequency will be searched using the above-mentioned learned data. These data sets may be created by reading from a database managed by the vendor.
 新たにトラブル発生頻度を探索する場合には、探索したい地域の入力を受け付ける。地域毎にそれぞれ過去の断り率が紐付けられて記憶されていることから、地域の入力を受け付けた場合、これに紐づけられている断り率を読み出すことで取得することができる。 When searching for a new trouble occurrence frequency, accept the input of the area you want to search. Since the past refusal rate is associated and stored for each region, when the input of the region is accepted, it can be obtained by reading the refusal rate associated with this.
 次にこの読みだした断り率を参照用断り率と照合する。かかる場合には、予め取得した連関度を参照する。例えば、新たに取得した断り率がP02と同一かこれに類似するものである場合には、連関度を介してトラブル発生頻度Bがw15、トラブル発生頻度Cが連関度w16で関連付けられている。かかる場合には、連関度の最も高いトラブル発生頻度Bを最適解として選択する。但し、最も連関度の高いものを最適解として選択することは必須ではなく、連関度は低いものの連関性そのものは認められるトラブル発生頻度Cを最適解として選択するようにしてもよい。また、これ以外に矢印が繋がっていない出力解を選択してもよいことは勿論であり、連関度に基づくものであれば、その他いかなる優先順位で選択されるものであってもよい。 Next, collate this read-out refusal rate with the reference refusal rate. In such a case, the degree of association acquired in advance is referred to. For example, when the newly acquired rejection rate is the same as or similar to P02, the trouble occurrence frequency B is associated with the association degree w15 and the trouble occurrence frequency C is associated with the association degree w16 via the association degree. In such a case, the trouble occurrence frequency B having the highest degree of association is selected as the optimum solution. However, it is not essential to select the one with the highest degree of association as the optimum solution, and the trouble occurrence frequency C in which the degree of association itself is recognized although the degree of association is low may be selected as the optimum solution. In addition to this, it goes without saying that an output solution to which the arrows are not connected may be selected, and any other output solution may be selected in any other priority as long as it is based on the degree of association.
 ちなみに、断り率と参照用断り率の照合は、仮にこれらのデータが、ある期間の売上平均で表されている場合には、その売上平均が±10%の範囲内に入っているか否かで同一及び類似であるか否かを判別するようにしてもよい。また、断り率が時系列的推移グラフで示されるものであれば、その傾向の類似性に基づいて判別されるものであってもよい。 By the way, the collation of the refusal rate and the refusal rate for reference is based on whether or not the sales average is within the range of ± 10% if these data are represented by the sales average for a certain period. It may be determined whether they are the same or similar. Further, as long as the refusal rate is shown in the time-series transition graph, it may be discriminated based on the similarity of the trends.
 このようにして、新たに取得する断り率から、最も好適なトラブル発生頻度を探索し、ユーザに表示することができる。この探索結果を見ることにより、その地域で、今後どのようなトラブル発生頻度になりえるかを事前に判別することができ、地域毎の作業員の配置を検討することができる。 In this way, it is possible to search for the most suitable trouble occurrence frequency from the newly acquired refusal rate and display it to the user. By looking at this search result, it is possible to determine in advance what kind of trouble occurrence frequency may occur in the area in the future, and it is possible to consider the allocation of workers in each area.
 また、本実施形態では、ある一の地域に焦点を当てるものであってもよい。そしてその地域における水回りトラブルがどの程度の発生頻度で起こり得るかを予測するものであってもよい。第3実施形態では、参照用時期情報と、水回りのトラブルの発生頻度のデータセットを学習させる。 Further, in this embodiment, it may be focused on a certain area. Then, it may predict how often water troubles may occur in the area. In the third embodiment, the reference timing information and the data set of the frequency of occurrence of water troubles are learned.
 図9の例では、入力データとして、各地域における参照用時期情報P01、P02、P03であるものとする。このような入力データとしての参照用時期情報P01、P02、P03は、出力としての水回りのトラブル発生頻度に連結している。 In the example of FIG. 9, it is assumed that the input data is reference timing information P01, P02, P03 in each region. The reference timing information P01, P02, and P03 as such input data are linked to the frequency of troubles around the water as an output.
 参照用時期情報P01、P02、P03は、この出力解としての水回りのトラブル発生頻度A~Dに対して3段階以上の連関度を通じて互いに連関しあっている。参照用時期情報がこの連関度を介して左側に配列し、各水回りのトラブル発生頻度が連関度を介して右側に配列している。連関度は、左側に配列された参照用時期情報に対して、何れのトラブル発生頻度と関連性が高いかの度合いを示すものである。換言すれば、この連関度は、各参照用時期情報が、いかなるトラブル発生頻度に紐付けられる可能性が高いかを示す指標であり、各参照用時期情報について最も確からしいトラブル発生頻度を選択する上での的確性を示すものである。図9の例では、連関度としてw13~w19が示されている。このw13~w19は以下の表1に示すように10段階で示されており、10点に近いほど、中間ノードとしての各組み合わせが出力としてのトラブル発生頻度と互いに関連度合いが高いことを示しており、逆に1点に近いほど中間ノードとしての各組み合わせが出力としてのトラブル発生頻度と互いに関連度合いが低いことを示している。 The reference timing information P01, P02, and P03 are related to each other through the degree of association of three or more levels with respect to the trouble occurrence frequencies A to D around the water as the output solution. The reference timing information is arranged on the left side via this degree of association, and the frequency of troubles around each water is arranged on the right side via the degree of association. The degree of association indicates the degree of trouble occurrence frequency and the degree of relevance to the reference timing information arranged on the left side. In other words, this degree of association is an index showing what kind of trouble occurrence frequency each reference timing information is likely to be associated with, and selects the most probable trouble occurrence frequency for each reference timing information. It shows the accuracy above. In the example of FIG. 9, w13 to w19 are shown as the degree of association. These w13 to w19 are shown in 10 stages as shown in Table 1 below, and the closer to 10 points, the higher the degree of relevance of each combination as an intermediate node to the frequency of trouble occurrence as output. On the contrary, the closer to one point, the lower the degree of relation between each combination as an intermediate node and the frequency of trouble occurrence as an output.
 探索装置2は、このような図9に示す3段階以上の連関度w13~w19を予め取得しておく。つまり探索装置2は、実際の探索解の判別を行う上で、各地域の参照用時期情報と、その場合のトラブル発生頻度の何れが採用、評価されたか、過去のデータセットを蓄積しておき、これらを分析、解析することで連関度を作り上げておく。 The search device 2 acquires in advance the degree of association w13 to w19 of three or more stages shown in FIG. That is, the search device 2 accumulates a past data set as to which of the reference timing information of each region and the trouble occurrence frequency in that case is adopted and evaluated in determining the actual search solution. , By analyzing and analyzing these, the degree of association is created.
 また、この連関度は、人工知能におけるニューラルネットワークのノードで構成されるものであってもよい。即ち、このニューラルネットワークのノードが出力に対する重み付け係数が、上述した連関度に対応することとなる。またニューラルネットワークに限らず、人工知能を構成するあらゆる意思決定因子で構成されるものであってもよい。 Further, this degree of association may be composed of the nodes of the neural network in artificial intelligence. That is, the weighting coefficient for the output of the node of this neural network corresponds to the above-mentioned degree of association. Further, the network is not limited to a neural network, and may be composed of all decision-making factors constituting artificial intelligence.
 このような連関度が、人工知能でいうところの学習済みデータとなる。このような学習済みデータを、以前の各地域の参照用時期情報と、水回りのトラブルの発生頻度とのデータセットを通じて作った後に、実際にこれから新たにトラブル発生頻度の判別を行う上で、上述した学習済みデータを利用してトラブル発生頻度を探索することとなる。これらのデータセットは、業者が管理しているデータベースから読み出すことで作成するようにしてもよい。 Such degree of association is what is called learned data in artificial intelligence. After creating such learned data through the data set of the reference timing information of each region before and the frequency of troubles around the water, in order to actually determine the frequency of troubles newly from now on. The trouble occurrence frequency will be searched using the above-mentioned learned data. These data sets may be created by reading from a database managed by the vendor.
 新たにトラブル発生頻度を探索する場合には、予測する時期に関する時期情報の入力を受け付ける。 When searching for a new trouble occurrence frequency, input of time information regarding the predicted time is accepted.
 次にこの受け付けた時期情報を参照用時期情報と照合する。かかる場合には、予め取得した図9(表1)に示す連関度を参照する。例えば、新たに取得した時期情報がP02と同一かこれに類似するものである場合には、連関度を介してトラブル発生頻度Bがw15、トラブル発生頻度Cが連関度w16で関連付けられている。かかる場合には、連関度の最も高いトラブル発生頻度Bを最適解として選択する。但し、最も連関度の高いものを最適解として選択することは必須ではなく、連関度は低いものの連関性そのものは認められるトラブル発生頻度Cを最適解として選択するようにしてもよい。また、これ以外に矢印が繋がっていない出力解を選択してもよいことは勿論であり、連関度に基づくものであれば、その他いかなる優先順位で選択されるものであってもよい。 Next, collate this received time information with the reference time information. In such a case, the degree of association shown in FIG. 9 (Table 1) acquired in advance is referred to. For example, when the newly acquired timing information is the same as or similar to P02, the trouble occurrence frequency B is associated with w15 and the trouble occurrence frequency C is associated with the association degree w16 via the association degree. In such a case, the trouble occurrence frequency B having the highest degree of association is selected as the optimum solution. However, it is not essential to select the solution having the highest degree of association as the optimum solution, and the trouble occurrence frequency C in which the degree of association itself is recognized although the degree of association is low may be selected as the optimum solution. In addition to this, it goes without saying that an output solution to which the arrows are not connected may be selected, and any other output solution may be selected in any other priority as long as it is based on the degree of association.
 ちなみに、時期情報と参照用時期情報の照合は、仮にこれらのデータが、ある期間の売上平均で表されている場合には、その売上平均が±10%の範囲内に入っているか否かで同一及び類似であるか否かを判別するようにしてもよい。また、時期情報が時系列的推移グラフで示されるものであれば、その傾向の類似性に基づいて判別されるものであってもよい。 By the way, the collation of the timing information and the reference timing information is based on whether or not the sales average is within the range of ± 10% if these data are represented by the sales average for a certain period. It may be determined whether they are the same or similar. Further, if the time information is shown in a time-series transition graph, it may be discriminated based on the similarity of the trends.
 このようにして、新たに取得する時期情報から、最も好適なトラブル発生頻度を探索し、ユーザに表示することができる。この探索結果を見ることにより、その地域で、今後どのようなトラブル発生頻度になりえるかを事前に判別することができ、地域毎の作業員の配置を検討することができる。 In this way, it is possible to search for the most suitable trouble occurrence frequency from the newly acquired timing information and display it to the user. By looking at this search result, it is possible to determine in advance what kind of trouble occurrence frequency may occur in the area in the future, and it is possible to consider the allocation of workers in each area.
 また、第1実施形態~第2実施形態ともに、上述した実施の形態に限定されるものでは無く、例えば図10に示すように、基調となる参照用情報と、水回りのトラブルの発生頻度との3段階以上の連関度を利用するようにしてもよい。かかる場合には、新たに取得した情報に応じた参照用情報と水回りのトラブルの発生頻度との3段階以上の連関度に基づき、解探索を行うことになる。基調となる参照用情報は、上述した全ての参照用情報(参照用売上データ、参照用断り率、参照用人口推計データ、参照用地理的情報、参照用トラブル種類情報、参照用統計情報、参照用時期情報、参照用天候情報等)を適用可能である。 Further, both the first embodiment and the second embodiment are not limited to the above-described embodiment, and as shown in FIG. 10, for example, the reference information as the keynote and the frequency of occurrence of troubles around water. You may use the degree of association of 3 or more levels. In such a case, the solution search is performed based on the degree of association between the reference information according to the newly acquired information and the frequency of occurrence of troubles around the water in three or more stages. The reference information that is the basis is all the above-mentioned reference information (reference sales data, reference rejection rate, reference population estimation data, reference geographical information, reference trouble type information, reference statistical information, reference. Time of use information, weather information for reference, etc.) can be applied.
 これらの場合も同様に、学習用データとして用いられた参照用情報に応じた情報が入力された場合に、上述した方法に基づいて解探索が行われることとなる。 Similarly, in these cases, when the information corresponding to the reference information used as the learning data is input, the solution search is performed based on the above-mentioned method.
 連関度を通じて求められる探索解は、更に、他の参照用情報に基づいて修正され、或いは重み付けを変化させるようにしてもよい。 The search solution obtained through the degree of association may be further modified based on other reference information, or the weighting may be changed.
 ここでいう他の参照用情報とは、上述した参照用情報の何れかを基調となる参照用情報とした場合、当該基調となる参照用情報以外のいかなる参照用情報に該当する。 The other reference information referred to here corresponds to any reference information other than the reference information which is the keynote when any of the above-mentioned reference information is used as the keynote reference information.
 例えば、他の参照用情報の一つとして、ある参照用地理的情報Fにおいて、以前において水回りのトラブルの発生頻度Bが判別される経緯が多かったものとする。このような参照用地理的情報Fに応じた地理的情報を新たに取得したとき、水回りのトラブルの発生頻度としての探索解Bに対して、重み付けを上げる処理を行い、換言すれば水回りのトラブルの発生頻度の探索解Bにつながるようにする処理を行うように予め設定しておく。 For example, as one of the other reference information, it is assumed that the frequency B of the trouble around the water was previously determined in the certain reference geographical information F. When the geographical information corresponding to the reference geographical information F is newly acquired, the search solution B as the frequency of occurrence of the trouble around the water is subjected to the processing of increasing the weight, in other words, the water around. It is set in advance to perform a process that leads to the search solution B of the frequency of occurrence of the trouble.
 例えば、他の参照用情報Gが、より水回りのトラブルの発生頻度としての探索解Cを示唆するような分析結果であり、参照用情報Fが、より水回りのトラブルの発生頻度としての探索解Dを示唆するような分析結果であるものとする。このように参照用情報との間での設定の後、実際に取得した情報が参照用情報Gと同一又は類似する場合には、水回りのトラブルの発生頻度Cの重み付けを上げる処理を行う。これに対して、実際に取得した情報が参照用情報Fと同一又は類似する場合には、水回りのトラブルの発生頻度Dの重み付けを上げる処理を行う。つまり、水回りのトラブルの発生頻度につながる連関度そのものを、この参照用情報F~Hに基づいてコントロールするようにしてもよい。或いは、水回りのトラブルの発生頻度を上述した連関度のみで決定した後、この求めた探索解に対して参照用情報F~Hに基づいて修正を加えるようにしてもよい。後者の場合において、参照用情報F~Hに基づいてどのように探索解としての水回りのトラブルの発生頻度にいかなるウェートで修正を加えるかは、都度システム側において設計したものを反映させることとなる。 For example, the other reference information G is an analysis result that suggests the search solution C as the frequency of occurrence of troubles around water, and the reference information F is the search as the frequency of occurrence of troubles around water. It is assumed that the analysis result suggests the solution D. After the setting with the reference information in this way, if the actually acquired information is the same as or similar to the reference information G, a process of increasing the weighting of the occurrence frequency C of the trouble around the water is performed. On the other hand, when the actually acquired information is the same as or similar to the reference information F, a process of increasing the weighting of the occurrence frequency D of the trouble around the water is performed. That is, the degree of association itself, which leads to the frequency of troubles around water, may be controlled based on the reference information F to H. Alternatively, after determining the frequency of occurrence of water-related troubles only by the above-mentioned degree of association, the search solution obtained may be modified based on the reference information F to H. In the latter case, how to correct the frequency of water troubles as a search solution based on the reference information F to H should reflect what was designed on the system side each time. Become.
 また参照用情報は、何れか1種で構成される場合に限定されるものではなく、2種以上の参照用情報に基づいて解探索するようにしてもよい。かかる場合も同様に、参照用情報の示唆する水回りのトラブルの発生頻度につながるケースほど、連関度を介して求められた探索解としての当該判別類型をより高く修正するようにしてもよい。 Further, the reference information is not limited to the case where it is composed of any one type, and the solution search may be performed based on two or more types of reference information. Similarly, in such a case, the more the case leads to the frequency of occurrence of water troubles suggested by the reference information, the higher the modification of the discrimination type as the search solution obtained through the degree of association may be made.
 同様に、図11に示すように、基調となる参照用情報と、他の参照用情報とを有する組み合わせに対する、水回りのトラブルの発生頻度との連関度を形成する場合においても、基調となる参照用情報は、第1実施形態、第2実施形態におけるいかなる参照用情報(参照用売上データ、参照用断り率、参照用人口推計データ、参照用地理的情報、参照用トラブル種類情報、参照用統計情報、参照用時期情報、参照用天候情報等)も適用可能である。他の参照用情報は、基調となる参照用情報以外の第1実施形態、第2実施形態におけるいかなる参照用情報が含まれる。 Similarly, as shown in FIG. 11, it is also a keynote when forming a degree of association with the frequency of occurrence of troubles around water for a combination having a reference information as a keynote and other reference information. The reference information is any reference information (reference sales data, reference rejection rate, reference population estimation data, reference geographical information, reference trouble type information, reference) in the first embodiment and the second embodiment. Statistical information, reference time information, reference weather information, etc.) are also applicable. Other reference information includes any reference information in the first and second embodiments other than the underlying reference information.
 このとき、基調となる参照用情報が、参照用地理的情報であれば、他の参照用情報としては、これ以外の第1実施形態、第2実施形態におけるいかなる参照用情報が含まれる。 At this time, if the reference information as the keynote is the reference geographical information, the other reference information includes any reference information in the other first embodiment and the second embodiment.
 かかる場合も同様に解探索を行うことで、水回りのトラブルの発生頻度を推定することができる。このとき、上述した図10に示すように、連関度を通じて得られた探索解に対して、更なる他の参照用情報(参照用情報F、G、H等)を通じて、水回りのトラブルの発生頻度を修正するようにしてもよい。 In such a case, the frequency of water troubles can be estimated by searching for a solution in the same way. At this time, as shown in FIG. 10 described above, the trouble around the water occurs with respect to the search solution obtained through the degree of association through further other reference information (reference information F, G, H, etc.). The frequency may be modified.
 このとき、他の参照用情報が1のみならず、2以上組み合わさるようにして連関度が学習されるものであってもよい。 At this time, the degree of association may be learned by combining not only 1 but also 2 or more other reference information.
 また、図12に示すように基調となる参照用情報のみと、水回りのトラブルの発生頻度との間で連関度が形成されるものであってもよい。この基調となる参照用情報は、第1実施形態、第2実施形態におけるいかなる参照用情報(参照用売上データ、参照用断り率、参照用人口推計データ、参照用地理的情報、参照用トラブル種類情報、参照用統計情報、参照用時期情報、参照用天候情報等)も適用可能である。この図12の解探索方法は、図3の説明を引用することで以下での説明を省略する。 Further, as shown in FIG. 12, the degree of association may be formed between only the reference information that is the keynote and the frequency of occurrence of troubles around water. This reference information as a keynote is any reference information (reference sales data, reference rejection rate, reference population estimation data, reference geographical information, reference trouble type) in the first embodiment and the second embodiment. Information, reference statistical information, reference time information, reference weather information, etc.) are also applicable. The solution search method of FIG. 12 is omitted below by quoting the explanation of FIG.
1 水回りトラブル発生頻度システム
2 探索装置
21 内部バス
23 表示部
24 制御部
25 操作部
26 通信部
27 判別部
28 記憶部
61 ノード
 
1 Frequency of water troubles System 2 Search device 21 Internal bus 23 Display unit 24 Control unit 25 Operation unit 26 Communication unit 27 Discrimination unit 28 Storage unit 61 Node

Claims (10)

  1.  建築構造物内における水回りのトラブルの発生頻度を地域単位で予測する水回りトラブル発生頻度予測プログラムにおいて、
     水回りトラブルの発生頻度を予測する建築構造物又はそれが立地する地域を特定するための地域特定情報を取得する情報取得ステップと、
     各地域における水回りトラブル対応に対して出動した業者の参照用売上データと、水回りのトラブルの発生頻度との3段階以上の連関度を参照し、上記情報取得ステップにおいて取得した地域特定情報における地域の過去の売上データに対応する参照用売上データとの間でより高い連関度が設定されている水回りのトラブルの発生頻度を探索する探索ステップとをコンピュータに実行させること
     を特徴とする水回りトラブル発生頻度予測プログラム。
    In the water trouble occurrence frequency prediction program that predicts the occurrence frequency of water troubles in building structures on a regional basis
    An information acquisition step to acquire area-specific information for identifying a building structure that predicts the frequency of water problems or the area where it is located, and
    In the area-specific information acquired in the above information acquisition step, refer to the reference sales data of the vendor dispatched for dealing with water-related troubles in each region and the degree of association between the frequency of occurrence of water-related troubles in three or more stages. Water characterized by having a computer perform a search step to search for the frequency of water problems that have a higher degree of association with reference sales data that corresponds to the region's past sales data. Circular trouble occurrence frequency prediction program.
  2.  建築構造物内における水回りのトラブルの発生頻度を地域単位で予測する水回りトラブル発生頻度予測プログラムにおいて、
     水回りトラブルの発生頻度を予測する建築構造物又はそれが立地する地域を特定するための地域特定情報を取得する情報取得ステップと、
     各地域における水回りトラブル対応のために出動要請された業者の参照用断り率と、水回りのトラブルの発生頻度との3段階以上の連関度を参照し、上記情報取得ステップにおいて取得した地域特定情報における地域の断り率に対応する参照用断り率との間でより高い連関度が設定されている水回りのトラブルの発生頻度を探索する探索ステップとをコンピュータに実行させること
     を特徴とする水回りトラブル発生頻度予測プログラム。
    In the water trouble occurrence frequency prediction program that predicts the occurrence frequency of water troubles in building structures on a regional basis
    An information acquisition step to acquire area-specific information for identifying a building structure that predicts the frequency of water problems or the area where it is located, and
    Refer to the three or more levels of association between the reference refusal rate of the contractor who was requested to dispatch to deal with water problems in each area and the frequency of water problems, and specify the area acquired in the above information acquisition step. Water characterized by having a computer perform a search step to search for the frequency of water problems that have a higher degree of association with the reference rejection rate that corresponds to the regional rejection rate in the information. Circular trouble occurrence frequency prediction program.
  3.  上記情報取得ステップでは、取得した地域特定情報における地域の地理的情報を取得し、
     上記探索ステップでは、各地域における水回りトラブル対応のために出動要請された業者の参照用断り率と、上記各地域における参照用地理的情報とを有する組み合わせと、水回りのトラブルの発生頻度との3段階以上の連関度を参照し、上記情報取得ステップにおいて取得した地域特定情報における地域の断り率に対応する参照用断り率と、取得した地理的情報に対応する参照用地理的情報とを有する組み合わせとの間でより高い連関度が設定されている水回りのトラブルの発生頻度を探索すること
     を特徴とする請求項2記載の水回りトラブル発生頻度予測プログラム。
    In the above information acquisition step, the geographical information of the area in the acquired area specific information is acquired, and the information is acquired.
    In the above search step, the combination of the reference refusal rate of the contractor requested to be dispatched to deal with the water trouble in each area, the geographical information for reference in each area, and the frequency of water trouble occurrence. With reference to the three or more levels of association, the reference refusal rate corresponding to the regional refusal rate in the area specific information acquired in the above information acquisition step and the reference geographic information corresponding to the acquired geographical information are obtained. The water-related trouble occurrence frequency prediction program according to claim 2, further comprising searching for the occurrence frequency of water-related troubles for which a higher degree of association is set with the combination having.
  4.  上記情報取得ステップでは、取得した地域特定情報における地域の水回りトラブルの種類に関するトラブル種類情報を取得し、
     上記探索ステップでは、各地域における水回りトラブル対応のために出動要請された業者の参照用断り率と、上記各地域における水回りトラブルの種類に関する参照用トラブル種類情報とを有する組み合わせと、水回りのトラブルの発生頻度との3段階以上の連関度を参照し、上記情報取得ステップにおいて取得した地域特定情報における地域の断り率に対応する参照用断り率と、取得したトラブル種類情報に対応する参照用トラブル種類情報とを有する組み合わせとの間でより高い連関度が設定されている水回りのトラブルの発生頻度を探索すること
     を特徴とする請求項2記載の水回りトラブル発生頻度予測プログラム。
    In the above information acquisition step, the trouble type information regarding the type of water supply trouble in the area in the acquired area specific information is acquired.
    In the above search step, a combination having a reference refusal rate of a supplier requested to be dispatched to deal with water troubles in each region and reference trouble type information regarding the types of water troubles in each region, and water circulation. Refer to the degree of association with the frequency of occurrence of troubles in three or more stages, the reference refusal rate corresponding to the regional refusal rate in the area specific information acquired in the above information acquisition step, and the reference corresponding to the acquired trouble type information. The water-related trouble occurrence frequency prediction program according to claim 2, wherein a higher degree of association with a combination having trouble type information is searched for.
  5.  建築構造物内における水回りのトラブルの発生頻度を地域単位で予測する水回りトラブル発生頻度予測プログラムにおいて、
     予測する時期に関する時期情報を取得する情報取得ステップと、
     過去において水回りトラブルの発生を予測した時期に関する参照用時期情報と、水回りのトラブルの発生頻度との3段階以上の連関度を参照し、上記情報取得ステップにおいて取得した時期情報に対応する参照用時期情報との間でより高い連関度が設定されている水回りのトラブルの発生頻度を探索する探索ステップとをコンピュータに実行させること
     を特徴とする水回りトラブル発生頻度予測プログラム。
    In the water trouble occurrence frequency prediction program that predicts the occurrence frequency of water troubles in building structures on a regional basis
    Information acquisition step to acquire timing information about the forecast time,
    Refer to the reference timing information regarding the time when the occurrence of water troubles was predicted in the past and the degree of association of three or more stages with the frequency of occurrence of water troubles, and refer to the time information acquired in the above information acquisition step. A water-related trouble occurrence frequency prediction program characterized by having a computer execute a search step for searching for the occurrence frequency of water-related troubles that have a higher degree of association with the usage time information.
  6.  上記情報取得ステップでは、予測対象の地域の地理的情報を取得し、
     上記探索ステップでは、上記参照用時期情報と、上記地域における参照用地理的情報とを有する組み合わせと、水回りのトラブルの発生頻度との3段階以上の連関度を参照し、上記情報取得ステップにおいて取得した時期情報に対応する参照用時期情報と、取得した地理的情報に対応する参照用地理的情報とを有する組み合わせとの間でより高い連関度が設定されている水回りのトラブルの発生頻度を探索すること
     を特徴とする請求項5記載の水回りトラブル発生頻度予測プログラム。
    In the above information acquisition step, the geographical information of the area to be predicted is acquired, and the information is acquired.
    In the search step, the combination of the reference timing information and the reference geographical information in the area and the degree of association between the frequency of occurrence of water troubles are referred to in three or more stages, and in the information acquisition step. The frequency of water troubles where a higher degree of association is set between the combination of the reference time information corresponding to the acquired time information and the reference geographical information corresponding to the acquired geographical information. The water-related trouble occurrence frequency prediction program according to claim 5, which comprises searching for.
  7.  建築構造物内における水回りのトラブルの発生頻度を地域単位で予測する水回りトラブル発生頻度予測プログラムにおいて、
     予測する時期の時期における天候に関する天候情報を取得する情報取得ステップと、
     過去において水回りトラブルの発生を予測した時期における天候に関する参照用天候情報と、水回りのトラブルの発生頻度との3段階以上の連関度を参照し、上記情報取得ステップにおいて取得した天候情報に対応する参照用天候情報との間でより高い連関度が設定されている水回りのトラブルの発生頻度を探索する探索ステップとをコンピュータに実行させること
     を特徴とする水回りトラブル発生頻度予測プログラム。
    In the water trouble occurrence frequency prediction program that predicts the occurrence frequency of water troubles in building structures on a regional basis
    An information acquisition step to acquire weather information about the weather at the time of prediction, and
    Corresponds to the weather information acquired in the above information acquisition step by referring to the three or more levels of association between the reference weather information regarding the weather at the time when the occurrence of water troubles was predicted in the past and the frequency of occurrence of water troubles. A water-related trouble occurrence frequency prediction program characterized by having a computer perform a search step for searching for the occurrence frequency of water-related troubles that have a higher degree of association with reference weather information.
  8.  建築構造物内における水回りのトラブルの発生頻度を地域単位で予測する水回りトラブル発生頻度予測プログラムにおいて、
     水回りトラブルの発生頻度を予測する地域の地理的情報を取得する情報取得ステップと、
     各地域における参照用地理的情報と、水回りのトラブルの発生頻度との3段階以上の連関度を参照し、上記情報取得ステップにおいて取得した地理的情報に対応する参照用地理的情報との間でより高い連関度が設定されている水回りのトラブルの発生頻度を探索する探索ステップとをコンピュータに実行させること
     を特徴とする水回りトラブル発生頻度予測プログラム。
    In the water trouble occurrence frequency prediction program that predicts the occurrence frequency of water troubles in building structures on a regional basis
    An information acquisition step to acquire geographical information of the area that predicts the frequency of water troubles,
    Between the reference geographical information in each region and the reference geographical information corresponding to the geographical information acquired in the above information acquisition step by referring to the degree of association between the frequency of occurrence of water troubles and the degree of association of three or more levels. A water-related trouble occurrence frequency prediction program characterized by having a computer execute a search step for searching for the occurrence frequency of water-related troubles for which a higher degree of association is set in.
  9.  建築構造物内における水回りのトラブルの発生頻度を地域単位で予測する水回りトラブル発生頻度予測プログラムにおいて、
     水回りトラブルの発生頻度を予測する地域の建築構造物の種類又は築年数に関する統計情報を取得する情報取得ステップと、
     各地域の建築構造物の種類又は築年数に関する参照用統計情報と、水回りのトラブルの発生頻度との3段階以上の連関度を参照し、上記情報取得ステップにおいて取得した統計情報に対応する参照用統計情報との間でより高い連関度が設定されている水回りのトラブルの発生頻度を探索する探索ステップとをコンピュータに実行させること
     を特徴とする水回りトラブル発生頻度予測プログラム。
    In the water trouble occurrence frequency prediction program that predicts the occurrence frequency of water troubles in building structures on a regional basis
    An information acquisition step to acquire statistical information on the type or age of building structures in the area that predicts the frequency of water problems, and
    Refer to the reference statistical information regarding the type or age of the building structure in each area and the degree of association between the frequency of occurrence of water troubles at three levels or more, and refer to the statistical information acquired in the above information acquisition step. A water-related trouble occurrence frequency prediction program characterized by having a computer execute a search step for searching for the occurrence frequency of water-related troubles that have a higher degree of association with the statistical information.
  10.  上記連関度は、人工知能におけるニューラルネットワークのノードで構成されること
     を特徴とする請求項1~9のうち何れか1項記載の水回りトラブル発生頻度予測プログラム。
    The water-related trouble occurrence frequency prediction program according to any one of claims 1 to 9, wherein the degree of association is composed of nodes of a neural network in artificial intelligence.
PCT/JP2021/036651 2020-10-06 2021-10-04 Program for predicting frequency of plumbing area related problems WO2022075268A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2020168930A JP2022061135A (en) 2020-10-06 2020-10-06 Plumbing trouble occurrence frequency prediction program
JP2020168928 2020-10-06
JP2020-168930 2020-10-06
JP2020-168928 2020-10-06
JP2020-168929 2020-10-06
JP2020168929A JP2022061134A (en) 2020-10-06 2020-10-06 Plumbing trouble occurrence frequency prediction program

Publications (1)

Publication Number Publication Date
WO2022075268A1 true WO2022075268A1 (en) 2022-04-14

Family

ID=81126015

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/036651 WO2022075268A1 (en) 2020-10-06 2021-10-04 Program for predicting frequency of plumbing area related problems

Country Status (1)

Country Link
WO (1) WO2022075268A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010231375A (en) * 2009-03-26 2010-10-14 Osaka Gas Co Ltd Component demand prediction method and component demand prediction system
JP2013114531A (en) * 2011-11-30 2013-06-10 Nippon Telegr & Teleph Corp <Ntt> Lighting damage prediction device, method and program
CN109657835A (en) * 2018-10-31 2019-04-19 中国电力科学研究院有限公司 A kind of power distribution network area fault number prediction technique and system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010231375A (en) * 2009-03-26 2010-10-14 Osaka Gas Co Ltd Component demand prediction method and component demand prediction system
JP2013114531A (en) * 2011-11-30 2013-06-10 Nippon Telegr & Teleph Corp <Ntt> Lighting damage prediction device, method and program
CN109657835A (en) * 2018-10-31 2019-04-19 中国电力科学研究院有限公司 A kind of power distribution network area fault number prediction technique and system

Similar Documents

Publication Publication Date Title
US20210398227A1 (en) Real property monitoring systems and methods for risk determination
Zhang et al. Predictive models for wastewater flow forecasting based on time series analysis and artificial neural network
Lai et al. Topic modeling to discover the thematic structure and spatial-temporal patterns of building renovation and adaptive reuse in cities
WO2022075268A1 (en) Program for predicting frequency of plumbing area related problems
JP6765110B1 (en) Water trouble occurrence frequency prediction program
JP2022033692A (en) Inundation damage prediction program
JP2021117771A (en) Air-conditioning trouble occurrence frequency prediction program
Cutter et al. The role of cost, scale, and property attributes in landowner choice of stormwater management option
JP2022061135A (en) Plumbing trouble occurrence frequency prediction program
JP2022061134A (en) Plumbing trouble occurrence frequency prediction program
JP2022061458A (en) Plumbing trouble occurrence frequency prediction program
JP2023059365A (en) Water pipe deterioration degree determination program
JP2022061138A (en) Gas installation trouble occurrence frequency prediction program
WO2022075274A1 (en) Program for predicting frequency of occurrence of air conditioning issues
JP2022061136A (en) Air-conditioning trouble occurrence frequency prediction program
JP2022033589A (en) Insurance condition proposal program
JP2022061137A (en) Electric installation trouble occurrence frequency prediction program
JP2021174265A (en) Change rate determination program of accommodation charges
JP2023075554A (en) Maintenance contractor selection program
Compton et al. AI and the Right to Housing
JP2023075555A (en) Maintenance cost prediction program
JP2023075557A (en) Maintenance frequency prediction program
Singh et al. Analysis of domestic water demand variables of a residential colony in Ajmer, Rajasthan (India)
JP2023075556A (en) Insurance condition proposal program
JP2022067095A (en) Building repair method estimation program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21877567

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21877567

Country of ref document: EP

Kind code of ref document: A1