WO2022075274A1 - Program for predicting frequency of occurrence of air conditioning issues - Google Patents

Program for predicting frequency of occurrence of air conditioning issues Download PDF

Info

Publication number
WO2022075274A1
WO2022075274A1 PCT/JP2021/036666 JP2021036666W WO2022075274A1 WO 2022075274 A1 WO2022075274 A1 WO 2022075274A1 JP 2021036666 W JP2021036666 W JP 2021036666W WO 2022075274 A1 WO2022075274 A1 WO 2022075274A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
troubles
association
air
conditioning
Prior art date
Application number
PCT/JP2021/036666
Other languages
French (fr)
Japanese (ja)
Inventor
綾子 澤田
Original Assignee
Assest株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2020168933A external-priority patent/JP2022061138A/en
Priority claimed from JP2020168931A external-priority patent/JP2022061136A/en
Priority claimed from JP2020168932A external-priority patent/JP2022061137A/en
Application filed by Assest株式会社 filed Critical Assest株式会社
Publication of WO2022075274A1 publication Critical patent/WO2022075274A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services

Definitions

  • the present invention relates to an air conditioning trouble occurrence frequency prediction program.
  • Examples of air-conditioning troubles in building structures such as buildings, condominiums, and detached houses include air-conditioning equipment failures, water leaks in air-conditioning equipment piping, filter dust accumulation in air-conditioning equipment, and abnormal noise generated from air-conditioning equipment. , There is a strange odor drifting from the air conditioner. Since there are many cases where air-conditioning problems in such building structures cannot be solved by the resident alone, there are many cases where a specialist is dispatched and the work is outsourced.
  • the present invention has been devised in view of the above-mentioned problems, and an object thereof is an air conditioning trouble occurrence frequency prediction program for predicting the occurrence frequency of air conditioning troubles in a building structure on a regional basis. Is to provide.
  • a trouble occurrence frequency prediction program that predicts the frequency of gas equipment troubles in a building structure on a regional basis, or predicts the frequency of electrical equipment troubles in a building structure on a regional basis. Is to provide.
  • the air-conditioning trouble occurrence frequency prediction program is a building structure or a building structure that predicts the occurrence frequency of air-conditioning trouble in the air-conditioning trouble occurrence frequency prediction program that predicts the occurrence frequency of air-conditioning equipment trouble in the building structure on a regional basis.
  • the occurrence of air conditioning trouble in which a higher degree of association is set with the reference sales data corresponding to the past sales data of the area in the area identification information acquired in the above information acquisition step. It is characterized by having a computer perform a search step for searching for frequency.
  • FIG. 1 It is a block diagram which shows the whole structure of the system to which this invention is applied. It is a figure which shows the specific configuration example of a search device. It is a figure for demonstrating the operation of this invention. It is a figure for demonstrating the operation of this invention. It is a figure for demonstrating the operation of this invention. It is a figure for demonstrating the operation of this invention. It is a figure for demonstrating the operation of this invention. It is a figure for demonstrating the operation of this invention. It is a figure for demonstrating the operation of this invention. It is a figure for demonstrating the operation of this invention. It is a figure for demonstrating the operation of this invention. It is a figure for demonstrating the operation of this invention. It is a figure for demonstrating the operation of this invention. It is a figure for demonstrating the operation of this invention. It is a figure for demonstrating the operation of this invention. It is a figure for demonstrating the operation of this invention.
  • FIG. 1 is a block diagram showing an overall configuration of an air conditioning trouble occurrence frequency system 1 in which an air conditioning trouble occurrence frequency prediction program to which the present invention is applied is implemented.
  • the air conditioning trouble occurrence frequency system 1 includes an information acquisition unit 9, a search device 2 connected to the information acquisition unit 9, and a database 3 connected to the search device 2.
  • the information acquisition unit 9 is a device for a person using this system to input various commands and information, and specifically, is composed of a keyboard, buttons, a touch panel, a mouse, a switch, and the like.
  • the information acquisition unit 9 is not limited to a device for inputting text information, and may be configured by a device such as a microphone that can detect voice and convert it into text information. Further, the information acquisition unit 9 may be configured as an image pickup device capable of taking an image of a camera or the like.
  • the information acquisition unit 9 may be configured by a scanner having a function of recognizing a character string from a paper-based document. Further, the information acquisition unit 9 may be integrated with the search device 2 described later. The information acquisition unit 9 outputs the detected information to the search device 2.
  • the information acquisition unit 9 may be configured by means for specifying the position information by scanning the map information. Further, the information acquisition unit 9 may be composed of an illuminance sensor for measuring a temperature sensor, a humidity sensor, and a wind direction sensor. Further, the information acquisition unit 9 may be configured by a communication interface for acquiring data about the weather from the Japan Meteorological Agency or a private weather forecast company. Further, the information acquisition unit 9 may be composed of a body sensor that is attached to the body to detect body data, and the body sensor detects, for example, body temperature, heart rate, blood pressure, number of steps, walking speed, and acceleration. It may be composed of a sensor for the purpose. Further, the body sensor may acquire biometric data of not only humans but also animals. Further, the information acquisition unit 9 may be configured as a device for acquiring information such as drawings by scanning or reading from a database. In addition to these, the information acquisition unit 9 may be configured by an odor sensor that detects odors and scents.
  • the information acquisition unit 9 is dispatched to deal with air-conditioning troubles, and is used for sales data for each region recorded in the database of a company that solves problems by actually performing work, the number of dispatches for each region, and the like. It may be configured by means for acquiring the dispatch frequency data calculated accordingly.
  • Database 3 stores various information necessary for performing air conditioning trouble occurrence frequency.
  • the information required to determine the frequency of air-conditioning troubles is the reference sales data of the vendors dispatched to respond to air-conditioning troubles in each region, the reference refusal rate of the vendors requested to respond to air-conditioning troubles, and each.
  • Reference population estimation data in each region reference weather information in each region, reference trouble type information regarding the type of trouble in each region, reference statistical information regarding the type and years of use of air conditioning equipment in each region, outside temperature in each region Information on the outside temperature for reference is accumulated in relation to the frequency of air conditioning troubles as output data.
  • the database 3 in addition to the reference sales data of such a vendor, the reference rejection rate of the vendor, the population estimation data for reference, the weather information for reference, the trouble type information for reference, the type of air conditioning equipment and the number of years of use. Any one or more of the reference statistical information and the reference outside temperature information regarding the reference, and the frequency of occurrence of air conditioning troubles are stored in association with each other.
  • the search device 2 is composed of, for example, an electronic device such as a personal computer (PC), but is embodied in any other electronic device such as a mobile phone, a smartphone, a tablet terminal, a wearable terminal, etc., in addition to the PC. It may be the one to be converted. The user can obtain a search solution by the search device 2.
  • PC personal computer
  • FIG. 2 shows a specific configuration example of the search device 2.
  • the search device 2 performs wired communication or wireless communication with a control unit 24 for controlling the entire search device 2 and an operation unit 25 for inputting various control commands via an operation button, a keyboard, or the like.
  • a communication unit 26 for the purpose, a determination unit 27 for making various judgments, and a storage unit 28 for storing a program for performing a search to be executed represented by a hard disk or the like are connected to the internal bus 21, respectively. .. Further, a display unit 23 as a monitor that actually displays information is connected to the internal bus 21.
  • the control unit 24 is a so-called central control unit for controlling each component mounted in the search device 2 by transmitting a control signal via the internal bus 21. Further, the control unit 24 transmits various control commands via the internal bus 21 according to the operation via the operation unit 25.
  • the operation unit 25 is embodied by a keyboard or a touch panel, and an execution command for executing a program is input from the user.
  • the operation unit 25 notifies the control unit 24 of the execution command.
  • the control unit 24, including the discrimination unit 27, executes a desired processing operation in cooperation with each component.
  • the operation unit 25 may be embodied as the information acquisition unit 9 described above.
  • the discrimination unit 27 discriminates the search solution.
  • the discriminating unit 27 reads out various information stored in the storage unit 28 and various information stored in the database 3 as necessary information when executing the discriminating operation.
  • the discriminating unit 27 may be controlled by artificial intelligence. This artificial intelligence may be based on any well-known artificial intelligence technology.
  • the display unit 23 is configured by a graphic controller that creates a display image based on the control by the control unit 24.
  • the display unit 23 is realized by, for example, a liquid crystal display (LCD) or the like.
  • the storage unit 28 When the storage unit 28 is composed of a hard disk, predetermined information is written to each address based on the control by the control unit 24, and is read out as needed. Further, the storage unit 28 stores a program for executing the present invention. This program will be read and executed by the control unit 24.
  • the degree of association between the reference sales data of the vendor dispatched for the air-conditioning trouble response in each region and the frequency of the air-conditioning trouble occurrence is three or more levels. It is assumed that it is set in advance.
  • the contractor dispatched to deal with air conditioning troubles in each area is dispatched to respond to requests for air conditioning troubles from residents of building structures (buildings, condominiums, detached houses, apartments, etc.) and actually repaired at the site. It is a contractor who does the work.
  • Air-conditioning troubles include malfunction of air-conditioning equipment, water leakage from piping of air-conditioning equipment, accumulation of dust on filters in air-conditioning equipment, generation of abnormal noise from air-conditioning equipment, and offensive odor drifting from air-conditioning equipment. It is not a thing and includes any other troubles related to air conditioning.
  • Such vendors often manage sales in each region.
  • the unit of each area may be classified in detail into a region, a prefecture, a municipality, a town, a street number, a number, and even a building or a condominium unit. Sales are managed on a yearly, monthly, weekly, daily, etc. basis.
  • the reference sales data for each region of such a trader is acquired for the learning data.
  • this reference sales data may be represented by the average value or standard deviation of a certain period such as yearly, monthly, weekly, daily, etc., or may be represented by fluctuation trend data or fluctuation transition data. good.
  • the frequency of air-conditioning troubles indicates how often air-conditioning troubles can occur in each region.
  • the frequency of occurrence of this air conditioning trouble may be composed of any denominator such as yearly, monthly, weekly, daily, and five-year units.
  • the occurrence of air-conditioning trouble may be counted as one time each time the resident of the building structure notifies the contractor that there was an air-conditioning trouble.
  • the frequency of such air-conditioning troubles can be obtained after the fact by counting the frequency of such air-conditioning troubles by the vendor itself and recording it in the database held by the vendor.
  • the frequency of air conditioning troubles is organized by region as described above.
  • the input data is the reference sales data P01, P02, and P03 in each region.
  • the reference sales data P01, P02, and P03 as such input data are linked to the frequency of trouble occurrence of air conditioning as output.
  • the reference sales data P01, P02, and P03 are associated with each other through three or more levels of association with the air conditioning trouble occurrence frequencies A to D as the output solution.
  • the frequency of occurrence of this trouble is shown, for example, A is 5 times a month, B is 20 times a month, and the like, but this is not limited to the monthly frequency, and may be any period unit frequency.
  • the reference sales data is arranged on the left side via this degree of association, and the trouble occurrence frequency of each air conditioner is arranged on the right side via this degree of association.
  • the degree of association indicates the degree of trouble occurrence frequency and the degree of relevance to the reference sales data arranged on the left side.
  • this degree of association is an index showing what kind of trouble occurrence frequency each reference sales data is likely to be associated with, and selects the most probable trouble occurrence frequency for each reference sales data. It shows the accuracy above.
  • w13 to w19 are shown as the degree of association. These w13 to w19 are shown in 10 stages as shown in Table 1 below, and the closer to 10 points, the higher the degree of relevance of each combination as an intermediate node to the frequency of trouble occurrence as output. On the contrary, the closer to one point, the lower the degree of relation between each combination as an intermediate node and the frequency of trouble occurrence as an output.
  • the search device 2 acquires in advance the degree of association w13 to w19 of three or more stages shown in FIG. That is, the search device 2 accumulates a past data set as to which of the reference sales data of each region and the trouble occurrence frequency in that case is adopted and evaluated in determining the actual search solution. By analyzing and analyzing these, the degree of association shown in FIG. 3 is created.
  • the sales data for reference in the past is shown by the fluctuation transition shown by the line graph.
  • a actually has the highest frequency of air conditioning troubles in the area By collecting and analyzing such data sets, the degree of association with reference sales data in each region becomes stronger.
  • This analysis may be performed by artificial intelligence.
  • analysis is performed from past sales and various data of trouble occurrence frequency. If the annual average sales in the area P01 are 5.6 million yen and there are many cases of trouble occurrence frequency A, the degree of association that leads to the evaluation of this trouble occurrence frequency is set higher, and the trouble occurrence frequency B is set. If there are many cases, set a higher degree of association that leads to the evaluation of the frequency of trouble occurrence.
  • the trouble occurrence frequency A and the trouble occurrence frequency C are linked, but from the previous case, the degree of association of w13 connected to the trouble occurrence frequency A is set to 7 points, and the trouble occurs.
  • the degree of association of w14 connected to the occurrence frequency C is set to 2 points.
  • the degree of association shown in FIG. 3 may be composed of the nodes of the neural network in artificial intelligence. That is, the weighting coefficient for the output of the node of this neural network corresponds to the above-mentioned degree of association.
  • the network is not limited to a neural network, and may be composed of all decision-making factors constituting artificial intelligence.
  • reference sales data for each region is input as input data, trouble occurrence frequency is output as output data, and at least one hidden layer between the input node and the output node is output. May be provided and machine learning may be performed.
  • the above-mentioned degree of association is set in either one or both of the input node and the hidden layer node, and this is the weight of each node, and the output is selected based on this. Then, when this degree of association exceeds a certain threshold value, the output may be selected.
  • Such degree of association is what is called learned data in artificial intelligence. After creating such learned data through a data set of sales data for reference in each region before and the frequency of air-conditioning troubles, the above-mentioned method is used to actually determine the frequency of troubles. The trouble occurrence frequency will be searched for using the learned data.
  • These data sets may be created by reading from a database managed by the vendor.
  • the degree of association shown in FIG. 3 (Table 1) acquired in advance is referred to.
  • the trouble occurrence frequency B is associated with w15 and the trouble occurrence frequency C is associated with the association degree w16 through the association degree.
  • the trouble occurrence frequency B having the highest degree of association is selected as the optimum solution.
  • it is not essential to select the one with the highest degree of association as the optimum solution, and the trouble occurrence frequency C in which the degree of association itself is recognized although the degree of association is low may be selected as the optimum solution.
  • an output solution to which the arrows are not connected may be selected, and any other output solution may be selected in any other priority as long as it is based on the degree of association.
  • the collation of sales data and reference sales data is based on whether or not the sales average is within the range of ⁇ 10% if these data are represented by the sales average for a certain period. It may be determined whether they are the same or similar. Further, as long as the sales data is shown in a time-series transition graph, it may be determined based on the similarity of the trends.
  • the reference refusal rate is the probability that the resident of the building structure actually requested the contractor to dispatch based on the air conditioning trouble, and the contractor could not accept the request and refused it.
  • This refusal rate is expressed by the number of refusals for the number of dispatch requests.
  • the number of dispatch requests, the number of times of refusal, and each region are managed by the contractor on the database 3.
  • the refusal rate can be obtained by reading the number of refusals for the number of dispatch requests from the database 3 for the area where the refusal rate is actually desired to be known.
  • the frequency of air-conditioning troubles depends on the sales in the area, as well as the refusal rate, because if the number of dispatch requests is too large, there are many cases of refusal. Therefore, by combining the reference rejection rate with the learning data in addition to the reference sales data, the trouble occurrence frequency can be determined with higher accuracy. Therefore, in addition to the reference sales data, the reference rejection rate is combined to form the above-mentioned degree of association.
  • the input data is, for example, reference sales data P01 to P03 and reference refusal rate P14 to 17.
  • the intermediate node shown in FIG. 5 is a combination of the reference sales data and the reference rejection rate as such input data.
  • Each intermediate node is further linked to the output. In this output, the frequency of trouble occurrence as an output solution is displayed.
  • Each combination of reference sales data and reference rejection rate (intermediate node) is associated with each other through three or more levels of association with the frequency of trouble occurrence as this output solution.
  • the reference sales data and the reference rejection rate are arranged on the left side through this degree of association, and the trouble occurrence frequency is arranged on the right side through this degree of association.
  • the degree of association indicates the degree of trouble occurrence frequency and the degree of relevance to the reference sales data and the reference rejection rate arranged on the left side.
  • this degree of association is an index showing what kind of trouble occurrence frequency each reference sales data and reference rejection rate are likely to be associated with, and is based on the reference sales data and reference rejection rate. It shows the accuracy in selecting the most probable trouble occurrence frequency. Therefore, the optimum trouble occurrence frequency is searched for by combining these reference sales data and the reference rejection rate.
  • w13 to w22 are shown as the degree of association. As shown in Table 1, these w13 to w22 are shown in 10 stages, and the closer to 10 points, the higher the degree of relevance of each combination as an intermediate node to the output, and conversely, 1 point. The closer they are, the less relevant each combination as an intermediate node is to the output.
  • the search device 2 acquires in advance the degree of association w13 to w22 of three or more stages shown in FIG. That is, the search device 2 accumulates past data as to which of the reference sales data, the reference rejection rate, and the frequency of trouble occurrence in that case is suitable for determining the actual search solution. By analyzing and analyzing these, the degree of association shown in FIG. 5 is created.
  • This analysis may be performed by artificial intelligence.
  • the trouble occurrence frequency is analyzed from the past data. If there are many cases where the trouble occurrence frequency is A, the degree of association leading to this trouble occurrence frequency A is set higher, and if there are many cases of trouble occurrence frequency B and there are few cases of trouble occurrence frequency A, trouble occurs. The degree of association leading to the occurrence frequency B is set high, and the degree of association leading to the trouble occurrence frequency A is set low.
  • the output of the trouble occurrence frequency A and the trouble occurrence frequency B is linked, but from the previous case, the degree of association of w13 connected to the trouble occurrence frequency A is set to 7 points and the trouble occurrence frequency B is set.
  • the degree of association of the connected w14 is set to 2 points.
  • the degree of association shown in FIG. 5 may be composed of the nodes of the neural network in artificial intelligence. That is, the weighting coefficient for the output of the node of this neural network corresponds to the above-mentioned degree of association.
  • the network is not limited to a neural network, and may be composed of all decision-making factors constituting artificial intelligence. Other than that, the configuration related to artificial intelligence is the same as the description in FIG.
  • the node 61b is a node in which the reference sales data P01 is combined with the reference rejection rate P14, and the trouble occurrence frequency C has a connection degree of w15 and the trouble occurrence frequency E.
  • the degree of association is w16.
  • the node 61c is a node in which the reference rejection rates P15 and P17 are combined with respect to the reference sales data P02, and the degree of association of the trouble occurrence frequency B is w17 and the degree of association of the trouble occurrence frequency D is w18. ..
  • Such degree of association is what is called learned data in artificial intelligence. After creating such learned data, when actually determining the trouble occurrence frequency from now on, the above-mentioned learned data will be used. In such a case, the area where the trouble occurrence frequency is actually to be determined is input in the same manner. Then, the sales data and the error rate organized for each region in the database 3 are acquired.
  • the degree of association shown in FIG. 5 (Table 1) acquired in advance is referred to.
  • the node 61d is associated via the degree of association.
  • the node 61d is associated with the trouble occurrence frequency C by w19 and the trouble occurrence frequency D by the association degree w20.
  • the trouble occurrence frequency C having the highest degree of association is selected as the optimum solution.
  • Table 2 below shows an example of the degree of association w1 to w12 extending from the input.
  • the intermediate node 61 may be selected based on the degree of association w1 to w12 extending from this input. That is, the larger the degree of association w1 to w12, the heavier the weighting in the selection of the intermediate node 61 may be. However, the association degrees w1 to w12 may all have the same value, and the weightings in the selection of the intermediate node 61 may all be the same.
  • the combination with the reference population estimation data instead of the above-mentioned reference rejection rate and the frequency of trouble occurrence for the combination have three or more levels of association.
  • the solution may be searched based on the above.
  • This reference population estimation data which is added as an explanatory variable instead of the reference rejection rate, shows the population estimation in the area, and is the population pyramid (a diagram showing the distribution of population by age group and gender) and its time series.
  • This data may include the transition, the number of in-migrants, the number of out-migrants, the number of in-migrant households, the number of out-migrant households in the area, and the classification by occupation for each population.
  • the frequency of troubles is affected by such population estimates in addition to sales data. The larger the elderly population, the more often it is not possible to respond to air conditioner failures, etc., and the chances of requesting dispatch may increase.
  • the number of in-migrants-the number of out-migrants increases, the population is increasing, and it is possible that the frequency of troubles will increase accordingly.
  • Such reference population estimation data is managed in the database 3 for each region.
  • the combination with the reference weather information instead of the above-mentioned reference refusal rate and the frequency of trouble occurrence for the combination have three or more levels of association.
  • the solution search may be performed based on the above.
  • This reference weather information which is added as an explanatory variable instead of the reference refusal rate, indicates all the weather information in the area, and the past weather information such as fine weather, cloudiness, and rain in each area is chronological. It is organized and stored in (daily, weekly, monthly, yearly, etc.). In addition, the weather such as heavy rain, typhoons, strong winds, and snowfalls are also organized and memorized. Such reference weather information is managed in the database 3 for each region.
  • Such weather information also affects the frequency of air conditioning troubles. If there is snowfall, there is a high possibility that air conditioning troubles will occur accordingly, so by combining this with sales data for reference and determining the frequency of troubles through the degree of association, The discrimination accuracy can be improved.
  • the sales data and the weather information in that area are acquired. Search for the optimum frequency of trouble occurrence based on newly acquired sales data and weather information. In such a case, the trouble occurrence frequency is searched based on the above-mentioned method with reference to the degree of association acquired in advance.
  • the above-mentioned degree of association may be formed between the reference outside air temperature information regarding the outside air temperature in the area and the reference sales data.
  • Reference outside air temperature information provides all data on past outside air temperature in the area.
  • the reference outside air temperature information is shown by hourly, daily, weekly, monthly, and yearly changes, changes, and averages of past outside temperature in the area.
  • the degree of association is referred to, and the reference sales data corresponding to the past sales data of the region in the acquired area specific information and the reference outside air temperature information corresponding to the acquired outside air temperature information. Search for the frequency of air temperature troubles that have a higher degree of association with the combination with. The method of this search is the same as the method described above.
  • the combination with the reference trouble type information instead of the above-mentioned reference rejection rate and the trouble occurrence frequency for the combination have three or more levels of association.
  • the solution may be searched based on the above.
  • This reference trouble type information which is added as an explanatory variable instead of the reference refusal rate, indicates information on all types of trouble in the area.
  • the types of this trouble are classified into types such as air-conditioning equipment failure, water leakage from air-conditioning equipment piping, accumulation of filter dust in air-conditioning equipment, generation of abnormal noise from air-conditioning equipment, and offensive odor drifting from air-conditioning equipment. ing.
  • Such reference trouble type information is managed in the database 3 for each region.
  • Such trouble type information also affects the frequency of air conditioning troubles. Since the frequency of troubles may differ depending on whether there are many water leaks in the piping of the air conditioning equipment or the clogging of the drainage port, this is combined with the sales data for reference to determine the frequency of troubles through the degree of association. Therefore, the discrimination accuracy can be improved.
  • the sales data in the area where the trouble occurrence frequency is actually determined and the trouble type information are acquired. Search for the optimum trouble occurrence frequency based on the newly acquired sales data and trouble type information. In such a case, the trouble occurrence frequency is searched based on the above-mentioned method with reference to the degree of association acquired in advance.
  • the combination with the reference statistical information instead of the above-mentioned reference rejection rate and the frequency of trouble occurrence for the combination have three or more levels of association.
  • the solution search may be performed based on the above.
  • This reference statistical information which is added as an explanatory variable instead of the reference refusal rate, is statistical information regarding the type of air conditioning equipment in the area.
  • the types of air conditioning equipment are all-air system, air / water combined system, all-water system, refrigerant system, single duct constant air volume system, single duct variable air volume system, 4-way ceiling-embedded cassette type, 1-way ceiling embedding.
  • Built-in cassette type, ceiling built-in cassette type, ceiling-embedded duct type, ceiling-suspendable type, wall-mounted type, and floor-standing type are statistically analyzed. The proportions of each of these types are statistically analyzed to facilitate comparative analysis between regions.
  • Such reference statistical information is managed in the database 3 for each region.
  • this reference statistical information may be composed of statistical data regarding the number of years of use of the air conditioning equipment. Statistical data such as frequency distribution, average, and standard deviation are managed for each region for each year of use of this air conditioning equipment.
  • Such statistical information also affects the frequency of air conditioning troubles.
  • the accuracy of discrimination can be improved by combining this with sales data for reference and determining the frequency of trouble occurrence through the degree of association.
  • the degree of association is expressed by a 10-step evaluation, but it is not limited to this, and it may be expressed by a degree of association of 3 or more levels, and conversely, it may be expressed by 3 or more levels. For example, 100 steps or 1000 steps may be used.
  • this degree of association does not include those expressed in two stages, that is, whether or not they are related to each other, either 1 or 0.
  • the present invention having the above-mentioned configuration, anyone can easily determine and search for the frequency of trouble occurrence without any special skill or experience. Further, according to the present invention, it is possible to make a judgment of this search solution with higher accuracy than that made by a human being. Further, by configuring the above-mentioned degree of association with artificial intelligence (neural network or the like), it is possible to further improve the discrimination accuracy by learning this.
  • artificial intelligence neural network or the like
  • the above-mentioned input data and output data may not be completely the same in the process of learning, so that the input data and the output data may be classified by type. That is, the information P01, P02, ... P15, 16, ... That constitute the input data are classified according to the criteria classified in advance on the system side or the user side according to the content of the information, and the classified inputs. A dataset may be created between the data and the output data and trained.
  • the degree of association in addition to the reference sales data, any of the reference refusal rate, the reference population estimation data, the reference weather information, the reference trouble type information, and the reference statistical information regarding the type of air conditioning equipment.
  • the explanation has been given by taking the case of being composed of a combination of heels as an example, but the explanation is not limited to this.
  • the degree of association is any two or more of the reference rejection rate of the vendor, the reference population estimation data, the reference weather information, the reference trouble type information, and the reference statistical information regarding the type of air conditioning equipment. It may be configured in combination with.
  • the degree of association is any of the reference sales data, or in addition to this, the reference refusal rate, the reference population estimation data, the reference weather information, the reference trouble type information, and the reference statistical information regarding the type of air conditioning equipment. In addition to 1 or more, other factors may be added to this combination to form the degree of association.
  • the present invention determines the frequency of trouble occurrence based on the degree of association between two or more types of information, the reference information U and the reference information V.
  • the reference information U is the reference sales data
  • the reference information V is the reference rejection rate, the reference population estimation data, the reference weather information, the reference trouble type information, and the reference statistics regarding the type of air conditioning equipment. It shall be one of the information.
  • the output obtained for the reference information U is used as input data as it is, and is associated with the output (trouble occurrence frequency) via the intermediate node 61 in combination with the reference information V. May be good.
  • reference information U reference sales data
  • this is used as an input as it is, and the degree of association with other reference information V is used.
  • the output (frequency of trouble occurrence) may be searched.
  • the warning information such as an alarm, an alarm, etc. based on the trouble occurrence frequency may be transmitted.
  • the optimum solution search is performed through the degree of association set in three or more stages.
  • the degree of association can be described by, for example, a numerical value from 0 to 100% in addition to the above-mentioned 10 steps, but is not limited to this, and any step can be described as long as it can be described by a numerical value of 3 or more steps. It may be configured.
  • the order of the degree of association is high. It is also possible to search and display. If the user can be displayed in descending order of the degree of association in this way, it is possible to preferentially display more probable search solutions.
  • the present invention it is possible to judge without overlooking the discrimination result of the extremely low output such as the degree of association of 1%. It warns the user that even a judgment result with an extremely low degree of association is connected as a slight sign, and may be useful as the judgment result once every tens or hundreds of times. be able to.
  • the search policy can be determined by the method of setting the threshold value by performing the search based on the degree of association of three or more stages. If the threshold value is lowered, even if the above-mentioned degree of association is 1%, it can be picked up without omission, but it is unlikely that a more appropriate discrimination result can be detected favorably, and a lot of noise may be picked up. be. On the other hand, if the threshold value is raised, there is a high possibility that the optimum search solution can be detected with high probability, but the degree of association is usually low and it is passed through, but it is suitable to appear once in tens or hundreds of times. Sometimes the solution is overlooked. It is possible to decide which one should be emphasized based on the ideas of the user side and the system side, but it is possible to increase the degree of freedom in selecting the points to be emphasized.
  • the above-mentioned degree of association may be updated.
  • This update may reflect information provided, for example, via a public communication network such as the Internet.
  • a public communication network such as the Internet.
  • the degree of association is increased or decreased according to these.
  • this update is equivalent to learning in terms of artificial intelligence. It can be said that it is a learning act because it acquires new data and reflects it in the learned data.
  • the process of first creating a trained model and the above-mentioned update may use not only supervised learning but also unsupervised learning, deep learning, reinforcement learning, and the like.
  • unsupervised learning instead of reading and training the data set of input data and output data, information corresponding to the input data is read and trained, and the degree of association related to the output data is self-formed from there. You may let it.
  • the reference rejection rate and the data set of the frequency of occurrence of air conditioning troubles are learned.
  • the input data is the reference refusal rates P01, P02, and P03 in each region.
  • the reference rejection rates P01, P02, and P03 as such input data are linked to the frequency of trouble occurrence of air conditioning as output.
  • the reference refusal rates P01, P02, and P03 are associated with each other through three or more levels of association with the air conditioning trouble occurrence frequencies A to D as the output solution.
  • the reference refusal rate is arranged on the left side through this degree of association, and the trouble occurrence frequency of each air conditioner is arranged on the right side through this degree of association.
  • the degree of association indicates the degree of trouble occurrence frequency and the degree of relevance to the reference refusal rate arranged on the left side. In other words, this degree of association is an index showing what kind of trouble occurrence frequency each reference rejection rate is likely to be associated with, and the most probable trouble occurrence frequency is selected for each reference rejection rate. It shows the accuracy above. In the example of FIG. 7, w13 to w19 are shown as the degree of association.
  • w13 to w19 are shown in 10 stages as shown in Table 1 below, and the closer to 10 points, the higher the degree of relevance of each combination as an intermediate node to the frequency of trouble occurrence as output. On the contrary, the closer to one point, the lower the degree of relation between each combination as an intermediate node and the frequency of trouble occurrence as an output.
  • the search device 2 acquires in advance the degree of association w13 to w19 having three or more stages. That is, the search device 2 accumulates a past data set as to which of the reference refusal rate in each region and the trouble occurrence frequency in that case was adopted and evaluated in determining the actual search solution. , Analyzing these is to create a degree of association.
  • this degree of association may be composed of the nodes of the neural network in artificial intelligence. That is, the weighting coefficient for the output of the node of this neural network corresponds to the above-mentioned degree of association.
  • the network is not limited to a neural network, and may be composed of all decision-making factors constituting artificial intelligence.
  • the reference refusal rate of each region is input as input data, the trouble occurrence frequency is output as output data, and at least one hidden layer between the input node and the output node is output. May be provided and machine learning may be performed.
  • the above-mentioned degree of association is set in either one or both of the input node and the hidden layer node, and this is the weight of each node, and the output is selected based on this. Then, when this degree of association exceeds a certain threshold value, the output may be selected.
  • Such degree of association is what is called learned data in artificial intelligence. After creating such learned data through a data set of the reference refusal rate of each region before and the frequency of air-conditioning troubles, the above-mentioned is used to actually determine the frequency of troubles from now on. The trouble occurrence frequency will be searched for using the learned data.
  • These data sets may be created by reading from a database managed by the vendor.
  • the degree of association acquired in advance is referred to.
  • the trouble occurrence frequency B is associated with the association degree w15 and the trouble occurrence frequency C is associated with the association degree w16 via the association degree.
  • the trouble occurrence frequency B having the highest degree of association is selected as the optimum solution.
  • it is not essential to select the one with the highest degree of association as the optimum solution, and the trouble occurrence frequency C in which the degree of association itself is recognized although the degree of association is low may be selected as the optimum solution.
  • an output solution to which the arrows are not connected may be selected, and any other output solution may be selected in any other priority as long as it is based on the degree of association.
  • the collation of the refusal rate and the refusal rate for reference is based on whether or not the sales average is within the range of ⁇ 10% if these data are represented by the sales average for a certain period. It may be determined whether they are the same or similar. Further, as long as the refusal rate is shown in the time-series transition graph, it may be discriminated based on the similarity of the trends.
  • both the first embodiment and the second embodiment are not limited to the above-described embodiment, and as shown in FIG. 9, for example, the reference information as the keynote and the frequency of occurrence of air conditioning troubles. You may try to use three or more levels of association. In such a case, the solution search is performed based on the degree of association between the reference information according to the newly acquired information and the frequency of occurrence of air conditioning troubles in three or more stages.
  • the basic reference information includes all the above-mentioned reference information (reference sales data, reference rejection rate, reference population estimation data, reference weather information, reference trouble type information, reference statistical information, etc.). Applicable.
  • the solution search is performed based on the above-mentioned method.
  • the search solution obtained through the degree of association may be further modified based on other reference information, or the weighting may be changed.
  • the other reference information referred to here corresponds to any reference information other than the reference information which is the keynote when any of the above-mentioned reference information is used as the keynote reference information.
  • the frequency B of the air conditioning trouble was previously determined.
  • the search solution B as the frequency of occurrence of air conditioning troubles is subjected to a process of increasing the weight, in other words, the occurrence of air conditioning troubles. It is set in advance to perform a process that leads to the frequency search solution B.
  • the other reference information G is an analysis result that suggests the search solution C as the frequency of occurrence of air conditioning troubles
  • the reference information F is the search solution D as the frequency of occurrence of air conditioning troubles. It is assumed that the analysis result suggests.
  • the actually acquired information is the same as or similar to the reference information G
  • a process of increasing the weighting of the occurrence frequency C of the air conditioning trouble is performed.
  • the actually acquired information is the same as or similar to the reference information F
  • a process of increasing the weighting of the occurrence frequency D of the air conditioning trouble is performed. That is, the degree of association itself, which leads to the frequency of air conditioning troubles, may be controlled based on the reference information F to H.
  • the search solution obtained may be modified based on the reference information F to H.
  • how to correct the frequency of air conditioning troubles as a search solution based on the reference information F to H will reflect what was designed on the system side each time. ..
  • the reference information is not limited to the case where it is composed of any one type, and the solution search may be performed based on two or more types of reference information. Similarly, in such a case, the more the case leads to the occurrence frequency of the air conditioning trouble suggested by the reference information, the higher the modification of the discrimination type as the search solution obtained through the degree of association may be made.
  • the reference as the keynote when forming the degree of association between the reference information as the keynote and the frequency of occurrence of air conditioning troubles for the combination having the other reference information, the reference as the keynote.
  • the information used is any reference information (reference sales data, reference rejection rate, reference population estimation data, reference weather information, reference trouble type information, reference statistical information) in the first embodiment and the second embodiment. Etc.) are also applicable.
  • Other reference information includes any reference information in the first and second embodiments other than the underlying reference information.
  • the other reference information includes any reference information in the other first embodiment and the second embodiment.
  • the frequency of air conditioning troubles can be estimated by searching for a solution in the same way.
  • the frequency of occurrence of air conditioning troubles is obtained through further other reference information (reference information F, G, H, etc.) for the search solution obtained through the degree of association. May be modified.
  • the degree of association may be learned by combining not only 1 but also 2 or more other reference information.
  • the degree of association may be formed between only the reference information that is the keynote and the frequency of occurrence of air conditioning troubles.
  • This reference information as a keynote is any reference information (reference sales data, reference rejection rate, reference population estimation data, reference weather information, reference trouble type information) in the first embodiment and the second embodiment. , Reference statistics, etc.) are also applicable.
  • the solution search method of FIG. 11 is omitted below by quoting the explanation of FIG.
  • this embodiment is based on the reference refusal rate, the reference weather information, and the reference outside air temperature information, and other reference information (reference population estimation data, reference trouble type information, etc.).
  • reference information reference population estimation data, reference trouble type information, etc.
  • the explanation has been given by taking as an example the case where the degree of association with the frequency of occurrence of air conditioning troubles and the degree of association of three or more levels are acquired in advance by combining the above, but the present invention is not limited to this. All reference information in the first to second embodiments (reference sales data, reference rejection rate of vendors, reference population estimation data, reference weather information, reference trouble type information, reference regarding types of air conditioning equipment).
  • the frequency of occurrence of troubles in electrical equipment may be searched in addition to the frequency of occurrence of troubles in air conditioning.
  • the method for searching for the frequency of occurrence of troubles in electrical equipment is the same as described above, and it is premised that three or more levels of association between each reference information and the frequency of occurrence of troubles in electrical equipment are preset. ..
  • Electrical equipment includes all electrical equipment (lighting equipment, air conditioning equipment, indoor dryers, ventilation equipment, sprinkler equipment, underfloor heating equipment, indoor heating equipment, indoor air circulation equipment, etc.) installed in the building structure. Is done. Although this electrical equipment can be separated from the building structure and transported, it is premised that it is installed in the building structure, and air conditioning equipment such as an air conditioner is also included in this. On the other hand, electric appliances (personal computers, refrigerators, microwaves, vacuum cleaners, television receivers, Internet communication devices, etc.) released from building structures are simply connected to outlets. It does not include those that are not actually attached to the building structure.
  • the troubles of this electric equipment include the above-mentioned failure of the electric equipment, water leakage of the piping to the electric equipment, accumulation of dust of the filter in the electric equipment, generation of abnormal noise from the electric equipment, and a strange odor drifting from the electric equipment.
  • Such vendors often manage sales in each region.
  • the unit of each area may be classified in detail into a region, a prefecture, a municipality, a town, a street number, a number, and even a building or a condominium unit. Sales are managed on a yearly, monthly, weekly, daily, etc. basis.
  • the reference sales data for each region of such a trader is acquired for the learning data.
  • this reference sales data may be represented by the average value or standard deviation of a certain period such as yearly, monthly, weekly, daily, etc., or may be represented by fluctuation trend data or fluctuation transition data. good.
  • the frequency of electrical equipment troubles indicates how often electrical equipment troubles can occur in each region.
  • the frequency of occurrence of this electrical equipment trouble may be composed of any denominator such as yearly, monthly, weekly, daily, and five-year units.
  • the occurrence of electrical equipment trouble may be counted as one time each time the resident of the building structure notifies the contractor that there was an electrical equipment trouble.
  • the frequency of such troubles in electrical equipment can be obtained after the fact by counting the frequency of troubles by the contractor and recording it in the database held by the contractor.
  • the frequency of troubles in this electrical equipment is organized by region as described above.
  • the frequency of occurrence of gas equipment trouble may be searched in addition to the frequency of occurrence of air conditioning trouble.
  • the method for searching for the frequency of occurrence of gas equipment trouble is the same as described above, and it is premised that three or more levels of association between each reference information and the frequency of occurrence of gas equipment trouble are set in advance.
  • Gas equipment includes all gas equipment (lighting equipment, air conditioning equipment, gas stoves, water heaters, baths, etc.) arranged in building structures. Although this gas facility can be separated from the building structure and transported, it is premised that it is installed in the building structure, and air conditioning equipment such as an air conditioner is also included in this. On the other hand, gas products released from building structures (gas stoves, etc.) that are simply connected to outlets and are not actually attached to building structures are included. I can't.
  • the troubles of this gas equipment include the above-mentioned failure of the gas equipment, water leakage of the piping to the gas equipment, accumulation of dust on the filter in the gas equipment, generation of abnormal noise from the gas equipment, and offensive odor drifting from the gas equipment.
  • Such vendors often manage sales in each region.
  • the unit of each area may be classified in detail into a region, a prefecture, a municipality, a town, a street number, a number, and even a building or a condominium unit. Sales are managed on a yearly, monthly, weekly, daily, etc. basis.
  • the reference sales data for each region of such a trader is acquired for the learning data.
  • this reference sales data may be represented by the average value or standard deviation of a certain period such as yearly, monthly, weekly, daily, etc., or may be represented by fluctuation trend data or fluctuation transition data. good.
  • the frequency of gas equipment troubles indicates how often gas equipment troubles can occur in each region.
  • the frequency of occurrence of this gas equipment trouble may be composed of any denominator such as yearly, monthly, weekly, daily, and five-year units.
  • the occurrence of gas equipment trouble may be counted as one time each time the resident of the building structure notifies the contractor that there was a gas equipment trouble.
  • the frequency of troubles in such gas equipment can be obtained after the fact by counting the frequency of troubles by the gas equipment and recording it in the database it owns.
  • the frequency of troubles in this gas facility is organized by region as described above.
  • Air conditioning trouble occurrence frequency system 1 Air conditioning trouble occurrence frequency system 2 Search device 21 Internal bus 23 Display unit 24 Control unit 25 Operation unit 26 Communication unit 27 Discrimination unit 28 Storage unit 61 Node

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • Economics (AREA)
  • Human Resources & Organizations (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Marketing (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Development Economics (AREA)
  • Game Theory and Decision Science (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

[Problem] To predict, in regional units, the frequency of occurrence of air conditioning issues in a building structure. [Solution] A program for predicting the frequency of the occurrence of air conditioning issues, that predicts, in regional units, the frequency of occurrence of issues in air conditioning equipment in a building structure. The program is characterized by causing a computer to execute: an information acquisition step in which region specification information, for specifying a building structure for which the frequency of occurrence of air conditioning issues is to be predicted or a region in which the structure is located, is obtained; and a search step that searches for an air conditioner issue occurrence frequency having a higher degree of connection set between reference sales data for business dispatched in response to air conditioning issues in each region and reference sales data that refers to at least three levels of association to the frequency of occurrence of air conditioning issues and corresponds to past regional sales data in the region specification information obtained in the information acquisition step.

Description

空調トラブル発生頻度予測プログラムAir conditioning trouble occurrence frequency prediction program
 本発明は、空調トラブル発生頻度予測プログラムに関する。 The present invention relates to an air conditioning trouble occurrence frequency prediction program.
 ビルやマンション、戸建住宅等の建築構造物における空調トラブルの例としては、空調機器の故障、空調機器の配管の水漏れ、空調機器におけるフィルタの埃の蓄積、空調機器からの異常音の発生、空調機器から漂う異臭等がある。このような建築構造物における空調トラブルは、その居住者のみで解決できない場合も多々あることから専門業者に出動してもらい、作業を委託するケースが多い。 Examples of air-conditioning troubles in building structures such as buildings, condominiums, and detached houses include air-conditioning equipment failures, water leaks in air-conditioning equipment piping, filter dust accumulation in air-conditioning equipment, and abnormal noise generated from air-conditioning equipment. , There is a strange odor drifting from the air conditioner. Since there are many cases where air-conditioning problems in such building structures cannot be solved by the resident alone, there are many cases where a specialist is dispatched and the work is outsourced.
 しかしながら、近年における専門業者の人手不足が深刻化しており、居住者が連絡をしてもなかなか対応してもらえないケースが増加している。特に猛暑日や寒さが厳しい日に空調設備が壊れてしまった場合に、業者の出動が遅れる場合には、通常の生活や仕事に大きな支障をきたす場合がある。このような空調のトラブルは、より早めの対応が必要になる場合が多いことから、これに対応する業者も、対応する地域毎の人員配置の最適化等、尽力している。 However, in recent years, the labor shortage of specialists has become more serious, and there are an increasing number of cases where residents are unable to respond even if they contact them. Especially when the air-conditioning equipment is broken on a hot day or a cold day, if the dispatch of the contractor is delayed, it may cause a big hindrance to normal life and work. Since it is often necessary to deal with such air-conditioning troubles earlier, the companies that deal with them are also making efforts such as optimizing the staffing for each corresponding region.
 実際に空調の対応を行うために、どの地域にどれだけの人員を配置するかを考えたとき、各地域における空調のトラブルの発生頻度を予測する必要がある。しかしながら、このような空調のトラブルの発生頻度を地域毎に予測するための技術が未だ案出されていないのが現状であった。 When considering how many people should be assigned to which area in order to actually handle air conditioning, it is necessary to predict the frequency of air conditioning problems in each area. However, the current situation is that a technique for predicting the frequency of such air conditioning troubles in each region has not yet been devised.
 そこで本発明は、上述した問題点に鑑みて案出されたものであり、その目的とするところは、建築構造物内における空調のトラブルの発生頻度を地域単位で予測する空調トラブル発生頻度予測プログラムを提供することにある。また、これに加えて、建築構造物内におけるガス設備のトラブルの発生頻度を地域単位で予測し、或いは建築構造物内における電気設備のトラブルの発生頻度を地域単位で予測するトラブル発生頻度予測プログラムを提供することにある。 Therefore, the present invention has been devised in view of the above-mentioned problems, and an object thereof is an air conditioning trouble occurrence frequency prediction program for predicting the occurrence frequency of air conditioning troubles in a building structure on a regional basis. Is to provide. In addition to this, a trouble occurrence frequency prediction program that predicts the frequency of gas equipment troubles in a building structure on a regional basis, or predicts the frequency of electrical equipment troubles in a building structure on a regional basis. Is to provide.
 本発明に係る空調トラブル発生頻度予測プログラムは、建築構造物内における空調設備のトラブルの発生頻度を地域単位で予測する空調トラブル発生頻度予測プログラムにおいて、空調トラブルの発生頻度を予測する建築構造物又はそれが立地する地域を特定するための地域特定情報を取得する情報取得ステップと、各地域における空調トラブル対応に対して出動した業者の参照用売上データと、空調のトラブルの発生頻度との3段階以上の連関度を参照し、上記情報取得ステップにおいて取得した地域特定情報における地域の過去の売上データに対応する参照用売上データとの間でより高い連関度が設定されている空調のトラブルの発生頻度を探索する探索ステップとをコンピュータに実行させることを特徴とする。 The air-conditioning trouble occurrence frequency prediction program according to the present invention is a building structure or a building structure that predicts the occurrence frequency of air-conditioning trouble in the air-conditioning trouble occurrence frequency prediction program that predicts the occurrence frequency of air-conditioning equipment trouble in the building structure on a regional basis. There are three stages: the information acquisition step to acquire area-specific information to identify the area where it is located, the reference sales data of the vendor dispatched to deal with air-conditioning troubles in each area, and the frequency of air-conditioning troubles. With reference to the above degree of association, the occurrence of air conditioning trouble in which a higher degree of association is set with the reference sales data corresponding to the past sales data of the area in the area identification information acquired in the above information acquisition step. It is characterized by having a computer perform a search step for searching for frequency.
 特段のスキルや経験が無くても、人手に頼ることなく、建築構造物内における空調のトラブルの発生頻度を地域単位で予測することができる。 Even if you do not have any special skills or experience, you can predict the frequency of air conditioning troubles in building structures on a regional basis without relying on human hands.
本発明を適用したシステムの全体構成を示すブロック図である。It is a block diagram which shows the whole structure of the system to which this invention is applied. 探索装置の具体的な構成例を示す図である。It is a figure which shows the specific configuration example of a search device. 本発明の動作について説明するための図である。It is a figure for demonstrating the operation of this invention. 本発明の動作について説明するための図である。It is a figure for demonstrating the operation of this invention. 本発明の動作について説明するための図である。It is a figure for demonstrating the operation of this invention. 本発明の動作について説明するための図である。It is a figure for demonstrating the operation of this invention. 本発明の動作について説明するための図である。It is a figure for demonstrating the operation of this invention. 本発明の動作について説明するための図である。It is a figure for demonstrating the operation of this invention. 本発明の動作について説明するための図である。It is a figure for demonstrating the operation of this invention. 本発明の動作について説明するための図である。It is a figure for demonstrating the operation of this invention. 本発明の動作について説明するための図である。It is a figure for demonstrating the operation of this invention.
 以下、本発明を適用した空調トラブル発生頻度予測プログラムについて、図面を参照しながら詳細に説明をする。 Hereinafter, the air conditioning trouble occurrence frequency prediction program to which the present invention is applied will be described in detail with reference to the drawings.
 図1は、本発明を適用した空調トラブル発生頻度予測プログラムが実装される空調トラブル発生頻度システム1の全体構成を示すブロック図である。空調トラブル発生頻度システム1は、情報取得部9と、情報取得部9に接続された探索装置2と、探索装置2に接続されたデータベース3とを備えている。 FIG. 1 is a block diagram showing an overall configuration of an air conditioning trouble occurrence frequency system 1 in which an air conditioning trouble occurrence frequency prediction program to which the present invention is applied is implemented. The air conditioning trouble occurrence frequency system 1 includes an information acquisition unit 9, a search device 2 connected to the information acquisition unit 9, and a database 3 connected to the search device 2.
 情報取得部9は、本システムを活用する者が各種コマンドや情報を入力するためのデバイスであり、具体的にはキーボードやボタン、タッチパネル、マウス、スイッチ等により構成される。情報取得部9は、テキスト情報を入力するためのデバイスに限定されるものではなく、マイクロフォン等のような音声を検知してこれをテキスト情報に変換可能なデバイスで構成されていてもよい。また情報取得部9は、カメラ等の画像を撮影可能な撮像装置として構成されていてもよい。情報取得部9は、紙媒体の書類から文字列を認識できる機能を備えたスキャナで構成されていてもよい。また情報取得部9は、後述する探索装置2と一体化されていてもよい。情報取得部9は、検知した情報を探索装置2へと出力する。また情報取得部9は地図情報をスキャニングすることで位置情報を特定する手段により構成されていてもよい。また情報取得部9は、温度センサ、湿度センサ、風向センサ、を測るための照度センサで構成されていてもよい。また情報取得部9は、天候についてのデータを気象庁や民間の天気予報会社から取得する通信インターフェースで構成されていてもよい。また情報取得部9は身体に装着して身体のデータを検出するための身体センサで構成されていてもよく、この身体センサは、例えば体温、心拍数、血圧、歩数、歩く速度、加速度を検出するためのセンサで構成されていてもよい。また身体センサは人間のみならず動物の生体データを取得するものであってもよい。また情報取得部9は図面等の情報をスキャニングしたり、或いはデータベースから読み出すことで取得するデバイスとして構成されていてもよい。情報取得部9は、これら以外に臭気や香りを検知する臭気センサにより構成されていてもよい。 The information acquisition unit 9 is a device for a person using this system to input various commands and information, and specifically, is composed of a keyboard, buttons, a touch panel, a mouse, a switch, and the like. The information acquisition unit 9 is not limited to a device for inputting text information, and may be configured by a device such as a microphone that can detect voice and convert it into text information. Further, the information acquisition unit 9 may be configured as an image pickup device capable of taking an image of a camera or the like. The information acquisition unit 9 may be configured by a scanner having a function of recognizing a character string from a paper-based document. Further, the information acquisition unit 9 may be integrated with the search device 2 described later. The information acquisition unit 9 outputs the detected information to the search device 2. Further, the information acquisition unit 9 may be configured by means for specifying the position information by scanning the map information. Further, the information acquisition unit 9 may be composed of an illuminance sensor for measuring a temperature sensor, a humidity sensor, and a wind direction sensor. Further, the information acquisition unit 9 may be configured by a communication interface for acquiring data about the weather from the Japan Meteorological Agency or a private weather forecast company. Further, the information acquisition unit 9 may be composed of a body sensor that is attached to the body to detect body data, and the body sensor detects, for example, body temperature, heart rate, blood pressure, number of steps, walking speed, and acceleration. It may be composed of a sensor for the purpose. Further, the body sensor may acquire biometric data of not only humans but also animals. Further, the information acquisition unit 9 may be configured as a device for acquiring information such as drawings by scanning or reading from a database. In addition to these, the information acquisition unit 9 may be configured by an odor sensor that detects odors and scents.
 また、情報取得部9は、空調トラブル対応に対して出動し、実際に作業を行うことで問題解決を行う業者のデータベースに記録されている地域毎の売り上げデータや、地域毎の出動回数等に応じて算出した出動頻度データを取得するための手段で構成されていてもよい。 In addition, the information acquisition unit 9 is dispatched to deal with air-conditioning troubles, and is used for sales data for each region recorded in the database of a company that solves problems by actually performing work, the number of dispatches for each region, and the like. It may be configured by means for acquiring the dispatch frequency data calculated accordingly.
 データベース3は、空調トラブル発生頻度を行う上で必要な様々な情報が蓄積される。空調トラブル発生頻度を行う上で必要な情報としては、各地域における空調トラブル対応に対して出動した業者の参照用売上データ、空調トラブル対応のために出動要請された業者の参照用断り率、各地域における参照用人口推計データ、各地域における参照用天候情報、各地域におけるトラブルの種類に関する参照用トラブル種類情報、各地域における空調機器の種類や使用年数に関する参照用統計情報、各地域における外気温に関する参照用外気温情報等が、出力データとしての空調のトラブルの発生頻度との関係において蓄積されている。 Database 3 stores various information necessary for performing air conditioning trouble occurrence frequency. The information required to determine the frequency of air-conditioning troubles is the reference sales data of the vendors dispatched to respond to air-conditioning troubles in each region, the reference refusal rate of the vendors requested to respond to air-conditioning troubles, and each. Reference population estimation data in each region, reference weather information in each region, reference trouble type information regarding the type of trouble in each region, reference statistical information regarding the type and years of use of air conditioning equipment in each region, outside temperature in each region Information on the outside temperature for reference is accumulated in relation to the frequency of air conditioning troubles as output data.
 つまり、データベース3には、このような業者の参照用売上データに加え、業者の参照用断り率、参照用人口推計データ、参照用天候情報、参照用トラブル種類情報、空調機器の種類や使用年数に関する参照用統計情報、参照用外気温情報の何れか1以上と、空調のトラブルの発生頻度が互いに紐づけられて記憶されている。 That is, in the database 3, in addition to the reference sales data of such a vendor, the reference rejection rate of the vendor, the population estimation data for reference, the weather information for reference, the trouble type information for reference, the type of air conditioning equipment and the number of years of use. Any one or more of the reference statistical information and the reference outside temperature information regarding the reference, and the frequency of occurrence of air conditioning troubles are stored in association with each other.
 探索装置2は、例えば、パーソナルコンピュータ(PC)等を始めとした電子機器で構成されているが、PC以外に、携帯電話、スマートフォン、タブレット型端末、ウェアラブル端末等、他のあらゆる電子機器で具現化されるものであってもよい。ユーザは、この探索装置2による探索解を得ることができる。 The search device 2 is composed of, for example, an electronic device such as a personal computer (PC), but is embodied in any other electronic device such as a mobile phone, a smartphone, a tablet terminal, a wearable terminal, etc., in addition to the PC. It may be the one to be converted. The user can obtain a search solution by the search device 2.
 図2は、探索装置2の具体的な構成例を示している。この探索装置2は、探索装置2全体を制御するための制御部24と、操作ボタンやキーボード等を介して各種制御用の指令を入力するための操作部25と、有線通信又は無線通信を行うための通信部26と、各種判断を行う判別部27と、ハードディスク等に代表され、実行すべき検索を行うためのプログラムを格納するための記憶部28とが内部バス21にそれぞれ接続されている。さらに、この内部バス21には、実際に情報を表示するモニタとしての表示部23が接続されている。 FIG. 2 shows a specific configuration example of the search device 2. The search device 2 performs wired communication or wireless communication with a control unit 24 for controlling the entire search device 2 and an operation unit 25 for inputting various control commands via an operation button, a keyboard, or the like. A communication unit 26 for the purpose, a determination unit 27 for making various judgments, and a storage unit 28 for storing a program for performing a search to be executed represented by a hard disk or the like are connected to the internal bus 21, respectively. .. Further, a display unit 23 as a monitor that actually displays information is connected to the internal bus 21.
  制御部24は、内部バス21を介して制御信号を送信することにより、探索装置2内に実装された各構成要素を制御するためのいわゆる中央制御ユニットである。また、この制御部24は、操作部25を介した操作に応じて各種制御用の指令を内部バス21を介して伝達する。 The control unit 24 is a so-called central control unit for controlling each component mounted in the search device 2 by transmitting a control signal via the internal bus 21. Further, the control unit 24 transmits various control commands via the internal bus 21 according to the operation via the operation unit 25.
 操作部25は、キーボードやタッチパネルにより具現化され、プログラムを実行するための実行命令がユーザから入力される。この操作部25は、上記実行命令がユーザから入力された場合には、これを制御部24に通知する。この通知を受けた制御部24は、判別部27を始め、各構成要素と協調させて所望の処理動作を実行していくこととなる。この操作部25は、前述した情報取得部9として具現化されるものであってもよい。 The operation unit 25 is embodied by a keyboard or a touch panel, and an execution command for executing a program is input from the user. When the execution command is input by the user, the operation unit 25 notifies the control unit 24 of the execution command. Upon receiving this notification, the control unit 24, including the discrimination unit 27, executes a desired processing operation in cooperation with each component. The operation unit 25 may be embodied as the information acquisition unit 9 described above.
 判別部27は、探索解を判別する。この判別部27は、判別動作を実行するに当たり、必要な情報として記憶部28に記憶されている各種情報や、データベース3に記憶されている各種情報を読み出す。この判別部27は、人工知能により制御されるものであってもよい。この人工知能はいかなる周知の人工知能技術に基づくものであってもよい。 The discrimination unit 27 discriminates the search solution. The discriminating unit 27 reads out various information stored in the storage unit 28 and various information stored in the database 3 as necessary information when executing the discriminating operation. The discriminating unit 27 may be controlled by artificial intelligence. This artificial intelligence may be based on any well-known artificial intelligence technology.
  表示部23は、制御部24による制御に基づいて表示画像を作り出すグラフィックコントローラにより構成されている。この表示部23は、例えば、液晶ディスプレイ(LCD)等によって実現される。 The display unit 23 is configured by a graphic controller that creates a display image based on the control by the control unit 24. The display unit 23 is realized by, for example, a liquid crystal display (LCD) or the like.
  記憶部28は、ハードディスクで構成される場合において、制御部24による制御に基づき、各アドレスに対して所定の情報が書き込まれるとともに、必要に応じてこれが読み出される。また、この記憶部28には、本発明を実行するためのプログラムが格納されている。このプログラムは制御部24により読み出されて実行されることになる。 When the storage unit 28 is composed of a hard disk, predetermined information is written to each address based on the control by the control unit 24, and is read out as needed. Further, the storage unit 28 stores a program for executing the present invention. This program will be read and executed by the control unit 24.
 上述した構成からなる空調トラブル発生頻度システム1における動作について説明をする。 The operation of the air conditioning trouble occurrence frequency system 1 having the above-mentioned configuration will be described.
 空調トラブル発生頻度システム1では、例えば図3に示すように、各地域における空調トラブル対応に対して出動した業者の参照用売上データと、空調のトラブルの発生頻度との3段階以上の連関度が予め設定されていることが前提となる。各地域における空調トラブル対応に対して出動した業者とは、建築構造物(ビル、マンション、戸建住宅、アパート等)の居住者からの空調トラブルの要請に対して出動して実際に現場で修復作業を行う業者である。空調のトラブルとは、空調機器の故障、空調機器の配管の水漏れ、空調機器におけるフィルタの埃の蓄積、空調機器からの異常音の発生、空調機器から漂う異臭等があるがこれらに限定されるものでは無く、空調に関する他のいかなるトラブルも含まれる。このような業者は、各地域毎に売上を管理している場合が多い。個々でいう地域の単位は、地方、県、市区町村、更には、町、番地、号、更にはビルやマンション単位まで詳細に分類されていても良い。売上は、年単位、月単位、週単位、日単位等で管理されている。このような業者の地域単位での参照用売上データを先ずは学習用データのために取得する。またこの参照用売上データは、年単位、月単位、週単位、日単位等、ある期間の平均値や標準偏差で表されてもよいし、変動傾向、変動推移のデータで表されていてもよい。 In the air-conditioning trouble occurrence frequency system 1, for example, as shown in FIG. 3, the degree of association between the reference sales data of the vendor dispatched for the air-conditioning trouble response in each region and the frequency of the air-conditioning trouble occurrence is three or more levels. It is assumed that it is set in advance. The contractor dispatched to deal with air conditioning troubles in each area is dispatched to respond to requests for air conditioning troubles from residents of building structures (buildings, condominiums, detached houses, apartments, etc.) and actually repaired at the site. It is a contractor who does the work. Air-conditioning troubles include malfunction of air-conditioning equipment, water leakage from piping of air-conditioning equipment, accumulation of dust on filters in air-conditioning equipment, generation of abnormal noise from air-conditioning equipment, and offensive odor drifting from air-conditioning equipment. It is not a thing and includes any other troubles related to air conditioning. Such vendors often manage sales in each region. The unit of each area may be classified in detail into a region, a prefecture, a municipality, a town, a street number, a number, and even a building or a condominium unit. Sales are managed on a yearly, monthly, weekly, daily, etc. basis. First, the reference sales data for each region of such a trader is acquired for the learning data. In addition, this reference sales data may be represented by the average value or standard deviation of a certain period such as yearly, monthly, weekly, daily, etc., or may be represented by fluctuation trend data or fluctuation transition data. good.
 空調のトラブルの発生頻度は、各地域において、空調のトラブルの発生がどの頻度で起こり得るかを示すものである。この空調トラブルの発生頻度は、年単位、月単位、週単位、日単位、5年単位等、いかなる分母で構成されていてもよい。空調のトラブル発生は、建築構造物の居住者から実際に業者に対して空調トラブルがあった旨の連絡がある都度、1回分としてカウントしてもよい。このような空調のトラブル発生頻度は、業者自身がカウントしておき、保有しているデータベースに記録しておくことで、事後的な取得が可能となる。この空調のトラブル発生頻度は、上述した地域単位で整理されている。 The frequency of air-conditioning troubles indicates how often air-conditioning troubles can occur in each region. The frequency of occurrence of this air conditioning trouble may be composed of any denominator such as yearly, monthly, weekly, daily, and five-year units. The occurrence of air-conditioning trouble may be counted as one time each time the resident of the building structure notifies the contractor that there was an air-conditioning trouble. The frequency of such air-conditioning troubles can be obtained after the fact by counting the frequency of such air-conditioning troubles by the vendor itself and recording it in the database held by the vendor. The frequency of air conditioning troubles is organized by region as described above.
 図3の例では、入力データとして、各地域における参照用売上データP01、P02、P03であるものとする。このような入力データとしての参照用売上データP01、P02、P03は、出力としての空調のトラブル発生頻度に連結している。 In the example of FIG. 3, it is assumed that the input data is the reference sales data P01, P02, and P03 in each region. The reference sales data P01, P02, and P03 as such input data are linked to the frequency of trouble occurrence of air conditioning as output.
 参照用売上データP01、P02、P03は、この出力解としての空調のトラブル発生頻度A~Dに対して3段階以上の連関度を通じて互いに連関しあっている。このトラブル発生頻度は、例えばAが月5回、Bが月20回等のように示されているが、これも月単位の頻度に限らず、いかなる期間単位の頻度とされていてもよい。参照用売上データがこの連関度を介して左側に配列し、各空調のトラブル発生頻度が連関度を介して右側に配列している。連関度は、左側に配列された参照用売上データに対して、何れのトラブル発生頻度と関連性が高いかの度合いを示すものである。換言すれば、この連関度は、各参照用売上データが、いかなるトラブル発生頻度に紐付けられる可能性が高いかを示す指標であり、各参照用売上データについて最も確からしいトラブル発生頻度を選択する上での的確性を示すものである。図3の例では、連関度としてw13~w19が示されている。このw13~w19は以下の表1に示すように10段階で示されており、10点に近いほど、中間ノードとしての各組み合わせが出力としてのトラブル発生頻度と互いに関連度合いが高いことを示しており、逆に1点に近いほど中間ノードとしての各組み合わせが出力としてのトラブル発生頻度と互いに関連度合いが低いことを示している。 The reference sales data P01, P02, and P03 are associated with each other through three or more levels of association with the air conditioning trouble occurrence frequencies A to D as the output solution. The frequency of occurrence of this trouble is shown, for example, A is 5 times a month, B is 20 times a month, and the like, but this is not limited to the monthly frequency, and may be any period unit frequency. The reference sales data is arranged on the left side via this degree of association, and the trouble occurrence frequency of each air conditioner is arranged on the right side via this degree of association. The degree of association indicates the degree of trouble occurrence frequency and the degree of relevance to the reference sales data arranged on the left side. In other words, this degree of association is an index showing what kind of trouble occurrence frequency each reference sales data is likely to be associated with, and selects the most probable trouble occurrence frequency for each reference sales data. It shows the accuracy above. In the example of FIG. 3, w13 to w19 are shown as the degree of association. These w13 to w19 are shown in 10 stages as shown in Table 1 below, and the closer to 10 points, the higher the degree of relevance of each combination as an intermediate node to the frequency of trouble occurrence as output. On the contrary, the closer to one point, the lower the degree of relation between each combination as an intermediate node and the frequency of trouble occurrence as an output.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 探索装置2は、このような図3に示す3段階以上の連関度w13~w19を予め取得しておく。つまり探索装置2は、実際の探索解の判別を行う上で、各地域の参照用売上データと、その場合のトラブル発生頻度の何れが採用、評価されたか、過去のデータセットを蓄積しておき、これらを分析、解析することで図3に示す連関度を作り上げておく。 The search device 2 acquires in advance the degree of association w13 to w19 of three or more stages shown in FIG. That is, the search device 2 accumulates a past data set as to which of the reference sales data of each region and the trouble occurrence frequency in that case is adopted and evaluated in determining the actual search solution. By analyzing and analyzing these, the degree of association shown in FIG. 3 is created.
 例えば、過去において地域における参照用売上データがある折れ線グラフで示される変動推移で示されるものであるものとする。このような、ある折れ線グラフで示される参照用売上データの場合に、実際にその地域における空調のトラブル発生頻度は、Aが最も多かったものとする。このようなデータセットを集めて分析することにより、各地域の参照用売上データとの連関度が強くなる。 For example, it is assumed that the sales data for reference in the past is shown by the fluctuation transition shown by the line graph. In the case of such reference sales data shown by a certain line graph, it is assumed that A actually has the highest frequency of air conditioning troubles in the area. By collecting and analyzing such data sets, the degree of association with reference sales data in each region becomes stronger.
 この分析、解析は人工知能により行うようにしてもよい。かかる場合には、例えば参照用売上データP01である場合に、過去の売上と、トラブル発生頻度の各種データから分析する。地域P01での売上が年平均で560万円である場合に、トラブル発生頻度Aの事例が多い場合には、このトラブル発生頻度の評価につながる連関度をより高く設定し、トラブル発生頻度Bの事例が多い場合には、このトラブル発生頻度の評価につながる連関度をより高く設定する。例えば地域P01についての参照用売上データの例では、トラブル発生頻度Aと、トラブル発生頻度Cにリンクしているが、以前の事例からトラブル発生頻度Aにつながるw13の連関度を7点に、トラブル発生頻度Cにつながるw14の連関度を2点に設定している。 This analysis may be performed by artificial intelligence. In such a case, for example, in the case of reference sales data P01, analysis is performed from past sales and various data of trouble occurrence frequency. If the annual average sales in the area P01 are 5.6 million yen and there are many cases of trouble occurrence frequency A, the degree of association that leads to the evaluation of this trouble occurrence frequency is set higher, and the trouble occurrence frequency B is set. If there are many cases, set a higher degree of association that leads to the evaluation of the frequency of trouble occurrence. For example, in the example of the reference sales data for the region P01, the trouble occurrence frequency A and the trouble occurrence frequency C are linked, but from the previous case, the degree of association of w13 connected to the trouble occurrence frequency A is set to 7 points, and the trouble occurs. The degree of association of w14 connected to the occurrence frequency C is set to 2 points.
 また、この図3に示す連関度は、人工知能におけるニューラルネットワークのノードで構成されるものであってもよい。即ち、このニューラルネットワークのノードが出力に対する重み付け係数が、上述した連関度に対応することとなる。またニューラルネットワークに限らず、人工知能を構成するあらゆる意思決定因子で構成されるものであってもよい。 Further, the degree of association shown in FIG. 3 may be composed of the nodes of the neural network in artificial intelligence. That is, the weighting coefficient for the output of the node of this neural network corresponds to the above-mentioned degree of association. Further, the network is not limited to a neural network, and may be composed of all decision-making factors constituting artificial intelligence.
 かかる場合には、図4に示すように、入力データとして各地域の参照用売上データが入力され、出力データとしてトラブル発生頻度が出力され、入力ノードと出力ノードの間に少なくとも1以上の隠れ層が設けられ、機械学習させるようにしてもよい。入力ノード又は隠れ層ノードの何れか一方又は両方において上述した連関度が設定され、これが各ノードの重み付けとなり、これに基づいて出力の選択が行われる。そして、この連関度がある閾値を超えた場合に、その出力を選択するようにしてもよい。 In such a case, as shown in FIG. 4, reference sales data for each region is input as input data, trouble occurrence frequency is output as output data, and at least one hidden layer between the input node and the output node is output. May be provided and machine learning may be performed. The above-mentioned degree of association is set in either one or both of the input node and the hidden layer node, and this is the weight of each node, and the output is selected based on this. Then, when this degree of association exceeds a certain threshold value, the output may be selected.
 このような連関度が、人工知能でいうところの学習済みデータとなる。このような学習済みデータを、以前の各地域の参照用売上データと、空調のトラブルの発生頻度とのデータセットを通じて作った後に、実際にこれから新たにトラブル発生頻度の判別を行う上で、上述した学習済みデータを利用してトラブル発生頻度を探索することとなる。これらのデータセットは、業者が管理しているデータベースから読み出すことで作成するようにしてもよい。 Such degree of association is what is called learned data in artificial intelligence. After creating such learned data through a data set of sales data for reference in each region before and the frequency of air-conditioning troubles, the above-mentioned method is used to actually determine the frequency of troubles. The trouble occurrence frequency will be searched for using the learned data. These data sets may be created by reading from a database managed by the vendor.
 新たにトラブル発生頻度を探索する場合には、探索したい地域の入力を受け付ける。地域毎にそれぞれ過去の売上データが紐付けられて記憶されていることから、地域の入力を受け付けた場合、これに紐づけられている売上データを読み出すことで取得することができる。 When searching for a new trouble occurrence frequency, accept the input of the area you want to search. Since the past sales data is associated and stored for each region, when the input of the region is accepted, it can be acquired by reading the sales data associated with the region.
 次にこの読みだした売上データを参照用売上データと照合する。かかる場合には、予め取得した図3(表1)に示す連関度を参照する。例えば、新たに取得した売上データがP02と同一かこれに類似するものである場合には、連関度を介してトラブル発生頻度Bがw15、トラブル発生頻度Cが連関度w16で関連付けられている。かかる場合には、連関度の最も高いトラブル発生頻度Bを最適解として選択する。但し、最も連関度の高いものを最適解として選択することは必須ではなく、連関度は低いものの連関性そのものは認められるトラブル発生頻度Cを最適解として選択するようにしてもよい。また、これ以外に矢印が繋がっていない出力解を選択してもよいことは勿論であり、連関度に基づくものであれば、その他いかなる優先順位で選択されるものであってもよい。 Next, collate this read sales data with the reference sales data. In such a case, the degree of association shown in FIG. 3 (Table 1) acquired in advance is referred to. For example, when the newly acquired sales data is the same as or similar to P02, the trouble occurrence frequency B is associated with w15 and the trouble occurrence frequency C is associated with the association degree w16 through the association degree. In such a case, the trouble occurrence frequency B having the highest degree of association is selected as the optimum solution. However, it is not essential to select the one with the highest degree of association as the optimum solution, and the trouble occurrence frequency C in which the degree of association itself is recognized although the degree of association is low may be selected as the optimum solution. In addition to this, it goes without saying that an output solution to which the arrows are not connected may be selected, and any other output solution may be selected in any other priority as long as it is based on the degree of association.
 ちなみに、売上データと参照用売上データの照合は、仮にこれらのデータが、ある期間の売上平均で表されている場合には、その売上平均が±10%の範囲内に入っているか否かで同一及び類似であるか否かを判別するようにしてもよい。また、売上データが時系列的推移グラフで示されるものであれば、その傾向の類似性に基づいて判別されるものであってもよい。 By the way, the collation of sales data and reference sales data is based on whether or not the sales average is within the range of ± 10% if these data are represented by the sales average for a certain period. It may be determined whether they are the same or similar. Further, as long as the sales data is shown in a time-series transition graph, it may be determined based on the similarity of the trends.
 このようにして、新たに取得する売上データから、最も好適なトラブル発生頻度を探索し、ユーザに表示することができる。この探索結果を見ることにより、その地域で、今後どのようなトラブル発生頻度になりえるかを事前に判別することができ、地域毎の作業員の配置を検討することができる。 In this way, it is possible to search for the most suitable trouble occurrence frequency from the newly acquired sales data and display it to the user. By looking at this search result, it is possible to determine in advance what kind of trouble occurrence frequency may occur in the area in the future, and it is possible to consider the allocation of workers in each area.
 図5の例では、参照用売上データと、参照用断り率との組み合わせの連関度が形成される例である。参照用断り率とは、実際に建築構造物の居住者から空調トラブルに基づく出動要請が業者に対してあり、これに対して業者側が受任をすることができず断りを入れた確率である。この断り率は、出動要請数に対する断りを入れた回数で表される。出動要請数、断りを入れた回数、地域毎に業者がデータベース3上において管理している。この実際に断り率を知りたい地域に対して、データベース3からこれらの出動要請数に対する断りを入れた回数を読み出すことで、断り率を得ることができる。 In the example of FIG. 5, the degree of association between the reference sales data and the reference rejection rate is formed. The reference refusal rate is the probability that the resident of the building structure actually requested the contractor to dispatch based on the air conditioning trouble, and the contractor could not accept the request and refused it. This refusal rate is expressed by the number of refusals for the number of dispatch requests. The number of dispatch requests, the number of times of refusal, and each region are managed by the contractor on the database 3. The refusal rate can be obtained by reading the number of refusals for the number of dispatch requests from the database 3 for the area where the refusal rate is actually desired to be known.
 空調のトラブルの発生頻度は、その地域における売上に加え、あまりに出動要請件数が多い場合には、断りを入れる場合が多くなることから、その断り率にも依拠する。このため、参照用売上データに加えて、参照用断り率を学習データに組み合わせ判断することで、トラブル発生頻度をより高精度に判別することができる。このため、参照用売上データに加えて、参照用断り率を組み合わせて上述した連関度を形成しておく。 The frequency of air-conditioning troubles depends on the sales in the area, as well as the refusal rate, because if the number of dispatch requests is too large, there are many cases of refusal. Therefore, by combining the reference rejection rate with the learning data in addition to the reference sales data, the trouble occurrence frequency can be determined with higher accuracy. Therefore, in addition to the reference sales data, the reference rejection rate is combined to form the above-mentioned degree of association.
 図5の例では、入力データとして例えば参照用売上データP01~P03、参照用断り率P14~17であるものとする。このような入力データとしての、参照用売上データに対して、参照用断り率が組み合わさったものが、図5に示す中間ノードである。各中間ノードは、更に出力に連結している。この出力においては、出力解としての、トラブル発生頻度が表示されている。 In the example of FIG. 5, it is assumed that the input data is, for example, reference sales data P01 to P03 and reference refusal rate P14 to 17. The intermediate node shown in FIG. 5 is a combination of the reference sales data and the reference rejection rate as such input data. Each intermediate node is further linked to the output. In this output, the frequency of trouble occurrence as an output solution is displayed.
 参照用売上データと参照用断り率との各組み合わせ(中間ノード)は、この出力解としての、トラブル発生頻度に対して3段階以上の連関度を通じて互いに連関しあっている。参照用売上データと参照用断り率がこの連関度を介して左側に配列し、トラブル発生頻度が連関度を介して右側に配列している。連関度は、左側に配列された参照用売上データと参照用断り率に対して、トラブル発生頻度と関連性が高いかの度合いを示すものである。換言すれば、この連関度は、各参照用売上データと参照用断り率が、いかなるトラブル発生頻度に紐付けられる可能性が高いかを示す指標であり、参照用売上データと参照用断り率から最も確からしいトラブル発生頻度を選択する上での的確性を示すものである。このため、これらの参照用売上データと参照用断り率の組み合わせで、最適なトラブル発生頻度を探索していくこととなる。 Each combination of reference sales data and reference rejection rate (intermediate node) is associated with each other through three or more levels of association with the frequency of trouble occurrence as this output solution. The reference sales data and the reference rejection rate are arranged on the left side through this degree of association, and the trouble occurrence frequency is arranged on the right side through this degree of association. The degree of association indicates the degree of trouble occurrence frequency and the degree of relevance to the reference sales data and the reference rejection rate arranged on the left side. In other words, this degree of association is an index showing what kind of trouble occurrence frequency each reference sales data and reference rejection rate are likely to be associated with, and is based on the reference sales data and reference rejection rate. It shows the accuracy in selecting the most probable trouble occurrence frequency. Therefore, the optimum trouble occurrence frequency is searched for by combining these reference sales data and the reference rejection rate.
 図5の例では、連関度としてw13~w22が示されている。このw13~w22は表1に示すように10段階で示されており、10点に近いほど、中間ノードとしての各組み合わせが出力と互いに関連度合いが高いことを示しており、逆に1点に近いほど中間ノードとしての各組み合わせが出力と互いに関連度合いが低いことを示している。 In the example of FIG. 5, w13 to w22 are shown as the degree of association. As shown in Table 1, these w13 to w22 are shown in 10 stages, and the closer to 10 points, the higher the degree of relevance of each combination as an intermediate node to the output, and conversely, 1 point. The closer they are, the less relevant each combination as an intermediate node is to the output.
 探索装置2は、このような図5に示す3段階以上の連関度w13~w22を予め取得しておく。つまり探索装置2は、実際の探索解の判別を行う上で、参照用売上データと参照用断り率、並びにその場合のトラブル発生頻度が何れが見合うものであったか、過去のデータを蓄積しておき、これらを分析、解析することで図5に示す連関度を作り上げておく。 The search device 2 acquires in advance the degree of association w13 to w22 of three or more stages shown in FIG. That is, the search device 2 accumulates past data as to which of the reference sales data, the reference rejection rate, and the frequency of trouble occurrence in that case is suitable for determining the actual search solution. By analyzing and analyzing these, the degree of association shown in FIG. 5 is created.
 この分析、解析は人工知能により行うようにしてもよい。かかる場合には、例えば参照用売上データP01で、参照用断り率P16である場合に、そのトラブル発生頻度を過去のデータから分析する。トラブル発生頻度がAの事例が多い場合には、このトラブル発生頻度Aにつながる連関度をより高く設定し、トラブル発生頻度Bの事例が多く、トラブル発生頻度Aの事例が少ない場合には、トラブル発生頻度Bにつながる連関度を高くし、トラブル発生頻度Aにつながる連関度を低く設定する。例えば中間ノード61aの例では、トラブル発生頻度Aとトラブル発生頻度Bの出力にリンクしているが、以前の事例からトラブル発生頻度Aにつながるw13の連関度を7点に、トラブル発生頻度Bにつながるw14の連関度を2点に設定している。 This analysis may be performed by artificial intelligence. In such a case, for example, in the reference sales data P01 and the reference rejection rate P16, the trouble occurrence frequency is analyzed from the past data. If there are many cases where the trouble occurrence frequency is A, the degree of association leading to this trouble occurrence frequency A is set higher, and if there are many cases of trouble occurrence frequency B and there are few cases of trouble occurrence frequency A, trouble occurs. The degree of association leading to the occurrence frequency B is set high, and the degree of association leading to the trouble occurrence frequency A is set low. For example, in the example of the intermediate node 61a, the output of the trouble occurrence frequency A and the trouble occurrence frequency B is linked, but from the previous case, the degree of association of w13 connected to the trouble occurrence frequency A is set to 7 points and the trouble occurrence frequency B is set. The degree of association of the connected w14 is set to 2 points.
 また、この図5に示す連関度は、人工知能におけるニューラルネットワークのノードで構成されるものであってもよい。即ち、このニューラルネットワークのノードが出力に対する重み付け係数が、上述した連関度に対応することとなる。またニューラルネットワークに限らず、人工知能を構成するあらゆる意思決定因子で構成されるものであってもよい。その他、人工知能に関する構成は、図4における説明と同様である。 Further, the degree of association shown in FIG. 5 may be composed of the nodes of the neural network in artificial intelligence. That is, the weighting coefficient for the output of the node of this neural network corresponds to the above-mentioned degree of association. Further, the network is not limited to a neural network, and may be composed of all decision-making factors constituting artificial intelligence. Other than that, the configuration related to artificial intelligence is the same as the description in FIG.
 図5に示す連関度の例で、ノード61bは、参照用売上データP01に対して、参照用断り率P14の組み合わせのノードであり、トラブル発生頻度Cの連関度がw15、トラブル発生頻度Eの連関度がw16となっている。ノード61cは、参照用売上データP02に対して、参照用断り率P15、P17の組み合わせのノードであり、トラブル発生頻度Bの連関度がw17、トラブル発生頻度Dの連関度がw18となっている。 In the example of the degree of association shown in FIG. 5, the node 61b is a node in which the reference sales data P01 is combined with the reference rejection rate P14, and the trouble occurrence frequency C has a connection degree of w15 and the trouble occurrence frequency E. The degree of association is w16. The node 61c is a node in which the reference rejection rates P15 and P17 are combined with respect to the reference sales data P02, and the degree of association of the trouble occurrence frequency B is w17 and the degree of association of the trouble occurrence frequency D is w18. ..
 このような連関度が、人工知能でいうところの学習済みデータとなる。このような学習済みデータを作った後に、実際にこれからトラブル発生頻度を判別する際において、上述した学習済みデータを利用して行うこととなる。かかる場合には、実際にトラブル発生頻度を判別しようとする地域を同様に入力する。そしてデータベース3内にある、各地域毎に整理されている売上データと誤り率を取得する。 Such degree of association is what is called learned data in artificial intelligence. After creating such learned data, when actually determining the trouble occurrence frequency from now on, the above-mentioned learned data will be used. In such a case, the area where the trouble occurrence frequency is actually to be determined is input in the same manner. Then, the sales data and the error rate organized for each region in the database 3 are acquired.
 このようにして新たに取得した売上データ、誤り率に基づいて、最適なトラブル発生頻度を探索する。かかる場合には、予め取得した図5(表1)に示す連関度を参照する。例えば、新たに取得した売上データがP02と同一かこれに類似するものである場合であって、誤り率がP17と同一か類似である場合には、連関度を介してノード61dが関連付けられており、このノード61dは、トラブル発生頻度Cがw19、トラブル発生頻度Dが連関度w20で関連付けられている。かかる場合には、連関度の最も高いトラブル発生頻度Cを最適解として選択する。但し、最も連関度の高いものを最適解として選択することは必須ではなく、連関度は低いものの連関性そのものは認められるトラブル発生頻度Dを最適解として選択するようにしてもよい。また、これ以外に矢印が繋がっていない出力解を選択してもよいことは勿論であり、連関度に基づくものであれば、その他いかなる優先順位で選択されるものであってもよい。 Search for the optimum trouble occurrence frequency based on the newly acquired sales data and error rate in this way. In such a case, the degree of association shown in FIG. 5 (Table 1) acquired in advance is referred to. For example, if the newly acquired sales data is the same as or similar to P02 and the error rate is the same as or similar to P17, the node 61d is associated via the degree of association. The node 61d is associated with the trouble occurrence frequency C by w19 and the trouble occurrence frequency D by the association degree w20. In such a case, the trouble occurrence frequency C having the highest degree of association is selected as the optimum solution. However, it is not essential to select the one with the highest degree of association as the optimum solution, and the trouble occurrence frequency D in which the degree of association itself is recognized although the degree of association is low may be selected as the optimum solution. In addition to this, it goes without saying that an output solution to which the arrows are not connected may be selected, and any other output solution may be selected in any other priority as long as it is based on the degree of association.
 また、入力から伸びている連関度w1~w12の例を以下の表2に示す。 Table 2 below shows an example of the degree of association w1 to w12 extending from the input.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 この入力から伸びている連関度w1~w12に基づいて中間ノード61が選択されていてもよい。つまり連関度w1~w12が大きいほど、中間ノード61の選択における重みづけを重くしてもよい。しかし、この連関度w1~w12は何れも同じ値としてもよく、中間ノード61の選択における重みづけは何れも全て同一とされていてもよい。 The intermediate node 61 may be selected based on the degree of association w1 to w12 extending from this input. That is, the larger the degree of association w1 to w12, the heavier the weighting in the selection of the intermediate node 61 may be. However, the association degrees w1 to w12 may all have the same value, and the weightings in the selection of the intermediate node 61 may all be the same.
 なお、本発明によれば、上述した参照用売上データに加え、上述した参照用断り率の代わりに参照用人口推計データとの組み合わせと、当該組み合わせに対するトラブル発生頻度との3段階以上の連関度に基づいて解探索を行うようにしてもよい。 According to the present invention, in addition to the above-mentioned reference sales data, the combination with the reference population estimation data instead of the above-mentioned reference rejection rate and the frequency of trouble occurrence for the combination have three or more levels of association. The solution may be searched based on the above.
 参照用断り率の代わりに説明変数として加えられるこの参照用人口推計データは、その地域における人口推計を示すものであり、人口ピラミッド(年代層、男女別に人口の分布が描かれた図)並びにその時系列的推移、その地域における転入数、転出数、転入家庭数、転出家庭数、また各人口毎の職業別分類等もこのデータに含めてもよい。トラブル発生頻度は、売上データに加え、このような人口推計にも影響を受ける。高齢者人口が多いほど、エアコンの故障等に対応することができない場合が多く、出動要請の機会が増加する場合がある。また転入数-転出数がプラスに多いほど、人口が増加しており、これに応じてトラブル発生頻度も高くなることが考えられる。このような参照用人口推計データは、各地域単位でデータベース3内にて管理されている。 This reference population estimation data, which is added as an explanatory variable instead of the reference rejection rate, shows the population estimation in the area, and is the population pyramid (a diagram showing the distribution of population by age group and gender) and its time series. This data may include the transition, the number of in-migrants, the number of out-migrants, the number of in-migrant households, the number of out-migrant households in the area, and the classification by occupation for each population. The frequency of troubles is affected by such population estimates in addition to sales data. The larger the elderly population, the more often it is not possible to respond to air conditioner failures, etc., and the chances of requesting dispatch may increase. In addition, as the number of in-migrants-the number of out-migrants increases, the population is increasing, and it is possible that the frequency of troubles will increase accordingly. Such reference population estimation data is managed in the database 3 for each region.
 このような人口推計もトラブル発生頻度に影響を及ぼすことから、参照用売上データと組み合わせ、連関度を通じてトラブル発生頻度を判別することで、判別精度を向上させることができる。解探索時には、実際にそのトラブル発生頻度の判別対象の地域を入力することで、その地域における売上データと、人口推計データとを取得する。新たに取得した売上データと、人口推計データに基づいて、最適なトラブル発生頻度を探索する。かかる場合には、予め取得した連関度を参照し、上述した方法に基づいてトラブル発生頻度を探索する。 Since such population estimation also affects the frequency of trouble occurrence, it is possible to improve the discrimination accuracy by combining it with sales data for reference and determining the frequency of trouble occurrence through the degree of association. At the time of solution search, by actually inputting the area to be determined for the trouble occurrence frequency, the sales data and the population estimation data in that area are acquired. Search for the optimal trouble occurrence frequency based on newly acquired sales data and population estimation data. In such a case, the trouble occurrence frequency is searched based on the above-mentioned method with reference to the degree of association acquired in advance.
 なお、本発明によれば、上述した参照用売上データに加え、上述した参照用断り率の代わりに参照用天候情報との組み合わせと、当該組み合わせに対するトラブル発生頻度との3段階以上の連関度に基づいて解探索を行うようにしてもよい。 According to the present invention, in addition to the above-mentioned reference sales data, the combination with the reference weather information instead of the above-mentioned reference refusal rate and the frequency of trouble occurrence for the combination have three or more levels of association. The solution search may be performed based on the above.
 参照用断り率の代わりに説明変数として加えられるこの参照用天候情報は、その地域におけるあらゆる天候情報を示すものであり、各地域において晴、曇、雨等の過去の天候の情報が時系列的に(日毎、週毎、月毎、年毎等)に整理されて記憶されている。また大雨や、台風、強風、降雪等の天気も整理されて記憶されている。このような参照用天候情報は、各地域単位でデータベース3内にて管理されている。 This reference weather information, which is added as an explanatory variable instead of the reference refusal rate, indicates all the weather information in the area, and the past weather information such as fine weather, cloudiness, and rain in each area is chronological. It is organized and stored in (daily, weekly, monthly, yearly, etc.). In addition, the weather such as heavy rain, typhoons, strong winds, and snowfalls are also organized and memorized. Such reference weather information is managed in the database 3 for each region.
 このような天候情報も空調トラブル発生頻度に影響を及ぼす。降雪があった場合には、これに応じて空調のトラブルが発生する可能性が高くなる場合があることから、これを参照用売上データと組み合わせ、連関度を通じてトラブル発生頻度を判別することで、判別精度を向上させることができる。解探索時には、実際にそのトラブル発生頻度の判別対象の地域を入力することで、その地域における売上データと、天候情報とを取得する。新たに取得した売上データと、天候情報に基づいて、最適なトラブル発生頻度を探索する。かかる場合には、予め取得した連関度を参照し、上述した方法に基づいてトラブル発生頻度を探索する。 Such weather information also affects the frequency of air conditioning troubles. If there is snowfall, there is a high possibility that air conditioning troubles will occur accordingly, so by combining this with sales data for reference and determining the frequency of troubles through the degree of association, The discrimination accuracy can be improved. At the time of solution search, by actually inputting the area to be determined for the trouble occurrence frequency, the sales data and the weather information in that area are acquired. Search for the optimum frequency of trouble occurrence based on newly acquired sales data and weather information. In such a case, the trouble occurrence frequency is searched based on the above-mentioned method with reference to the degree of association acquired in advance.
 なお、参照用天候情報の代替として、その地域の外気温に関する参照用外気温情報と、参照用売上データとの間で上述した連関度が形成されていてもよい。参照用外気温情報とは、その地域において過去の外気温に関するあらゆるデータを示すものである。参照用外気温情報は、その地域における過去の外気温の時間毎、日毎、週毎、月毎、年毎の変化や推移、平均値で示されている。 As an alternative to the reference weather information, the above-mentioned degree of association may be formed between the reference outside air temperature information regarding the outside air temperature in the area and the reference sales data. Reference outside air temperature information provides all data on past outside air temperature in the area. The reference outside air temperature information is shown by hourly, daily, weekly, monthly, and yearly changes, changes, and averages of past outside temperature in the area.
 かかる場合には、参照用売上データと、上記各地域における外気温に関する参照用外気温情報との組み合わせと、空調のトラブルの発生頻度との3段階以上の連関度を予め作っておく。そして、取得した地域特定情報における地域の売上データと共に、その地域の過去の外気温に関する外気温情報を取得する。この外気温情報の詳細は、上述した参照用外気温情報と同様である。 In such a case, create in advance three or more levels of association between the reference sales data, the reference outside air temperature information regarding the outside air temperature in each of the above areas, and the frequency of air conditioning troubles. Then, along with the sales data of the area in the acquired area-specific information, the outside air temperature information regarding the past outside air temperature of the area is acquired. The details of this outside air temperature information are the same as those for reference outside air temperature information described above.
 外気温情報を取得した場合には、連関度を参照し、取得した地域特定情報における地域の過去の売上データに対応する参照用売上データと、取得した外気温情報に対応する参照用外気温情報との組み合わせとの間でより高い連関度が設定されている空調のトラブルの発生頻度を探索する。この探索の方法は上述し方法と同様である。 When the outside air temperature information is acquired, the degree of association is referred to, and the reference sales data corresponding to the past sales data of the region in the acquired area specific information and the reference outside air temperature information corresponding to the acquired outside air temperature information. Search for the frequency of air temperature troubles that have a higher degree of association with the combination with. The method of this search is the same as the method described above.
 なお、本発明によれば、上述した参照用売上データに加え、上述した参照用断り率の代わりに参照用トラブル種類情報との組み合わせと、当該組み合わせに対するトラブル発生頻度との3段階以上の連関度に基づいて解探索を行うようにしてもよい。 According to the present invention, in addition to the above-mentioned reference sales data, the combination with the reference trouble type information instead of the above-mentioned reference rejection rate and the trouble occurrence frequency for the combination have three or more levels of association. The solution may be searched based on the above.
 参照用断り率の代わりに説明変数として加えられるこの参照用トラブル種類情報は、その地域におけるあらゆるトラブルの種類に関する情報を示すものである。このトラブルの種類としては、空調機器の故障、空調機器の配管の水漏れ、空調機器におけるフィルタの埃の蓄積、空調機器からの異常音の発生、空調機器から漂う異臭等、の種類が分類されている。このような参照用トラブル種類情報は、各地域単位でデータベース3内にて管理されている。 This reference trouble type information, which is added as an explanatory variable instead of the reference refusal rate, indicates information on all types of trouble in the area. The types of this trouble are classified into types such as air-conditioning equipment failure, water leakage from air-conditioning equipment piping, accumulation of filter dust in air-conditioning equipment, generation of abnormal noise from air-conditioning equipment, and offensive odor drifting from air-conditioning equipment. ing. Such reference trouble type information is managed in the database 3 for each region.
 このようなトラブル種類情報も空調トラブル発生頻度に影響を及ぼす。空調機器の配管の水漏れが多いのか、或いは排水口のつまりが多いのかで、トラブルの頻度も異なる場合があることから、これを参照用売上データと組み合わせ、連関度を通じてトラブル発生頻度を判別することで、判別精度を向上させることができる。解探索時には、実際にそのトラブル発生頻度の判別対象の地域における売上データと、トラブル種類情報とを取得する。新たに取得した売上データと、トラブル種類情報に基づいて、最適なトラブル発生頻度を探索する。かかる場合には、予め取得した連関度を参照し、上述した方法に基づいてトラブル発生頻度を探索する。 Such trouble type information also affects the frequency of air conditioning troubles. Since the frequency of troubles may differ depending on whether there are many water leaks in the piping of the air conditioning equipment or the clogging of the drainage port, this is combined with the sales data for reference to determine the frequency of troubles through the degree of association. Therefore, the discrimination accuracy can be improved. At the time of solution search, the sales data in the area where the trouble occurrence frequency is actually determined and the trouble type information are acquired. Search for the optimum trouble occurrence frequency based on the newly acquired sales data and trouble type information. In such a case, the trouble occurrence frequency is searched based on the above-mentioned method with reference to the degree of association acquired in advance.
 なお、本発明によれば、上述した参照用売上データに加え、上述した参照用断り率の代わりに参照用統計情報との組み合わせと、当該組み合わせに対するトラブル発生頻度との3段階以上の連関度に基づいて解探索を行うようにしてもよい。 According to the present invention, in addition to the above-mentioned reference sales data, the combination with the reference statistical information instead of the above-mentioned reference rejection rate and the frequency of trouble occurrence for the combination have three or more levels of association. The solution search may be performed based on the above.
 参照用断り率の代わりに説明変数として加えられるこの参照用統計情報は、その地域における空調機器の種類に関する統計情報である。空調機器の種類とは、全空気方式、空気・水併用方式、全水方式、冷媒方式、単一ダクト定風量方式、単一ダクト変風量方式、4方向天井埋込カセット形、1方向天井埋込カセット形、天井ビルトインカセット形、天井埋込ダクト形、天吊自在形、壁掛形、床置形が統計的に分析されている。これらの各種類の割合が各地域間で比較分析しやすいように統計的に分析されている。このような参照用統計情報は、各地域単位でデータベース3内にて管理されている。 This reference statistical information, which is added as an explanatory variable instead of the reference refusal rate, is statistical information regarding the type of air conditioning equipment in the area. The types of air conditioning equipment are all-air system, air / water combined system, all-water system, refrigerant system, single duct constant air volume system, single duct variable air volume system, 4-way ceiling-embedded cassette type, 1-way ceiling embedding. Built-in cassette type, ceiling built-in cassette type, ceiling-embedded duct type, ceiling-suspendable type, wall-mounted type, and floor-standing type are statistically analyzed. The proportions of each of these types are statistically analyzed to facilitate comparative analysis between regions. Such reference statistical information is managed in the database 3 for each region.
 また、この参照用統計情報は、空調機器の使用年数に関する統計データで構成されていてもよい。この空調機器の使用年数毎に度数分布や平均、標準偏差等の統計データで地域毎に管理されている。 Further, this reference statistical information may be composed of statistical data regarding the number of years of use of the air conditioning equipment. Statistical data such as frequency distribution, average, and standard deviation are managed for each region for each year of use of this air conditioning equipment.
 このような統計情報も空調トラブル発生頻度に影響を及ぼす。使用年数が長いほど機器の水漏れが多く、故障が多くなる場合があることから、これを参照用売上データと組み合わせ、連関度を通じてトラブル発生頻度を判別することで、判別精度を向上させることができる。また空調機器の種類に応じてトラブルの発生頻度も変わる場合もあることから、これを参照用売上データと組み合わせ、連関度を通じてトラブル発生頻度を判別することで、判別精度を向上させることができる。 Such statistical information also affects the frequency of air conditioning troubles. The longer the product has been used, the more water leaks from the equipment and the more failures may occur. Therefore, by combining this with sales data for reference and determining the frequency of trouble occurrence through the degree of association, it is possible to improve the discrimination accuracy. can. In addition, since the frequency of trouble occurrence may change depending on the type of air-conditioning equipment, the accuracy of discrimination can be improved by combining this with sales data for reference and determining the frequency of trouble occurrence through the degree of association.
 解探索時には、実際にそのトラブル発生頻度の判別対象の地域における売上データと、統計情報とを取得する。新たに取得した売上データと、統計情報に基づいて、最適なトラブル発生頻度を探索する。かかる場合には、予め取得した連関度を参照し、上述した方法に基づいてトラブル発生頻度を探索する。 At the time of solution search, sales data and statistical information in the area where the trouble occurrence frequency is actually determined are acquired. Search for the optimal trouble occurrence frequency based on newly acquired sales data and statistical information. In such a case, the trouble occurrence frequency is searched based on the above-mentioned method with reference to the degree of association acquired in advance.
 上述した連関度においては、10段階評価で連関度を表現しているが、これに限定されるものではなく、3段階以上の連関度で表現されていればよく、逆に3段階以上であれば100段階でも1000段階でも構わない。一方、この連関度は、2段階、つまり互いに連関しているか否か、1又は0の何れかで表現されるものは含まれない。 In the above-mentioned degree of association, the degree of association is expressed by a 10-step evaluation, but it is not limited to this, and it may be expressed by a degree of association of 3 or more levels, and conversely, it may be expressed by 3 or more levels. For example, 100 steps or 1000 steps may be used. On the other hand, this degree of association does not include those expressed in two stages, that is, whether or not they are related to each other, either 1 or 0.
 上述した構成からなる本発明によれば、特段のスキルや経験が無くても、誰でも手軽にトラブル発生頻度の判別・探索を行うことができる。また本発明によれば、この探索解の判断を、人間が行うよりも高精度に行うことが可能となる。更に、上述した連関度を人工知能(ニューラルネットワーク等)で構成することにより、これを学習させることでその判別精度を更に向上させることが可能となる。 According to the present invention having the above-mentioned configuration, anyone can easily determine and search for the frequency of trouble occurrence without any special skill or experience. Further, according to the present invention, it is possible to make a judgment of this search solution with higher accuracy than that made by a human being. Further, by configuring the above-mentioned degree of association with artificial intelligence (neural network or the like), it is possible to further improve the discrimination accuracy by learning this.
 なお、上述した入力データ、及び出力データは、学習させる過程で完全に同一のものが存在しない場合も多々あることから、これらの入力データと出力データを類型別に分類した情報であってもよい。つまり、入力データを構成する情報P01、P02、・・・・P15、16、・・・は、その情報の内容に応じて予めシステム側又はユーザ側において分類した基準で分類し、その分類した入力データと出力データとの間でデータセットを作り、学習させるようにしてもよい。 Note that the above-mentioned input data and output data may not be completely the same in the process of learning, so that the input data and the output data may be classified by type. That is, the information P01, P02, ... P15, 16, ... That constitute the input data are classified according to the criteria classified in advance on the system side or the user side according to the content of the information, and the classified inputs. A dataset may be created between the data and the output data and trained.
 なお、上述した連関度では、参照用売上データに加え、業者の参照用断り率、参照用人口推計データ、参照用天候情報、参照用トラブル種類情報、空調機器の種類に関する参照用統計情報の何れかとの組み合わせで構成されている場合を例にとり説明をしたが、これに限定されるものではない。つまり連関度は、参照用売上データに加え、業者の参照用断り率、参照用人口推計データ、参照用天候情報、参照用トラブル種類情報、空調機器の種類に関する参照用統計情報の何れか2以上との組み合わせで構成されていてもよい。また連関度は、参照用売上データ又は、これに加えて業者の参照用断り率、参照用人口推計データ、参照用天候情報、参照用トラブル種類情報、空調機器の種類に関する参照用統計情報の何れか1以上に加え、他のファクターがこの組み合わせに加わって連関度が形成されていてもよい。 In the above-mentioned degree of association, in addition to the reference sales data, any of the reference refusal rate, the reference population estimation data, the reference weather information, the reference trouble type information, and the reference statistical information regarding the type of air conditioning equipment. The explanation has been given by taking the case of being composed of a combination of heels as an example, but the explanation is not limited to this. In other words, in addition to the reference sales data, the degree of association is any two or more of the reference rejection rate of the vendor, the reference population estimation data, the reference weather information, the reference trouble type information, and the reference statistical information regarding the type of air conditioning equipment. It may be configured in combination with. In addition, the degree of association is any of the reference sales data, or in addition to this, the reference refusal rate, the reference population estimation data, the reference weather information, the reference trouble type information, and the reference statistical information regarding the type of air conditioning equipment. In addition to 1 or more, other factors may be added to this combination to form the degree of association.
 いずれの場合も、その連関度の参照情報に合わせたデータの入力がなされ、その連関度を利用してトラブル発生頻度を求める。 In either case, data is input according to the reference information of the degree of association, and the frequency of trouble occurrence is calculated using the degree of association.
 また本発明は、図6に示すように参照用情報Uと参照用情報Vという2種類以上の情報の組み合わせの連関度に基づいてトラブル発生頻度を判別するものである。この参照用情報Uが参照用売上データであり、参照用情報Vが業者の参照用断り率、参照用人口推計データ、参照用天候情報、参照用トラブル種類情報、空調機器の種類に関する参照用統計情報の何れかであるものとする。 Further, as shown in FIG. 6, the present invention determines the frequency of trouble occurrence based on the degree of association between two or more types of information, the reference information U and the reference information V. The reference information U is the reference sales data, and the reference information V is the reference rejection rate, the reference population estimation data, the reference weather information, the reference trouble type information, and the reference statistics regarding the type of air conditioning equipment. It shall be one of the information.
 このとき、図6に示すように、参照用情報Uについて得られた出力をそのまま入力データとして、参照用情報Vとの組み合わせの中間ノード61を介して出力(トラブル発生頻度)と関連付けられていてもよい。例えば、参照用情報U(参照用売上データ)について、図3に示すように出力解を出した後、これをそのまま入力として、他の参照用情報Vとの間での連関度を利用し、出力(トラブル発生頻度)を探索するようにしてもよい。 At this time, as shown in FIG. 6, the output obtained for the reference information U is used as input data as it is, and is associated with the output (trouble occurrence frequency) via the intermediate node 61 in combination with the reference information V. May be good. For example, for reference information U (reference sales data), after outputting an output solution as shown in FIG. 3, this is used as an input as it is, and the degree of association with other reference information V is used. The output (frequency of trouble occurrence) may be searched.
 また本発明によれば、出力としてトラブル発生頻度を出力解として得る代わりに、トラブル発生頻度に基づいた警報、アラーム等を始めとする注意喚起情報を発信するようにしてもよい。トラブル発生頻度が高いほど、注意喚起情報の注意喚起度合が高くなる様にする。これにより外部に対して生徒が危険な状態にあることに対する注意喚起を効率的に行うことができる。 Further, according to the present invention, instead of obtaining the trouble occurrence frequency as an output solution, the warning information such as an alarm, an alarm, etc. based on the trouble occurrence frequency may be transmitted. The higher the frequency of troubles, the higher the degree of alerting of the alerting information. As a result, it is possible to efficiently alert the outside to the fact that the student is in a dangerous state.
 また、本発明によれば、3段階以上に設定されている連関度を介して最適な解探索を行う点に特徴がある。連関度は、上述した10段階以外に、例えば0~100%までの数値で記述することができるが、これに限定されるものではなく3段階以上の数値で記述できるものであればいかなる段階で構成されていてもよい。 Further, according to the present invention, there is a feature that the optimum solution search is performed through the degree of association set in three or more stages. The degree of association can be described by, for example, a numerical value from 0 to 100% in addition to the above-mentioned 10 steps, but is not limited to this, and any step can be described as long as it can be described by a numerical value of 3 or more steps. It may be configured.
 このような3段階以上の数値で表される連関度に基づいて最も確からしいトラブル発生頻度を判別することで、探索解の可能性の候補として複数考えられる状況下において、当該連関度の高い順に探索して表示することも可能となる。このように連関度の高い順にユーザに表示できれば、より確からしい探索解を優先的に表示することも可能となる。 By determining the most probable trouble occurrence frequency based on the degree of association expressed by such numerical values of three or more stages, in a situation where there are multiple possible candidates for search solutions, the order of the degree of association is high. It is also possible to search and display. If the user can be displayed in descending order of the degree of association in this way, it is possible to preferentially display more probable search solutions.
 これに加えて、本発明によれば、連関度が1%のような極めて低い出力の判別結果も見逃すことなく判断することができる。連関度が極めて低い判別結果であっても僅かな兆候として繋がっているものであり、何十回、何百回に一度は、その判別結果として役に立つ場合もあることをユーザに対して注意喚起することができる。 In addition to this, according to the present invention, it is possible to judge without overlooking the discrimination result of the extremely low output such as the degree of association of 1%. It warns the user that even a judgment result with an extremely low degree of association is connected as a slight sign, and may be useful as the judgment result once every tens or hundreds of times. be able to.
 更に本発明によれば、このような3段階以上の連関度に基づいて探索を行うことにより、閾値の設定の仕方で、探索方針を決めることができるメリットがある。閾値を低くすれば、上述した連関度が1%のものであっても漏れなく拾うことができる反面、より適切な判別結果を好適に検出できる可能性が低く、ノイズを沢山拾ってしまう場合もある。一方、閾値を高くすれば、最適な探索解を高確率で検出できる可能性が高い反面、通常は連関度は低くてスルーされるものの何十回、何百回に一度は出てくる好適な解を見落としてしまう場合もある。いずれに重きを置くかは、ユーザ側、システム側の考え方に基づいて決めることが可能となるが、このような重点を置くポイントを選ぶ自由度を高くすることが可能となる。 Further, according to the present invention, there is a merit that the search policy can be determined by the method of setting the threshold value by performing the search based on the degree of association of three or more stages. If the threshold value is lowered, even if the above-mentioned degree of association is 1%, it can be picked up without omission, but it is unlikely that a more appropriate discrimination result can be detected favorably, and a lot of noise may be picked up. be. On the other hand, if the threshold value is raised, there is a high possibility that the optimum search solution can be detected with high probability, but the degree of association is usually low and it is passed through, but it is suitable to appear once in tens or hundreds of times. Sometimes the solution is overlooked. It is possible to decide which one should be emphasized based on the ideas of the user side and the system side, but it is possible to increase the degree of freedom in selecting the points to be emphasized.
 更に本発明では、上述した連関度を更新させるようにしてもよい。この更新は、例えばインターネットを始めとした公衆通信網を介して提供された情報を反映させるようにしてもよい。また参照用売上データを初めとする各参照用情報を取得し、これらに対するトラブル発生頻度に関する知見、情報、データを取得した場合、これらに応じて連関度を上昇させ、或いは下降させる。 Further, in the present invention, the above-mentioned degree of association may be updated. This update may reflect information provided, for example, via a public communication network such as the Internet. In addition, when each reference information such as reference sales data is acquired and knowledge, information, and data regarding the frequency of trouble occurrence for these are acquired, the degree of association is increased or decreased according to these.
 係る場合には、その参照用売上データを初めとする各参照用情報と実際にあったか否か、またその危険度や兆候の判別結果の事例を収集し、その事例の数に応じて連関度を上昇させ、或いは下降させる。このとき、上述した売上データ、断り率、人口推計データ、天候情報、トラブル種類情報、空調機器の種類に関する参照用統計情報を取得して、判別を行った際に、これらに基づいて更新を行うようにしてもよい。 In such a case, collect the reference information including the reference sales data and the case of the judgment result of the risk degree and the sign, and the degree of association according to the number of cases. Raise or lower. At this time, the above-mentioned sales data, refusal rate, population estimation data, weather information, trouble type information, and reference statistical information regarding the type of air conditioning equipment are acquired, and when the determination is made, the update is performed based on these. You may do so.
 つまり、この更新は、人工知能でいうところの学習に相当する。新たなデータを取得し、これを学習済みデータに反映させることを行っているため、学習行為といえるものである。 In other words, this update is equivalent to learning in terms of artificial intelligence. It can be said that it is a learning act because it acquires new data and reflects it in the learned data.
 また学習済モデルを最初に作り上げる過程、及び上述した更新は、教師あり学習のみならず、教師なし学習、ディープラーニング、強化学習等を用いるようにしてもよい。教師なし学習の場合には、入力データと出力データのデータセットを読み込ませて学習させる代わりに、入力データに相当する情報を読み込ませて学習させ、そこから出力データに関連する連関度を自己形成させるようにしてもよい。 In addition, the process of first creating a trained model and the above-mentioned update may use not only supervised learning but also unsupervised learning, deep learning, reinforcement learning, and the like. In the case of unsupervised learning, instead of reading and training the data set of input data and output data, information corresponding to the input data is read and trained, and the degree of association related to the output data is self-formed from there. You may let it.
 第2実施形態
 以下、第2実施形態について説明をする。この第2実施形態を実行する上では、第1実施形態において使用するトラブル発生頻度予測システム1、情報取得部9、探索装置2、データベース3を同様に使用する。これらの各構成の説明は、第1実施形態の説明を引用することで以下での説明を省略する。
Second Embodiment Hereinafter, the second embodiment will be described. In executing this second embodiment, the trouble occurrence frequency prediction system 1, the information acquisition unit 9, the search device 2, and the database 3 used in the first embodiment are similarly used. The description of each of these configurations will be omitted below by citing the description of the first embodiment.
 第2実施形態では、参照用断り率と、空調のトラブルの発生頻度のデータセットを学習させる。 In the second embodiment, the reference rejection rate and the data set of the frequency of occurrence of air conditioning troubles are learned.
 図7の例では、入力データとして、各地域における参照用断り率P01、P02、P03であるものとする。このような入力データとしての参照用断り率P01、P02、P03は、出力としての空調のトラブル発生頻度に連結している。 In the example of FIG. 7, it is assumed that the input data is the reference refusal rates P01, P02, and P03 in each region. The reference rejection rates P01, P02, and P03 as such input data are linked to the frequency of trouble occurrence of air conditioning as output.
 参照用断り率P01、P02、P03は、この出力解としての空調のトラブル発生頻度A~Dに対して3段階以上の連関度を通じて互いに連関しあっている。参照用断り率がこの連関度を介して左側に配列し、各空調のトラブル発生頻度が連関度を介して右側に配列している。連関度は、左側に配列された参照用断り率に対して、何れのトラブル発生頻度と関連性が高いかの度合いを示すものである。換言すれば、この連関度は、各参照用断り率が、いかなるトラブル発生頻度に紐付けられる可能性が高いかを示す指標であり、各参照用断り率について最も確からしいトラブル発生頻度を選択する上での的確性を示すものである。図7の例では、連関度としてw13~w19が示されている。このw13~w19は以下の表1に示すように10段階で示されており、10点に近いほど、中間ノードとしての各組み合わせが出力としてのトラブル発生頻度と互いに関連度合いが高いことを示しており、逆に1点に近いほど中間ノードとしての各組み合わせが出力としてのトラブル発生頻度と互いに関連度合いが低いことを示している。 The reference refusal rates P01, P02, and P03 are associated with each other through three or more levels of association with the air conditioning trouble occurrence frequencies A to D as the output solution. The reference refusal rate is arranged on the left side through this degree of association, and the trouble occurrence frequency of each air conditioner is arranged on the right side through this degree of association. The degree of association indicates the degree of trouble occurrence frequency and the degree of relevance to the reference refusal rate arranged on the left side. In other words, this degree of association is an index showing what kind of trouble occurrence frequency each reference rejection rate is likely to be associated with, and the most probable trouble occurrence frequency is selected for each reference rejection rate. It shows the accuracy above. In the example of FIG. 7, w13 to w19 are shown as the degree of association. These w13 to w19 are shown in 10 stages as shown in Table 1 below, and the closer to 10 points, the higher the degree of relevance of each combination as an intermediate node to the frequency of trouble occurrence as output. On the contrary, the closer to one point, the lower the degree of relation between each combination as an intermediate node and the frequency of trouble occurrence as an output.
 探索装置2は、このような3段階以上の連関度w13~w19を予め取得しておく。つまり探索装置2は、実際の探索解の判別を行う上で、各地域の参照用断り率と、その場合のトラブル発生頻度の何れが採用、評価されたか、過去のデータセットを蓄積しておき、これらを分析、解析することです連関度を作り上げておく。 The search device 2 acquires in advance the degree of association w13 to w19 having three or more stages. That is, the search device 2 accumulates a past data set as to which of the reference refusal rate in each region and the trouble occurrence frequency in that case was adopted and evaluated in determining the actual search solution. , Analyzing these is to create a degree of association.
 また、この連関度は、人工知能におけるニューラルネットワークのノードで構成されるものであってもよい。即ち、このニューラルネットワークのノードが出力に対する重み付け係数が、上述した連関度に対応することとなる。またニューラルネットワークに限らず、人工知能を構成するあらゆる意思決定因子で構成されるものであってもよい。 Further, this degree of association may be composed of the nodes of the neural network in artificial intelligence. That is, the weighting coefficient for the output of the node of this neural network corresponds to the above-mentioned degree of association. Further, the network is not limited to a neural network, and may be composed of all decision-making factors constituting artificial intelligence.
 かかる場合には、図8に示すように、入力データとして各地域の参照用断り率が入力され、出力データとしてトラブル発生頻度が出力され、入力ノードと出力ノードの間に少なくとも1以上の隠れ層が設けられ、機械学習させるようにしてもよい。入力ノード又は隠れ層ノードの何れか一方又は両方において上述した連関度が設定され、これが各ノードの重み付けとなり、これに基づいて出力の選択が行われる。そして、この連関度がある閾値を超えた場合に、その出力を選択するようにしてもよい。 In such a case, as shown in FIG. 8, the reference refusal rate of each region is input as input data, the trouble occurrence frequency is output as output data, and at least one hidden layer between the input node and the output node is output. May be provided and machine learning may be performed. The above-mentioned degree of association is set in either one or both of the input node and the hidden layer node, and this is the weight of each node, and the output is selected based on this. Then, when this degree of association exceeds a certain threshold value, the output may be selected.
 このような連関度が、人工知能でいうところの学習済みデータとなる。このような学習済みデータを、以前の各地域の参照用断り率と、空調のトラブルの発生頻度とのデータセットを通じて作った後に、実際にこれから新たにトラブル発生頻度の判別を行う上で、上述した学習済みデータを利用してトラブル発生頻度を探索することとなる。これらのデータセットは、業者が管理しているデータベースから読み出すことで作成するようにしてもよい。 Such degree of association is what is called learned data in artificial intelligence. After creating such learned data through a data set of the reference refusal rate of each region before and the frequency of air-conditioning troubles, the above-mentioned is used to actually determine the frequency of troubles from now on. The trouble occurrence frequency will be searched for using the learned data. These data sets may be created by reading from a database managed by the vendor.
 新たにトラブル発生頻度を探索する場合には、探索したい地域の入力を受け付ける。地域毎にそれぞれ過去の断り率が紐付けられて記憶されていることから、地域の入力を受け付けた場合、これに紐づけられている断り率を読み出すことで取得することができる。 When searching for a new trouble occurrence frequency, accept the input of the area you want to search. Since the past refusal rate is associated and stored for each region, when the input of the region is accepted, it can be obtained by reading the refusal rate associated with this.
 次にこの読みだした断り率を参照用断り率と照合する。かかる場合には、予め取得した連関度を参照する。例えば、新たに取得した断り率がP02と同一かこれに類似するものである場合には、連関度を介してトラブル発生頻度Bがw15、トラブル発生頻度Cが連関度w16で関連付けられている。かかる場合には、連関度の最も高いトラブル発生頻度Bを最適解として選択する。但し、最も連関度の高いものを最適解として選択することは必須ではなく、連関度は低いものの連関性そのものは認められるトラブル発生頻度Cを最適解として選択するようにしてもよい。また、これ以外に矢印が繋がっていない出力解を選択してもよいことは勿論であり、連関度に基づくものであれば、その他いかなる優先順位で選択されるものであってもよい。 Next, collate this read-out refusal rate with the reference refusal rate. In such a case, the degree of association acquired in advance is referred to. For example, when the newly acquired rejection rate is the same as or similar to P02, the trouble occurrence frequency B is associated with the association degree w15 and the trouble occurrence frequency C is associated with the association degree w16 via the association degree. In such a case, the trouble occurrence frequency B having the highest degree of association is selected as the optimum solution. However, it is not essential to select the one with the highest degree of association as the optimum solution, and the trouble occurrence frequency C in which the degree of association itself is recognized although the degree of association is low may be selected as the optimum solution. In addition to this, it goes without saying that an output solution to which the arrows are not connected may be selected, and any other output solution may be selected in any other priority as long as it is based on the degree of association.
 ちなみに、断り率と参照用断り率の照合は、仮にこれらのデータが、ある期間の売上平均で表されている場合には、その売上平均が±10%の範囲内に入っているか否かで同一及び類似であるか否かを判別するようにしてもよい。また、断り率が時系列的推移グラフで示されるものであれば、その傾向の類似性に基づいて判別されるものであってもよい。 By the way, the collation of the refusal rate and the refusal rate for reference is based on whether or not the sales average is within the range of ± 10% if these data are represented by the sales average for a certain period. It may be determined whether they are the same or similar. Further, as long as the refusal rate is shown in the time-series transition graph, it may be discriminated based on the similarity of the trends.
 このようにして、新たに取得する断り率から、最も好適なトラブル発生頻度を探索し、ユーザに表示することができる。この探索結果を見ることにより、その地域で、今後どのようなトラブル発生頻度になりえるかを事前に判別することができ、地域毎の作業員の配置を検討することができる。 In this way, it is possible to search for the most suitable trouble occurrence frequency from the newly acquired refusal rate and display it to the user. By looking at this search result, it is possible to determine in advance what kind of trouble occurrence frequency may occur in the area in the future, and it is possible to consider the allocation of workers in each area.
 また、第1実施形態~第2実施形態ともに、上述した実施の形態に限定されるものでは無く、例えば図9に示すように、基調となる参照用情報と、空調のトラブルの発生頻度との3段階以上の連関度を利用するようにしてもよい。かかる場合には、新たに取得した情報に応じた参照用情報と空調のトラブルの発生頻度との3段階以上の連関度に基づき、解探索を行うことになる。基調となる参照用情報は、上述した全ての参照用情報(参照用売上データ、参照用断り率、参照用人口推計データ、参照用天候情報、参照用トラブル種類情報、参照用統計情報等)を適用可能である。 Further, both the first embodiment and the second embodiment are not limited to the above-described embodiment, and as shown in FIG. 9, for example, the reference information as the keynote and the frequency of occurrence of air conditioning troubles. You may try to use three or more levels of association. In such a case, the solution search is performed based on the degree of association between the reference information according to the newly acquired information and the frequency of occurrence of air conditioning troubles in three or more stages. The basic reference information includes all the above-mentioned reference information (reference sales data, reference rejection rate, reference population estimation data, reference weather information, reference trouble type information, reference statistical information, etc.). Applicable.
 これらの場合も同様に、学習用データとして用いられた参照用情報に応じた情報が入力された場合に、上述した方法に基づいて解探索が行われることとなる。 Similarly, in these cases, when the information corresponding to the reference information used as the learning data is input, the solution search is performed based on the above-mentioned method.
 連関度を通じて求められる探索解は、更に、他の参照用情報に基づいて修正され、或いは重み付けを変化させるようにしてもよい。 The search solution obtained through the degree of association may be further modified based on other reference information, or the weighting may be changed.
 ここでいう他の参照用情報とは、上述した参照用情報の何れかを基調となる参照用情報とした場合、当該基調となる参照用情報以外のいかなる参照用情報に該当する。 The other reference information referred to here corresponds to any reference information other than the reference information which is the keynote when any of the above-mentioned reference information is used as the keynote reference information.
 例えば、他の参照用情報の一つとして、ある参照用天候情報Fにおいて、以前において空調のトラブルの発生頻度Bが判別される経緯が多かったものとする。このような参照用天候情報Fに応じた天候情報を新たに取得したとき、空調のトラブルの発生頻度としての探索解Bに対して、重み付けを上げる処理を行い、換言すれば空調のトラブルの発生頻度の探索解Bにつながるようにする処理を行うように予め設定しておく。 For example, as one of the other reference information, it is assumed that in a certain reference weather information F, the frequency B of the air conditioning trouble was previously determined. When the weather information corresponding to the reference weather information F is newly acquired, the search solution B as the frequency of occurrence of air conditioning troubles is subjected to a process of increasing the weight, in other words, the occurrence of air conditioning troubles. It is set in advance to perform a process that leads to the frequency search solution B.
 例えば、他の参照用情報Gが、より空調のトラブルの発生頻度としての探索解Cを示唆するような分析結果であり、参照用情報Fが、より空調のトラブルの発生頻度としての探索解Dを示唆するような分析結果であるものとする。このように参照用情報との間での設定の後、実際に取得した情報が参照用情報Gと同一又は類似する場合には、空調のトラブルの発生頻度Cの重み付けを上げる処理を行う。これに対して、実際に取得した情報が参照用情報Fと同一又は類似する場合には、空調のトラブルの発生頻度Dの重み付けを上げる処理を行う。つまり、空調のトラブルの発生頻度につながる連関度そのものを、この参照用情報F~Hに基づいてコントロールするようにしてもよい。或いは、空調のトラブルの発生頻度を上述した連関度のみで決定した後、この求めた探索解に対して参照用情報F~Hに基づいて修正を加えるようにしてもよい。後者の場合において、参照用情報F~Hに基づいてどのように探索解としての空調のトラブルの発生頻度にいかなるウェートで修正を加えるかは、都度システム側において設計したものを反映させることとなる。 For example, the other reference information G is an analysis result that suggests the search solution C as the frequency of occurrence of air conditioning troubles, and the reference information F is the search solution D as the frequency of occurrence of air conditioning troubles. It is assumed that the analysis result suggests. After the setting with the reference information in this way, if the actually acquired information is the same as or similar to the reference information G, a process of increasing the weighting of the occurrence frequency C of the air conditioning trouble is performed. On the other hand, when the actually acquired information is the same as or similar to the reference information F, a process of increasing the weighting of the occurrence frequency D of the air conditioning trouble is performed. That is, the degree of association itself, which leads to the frequency of air conditioning troubles, may be controlled based on the reference information F to H. Alternatively, after determining the frequency of occurrence of air conditioning trouble only by the above-mentioned degree of association, the search solution obtained may be modified based on the reference information F to H. In the latter case, how to correct the frequency of air conditioning troubles as a search solution based on the reference information F to H will reflect what was designed on the system side each time. ..
 また参照用情報は、何れか1種で構成される場合に限定されるものではなく、2種以上の参照用情報に基づいて解探索するようにしてもよい。かかる場合も同様に、参照用情報の示唆する空調のトラブルの発生頻度につながるケースほど、連関度を介して求められた探索解としての当該判別類型をより高く修正するようにしてもよい。 Further, the reference information is not limited to the case where it is composed of any one type, and the solution search may be performed based on two or more types of reference information. Similarly, in such a case, the more the case leads to the occurrence frequency of the air conditioning trouble suggested by the reference information, the higher the modification of the discrimination type as the search solution obtained through the degree of association may be made.
 同様に、図10に示すように、基調となる参照用情報と、他の参照用情報とを有する組み合わせに対する、空調のトラブルの発生頻度との連関度を形成する場合においても、基調となる参照用情報は、第1実施形態、第2実施形態におけるいかなる参照用情報(参照用売上データ、参照用断り率、参照用人口推計データ、参照用天候情報、参照用トラブル種類情報、参照用統計情報等)も適用可能である。他の参照用情報は、基調となる参照用情報以外の第1実施形態、第2実施形態におけるいかなる参照用情報が含まれる。 Similarly, as shown in FIG. 10, when forming the degree of association between the reference information as the keynote and the frequency of occurrence of air conditioning troubles for the combination having the other reference information, the reference as the keynote. The information used is any reference information (reference sales data, reference rejection rate, reference population estimation data, reference weather information, reference trouble type information, reference statistical information) in the first embodiment and the second embodiment. Etc.) are also applicable. Other reference information includes any reference information in the first and second embodiments other than the underlying reference information.
 このとき、基調となる参照用情報が、参照用トラブル種類情報であれば、他の参照用情報としては、これ以外の第1実施形態、第2実施形態におけるいかなる参照用情報が含まれる。 At this time, if the reference information that is the keynote is the reference trouble type information, the other reference information includes any reference information in the other first embodiment and the second embodiment.
 かかる場合も同様に解探索を行うことで、空調のトラブルの発生頻度を推定することができる。このとき、上述した図9に示すように、連関度を通じて得られた探索解に対して、更なる他の参照用情報(参照用情報F、G、H等)を通じて、空調のトラブルの発生頻度を修正するようにしてもよい。 In such a case, the frequency of air conditioning troubles can be estimated by searching for a solution in the same way. At this time, as shown in FIG. 9 described above, the frequency of occurrence of air conditioning troubles is obtained through further other reference information (reference information F, G, H, etc.) for the search solution obtained through the degree of association. May be modified.
 このとき、他の参照用情報が1のみならず、2以上組み合わさるようにして連関度が学習されるものであってもよい。 At this time, the degree of association may be learned by combining not only 1 but also 2 or more other reference information.
 また、図11に示すように基調となる参照用情報のみと、空調のトラブルの発生頻度との間で連関度が形成されるものであってもよい。この基調となる参照用情報は、第1実施形態、第2実施形態におけるいかなる参照用情報(参照用売上データ、参照用断り率、参照用人口推計データ、参照用天候情報、参照用トラブル種類情報、参照用統計情報等)も適用可能である。この図11の解探索方法は、図3の説明を引用することで以下での説明を省略する。 Further, as shown in FIG. 11, the degree of association may be formed between only the reference information that is the keynote and the frequency of occurrence of air conditioning troubles. This reference information as a keynote is any reference information (reference sales data, reference rejection rate, reference population estimation data, reference weather information, reference trouble type information) in the first embodiment and the second embodiment. , Reference statistics, etc.) are also applicable. The solution search method of FIG. 11 is omitted below by quoting the explanation of FIG.
 なお、本実施形態は、あくまで、参照用断り率や、参照用天候情報、参照用外気温情報を基調とし、これに他の参照用情報(参照用人口推計データ、参照用トラブル種類情報等)を組み合わせて、空調のトラブルの発生頻度との3段階以上の連関度をあらかじめ取得する場合を例にとり説明をしたが、これに限定されるものではない。第1実施形態~第2実施形態におけるあらゆる参照用情報(参照用売上データ、業者の参照用断り率、参照用人口推計データ、参照用天候情報、参照用トラブル種類情報、空調機器の種類に関する参照用統計情報)を基調とし、それ以外の他の参照用情報(参照用売上データに加え、業者の参照用断り率、参照用人口推計データ、参照用天候情報、参照用トラブル種類情報、空調機器の種類に関する参照用統計情報等)と組み合わせて、空調のトラブルの発生頻度との3段階以上の連関度をあらかじめ取得し、解探索を行うようにしてもよいことは勿論である。 In addition, this embodiment is based on the reference refusal rate, the reference weather information, and the reference outside air temperature information, and other reference information (reference population estimation data, reference trouble type information, etc.). The explanation has been given by taking as an example the case where the degree of association with the frequency of occurrence of air conditioning troubles and the degree of association of three or more levels are acquired in advance by combining the above, but the present invention is not limited to this. All reference information in the first to second embodiments (reference sales data, reference rejection rate of vendors, reference population estimation data, reference weather information, reference trouble type information, reference regarding types of air conditioning equipment). Other reference information (in addition to reference sales data, reference rejection rate, reference population estimation data, reference weather information, reference trouble type information, air conditioning equipment) Of course, it is also possible to obtain in advance the degree of association with the frequency of occurrence of air conditioning troubles and the degree of association with the frequency of occurrence of air conditioning troubles in combination with reference statistical information regarding the types of the above, and to search for a solution.
 なお、第1実施形態、第2実施形態ともに、空調のトラブルの発生頻度以外に、電気設備のトラブルの発生頻度を探索するものであってもよい。この電気設備のトラブルの発生頻度の探索方法は、上述と同様であり、各参照用情報と電気設備のトラブルの発生頻度との3段階以上の連関度が予め設定されていることが前提となる。 In both the first embodiment and the second embodiment, the frequency of occurrence of troubles in electrical equipment may be searched in addition to the frequency of occurrence of troubles in air conditioning. The method for searching for the frequency of occurrence of troubles in electrical equipment is the same as described above, and it is premised that three or more levels of association between each reference information and the frequency of occurrence of troubles in electrical equipment are preset. ..
 電気設備は、建築構造物内において配設されているあらゆる電気設備(照明機器、空調機器、室内乾燥機、換気設備、スプリンクラー設備、床下暖房設備、室内暖房設備、室内空気循環設備等)が含まれる。この電気設備は、建築構造物から遊離させて運搬はできるものの建築構造物内に取り付けられていることが前提となり、エアコン等の空調機器もこれに含まれる。これに対して、建築構造物から遊離した電気製品(パーソナルコンピュータ、冷蔵庫、電子レンジ、掃除機、テレビジョン受像機、インターネット通信機器等)のように単にコンセント接続のみが行われるものであって、実際に建築構造物に対して取り付けが行われていないものは含まれない。この電気設備のトラブルは、上述した電気設備の故障、電気設備への配管の水漏れ、電気設備機器におけるフィルタの埃の蓄積、電気設備からの異常音の発生、電気設備から漂う異臭等があるがこれらに限定されるものでは無く、電気設備に関する他のいかなるトラブルも含まれる。このような業者は、各地域毎に売上を管理している場合が多い。個々でいう地域の単位は、地方、県、市区町村、更には、町、番地、号、更にはビルやマンション単位まで詳細に分類されていても良い。売上は、年単位、月単位、週単位、日単位等で管理されている。このような業者の地域単位での参照用売上データを先ずは学習用データのために取得する。またこの参照用売上データは、年単位、月単位、週単位、日単位等、ある期間の平均値や標準偏差で表されてもよいし、変動傾向、変動推移のデータで表されていてもよい。 Electrical equipment includes all electrical equipment (lighting equipment, air conditioning equipment, indoor dryers, ventilation equipment, sprinkler equipment, underfloor heating equipment, indoor heating equipment, indoor air circulation equipment, etc.) installed in the building structure. Is done. Although this electrical equipment can be separated from the building structure and transported, it is premised that it is installed in the building structure, and air conditioning equipment such as an air conditioner is also included in this. On the other hand, electric appliances (personal computers, refrigerators, microwaves, vacuum cleaners, television receivers, Internet communication devices, etc.) released from building structures are simply connected to outlets. It does not include those that are not actually attached to the building structure. The troubles of this electric equipment include the above-mentioned failure of the electric equipment, water leakage of the piping to the electric equipment, accumulation of dust of the filter in the electric equipment, generation of abnormal noise from the electric equipment, and a strange odor drifting from the electric equipment. However, it is not limited to these, and includes any other troubles related to electrical equipment. Such vendors often manage sales in each region. The unit of each area may be classified in detail into a region, a prefecture, a municipality, a town, a street number, a number, and even a building or a condominium unit. Sales are managed on a yearly, monthly, weekly, daily, etc. basis. First, the reference sales data for each region of such a trader is acquired for the learning data. In addition, this reference sales data may be represented by the average value or standard deviation of a certain period such as yearly, monthly, weekly, daily, etc., or may be represented by fluctuation trend data or fluctuation transition data. good.
 電気設備のトラブルの発生頻度は、各地域において、電気設備のトラブルの発生がどの頻度で起こり得るかを示すものである。この電気設備トラブルの発生頻度は、年単位、月単位、週単位、日単位、5年単位等、いかなる分母で構成されていてもよい。電気設備のトラブル発生は、建築構造物の居住者から実際に業者に対して電気設備トラブルがあった旨の連絡がある都度、1回分としてカウントしてもよい。このような電気設備のトラブル発生頻度は、業者自身がカウントしておき、保有しているデータベースに記録しておくことで、事後的な取得が可能となる。この電気設備のトラブル発生頻度は、上述した地域単位で整理されている。 The frequency of electrical equipment troubles indicates how often electrical equipment troubles can occur in each region. The frequency of occurrence of this electrical equipment trouble may be composed of any denominator such as yearly, monthly, weekly, daily, and five-year units. The occurrence of electrical equipment trouble may be counted as one time each time the resident of the building structure notifies the contractor that there was an electrical equipment trouble. The frequency of such troubles in electrical equipment can be obtained after the fact by counting the frequency of troubles by the contractor and recording it in the database held by the contractor. The frequency of troubles in this electrical equipment is organized by region as described above.
 なお、第1実施形態、第2実施形態ともに、空調のトラブルの発生頻度以外に、ガス設備のトラブルの発生頻度を探索するものであってもよい。このガス設備トラブルの発生頻度の探索方法は、上述と同様であり、各参照用情報とガス設備のトラブルの発生頻度との3段階以上の連関度が予め設定されていることが前提となる。 In both the first embodiment and the second embodiment, the frequency of occurrence of gas equipment trouble may be searched in addition to the frequency of occurrence of air conditioning trouble. The method for searching for the frequency of occurrence of gas equipment trouble is the same as described above, and it is premised that three or more levels of association between each reference information and the frequency of occurrence of gas equipment trouble are set in advance.
 ガス設備は、建築構造物内において配設されているあらゆるガス設備(照明機器、空調機器、ガスコンロ、湯沸かし器、風呂等)が含まれる。このガス設備は、建築構造物から遊離させて運搬はできるものの建築構造物内に取り付けられていることが前提となり、エアコン等の空調機器もこれに含まれる。これに対して、建築構造物から遊離したガス製品(ガスストーブ等)のように単にコンセント接続のみが行われるものであって、実際に建築構造物に対して取り付けが行われていないものは含まれない。このガス設備のトラブルは、上述したガス設備の故障、ガス設備への配管の水漏れ、ガス設備機器におけるフィルタの埃の蓄積、ガス設備からの異常音の発生、ガス設備から漂う異臭等があるがこれらに限定されるものでは無く、ガス設備に関する他のいかなるトラブルも含まれる。このような業者は、各地域毎に売上を管理している場合が多い。個々でいう地域の単位は、地方、県、市区町村、更には、町、番地、号、更にはビルやマンション単位まで詳細に分類されていても良い。売上は、年単位、月単位、週単位、日単位等で管理されている。このような業者の地域単位での参照用売上データを先ずは学習用データのために取得する。またこの参照用売上データは、年単位、月単位、週単位、日単位等、ある期間の平均値や標準偏差で表されてもよいし、変動傾向、変動推移のデータで表されていてもよい。 Gas equipment includes all gas equipment (lighting equipment, air conditioning equipment, gas stoves, water heaters, baths, etc.) arranged in building structures. Although this gas facility can be separated from the building structure and transported, it is premised that it is installed in the building structure, and air conditioning equipment such as an air conditioner is also included in this. On the other hand, gas products released from building structures (gas stoves, etc.) that are simply connected to outlets and are not actually attached to building structures are included. I can't. The troubles of this gas equipment include the above-mentioned failure of the gas equipment, water leakage of the piping to the gas equipment, accumulation of dust on the filter in the gas equipment, generation of abnormal noise from the gas equipment, and offensive odor drifting from the gas equipment. Is not limited to these, but includes any other troubles related to gas equipment. Such vendors often manage sales in each region. The unit of each area may be classified in detail into a region, a prefecture, a municipality, a town, a street number, a number, and even a building or a condominium unit. Sales are managed on a yearly, monthly, weekly, daily, etc. basis. First, the reference sales data for each region of such a trader is acquired for the learning data. In addition, this reference sales data may be represented by the average value or standard deviation of a certain period such as yearly, monthly, weekly, daily, etc., or may be represented by fluctuation trend data or fluctuation transition data. good.
 ガス設備のトラブルの発生頻度は、各地域において、ガス設備のトラブルの発生がどの頻度で起こり得るかを示すものである。このガス設備トラブルの発生頻度は、年単位、月単位、週単位、日単位、5年単位等、いかなる分母で構成されていてもよい。ガス設備のトラブル発生は、建築構造物の居住者から実際に業者に対してガス設備トラブルがあった旨の連絡がある都度、1回分としてカウントしてもよい。このようなガス設備のトラブル発生頻度は、業者自身がカウントしておき、保有しているデータベースに記録しておくことで、事後的な取得が可能となる。このガス設備のトラブル発生頻度は、上述した地域単位で整理されている。 The frequency of gas equipment troubles indicates how often gas equipment troubles can occur in each region. The frequency of occurrence of this gas equipment trouble may be composed of any denominator such as yearly, monthly, weekly, daily, and five-year units. The occurrence of gas equipment trouble may be counted as one time each time the resident of the building structure notifies the contractor that there was a gas equipment trouble. The frequency of troubles in such gas equipment can be obtained after the fact by counting the frequency of troubles by the gas equipment and recording it in the database it owns. The frequency of troubles in this gas facility is organized by region as described above.
1 空調トラブル発生頻度システム
2 探索装置                             
21 内部バス
23 表示部
24 制御部
25 操作部
26 通信部
27 判別部
28 記憶部
61 ノード
 
1 Air conditioning trouble occurrence frequency system 2 Search device
21 Internal bus 23 Display unit 24 Control unit 25 Operation unit 26 Communication unit 27 Discrimination unit 28 Storage unit 61 Node

Claims (9)

  1.  建築構造物内における空調設備のトラブルの発生頻度を地域単位で予測する空調トラブル発生頻度予測プログラムにおいて、
     空調トラブルの発生頻度を予測する建築構造物又はそれが立地する地域を特定するための地域特定情報を取得する情報取得ステップと、
     各地域における空調トラブル対応に対して出動した業者の参照用売上データと、空調のトラブルの発生頻度との3段階以上の連関度を参照し、上記情報取得ステップにおいて取得した地域特定情報における地域の過去の売上データに対応する参照用売上データとの間でより高い連関度が設定されている空調のトラブルの発生頻度を探索する探索ステップとをコンピュータに実行させること
     を特徴とする空調トラブル発生頻度予測プログラム。
    In the air-conditioning trouble occurrence frequency prediction program that predicts the occurrence frequency of air-conditioning equipment troubles in building structures on a regional basis.
    An information acquisition step to acquire area-specific information for identifying a building structure that predicts the frequency of air-conditioning troubles or the area where it is located, and
    Refer to the reference sales data of the vendor dispatched for the response to the air conditioning trouble in each region and the degree of association between the frequency of occurrence of the air conditioning trouble in three or more stages, and refer to the regional specific information acquired in the above information acquisition step. Air conditioning trouble occurrence frequency characterized by having a computer perform a search step to search for the occurrence frequency of air conditioning troubles that have a higher degree of association with reference sales data corresponding to past sales data. Prediction program.
  2.  上記情報取得ステップでは、取得した地域特定情報における地域の過去の空調トラブル対応のために出動要請された業者の断り率を取得し、
     上記探索ステップでは、各地域における空調トラブル対応に対して出動した業者の参照用売上データと、上記各地域における空調トラブル対応のために出動要請された業者の参照用断り率との組み合わせと、空調のトラブルの発生頻度との3段階以上の連関度を参照し、上記情報取得ステップにおいて取得した地域特定情報における地域の過去の売上データに対応する参照用売上データと、取得した断り率に対応する参照用断り率との組み合わせとの間でより高い連関度が設定されている空調のトラブルの発生頻度を探索すること
     を特徴とする請求項1記載の空調トラブル発生頻度予測プログラム。
    In the above information acquisition step, the refusal rate of the contractor who was requested to be dispatched to deal with the past air conditioning troubles in the area in the acquired area specific information is acquired.
    In the above search step, the combination of the reference sales data of the contractor dispatched for the air conditioning trouble response in each region and the reference refusal rate of the contractor dispatched for the air conditioning trouble response in each region, and the air conditioning. Refer to the degree of association with the frequency of occurrence of troubles in three or more stages, and correspond to the reference sales data corresponding to the past sales data of the region in the region specific information acquired in the above information acquisition step and the acquired refusal rate. The air-conditioning trouble occurrence frequency prediction program according to claim 1, wherein a higher degree of association with a reference rejection rate is set to search for the occurrence frequency of air-conditioning troubles.
  3.  建築構造物内における空調のトラブルの発生頻度を地域単位で予測する空調トラブル発生頻度予測プログラムにおいて、
     空調トラブルの発生頻度を予測する建築構造物又はそれが立地する地域を特定するための地域特定情報を取得する情報取得ステップと、
     各地域における空調トラブル対応のために出動要請された業者の参照用断り率と、空調のトラブルの発生頻度とを有する3段階以上の連関度を参照し、上記情報取得ステップにおいて取得した地域特定情報における地域の断り率に対応する参照用断り率との間でより高い連関度が設定されている空調のトラブルの発生頻度を探索する探索ステップとをコンピュータに実行させること
     を特徴とする空調トラブル発生頻度予測プログラム。
    In the air-conditioning trouble occurrence frequency prediction program that predicts the occurrence frequency of air-conditioning troubles in building structures on a regional basis
    An information acquisition step to acquire area-specific information for identifying a building structure that predicts the frequency of air-conditioning troubles or the area where it is located, and
    Area-specific information acquired in the above information acquisition step by referring to the degree of association of three or more levels, which has the reference refusal rate of the contractor requested to be dispatched to deal with air-conditioning troubles in each region and the frequency of occurrence of air-conditioning troubles. Air-conditioning trouble occurrence characterized by having a computer perform a search step to search for the frequency of air-conditioning troubles that have a higher degree of association with the reference refusal rate corresponding to the regional refusal rate in Frequency prediction program.
  4.  建築構造物内における空調のトラブルの発生頻度を地域単位で予測する空調トラブル発生頻度予測プログラムにおいて、
     空調トラブルの発生頻度を予測する地域の天候に関する天候情報を取得する情報取得ステップと、
     過去において取得した地域の天候に関する参照用天候情報と、空調のトラブルの発生頻度とを有する3段階以上の連関度を参照し、上記情報取得ステップにおいて取得した天候情報に対応する参照用天候情報との間でより高い連関度が設定されている空調のトラブルの発生頻度を探索する探索ステップとをコンピュータに実行させること
     を特徴とする空調トラブル発生頻度予測プログラム。
    In the air-conditioning trouble occurrence frequency prediction program that predicts the occurrence frequency of air-conditioning troubles in building structures on a regional basis
    An information acquisition step to acquire weather information on the local weather that predicts the frequency of air conditioning troubles,
    Referencing the reference weather information regarding the local weather acquired in the past and the three or more levels of linkage with the frequency of occurrence of air conditioning troubles, and the reference weather information corresponding to the weather information acquired in the above information acquisition step. An air-conditioning trouble occurrence frequency prediction program characterized by having a computer execute a search step for searching for the frequency of occurrence of air-conditioning troubles having a higher degree of association between them.
  5.  建築構造物内における空調のトラブルの発生頻度を地域単位で予測する空調トラブル発生頻度予測プログラムにおいて、
     空調トラブルの発生頻度を予測する地域の外気温に関する外気温情報を取得する情報取得ステップと、
     過去において取得した地域の外気温に関する参照用外気温情報と、空調のトラブルの発生頻度とを有する3段階以上の連関度を参照し、上記情報取得ステップにおいて取得した天候情報に対応する参照用天候情報との間でより高い連関度が設定されている空調のトラブルの発生頻度を探索する探索ステップとをコンピュータに実行させること
     を特徴とする空調トラブル発生頻度予測プログラム。
    In the air-conditioning trouble occurrence frequency prediction program that predicts the occurrence frequency of air-conditioning troubles in building structures on a regional basis
    An information acquisition step to acquire outside air temperature information related to the outside air temperature in the area that predicts the frequency of air conditioning troubles,
    Referencing the reference outside air temperature information regarding the outside air temperature of the area acquired in the past and the degree of association of three or more levels with the frequency of occurrence of air conditioning troubles, and the reference weather corresponding to the weather information acquired in the above information acquisition step. An air-conditioning trouble frequency prediction program characterized by having a computer perform a search step to search for the frequency of air-conditioning troubles that have a higher degree of association with information.
  6.  建築構造物内における電気設備のトラブルの発生頻度を地域単位で予測する電気設備トラブル発生頻度予測プログラムにおいて、
     電気設備トラブルの発生頻度を予測する建築構造物又はそれが立地する地域を特定するための地域特定情報を取得する情報取得ステップと、
     各地域における電気設備トラブル対応に対して出動した業者の参照用売上データと、電気設備のトラブルの発生頻度との3段階以上の連関度を参照し、上記情報取得ステップにおいて取得した地域特定情報における地域の過去の売上データに対応する参照用売上データとの間でより高い連関度が設定されている電気設備のトラブルの発生頻度を探索する探索ステップとをコンピュータに実行させること
     を特徴とする電気設備トラブル発生頻度予測プログラム。
    In the electrical equipment trouble occurrence frequency prediction program that predicts the occurrence frequency of electrical equipment troubles in building structures on a regional basis
    An information acquisition step to acquire area-specific information for identifying a building structure that predicts the frequency of electrical equipment troubles or the area where it is located, and
    Refer to the three or more levels of association between the reference sales data of the vendor dispatched to deal with electrical equipment troubles in each region and the frequency of occurrence of electrical equipment troubles, and in the region-specific information acquired in the above information acquisition step. Electricity characterized by having a computer perform a search step to search for the frequency of troubles in electrical equipment that has a higher degree of association with reference sales data that corresponds to past sales data for the region. Equipment trouble occurrence frequency prediction program.
  7.  上記情報取得ステップでは、取得した地域特定情報における地域の電気設備機器の使用年数に関する統計情報を取得し、
     上記予測ステップでは、各地域における電気設備トラブル対応に対して出動した業者の参照用売上データと、上記各地域における電気設備機器の使用年数に関する参照用統計情報との組み合わせと、電気設備のトラブルの発生頻度との3段階以上の連関度を参照し、上記情報取得ステップにおいて取得した地域特定情報における地域の過去の売上データに対応する参照用売上データと、取得した統計情報に対応する参照用統計情報との組み合わせとの間でより高い連関度が設定されている電気設備のトラブルの発生頻度を探索すること
     を特徴とする請求項6記載の電気設備トラブル発生頻度予測プログラム。
    In the above information acquisition step, statistical information regarding the number of years of use of local electrical equipment in the acquired area-specific information is acquired.
    In the above prediction step, the combination of the reference sales data of the supplier dispatched to deal with the electrical equipment trouble in each region and the reference statistical information regarding the years of use of the electrical equipment in each region, and the trouble of the electrical equipment Referencing the degree of association with the frequency of occurrence in three or more stages, the reference sales data corresponding to the past sales data of the region in the region specific information acquired in the above information acquisition step, and the reference statistics corresponding to the acquired statistical information. The electrical equipment trouble occurrence frequency prediction program according to claim 6, wherein the frequency of occurrence of electrical equipment troubles for which a higher degree of association with information is set is searched for.
  8.  建築構造物内におけるガス設備のトラブルの発生頻度を地域単位で予測するガス設備トラブル発生頻度予測プログラムにおいて、
     ガス設備トラブルの発生頻度を予測する建築構造物又はそれが立地する地域を特定するための地域特定情報を取得する情報取得ステップと、
     各地域におけるガス設備トラブル対応に対して出動した業者の参照用売上データと、ガス設備のトラブルの発生頻度との3段階以上の連関度を参照し、上記情報取得ステップにおいて取得した地域特定情報における地域の過去の売上データに対応する参照用売上データとの間でより高い連関度が設定されているガス設備のトラブルの発生頻度を探索する探索ステップとをコンピュータに実行させること
     を特徴とするガス設備トラブル発生頻度予測プログラム。
    In the gas equipment trouble occurrence frequency prediction program that predicts the occurrence frequency of gas equipment troubles in building structures on a regional basis
    An information acquisition step to acquire area-specific information for identifying a building structure that predicts the frequency of gas facility troubles or the area where it is located, and
    In the area-specific information acquired in the above information acquisition step, refer to the reference sales data of the vendors dispatched to deal with gas equipment troubles in each region and the degree of association between the frequency of occurrence of gas equipment troubles in three or more stages. A gas characterized by having a computer perform a search step to search for the frequency of troubles in gas equipment that has a higher degree of association with reference sales data that corresponds to past sales data for the region. Equipment trouble occurrence frequency prediction program.
  9.  上記情報取得ステップでは、取得した地域特定情報における地域の外気温に関する外気温情報を取得し、
     上記予測ステップでは、各地域におけるガス設備トラブル対応に対して出動した業者の参照用売上データと、上記各地域における外気温に関する参照用外気温情報との組み合わせと、ガス設備のトラブルの発生頻度との3段階以上の連関度を参照し、上記情報取得ステップにおいて取得した地域特定情報における地域の過去の売上データに対応する参照用売上データと、取得した外気温情報に対応する参照用外気温情報との組み合わせとの間でより高い連関度が設定されているガス設備のトラブルの発生頻度を探索すること
     を特徴とする請求項8記載のガス設備トラブル発生頻度予測プログラム。
    In the above information acquisition step, the outside air temperature information regarding the outside air temperature of the area in the acquired area specific information is acquired.
    In the above prediction step, the combination of the reference sales data of the vendor dispatched to deal with the gas equipment trouble in each region and the reference outside temperature information regarding the outside temperature in each region, and the frequency of occurrence of the gas equipment trouble. Reference sales data corresponding to the past sales data of the region in the region specific information acquired in the above information acquisition step and reference outside temperature information corresponding to the acquired outside temperature information by referring to the degree of association of three or more stages of. The gas equipment trouble occurrence frequency prediction program according to claim 8, wherein the frequency of occurrence of troubles of gas equipments having a higher degree of association with the combination with and is searched for.
PCT/JP2021/036666 2020-10-06 2021-10-04 Program for predicting frequency of occurrence of air conditioning issues WO2022075274A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2020-168932 2020-10-06
JP2020168933A JP2022061138A (en) 2020-10-06 2020-10-06 Gas installation trouble occurrence frequency prediction program
JP2020-168931 2020-10-06
JP2020168931A JP2022061136A (en) 2020-10-06 2020-10-06 Air-conditioning trouble occurrence frequency prediction program
JP2020-168933 2020-10-06
JP2020168932A JP2022061137A (en) 2020-10-06 2020-10-06 Electric installation trouble occurrence frequency prediction program

Publications (1)

Publication Number Publication Date
WO2022075274A1 true WO2022075274A1 (en) 2022-04-14

Family

ID=81126051

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/036666 WO2022075274A1 (en) 2020-10-06 2021-10-04 Program for predicting frequency of occurrence of air conditioning issues

Country Status (1)

Country Link
WO (1) WO2022075274A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009015450A (en) * 2007-07-02 2009-01-22 Nippon Telegr & Teleph Corp <Ntt> Device and method for predicting number of lightning accident failures, program and recording medium
JP2010231375A (en) * 2009-03-26 2010-10-14 Osaka Gas Co Ltd Component demand prediction method and component demand prediction system
JP2014085774A (en) * 2012-10-23 2014-05-12 Hitachi Ltd Regional tendency extraction method in life prediction
JP2019139511A (en) * 2018-02-09 2019-08-22 旭化成ホームズ株式会社 Housing
JP2019212131A (en) * 2018-06-06 2019-12-12 シャープ株式会社 Prediction device, electrical appliance, management system, prediction method, and control program
JP2021117771A (en) * 2020-01-27 2021-08-10 Assest株式会社 Air-conditioning trouble occurrence frequency prediction program

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009015450A (en) * 2007-07-02 2009-01-22 Nippon Telegr & Teleph Corp <Ntt> Device and method for predicting number of lightning accident failures, program and recording medium
JP2010231375A (en) * 2009-03-26 2010-10-14 Osaka Gas Co Ltd Component demand prediction method and component demand prediction system
JP2014085774A (en) * 2012-10-23 2014-05-12 Hitachi Ltd Regional tendency extraction method in life prediction
JP2019139511A (en) * 2018-02-09 2019-08-22 旭化成ホームズ株式会社 Housing
JP2019212131A (en) * 2018-06-06 2019-12-12 シャープ株式会社 Prediction device, electrical appliance, management system, prediction method, and control program
JP2021117771A (en) * 2020-01-27 2021-08-10 Assest株式会社 Air-conditioning trouble occurrence frequency prediction program

Similar Documents

Publication Publication Date Title
Ali et al. A data-driven approach to optimize urban scale energy retrofit decisions for residential buildings
CN107942960B (en) A kind of intelligentized information processing system
US11808473B2 (en) Action optimization device, method and program
US11714392B2 (en) Multi-site building management system
JP6280485B2 (en) Energy saving support system and energy saving support method
JP6022050B2 (en) Consumer power control system and consumer power control method
JP2005158020A (en) Method, system and program for managing energy
Ouf et al. A simulation-based method to investigate occupant-centric controls
JP2006331372A (en) Agent device, management manager device, and environment energy management system
KR102170522B1 (en) Energy management system for exhibition hall considering environment and occupancy changes
US20200126549A1 (en) Device control system
KR20220104460A (en) Hospital energy management system and the managing method thereof
CN106485342A (en) Enterprise operation is made with facility energy using the analysis engine that is mutually related
US20220019186A1 (en) Method and system for smart environment management
US9756478B2 (en) Identification of similar users
JP2021117771A (en) Air-conditioning trouble occurrence frequency prediction program
WO2022075274A1 (en) Program for predicting frequency of occurrence of air conditioning issues
KR102620180B1 (en) KNX based open energy management system for a building
JP2022061137A (en) Electric installation trouble occurrence frequency prediction program
JP2022061136A (en) Air-conditioning trouble occurrence frequency prediction program
JP2022061138A (en) Gas installation trouble occurrence frequency prediction program
JP6765110B1 (en) Water trouble occurrence frequency prediction program
WO2022075268A1 (en) Program for predicting frequency of plumbing area related problems
JP2022033692A (en) Inundation damage prediction program
WO2018222140A1 (en) Method and apparatus for deriving and/or controlling individual comfort parameters

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21877573

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21877573

Country of ref document: EP

Kind code of ref document: A1