WO2022075007A1 - 冷凍サイクル装置 - Google Patents

冷凍サイクル装置 Download PDF

Info

Publication number
WO2022075007A1
WO2022075007A1 PCT/JP2021/033463 JP2021033463W WO2022075007A1 WO 2022075007 A1 WO2022075007 A1 WO 2022075007A1 JP 2021033463 W JP2021033463 W JP 2021033463W WO 2022075007 A1 WO2022075007 A1 WO 2022075007A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
refrigerant
unit
heat
cooling water
Prior art date
Application number
PCT/JP2021/033463
Other languages
English (en)
French (fr)
Inventor
徹 岡村
功嗣 三浦
紘明 河野
直也 牧本
吉毅 加藤
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to CN202180065633.9A priority Critical patent/CN116194722A/zh
Publication of WO2022075007A1 publication Critical patent/WO2022075007A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/02Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel

Definitions

  • the present disclosure relates to a refrigeration cycle apparatus having a plurality of evaporators.
  • Patent Document 1 describes a refrigerating cycle device capable of air-conditioning a vehicle interior and cooling a battery.
  • the first expansion valve and the air cooling evaporator, and the second expansion valve and the cooling water cooling evaporator are connected in parallel in the refrigerant flow.
  • the first expansion valve reduces the pressure of the refrigerant flowing into the air cooling evaporator.
  • the air cooling evaporator cools the air blown into the vehicle interior.
  • the second expansion valve reduces the pressure of the refrigerant flowing into the cooling water cooling evaporator.
  • the cooling water cooling evaporator cools the air blown into the vehicle interior.
  • the first expansion valve is closed to block the inflow of the refrigerant into the air cooling evaporator, and the cooling of the air in the air cooling evaporator is stopped.
  • the inflow of the refrigerant to the air cooling evaporator is blocked by closing the first expansion valve in the heating mode, but the inflow of the refrigerant to the air cooling evaporator cannot be completely blocked. In some cases. In that case, the refrigerating machine oil mixed in the refrigerant may accumulate in the air cooling evaporator, resulting in insufficient lubrication of the compressor.
  • the purpose of this disclosure is to effectively recover the refrigerating machine oil accumulated in the evaporator.
  • the refrigeration cycle apparatus includes a compressor, a heat dissipation unit, a first decompression unit, a first evaporation unit, a second decompression unit, a second evaporation unit, and a control unit.
  • the compressor sucks in the refrigerant, compresses it, and discharges it.
  • the heat radiating unit exchanges heat between the refrigerant discharged from the compressor and the air blown to the air-conditioned space to dissipate heat to the air.
  • the first decompression unit can depressurize the refrigerant and close the flow path of the refrigerant.
  • the first evaporating unit evaporates the refrigerant by exchanging heat between the refrigerant decompressed by the first decompression unit and air and absorbing heat from the air.
  • the second decompression section is arranged in parallel with the first decompression section in the flow of the refrigerant to depressurize the refrigerant.
  • the second evaporating unit evaporates the refrigerant by absorbing heat from the refrigerant decompressed by the second decompression unit.
  • control unit determines that the first decompression unit closes the flow path and the refrigerating machine oil mixed in the refrigerant stays in the first evaporation unit, the control unit first decompresses the flow path so as to open the flow path. Executes oil recovery control to control the unit.
  • the refrigerant flows to the first evaporation part by opening the flow path of the refrigerant in the first decompression part, the refrigerating machine oil staying in the first evaporation part can be returned to the compressor.
  • the vehicle air conditioner 1 shown in FIG. 1 is an air conditioner that adjusts a vehicle interior space (in other words, an air conditioning target space) to an appropriate temperature.
  • the vehicle air conditioner 1 has a refrigeration cycle device 10.
  • the refrigerating cycle device 10 is mounted on a hybrid vehicle that obtains driving force for vehicle traveling from an engine (in other words, an internal combustion engine) and an electric motor for traveling.
  • the hybrid vehicle of the present embodiment is configured as a plug-in hybrid vehicle capable of charging the electric power supplied from an external power source (in other words, a commercial power source) to a battery mounted on the vehicle (in other words, an in-vehicle battery) when the vehicle is stopped.
  • an external power source in other words, a commercial power source
  • a battery mounted on the vehicle in other words, an in-vehicle battery
  • the battery for example, a lithium ion battery can be used.
  • the driving force output from the engine is used not only for driving the vehicle but also for operating the generator. Then, the electric power generated by the generator and the electric power supplied from the external power source can be stored in the battery, and the electric power stored in the battery constitutes not only the traveling electric motor but also the refrigeration cycle device 10. It is supplied to various in-vehicle devices such as electric components.
  • the refrigeration cycle device 10 includes a compressor 11, a condenser 12, a receiver 18, a first expansion valve 13, an air evaporator 14, a constant pressure valve 15, a second expansion valve 16, and a cooling evaporator 17. It is a machine.
  • the refrigeration cycle apparatus 10 of the present embodiment uses a fluorocarbon-based refrigerant as the refrigerant, and constitutes a subcritical refrigeration cycle in which the pressure of the high-pressure side refrigerant does not exceed the critical pressure of the refrigerant.
  • Refrigerating machine oil specifically, PAG oil
  • Some of the refrigerating machine oil circulates in the cycle together with the refrigerant.
  • the compressor 11 is an electric compressor driven by electric power supplied from a battery, and sucks in the refrigerant of the refrigerating cycle device 10, compresses it, and discharges it.
  • the compressor 11 may be a variable displacement compressor driven by a belt.
  • the condenser 12 is a high-pressure side refrigerant heat medium heat exchanger that condenses the high-pressure side refrigerant by exchanging heat between the high-pressure side refrigerant discharged from the compressor 11 and the cooling water of the high-temperature cooling water circuit 20.
  • the cooling water of the high temperature cooling water circuit 20 is a fluid as a heat medium.
  • the cooling water of the high temperature cooling water circuit 20 is a high temperature heat medium.
  • a liquid containing at least ethylene glycol, dimethylpolysiloxane or nanofluid, or an antifreeze liquid is used as the cooling water of the high temperature cooling water circuit 20, a liquid containing at least ethylene glycol, dimethylpolysiloxane or nanofluid, or an antifreeze liquid is used.
  • the high-temperature cooling water circuit 20 is a high-temperature heat medium circuit in which a high-temperature heat medium circulates.
  • the receiver 18 is a gas-liquid separation unit that separates the gas-liquid of the refrigerant flowing out from the condenser 12 and causes the liquid-phase refrigerant to flow out to the downstream side, and stores the excess refrigerant in the cycle.
  • the flow of the liquid phase refrigerant flowing out from the receiver 18 is branched at the branch portion 10a.
  • the first expansion valve 13 is a first decompression unit that decompresses and expands the liquid phase refrigerant flowing out of the receiver 18.
  • the first expansion valve 13 is an electric variable throttle mechanism, and has a valve body and an electric actuator.
  • the valve body is configured so that the opening degree of the flow path of the refrigerant (in other words, the throttle opening degree) can be changed.
  • the electric actuator has a stepping motor that changes the throttle opening of the valve body.
  • the first expansion valve 13 is composed of a variable throttle mechanism with a fully closed function that completely closes the flow path of the refrigerant. That is, the first expansion valve 13 can shut off the flow of the refrigerant by fully closing the flow path of the refrigerant.
  • the operation of the first expansion valve 13 is controlled by a control signal output from the control device 60 shown in FIG.
  • the air evaporator 14 is a refrigerant air heat exchanger that cools the air blown into the vehicle interior by exchanging heat between the refrigerant flowing out from the first expansion valve 13 and the air blown into the vehicle interior.
  • the air evaporator 14 is a first evaporation unit that absorbs heat from the air blown into the vehicle interior to the refrigerant to evaporate the refrigerant.
  • the constant pressure valve 15 is a pressure adjusting unit (in other words, a pressure reducing unit for pressure adjustment) that maintains the pressure of the refrigerant at the outlet side of the air evaporator 14 at a predetermined value.
  • the constant pressure valve 15 is composed of a mechanical variable throttle mechanism. Specifically, the constant pressure valve 15 reduces the area of the flow path of the refrigerant (that is, the throttle opening) when the pressure of the refrigerant on the outlet side of the air evaporator 14 falls below a predetermined value, and the air evaporator 14 has a constant pressure valve 15. When the pressure of the refrigerant on the outlet side exceeds a predetermined value, the area of the flow path of the refrigerant (that is, the throttle opening) is increased.
  • a fixed throttle made of an orifice, a capillary tube, or the like may be adopted instead of the constant pressure valve 15.
  • the second expansion valve 16 and the cooling evaporator 17 are arranged in parallel with the first expansion valve 13, the air evaporator 14, and the constant pressure valve 15 in the flow of the refrigerant.
  • the second expansion valve 16 is a second decompression unit that decompresses and expands the liquid phase refrigerant flowing out of the condenser 12.
  • the second expansion valve 16 is an electric variable throttle mechanism, and has a valve body and an electric actuator.
  • the valve body is configured so that the opening degree of the flow path of the refrigerant (in other words, the throttle opening degree) can be changed.
  • the electric actuator has a stepping motor that changes the throttle opening of the valve body.
  • the second expansion valve 16 is composed of a variable throttle mechanism with a fully closed function that completely closes the flow path of the refrigerant. That is, the second expansion valve 16 can shut off the flow of the refrigerant by fully closing the flow path of the refrigerant.
  • the operation of the second expansion valve 16 is controlled by a control signal output from the control device 60.
  • the cooling evaporator 17 is a low-pressure side refrigerant heat medium heat exchanger that cools the cooling water by exchanging heat between the low-pressure refrigerant flowing out of the second expansion valve 16 and the cooling water of the low-temperature cooling water circuit 30.
  • the cooling evaporator 17 is a second evaporation unit that absorbs heat from the cooling water to the refrigerant to evaporate the refrigerant.
  • the vapor phase refrigerant evaporated in the cooling evaporator 17 merges with the refrigerant flowing out from the constant pressure valve 15 at the confluence portion 10b, and then is sucked into the compressor 11 and compressed.
  • the cooling water of the low temperature cooling water circuit 30 is a fluid as a heat medium.
  • the cooling water of the low temperature cooling water circuit 30 is a low temperature heat medium.
  • a liquid containing at least ethylene glycol, dimethylpolysiloxane or nanofluid, or an antifreeze liquid is used as the cooling water of the low temperature cooling water circuit 30, a liquid containing at least ethylene glycol, dimethylpolysiloxane or nanofluid, or an antifreeze liquid is used as the cooling water of the low temperature cooling water circuit 30, a liquid containing at least ethylene glycol, dimethylpolysiloxane or nanofluid, or an antifreeze liquid is used.
  • the low-temperature cooling water circuit 30 is a low-temperature heat medium circuit in which a low-temperature heat medium circulates.
  • a condenser 12 In the high temperature cooling water circuit 20, a condenser 12, a high temperature side pump 21, a heater core 22, a high temperature side radiator 23, an on-off valve 24, and an electric heater 25 are arranged.
  • the high temperature side pump 21 is a heat medium pump that sucks in and discharges cooling water.
  • the high temperature side pump 21 is an electric pump.
  • the high temperature side pump 21 is a high temperature side flow rate adjusting unit that adjusts the flow rate of the cooling water circulating in the high temperature cooling water circuit 20.
  • the low temperature side pump 31 is a low temperature side flow rate adjusting unit that adjusts the flow rate of the cooling water circulating in the low temperature cooling water circuit 30.
  • the heater core 22 is an air heating heat exchanger that heats the air blown into the vehicle interior by exchanging heat between the cooling water of the high temperature cooling water circuit 20 and the air blown into the vehicle interior. In the heater core 22, the cooling water dissipates heat to the air blown into the vehicle interior.
  • the condenser 12, the high-temperature cooling water circuit 20, and the heater core 22 are heat dissipation units that exchange heat between the refrigerant discharged from the compressor 11 and the air blown into the vehicle interior to dissipate heat to the air.
  • the high temperature side radiator 23 is a high temperature heat medium outside air heat exchanger that exchanges heat between the cooling water of the high temperature cooling water circuit 20 and the outside air.
  • the high temperature side radiator 23 and the on-off valve 24 are arranged in parallel with the heater core 22 in the flow of the high temperature side cooling water.
  • the on-off valve 24 is a solenoid valve that opens and closes the cooling water flow path on the high temperature side radiator 23 side. The operation of the on-off valve 24 is controlled by the control device 60.
  • the on-off valve 24 is a high-temperature switching unit that switches the flow of cooling water in the high-temperature cooling water circuit 20.
  • the on-off valve 24 may be a thermostat.
  • the thermostat is a cooling water temperature-responsive valve provided with a mechanical mechanism for opening and closing the cooling water flow path by displacing the valve body with a thermowax whose volume changes with temperature.
  • the electric heater 25 is an auxiliary heating unit that auxiliaryly heats the cooling water of the high-temperature cooling water circuit 20.
  • the electric heater 25 is an auxiliary heat source for heating air in the heater core 22.
  • a PTC heater or the like that generates heat by being supplied with electric power can be adopted.
  • the electric heater 25 is a Joule heat generating unit that generates Joule heat.
  • the calorific value of the electric heater 25 is controlled by the control voltage output from the control device 60.
  • a cooling evaporator 17, a low temperature pump 31, a low temperature radiator 32, a battery 33, and a three-way valve 38 are arranged in the low temperature cooling water circuit 30.
  • the low temperature side pump 31 is a heat medium pump that sucks in and discharges cooling water.
  • the low temperature side pump 31 is an electric pump.
  • the low temperature side radiator 32 is a low temperature heat medium outside air heat exchanger that exchanges heat between the cooling water of the low temperature cooling water circuit 30 and the outside air.
  • the battery 33 is an in-vehicle device mounted on a vehicle and is a heat generating device that generates heat as it operates.
  • the battery 33 dissipates the waste heat generated by the operation to the cooling water of the low temperature cooling water circuit 30. In other words, the battery 33 supplies heat to the cooling water of the low temperature cooling water circuit 30.
  • the low temperature side radiator 32 and the battery 33 are arranged in parallel with each other in the flow of the low temperature side cooling water.
  • the three-way valve 38 switches the flow of the low temperature side cooling water to the low temperature side radiator 32 and the battery 33. The operation of the three-way valve 38 is controlled by the control device 60.
  • the air evaporator 14 and the heater core 22 are housed in a casing 51 (hereinafter referred to as an air conditioning casing) of the indoor air conditioning unit 50 shown in FIG.
  • the indoor air conditioning unit 50 is arranged inside an instrument panel (not shown) in the front part of the vehicle interior.
  • the air conditioning casing 51 is an air passage forming member that forms an air passage.
  • the heater core 22 is arranged on the downstream side of the air flow of the air evaporator 14 in the air passage in the air conditioning casing 51.
  • An inside / outside air switching box 52 and an indoor blower 53 are arranged in the air conditioning casing 51.
  • the inside / outside air switching box 52 has an inside / outside air switching door 52a.
  • the inside / outside air switching door 52a is an inside / outside air switching unit that switches between inside and outside air and introduces the inside air into the air passage in the air conditioning casing 51.
  • the inside / outside air switching door 52a is an inside / outside air adjusting unit that adjusts the ratio of the inside air to the outside air introduced into the air passage in the air conditioning casing 51.
  • the indoor blower 53 sucks in and blows the inside air and the outside air introduced into the air passage in the air conditioning casing 51 through the inside / outside air switching box 52.
  • the inside / outside air switching door 52a and the indoor blower 53 are controlled by the control device 60.
  • An air mix door 54 is arranged between the air evaporator 14 and the heater core 22 in the air passage in the air conditioning casing 51.
  • the air mix door 54 adjusts the air volume ratio between the cold air flowing into the heater core 22 and the cold air flowing through the cold air bypass passage 55 among the cold air passing through the air evaporator 14.
  • the cold air bypass passage 55 is an air passage through which the cold air that has passed through the air evaporator 14 flows by vising the heater core 22.
  • the air mix door 54 is a rotary door having a rotary shaft rotatably supported with respect to the air conditioning casing 51 and a door substrate portion coupled to the rotary shaft. By adjusting the opening position of the air mix door 54, the temperature of the air conditioning air blown from the air conditioning casing 51 into the vehicle interior can be adjusted to a desired temperature.
  • the rotating shaft of the air mix door 54 is driven by a servomotor.
  • the operation of the servomotor is controlled by the control device 60.
  • the air mix door 54 may be a slide door that slides and moves in a direction substantially orthogonal to the air flow.
  • the sliding door may be a plate-shaped door formed of a rigid body. It may be a film door made of a flexible film material.
  • the conditioned air whose temperature is adjusted by the air mix door 54 is blown into the vehicle interior from the air outlet 56 formed in the air conditioned casing 51.
  • the control device 60 shown in FIG. 2 is composed of a well-known microcomputer including a CPU, ROM, RAM, and the like, and peripheral circuits thereof.
  • the control device 60 performs various operations and processes based on the control program stored in the ROM.
  • Various controlled devices are connected to the output side of the control device 60.
  • the control device 60 is a control unit that controls the operation of various controlled devices.
  • the controlled devices controlled by the control device 60 are the compressor 11, the first expansion valve 13, the second expansion valve 16, the high temperature side pump 21, the on-off valve 24, the electric heater 25, the low temperature side pump 31, and the three-way valve 38.
  • the software and hardware for controlling the electric motor of the compressor 11 in the control device 60 is the refrigerant discharge capacity control unit.
  • the software and hardware for controlling the first expansion valve 13 in the control device 60 is the first throttle control unit.
  • the software and hardware for controlling the second expansion valve 16 in the control device 60 is the second throttle control unit.
  • the software and hardware that control the high-temperature side pump 21 of the control device 60 is the high-temperature heat medium flow rate control unit.
  • the software and hardware for controlling the on-off valve 24 of the control device 60 is an on-off valve control unit.
  • the software and hardware that control the electric heater 25 in the control device 60 is an auxiliary heating control unit.
  • the software and hardware for controlling the low temperature side pump 31 in the control device 60 is a low temperature heat medium flow rate control unit.
  • the software and hardware for controlling the three-way valve 38 in the control device 60 is the three-way valve control unit.
  • control device 60 On the input side of the control device 60, the inside air temperature sensor 61, the outside air temperature sensor 62, the solar radiation amount sensor 63, the evaporator temperature sensor 64, the heater core temperature sensor 65, the refrigerant pressure sensor 66, the high temperature cooling water temperature sensor 67, and the low temperature cooling water Various control sensor groups such as a temperature sensor 68 and a window surface humidity sensor 69 are connected.
  • the inside air temperature sensor 61 detects the vehicle interior temperature Tr.
  • the outside air temperature sensor 62 detects the outside air temperature Tam.
  • the solar radiation amount sensor 63 detects the solar radiation amount As in the vehicle interior.
  • the evaporator temperature sensor 64 is a temperature detection unit that detects the temperature TE of the cooling evaporator 17.
  • the evaporator temperature sensor 64 is, for example, a fin thermista that detects the temperature of the heat exchange fins of the cooling evaporator 17, a refrigerant temperature sensor that detects the temperature of the refrigerant flowing through the cooling evaporator 17, and the like.
  • the heater core temperature sensor 65 is a temperature detection unit that detects the temperature TH of the heater core 22.
  • the heater core temperature sensor 65 is, for example, a fin thermista that detects the temperature of the heat exchange fins of the heater core 22, a refrigerant temperature sensor that detects the temperature of the cooling water flowing through the heater core 22, and air that detects the temperature of the air flowing out from the heater core 22.
  • the refrigerant pressure sensor 66 is a refrigerant pressure detecting unit that detects the pressure of the refrigerant discharged from the compressor 11. Instead of the refrigerant pressure sensor 66, a refrigerant temperature sensor may be connected to the input side of the control device 60.
  • the refrigerant temperature sensor is a refrigerant pressure detecting unit that detects the temperature of the refrigerant discharged from the compressor 11.
  • the control device 60 may estimate the pressure of the refrigerant based on the temperature of the refrigerant.
  • the high temperature cooling water temperature sensor 67 is a temperature detection unit that detects the temperature of the cooling water of the high temperature cooling water circuit 20.
  • the high temperature cooling water temperature sensor 67 detects the temperature of the cooling water of the condenser 12.
  • the low temperature cooling water temperature sensor 68 is a temperature detection unit that detects the temperature of the cooling water of the low temperature cooling water circuit 30. For example, the low temperature cooling water temperature sensor 68 detects the temperature of the cooling water of the cooling evaporator 17.
  • the window surface humidity sensor 69 is composed of a window humidity sensor, a window air temperature sensor, and a window surface temperature sensor.
  • the window humidity sensor detects the relative humidity of the vehicle interior air near the windshield in the vehicle interior (hereinafter referred to as the relative humidity near the window).
  • the air temperature sensor near the window detects the temperature of the air inside the vehicle near the windshield.
  • the window surface temperature sensor detects the surface temperature of the windshield.
  • Various operation switches (not shown) are connected to the input side of the control device 60.
  • Various operation switches are provided on the operation panel 70 and are operated by an occupant.
  • the operation panel 70 is arranged near the instrument panel in the front part of the vehicle interior. Operation signals from various operation switches are input to the control device 60.
  • Various operation switches are air conditioner switches, temperature setting switches, etc.
  • the air conditioner switch sets whether or not to cool the air in the indoor air conditioning unit 50.
  • the temperature setting switch sets the set temperature in the vehicle interior.
  • the control device 60 switches the operation mode of the air conditioner based on the target blowout temperature TAO or the like to one of the cooling mode shown in FIG. 3, the heating mode shown in FIG. 4, and the dehumidifying heating mode shown in FIG.
  • the target blowing temperature TAO is the target temperature of the blowing air blown into the vehicle interior.
  • the target outlet temperature TAO is an index indicating the air conditioning load (in other words, the air conditioning heat load) required for the vehicle air conditioner 1.
  • the control device 60 calculates the target blowout temperature TAO based on the following mathematical formula F1.
  • TAO Kset x Tset-Kr x Tr-Kam x Tam-Ks x As + C ... (F1)
  • Tset is the vehicle interior set temperature set by the temperature setting switch of the operation panel 70
  • Tr is the inside air temperature detected by the inside air temperature sensor 61
  • Tam is the outside air temperature detected by the outside air temperature sensor 62
  • As is. It is the amount of solar radiation detected by the solar radiation amount sensor 63.
  • Kset, Kr, Kam, and Ks are control gains
  • C is a correction constant.
  • the control device 60 determines in the heating mode that the window of the vehicle may become cloudy, the control device 60 switches to the dehumidifying heating mode. For example, in the heating mode, the control device 60 calculates the relative humidity RHW (hereinafter referred to as window surface relative humidity) of the vehicle interior side surface based on the detection value of the window surface humidity sensor 69, and calculates the vehicle interior side surface relative humidity. Determine if the vehicle window may be fogged based on the relative humidity RHW.
  • RHW relative humidity relative humidity
  • the window surface relative humidity RHW is an index showing the possibility that the windshield will become cloudy. Specifically, the larger the value of the window surface relative humidity RHW, the higher the possibility that the windshield will become cloudy.
  • the control device 60 sets the first expansion valve 13 in the throttled state and the second expansion valve 16 in the fully closed state.
  • the control device 60 determines the operating state (control signals output to various control devices) of various control devices connected to the control device 60 based on the target blowout temperature TAO, the detection signal of the sensor group, and the like.
  • the feedback control method is used based on the deviation between the target evaporator temperature TEO and the temperature TE of the cooling evaporator 17.
  • the temperature TE of the cooling evaporator 17 is determined to approach the target evaporator temperature TEO.
  • the target evaporator temperature TEO is determined based on the target blowout temperature TAO with reference to the control map stored in the control device 60. In the control map of the present embodiment, it is determined that the target evaporator temperature TEO increases as the target blowout temperature TAO increases.
  • the control signal output to the indoor blower 53 (in other words, the air volume of the indoor blower 53) is determined based on the target blowout temperature TAO. For example, the control signal output to the indoor blower 53 is determined so that the air volume of the indoor blower 53 increases in the high temperature range and the low temperature range of the target blowout temperature TAO.
  • the degree of superheat of the refrigerant flowing into the compressor 11 determines the coefficient of performance of the cycle (so-called COP). It is determined to approach a predetermined target degree of superheat so as to approach the maximum value.
  • the air mix door 54 is operated at the position shown in FIG. 3 to block the air passage of the heater core 22, and the blown air that has passed through the air evaporator 14 The total flow rate is determined to flow around the air passage of the heater core 22.
  • the compressor 11 and the high temperature side pump 21 are operated.
  • the on-off valve 24 opens the cooling water flow path on the high temperature side radiator 23 side.
  • the cooling water circulates in the high-temperature side radiator 23, and the radiator 23 dissipates heat from the cooling water to the outside air.
  • the cooling water of the high-temperature cooling water circuit 20 also circulates in the heater core 22, but since the air mix door 54 blocks the air passage of the heater core 22, the heater core 22 almost dissipates heat from the cooling water to the air. I won't get it.
  • the refrigerant flows as shown by the thick solid line in FIG. 3, and the state of the refrigerant circulating in the cycle changes as follows.
  • the high-pressure refrigerant discharged from the compressor 11 flows into the condenser 12.
  • the refrigerant that has flowed into the condenser 12 dissipates heat to the cooling water of the high-temperature cooling water circuit 20. As a result, the refrigerant is cooled and condensed in the condenser 12.
  • the refrigerant flowing out of the condenser 12 flows into the first expansion valve 13 and is decompressed and expanded by the first expansion valve 13 until it becomes a low-pressure refrigerant.
  • the low-pressure refrigerant decompressed by the first expansion valve 13 flows into the air evaporator 14 and absorbs heat from the air blown into the vehicle interior to evaporate. As a result, the air blown into the vehicle interior is cooled.
  • the low-pressure refrigerant can absorb heat from the air in the air evaporator 14 and blow out the cooled air into the vehicle interior. As a result, it is possible to realize cooling in the vehicle interior.
  • the second expansion valve 16 In the cooling mode, when it is necessary to cool the battery 33, the second expansion valve 16 is set to the throttle state and the low temperature side pump 31 is operated.
  • the refrigerant flowing out of the condenser 12 flows into the second expansion valve 16 and is decompressed and expanded by the second expansion valve 16 until it becomes a low-pressure refrigerant.
  • the low-pressure refrigerant decompressed by the second expansion valve 16 flows into the cooling evaporator 17, and absorbs heat from the cooling water of the low-temperature cooling water circuit 30 and evaporates. As a result, the cooling water of the low temperature cooling water circuit 30 is cooled.
  • the three-way valve 38 When it is necessary to cool the battery 33, the three-way valve 38 is in a state where the cooling water of the low temperature cooling water circuit 30 circulates in the battery 33 as shown by the solid line arrow in FIG. As a result, the battery 33 is cooled by the cooling water of the low temperature cooling water circuit 30.
  • Heating mode In the heating mode, the control device 60 puts the first expansion valve 13 in a fully closed state and the second expansion valve 16 in a throttled state.
  • the control device 60 determines the operating state (control signals output to various control devices) of various control devices connected to the control device 60 based on the target blowout temperature TAO, the detection signal of the sensor group, and the like.
  • the temperature of the heater core 22 is determined by the feedback control method based on the deviation between the target heater core temperature THO and the temperature TH of the heater core 22. TH is determined to approach the target heater core temperature THO.
  • the target heater core temperature THO is determined based on the target blowout temperature TAO with reference to the control map stored in the control device 60. In the control map of the present embodiment, it is determined that the target heater core temperature THO increases as the target blowout temperature TAO increases.
  • the control signal output to the compressor 11 is based on the deviation between the target condenser temperature TCO and the temperature TC of the condenser 12, so that the temperature TC of the condenser 12 approaches the target condenser temperature TCO by the feedback control method. May be determined.
  • the control signal output to the indoor blower 53 (in other words, the air volume of the indoor blower 53) is determined based on the target blowout temperature TAO as in the cooling mode. For example, the control signal output to the indoor blower 53 is determined so that the air volume of the indoor blower 53 increases in the high temperature range and the low temperature range of the target blowout temperature TAO.
  • the air volume of the indoor blower 53 determined based on the target blowout temperature TAO is hereinafter referred to as a normal air volume.
  • the air volume of the indoor blower 53 is determined to be a warm-up air volume smaller than the normal air volume. As a result, cold air is blown out to the occupant during warm-up to prevent the occupant from feeling chills.
  • the air volume of the indoor blower 53 is smaller than the normal air volume. Will be decided.
  • the air volume of the indoor blower 53 is determined to be the warm-up air volume.
  • the air volume of the indoor blower 53 may be determined as the warm air volume.
  • the temperature TH of the heater core 22 is equal to or lower than a predetermined temperature, the air volume of the indoor blower 53 may be determined as the warm-up air volume.
  • the degree of superheat of the refrigerant flowing out of the cooling evaporator 17 is determined so as to approach a predetermined target degree of superheat.
  • the target degree of superheat is set so that the coefficient of performance of the cycle (so-called COP) approaches the maximum value.
  • the air mix door 54 is operated at the position shown in FIG. 4, the air passage of the heater core 22 is fully opened, and the blown air that has passed through the air evaporator 14 is used. The total flow rate is determined to pass through the air passage of the heater core 22.
  • the compressor 11, the high temperature side pump 21, and the low temperature side pump 31 are operated.
  • the on-off valve 24 closes the cooling water flow path on the high temperature side radiator 23 side.
  • the cooling water of the high-temperature cooling water circuit 20 circulates in the heater core 22, and the cooling water in the heater core 22 becomes the air blown into the vehicle interior. It is dissipated.
  • the three-way valve 38 opens the cooling water flow path on the low temperature side radiator 32 side.
  • the cooling water of the low-temperature cooling water circuit 30 circulates in the low-temperature side radiator 32.
  • the refrigerant flows as shown by the thick solid line in FIG. 4, and the state of the refrigerant circulating in the cycle changes as follows.
  • the high-pressure refrigerant discharged from the compressor 11 flows into the condenser 12 and exchanges heat with the cooling water of the high-temperature cooling water circuit 20 to dissipate heat. As a result, the cooling water of the high-temperature cooling water circuit 20 is heated.
  • the refrigerant flowing out of the condenser 12 flows into the second expansion valve 16 and is depressurized until it becomes a low-pressure refrigerant. Then, the low-pressure refrigerant decompressed by the second expansion valve 16 flows into the cooling evaporator 17 and absorbs heat from the cooling water of the low-temperature cooling water circuit 30 to evaporate.
  • the heat of the high-pressure refrigerant discharged from the compressor 11 is radiated to the cooling water of the high-temperature cooling water circuit 20 by the condenser 12, and the heat of the cooling water of the high-temperature cooling water circuit 20 is dissipated.
  • the heater core 22 can dissipate heat to the air, and the air heated by the heater core 22 can be blown out into the vehicle interior. As a result, it is possible to realize heating in the vehicle interior.
  • the cooling water of the low-temperature cooling water circuit 30 circulates in the low-temperature side radiator 32, heat is absorbed from the outside air into the cooling water of the low-temperature cooling water circuit 30, and the cooling evaporator 17 absorbs heat from the cooling water of the low-temperature cooling water circuit 30 to a low-pressure refrigerant. Can be made to absorb heat. Therefore, the heat of the outside air can be used for heating the interior of the vehicle.
  • the cooling water of the low-temperature cooling water circuit 30 is also circulated to the battery 33, so that the waste heat of the battery 33 is circulated in the low-temperature cooling water circuit 30.
  • the cooling water can absorb heat, and the cooling evaporator 17 can absorb heat from the cooling water of the low-temperature cooling water circuit 30 to the low-pressure refrigerant.
  • the waste heat of the battery 33 can be used for heating the vehicle interior. Further, the waste heat of the battery 33 can be used for defrosting the radiator 32 on the low temperature side.
  • the waste heat of the battery 33 can be used for heating and defrosting the vehicle interior.
  • the control device 60 sets the first expansion valve 13 in a fully closed state and the second expansion valve 16 in a fully closed state.
  • the control device 60 determines the operating state (control signals output to various control devices) of various control devices connected to the control device 60 based on the target blowout temperature TAO, the detection signal of the sensor group, and the like.
  • control signal output to the compressor 11 (in other words, the rotation speed of the compressor 11) and the control signal output to the indoor blower 53 (in other words, the air volume of the indoor blower 53) are the same as in the heating mode. Will be decided.
  • the degree of superheat of the refrigerant flowing out of the air evaporator 14 is determined so as to approach a predetermined target degree of superheat.
  • the target degree of superheat is set so that the coefficient of performance of the cycle (so-called COP) approaches the maximum value.
  • the air mix door 54 is operated at the position shown in FIG. 5 to fully open the air passage of the heater core 22, and the blown air that has passed through the air evaporator 14
  • the total flow rate of the heater core 22 is determined to pass through the air passage of the heater core 22.
  • the compressor 11, the high temperature side pump 21, and the low temperature side pump 31 are operated.
  • the on-off valve 24 closes the cooling water flow path on the high temperature side radiator 23 side.
  • the cooling water of the high-temperature cooling water circuit 20 circulates in the heater core 22, and the cooling water is blown from the cooling water into the vehicle interior by the heater core 22. It is dissipated to the air.
  • the refrigerant flows as shown by the thick solid line in FIG. 5, and the state of the refrigerant circulating in the cycle changes as follows.
  • the high-pressure refrigerant discharged from the compressor 11 flows into the condenser 12 and exchanges heat with the cooling water of the high-temperature cooling water circuit 20 to dissipate heat. As a result, the cooling water of the high-temperature cooling water circuit 20 is heated.
  • the refrigerant flowing out of the condenser 12 flows into the first expansion valve 13 and is depressurized until it becomes a low-pressure refrigerant. Then, the low-pressure refrigerant decompressed by the first expansion valve 13 flows into the air evaporator 14 and absorbs heat from the air blown into the vehicle interior to evaporate. As a result, the air blown into the vehicle interior is cooled and dehumidified. Then, the refrigerant flowing out of the air evaporator 14 flows to the suction side of the compressor 11 and is compressed again by the compressor 11.
  • the heat of the high-pressure refrigerant discharged from the compressor 11 is radiated to the cooling water of the high-temperature cooling water circuit 20 by the condenser 12, and the heat of the cooling water of the high-temperature cooling water circuit 20 is dissipated. Is dissipated to the air by the heater core 22.
  • the low-pressure refrigerant decompressed by the second expansion valve 16 is made to absorb heat from the air blown into the vehicle interior by the air evaporator 14, and the air cooled and dehumidified by the air evaporator 14 is cooled and dehumidified by the heater core 22. It can be heated and blown into the passenger compartment. This makes it possible to realize dehumidifying and heating in the vehicle interior.
  • the second expansion valve 16 By setting the second expansion valve 16 in the throttled state in the dehumidifying / heating mode, the low-pressure refrigerant decompressed by the second expansion valve 16 flows into the cooling evaporator 17, and is discharged from the cooling water of the low-temperature cooling water circuit 30. It absorbs heat and evaporates.
  • the cooling water of the low-temperature cooling water circuit 30 is circulated through the low-temperature side radiator 32 to absorb heat from the outside air to the cooling water of the low-temperature cooling water circuit 30. Then, the cooling water of the low-temperature cooling water circuit 30 can be absorbed by the low-pressure refrigerant by the cooling evaporator 17. Therefore, the heat of the outside air can be used for heating the interior of the vehicle.
  • the waste heat of the battery 33 is absorbed by the cooling water of the low temperature cooling water circuit 30.
  • the cooling evaporator 17 can absorb heat from the cooling water of the low-temperature cooling water circuit 30 to the low-pressure refrigerant. Therefore, the waste heat of the battery 33 can be used for heating the interior of the vehicle.
  • the refrigerant flow to the air evaporator 14 and the cooling evaporator 17 and the cooling water flow in the high temperature cooling water circuit 20 and the low temperature cooling water circuit 30 are switched. This makes it possible to perform appropriate cooling, heating and dehumidifying heating in the vehicle interior, and thus to realize comfortable air conditioning in the vehicle interior.
  • control device 60 puts the first expansion valve 13 in a fully closed state and the second expansion valve 16 in a throttled state.
  • the control device 60 determines the operating state (control signals output to various control devices) of various control devices connected to the control device 60 based on the target temperature of the battery 33, the detection signal of the sensor group, and the like.
  • the temperature of the battery 33 is determined by the feedback control method based on the deviation between the target temperature of the battery 33 and the temperature of the battery 33. Is determined to approach the target temperature.
  • the degree of superheat of the refrigerant flowing out of the cooling evaporator 17 is determined so as to approach a predetermined target degree of superheat.
  • the target degree of superheat is set so that the coefficient of performance of the cycle (so-called COP) approaches the maximum value.
  • the compressor 11, the high temperature side pump 21, and the low temperature side pump 31 are operated.
  • the on-off valve 24 opens the cooling water flow path on the high temperature side radiator 23 side.
  • the cooling water of the high-temperature cooling water circuit 20 circulates in the high-temperature side radiator 23, and the radiator 23 dissipates heat from the cooling water to the outside air.
  • the three-way valve 38 is in a state where the cooling water of the low temperature cooling water circuit 30 circulates in the battery 33. As a result, the battery 33 is cooled by the cooling water of the low temperature cooling water circuit 30.
  • the refrigerant flows as shown by the thick solid line in FIG. 6, and the state of the refrigerant circulating in the cycle changes as follows.
  • the high-pressure refrigerant discharged from the compressor 11 flows into the condenser 12 and exchanges heat with the cooling water of the high-temperature cooling water circuit 20 to dissipate heat. As a result, the refrigerant is cooled and condensed in the condenser 12.
  • the refrigerant flowing out of the condenser 12 flows into the second expansion valve 16 and is depressurized until it becomes a low-pressure refrigerant. Then, the low-pressure refrigerant decompressed by the second expansion valve 16 flows into the cooling evaporator 17 and absorbs heat from the cooling water of the low-temperature cooling water circuit 30 to evaporate.
  • the cooling water of the low temperature cooling water circuit 30 is cooled by the cooling evaporator 17, and the cooling water of the low temperature cooling water circuit 30 circulates to the battery 33 to cool the battery 33.
  • the control device 60 executes the oil recovery control shown in the flowchart of FIG. 7 in order to prevent the oil from falling into the air evaporator 14.
  • the oil stagnation in the air evaporator 14 is a phenomenon in which the refrigerant mixed in the refrigerant stays in the air evaporator 14.
  • step S100 it is determined whether or not the cooling evaporator 17 is operated independently. That is, it is determined whether or not the heating mode or the battery cooling mode is used. Specifically, when the inflow of the refrigerant into the air evaporator 14 is cut off and the refrigerant flows into the cooling evaporator 17, it is determined that the cooling evaporator 17 is operating independently.
  • step S100 If it is determined in step S100 that the cooling evaporator 17 is operated independently, the process proceeds to step S110, and as the value of the current sleep amount counter nt, a predetermined value dt is added to the value of the previous sleep amount counter tn-1. The added value is determined, and the process proceeds to step S120. If it is not determined in step S100 that the cooling evaporator 17 is operating independently, the process proceeds to step S150, the value of the sleep amount counter tn is reset to 0, and the process returns to step S100.
  • step S120 it is determined whether or not the value of the sleep amount counter tn exceeds the threshold value ⁇ 1. If it is determined in step S120 that the value of the sleep amount counter tn exceeds the threshold value ⁇ 1, it is determined that there is oil sleep, and the process proceeds to step S140. If it is determined in step S120 that the value of the sleep amount counter tn does not exceed the threshold value ⁇ 1, the process proceeds to step S130, and it is determined whether or not the compressor 11 has changed from the stopped state to the started state.
  • step S130 If it is determined in step S130 that the compressor 11 has changed from the stopped state to the activated state, it is determined that there is oil stagnation and the process proceeds to step S140. If it is determined in step S130 that the compressor 11 has not changed from the stopped state to the started state, it is determined that there is no oil stagnation, and the process returns to step S100.
  • step S140 oil recovery control is performed.
  • the oil recovery control in step S140 as shown in FIG. 8, first, the first expansion valve 13 is opened in step S1410. As a result, the refrigerant flows through the air evaporator 14, so that the refrigerating machine oil staying in the air evaporator 14 can be returned to the compressor 11.
  • the refrigerant flow of the air evaporator 14 pulsates, so that the refrigerating machine oil accumulated in the air evaporator 14 can be easily recovered.
  • the refrigerant flow of the air evaporator 14 may be pulsated by periodically increasing or decreasing the rotation speed of the compressor 11.
  • the opening degrees of the first expansion valve 13 and the second expansion valve 16 should be determined so that the flow rate of the refrigerant flowing into the air evaporator 14 is larger than the flow rate of the refrigerant flowing into the cooling evaporator 17.
  • the refrigerating machine oil accumulated in the air evaporator 14 can be effectively recovered.
  • the opening degrees of the first expansion valve 13 and the second expansion valve 16 are determined so that the flow rate of the refrigerant flowing into the cooling evaporator 17 is larger than the flow rate of the refrigerant flowing into the air evaporator 14, cooling is performed.
  • the decrease in the amount of heat absorbed by the evaporator 17 can be suppressed as much as possible.
  • step S1420 the air after passing through the air evaporator 14 can be heated by the heater core 22.
  • the indoor blower 53 and the high temperature side pump 21 are operated, and the air mix door 54 is operated so as to open the air passage of the heater core 22.
  • step S1430 the second expansion valve 16 is fully closed and the electric heater 25 is operated.
  • the flow rate of the refrigerant in the air evaporator 14 increases, so that the refrigerating machine oil staying in the air evaporator 14 can be easily recovered.
  • the electric heater 25 By operating the electric heater 25, it is possible to suppress a decrease in the temperature of the blown air into the vehicle interior. That is, since the refrigerant does not flow to the cooling evaporator 17, the amount of heat absorbed by the cooling evaporator 17 may decrease, and the amount of heating of the cooling water in the condenser 12 may decrease. Therefore, the electric heater 25 is used. By operating it, it is possible to compensate for the decrease in the heating amount of the cooling water in the condenser 12, and it is possible to suppress the decrease in the heating amount of the air in the heater core 22.
  • step S1440 the inside / outside air switching door 52a is controlled so that the inside air ratio of the air introduced into the air conditioning casing 51 increases, and the indoor blower 53 is controlled so that the air volume of the air introduced into the air conditioning casing 51 increases. do.
  • the temperature of the air flowing into the air evaporator 14 rises, so that the heat exchange load of the air evaporator 14 increases.
  • the heat exchange load of the air evaporator 14 increases.
  • the rotation speed of the compressor 11 increases, so that the refrigerant flow rate in the air evaporator 14 increases and the refrigerating machine oil staying in the air evaporator 14 is easily recovered.
  • the temperature of the air flowing into the air evaporator 14 rises, the temperature of the refrigerating machine oil staying in the air evaporator 14 also rises and the viscosity of the refrigerating machine oil decreases, so that the refrigerating machine oil can be easily recovered.
  • step S1450 it is determined whether or not a predetermined time T1 (for example, 10 seconds) has elapsed since the first expansion valve 13 was opened in step S1410. If it is determined in step S1450 that the predetermined time T1 has elapsed, the process proceeds to step S1460 to end the oil recovery control. That is, it returns to the control state before executing the oil recovery control. If it is determined in step S1450 that the predetermined time T1 has not elapsed, step S1450 is repeated.
  • a predetermined time T1 for example, 10 seconds
  • control device 60 executes the oil recovery control when it is determined that the first expansion valve 13 closes the flow path and the refrigerating machine oil is retained in the air evaporator 14.
  • the first expansion valve 13 is controlled so as to open the refrigerant flow path.
  • the refrigerant flows to the air evaporator 14 by opening the refrigerant flow path by the first expansion valve 13, the refrigerating machine oil staying in the air evaporator 14 can be returned to the compressor 11.
  • the control device 60 operates the indoor blower 53 when the oil recovery control is being executed.
  • the air cooled by the air evaporator 14 during oil recovery control can be heated by the condenser 12 and blown out into the vehicle interior space, so that condensed water is generated by the air evaporator 14 during oil recovery control. Even if the condensed water freezes, the relative humidity of the blown air can be lowered to make the odor less noticeable.
  • the rotation speed control (in other words, the discharge capacity control) for increasing or decreasing the rotation speed (in other words, the refrigerant discharge capacity) of the compressor 11 is performed.
  • the opening degree control for increasing or decreasing the opening degree of the first expansion valve 13.
  • the refrigerant flowing through the air evaporator 14 can be pulsated during oil recovery control, and the refrigerating machine oil staying in the air evaporator 14 can be effectively returned to the compressor 11.
  • the flow rate of the refrigerant flowing into the air evaporator 14 is larger than the flow rate of the refrigerant flowing into the cooling evaporator 17.
  • the first expansion valve 13 and the second expansion valve 16 are controlled.
  • the flow rate of the refrigerant flowing through the air evaporator 14 can be increased as much as possible, and the refrigerating machine oil staying in the air evaporator 14 can be effectively returned to the compressor 11.
  • the control device 60 operates the electric heater 25 when the oil recovery control is being executed.
  • the control device 60 operates the electric heater 25 when the oil recovery control is being executed.
  • the flow rate of the refrigerant flowing into the cooling evaporator 17 is larger than the flow rate of the refrigerant flowing into the air evaporator 14.
  • the first expansion valve 13 and the second expansion valve 16 are controlled.
  • control device 60 determines that the refrigerating machine oil is retained in the air evaporator 14 when the first expansion valve 13 is closed for a predetermined time or longer. Thereby, it can be appropriately determined whether or not the refrigerating machine oil is retained in the air evaporator 14.
  • control device 60 executes the oil recovery control when the compressor 11 is changed from the stopped state to the started state and the first expansion valve 13 closes the flow path.
  • the refrigerating machine oil staying in the air evaporator 14 can be quickly returned to the compressor 11 by the refrigerant flowing back into the air evaporator 14 while the compressor 11 is stopped.
  • the control device 60 the higher the heat exchange load of the air evaporator 14, the higher the rotation speed of the compressor 11, and when the oil recovery control is executed, the ratio of the inside air is higher than the ratio of the outside air.
  • the inside / outside air switching door 52a is controlled so as to be large.
  • the heat exchange load of the air evaporator 14 can be increased and the flow rate of the discharged refrigerant of the compressor 11 can be increased during the oil recovery control, the flow rate of the refrigerant flowing into the air evaporator 14 can be increased. , The refrigerating machine oil staying in the air evaporator 14 can be effectively returned to the compressor 11.
  • the viscosity of the refrigerating machine oil staying in the air evaporator 14 can be lowered, so that the refrigerating machine oil staying in the air evaporator 14 can be reduced. It can be effectively returned to the compressor 11.
  • the air volume of the indoor blower 53 is increased more than the normal air volume. According to this, since the heat exchange load of the air evaporator 14 can be increased to increase the flow rate of the discharged refrigerant of the compressor 11 during the oil recovery control, the flow rate of the refrigerant flowing into the air evaporator 14 can be increased. , The refrigerating machine oil staying in the air evaporator 14 can be effectively returned to the compressor 11.
  • the oil recovery control is executed when the air evaporator 14 has oil stagnation, but in the present embodiment, the air evaporator 14 has oil stagnation and the refrigerating cycle device 10 is warming up. Execute oil recovery control in some cases.
  • the control device 60 executes the oil recovery control shown in the flowchart of FIG. 9 in order to prevent the oil from falling asleep in the air evaporator 14.
  • step S135 is added to the flowchart of FIG. 7 of the first embodiment.
  • step S120 If it is determined in step S120 that the sleep amount counter tn exceeds the threshold value ⁇ 1, it is determined that there is oil sleep and the process proceeds to step S135. If it is determined in step S120 that the sleep amount counter tn does not exceed the threshold value ⁇ 1, the process proceeds to step S130, and it is determined whether or not the compressor 11 has changed from the stopped state to the activated state. If it is determined in step S130 that the compressor 11 has changed from the stopped state to the activated state, it is determined that there is oil stagnation, and the process proceeds to step S135. If it is determined in step S130 that the compressor 11 has not changed from the stopped state to the started state, it is determined that there is no oil stagnation, and the process returns to step S100.
  • step S135 it is determined whether or not the air volume of the indoor blower 53 is controlled to be less than or equal to the warm-up air volume. If it is determined in step S135 that the air volume of the indoor blower 53 is controlled by the warm-up air volume, the process proceeds to step S140 and oil recovery control is performed. As a result, the oil recovery control is performed when the air volume of the indoor blower 53 is small, so that condensed water is generated in the air evaporator 14 or the condensed water freezes during oil recovery, which is unpleasant in the passenger compartment. It is possible to suppress the generation of odor. Since the oil is recovered without increasing the amount of air blown to the air evaporator 14, the oil can be recovered without delaying the warm-up of the refrigerating cycle device 10.
  • step S135 If it is determined in step S135 that the air volume of the indoor blower 53 is not controlled by the warm-up air volume, it is determined that if the oil is recovered, an unpleasant odor may be generated in the vehicle interior, and the oil is used. Return to step 100 without collecting.
  • control device 60 executes the oil recovery control when it is determined that the refrigerating machine oil is retained in the air evaporator 14 and the indoor blower 53 is controlled by the warm-up air volume.
  • the backflow prevention valve 19 is a backflow prevention unit that prevents the refrigerant stored in the receiver 18 from flowing back to the air evaporator 14 after the compressor 11 is stopped.
  • the check valve 19 is arranged on the downstream side of the refrigerant flow of the air evaporator 14 and on the upstream side of the refrigerant flow of the confluence portion 10b.
  • the check valve 19 allows the refrigerant to flow from the air evaporator 14 toward the merging portion 10b, and prohibits the refrigerant from flowing from the merging portion 10b toward the air evaporator 14.
  • the check valve 19 is a spring type check valve that closes the valve body by the force of the spring at the time of backflow.
  • the check valve 19 may be a solenoid valve controlled by the control device 60.
  • the air evaporator 14 is caused by the refrigerant flowing back to the air evaporator 14. It is possible to prevent the refrigerating machine oil from staying in the air.
  • the check valve 19 allows the refrigerant to flow from the air evaporator 14 toward the merging portion 10b, and prohibits the refrigerant from flowing from the merging portion 10b toward the air evaporator 14. ..
  • cooling water is used as the heat medium, but various media such as oil may be used as the heat medium.
  • a nanofluid may be used as the heat medium.
  • the nanofluid is a fluid in which nanoparticles having a particle size on the order of nanometers are mixed.
  • a fluorocarbon-based refrigerant is used as the refrigerant, but the type of the refrigerant is not limited to this, and a natural refrigerant such as carbon dioxide, a hydrocarbon-based refrigerant, or the like may be used. good.
  • the refrigeration cycle 10 of the above embodiment constitutes a subcritical refrigeration cycle in which the high pressure side refrigerant pressure does not exceed the critical pressure of the refrigerant, but the supercritical refrigeration cycle in which the high pressure side refrigerant pressure exceeds the critical pressure of the refrigerant. It may be configured.
  • the high temperature side radiator 23 and the low temperature side radiator 32 are separate radiators, but the high temperature side radiator 23 and the low temperature side radiator 32 may be composed of one radiator.
  • the high temperature side radiator 23 and the low temperature side radiator 32 may be configured by one radiator by integrating the tank of the high temperature side radiator 23 and the tank of the low temperature side radiator 32 with each other.
  • the first expansion valve 13 is integrally composed of a pressure reducing portion for reducing the pressure of the refrigerant and an opening degree adjusting portion for adjusting the opening degree of the flow path of the refrigerant.
  • the degree adjustment unit may be separate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

冷媒を吸入して圧縮し吐出する圧縮機(11)と、圧縮機から吐出された冷媒と空調対象空間へ送風される空気とを熱交換させて空気に放熱させる放熱部(12、20、22)と、冷媒を減圧させるとともに、冷媒の流路を閉じることが可能な第1減圧部(13)と、第1減圧部で減圧された冷媒と空気とを熱交換させて空気から吸熱させることによって冷媒を蒸発させる第1蒸発部(14)と、冷媒の流れにおいて第1減圧部と並列に配置され、冷媒を減圧させる第2減圧部(16)と、第2減圧部で減圧された冷媒に吸熱させることによって冷媒を蒸発させる第2蒸発部(17)と、第1減圧部が流路を閉じており、且つ冷媒に混入している冷凍機油が第1蒸発部に滞留していると判定された場合、流路を開けるように第1減圧部を制御するオイル回収制御を実行する制御部(60)とを備える。

Description

冷凍サイクル装置 関連出願の相互参照
 本出願は、2020年10月5日に出願された日本特許出願2020-168603号に基づくもので、ここにその記載内容を援用する。
 本開示は、複数個の蒸発器を有する冷凍サイクル装置に関する。
 従来、特許文献1には、車室内の空調と電池の冷却とを行うことのできる冷凍サイクル装置が記載されている。
 この従来技術の冷凍サイクル装置では、第1膨張弁および空気冷却用蒸発器と、第2膨張弁及び冷却水冷却用蒸発器とが冷媒流れにおいて並列に接続されている。
 第1膨張弁は、空気冷却用蒸発器に流入する冷媒を減圧する。空気冷却用蒸発器は、車室内に送風される空気を冷却する。第2膨張弁は、冷却水冷却蒸発器に流入する冷媒を減圧する。冷却水冷却用蒸発器は、車室内に送風される空気を冷却する。
 暖房モードでは、第1膨張弁を閉弁させることによって空気冷却用蒸発器への冷媒の流入を遮断して、空気冷却用蒸発器での空気の冷却を停止させる。
特開2019-26111号公報
 上記従来技術では、暖房モード時に第1膨張弁を閉弁させることによって空気冷却用蒸発器への冷媒の流入を遮断するが、空気冷却用蒸発器への冷媒の流入を完全に遮断し切れない場合がある。その場合、冷媒中に混入された冷凍機油が空気冷却用蒸発器に溜まってしまい、圧縮機の潤滑不足を招くおそれがある。
 本開示は上記点に鑑みて、蒸発器に溜まった冷凍機油を効果的に回収することを目的とする。
 本開示の一態様による冷凍サイクル装置は、圧縮機と、放熱部と、第1減圧部と、第1蒸発部と、第2減圧部と、第2蒸発部と、制御部とを備える。
 圧縮機は、冷媒を吸入して圧縮し吐出する。放熱部は、圧縮機から吐出された冷媒と空調対象空間へ送風される空気とを熱交換させて空気に放熱させる。
 第1減圧部は、冷媒を減圧させるとともに、冷媒の流路を閉じることが可能である。第1蒸発部は、第1減圧部で減圧された冷媒と空気とを熱交換させて空気から吸熱させることによって冷媒を蒸発させる。
 第2減圧部は、冷媒の流れにおいて第1減圧部と並列に配置され、冷媒を減圧させる。第2蒸発部は、第2減圧部で減圧された冷媒に吸熱させることによって冷媒を蒸発させる。
 制御部は、第1減圧部が流路を閉じており、且つ冷媒に混入している冷凍機油が第1蒸発部に滞留していると判定された場合、流路を開けるように第1減圧部を制御するオイル回収制御を実行する。
 これによると、第1減圧部が冷媒の流路を開けることによって第1蒸発部に冷媒が流れるので、第1蒸発部に滞留している冷凍機油を圧縮機に戻すことができる。
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確となる。
第1実施形態における冷凍サイクル装置の全体構成図である。 第1実施形態における冷凍サイクル装置の電気制御部を示すブロック図である。 第1実施形態における冷凍サイクル装置の冷房モードでの作動状態を示す全体構成図である。 第1実施形態における冷凍サイクル装置の暖房モードでの作動状態を示す全体構成図である。 第1実施形態における冷凍サイクル装置の除湿暖房モードでの作動状態を示す全体構成図である。 第1実施形態における冷凍サイクル装置の電池冷却モードでの作動状態を示す全体構成図である。 第1実施形態の制御装置が実行する制御処理の一部を示すフローチャートである。 第1実施形態の制御装置が実行する制御処理の一部を示すフローチャートである。 第2実施形態の制御装置が実行する制御処理の一部を示すフローチャートである。 第3実施形態における冷凍サイクル装置の全体構成図である。
 以下に、図面を参照しながら本開示を実施するための複数の形態を説明する。各実施形態において先行する実施形態で説明した事項に対応する部分には同一の参照符号を付して重複する説明を省略する場合がある。各実施形態において構成の一部のみを説明している場合は、構成の他の部分については先行して説明した他の実施形態を適用することができる。各実施形態で具体的に組み合わせが可能であることを明示している部分同士の組み合わせばかりではなく、特に組み合わせに支障が生じなければ、明示してなくとも実施形態同士を部分的に組み合わせることも可能である。
 (第1実施形態)
 以下、実施形態について図に基づいて説明する。図1に示す車両用空調装置1は、車室内空間(換言すれば、空調対象空間)を適切な温度に調整する空調装置である。車両用空調装置1は、冷凍サイクル装置10を有している。本実施形態では、冷凍サイクル装置10を、エンジン(換言すれば内燃機関)および走行用電動モータから車両走行用の駆動力を得るハイブリッド自動車に搭載されている。
 本実施形態のハイブリッド自動車は、車両停車時に外部電源(換言すれば商用電源)から供給された電力を、車両に搭載された電池(換言すれば車載バッテリ)に充電可能なプラグインハイブリッド自動車として構成されている。電池としては、例えばリチウムイオン電池を用いることができる。
 エンジンから出力される駆動力は、車両走行用として用いられるのみならず、発電機を作動させるためにも用いられる。そして、発電機にて発電された電力および外部電源から供給された電力を電池に蓄わえることができ、電池に蓄えられた電力は、走行用電動モータのみならず、冷凍サイクル装置10を構成する電動式構成機器をはじめとする各種車載機器に供給される。
 冷凍サイクル装置10は、圧縮機11、凝縮器12、レシーバ18、第1膨張弁13、空気用蒸発器14、定圧弁15、第2膨張弁16および冷却用蒸発器17を備える蒸気圧縮式冷凍機である。本実施形態の冷凍サイクル装置10では、冷媒としてフロン系冷媒を用いており、高圧側冷媒圧力が冷媒の臨界圧力を超えない亜臨界冷凍サイクルを構成している。冷媒には、圧縮機11を潤滑するための冷凍機油(具体的には、PAGオイル)が混入されている。冷凍機油の一部は、冷媒とともにサイクルを循環している。
 圧縮機11は、電池から供給される電力によって駆動される電動圧縮機であり、冷凍サイクル装置10の冷媒を吸入して圧縮して吐出する。圧縮機11は、ベルトによって駆動される可変容量圧縮機であってもよい。
 凝縮器12は、圧縮機11から吐出された高圧側冷媒と高温冷却水回路20の冷却水とを熱交換させることによって高圧側冷媒を凝縮させる高圧側冷媒熱媒体熱交換器である。
 高温冷却水回路20の冷却水は、熱媒体としての流体である。高温冷却水回路20の冷却水は高温熱媒体である。本実施形態では、高温冷却水回路20の冷却水として、少なくともエチレングリコール、ジメチルポリシロキサンもしくはナノ流体を含む液体、または不凍液体が用いられている。高温冷却水回路20は、高温熱媒体が循環する高温熱媒体回路である。
 レシーバ18は、凝縮器12から流出した冷媒の気液を分離して液相冷媒を下流側に流出させるとともに、サイクルの余剰冷媒を貯える気液分離部である。レシーバ18から流出した液相冷媒の流れは、分岐部10aにて分岐される。
 第1膨張弁13は、レシーバ18から流出した液相冷媒を減圧膨張させる第1減圧部である。第1膨張弁13は、電気式の可変絞り機構であり、弁体と電動アクチュエータとを有している。弁体は、冷媒の流路の開度(換言すれば絞り開度)を変更可能に構成されている。電動アクチュエータは、弁体の絞り開度を変化させるステッピングモータを有している。
 第1膨張弁13は、冷媒の流路を全閉する全閉機能付きの可変絞り機構で構成されている。つまり、第1膨張弁13は、冷媒の流路を全閉にすることで冷媒の流れを遮断することができる。第1膨張弁13の作動は、図2に示す制御装置60から出力される制御信号によって制御される。
 空気用蒸発器14は、第1膨張弁13から流出した冷媒と車室内へ送風される空気とを熱交換させて車室内へ送風される空気を冷却する冷媒空気熱交換器である。空気用蒸発器14は、車室内へ送風される空気から冷媒に吸熱させて冷媒を蒸発させる第1蒸発部である。
 定圧弁15は、空気用蒸発器14の出口側における冷媒の圧力を所定値に維持する圧力調整部(換言すれば圧力調整用減圧部)である。定圧弁15は、機械式の可変絞り機構で構成されている。具体的には、定圧弁15は、空気用蒸発器14の出口側における冷媒の圧力が所定値を下回ると冷媒の流路の面積(すなわち絞り開度)を減少させ、空気用蒸発器14の出口側における冷媒の圧力が所定値を超えると冷媒の流路の面積(すなわち絞り開度)を増加させる。
 サイクルを循環する循環冷媒流量の変動が少ない場合等には、定圧弁15に代えて、オリフィス、キャピラリチューブ等からなる固定絞りを採用してもよい。
 第2膨張弁16および冷却用蒸発器17は、冷媒の流れにおいて、第1膨張弁13、空気用蒸発器14および定圧弁15に対して並列に配置されている。
 第2膨張弁16は、凝縮器12から流出した液相冷媒を減圧膨張させる第2減圧部である。第2膨張弁16は、電気式の可変絞り機構であり、弁体と電動アクチュエータとを有している。弁体は、冷媒の流路の開度(換言すれば絞り開度)を変更可能に構成されている。電動アクチュエータは、弁体の絞り開度を変化させるステッピングモータを有している。
 第2膨張弁16は、冷媒の流路を全閉する全閉機能付きの可変絞り機構で構成されている。つまり、第2膨張弁16は、冷媒の流路を全閉にすることで冷媒の流れを遮断することができる。第2膨張弁16の作動は、制御装置60から出力される制御信号によって制御される。
 冷却用蒸発器17は、第2膨張弁16を流出した低圧冷媒と低温冷却水回路30の冷却水とを熱交換させることによって冷却水を冷却する低圧側冷媒熱媒体熱交換器である。冷却用蒸発器17は、冷却水から冷媒に吸熱させて冷媒を蒸発させる第2蒸発部である。冷却用蒸発器17で蒸発した気相冷媒は、定圧弁15から流出した冷媒と合流部10bにて合流した後、圧縮機11に吸入されて圧縮される。
 低温冷却水回路30の冷却水は、熱媒体としての流体である。低温冷却水回路30の冷却水は低温熱媒体である。本実施形態では、低温冷却水回路30の冷却水として、少なくともエチレングリコール、ジメチルポリシロキサンもしくはナノ流体を含む液体、または不凍液体が用いられている。低温冷却水回路30は、低温熱媒体が循環する低温熱媒体回路である。
 高温冷却水回路20には、凝縮器12、高温側ポンプ21、ヒータコア22、高温側ラジエータ23、開閉弁24および電気ヒータ25が配置されている。
 高温側ポンプ21は、冷却水を吸入して吐出する熱媒体ポンプである。高温側ポンプ21は電動式のポンプである。高温側ポンプ21は、高温冷却水回路20を循環する冷却水の流量を調整する高温側流量調整部である。低温側ポンプ31は、低温冷却水回路30を循環する冷却水の流量を調整する低温側流量調整部である。
 ヒータコア22は、高温冷却水回路20の冷却水と車室内へ送風される空気とを熱交換させて車室内へ送風される空気を加熱する空気加熱用熱交換器である。ヒータコア22では、冷却水が車室内へ送風される空気に放熱する。凝縮器12、高温冷却水回路20およびヒータコア22は、圧縮機11から吐出された冷媒と車室内へ送風される空気とを熱交換させて空気に放熱させる放熱部である。
 高温側ラジエータ23は、高温冷却水回路20の冷却水と外気とを熱交換させる高温熱媒体外気熱交換器である。高温側ラジエータ23および開閉弁24は、高温側冷却水の流れにおいて、ヒータコア22に対して並列に配置されている。
 開閉弁24は、高温側ラジエータ23側の冷却水流路を開閉する電磁弁である。開閉弁24の作動は、制御装置60によって制御される。開閉弁24は、高温冷却水回路20における冷却水の流れを切り替える高温切替部である。
 開閉弁24は、サーモスタットであってもよい。サーモスタットは、温度によって体積変化するサーモワックスによって弁体を変位させて冷却水流路を開閉する機械的機構を備える冷却水温度応動弁である。
 電気ヒータ25は、高温冷却水回路20の冷却水を補助的に加熱する補助加熱部である。電気ヒータ25は、ヒータコア22で空気を加熱するための補助的な熱源である。電気ヒータ25としては、電力を供給されることによって発熱するPTCヒータ等を採用することができる。電気ヒータ25は、ジュール熱を発生するジュール熱発生部である。電気ヒータ25の発熱量は、制御装置60から出力される制御電圧によって制御される。
 低温冷却水回路30には、冷却用蒸発器17、低温側ポンプ31、低温側ラジエータ32、電池33および三方弁38が配置されている。
 低温側ポンプ31は、冷却水を吸入して吐出する熱媒体ポンプである。低温側ポンプ31は電動式のポンプである。低温側ラジエータ32は、低温冷却水回路30の冷却水と外気とを熱交換させる低温熱媒体外気熱交換器である。
 電池33は、車両に搭載された車載機器であり、作動に伴って発熱する発熱機器である。電池33は、作動に伴って発生する廃熱を低温冷却水回路30の冷却水に放熱する。換言すれば、電池33は、低温冷却水回路30の冷却水に熱を供給する。
 低温側ラジエータ32および電池33は、低温側冷却水の流れにおいて互いに並列に配置されている。三方弁38は、低温側ラジエータ32および電池33に対する低温側冷却水の流れを切り替える。三方弁38の作動は、制御装置60によって制御される。
 空気用蒸発器14およびヒータコア22は、図1に示す室内空調ユニット50のケーシング51(以下、空調ケーシングと言う。)に収容されている。室内空調ユニット50は、車室内前部の図示しない計器盤の内側に配置されている。空調ケーシング51は、空気通路を形成する空気通路形成部材である。
 ヒータコア22は、空調ケーシング51内の空気通路において、空気用蒸発器14の空気流れ下流側に配置されている。空調ケーシング51には、内外気切替箱52と室内送風機53とが配置されている。内外気切替箱52は、内外気切替ドア52aを有している。内外気切替ドア52aは、空調ケーシング51内の空気通路に内気と外気とを切替導入する内外気切替部である。内外気切替ドア52aは、空調ケーシング51内の空気通路に導入される内気と外気との比率を調整する内外気調整部である。
 室内送風機53は、内外気切替箱52を通して空調ケーシング51内の空気通路に導入された内気および外気を吸入して送風する。内外気切替ドア52aおよび室内送風機53は、制御装置60によって制御される。
 空調ケーシング51内の空気通路において空気用蒸発器14とヒータコア22との間には、エアミックスドア54が配置されている。エアミックスドア54は、空気用蒸発器14を通過した冷風のうちヒータコア22に流入する冷風と冷風バイパス通路55を流れる冷風との風量割合を調整する。
 冷風バイパス通路55は、空気用蒸発器14を通過した冷風がヒータコア22をバイスして流れる空気通路である。
 エアミックスドア54は、空調ケーシング51に対して回転可能に支持された回転軸と、回転軸に結合されたドア基板部とを有する回転式ドアである。エアミックスドア54の開度位置を調整することによって、空調ケーシング51から車室内に吹き出される空調風の温度を所望温度に調整できる。
 エアミックスドア54の回転軸は、サーボモータによって駆動される。サーボモータの作動は、制御装置60によって制御される。
 エアミックスドア54は、空気流れと略直交する方向にスライド移動するスライドドアであってもよい。スライドドアは、剛体で形成された板状のドアであってもよいし。可撓性を有するフィルム材で形成されたフィルムドアであってもよい。
 エアミックスドア54によって温度調整された空調風は、空調ケーシング51に形成された吹出口56から車室内へ吹き出される。
 図2に示す制御装置60は、CPU、ROMおよびRAM等を含む周知のマイクロコンピュータとその周辺回路から構成されている。制御装置60は、ROM内に記憶された制御プログラムに基づいて各種演算、処理を行う。制御装置60の出力側には各種制御対象機器が接続されている。制御装置60は、各種制御対象機器の作動を制御する制御部である。
 制御装置60によって制御される制御対象機器は、圧縮機11、第1膨張弁13、第2膨張弁16、高温側ポンプ21、開閉弁24、電気ヒータ25、低温側ポンプ31、三方弁38、内外気切替ドア52aおよび室内送風機53等である。
 制御装置60のうち圧縮機11の電動モータを制御するソフトウェアおよびハードウェアは、冷媒吐出能力制御部である。制御装置60のうち第1膨張弁13を制御するソフトウェアおよびハードウェアは、第1絞り制御部である。制御装置60のうち第2膨張弁16を制御するソフトウェアおよびハードウェアは、第2絞り制御部である。
 制御装置60のうち高温側ポンプ21を制御するソフトウェアおよびハードウェアは、高温熱媒体流量制御部である。制御装置60のうち開閉弁24を制御するソフトウェアおよびハードウェアは、開閉弁制御部である。
 制御装置60のうち電気ヒータ25を制御するソフトウェアおよびハードウェアは、補助加熱制御部である。制御装置60のうち低温側ポンプ31を制御するソフトウェアおよびハードウェアは、低温熱媒体流量制御部である。制御装置60のうち三方弁38を制御するソフトウェアおよびハードウェアは、三方弁制御部である。
 制御装置60の入力側には、内気温度センサ61、外気温度センサ62、日射量センサ63、蒸発器温度センサ64、ヒータコア温度センサ65、冷媒圧力センサ66、高温冷却水温度センサ67、低温冷却水温度センサ68、窓表面湿度センサ69等の種々の制御用センサ群が接続されている。
 内気温度センサ61は車室内温度Trを検出する。外気温度センサ62は外気温Tamを検出する。日射量センサ63は車室内の日射量Asを検出する。
 蒸発器温度センサ64は、冷却用蒸発器17の温度TEを検出する温度検出部である。蒸発器温度センサ64は、例えば、冷却用蒸発器17の熱交換フィンの温度を検出するフィンサーミスタや、冷却用蒸発器17を流れる冷媒の温度を検出する冷媒温度センサ等である。
 ヒータコア温度センサ65は、ヒータコア22の温度THを検出する温度検出部である。ヒータコア温度センサ65は、例えば、ヒータコア22の熱交換フィンの温度を検出するフィンサーミスタや、ヒータコア22を流れる冷却水の温度を検出する冷媒温度センサ、ヒータコア22から流出した空気の温度を検出する空気温度センサ等である。
 冷媒圧力センサ66は、圧縮機11から吐出された冷媒の圧力を検出する冷媒圧力検出部である。冷媒圧力センサ66の代わりに冷媒温度センサが制御装置60の入力側に接続されていてもよい。冷媒温度センサは、圧縮機11から吐出された冷媒の温度を検出する冷媒圧力検出部である。制御装置60は、冷媒の温度に基づいて冷媒の圧力を推定してもよい。
 高温冷却水温度センサ67は、高温冷却水回路20の冷却水の温度を検出する温度検出部である。例えば、高温冷却水温度センサ67は、凝縮器12の冷却水の温度を検出する。
 低温冷却水温度センサ68は、低温冷却水回路30の冷却水の温度を検出する温度検出部である。例えば、低温冷却水温度センサ68は、冷却用蒸発器17の冷却水の温度を検出する。
 窓表面湿度センサ69は、窓近傍湿度センサ、窓近傍空気温度センサおよび窓表面温度センサで構成されている。
 窓近傍湿度センサは、車室内のフロントガラス近傍の車室内空気の相対湿度(以下、窓近傍相対湿度と言う。)を検出する。窓近傍空気温度センサは、フロントガラス近傍の車室内空気の温度を検出する。窓表面温度センサは、フロントガラスの表面温度を検出する。
 制御装置60の入力側には、図示しない各種操作スイッチが接続されている。各種操作スイッチは操作パネル70に設けられており、乗員によって操作される。操作パネル70は車室内前部の計器盤付近に配置されている。制御装置60には、各種操作スイッチからの操作信号が入力される。
 各種操作スイッチは、エアコンスイッチ、温度設定スイッチ等である。エアコンスイッチは、室内空調ユニット50にて空気の冷却を行うか否かを設定する。温度設定スイッチは、車室内の設定温度を設定する。
 次に、上記構成における作動を説明する。制御装置60は、目標吹出温度TAO等に基づいて空調の運転モードを、図3に示す冷房モード、図4に示す暖房モードおよび図5に示す除湿暖房モードのいずれかに切り替える。
 目標吹出温度TAOは、車室内へ吹き出す吹出空気の目標温度である。目標吹出温度TAOは、車両用空調装置1に要求される空調負荷(換言すれば、空調熱負荷)を示す指標である。制御装置60は、目標吹出温度TAOを以下の数式F1に基づいて算出する。
TAO=Kset×Tset-Kr×Tr-Kam×Tam-Ks×As+C…(F1)
 この数式において、Tsetは操作パネル70の温度設定スイッチによって設定された車室内設定温度、Trは内気温度センサ61によって検出された内気温、Tamは外気温度センサ62によって検出された外気温、Asは日射量センサ63によって検出された日射量である。Kset、Kr、Kam、Ksは制御ゲインであり、Cは補正用の定数である。
 制御装置60は、暖房モードにおいて、車両の窓が曇る可能性があると判定した場合、除湿暖房モードに切り替える。例えば、制御装置60は、暖房モードにおいて、窓表面湿度センサ69の検出値に基づいて車室内側表面の相対湿度RHW(以下、窓表面相対湿度と言う。)を算出し、車室内側表面の相対湿度RHWに基づいて車両の窓が曇る可能性があるか否かを判定する。
 窓表面相対湿度RHWは、フロントガラスが曇る可能性を表す指標である。具体的には、窓表面相対湿度RHWの値が大きいほど、フロントガラスが曇る可能性が高いことを意味する。
 次に、冷房モード、暖房モードおよび除湿暖房モードにおける作動について説明する。
 (冷房モード)
 冷房モードでは、制御装置60が、第1膨張弁13を絞り状態とし、第2膨張弁16を全閉状態とする。
 制御装置60は、目標吹出温度TAO、センサ群の検出信号等に基づいて、制御装置60に接続された各種制御機器の作動状態(各種制御機器へ出力する制御信号)を決定する。
 圧縮機11へ出力される制御信号(換言すれば、圧縮機11の回転数)については、目標蒸発器温度TEOと冷却用蒸発器17の温度TEとの偏差に基づいて、フィードバック制御手法により、冷却用蒸発器17の温度TEが目標蒸発器温度TEOに近づくように決定される。
 目標蒸発器温度TEOは、目標吹出温度TAOに基づいて、制御装置60に記憶された制御マップを参照して決定される。本実施形態の制御マップでは、目標吹出温度TAOの上昇に伴って、目標蒸発器温度TEOが上昇するように決定される。
 室内送風機53へ出力される制御信号(換言すれば、室内送風機53の風量)については、目標吹出温度TAOに基づいて決定される。例えば、室内送風機53へ出力される制御信号は、目標吹出温度TAOの高温域および低温域では室内送風機53の風量が多くなるように決定される。
 第1膨張弁13へ出力される制御信号(換言すれば、第1膨張弁13の絞り開度)については、圧縮機11へ流入する冷媒の過熱度が、サイクルの成績係数(いわゆるCOP)を最大値に近づくように予め定められた目標過熱度に近づくように決定される。
 エアミックスドア54のサーボモータへ出力される制御信号については、エアミックスドア54が図3に示す位置に操作されてヒータコア22の空気通路を閉塞し、空気用蒸発器14を通過した送風空気の全流量がヒータコア22の空気通路を迂回して流れるように決定される。
 冷房モードでは、圧縮機11および高温側ポンプ21を作動させる。冷房モードでは、開閉弁24は、高温側ラジエータ23側の冷却水流路を開ける。これにより、高温冷却水回路20では、図3の太実線に示すように、高温側ラジエータ23に冷却水が循環してラジエータ23で冷却水から外気に放熱される。
 このとき、ヒータコア22にも高温冷却水回路20の冷却水が循環するが、エアミックスドア54がヒータコア22の空気通路を閉塞しているので、ヒータコア22では冷却水から空気への放熱が殆ど行われない。
 冷房モード時の冷凍サイクル装置10では、図3の太実線に示すように冷媒が流れ、サイクルを循環する冷媒の状態については、以下のように変化する。
 すなわち、圧縮機11から吐出された高圧冷媒が凝縮器12に流入する。凝縮器12に流入した冷媒は、高温冷却水回路20の冷却水に放熱する。これにより、凝縮器12で冷媒が冷却されて凝縮する。
 凝縮器12から流出した冷媒は、第1膨張弁13へ流入して、第1膨張弁13にて低圧冷媒となるまで減圧膨張される。第1膨張弁13にて減圧された低圧冷媒は、空気用蒸発器14に流入し、車室内へ送風される空気から吸熱して蒸発する。これにより、車室内へ送風される空気が冷却される。
 そして、空気用蒸発器14から流出した冷媒は、圧縮機11の吸入側へと流れて再び圧縮機11にて圧縮される。
 以上の如く、冷房モードでは、空気用蒸発器14にて低圧冷媒に空気から吸熱させて、冷却された空気を車室内へ吹き出すことができる。これにより、車室内の冷房を実現することができる。
 冷房モードでは、電池33を冷却する必要がある場合、第2膨張弁16を絞り状態とするとともに低温側ポンプ31を作動させる。
 これにより、図3の実線矢印に示すように、凝縮器12から流出した冷媒は、第2膨張弁16へ流入して、第2膨張弁16にて低圧冷媒となるまで減圧膨張される。第2膨張弁16にて減圧された低圧冷媒は、冷却用蒸発器17に流入し、低温冷却水回路30の冷却水から吸熱して蒸発する。これにより、低温冷却水回路30の冷却水が冷却される。
 電池33を冷却する必要がある場合、三方弁38は、図3の実線矢印に示すように、低温冷却水回路30の冷却水が電池33に循環する状態にする。これにより、低温冷却水回路30の冷却水によって電池33が冷却される。
 (暖房モード)
 暖房モードでは、制御装置60は、第1膨張弁13を全閉状態とし、第2膨張弁16を絞り状態とする。
 制御装置60は、目標吹出温度TAO、センサ群の検出信号等に基づいて、制御装置60に接続された各種制御機器の作動状態(各種制御機器へ出力する制御信号)を決定する。
 圧縮機11へ出力される制御信号(換言すれば、圧縮機11の回転数)については、目標ヒータコア温度THOとヒータコア22の温度THとの偏差に基づいて、フィードバック制御手法により、ヒータコア22の温度THが目標ヒータコア温度THOに近づくように決定される。
 目標ヒータコア温度THOは、目標吹出温度TAOに基づいて、制御装置60に記憶された制御マップを参照して決定される。本実施形態の制御マップでは、目標吹出温度TAOの上昇に伴って、目標ヒータコア温度THOが上昇するように決定される。
 圧縮機11へ出力される制御信号は、目標凝縮器温度TCOと凝縮器12の温度TCとの偏差に基づいて、フィードバック制御手法により、凝縮器12の温度TCが目標凝縮器温度TCOに近づくように決定されてもよい。
 室内送風機53へ出力される制御信号(換言すれば、室内送風機53の風量)については、冷房モードと同様に、目標吹出温度TAOに基づいて決定される。例えば、室内送風機53へ出力される制御信号は、目標吹出温度TAOの高温域および低温域では室内送風機53の風量が多くなるように決定される。目標吹出温度TAOに基づいて決定される室内送風機53の風量を、以下、通常風量と言う。
 圧縮機11を起動した直後の暖機中においては、室内送風機53の風量が、通常風量よりも少ない暖機風量に決定される。これにより、暖機時に冷たい空気が乗員に吹き出されて乗員が寒気を感じることを抑制する。
 すなわち、冷凍サイクル装置10の暖機中は吹出空気温度を十分に高くすることができず乗員が吹出空気によって寒気を感じてしまうので、室内送風機53の風量が、通常風量よりも少ない暖機風量に決定される。
 例えば、圧縮機11を起動してからの経過時間が所定時間以下である場合、室内送風機53の風量が暖機風量に決定される。室内空調ユニット50の吹出空気温度が所定温度以下である場合、室内送風機53の風量が暖機風量に決定されてもよい。ヒータコア22の温度THが所定温度以下である場合、室内送風機53の風量が暖機風量に決定されてもよい。
 第2膨張弁16へ出力される制御信号については、冷却用蒸発器17から流出した冷媒の過熱度が、予め定められた目標過熱度に近づくように決定される。目標過熱度は、サイクルの成績係数(いわゆるCOP)を最大値に近づけるように定められている。
 エアミックスドア54のサーボモータへ出力される制御信号については、エアミックスドア54が図4に示す位置に操作されてヒータコア22の空気通路を全開し、空気用蒸発器14を通過した送風空気の全流量がヒータコア22の空気通路を通過するように決定される。
 暖房モードでは、圧縮機11、高温側ポンプ21、低温側ポンプ31を作動させる。暖房モードでは、開閉弁24は、高温側ラジエータ23側の冷却水流路を閉じる。これにより、図4の高温冷却水回路20中の太実線に示すように、ヒータコア22に高温冷却水回路20の冷却水が循環してヒータコア22で冷却水から、車室内へ送風される空気に放熱される。
 暖房モードでは、三方弁38が低温側ラジエータ32側の冷却水流路を開ける。これにより、図4の低温冷却水回路30中の太実線に示すように、低温側ラジエータ32に低温冷却水回路30の冷却水が循環する。
 暖房モードの冷凍サイクル装置10では、図4の太実線に示すように冷媒が流れ、サイクルを循環する冷媒の状態については、次のように変化する。
 すなわち、圧縮機11から吐出された高圧冷媒は、凝縮器12へ流入して、高温冷却水回路20の冷却水と熱交換して放熱する。これにより、高温冷却水回路20の冷却水が加熱される。
 凝縮器12から流出した冷媒は、第2膨張弁16に流入し、低圧冷媒となるまで減圧される。そして、第2膨張弁16にて減圧された低圧冷媒は、冷却用蒸発器17に流入して、低温冷却水回路30の冷却水から吸熱して蒸発する。
 そして、冷却用蒸発器17から流出した冷媒は、圧縮機11の吸入側へと流れて再び圧縮機11にて圧縮される。
 以上の如く、暖房モードでは、圧縮機11から吐出された高圧冷媒の有する熱を凝縮器12にて高温冷却水回路20の冷却水に放熱させ、高温冷却水回路20の冷却水が有する熱をヒータコア22にて空気に放熱させ、ヒータコア22で加熱された空気を車室内へ吹き出すことができる。これにより、車室内の暖房を実現することができる。
 低温冷却水回路30の冷却水が低温側ラジエータ32を循環するので、外気から低温冷却水回路30の冷却水に吸熱させ、冷却用蒸発器17にて低温冷却水回路30の冷却水から低圧冷媒に吸熱させることができる。したがって、外気の熱を車室内の暖房に利用できる。
 暖房モードの低温冷却水回路30では、図4の実線矢印に示すように、低温冷却水回路30の冷却水を電池33にも循環させることによって、電池33の廃熱を低温冷却水回路30の冷却水に吸熱させ、冷却用蒸発器17にて低温冷却水回路30の冷却水から低圧冷媒に吸熱させることができる。
 したがって、電池33の廃熱を車室内の暖房に利用できる。また、電池33の廃熱を、低温側ラジエータ32の除霜に利用できる。
 なお、低温冷却水回路30の冷却水を電池33にも循環させることによって、電池33の廃熱を車室内の暖房や除霜に利用できる。
 (除湿暖房モード)
 除湿暖房モードでは、制御装置60は、第1膨張弁13を絞り全閉状態とし、第2膨張弁16を全閉状態とする。
 制御装置60は、目標吹出温度TAO、センサ群の検出信号等に基づいて、制御装置60に接続された各種制御機器の作動状態(各種制御機器へ出力する制御信号)を決定する。
 圧縮機11へ出力される制御信号(換言すれば、圧縮機11の回転数)、および室内送風機53へ出力される制御信号(換言すれば、室内送風機53の風量)については、暖房モードと同様に決定される。
 第1膨張弁13へ出力される制御信号については、空気用蒸発器14から流出した冷媒の過熱度が、予め定められた目標過熱度に近づくように決定される。目標過熱度は、サイクルの成績係数(いわゆるCOP)を最大値に近づけるように定められている。
 エアミックスドア54のサーボモータへ出力される制御信号については、エアミックスドア54が、図5に示す位置に操作されてヒータコア22の空気通路を全開し、空気用蒸発器14を通過した送風空気の全流量がヒータコア22の空気通路を通過するように決定される。
 除湿暖房モードでは、圧縮機11、高温側ポンプ21、低温側ポンプ31を作動させる。
 除湿暖房モードでは、開閉弁24は、高温側ラジエータ23側の冷却水流路を閉じる。これにより、除湿暖房モードの高温冷却水回路20では、図5の太実線に示すように、ヒータコア22に高温冷却水回路20の冷却水が循環してヒータコア22で冷却水から、車室内へ送風される空気に放熱される。
 除湿暖房モードの冷凍サイクル装置10では、図5の太実線に示すように冷媒が流れ、サイクルを循環する冷媒の状態については、次のように変化する。
 すなわち、圧縮機11から吐出された高圧冷媒は、凝縮器12へ流入して、高温冷却水回路20の冷却水と熱交換して放熱する。これにより、高温冷却水回路20の冷却水が加熱される。
 凝縮器12から流出した冷媒は、第1膨張弁13に流入し、低圧冷媒となるまで減圧される。そして、第1膨張弁13にて減圧された低圧冷媒は、空気用蒸発器14に流入し、車室内へ送風される空気から吸熱して蒸発する。これにより、車室内へ送風される空気が冷却除湿される。そして、空気用蒸発器14から流出した冷媒は、圧縮機11の吸入側へと流れて再び圧縮機11にて圧縮される。
 以上の如く、除湿暖房モードでは、圧縮機11から吐出された高圧冷媒の有する熱を凝縮器12にて高温冷却水回路20の冷却水に放熱させ、高温冷却水回路20の冷却水が有する熱をヒータコア22にて空気に放熱させる。
 また、第2膨張弁16にて減圧された低圧冷媒に、空気用蒸発器14にて車室内へ送風される空気から吸熱させ、空気用蒸発器14で冷却除湿された空気を、ヒータコア22で加熱して車室内へ吹き出すことができる。これにより、車室内の除湿暖房を実現することができる。
 除湿暖房モードにおいて、第2膨張弁16を絞り状態とすることによって、第2膨張弁16にて減圧された低圧冷媒が冷却用蒸発器17に流入して、低温冷却水回路30の冷却水から吸熱して蒸発する。
 そして、低温冷却水回路30では、図5の太実線に示すように、低温側ラジエータ32に低温冷却水回路30の冷却水を循環させることによって、外気から低温冷却水回路30の冷却水に吸熱させ、冷却用蒸発器17にて低温冷却水回路30の冷却水から低圧冷媒に吸熱させることができる。したがって、外気の熱を車室内の暖房に利用できる。
 また、図5の実線矢印に示すように、冷却用蒸発器17で冷却された冷却水を電池33にも循環させることによって、電池33の廃熱を低温冷却水回路30の冷却水に吸熱させ、冷却用蒸発器17にて低温冷却水回路30の冷却水から低圧冷媒に吸熱させることができる。したがって、電池33の廃熱を車室内の暖房に利用できる。
 このように、本実施形態の車両用空調装置1では、空気用蒸発器14および冷却用蒸発器17に対する冷媒流れと、高温冷却水回路20および低温冷却水回路30における冷却水流れとを切り替えることによって、車室内の適切な冷房、暖房および除湿暖房を実行することができ、ひいては車室内の快適な空調を実現することができる。
 (電池冷却モード)
 空調がOFFされているときに電池33を冷却する必要がある場合、制御装置60は電池冷却モードを実行する。
 電池冷却モードでは、制御装置60は、第1膨張弁13を全閉状態とし、第2膨張弁16を絞り状態とする。
 制御装置60は、電池33の目標温度、センサ群の検出信号等に基づいて、制御装置60に接続された各種制御機器の作動状態(各種制御機器へ出力する制御信号)を決定する。
 圧縮機11へ出力される制御信号(換言すれば、圧縮機11の回転数)については、電池33の目標温度と電池33の温度との偏差に基づいて、フィードバック制御手法により、電池33の温度が目標温度に近づくように決定される。
 第2膨張弁16へ出力される制御信号については、冷却用蒸発器17から流出した冷媒の過熱度が、予め定められた目標過熱度に近づくように決定される。目標過熱度は、サイクルの成績係数(いわゆるCOP)を最大値に近づけるように定められている。
 電池冷却モードでは、圧縮機11、高温側ポンプ21、低温側ポンプ31を作動させる。電池冷却モードでは、開閉弁24は、高温側ラジエータ23側の冷却水流路を開ける。これにより、図6の高温冷却水回路20中の太実線に示すように、高温側ラジエータ23に高温冷却水回路20の冷却水が循環してラジエータ23で冷却水から外気に放熱される。
 電池冷却モードでは、三方弁38は、低温冷却水回路30の冷却水が電池33に循環する状態にする。これにより、低温冷却水回路30の冷却水によって電池33が冷却される。
 電池冷却モードの冷凍サイクル装置10では、図6の太実線に示すように冷媒が流れ、サイクルを循環する冷媒の状態については、次のように変化する。
 すなわち、圧縮機11から吐出された高圧冷媒は、凝縮器12へ流入して、高温冷却水回路20の冷却水と熱交換して放熱する。これにより、凝縮器12で冷媒が冷却されて凝縮する。
 凝縮器12から流出した冷媒は、第2膨張弁16に流入し、低圧冷媒となるまで減圧される。そして、第2膨張弁16にて減圧された低圧冷媒は、冷却用蒸発器17に流入して、低温冷却水回路30の冷却水から吸熱して蒸発する。
 そして、冷却用蒸発器17から流出した冷媒は、圧縮機11の吸入側へと流れて再び圧縮機11にて圧縮される。
 以上の如く、電池冷却モードでは、冷却用蒸発器17にて低温冷却水回路30の冷却水が冷却され、低温冷却水回路30の冷却水が電池33に循環して電池33が冷却される。
 次に、本実施形態のオイル回収制御について説明する。制御装置60は、空気用蒸発器14でのオイル寝込みを防止するため、図7のフローチャートに示すオイル回収制御を実行する。空気用蒸発器14でのオイル寝込みとは、冷媒中に混入された冷媒が空気用蒸発器14に滞留する現象のことである。
 まずステップS100では、冷却用蒸発器17の単独運転であるか否かが判定される。すなわち、暖房モードまたは電池冷却モードであるか否かが判定される。具体的には、空気用蒸発器14への冷媒の流入が遮断され、冷却用蒸発器17に冷媒が流入する運転状態である場合、冷却用蒸発器17の単独運転であると判定される。
 ステップS100にて冷却用蒸発器17の単独運転であると判定された場合、ステップS110へ進み、今回の寝込み量カウンタtnの値として、前回の寝込み量カウンタtn-1の値に所定値dtが加算された値が決定されてステップS120へ進む。ステップS100にて冷却用蒸発器17の単独運転であると判定されなかった場合、ステップS150へ進み、寝込み量カウンタtnの値が0にリセットされてステップS100へ戻る。
 ステップS120では、寝込み量カウンタtnの値が閾値α1を上回ったか否かが判定される。ステップS120にて寝込み量カウンタtnの値が閾値α1を上回ったと判定された場合、オイル寝込みがあると判断してステップS140へ進む。ステップS120にて寝込み量カウンタtnの値が閾値α1を上回っていないと判定された場合、ステップS130へ進み、圧縮機11が停止状態から起動状態になったか否かが判定される。
 ステップS130にて圧縮機11が停止状態から起動状態になったと判定された場合、オイル寝込みがあると判断してステップS140へ進む。ステップS130にて圧縮機11が停止状態から起動状態になっていないと判定された場合、オイル寝込みがないと判断してステップS100へ戻る。
 ステップS140では、オイル回収制御が行われる。ステップS140のオイル回収制御では、図8に示すように、まずステップS1410にて第1膨張弁13を開弁する。これにより、空気用蒸発器14に冷媒が流れるので、空気用蒸発器14に滞留した冷凍機油を圧縮機11に戻すことができる。
 このとき、第1膨張弁13を周期的に開閉させれば、空気用蒸発器14の冷媒流れが脈動するので空気用蒸発器14に滞留した冷凍機油が回収されやすくなる。圧縮機11の回転数を周期的に増減させることによって空気用蒸発器14の冷媒流れを脈動させてもよい。
 このとき、空気用蒸発器14に流入する冷媒の流量が、冷却用蒸発器17に流入する冷媒の流量よりも多くなるように第1膨張弁13および第2膨張弁16の開度を決定すれば、空気用蒸発器14に滞留している冷凍機油を効果的に回収できる。
 冷却用蒸発器17に流入する冷媒の流量が、空気用蒸発器14に流入する冷媒の流量よりも多くなるように第1膨張弁13および第2膨張弁16の開度を決定すれば、冷却用蒸発器17での吸熱量の減少を極力抑制できる。
 ステップS1420では、空気用蒸発器14通過後の空気をヒータコア22で加熱できるようにする。具体的には、室内送風機53および高温側ポンプ21を作動させ、ヒータコア22の空気通路を開くようにエアミックスドア54を操作する。
 これにより、オイル回収時に車室内に不快な臭いが発生することを抑制できる。すなわち、空気用蒸発器14に冷媒が流れることで空気用蒸発器14で空気中の水分が凝縮または凍結して臭いが発生しやすくなるが、空気用蒸発器14通過後の空気をヒータコア22で加熱することによって、空気用蒸発器14通過後の空気の相対湿度を低下させて臭いを感じにくくすることができる。
 ステップS1430では、第2膨張弁16を全閉状態にするとともに電気ヒータ25を作動させる。これにより、空気用蒸発器14における冷媒流量が増えるので空気用蒸発器14に滞留した冷凍機油が回収されやすくなる。電気ヒータ25を作動させることで、車室内への吹出空気温度の低下を抑制できる。すなわち、冷却用蒸発器17に冷媒が流れなくなることで冷却用蒸発器17での吸熱量が減少し、凝縮器12での冷却水の加熱量が減少する場合があることから、電気ヒータ25を作動させることで凝縮器12での冷却水の加熱量の減少を補うことができ、ひいてはヒータコア22での空気の加熱量の減少を抑制できる。
 ステップS1440では、空調ケーシング51に導入される空気の内気率が増加するように内外気切替ドア52aを制御するとともに、空調ケーシング51に導入される空気の風量が増加するように室内送風機53を制御する。
 空調ケーシング51に導入される空気の内気率が増加することで空気用蒸発器14に流入する空気の温度が上昇するので、空気用蒸発器14の熱交換負荷が増える。空調ケーシング51に導入される空気の風量が増加することで空気用蒸発器14の熱交換負荷が増える。空気用蒸発器14の熱交換負荷が増えると圧縮機11の回転数が増加するので空気用蒸発器14における冷媒流量が増えて空気用蒸発器14に滞留した冷凍機油が回収されやすくなる。
 空気用蒸発器14に流入する空気の温度が上昇することで、空気用蒸発器14に滞留した冷凍機油の温度も上昇して冷凍機油の粘性が低下するので冷凍機油が回収されやすくなる。
 ステップS1450では、ステップS1410にて第1膨張弁13を開弁してから所定時間T1(例えば10秒)が経過したか否かが判定される。ステップS1450にて所定時間T1が経過したと判定された場合、ステップS1460へ進みオイル回収制御を終了する。すなわち、オイル回収制御を実行する前の制御状態に戻す。ステップS1450にて所定時間T1が経過していないと判定された場合、ステップS1450を繰り返す。
 本実施形態では、制御装置60は、第1膨張弁13が流路を閉じており、且つ冷凍機油が空気用蒸発器14に滞留していると判定された場合、オイル回収制御を実行する。オイル回収制御では、冷媒流路を開けるように第1膨張弁13が制御される。
 これによると、第1膨張弁13が冷媒流路を開けることによって空気用蒸発器14に冷媒が流れるので、空気用蒸発器14に滞留している冷凍機油を圧縮機11に戻すことができる。
 本実施形態では、制御装置60は、オイル回収制御を実行している場合、室内送風機53を作動させる。これにより、オイル回収制御時に空気用蒸発器14で冷却された空気を凝縮器12で加熱して車室内空間に吹き出すことができるので、オイル回収制御時に空気用蒸発器14で凝縮水が発生したり凝縮水が凍結したりしても、吹出空気の相対湿度を下げて臭いを感じにくくすることができる。
 本実施形態では、制御装置60は、オイル回収制御を実行している場合、圧縮機11の回転数(換言すれば、冷媒吐出能力)を増減させる回転数制御(換言すれば、吐出能力制御)、および第1膨張弁13の開度を増減させる開度制御のうち少なくとも一方を実行する。
 これにより、オイル回収制御時に空気用蒸発器14を流れる冷媒を脈動させて、空気用蒸発器14に滞留している冷凍機油を効果的に圧縮機11に戻すことができる。
 本実施形態では、制御装置60は、オイル回収制御を実行している場合、空気用蒸発器14に流入する冷媒の流量が、冷却用蒸発器17に流入する冷媒の流量よりも多くなるように第1膨張弁13および第2膨張弁16を制御する。
 これにより、空気用蒸発器14を流れる冷媒の流量を極力増やして、空気用蒸発器14に滞留している冷凍機油を効果的に圧縮機11に戻すことができる。
 本実施形態では、制御装置60は、オイル回収制御を実行している場合、電気ヒータ25を作動させる。これにより、冷却用蒸発器17に流入する冷媒の流量が少なくなって冷却用蒸発器17での吸熱量が少なくなることによって凝縮器12での冷媒から冷却水への放熱量が少なくなっても、冷却水への放熱量を電気ヒータ25のジュール熱で補うことができる。そのため、オイル回収制御時に吹出空気温度を極力維持できる。
 本実施形態では、制御装置60は、オイル回収制御を実行している場合、冷却用蒸発器17に流入する冷媒の流量が、空気用蒸発器14に流入する冷媒の流量よりも多くなるように第1膨張弁13および第2膨張弁16を制御する。
 これにより、オイル回収時に冷却用蒸発器17に流入する冷媒の流量が減少することを極力抑制できるので、冷却用蒸発器17での吸熱量が減少することを極力抑制できる。そのため、凝縮器12での冷媒からの放熱量が減少することを極力抑制できるので、オイル回収制御時における吹出空気温度の変動を極力抑制できる。
 本実施形態では、制御装置60は、第1膨張弁13が所定時間以上閉弁されている場合、冷凍機油が空気用蒸発器14に滞留していると判定する。これにより、空気用蒸発器14に冷凍機油が滞留しているか否かを適切に判定できる。
 本実施形態では、制御装置60は、圧縮機11が停止状態から起動状態になり、且つ第1膨張弁13が流路を閉じている場合、オイル回収制御を実行する。これにより、圧縮機11が停止している間に空気用蒸発器14に冷媒が逆流することによって空気用蒸発器14に滞留した冷凍機油を速やかに圧縮機11に戻すことができる。
 本実施形態では、制御装置60は、空気用蒸発器14の熱交換負荷が高いほど圧縮機11の回転数を高くし、オイル回収制御を実行している場合、内気の比率が外気の比率よりも大きくなるように内外気切替ドア52aを制御する。
 これによると、オイル回収制御時に空気用蒸発器14の熱交換負荷を高めて圧縮機11の吐出冷媒流量を増加させることができるので、空気用蒸発器14に流入する冷媒の流量を増加させて、空気用蒸発器14に滞留している冷凍機油を効果的に圧縮機11に戻すことができる。
 空気用蒸発器14に流入する空気の温度を高めることで空気用蒸発器14に滞留している冷凍機油の粘性を低下させることができるので、空気用蒸発器14に滞留している冷凍機油を効果的に圧縮機11に戻すことができる。
 本実施形態では、制御装置60は、オイル回収制御を実行している場合、室内送風機53の風量を通常風量よりも増加させる。これによると、オイル回収制御時に空気用蒸発器14の熱交換負荷を高めて圧縮機11の吐出冷媒流量を増加させることができるので、空気用蒸発器14に流入する冷媒の流量を増加させて、空気用蒸発器14に滞留している冷凍機油を効果的に圧縮機11に戻すことができる。
 (第2実施形態)
 上記実施形態では、空気用蒸発器14にオイル寝込みがある場合にオイル回収制御を実行するが、本実施形態では、空気用蒸発器14にオイル寝込みがあり且つ冷凍サイクル装置10の暖機中である場合にオイル回収制御を実行する。
 制御装置60は、空気用蒸発器14でのオイル寝込みを防止するため、図9のフローチャートに示すオイル回収制御を実行する。図9のフローチャートでは、上記第1実施形態の図7のフローチャートに対してステップS135が追加されている。
 ステップS120にて寝込み量カウンタtnが閾値α1を上回ったと判定された場合、オイル寝込みがあると判断してステップS135へ進む。ステップS120にて寝込み量カウンタtnが閾値α1を上回っていないと判定された場合、ステップS130へ進み、圧縮機11が停止状態から起動状態になったか否かが判定される。ステップS130にて圧縮機11が停止状態から起動状態になったと判定された場合、オイル寝込みがあると判断してステップS135へ進む。ステップS130にて圧縮機11が停止状態から起動状態になっていないと判定された場合、オイル寝込みがないと判断してステップS100へ戻る。
 ステップS135では、室内送風機53の風量が暖機風量以下で制御されている状態であるか否かが判定される。ステップS135にて、室内送風機53の風量が暖機風量で制御されている状態であると判定された場合、ステップS140へ進みオイル回収制御が行われる。これにより、室内送風機53の風量が少ない場合にオイル回収制御が行われることとなるので、オイル回収中に空気用蒸発器14に凝縮水が発生したり凝縮水が凍結して車室内に不快な臭いが発生することを抑制できる。空気用蒸発器14へ送風される風量が増加されることなくオイル回収が行われるので、冷凍サイクル装置10の暖機を遅らせることなくオイル回収を行うことができる。
 ステップS135にて、室内送風機53の風量が暖機風量で制御されている状態でないと判定された場合、オイル回収を行うと車室内に不快な臭いが発生するおそれがあると判断して、オイル回収を行うことなくステップ100へ戻る。
 本実施形態では、制御装置60は、冷凍機油が空気用蒸発器14に滞留していると判定され、且つ室内送風機53が暖機風量で制御されている場合、オイル回収制御を実行する。
 これにより、オイル回収制御時に空気用蒸発器14で凝縮水が発生したり凝縮水が凍結したりすることを抑制できるので、空気用蒸発器14で臭いが発生することを抑制できる。
 (第3実施形態)
 上記実施形態では、圧縮機11の起動時にオイル回収制御を行うが、本実施形態では、圧縮機11の起動時のオイル回収制御を不要とすることを目的として、図10に示すように空気用蒸発器14の冷媒出口側に逆流防止弁19が配置されている。
 逆流防止弁19は、圧縮機11の停止後にレシーバ18に貯留された冷媒が空気用蒸発器14に逆流するのを防止する逆流防止部である。
 逆流防止弁19は、空気用蒸発器14の冷媒流れ下流側、かつ合流部10bの冷媒流れ上流側に配置されている。逆流防止弁19は、空気用蒸発器14から合流部10bへ向かって冷媒が流れることを許容し、合流部10bから空気用蒸発器14へ向かって冷媒が流れることを禁止する。
 逆流時の差圧は小さいことから、逆流防止弁19は、逆流時にバネの力で弁体を閉じるバネ式逆止弁が望ましい。逆流防止弁19は、制御装置60によって制御される電磁弁であってもよい。
 本実施形態では、圧縮機11の停止後にレシーバ18に貯留された冷媒が空気用蒸発器14に逆流するのを防止できるので、空気用蒸発器14に冷媒が逆流することによって空気用蒸発器14に冷凍機油が滞留することを抑制できる。
 本実施形態では、逆流防止弁19は、空気用蒸発器14から合流部10bへ向かって冷媒が流れることを許容し、合流部10bから空気用蒸発器14へ向かって冷媒が流れることを禁止する。
 これにより、圧縮機11が停止している間に空気用蒸発器14に冷媒が逆流することによって空気用蒸発器14に冷凍機油が滞留するという減少が発生することを抑制できる。
 本開示は上述の実施形態に限定されることなく、本開示の趣旨を逸脱しない範囲内で、以下のように種々変形可能である。
 上記実施形態では、熱媒体として冷却水を用いているが、油などの各種媒体を熱媒体として用いてもよい。熱媒体として、ナノ流体を用いてもよい。ナノ流体とは、粒子径がナノメートルオーダーのナノ粒子が混入された流体のことである。
 上記実施形態の冷凍サイクル装置10では、冷媒としてフロン系冷媒を用いているが、冷媒の種類はこれに限定されるものではなく、二酸化炭素等の自然冷媒や炭化水素系冷媒等を用いてもよい。
 また、上記実施形態の冷凍サイクル10は、高圧側冷媒圧力が冷媒の臨界圧力を超えない亜臨界冷凍サイクルを構成しているが、高圧側冷媒圧力が冷媒の臨界圧力を超える超臨界冷凍サイクルを構成していてもよい。
 上記実施形態では、高温側ラジエータ23と低温側ラジエータ32とが別々のラジエータになっているが、高温側ラジエータ23と低温側ラジエータ32とが1つのラジエータで構成されていてもよい。
 例えば、高温側ラジエータ23のタンクと低温側ラジエータ32のタンクとが互いに一体化されていることによって、高温側ラジエータ23と低温側ラジエータ32とが1つのラジエータで構成されていてもよい。
 上記実施形態では、第1膨張弁13は、冷媒を減圧する減圧部と、冷媒の流路の開度を調整する開度調整部とが一体に構成されたものであるが、減圧部と開度調整部とが別体になっていてもよい。
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。

Claims (10)

  1.  冷媒を吸入して圧縮し吐出する圧縮機(11)と、
     前記圧縮機から吐出された前記冷媒と空調対象空間へ送風される空気とを熱交換させて前記空気に放熱させる放熱部(12、20、22)と、
     前記冷媒を減圧させるとともに、前記冷媒の流路を閉じることが可能な第1減圧部(13)と、
     前記第1減圧部で減圧された前記冷媒と前記空気とを熱交換させて前記空気から吸熱させることによって前記冷媒を蒸発させる第1蒸発部(14)と、
     前記冷媒の流れにおいて前記第1減圧部と並列に配置され、前記冷媒を減圧させる第2減圧部(16)と、
     前記第2減圧部で減圧された前記冷媒に吸熱させることによって前記冷媒を蒸発させる第2蒸発部(17)と、
     前記第1減圧部が前記流路を閉じており、且つ前記冷媒に混入している冷凍機油が前記第1蒸発部に滞留していると判定された場合、前記流路を開けるように前記第1減圧部を制御するオイル回収制御を実行する制御部(60)とを備える冷凍サイクル装置。
  2.  前記空気を前記第1蒸発部および前記放熱部に送風する送風機(53)を備え、
     前記放熱部は、前記空気の流れにおいて前記第1蒸発部の下流側に配置されており、
     前記制御部は、オイル回収制御を実行している場合、前記送風機を作動させる請求項1に記載の冷凍サイクル装置。
  3.  前記空気を前記第1蒸発部および前記放熱部に送風する送風機(53)を備え、
     前記制御部は、
     空調負荷(TAO)に応じた前記送風機の風量である通常風量を決定し、
     前記圧縮機を起動した際に吹出空気温度を所定温度以上にすることができないと判定される場合、前記送風機の風量を、前記通常風量よりも低い暖機風量に決定し、
     前記冷凍機油が前記第1蒸発部に滞留していると判定され、且つ前記送風機が前記暖機風量で制御されている場合、前記オイル回収制御を実行する請求項1または2に記載の冷凍サイクル装置。
  4.  前記制御部は、前記オイル回収制御を実行している場合、前記圧縮機の冷媒吐出能力を増減させる吐出能力制御、および前記第1減圧部の開度を増減させる開度制御のうち少なくとも一方を実行する請求項1ないし3のいずれか1つに記載の冷凍サイクル装置。
  5.  前記放熱部で前記空気を加熱するための熱源として、ジュール熱を発生するジュール熱発生部(25)を備え、
     前記制御部は、前記オイル回収制御を実行している場合、前記ジュール熱を発生するように前記ジュール熱発生部を制御する請求項1ないし4のいずれか1つに記載の冷凍サイクル装置。
  6.  前記制御部は、前記第1減圧部が所定時間以上閉弁されている場合、前記冷凍機油が前記第1蒸発部に滞留していると判定する請求項1ないし5のいずれか1つに記載の冷凍サイクル装置。
  7.  前記制御部は、前記圧縮機が停止状態から起動状態になり、且つ前記第1減圧部が前記流路を閉じている場合、前記オイル回収制御を実行する請求項1ないし6のいずれか1つに記載の冷凍サイクル装置。
  8.  前記第1減圧部から流出した前記冷媒と、前記第2減圧部から流出した前記冷媒とが合流する合流部(10b)と、
     前記第1蒸発部の冷媒流れ下流側、かつ前記合流部の冷媒流れ上流側に配置され、前記第1蒸発部から前記合流部へ向かって前記冷媒が流れることを許容し、前記合流部から前記第1蒸発部へ向かって前記冷媒が流れることを禁止する逆流防止部(19)とを備える請求項1ないし7のいずれか1つに記載の冷凍サイクル装置。
  9.  前記第1蒸発部に流入する前記空気における内気と外気との比率を調整する内外気調整部(52a)を備え、
     前記制御部は、
     前記第1蒸発部の熱交換負荷が高いほど前記圧縮機の冷媒吐出能力を高くし、
     前記オイル回収制御を実行している場合、前記内気の比率が前記外気の比率よりも大きくなるように前記内外気調整部を制御する請求項1ないし8のいずれか1つに記載の冷凍サイクル装置。
  10.  前記空気を送風する送風機(53)を備え、
     前記制御部は、
     前記第1蒸発部の熱交換負荷が高いほど前記圧縮機の冷媒吐出能力を高くし、
     空調負荷(TAO)に応じた前記送風機の風量である通常風量を決定し、
     前記オイル回収制御を実行している場合、前記送風機の風量を前記通常風量よりも増加させる請求項1ないし9のいずれか1つに記載の冷凍サイクル装置。
PCT/JP2021/033463 2020-10-05 2021-09-13 冷凍サイクル装置 WO2022075007A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202180065633.9A CN116194722A (zh) 2020-10-05 2021-09-13 冷冻循环装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020168603A JP7491174B2 (ja) 2020-10-05 2020-10-05 冷凍サイクル装置
JP2020-168603 2020-10-05

Publications (1)

Publication Number Publication Date
WO2022075007A1 true WO2022075007A1 (ja) 2022-04-14

Family

ID=81125324

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/033463 WO2022075007A1 (ja) 2020-10-05 2021-09-13 冷凍サイクル装置

Country Status (3)

Country Link
JP (1) JP7491174B2 (ja)
CN (1) CN116194722A (ja)
WO (1) WO2022075007A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04344074A (ja) * 1991-05-17 1992-11-30 Sanyo Electric Co Ltd 低温貯蔵ショーケース
JP2015183872A (ja) * 2014-03-20 2015-10-22 株式会社デンソー 蒸気圧縮式冷凍サイクル装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4344074B2 (ja) 2000-07-21 2009-10-14 新日本製鐵株式会社 2次加工性とプレス加工性に優れた燃料タンク用防錆鋼板とその製造方法
JP2019066049A (ja) 2017-09-28 2019-04-25 株式会社デンソー 冷凍サイクル装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04344074A (ja) * 1991-05-17 1992-11-30 Sanyo Electric Co Ltd 低温貯蔵ショーケース
JP2015183872A (ja) * 2014-03-20 2015-10-22 株式会社デンソー 蒸気圧縮式冷凍サイクル装置

Also Published As

Publication number Publication date
JP7491174B2 (ja) 2024-05-28
CN116194722A (zh) 2023-05-30
JP2022060863A (ja) 2022-04-15

Similar Documents

Publication Publication Date Title
KR102279199B1 (ko) 공조 장치
CN109983287B (zh) 制冷循环装置
CN111094028B (zh) 车辆用空调装置
CN108779942B (zh) 制冷循环装置
US10717341B2 (en) Vehicular heat management system
US10538138B2 (en) Air conditioning device for vehicle
US11897316B2 (en) Refrigeration cycle device
CN110914082B (zh) 空调装置
US11014430B2 (en) Refrigeration cycle device
CN113423596B (zh) 制冷循环装置
US20230219398A1 (en) Refrigeration cycle device
US20220088996A1 (en) Refrigeration cycle device
WO2022264743A1 (ja) 車両用空調装置
JP2017198375A (ja) 冷媒量不足検知装置および冷凍サイクル装置
WO2022075007A1 (ja) 冷凍サイクル装置
JP6601307B2 (ja) 冷凍サイクル装置
JP6451212B2 (ja) 冷却装置
WO2022202307A1 (ja) 冷凍サイクル装置
JP7521481B2 (ja) 車両用空調装置
US20240010045A1 (en) Air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21877310

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21877310

Country of ref document: EP

Kind code of ref document: A1