WO2022074933A1 - Low-strength thick steel sheet having excellent elongation properties and corrosion resistance - Google Patents

Low-strength thick steel sheet having excellent elongation properties and corrosion resistance Download PDF

Info

Publication number
WO2022074933A1
WO2022074933A1 PCT/JP2021/029621 JP2021029621W WO2022074933A1 WO 2022074933 A1 WO2022074933 A1 WO 2022074933A1 JP 2021029621 W JP2021029621 W JP 2021029621W WO 2022074933 A1 WO2022074933 A1 WO 2022074933A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
less
plate thickness
steel sheet
rolling
Prior art date
Application number
PCT/JP2021/029621
Other languages
French (fr)
Japanese (ja)
Inventor
亮太 加藤
雅人 金子
真司 阪下
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to KR1020237009461A priority Critical patent/KR20230051774A/en
Priority to CN202180062054.9A priority patent/CN116057188A/en
Publication of WO2022074933A1 publication Critical patent/WO2022074933A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/38Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling sheets of limited length, e.g. folded sheets, superimposed sheets, pack rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Definitions

  • This disclosure relates to a low-strength thick steel sheet having excellent elongation characteristics and corrosion resistance.
  • the steel material used is an extremely severe corrosive environment in which seawater is immersed and exposed to the moist atmosphere containing salt. Be exposed to. If the ballast tank is corroded and damaged, it may sink due to perforation or the cargo of crude oil or chemical substances may flow out into the ocean.
  • the anticorrosion coating requires repainting due to deterioration of the coating, maintenance cost is high and the environmental load is also high. In recent years, reducing the environmental burden has become one of the important factors for the realization of a sustainable society. Therefore, it is necessary to improve the corrosion resistance of the steel material from the viewpoint of reducing the environmental load as well as the maintenance cost.
  • Steel materials for ships for the purpose of improving corrosion resistance are disclosed in, for example, Patent Document 1 and Patent Document 2.
  • JP-A-2015-151571 Japanese Unexamined Patent Publication No. 2010-126765
  • the present invention has been made in view of such a situation, and an object thereof is to provide a thick steel sheet having both excellent corrosion resistance, low strength and high elongation characteristics.
  • Aspect 1 of the present invention is C: 0.01% by mass or more, 0.30% by mass or less, Si: 0.01% by mass or more, 2.0% by mass or less, Mn: 0.85% by mass or more, 2.00% by mass or less, P: More than 0% by mass, 0.015% by mass or less, S: More than 0% by mass, 0.005% by mass or less, Al: 0.005% by mass or more, 0.10% by mass or less, Cr: 0.01% by mass or more, 0.5% by mass or less, Ti: 0.005% by mass or more, 0.20% by mass or less, Ca: 0.0001% by mass or more, 0.005% by mass or less, N: contains 0.0001% by mass or more and 0.010% by mass or less, and Cu + Ni: 0.50% by mass or more and 0.85% by mass or less, and the balance consists of Fe and unavoidable impurities.
  • the metallographic structure contains ferrite with an area ratio of 70% or more with respect to the total metallic structure, and the balance consists of one or more selected from the group consisting of pearlite, bainite and martensite.
  • the ferrite grain size is 3 ⁇ m or more and 40 ⁇ m or less.
  • Tensile strength is 400 MPa or more and 520 MPa or less, fracture elongation when a tensile test is performed using a test piece of NK-U1 with a distance between gauge points of 200 mm in accordance with Nippon Kaiji Kyokai's ship class regulation K edition material (FY2019 version). Is a low-strength thick steel sheet having excellent elongation characteristics and corrosion resistance, having a uniform elongation of 13.5% or more and a uniform elongation of 16% or more.
  • Aspect 2 of the present invention is The thick steel sheet according to aspect 1, wherein the average corrosion depth of the coated scratch portion after 168 days of the composite cycle test is 0.600 mm or less.
  • Aspect 3 of the present invention is B: 0.0001% by mass or more, 0.010% by mass or less, V: 0.01% by mass or more, 0.50% by mass or less, and Nb: 0.001% by mass or more, 0.50% by mass or less, further containing one or more selected from the group.
  • Aspect 4 of the present invention is Co: 0.005% by mass or more, 0.20% by mass or less, REM: 0.005% by mass or more, 0.20% by mass or less, Aspects 1 to 3 further containing one or more selected from the group consisting of Zr: 0.005% by mass or more and 0.20% by mass or less, and Mg: 0.0001% by mass or more and 0.005% by mass or less. It is a thick steel plate according to any one of.
  • Aspect 5 of the present invention is A step of heating steel satisfying the composition according to any one of aspects 1 to 4 to 1100 ° C. or higher, and A step of hot rolling so that the rolling temperature is 1100 ° C. or lower and the recrystallization reduction rate is 80% or more and the following formula (1) is satisfied.
  • ⁇ yi C ⁇ (2y / h) 2 + 1.15 ⁇ ln (H / h) ⁇ ⁇ ⁇ ⁇ (4)
  • ⁇ y Equivalent plastic strain at y position in the plate thickness direction
  • ⁇ yi Equivalent plastic strain at the y position in the plate thickness direction of the i-pass
  • y Distance from the center of plate thickness (mm)
  • h Outer side plate thickness (mm)
  • H Enter side plate thickness (mm)
  • C B 1 ⁇ (H / 2R) B2 ⁇ re 2 ...
  • FIG. 1 is a schematic view showing a corrosion test piece according to an example.
  • FIG. 2 is a diagram for explaining a corrosion test method according to an embodiment.
  • FIG. 3 is a schematic diagram for explaining the measurement position of the corrosion depth according to the embodiment.
  • FIG. 4 is a graph showing the relationship between the left side of equation (1) and the tensile strength.
  • FIG. 5 is a graph showing the relationship between the left side of equation (1) and uniform elongation.
  • the present inventors have conducted diligent research to realize low strength and excellent elongation characteristics on the premise that a certain amount of Cu, Ni and Cr is contained in order to secure excellent corrosion resistance.
  • the steel has a predetermined chemical composition and contains ferrite having an area ratio of 70% or more with respect to the total metal structure, and the balance is pearlite.
  • It consists of one or more selected from the group consisting of bainite and martensite, has a ferrite particle size of 3 ⁇ m or more and 40 ⁇ m or less, a tensile strength of 400 MPa or more and 520 MPa or less, a breaking elongation of 16% or more, and a uniform elongation of 13.5. It has been found that a low-strength thick steel plate having excellent elongation characteristics and corrosion resistance, which is% or more, can be obtained.
  • C 0.01% by mass or more, 0.30% by mass or less
  • C is an element necessary for ensuring the strength of the material. If C is excessively contained, low strength cannot be obtained due to an increase in strength. On the other hand, if the amount of C is reduced too much, it becomes difficult to obtain the minimum strength as a structural member, that is, about 400 MPa. Therefore, the C content was set to 0.01% by mass or more and 0.30% by mass or less. The minimum strength varies depending on the wall thickness of the steel material used.
  • the C content is preferably 0.05% by mass or more, and more preferably 0.10% by mass or more.
  • the C content is preferably 0.20% by mass or less, and more preferably 0.15% by mass or less.
  • Si 0.01% by mass or more, 2.0% by mass or less
  • Si is an element necessary for deoxidation and ensuring strength. Si increases its strength by being dissolved in ferrite as a solid solution, but if the Si content exceeds 2.0% by mass, the strength increases and low strength cannot be obtained. On the other hand, if the Si content is less than 0.01% by mass, the minimum strength as a structural member cannot be secured. Therefore, the Si content was set to 0.01% by mass or more and 2.0% by mass or less.
  • the Si content is preferably 1.00% by mass or less, more preferably 0.50% by mass or less, and further preferably 0.30% by mass or less.
  • the Si content is preferably 0.10% by mass or more, and more preferably 0.15% by mass or more.
  • Mn 0.85% by mass or more, 2.00% by mass or less
  • Mn is also necessary for deoxidation and ensuring strength, and if it is less than 0.85% by mass, the minimum strength as a structural member cannot be secured. However, if Mn is excessively contained, low strength cannot be obtained due to an increase in strength. Therefore, the Mn content was set to 0.85% by mass or more and 2.00% by mass or less.
  • the Mn content is preferably 0.90% by mass or more, and more preferably 0.95% by mass or more.
  • the Mn content is preferably 1.20% by mass or less, and more preferably 1.10% by mass or less.
  • P More than 0% by mass, 0.015% by mass or less
  • P is an element having a large amount of solid solution strengthening, and in the embodiment of the present invention aiming at low strength, the content should be small. Further, since the toughness and weldability are also deteriorated, the allowable upper limit of the P content is set to 0.015% by mass.
  • S More than 0% by mass, 0.005% by mass or less
  • S is an element that reduces ductility as the content increases, it is preferable to suppress the content, and the allowable upper limit of the S content is 0.005% by mass.
  • Al 0.005% by mass or more, 0.10% by mass or less
  • Al is an element that forms a dense oxide film and improves corrosion resistance.
  • Al is an element that contributes to an increase in strength, although the amount of solid solution strengthening is smaller than that of Si and P. Therefore, the amount of Al added was set to 0.005% by mass or more and 0.10% by mass or less.
  • the Al content is preferably 0.030% by mass or more, and more preferably 0.045% by mass or more.
  • the Al content is preferably 0.090% by mass or less, and more preferably 0.080% by mass or less.
  • Cu and Ni are elements effective for improving corrosion resistance. Both Cu and Ni have the effect of suppressing the corrosion reaction that occurs under the anticorrosive coating film, and are elements that have the effect of suppressing the swelling of the coating film due to the corrosion under the coating film. In addition, Cu and Ni also have the effect of densifying the generated rust when the steel material is corroded in the coating film defect portion, and exert the effect of suppressing the corrosion progress of the coating film scratched portion. It is an effective element. In order to exert these effects, it is necessary to make the total content of Cu and Ni 0.50% by mass or more, but if it is excessively contained, it deviates from the strength class of mild steel.
  • the total content of Cu and Ni is preferably 0.55% by mass or more, and the more preferable lower limit is 0.60% by mass or more. Further, from the viewpoint of increasing the strength, the total content of Cu and Ni is preferably 0.80% by mass or less, more preferably 0.75% by mass or less.
  • the Cu content is preferably 0.20% by mass or more, more preferably 0.25% by mass or more.
  • the Cu content is preferably 0.35% by mass or less, more preferably 0.33% by mass or less.
  • the Ni content is preferably 0.30% by mass or more, more preferably 0.32% by mass or more.
  • the Ni content is preferably 0.40% by mass or less, more preferably 0.37% by mass or less.
  • Cr 0.01% by mass or more, 0.5% by mass or less
  • Cr is an element effective for improving corrosion resistance.
  • Cr is an element that adjusts the pH under the coating film to a suitable value, has an effect of suppressing primer consumption, and further exerts an effect of suppressing the progress of corrosion of a scratched portion of the coating film.
  • an appropriate amount of Cr is effective for improving toughness, and is an element necessary for obtaining mechanical properties required as a ballast tank material.
  • the Cr content needs to be 0.5% by mass or less.
  • the Cr content is preferably 0.3% by mass or less, and preferably 0.05% by mass or more.
  • Ti is an element effective for improving corrosion resistance. Ti has an action of densifying the rust generated in a chloride-corroded environment, and is an element that suppresses the progress of corrosion in the scratched portion of the coating film. In order to exert such an effect, Ti is contained in an amount of 0.005% by mass or more. However, if the Ti content is excessive, Ti carbonitride is excessively precipitated and the strength is increased. Therefore, the upper limit is set to 0.20% by mass.
  • the Ti content is preferably 0.008% by mass or more, and more preferably 0.010% by mass or more.
  • the Ti content is preferably 0.15% by mass or less, and more preferably 0.10% by mass or less.
  • Ca 0.0001% by mass or more, 0.005% by mass or less
  • Ca is an element effective for improving corrosion resistance.
  • Ca has an action of alleviating a decrease in pH due to hydrolysis of Fe and / or Cr by a pH buffering action, and is effective in suppressing the promotion of corrosion due to a decrease in pH. Such an action is effectively exerted by containing 0.0001% by mass or more of Ca.
  • the Ca content is 0.0001% by mass or more and 0.005% by mass or less.
  • the Ca content is preferably 0.0005% by mass or more, and more preferably 0.0010% by mass or more.
  • the Ca content is preferably 0.004% by mass or less, and more preferably 0.003% by mass or less.
  • N 0.0001% by mass or more, 0.010% by mass or less
  • N is an element that increases the tensile strength when dissolved in Fe, it is preferable to suppress the content, and the N content is 0.010% by mass or less, preferably 0.0075% by mass or less, more preferably. It is 0.0070% by mass or less.
  • N is an element that contributes to the improvement of HAZ toughness by forming TiN. From the viewpoint of exerting the effect, the N content is 0.0001% by mass or more, preferably 0.0010% by mass or more, and more preferably 0.0020% by mass or more.
  • the balance is Fe and unavoidable impurities.
  • unavoidable impurities it is permissible to mix trace elements (for example, As, Sb, Sn, etc.) brought in depending on the conditions of raw materials, materials, manufacturing equipment, and the like.
  • trace elements for example, As, Sb, Sn, etc.
  • any other element may be further contained as long as the characteristics of the thick steel sheet according to the embodiment of the present invention can be maintained.
  • Other elements that can be selectively contained in this way are illustrated below.
  • B 0.0001% by mass or more, 0.010% by mass or less
  • V 0.01% by mass or more, 0.50% by mass or less
  • Nb 0.001% by mass or more, 0.50% by mass or less.
  • B, V and Nb are all effective elements for improving mechanical properties, it is preferable to suppress the content because the strength is improved by increasing the content. Therefore, when B, V and Nb are contained, it is preferable that the upper limit of B is 0.010% by mass, the upper limit of V is 0.50% by mass, and the upper limit of Nb is 0.50% by mass.
  • B since the addition of a small amount of B has the effect of improving the characteristics of the welded portion, it is preferable to contain B in an amount of 0.0001% by mass or more. Since V and Nb are added in small amounts to improve toughness, it is preferable to contain V in an amount of 0.01% by mass or more and Nb in an amount of 0.001% by mass or more.
  • the more preferable lower limit of these elements is 0.0003% by mass for B, 0.02% by mass for V, and 0.005% by mass for Nb.
  • a more preferable upper limit is 0.0090% by mass for B, 0.45% by mass for V, and 0.45% by mass for Nb.
  • Co is an element effective for improving corrosion resistance.
  • Co has an action of densifying the rust generated in a chloride corrosive environment, and is an element that suppresses the progress of corrosion in the scratched portion of the coating film. In order to exert such an effect, it is preferable to contain Co in an amount of 0.005% by mass or more.
  • the Co content is preferably 0.20% by mass or less.
  • the more preferable lower limit when Co is contained is 0.02% by mass, and the more preferable upper limit is 0.15% by mass.
  • Zr is an element effective for improving corrosion resistance. Similar to Ti, Zr has an action of densifying rust generated in a chloride corrosive environment, and is an element that suppresses the progress of corrosion in a scratched portion of a coating film. In order to exert such an effect, it is preferable to contain Zr in an amount of 0.005% by mass or more. However, if the Zr content becomes excessive, the weldability and / or the hot workability deteriorates, so the Zr content is preferably 0.20% by mass or less. The more preferable lower limit when containing Zr is 0.008% by mass, and the more preferable upper limit is 0.15% by mass.
  • Mg is an element effective for improving corrosion resistance. Similar to Ca, Mg has an effect of alleviating a decrease in pH, exerts an effect of suppressing the promotion of corrosion due to a decrease in pH, and is effective in suppressing swelling of a coating film. Such an action is effectively exhibited by containing 0.0001% by mass or more, and is particularly effective when Co coexists. However, if it is contained in excess of 0.005% by mass, the workability and weldability will be deteriorated, which is not preferable. When Mg is contained, the preferable lower limit is 0.0005% by mass, and the more preferable upper limit is 0.004% by mass.
  • REM Radar Earth Metal
  • REM has an effect of suppressing a decrease in pH near the surface of a steel material in a usage environment, and is an effective element for further improving corrosion resistance. This action is exhibited by the corrosion and dissolution of these elements and the reaction with hydrogen ions.
  • the REM content is excessive, the weldability and / or the hot workability is deteriorated. Therefore, when the REM content is contained, it is preferably 0.20% by mass or less.
  • the more preferable lower limit when containing REM is 0.008% by mass, and the more preferable upper limit is 0.15% by mass.
  • Examples of the REM used in the embodiment of the present invention include Sc, Y, and lanthanoids.
  • the thick steel sheet according to the embodiment of the present invention contains ferrite having an area ratio of 70% or more with respect to the total metal structure, and the balance is composed of one or more selected from the group consisting of pearlite, bainite and martensite. Further, in the embodiment of the present invention, as will be described later, the ferrite can be sufficiently secured by appropriately controlling the hot rolling conditions. By containing 70 area% or more of ferrite, desired low strength and high elongation characteristics can be obtained.
  • the area ratio of ferrite is preferably 75% or more.
  • the area ratio of ferrite is preferably 95% or less, more preferably 92% or less, from the viewpoint of ensuring the minimum strength at the level of mild steel.
  • the thick steel sheet according to the embodiment of the present invention has a ferrite grain size of 3 ⁇ m or more, preferably 5 ⁇ m or more, in order to suppress an excessive increase in strength.
  • the ferrite particle size is 40 ⁇ m or less, preferably 35 ⁇ m or less, and more preferably 30 ⁇ m or less.
  • the thick steel sheet according to the embodiment of the present invention has excellent corrosion resistance, low strength and high elongation characteristics. These characteristics of the thick steel plate according to the embodiment of the present invention will be described in detail below.
  • TS Tensile strength
  • TS Tensile strength
  • NK-U1 a test piece of NK-U1 with a distance between gauge points of 200 mm in accordance with the Nippon Kaiji Kyokai Ship Classification Rule K Knitting Material (2019 edition). It is as follows.
  • the tensile strength is preferably 410 MPa or more, more preferably 420 MPa or more, preferably 510 MPa or less, and more preferably 500 MPa or less.
  • Fracture elongation (that is, steel plate workability) is obtained when a tensile test is performed using a test piece of NK-U1 with a distance between gauge points of 200 mm in accordance with Nippon Kaiji Kyokai's ship class regulation K knitting material (2019 edition). , 16% or more.
  • the elongation at break is preferably 18% or more, more preferably 20% or more, and even more preferably 22% or more.
  • the upper limit of the elongation at break is not particularly limited, but is about 45% in view of the above-mentioned chemical composition and the production method described later.
  • Uniform elongation (that is, uniform deformation performance) is obtained when a tensile test is performed using a test piece of NK-U1 with a distance between gauge points of 200 mm in accordance with Nippon Kaiji Kyokai's ship class rule K knitting material (2019 edition). It is 13.5% or more. This makes it possible to reduce the maintenance load when a ship or the like collides with an object.
  • the uniform elongation is preferably 14.0% or more, more preferably 14.5% or more, and even more preferably 15.0% or more.
  • the upper limit of the uniform elongation is not particularly limited, but is about 30% in view of the above-mentioned chemical composition and the production method described later.
  • the average corrosion depth of the painted scratch part after 168 days of the combined cycle test (CCT) is 0.600 mm or less.
  • the pH of the corroded part decreases, the corrosion depth increases, and the maintenance load when a ship or the like collides with an object increases. Therefore, the corrosion depth exceeds 0.600 mm. It is preferable not to let the corrosion progress.
  • the average corrosion depth of the coated scratch portion after 168 days of the composite cycle test (CCT) is preferably 0.600 mm or less, more preferably 0.550 mm or less, still more preferably 0.500 mm or less. be. In this embodiment, by satisfying the above chemical composition, it is possible to obtain a thick steel sheet having an average corrosion depth of 0.600 mm or less, that is, an excellent corrosion resistance.
  • the present inventors have the above-mentioned desired metal structure by subjecting a steel having the above-mentioned chemical composition to hot rolling under predetermined conditions described later and then air-cooling, and as a result, the above-mentioned desired metal structure is obtained. It has been found that a thick steel sheet having the above-mentioned characteristics can be obtained. The details will be described below. It should be noted that the embodiment of the present invention relates to a thick steel sheet, and in this field, the thick steel sheet generally refers to a steel sheet having a plate thickness of 3.0 mm or more. The thickness of the thick steel plate targeted in the embodiment of the present invention is preferably 6.0 mm or more.
  • the steelmaking method is not particularly limited, and a general steelmaking means may be adopted.
  • Heating before hot rolling The heating conditions before hot rolling are not particularly limited, but it is preferable to heat the hot rolling to, for example, 1100 ° C. or higher so that the hot rolling described later can be carried out in a predetermined temperature range.
  • the rolling temperature is set to 1100 ° C. or lower and the recrystallization reduction rate is set to 80% or higher, and hot rolling is performed so as to satisfy the following formula (1).
  • the recrystallization temperature region varies depending on the steel type. In the case of the steel grade targeted in this embodiment, the recrystallization temperature region is 850 ° C. or higher. Therefore, the recrystallization reduction rate according to the present embodiment means the cumulative reduction rate in rolling (including finish rolling) at 850 ° C. or higher.
  • the above-mentioned "rolling temperature” and the "finish rolling completion temperature” described later mean the temperature on the surface of the steel sheet.
  • the term “rolling temperature” means the rolling temperature in all rolling including rough rolling and finish rolling.
  • finish rolling completion temperature means the rolling temperature at the time of completion of the final pass of finish rolling.
  • ⁇ yt (surface) in the following equation (2) means the cumulative strain on the surface of only one of both sides of the steel sheet.
  • ⁇ yt (t / 4) in the following equation (2) means the cumulative strain at only the t / 4 position on one side of the t / 4 positions from the front and back surfaces of the steel sheet.
  • the roll radius R in the following formula (5) is the roll radius of the finish rolling mill, and when the finish rolling mill is a multiple rolling mill, it means the radius of the roll (that is, the work roll) in contact with the rolled material. .. 0.08FRT +0.1Tom-0.5 ⁇ T +10 ⁇ 69 ⁇ ⁇ ⁇ (1) however, FRT (Finish Rolling Temperature): Finish rolling temperature (° C) Tom: Time between the last pass and the rolling pass one pass before the last pass (seconds) ⁇ T : The total value of cumulative strains at each position of the surface of the steel sheet, t / 4 position and t / 2 position (t: plate thickness) (hereinafter referred to as “total cumulative strain”), and is the following equation (2).
  • the cumulative strain at each position is calculated by the following equation (3). Further, the distortion of each path is calculated by the following equation (4).
  • ⁇ yi C ⁇ (2y / h) 2 + 1.15 ⁇ ln (H / h) ⁇ ⁇ ⁇ ⁇ (4)
  • ⁇ y Equivalent plastic strain at y position in the plate thickness direction
  • ⁇ yi Equivalent plastic strain at the y position in the plate thickness direction of the i-pass
  • y Distance from the center of plate thickness (mm)
  • h Outer side plate thickness (mm)
  • H Enter side plate thickness (mm)
  • C B 1 ⁇ (H / 2R) B2 ⁇ re 2 ...
  • the rolling temperature is preferably 1050 ° C. or lower, more preferably 1000 ° C. or lower.
  • the lower limit of the rolling temperature is preferably 750 ° C. or higher, more preferably 780 ° C. or higher, from the viewpoint of suppressing the increase in strength.
  • the recrystallization reduction rate is preferably 85% or more, more preferably 90% or more.
  • the recrystallization reduction rate is preferably 99% or less from the viewpoint of suppressing the miniaturization of the crystal grain size.
  • Finish rolling completion temperature is a parameter related to machining strain that decreases due to recovery and recrystallization. The higher the FRT, the larger the driving force for recovery and recrystallization, and the smaller the processing strain. Therefore, from the viewpoint of obtaining a ferrite structure with less processing strain, it is preferable that the FRT is high.
  • the finish rolling completion temperature may be, for example, in the range of 1100 ° C to 750 ° C.
  • the time between final rolling passes is the time from the end of rolling one pass before the final pass to the start of rolling of the final pass.
  • the time between final rolling passes is a parameter associated with recovery, reduction of machining strain due to recrystallization, and introduction of machining strain in the ferrite formation temperature range.
  • the time between final rolling passes may be, for example, in the range of 5 seconds to 120 seconds.
  • the total cumulative strain ( ⁇ T ) is a parameter representing the amount of machining strain introduced by hot rolling.
  • the machining strain introduced during hot rolling is considered to remain in the structure after transformation, although it is alleviated by transformation. That is, the strain remaining in the ferrite after transformation is affected by the cumulative strain introduced during hot rolling, and the larger the cumulative strain, the more strain is left in the ferrite, which deteriorates the uniform elongation characteristics. Conceivable. Therefore, from the viewpoint of obtaining a ferrite structure with less processing strain, it is preferable that the total cumulative strain is small.
  • the total cumulative strain may be, for example, in the range of 1.0 to 30.
  • the present inventors have found the left side of the equation (1) using these as parameters after further studies. Then, the present inventors satisfy low strength (that is, 520 MPa or less) and high elongation characteristics (that is, EL ⁇ 16%, uEL ⁇ 13.5%) when the left side of the formula (1) is less than 69. Found to be difficult. Therefore, the lvalue in equation (1) is set to 69 or more.
  • the lvalue in the formula (1) is preferably 75 or more, more preferably 80 or more. From the viewpoint of ensuring the above characteristics, the upper limit of the rvalue in the formula (1) is not particularly limited, but in view of the manufacturing conditions and the like according to the embodiment of the present invention, the upper limit is about 100.
  • tissue of No. 8 was observed as follows. A test piece is cut out from the steel plate so that the observation surface is parallel to the surface of the steel plate and the observation position is at the t / 4 position (t: plate thickness). Observed under a microscope. The area ratio of ferrite was analyzed with image analysis software (Image-J) for each of the 10 fields of view (field of view area: 150 ⁇ m ⁇ 200 ⁇ m) of the optical microscope, and the average value of the ferrite area ratio was calculated for each sample. In this way, the ferrite area ratio of each sample was calculated.
  • image analysis software Image-J
  • ferrite grain size For the ferrite grain size, create a grid with 25 ⁇ m intervals in one field of view (field of view area: 150 ⁇ m ⁇ 200 ⁇ m) of a 400-fold optical microscope image, determine the number of ferrite grains crossed by one straight line, and determine the length of the straight line in the field of view. Was divided by the number to obtain the particle size per ferrite in the straight line. Then, in the other straight lines as well, the particle size per ferrite was obtained, the average value of these was calculated, and this average value was taken as the ferrite particle size. No. The ferrite area ratios of 1, 6, 7 and 8 were 80%, 82%, 84% and 83%, respectively, which satisfied the requirements according to the embodiment of the present invention. In addition, No.
  • the ferrite grain sizes of 1, 6, 7 and 8 were 7 ⁇ m, 22 ⁇ m, 16 ⁇ m and 14 ⁇ m, respectively, which satisfied the requirements according to the embodiment of the present invention.
  • the remaining tissue is No. All of 1, 6, 7 and 8 were pearlite.
  • Test piece for the tensile test was taken from the rolled material so that the longitudinal direction (tensile direction) was orthogonal to the rolling direction.
  • the shape of the test piece is NK-U1 based on the Nippon Kaiji Kyokai's ship class regulation K edition material (2019 version), the distance between gauge points (GL) is 200 mm, and it is a total thickness shape, so it is shown in Table 2. It was carried out with the plate thickness of.
  • Yield Point Yield Point
  • the yield point was carried out in accordance with the NK ship class standard K edition.
  • the tensile speed was set to 20 N / mm 2 before reaching the yield point, and the strain rate was set to 30 PL% / min after reaching the yield point.
  • the uniform elongation was calculated by the elongation up to the maximum load in the stress-strain diagram. Samples having a tensile strength (TS) of 400 MPa or more and 520 MPa or less, a breaking elongation (EL) of 16% or more, and a uniform elongation (uEL) of 13.5% or more were accepted. The test results are shown in Table 3.
  • the yield strength (YS) is also shown in Table 3.
  • the corrosion test piece is prepared by applying 15 ⁇ m of Zn-rich paint on the surface of a 5t ⁇ 90W ⁇ 120L (mm) steel material, applying and curing 160 ⁇ m of a modified epoxy resin on the surface, and further 160 ⁇ m of the modified epoxy resin.
  • a coating having a total film thickness of 335 ⁇ m was applied.
  • a coating film scratch portion (that is, a coating scratch portion) was artificially applied to the central portion of the painted test piece using a plastic cutter, and the outer periphery of the test piece was covered with masking tape, and the evaluation area was adjusted to 80 cm 2 .
  • the corrosion test was carried out as follows as a laboratory evaluation test simulating the inside of the ballast tank.
  • a cycle of drying in RH for 4 hours and then holding at 50 ° C. ⁇ 1 ° C. for 2 hours at a relative humidity higher than 95% RH was performed for 7 days (hereinafter, this 7-day cycle is referred to as” first cycle "). .. Then, "hold at 35 ° C. ⁇ 1 ° C.
  • the first cycle and the second cycle were alternately carried out for 168 days.
  • the test piece was installed at an angle of 15 ° to 25 ° from the vertical direction. The tester was adjusted so that the amount of artificial seawater sprayed was 1.5 ⁇ 0.5 mL / 80 cm 2 / h.
  • Example No. 1 to No. Example No. 8 which satisfies the requirements for the chemical composition according to the embodiment of the present invention as in 8. B confirmed that the corrosion resistance was good.
  • Comparative Example No. 9-No. No. 11 was inferior in tensile strength (TS) and uniform elongation (uEL) because it did not satisfy the formula (1).
  • TS tensile strength
  • uEL uniform elongation
  • the reason why the formula (1) was not satisfied was No. No. 9 had a relatively low FRT, a low Tom, and a large cumulative strain ⁇ T, and No. 10, No. It is considered that No. 11 was due to the relatively low FRT and the relatively large cumulative strain ⁇ T.
  • FIG. 4 is a graph showing the relationship between the left side of equation (1) and the tensile strength.
  • FIG. 5 is a graph showing the relationship between the left side of equation (1) and uniform elongation.
  • the thick steel plate according to the embodiment of the present invention can be widely applied to fields such as shipbuilding, offshore structures, bridges, etc. where improvement of coating corrosion resistance and / or on-site workability (that is, improvement of elongation characteristics) is required, and is particularly limited.
  • thick steel plates for ships such as the upper deck of a hull ballast tank can be mentioned as a specific application destination.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Metal Rolling (AREA)

Abstract

A low-strength thick steel sheet having excellent elongation properties and corrosion resistance, which has a specified compositional formula, in which a metal structure contains ferrite at an area ratio of 70% or more relative to the whole metal structure with a remainder comprising at least one component selected from the group consisting of perlite, bainite and martensite, the grain diameter of ferrite is 3 to 40 μm inclusive, and the tensile strength is 400 to 520 MPa inclusive, the elongation at break is 16% or more and the uniform elongation is 13.5% or more when a tensile test is performed using a NK-U1 test specimen having a distance between marking points of 200 mm in accordance with Rules and Regulations for the Classification of Ships, Part-K Materials (2019 ed.) published by Nippon Kaiji Kyokai.

Description

伸び特性と耐食性に優れた低強度の厚鋼板Low-strength thick steel sheet with excellent elongation characteristics and corrosion resistance
 本開示は、伸び特性と耐食性に優れた低強度の厚鋼板に関する。 This disclosure relates to a low-strength thick steel sheet having excellent elongation characteristics and corrosion resistance.
 船舶のバラストタンクは、積荷状態などの変化に応じて海水の注入と排出を行うため、用いられる鋼材は、海水の浸漬と、塩分を含む湿潤大気への曝露と、の繰り返しという極めて厳しい腐食環境にさらされる。バラストタンクの腐食損傷が生じた場合、穴あきによる沈没、原油または化学物質などの積荷の海洋流出などを招く虞があるため、鋼材には何らかの防食手段を施す必要があり、その手段の一つとして防食塗装がある。しかし、防食塗装は、塗装劣化に伴う塗装塗り直しが必要であることから、メンテナンスコストがかかり、また環境負荷も高くなる。近年、持続的社会の実現のために、環境負荷低減が重要なファクターの1つとなっている。そのため、メンテナンスコストは勿論、環境負荷を低減する観点から、鋼材の耐食性向上が必要となる。耐食性向上を目的とした船舶用鋼材が、例えば特許文献1および特許文献2に開示されている。 Since the ballast tank of a ship injects and discharges seawater in response to changes in cargo conditions, etc., the steel material used is an extremely severe corrosive environment in which seawater is immersed and exposed to the moist atmosphere containing salt. Be exposed to. If the ballast tank is corroded and damaged, it may sink due to perforation or the cargo of crude oil or chemical substances may flow out into the ocean. There is anti-corrosion coating as. However, since the anticorrosion coating requires repainting due to deterioration of the coating, maintenance cost is high and the environmental load is also high. In recent years, reducing the environmental burden has become one of the important factors for the realization of a sustainable society. Therefore, it is necessary to improve the corrosion resistance of the steel material from the viewpoint of reducing the environmental load as well as the maintenance cost. Steel materials for ships for the purpose of improving corrosion resistance are disclosed in, for example, Patent Document 1 and Patent Document 2.
特開2015-151571号公報JP-A-2015-151571 特開2010-126765号公報Japanese Unexamined Patent Publication No. 2010-126765
 内航船の場合、その船体構造から、例えば引張強度(TS)が520MPa以下の低強度材、いわゆる軟鋼が適用される場合が多い。一方、耐食性を向上させる手段として、耐食性向上元素となる合金元素を添加することが通常である。しかし、合金元素を添加すると、一般的に強度が上昇するため、耐食性と低強度との両立が困難になる。 In the case of coastal vessels, for example, low-strength materials with a tensile strength (TS) of 520 MPa or less, so-called mild steel, are often applied due to the hull structure. On the other hand, as a means for improving the corrosion resistance, it is usual to add an alloying element which is an element for improving the corrosion resistance. However, when an alloying element is added, the strength generally increases, so that it becomes difficult to achieve both corrosion resistance and low strength.
 また、近年、持続的社会実現の一環として低炭素化社会の実現も重要視されている。鋼板加工性を向上させることができれば、現場における部品成形等の作業時間の低減につながり、最終的に省エネ化ないしCO排出量削減に貢献することができる。そこで、所定の鋼板加工性(すなわち、破断伸びELの向上)を確保することも必要である。さらに、船舶などが物体に衝突した場合、部材が塑性変形し、亀裂が生じるとメンテナンス負荷が増大するため、低炭素化社会の実現の観点からは望ましくない。そこで、外力付与時に均一変形させる観点から、所定の均一伸び特性(uEL)も必要となる。 In recent years, the realization of a low-carbon society has also been emphasized as part of the realization of a sustainable society. If the workability of the steel sheet can be improved, it will lead to a reduction in the work time for forming parts at the site, and finally contribute to energy saving or reduction of CO 2 emissions. Therefore, it is also necessary to secure a predetermined workability of the steel sheet (that is, improvement of the elongation at break EL). Further, when a ship or the like collides with an object, the member is plastically deformed, and when a crack occurs, the maintenance load increases, which is not desirable from the viewpoint of realizing a low-carbon society. Therefore, from the viewpoint of uniform deformation when an external force is applied, a predetermined uniform elongation characteristic (uEL) is also required.
 本発明は、このような状況に鑑みてなされたものであり、その目的は、優れた耐食性と、低強度および高い伸び特性と、を両立させた厚鋼板を提供することにある。 The present invention has been made in view of such a situation, and an object thereof is to provide a thick steel sheet having both excellent corrosion resistance, low strength and high elongation characteristics.
 本発明の態様1は、
 C :0.01質量%以上、0.30質量%以下、
 Si:0.01質量%以上、2.0質量%以下、
 Mn:0.85質量%以上、2.00質量%以下、
 P :0質量%超、0.015質量%以下、
 S :0質量%超、0.005質量%以下、
 Al:0.005質量%以上、0.10質量%以下、
 Cr:0.01質量%以上、0.5質量%以下、
 Ti:0.005質量%以上、0.20質量%以下、
 Ca:0.0001質量%以上、0.005質量%以下、
 N :0.0001質量%以上、0.010質量%以下、および
 Cu+Ni:0.50質量%以上、0.85質量%以下
を含有し、残部がFeおよび不可避不純物からなり、
 金属組織が、全金属組織に対する面積率で70%以上のフェライトを含み、残部がパーライト、ベイナイトおよびマルテンサイトよりなる群から選ばれる1種以上からなり、
 フェライト粒径が、3μm以上40μm以下であり、
 日本海事協会の船級規則K編材料(2019年度版)に準拠した標点間距離が200mmのNK-U1号の試験片を用いて引張試験したときに、引張強度が400MPa以上520MPa以下、破断伸びが16%以上、かつ均一伸びが13.5%以上である、伸び特性と耐食性に優れた低強度の厚鋼板である。
Aspect 1 of the present invention is
C: 0.01% by mass or more, 0.30% by mass or less,
Si: 0.01% by mass or more, 2.0% by mass or less,
Mn: 0.85% by mass or more, 2.00% by mass or less,
P: More than 0% by mass, 0.015% by mass or less,
S: More than 0% by mass, 0.005% by mass or less,
Al: 0.005% by mass or more, 0.10% by mass or less,
Cr: 0.01% by mass or more, 0.5% by mass or less,
Ti: 0.005% by mass or more, 0.20% by mass or less,
Ca: 0.0001% by mass or more, 0.005% by mass or less,
N: contains 0.0001% by mass or more and 0.010% by mass or less, and Cu + Ni: 0.50% by mass or more and 0.85% by mass or less, and the balance consists of Fe and unavoidable impurities.
The metallographic structure contains ferrite with an area ratio of 70% or more with respect to the total metallic structure, and the balance consists of one or more selected from the group consisting of pearlite, bainite and martensite.
The ferrite grain size is 3 μm or more and 40 μm or less.
Tensile strength is 400 MPa or more and 520 MPa or less, fracture elongation when a tensile test is performed using a test piece of NK-U1 with a distance between gauge points of 200 mm in accordance with Nippon Kaiji Kyokai's ship class regulation K edition material (FY2019 version). Is a low-strength thick steel sheet having excellent elongation characteristics and corrosion resistance, having a uniform elongation of 13.5% or more and a uniform elongation of 16% or more.
 本発明の態様2は、
 複合サイクル試験168日後の塗装スクラッチ部の平均腐食深さが0.600mm以下である、態様1に記載の厚鋼板である。
Aspect 2 of the present invention is
The thick steel sheet according to aspect 1, wherein the average corrosion depth of the coated scratch portion after 168 days of the composite cycle test is 0.600 mm or less.
 本発明の態様3は、
 B :0.0001質量%以上、0.010質量%以下、
 V :0.01質量%以上、0.50質量%以下、および
 Nb:0.001質量%以上、0.50質量%以下
よりなる群から選ばれる1種以上を更に含有する、態様1または態様2に記載の厚鋼板である。
Aspect 3 of the present invention is
B: 0.0001% by mass or more, 0.010% by mass or less,
V: 0.01% by mass or more, 0.50% by mass or less, and Nb: 0.001% by mass or more, 0.50% by mass or less, further containing one or more selected from the group. The thick steel plate according to 2.
 本発明の態様4は、
 Co :0.005質量%以上、0.20質量%以下、
 REM:0.005質量%以上、0.20質量%以下、
 Zr :0.005質量%以上、0.20質量%以下、および
 Mg :0.0001質量%以上、0.005質量%以下
よりなる群から選ばれる1種以上を更に含有する、態様1~3のいずれかに記載の厚鋼板である。
Aspect 4 of the present invention is
Co: 0.005% by mass or more, 0.20% by mass or less,
REM: 0.005% by mass or more, 0.20% by mass or less,
Aspects 1 to 3 further containing one or more selected from the group consisting of Zr: 0.005% by mass or more and 0.20% by mass or less, and Mg: 0.0001% by mass or more and 0.005% by mass or less. It is a thick steel plate according to any one of.
 本発明の態様5は、
 態様1~4のいずれかに記載の成分組成を満たす鋼を1100℃以上に加熱する工程と、
 圧延温度を1100℃以下および再結晶圧下率を80%以上にし、下記式(1)を満たすように熱間圧延を行う工程と、
 空冷する工程と、を含む、態様1~4のいずれかに記載の厚鋼板の製造方法である。
 0.08FRT+0.1Tom-0.5ε+10≧69 ・・・(1)
 ただし、
 FRT:仕上げ圧延完了温度(℃)
 Tom:最終パス~最終1パス前の圧延パス間時間(秒)
 ε :鋼板の表面、t/4位置およびt/2位置(t:板厚)の各位置おける累積歪みの合計値であり、下記式(2)式で算出される。なお、各位置における累積歪みは下記式(3)で算出される。また、各パスの歪みは下記式(4)で算出される。
 ε=εyt(表面)+εyt(t/4)+εyt(t/2) ・・・(2)
 εyt=εy1+εy2+εy3+・・・+εyn ・・・(3)
 εyi=C×(2y/h)+1.15×ln(H/h) ・・・(4)
 式(2)~(4)において、
 ε:板厚方向y位置における相当塑性ひずみ、
 εyi:iパス目の板厚方向y位置における相当塑性ひずみ、
 y:板厚中心からの距離(mm)、h:出側板厚(mm)、H:入側板厚(mm)、
 C=B×(H/2R)B2×r ・・・(5)
 式(5)において、
 B=0.18381+0.34435μ+1.4086×μ
 B=0.076669-2.0566μ+2.1128×μ
 ただし、μ:摩擦係数、R:ロール半径(mm)、r:圧下率
Aspect 5 of the present invention is
A step of heating steel satisfying the composition according to any one of aspects 1 to 4 to 1100 ° C. or higher, and
A step of hot rolling so that the rolling temperature is 1100 ° C. or lower and the recrystallization reduction rate is 80% or more and the following formula (1) is satisfied.
The method for manufacturing a thick steel sheet according to any one of aspects 1 to 4, which comprises an air cooling step.
0.08FRT +0.1Tom-0.5ε T +10 ≧ 69 ・ ・ ・ (1)
however,
FRT: Finish rolling completion temperature (° C)
Tom: Time between the last pass and the rolling pass one pass before the last pass (seconds)
ε T : The total value of the cumulative strains at each position of the surface of the steel sheet, the t / 4 position and the t / 2 position (t: plate thickness), and is calculated by the following equation (2). The cumulative strain at each position is calculated by the following equation (3). Further, the distortion of each path is calculated by the following equation (4).
ε T = ε yt (surface) + ε yt (t / 4) + ε yt (t / 2) ・ ・ ・ (2)
ε yt = ε y1 + ε y2 + ε y3 + ... + ε yn ... (3)
ε yi = C × (2y / h) 2 + 1.15 × ln (H / h) ・ ・ ・ (4)
In equations (2) to (4)
ε y : Equivalent plastic strain at y position in the plate thickness direction,
ε yi : Equivalent plastic strain at the y position in the plate thickness direction of the i-pass,
y: Distance from the center of plate thickness (mm), h: Outer side plate thickness (mm), H: Enter side plate thickness (mm),
C = B 1 × (H / 2R) B2 × re 2 ... (5)
In equation (5)
B 1 = 0.18381 + 0.344435μ + 1.48066 × μ 2
B 2 = 0.076669-2.0566μ + 2.1128 × μ 2
However, μ: friction coefficient, R: roll radius (mm), re : reduction rate
 本発明の実施形態によれば、優れた耐食性と、低強度および高い伸び特性と、を両立させた厚鋼板を提供することができる。 According to the embodiment of the present invention, it is possible to provide a thick steel sheet having both excellent corrosion resistance, low strength and high elongation characteristics.
図1は、実施例に係る腐食試験片を示す模式図である。FIG. 1 is a schematic view showing a corrosion test piece according to an example. 図2は、実施例に係る腐食試験方法を説明するための図である。FIG. 2 is a diagram for explaining a corrosion test method according to an embodiment. 図3は、実施例に係る腐食深さの測定位置を説明するための模式図である。FIG. 3 is a schematic diagram for explaining the measurement position of the corrosion depth according to the embodiment. 図4は、式(1)左辺と引張強度との関係を示すグラフである。FIG. 4 is a graph showing the relationship between the left side of equation (1) and the tensile strength. 図5は、式(1)左辺と均一伸びとの関係を示すグラフである。FIG. 5 is a graph showing the relationship between the left side of equation (1) and uniform elongation.
 本発明者らは、優れた耐食性を確保するため、Cu、NiおよびCrを一定量含有させることを前提に、低強度と優れた伸び特性を実現すべく鋭意研究を行った。その結果、所定の化学成分組成を有する鋼を、推奨される条件で製造することで、所定の化学成分組成を有するとともに、全金属組織に対する面積率で70%以上のフェライトを含み、残部がパーライト、ベイナイトおよびマルテンサイトよりなる群から選ばれる1種以上からなり、フェライト粒径が3μm以上40μm以下であり、引張強度が400MPa以上520MPa以下、破断伸びが16%以上、かつ均一伸びが13.5%以上である、伸び特性と耐食性に優れた低強度の厚鋼板が得られることを見出した。 The present inventors have conducted diligent research to realize low strength and excellent elongation characteristics on the premise that a certain amount of Cu, Ni and Cr is contained in order to secure excellent corrosion resistance. As a result, by producing a steel having a predetermined chemical composition under the recommended conditions, the steel has a predetermined chemical composition and contains ferrite having an area ratio of 70% or more with respect to the total metal structure, and the balance is pearlite. It consists of one or more selected from the group consisting of bainite and martensite, has a ferrite particle size of 3 μm or more and 40 μm or less, a tensile strength of 400 MPa or more and 520 MPa or less, a breaking elongation of 16% or more, and a uniform elongation of 13.5. It has been found that a low-strength thick steel plate having excellent elongation characteristics and corrosion resistance, which is% or more, can be obtained.
1.化学成分組成
 以下に本発明の実施形態に係る厚鋼板の化学成分組成について説明する。まず、基本となる元素である、C、Si、Mn、P、S、Al、Cr、Ti、Ca、N、CuおよびNiについて説明し、さらに選択的に添加してよい元素について説明する。
1. 1. Chemical Composition The chemical composition of the thick steel sheet according to the embodiment of the present invention will be described below. First, the basic elements C, Si, Mn, P, S, Al, Cr, Ti, Ca, N, Cu and Ni will be described, and further, the elements that may be selectively added will be described.
[C:0.01質量%以上、0.30質量%以下]
 Cは、材料の強度確保のために必要な元素である。Cが過剰に含有すると、強度上昇により低強度を得られなくなる。一方、C量を減少させすぎると、構造部材としての最低強度、即ち概ね400MPa程度を得ることが困難になる。そのため、C含有量は、0.01質量%以上、0.30質量%以下とした。なお、上記最低強度は、使用する鋼材の肉厚によって変化する。C含有量は、好ましくは0.05質量%以上であり、より好ましくは0.10質量%以上である。また、C含有量は、好ましくは0.20質量%以下であり、より好ましくは0.15質量%以下である。
[C: 0.01% by mass or more, 0.30% by mass or less]
C is an element necessary for ensuring the strength of the material. If C is excessively contained, low strength cannot be obtained due to an increase in strength. On the other hand, if the amount of C is reduced too much, it becomes difficult to obtain the minimum strength as a structural member, that is, about 400 MPa. Therefore, the C content was set to 0.01% by mass or more and 0.30% by mass or less. The minimum strength varies depending on the wall thickness of the steel material used. The C content is preferably 0.05% by mass or more, and more preferably 0.10% by mass or more. The C content is preferably 0.20% by mass or less, and more preferably 0.15% by mass or less.
[Si:0.01質量%以上、2.0質量%以下]
 Siは、脱酸と強度確保のために必要な元素である。Siは、フェライトに固溶することにより、強度を上昇させるが、Si含有量が2.0質量%を超えると強度上昇により低強度を得られなくなる。一方、Si含有量が0.01質量%未満であると、構造部材としての最低強度を確保できない。そのため、Si含有量は、0.01質量%以上、2.0質量%以下とした。Si含有量は、好ましくは1.00質量%以下であり、より好ましくは0.50質量%以下であり、さらに好ましくは0.30質量%以下である。また、Si含有量は、好ましくは0.10質量%以上であり、より好ましくは0.15質量%以上である。
[Si: 0.01% by mass or more, 2.0% by mass or less]
Si is an element necessary for deoxidation and ensuring strength. Si increases its strength by being dissolved in ferrite as a solid solution, but if the Si content exceeds 2.0% by mass, the strength increases and low strength cannot be obtained. On the other hand, if the Si content is less than 0.01% by mass, the minimum strength as a structural member cannot be secured. Therefore, the Si content was set to 0.01% by mass or more and 2.0% by mass or less. The Si content is preferably 1.00% by mass or less, more preferably 0.50% by mass or less, and further preferably 0.30% by mass or less. The Si content is preferably 0.10% by mass or more, and more preferably 0.15% by mass or more.
[Mn:0.85質量%以上、2.00質量%以下]
 MnもSiと同様に脱酸および強度確保のために必要であり、0.85質量%未満であると構造部材としての最低強度を確保できない。しかし、Mnを過剰に含有させると強度上昇により低強度を得られなくなる。そのため、Mn含有量は、0.85質量%以上、2.00質量%以下とした。Mn含有量は、好ましくは0.90質量%以上であり、より好ましくは0.95質量%以上である。また、Mn含有量は、好ましくは1.20質量%以下であり、より好ましくは1.10質量%以下である。
[Mn: 0.85% by mass or more, 2.00% by mass or less]
Like Si, Mn is also necessary for deoxidation and ensuring strength, and if it is less than 0.85% by mass, the minimum strength as a structural member cannot be secured. However, if Mn is excessively contained, low strength cannot be obtained due to an increase in strength. Therefore, the Mn content was set to 0.85% by mass or more and 2.00% by mass or less. The Mn content is preferably 0.90% by mass or more, and more preferably 0.95% by mass or more. The Mn content is preferably 1.20% by mass or less, and more preferably 1.10% by mass or less.
[P:0質量%超、0.015質量%以下]
 Pは、Siと同様に固溶強化量が大きい元素であり、低強度を狙う本発明の実施形態では、含有量は少ないほうが良い。また、靭性、溶接性も劣化されるため、P含有量の許容される上限を0.015質量%までとした。
[P: More than 0% by mass, 0.015% by mass or less]
Like Si, P is an element having a large amount of solid solution strengthening, and in the embodiment of the present invention aiming at low strength, the content should be small. Further, since the toughness and weldability are also deteriorated, the allowable upper limit of the P content is set to 0.015% by mass.
[S:0質量%超、0.005質量%以下]
 Sは、含有量が増大すると延性を低下させる元素であることから、含有量を抑制することが好ましく、S含有量の許容される上限は0.005質量%までである。
[S: More than 0% by mass, 0.005% by mass or less]
Since S is an element that reduces ductility as the content increases, it is preferable to suppress the content, and the allowable upper limit of the S content is 0.005% by mass.
[Al:0.005質量%以上、0.10質量%以下]
 Alは、緻密な酸化被膜を形成し、耐食性を向上させる元素である。一方、Alは、SiおよびPよりも固溶強化量は小さいものの、強度上昇に寄与する元素である。そのため、Al添加量は、0.005質量%以上、0.10質量%以下とした。Al含有量は、好ましくは0.030質量%以上であり、より好ましくは0.045質量%以上である。また、Al含有量は、好ましくは0.090質量%以下であり、より好ましくは0.080質量%以下である。
[Al: 0.005% by mass or more, 0.10% by mass or less]
Al is an element that forms a dense oxide film and improves corrosion resistance. On the other hand, Al is an element that contributes to an increase in strength, although the amount of solid solution strengthening is smaller than that of Si and P. Therefore, the amount of Al added was set to 0.005% by mass or more and 0.10% by mass or less. The Al content is preferably 0.030% by mass or more, and more preferably 0.045% by mass or more. The Al content is preferably 0.090% by mass or less, and more preferably 0.080% by mass or less.
[Cu+Ni:0.50質量%以上、0.85質量%以下]
 CuおよびNiは、耐食性向上に有効な元素である。CuおよびNiは、いずれも防食塗膜下で発生する腐食反応を抑制する作用を有しており、塗膜下腐食による塗膜膨れを抑制する効果を有する元素である。また、CuおよびNiは、塗膜欠陥部において、鋼材が腐食を受けた場合に生成錆を緻密化する作用も有しており、塗膜傷部の腐食進展を抑制する効果を発現するのに有効な元素である。これらの効果を発揮させるためには、CuおよびNiの合計含有量を0.50質量%以上とすることが必要であるが、過剰に含有させると軟鋼の強度クラスを逸脱することから、0.85質量%以下とする必要がある。耐食性確保の観点から、CuおよびNiの合計含有量は、好ましくは0.55質量%以上であり、より好ましい下限は0.60質量%以上である。また、強度上昇の観点から、CuおよびNiの合計含有量は、好ましくは0.80質量%以下であり、より好ましくは0.75質量%以下である。また、Cu含有量は、好ましくは0.20質量%以上、より好ましくは0.25質量%以上である。また、Cu含有量は、好ましくは0.35質量%以下、より好ましくは0.33質量%以下である。Ni含有量は、好ましくは0.30質量%以上、より好ましくは0.32質量%以上である。また、Ni含有量は、好ましくは0.40質量%以下、より好ましくは0.37質量%以下である。
[Cu + Ni: 0.50% by mass or more, 0.85% by mass or less]
Cu and Ni are elements effective for improving corrosion resistance. Both Cu and Ni have the effect of suppressing the corrosion reaction that occurs under the anticorrosive coating film, and are elements that have the effect of suppressing the swelling of the coating film due to the corrosion under the coating film. In addition, Cu and Ni also have the effect of densifying the generated rust when the steel material is corroded in the coating film defect portion, and exert the effect of suppressing the corrosion progress of the coating film scratched portion. It is an effective element. In order to exert these effects, it is necessary to make the total content of Cu and Ni 0.50% by mass or more, but if it is excessively contained, it deviates from the strength class of mild steel. It should be 85% by mass or less. From the viewpoint of ensuring corrosion resistance, the total content of Cu and Ni is preferably 0.55% by mass or more, and the more preferable lower limit is 0.60% by mass or more. Further, from the viewpoint of increasing the strength, the total content of Cu and Ni is preferably 0.80% by mass or less, more preferably 0.75% by mass or less. The Cu content is preferably 0.20% by mass or more, more preferably 0.25% by mass or more. The Cu content is preferably 0.35% by mass or less, more preferably 0.33% by mass or less. The Ni content is preferably 0.30% by mass or more, more preferably 0.32% by mass or more. The Ni content is preferably 0.40% by mass or less, more preferably 0.37% by mass or less.
[Cr:0.01質量%以上、0.5質量%以下]
 Crは、耐食性向上に有効な元素である。Crは、塗膜下pHを好適値に調整し、プライマー消耗を抑制する作用を有しており、さらに塗膜傷部の腐食進展を抑制する効果を発現するのに有効な元素である。また、適量のCrは靭性を向上させるのに有効であり、バラストタンク素材として必要な機械特性を得るためにも必要な元素である。これらの効果を発揮させるためには、Crは0.01質量%以上含有させることが必要である。しかし、Crを過剰に含有させると界面pHを低下させすぎてしまい、Feの流出を促進させ、耐食性悪化の要因となる。そのため、Cr含有量は、0.5質量%以下とする必要がある。Cr含有量は、好ましくは0.3質量%以下であり、好ましくは0.05質量%以上である。
[Cr: 0.01% by mass or more, 0.5% by mass or less]
Cr is an element effective for improving corrosion resistance. Cr is an element that adjusts the pH under the coating film to a suitable value, has an effect of suppressing primer consumption, and further exerts an effect of suppressing the progress of corrosion of a scratched portion of the coating film. Further, an appropriate amount of Cr is effective for improving toughness, and is an element necessary for obtaining mechanical properties required as a ballast tank material. In order to exert these effects, it is necessary to contain Cr in an amount of 0.01% by mass or more. However, if Cr is excessively contained, the interfacial pH is lowered too much, the outflow of Fe is promoted, and it becomes a factor of deterioration of corrosion resistance. Therefore, the Cr content needs to be 0.5% by mass or less. The Cr content is preferably 0.3% by mass or less, and preferably 0.05% by mass or more.
[Ti:0.005質量%以上、0.20質量%以下]
 Tiは、耐食性向上に有効な元素である。Tiは、塩化物腐食環境において生成する錆びを緻密化する作用を有しており、塗膜傷部における腐食進展を抑制する元素である。こうした効果を発揮させるために、Tiは、0.005質量%以上含有させる。しかしながら、Ti含有量が過剰になるとTi炭窒化物が過剰に析出し、強度を上昇させてしまうことから、上限は0.20質量%とする。Ti含有量は、好ましくは0.008質量%以上であり、より好ましくは0.010質量%以上である。Ti含有量は、好ましくは0.15質量%以下であり、より好ましくは0.10質量%以下である。
[Ti: 0.005% by mass or more, 0.20% by mass or less]
Ti is an element effective for improving corrosion resistance. Ti has an action of densifying the rust generated in a chloride-corroded environment, and is an element that suppresses the progress of corrosion in the scratched portion of the coating film. In order to exert such an effect, Ti is contained in an amount of 0.005% by mass or more. However, if the Ti content is excessive, Ti carbonitride is excessively precipitated and the strength is increased. Therefore, the upper limit is set to 0.20% by mass. The Ti content is preferably 0.008% by mass or more, and more preferably 0.010% by mass or more. The Ti content is preferably 0.15% by mass or less, and more preferably 0.10% by mass or less.
[Ca:0.0001質量%以上、0.005質量%以下]
 Caは、耐食性向上に有効な元素である。CaはpH緩衝作用により、Feおよび/またはCrの加水分解によるpH低下を緩和する作用を有しており、pH低下による腐食促進を抑制するのに効果的である。こうした作用は、Caを0.0001質量%以上含有させることによって有効に発揮される。しかしながら、0.005質量%を超えてCaを過剰に含有させると伸び特性を劣化させることになる。そのため、Ca含有量は、0.0001質量%以上、0.005質量%以下とする。Ca含有量は、好ましくは0.0005質量%以上であり、より好ましくは0.0010質量%以上である。Ca含有量は、好ましくは0.004質量%以下であり、より好ましくは0.003質量%以下である。
[Ca: 0.0001% by mass or more, 0.005% by mass or less]
Ca is an element effective for improving corrosion resistance. Ca has an action of alleviating a decrease in pH due to hydrolysis of Fe and / or Cr by a pH buffering action, and is effective in suppressing the promotion of corrosion due to a decrease in pH. Such an action is effectively exerted by containing 0.0001% by mass or more of Ca. However, if Ca is excessively contained in excess of 0.005% by mass, the elongation characteristics will be deteriorated. Therefore, the Ca content is 0.0001% by mass or more and 0.005% by mass or less. The Ca content is preferably 0.0005% by mass or more, and more preferably 0.0010% by mass or more. The Ca content is preferably 0.004% by mass or less, and more preferably 0.003% by mass or less.
[N:0.0001質量%以上、0.010質量%以下]
 Nは、Feに固溶すると引張強度を上昇させる元素であるため、含有量を抑制することが好ましく、N含有量は0.010質量%以下、好ましくは0.0075質量%以下、より好ましくは0.0070質量%以下である。一方、Nは、TiN形成によりHAZ靭性向上に寄与する元素である。該効果を発揮させる観点から、N含有量は0.0001質量%以上、好ましくは0.0010質量%以上、より好ましくは0.0020質量%以上である。
[N: 0.0001% by mass or more, 0.010% by mass or less]
Since N is an element that increases the tensile strength when dissolved in Fe, it is preferable to suppress the content, and the N content is 0.010% by mass or less, preferably 0.0075% by mass or less, more preferably. It is 0.0070% by mass or less. On the other hand, N is an element that contributes to the improvement of HAZ toughness by forming TiN. From the viewpoint of exerting the effect, the N content is 0.0001% by mass or more, preferably 0.0010% by mass or more, and more preferably 0.0020% by mass or more.
[残部]
 残部は、Feおよび不可避不純物である。不可避不純物としては、原料、資材、製造設備等の状況によって持ち込まれる微量元素(例えば、As、Sb、Snなど)の混入が許容される。なお、例えば、PおよびSのように、通常、含有量が少ないほど好ましく、従って不可避不純物であるが、その組成範囲について上記のように別途規定している元素がある。このため、本明細書において、残部を構成する「不可避不純物」という場合は、別途その組成範囲が規定されている元素を除いた概念である。
[Remaining]
The balance is Fe and unavoidable impurities. As unavoidable impurities, it is permissible to mix trace elements (for example, As, Sb, Sn, etc.) brought in depending on the conditions of raw materials, materials, manufacturing equipment, and the like. In addition, for example, there are elements such as P and S, which are usually preferable as the content is smaller and are therefore unavoidable impurities, but the composition range thereof is separately defined as described above. Therefore, in the present specification, the term "unavoidable impurities" constituting the balance is a concept excluding the elements whose composition range is separately defined.
 本発明の実施形態に係る厚鋼板の特性を維持できる限り、任意のその他の元素を更に含んでよい。そのように選択的に含有させることができるその他の元素を以下に例示する。 Any other element may be further contained as long as the characteristics of the thick steel sheet according to the embodiment of the present invention can be maintained. Other elements that can be selectively contained in this way are illustrated below.
[B:0.0001質量%以上、0.010質量%以下、V:0.01質量%以上、0.50質量%以下、およびNb:0.001質量%以上、0.50質量%以下よりなる群から選ばれる1種以上]
 B、VおよびNbは、いずれも機械特性の向上に有効な元素であるが、含有量の増大により強度を向上させてしまうため、含有量を抑制することが好ましい。そのため、B、VおよびNbを含有させる場合、Bの上限は0.010質量%、Vの上限は0.50質量%、Nbの上限は0.50質量%とすることが好ましい。一方、Bの少量添加は溶接部特性を改善する効果があるため、Bは0.0001質量%以上含有させることが好ましい。VおよびNbは少量添加により靭性を改善するため、Vは0.01質量%以上、Nbは0.001質量%以上含有させることが好ましい。これらの元素のより好ましい下限は、Bについては0.0003質量%、Vについては0.02質量%、Nbについては0.005質量%である。より好ましい上限は、Bについては0.0090質量%、Vについては0.45質量%、Nbについては0.45質量%である。
[B: 0.0001% by mass or more, 0.010% by mass or less, V: 0.01% by mass or more, 0.50% by mass or less, and Nb: 0.001% by mass or more, 0.50% by mass or less. One or more selected from the group of
Although B, V and Nb are all effective elements for improving mechanical properties, it is preferable to suppress the content because the strength is improved by increasing the content. Therefore, when B, V and Nb are contained, it is preferable that the upper limit of B is 0.010% by mass, the upper limit of V is 0.50% by mass, and the upper limit of Nb is 0.50% by mass. On the other hand, since the addition of a small amount of B has the effect of improving the characteristics of the welded portion, it is preferable to contain B in an amount of 0.0001% by mass or more. Since V and Nb are added in small amounts to improve toughness, it is preferable to contain V in an amount of 0.01% by mass or more and Nb in an amount of 0.001% by mass or more. The more preferable lower limit of these elements is 0.0003% by mass for B, 0.02% by mass for V, and 0.005% by mass for Nb. A more preferable upper limit is 0.0090% by mass for B, 0.45% by mass for V, and 0.45% by mass for Nb.
[Co:0.005質量%以上、0.20質量%以下、REM:0.005質量%以上、0.20質量%以下、Zr:0.005質量%以上、0.20質量%以下、およびMg:0.0001質量%以上、0.005質量%以下よりなる群から選ばれる1種以上]
 Coは、耐食性向上に有効な元素である。Coは、塩化物腐食環境において生成する錆びを緻密化する作用を有しており、塗膜傷部における腐食進展を抑制する元素である。こうした効果を発揮させるために、Coは、0.005質量%以上含有させることが好ましい。しかし、Co含有量が過剰になると溶接性および/または熱間加工性が劣化するため、Co含有量は、0.20質量%以下とすることが好ましい。Coを含有させるときのより好ましい下限は0.02質量%であり、より好ましい上限は0.15質量%である。
[Co: 0.005% by mass or more, 0.20% by mass or less, REM: 0.005% by mass or more, 0.20% by mass or less, Zr: 0.005% by mass or more, 0.20% by mass or less, and Mg: One or more selected from the group consisting of 0.0001% by mass or more and 0.005% by mass or less]
Co is an element effective for improving corrosion resistance. Co has an action of densifying the rust generated in a chloride corrosive environment, and is an element that suppresses the progress of corrosion in the scratched portion of the coating film. In order to exert such an effect, it is preferable to contain Co in an amount of 0.005% by mass or more. However, if the Co content becomes excessive, the weldability and / or the hot workability deteriorates, so the Co content is preferably 0.20% by mass or less. The more preferable lower limit when Co is contained is 0.02% by mass, and the more preferable upper limit is 0.15% by mass.
 Zrは、耐食性向上に有効な元素である。Zrは、Tiと同様に、塩化物腐食環境において生成する錆びを緻密化する作用を有しており、塗膜傷部における腐食進展を抑制する元素である。こうした効果を発揮させるために、Zrは、0.005質量%以上含有させることが好ましい。しかし、Zr含有量が過剰になると溶接性および/または熱間加工性が劣化するため、Zr含有量は0.20質量%以下とすることが好ましい。Zrを含有させるときのより好ましい下限は0.008質量%であり、より好ましい上限は0.15質量%である。 Zr is an element effective for improving corrosion resistance. Similar to Ti, Zr has an action of densifying rust generated in a chloride corrosive environment, and is an element that suppresses the progress of corrosion in a scratched portion of a coating film. In order to exert such an effect, it is preferable to contain Zr in an amount of 0.005% by mass or more. However, if the Zr content becomes excessive, the weldability and / or the hot workability deteriorates, so the Zr content is preferably 0.20% by mass or less. The more preferable lower limit when containing Zr is 0.008% by mass, and the more preferable upper limit is 0.15% by mass.
 Mgは、耐食性向上に有効な元素である。Mgは、Caと同様に、pH低下を緩和する作用を有しており、pH低下による腐食促進を抑制する効果を発揮して、塗膜膨れを抑制するのに効果的である。こうした作用は0.0001質量%以上含有させることによって有効に発揮され、Coが共存する場合に特に有効である。しかしながら、0.005質量%を超えて過剰に含有させると加工性と溶接性とを劣化させることになるため好ましくない。Mgを含有させるときの好ましい下限は0.0005質量%であり、より好ましい上限は0.004質量%である。 Mg is an element effective for improving corrosion resistance. Similar to Ca, Mg has an effect of alleviating a decrease in pH, exerts an effect of suppressing the promotion of corrosion due to a decrease in pH, and is effective in suppressing swelling of a coating film. Such an action is effectively exhibited by containing 0.0001% by mass or more, and is particularly effective when Co coexists. However, if it is contained in excess of 0.005% by mass, the workability and weldability will be deteriorated, which is not preferable. When Mg is contained, the preferable lower limit is 0.0005% by mass, and the more preferable upper limit is 0.004% by mass.
 REM(Rare Earth Metal)は、使用環境において、鋼材の表面近傍のpH低下を抑制する作用を有しており、耐食性を更に向上させるのに有効な元素である。この作用はこれら元素が腐食溶解して水素イオンと反応することで発揮される。こうした作用を有効に発揮させるために、REMは、0.005質量%以上含有させることが好ましい。しかし、REM含有量が過剰になると溶接性および/または熱間加工性を劣化させるので、REMを含有させる場合は、0.20質量%以下とすることが好ましい。REMを含有させるときのより好ましい下限は0.008質量%であり、より好ましい上限は0.15質量%である。本発明の実施形態に用いられるREMとしては、Sc、Y、ランタノイド等が挙げられる。 REM (Rare Earth Metal) has an effect of suppressing a decrease in pH near the surface of a steel material in a usage environment, and is an effective element for further improving corrosion resistance. This action is exhibited by the corrosion and dissolution of these elements and the reaction with hydrogen ions. In order to effectively exert such an action, it is preferable to contain REM in an amount of 0.005% by mass or more. However, if the REM content is excessive, the weldability and / or the hot workability is deteriorated. Therefore, when the REM content is contained, it is preferably 0.20% by mass or less. The more preferable lower limit when containing REM is 0.008% by mass, and the more preferable upper limit is 0.15% by mass. Examples of the REM used in the embodiment of the present invention include Sc, Y, and lanthanoids.
2.金属組織
 以下に本発明の実施形態に係る厚鋼板の金属組織について説明する。
2. 2. Metallic structure The metal structure of the thick steel plate according to the embodiment of the present invention will be described below.
[フェライト:70面積%以上]
 本発明の実施形態に係る厚鋼板は、全金属組織に対する面積率で70%以上のフェライトを含み、残部がパーライト、ベイナイトおよびマルテンサイトよりなる群から選ばれる1種以上からなる。また、本発明の実施形態では、後述するように、熱間圧延条件を適切に制御することにより、フェライトを十分に確保することができる。フェライトを70面積%以上含むことにより、所望の低強度および高い伸び特性を得ることができる。フェライトの面積率は、好ましくは75%以上である。フェライトの面積率は、軟鋼レベルの最低強度確保の観点から、好ましくは95%以下、より好ましくは92%以下である。
[Ferrite: 70 area% or more]
The thick steel sheet according to the embodiment of the present invention contains ferrite having an area ratio of 70% or more with respect to the total metal structure, and the balance is composed of one or more selected from the group consisting of pearlite, bainite and martensite. Further, in the embodiment of the present invention, as will be described later, the ferrite can be sufficiently secured by appropriately controlling the hot rolling conditions. By containing 70 area% or more of ferrite, desired low strength and high elongation characteristics can be obtained. The area ratio of ferrite is preferably 75% or more. The area ratio of ferrite is preferably 95% or less, more preferably 92% or less, from the viewpoint of ensuring the minimum strength at the level of mild steel.
[フェライト粒径:3μm以上40μm以下]
 本発明の実施形態に係る厚鋼板は、過度な強度上昇を抑制するため、フェライト粒径は3μm以上、好ましくは5μm以上である。一方、最低限度の強度を確保するため、フェライト粒径は40μm以下、好ましくは35μm以下、より好ましくは30μm以下である。
[Ferrite particle size: 3 μm or more and 40 μm or less]
The thick steel sheet according to the embodiment of the present invention has a ferrite grain size of 3 μm or more, preferably 5 μm or more, in order to suppress an excessive increase in strength. On the other hand, in order to secure the minimum strength, the ferrite particle size is 40 μm or less, preferably 35 μm or less, and more preferably 30 μm or less.
3.特性
 本発明の実施形態に係る厚鋼板は、耐食性が優れていると共に、低強度および高い伸び特性を有している。本発明の実施形態に係る厚鋼板のこれらの特性について以下に詳述する。
3. 3. Characteristics The thick steel sheet according to the embodiment of the present invention has excellent corrosion resistance, low strength and high elongation characteristics. These characteristics of the thick steel plate according to the embodiment of the present invention will be described in detail below.
[引張強度(TS):400MPa以上、520MPa以下]
 内航船に使用される場合、その船体構造から、低強度材(いわゆる軟鋼)が適用される場合が多い。そのため、引張強度は、日本海事協会の船級規則K編材料(2019年度版)に準拠した標点間距離が200mmのNK-U1号の試験片を用いて引張試験したときに、400MPa以上、520MPa以下である。引張強度は、好ましくは410MPa以上、より好ましくは420MPa以上、好ましくは510MPa以下、より好ましくは500MPa以下である。
[Tensile strength (TS): 400 MPa or more and 520 MPa or less]
When used for coastal ships, low-strength materials (so-called mild steel) are often applied due to the hull structure. Therefore, the tensile strength is 400 MPa or more and 520 MPa when a tensile test is performed using a test piece of NK-U1 with a distance between gauge points of 200 mm in accordance with the Nippon Kaiji Kyokai Ship Classification Rule K Knitting Material (2019 edition). It is as follows. The tensile strength is preferably 410 MPa or more, more preferably 420 MPa or more, preferably 510 MPa or less, and more preferably 500 MPa or less.
[破断伸び(EL):16%以上]
 破断伸び(すなわち、鋼板加工性)は、日本海事協会の船級規則K編材料(2019年度版)に準拠した標点間距離が200mmのNK-U1号の試験片を用いて引張試験したときに、16%以上である。これにより、現場における部品成形等の作業時間を低減させることができる。破断伸びは、好ましくは18%以上、より好ましくは20%以上、更により好ましくは22%以上である。一方、破断伸びの上限は、特に限定されないが、上記の化学成分組成および後述する製造方法に鑑みれば、45%程度である。
[Fracture elongation (EL): 16% or more]
Fracture elongation (that is, steel plate workability) is obtained when a tensile test is performed using a test piece of NK-U1 with a distance between gauge points of 200 mm in accordance with Nippon Kaiji Kyokai's ship class regulation K knitting material (2019 edition). , 16% or more. As a result, it is possible to reduce the work time for forming parts at the site. The elongation at break is preferably 18% or more, more preferably 20% or more, and even more preferably 22% or more. On the other hand, the upper limit of the elongation at break is not particularly limited, but is about 45% in view of the above-mentioned chemical composition and the production method described later.
[均一伸び(uEL):13.5%以上]
 均一伸び(すなわち、均一変形性能)は、日本海事協会の船級規則K編材料(2019年度版)に準拠した標点間距離が200mmのNK-U1号の試験片を用いて引張試験したときに、13.5%以上である。これにより、船舶などが物体に衝突した場合のメンテナンス負荷を低減させることができる。均一伸びは、好ましくは14.0%以上、より好ましくは14.5%以上、更により好ましくは15.0%以上である。一方、均一伸びの上限は、特に限定されないが、上記の化学成分組成および後述する製造方法に鑑みれば、30%程度である。
[Uniform elongation (uEL): 13.5% or more]
Uniform elongation (that is, uniform deformation performance) is obtained when a tensile test is performed using a test piece of NK-U1 with a distance between gauge points of 200 mm in accordance with Nippon Kaiji Kyokai's ship class rule K knitting material (2019 edition). It is 13.5% or more. This makes it possible to reduce the maintenance load when a ship or the like collides with an object. The uniform elongation is preferably 14.0% or more, more preferably 14.5% or more, and even more preferably 15.0% or more. On the other hand, the upper limit of the uniform elongation is not particularly limited, but is about 30% in view of the above-mentioned chemical composition and the production method described later.
[耐食性:複合サイクル試験(CCT)168日後の塗装スクラッチ部の平均腐食深さが0.600mm以下]
 ある一定以上の腐食深さが形成されると、該腐食部のpHが低下、腐食深さが進展し、船舶などが物体に衝突した場合のメンテナンス負荷が増大するため、0.600mmより腐食深さを進行させないことが好ましい。本発明の実施形態では、複合サイクル試験(CCT)168日後の塗装スクラッチ部の平均腐食深さが、好ましくは0.600mm以下、より好ましくは0.550mm以下、更により好ましくは0.500mm以下である。なお、本実施形態では、上記化学成分組成を満たすことにより、平均腐食深さが0.600mm以下、すなわち耐食性に優れた厚鋼板を得ることができる。
[Corrosion resistance: The average corrosion depth of the painted scratch part after 168 days of the combined cycle test (CCT) is 0.600 mm or less]
When a certain corrosion depth is formed, the pH of the corroded part decreases, the corrosion depth increases, and the maintenance load when a ship or the like collides with an object increases. Therefore, the corrosion depth exceeds 0.600 mm. It is preferable not to let the corrosion progress. In the embodiment of the present invention, the average corrosion depth of the coated scratch portion after 168 days of the composite cycle test (CCT) is preferably 0.600 mm or less, more preferably 0.550 mm or less, still more preferably 0.500 mm or less. be. In this embodiment, by satisfying the above chemical composition, it is possible to obtain a thick steel sheet having an average corrosion depth of 0.600 mm or less, that is, an excellent corrosion resistance.
4.製造方法
 次に本発明の実施形態に係る厚鋼板の製造方法について説明する。
 本発明者らは、上記の化学成分組成を有する鋼に、後述する所定の条件で熱間圧延を施し、その後空冷することにより、上述の所望の金属組織を有し、その結果、上述の所望の特性を有する厚鋼板を得ること見出した。以下にその詳細を説明する。なお、本発明の実施形態は厚鋼板に関するものであり、該分野において厚鋼板とは、一般に板厚が3.0mm以上であるものを指す。本発明の実施形態で対象とする厚鋼板の板厚は、好ましくは6.0mm以上である。
4. Manufacturing Method Next, a manufacturing method of a thick steel sheet according to an embodiment of the present invention will be described.
The present inventors have the above-mentioned desired metal structure by subjecting a steel having the above-mentioned chemical composition to hot rolling under predetermined conditions described later and then air-cooling, and as a result, the above-mentioned desired metal structure is obtained. It has been found that a thick steel sheet having the above-mentioned characteristics can be obtained. The details will be described below. It should be noted that the embodiment of the present invention relates to a thick steel sheet, and in this field, the thick steel sheet generally refers to a steel sheet having a plate thickness of 3.0 mm or more. The thickness of the thick steel plate targeted in the embodiment of the present invention is preferably 6.0 mm or more.
(製鋼)
 製鋼方法は、特に限定されず、一般的な製鋼手段を採用すればよい。
(Steelmaking)
The steelmaking method is not particularly limited, and a general steelmaking means may be adopted.
(熱間圧延前の加熱)
 熱間圧延前の加熱条件は、特に限定されないが、後述の熱間圧延を所定の温度域で実施できるように、例えば、1100℃以上に加熱することが好ましい。
(Heating before hot rolling)
The heating conditions before hot rolling are not particularly limited, but it is preferable to heat the hot rolling to, for example, 1100 ° C. or higher so that the hot rolling described later can be carried out in a predetermined temperature range.
(熱間圧延)
 熱間圧延は、圧延温度を1100℃以下および再結晶圧下率を80%以上にし、下記式(1)を満たすように熱間圧延を行う。再結晶温度領域は、鋼種により変動する。本実施形態で対象とする鋼種の場合、再結晶温度領域は850℃以上である。そのため、本実施形態に係る再結晶圧下率は、850℃以上の圧延(仕上げ圧延を含む)における累積圧下率を意味する。なお、本実施形態では、上記「圧延温度」および後述の「仕上げ圧延完了温度」は、鋼板の表面における温度を意味する。また、本明細書では、「圧延温度」という場合は、粗圧延と仕上げ圧延とを合わせた全圧延における圧延温度を意味する。また、「仕上げ圧延完了温度」という場合は、仕上げ圧延の最終パス完了時における圧延温度を意味する。また、下記式(2)における「εyt(表面)」は、鋼板の両面のうち片面のみの表面における累積歪みを意味する。同様に、下記式(2)における「εyt(t/4)」は、鋼板の表裏面からそれぞれt/4位置のうち、片面側のt/4位置のみの位置における累積歪みを意味する。また、下記式(5)におけるロール半径Rは、仕上げ圧延機のロール半径であり、仕上げ圧延機が多重式圧延機の場合、圧延材と接触するロール(すなわち、ワークロール)の半径を意味する。

 0.08FRT+0.1Tom-0.5ε+10≧69 ・・・(1)
 ただし、
 FRT(Finish Rolling Temperature):仕上げ圧延完了温度(℃)
 Tom:最終パス~最終1パス前の圧延パス間時間(秒)
 ε  :鋼板の表面、t/4位置およびt/2位置(t:板厚)の各位置における累積歪みの合計値(以下、「合計累積歪」という。)であり、下記式(2)で算出される。なお、各位置における累積歪みは、下記式(3)で算出される。また、各パスの歪みは下記式(4)で算出される。なお、下記式(4)は、吉田 博,「ホットストリップミルにおける温度、圧延負荷、金属学的諸特性の連成解析」,Journal of the JSTP,vol.38,no.437(1997-6)に記載されている算出式を参照した。
 ε=εyt(表面)+εyt(t/4)+εyt(t/2) ・・・(2)
 εyt=εy1+εy2+εy3+・・・+εyn ・・・(3)
 εyi=C×(2y/h)+1.15×ln(H/h) ・・・(4)
 式(2)~(4)において、
 ε:板厚方向y位置における相当塑性ひずみ、
 εyi:iパス目の板厚方向y位置における相当塑性ひずみ、
 y:板厚中心からの距離(mm)、h:出側板厚(mm)、H:入側板厚(mm)、
 C=B×(H/2R)B2×r ・・・(5)
 式(5)において、
 B=0.18381+0.34435μ+1.4086×μ
 B=0.076669-2.0566μ+2.1128×μ
 ただし、μ:摩擦係数、R:ロール半径(mm)、r:圧下率
(Hot rolling)
In hot rolling, the rolling temperature is set to 1100 ° C. or lower and the recrystallization reduction rate is set to 80% or higher, and hot rolling is performed so as to satisfy the following formula (1). The recrystallization temperature region varies depending on the steel type. In the case of the steel grade targeted in this embodiment, the recrystallization temperature region is 850 ° C. or higher. Therefore, the recrystallization reduction rate according to the present embodiment means the cumulative reduction rate in rolling (including finish rolling) at 850 ° C. or higher. In the present embodiment, the above-mentioned "rolling temperature" and the "finish rolling completion temperature" described later mean the temperature on the surface of the steel sheet. Further, in the present specification, the term "rolling temperature" means the rolling temperature in all rolling including rough rolling and finish rolling. Further, the term "finish rolling completion temperature" means the rolling temperature at the time of completion of the final pass of finish rolling. Further, "ε yt (surface)" in the following equation (2) means the cumulative strain on the surface of only one of both sides of the steel sheet. Similarly, "ε yt (t / 4)" in the following equation (2) means the cumulative strain at only the t / 4 position on one side of the t / 4 positions from the front and back surfaces of the steel sheet. Further, the roll radius R in the following formula (5) is the roll radius of the finish rolling mill, and when the finish rolling mill is a multiple rolling mill, it means the radius of the roll (that is, the work roll) in contact with the rolled material. ..

0.08FRT +0.1Tom-0.5ε T +10 ≧ 69 ・ ・ ・ (1)
however,
FRT (Finish Rolling Temperature): Finish rolling temperature (° C)
Tom: Time between the last pass and the rolling pass one pass before the last pass (seconds)
ε T : The total value of cumulative strains at each position of the surface of the steel sheet, t / 4 position and t / 2 position (t: plate thickness) (hereinafter referred to as “total cumulative strain”), and is the following equation (2). It is calculated by. The cumulative strain at each position is calculated by the following equation (3). Further, the distortion of each path is calculated by the following equation (4). The following equation (4) is based on Hiroshi Yoshida, "Coupling analysis of temperature, rolling load, and metallurgical properties in a hot strip mill", Journal of the JSTP, vol.38, no.437 (1997-6). Refer to the calculation formula described in.
ε T = ε yt (surface) + ε yt (t / 4) + ε yt (t / 2) ・ ・ ・ (2)
ε yt = ε y1 + ε y2 + ε y3 + ... + ε yn ... (3)
ε yi = C × (2y / h) 2 + 1.15 × ln (H / h) ・ ・ ・ (4)
In equations (2) to (4)
ε y : Equivalent plastic strain at y position in the plate thickness direction,
ε yi : Equivalent plastic strain at the y position in the plate thickness direction of the i-pass,
y: Distance from the center of plate thickness (mm), h: Outer side plate thickness (mm), H: Enter side plate thickness (mm),
C = B 1 × (H / 2R) B2 × re 2 ... (5)
In equation (5)
B 1 = 0.18381 + 0.344435μ + 1.48066 × μ 2
B 2 = 0.076669-2.0566μ + 2.1128 × μ 2
However, μ: friction coefficient, R: roll radius (mm), re : reduction rate
 圧延温度を1100℃以下にすることにより、フェライト粒径微細化による強度上昇を抑制することができる。圧延温度は、好ましくは1050℃以下、より好ましくは1000℃以下にする。圧延温度の下限は、強度上昇抑制の観点から、750℃以上が好ましく、780℃以上がより好ましい。再結晶圧下率を80%以上にすることにより、粒径粗大化による過度な強度低下を抑制することができる。再結晶圧下率は、好ましくは85%以上、より好ましくは90%以上にする。再結晶圧下率は、結晶粒径微細化抑制の観点から、99%以下が好ましい。 By setting the rolling temperature to 1100 ° C or lower, it is possible to suppress an increase in strength due to the miniaturization of ferrite grain size. The rolling temperature is preferably 1050 ° C. or lower, more preferably 1000 ° C. or lower. The lower limit of the rolling temperature is preferably 750 ° C. or higher, more preferably 780 ° C. or higher, from the viewpoint of suppressing the increase in strength. By setting the recrystallization reduction rate to 80% or more, it is possible to suppress an excessive decrease in strength due to coarsening of the particle size. The recrystallization reduction rate is preferably 85% or more, more preferably 90% or more. The recrystallization reduction rate is preferably 99% or less from the viewpoint of suppressing the miniaturization of the crystal grain size.
 次に、上記式(1)について説明する。高い均一伸び特性を確保するためには、加工歪の少ないフェライト組織を含有させる必要がある。鋼の熱間圧延中には、圧延により加工歪が導入される一方、回復、再結晶、変態により、加工歪が減少する。加工歪導入と歪減少に関する各種製造条件について、本発明者らが研究・調査を重ねた結果、本発明者らは、仕上げ圧延完了温度(FRT)と、最終圧延パス間時間(すなわち、最終パス~最終1パス前の圧延パス間時間、Tom)と、合計累積歪(ε)と、の影響が特に大きいことを見出した。各パラメータについて以下に詳細に説明する。 Next, the above equation (1) will be described. In order to secure high uniform elongation characteristics, it is necessary to contain a ferrite structure with less processing strain. During hot rolling of steel, machining strain is introduced by rolling, while machining strain is reduced by recovery, recrystallization and transformation. As a result of repeated research and investigation by the present inventors on various manufacturing conditions related to the introduction of machining strain and the reduction of strain, the present inventors have obtained the finish rolling completion temperature (FRT) and the time between final rolling passes (that is, the final pass). It was found that the influence of the time between rolling passes one pass before the final pass, Tom) and the total cumulative strain (ε T ) was particularly large. Each parameter will be described in detail below.
 仕上げ圧延完了温度(FRT)は、回復、再結晶により減少する加工歪と関係するパラメータである。FRTが高いほど回復、再結晶するための駆動力が大きく、加工歪が減少する。よって、加工歪の少ないフェライト組織を得る観点から、FRTは高いほうが好ましい。仕上げ圧延完了温度は、例えば1100℃~750℃の範囲内とすることが挙げられる。 Finish rolling completion temperature (FRT) is a parameter related to machining strain that decreases due to recovery and recrystallization. The higher the FRT, the larger the driving force for recovery and recrystallization, and the smaller the processing strain. Therefore, from the viewpoint of obtaining a ferrite structure with less processing strain, it is preferable that the FRT is high. The finish rolling completion temperature may be, for example, in the range of 1100 ° C to 750 ° C.
 最終圧延パス間時間(Tom)は、最終パスの1パス前の圧延終了後から、最終パスの圧延開始までの時間である。最終圧延パス間時間は、回復、再結晶による加工歪の減少、およびフェライト生成温度域での加工歪導入と関連するパラメータである。Tomが大きいほど、回復、再結晶するための時間が長くなり、蓄積される加工歪量が減少する。よって、加工歪の少ないフェライト組織を得る観点から、Tomは大きいほうが好ましい。最終圧延パス間時間は、例えば5秒~120秒の範囲内とすることが挙げられる。 The time between final rolling passes (Tom) is the time from the end of rolling one pass before the final pass to the start of rolling of the final pass. The time between final rolling passes is a parameter associated with recovery, reduction of machining strain due to recrystallization, and introduction of machining strain in the ferrite formation temperature range. The larger the Tom, the longer the time for recovery and recrystallization, and the smaller the amount of accumulated processing strain. Therefore, from the viewpoint of obtaining a ferrite structure with less processing strain, it is preferable that Tom is large. The time between final rolling passes may be, for example, in the range of 5 seconds to 120 seconds.
 合計累積歪(ε)は、熱間圧延により導入される加工歪量を表すパラメータである。熱間圧延中に導入された加工歪は、変態により緩和されるものの、変態後の組織に残存すると考えられる。つまり、変態後のフェライトに残存する歪みは、熱間圧延中に導入される累積歪みの影響を受け、累積歪みが大きいほどフェライトに導入される歪みが多く残存し、均一伸び特性を劣化させると考えられる。よって、加工歪の少ないフェライト組織を得る観点から、合計累積歪は小さいほうが好ましい。合計累積歪は、例えば1.0~30の範囲内とすることが挙げられる。 The total cumulative strain (ε T ) is a parameter representing the amount of machining strain introduced by hot rolling. The machining strain introduced during hot rolling is considered to remain in the structure after transformation, although it is alleviated by transformation. That is, the strain remaining in the ferrite after transformation is affected by the cumulative strain introduced during hot rolling, and the larger the cumulative strain, the more strain is left in the ferrite, which deteriorates the uniform elongation characteristics. Conceivable. Therefore, from the viewpoint of obtaining a ferrite structure with less processing strain, it is preferable that the total cumulative strain is small. The total cumulative strain may be, for example, in the range of 1.0 to 30.
 以上説明したように、熱間圧延中により導入される「合計累積歪」と、「FRT」と、「Tom」と、により、熱間圧延後に残存する加工歪みは変化する。そのため、本発明者らは、さらに種々検討したうえで、これらをパラメータとした式(1)左辺を見出した。そして、本発明者らは、式(1)左辺が69を下回ると、低強度(すなわち、520MPa以下)かつ高い伸び特性(すなわち、EL≧16%、uEL≧13.5%)を満足することが難しくなることを見出した。よって、式(1)左辺値を69以上とする。式(1)左辺値は、好ましくは75以上、より好ましくは80以上である。上記特性を確保する観点から、式(1)左辺値の上限は特に限定されないが、本発明の実施形態に係る製造条件等に鑑みれば、上限はおおよそ100程度となる。 As explained above, the machining strain remaining after hot rolling changes depending on the "total cumulative strain", "FRT", and "Tom" introduced during hot rolling. Therefore, the present inventors have found the left side of the equation (1) using these as parameters after further studies. Then, the present inventors satisfy low strength (that is, 520 MPa or less) and high elongation characteristics (that is, EL ≧ 16%, uEL ≧ 13.5%) when the left side of the formula (1) is less than 69. Found to be difficult. Therefore, the lvalue in equation (1) is set to 69 or more. The lvalue in the formula (1) is preferably 75 or more, more preferably 80 or more. From the viewpoint of ensuring the above characteristics, the upper limit of the rvalue in the formula (1) is not particularly limited, but in view of the manufacturing conditions and the like according to the embodiment of the present invention, the upper limit is about 100.
(冷却)
 上記熱間圧延後に、いわゆる水冷等の急冷却は実施せず、空冷で室温まで冷却する。水冷等を実施すると、ベイナイト、マルテンサイト、島状マルテンサイト(MA:Martensite-Austenite constituent)等の硬質組織が生成され、強度が高まるためである。また、MA等の硬質組織が鋼中に分散すると伸び特性が劣化するため、空冷で変態させ、所望のフェライト分率を確保する。さらに、冷却速度が大きい水冷等を実施すると、過冷度が大きくなり、細粒化されてしまう。空冷することにより、細粒化を抑制し、強度上昇を抑制することができる。
(cooling)
After the hot rolling, so-called water cooling or the like is not performed for rapid cooling, but air cooling is performed to cool the product to room temperature. This is because when water cooling or the like is carried out, hard structures such as bainite, martensite, and island-like martensite (MA: Martensite-Austenite constituent) are generated, and the strength is increased. Further, when a hard structure such as MA is dispersed in steel, the elongation characteristics deteriorate, so that the steel is transformed by air cooling to secure a desired ferrite fraction. Further, if water cooling or the like having a high cooling rate is carried out, the degree of supercooling becomes large and the particles become finer. By air cooling, fine granulation can be suppressed and an increase in strength can be suppressed.
(1)供試材の作製方法
 転炉溶製により、表1に記載の化学成分組成を有する鋼片を製造した。その後、熱間圧延前に1000以上1230℃以下に加熱し、表2に記載の条件で熱間圧延および冷却を実施し、表2に記載の板厚の鋼板を製造した。なお、圧延温度は、1100℃以下とした。また、本実施形態では、表2に記載の式(1)の導出において、摩擦係数μは「0.55」とした。圧下率rは計算を簡易的にするために、厚板製品の製造において平均的な値となる「0.3」を用いればよい。また、表1および表2、ならびに後述する表3および表4において、下線を付した数値は、本発明の実施形態の範囲から外れていることを示している。ただし、「-」については、本発明の実施形態の範囲から外れていても下線を付していないことに留意されたい。
(1) Method for producing test material A steel piece having the chemical composition shown in Table 1 was produced by melting in a converter. Then, before hot rolling, it was heated to 1000 or more and 1230 ° C. or less, and hot rolling and cooling were carried out under the conditions shown in Table 2 to produce a steel sheet having the plate thickness shown in Table 2. The rolling temperature was 1100 ° C. or lower. Further, in the present embodiment, in the derivation of the formula (1) shown in Table 2, the friction coefficient μ is set to “0.55”. For the reduction rate r e , in order to simplify the calculation, "0.3", which is an average value in the manufacture of thick plate products, may be used. Further, in Tables 1 and 2, and in Tables 3 and 4 described later, the underlined numerical values indicate that they are out of the scope of the embodiment of the present invention. However, it should be noted that "-" is not underlined even if it is out of the scope of the embodiment of the present invention.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
(2)組織観察
 表1および表2のNo.1およびNo.6~No.8について、以下のようにして組織観察を行った。観察面が鋼板表面と平行になるように、かつ観察位置がt/4位置(t:板厚)になるように、鋼板から試験片を切り出し、ナイタール腐食した後、100倍~400倍で光学顕微鏡観察した。光学顕微鏡の各10視野(視野面積:150μm×200μm)について、フェライトの面積率を画像解析ソフト(Image-J)で解析して、各サンプルについてフェライト面積率の平均値を算出した。このようにして、各サンプルのフェライト面積率を算出した。
 フェライト粒径は、400倍の光学顕微鏡画像1視野(視野面積:150μm×200μm)に25μm間隔の格子を作成し、1つの直線が横切るフェライト粒の個数を求め、当該直線の視野内の長さを当該個数で除して、当該直線におけるフェライト1個当たりの粒径を求めた。そして、他の直線においても同様にフェライト1個当たりの粒径を求めて、これらの平均値を算出し、この平均値をフェライト粒径とした。
 No.1、6、7および8のフェライト面積率は、それぞれ80%、82%、84%および83%であり、本発明の実施形態に係る要件を満足していた。また、No.1、6、7および8のフェライト粒径は、それぞれ7μm、22μm、16μmおよび14μmであり、本発明の実施形態に係る要件を満足していた。なお、残部組織は、No.1、6、7および8の全てでパーライトであった。
(2) Tissue observation No. 1 and Table 2 No. 1 and No. 6-No. The tissue of No. 8 was observed as follows. A test piece is cut out from the steel plate so that the observation surface is parallel to the surface of the steel plate and the observation position is at the t / 4 position (t: plate thickness). Observed under a microscope. The area ratio of ferrite was analyzed with image analysis software (Image-J) for each of the 10 fields of view (field of view area: 150 μm × 200 μm) of the optical microscope, and the average value of the ferrite area ratio was calculated for each sample. In this way, the ferrite area ratio of each sample was calculated.
For the ferrite grain size, create a grid with 25 μm intervals in one field of view (field of view area: 150 μm × 200 μm) of a 400-fold optical microscope image, determine the number of ferrite grains crossed by one straight line, and determine the length of the straight line in the field of view. Was divided by the number to obtain the particle size per ferrite in the straight line. Then, in the other straight lines as well, the particle size per ferrite was obtained, the average value of these was calculated, and this average value was taken as the ferrite particle size.
No. The ferrite area ratios of 1, 6, 7 and 8 were 80%, 82%, 84% and 83%, respectively, which satisfied the requirements according to the embodiment of the present invention. In addition, No. The ferrite grain sizes of 1, 6, 7 and 8 were 7 μm, 22 μm, 16 μm and 14 μm, respectively, which satisfied the requirements according to the embodiment of the present invention. The remaining tissue is No. All of 1, 6, 7 and 8 were pearlite.
(3)引張試験方法
 引張試験の試験片は、長手方向(引張方向)が圧延方向に直交するように圧延材から採取した。試験片形状は、日本海事協会の船級規則K編材料(2019年度版)に準拠したNK-U1号とし、標点間距離(GL)を200mmとし、全厚形状であるため、表2に記載の板厚で実施した。降伏点(YP:Yield Point)は、上降伏点を採用したが、上降伏が現れない場合、0.2%耐力を降伏点とした。引張試験条件は、NK船級規格K編に準拠して実施した。具体的には、降伏点到達前では、引張速度20N/mmとし、降伏点到達後では、歪速度を30PL%/分とした。また、均一伸びは、応力ひずみ線図において最高加重までの伸びで算出した。引張強度(TS)が400MPa以上520MPa以下、破断伸び(EL)が16%以上、かつ均一伸び(uEL)が13.5%以上のサンプルを合格とした。試験結果は、表3に示した。なお、表3には降伏強度(YS)も記載した。
(3) Tensile test method The test piece for the tensile test was taken from the rolled material so that the longitudinal direction (tensile direction) was orthogonal to the rolling direction. The shape of the test piece is NK-U1 based on the Nippon Kaiji Kyokai's ship class regulation K edition material (2019 version), the distance between gauge points (GL) is 200 mm, and it is a total thickness shape, so it is shown in Table 2. It was carried out with the plate thickness of. As the yield point (YP: Yield Point), the upper yield point was adopted, but when the upper yield did not appear, the yield point was 0.2% proof stress. The tensile test conditions were carried out in accordance with the NK ship class standard K edition. Specifically, the tensile speed was set to 20 N / mm 2 before reaching the yield point, and the strain rate was set to 30 PL% / min after reaching the yield point. The uniform elongation was calculated by the elongation up to the maximum load in the stress-strain diagram. Samples having a tensile strength (TS) of 400 MPa or more and 520 MPa or less, a breaking elongation (EL) of 16% or more, and a uniform elongation (uEL) of 13.5% or more were accepted. The test results are shown in Table 3. The yield strength (YS) is also shown in Table 3.
(4)腐食試験方法(CCT条件)
 腐食試験片は、図1に示すように、5t×90W×120L(mm)の鋼材表面にZnリッチペイントを15μm塗布し、その上に変性エポキシ樹脂160μmを塗布・養生し、さらに変性エポキシ樹脂160μmを塗布・養生し、合計膜厚335μmの塗装を施した。塗装した試験片の中央部に、プラスチックカッターを用いて人工的に塗膜キズ部(すなわち、塗装スクラッチ部)を付与し、試験片外周をマスキングテープで多い、評価面積を80cmに調整した。
(4) Corrosion test method (CCT conditions)
As shown in FIG. 1, the corrosion test piece is prepared by applying 15 μm of Zn-rich paint on the surface of a 5t × 90W × 120L (mm) steel material, applying and curing 160 μm of a modified epoxy resin on the surface, and further 160 μm of the modified epoxy resin. Was applied and cured, and a coating having a total film thickness of 335 μm was applied. A coating film scratch portion (that is, a coating scratch portion) was artificially applied to the central portion of the painted test piece using a plastic cutter, and the outer periphery of the test piece was covered with masking tape, and the evaluation area was adjusted to 80 cm 2 .
 腐食試験は、バラストタンク内を模擬したラボ評価試験として以下の通り実施した。実船のバラストタンク上甲板裏の環境を模擬するために、図2に示すように、まず「35℃±1℃の人工海水を2時間噴霧後、60℃±1℃、45%~55%RHで4時間乾燥し、その後50℃±1℃で2時間、95%RHより高い相対湿度で保持するサイクル」を7日間行った(以下、この7日間のサイクルを「第1サイクル」という)。その後、「35℃±1℃で2時間、95%RHより高い相対湿度で保持し、60℃±1℃、45%~55%RHで4時間乾燥し、その後50℃±1℃で2時間、95%RHより高い相対湿度で保持するサイクル」を7日間行った(以下、この7日間のサイクルを「第2サイクル」という)。第1サイクルと第2サイクルとを交互に168日間実施した。試験片は、鉛直方向から15°~25°傾けて設置した。人工海水噴霧量は、1.5±0.5mL/80cm/hとなるように試験機を調整した。 The corrosion test was carried out as follows as a laboratory evaluation test simulating the inside of the ballast tank. In order to simulate the environment behind the upper deck of the ballast tank of the actual ship, as shown in Fig. 2, first "spray artificial seawater at 35 ° C ± 1 ° C for 2 hours, then 60 ° C ± 1 ° C, 45% to 55%. A cycle of drying in RH for 4 hours and then holding at 50 ° C. ± 1 ° C. for 2 hours at a relative humidity higher than 95% RH "was performed for 7 days (hereinafter, this 7-day cycle is referred to as" first cycle "). .. Then, "hold at 35 ° C. ± 1 ° C. for 2 hours at a relative humidity higher than 95% RH, dry at 60 ° C. ± 1 ° C., 45% to 55% RH for 4 hours, and then at 50 ° C. ± 1 ° C. for 2 hours. , A cycle of maintaining at a relative humidity higher than 95% RH "was performed for 7 days (hereinafter, this 7-day cycle is referred to as a" second cycle "). The first cycle and the second cycle were alternately carried out for 168 days. The test piece was installed at an angle of 15 ° to 25 ° from the vertical direction. The tester was adjusted so that the amount of artificial seawater sprayed was 1.5 ± 0.5 mL / 80 cm 2 / h.
 開発鋼(表1のNo.B)および従来鋼(表1のNo.A)のそれぞれ5枚(計10枚)の上記試験片を準備した。その後、上記腐食試験を実施し、塗膜除去後の腐食深さをスクラッチ端部から10mm間隔で6点測定した(図3参照)。6点の平均値をそれぞれの試験片の腐食深さとし、5枚の平均値を算出し、腐食深さを算出した。腐食深さが0.600mm以下のサンプルを合格とした。算出結果は、表4に示した。 Five pieces (10 pieces in total) of each of the developed steel (No. B in Table 1) and the conventional steel (No. A in Table 1) were prepared. After that, the above corrosion test was carried out, and the corrosion depth after removing the coating film was measured at 6 points at 10 mm intervals from the scratch end (see FIG. 3). The average value of 6 points was taken as the corrosion depth of each test piece, the average value of 5 pieces was calculated, and the corrosion depth was calculated. Samples with a corrosion depth of 0.600 mm or less were accepted. The calculation results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 上記組織観察結果と、表3および表4の結果と、を考察する。
 実施例No.1およびNo.6~8は、本発明の実施形態に係る化学成分組成の要件および製造条件を満足していたため、所望の金属組織を得られ、引張強度(TS)および伸び特性(EL、uEL)が良好であった。また、実施例No.2~5は、本発明の実施形態に係る化学成分組成の要件および製造条件を満足していたため、実施例No.1およびNo.6~8と同様に所望の金属組織が得られていたと考えられ、その結果、引張強度(TS)および伸び特性(EL、uEL)が良好であった。また、実施例No.1~No.8は、Cu+NiおよびCrが所定量含まれているため、耐食性にも優れていると考えられる。このことを実証するために、上述したように、No.AおよびNo.Bを用いた腐食試験も行った。その結果、実施例No.1~No.8と同様に本発明の実施形態に係る化学成分組成の要件を満足している実施例No.Bは、耐食性が良好であることを確認した。
The results of the above tissue observation and the results of Tables 3 and 4 will be considered.
Example No. 1 and No. Since 6 to 8 satisfied the requirements for the chemical composition and the production conditions according to the embodiment of the present invention, a desired metal structure was obtained, and the tensile strength (TS) and elongation characteristics (EL, uEL) were good. there were. In addition, Example No. Since Nos. 2 to 5 satisfied the requirements for the chemical composition and the production conditions according to the embodiment of the present invention, Example No. 1 and No. It is considered that the desired metal structure was obtained as in 6 to 8, and as a result, the tensile strength (TS) and the elongation characteristics (EL, uEL) were good. In addition, Example No. 1 to No. Since No. 8 contains a predetermined amount of Cu + Ni and Cr, it is considered to be excellent in corrosion resistance. In order to demonstrate this, as described above, No. A and No. A corrosion test using B was also performed. As a result, Example No. 1 to No. Example No. 8 which satisfies the requirements for the chemical composition according to the embodiment of the present invention as in 8. B confirmed that the corrosion resistance was good.
 一方、比較例No.9~No.11は、式(1)を満足しなかったため、引張強度(TS)と均一伸び(uEL)が劣っていた。また、破断伸びは満足していたものの、実施例と比較すると値が低くなっていた。式(1)を満足しなかった理由として、No.9はFRTが比較的低く、Tomが低く、かつ累積歪みεTが大きかったため、および、No.10、No.11は、FRTが比較的低く、累積歪みεTが比較的大きかったためと考えられる。図4は、式(1)左辺と引張強度との関係を示したグラフである。図5は、式(1)左辺と均一伸びとの関係を示したグラフである。図4および図5を参照すると、式(1)左辺が69以上になることにより、引張強度が低下し、均一伸びが向上することが分かる。また、比較例No.Aは、本発明の実施形態に係る化学成分組成の要件を満足しなかったため、腐食深さが0.600mmを超えており、耐食性に劣っていた。 On the other hand, Comparative Example No. 9-No. No. 11 was inferior in tensile strength (TS) and uniform elongation (uEL) because it did not satisfy the formula (1). In addition, although the elongation at break was satisfactory, the value was lower than that of the examples. The reason why the formula (1) was not satisfied was No. No. 9 had a relatively low FRT, a low Tom, and a large cumulative strain εT, and No. 10, No. It is considered that No. 11 was due to the relatively low FRT and the relatively large cumulative strain εT. FIG. 4 is a graph showing the relationship between the left side of equation (1) and the tensile strength. FIG. 5 is a graph showing the relationship between the left side of equation (1) and uniform elongation. With reference to FIGS. 4 and 5, it can be seen that when the left side of the equation (1) is 69 or more, the tensile strength is lowered and the uniform elongation is improved. In addition, Comparative Example No. Since A did not satisfy the requirements for the chemical composition according to the embodiment of the present invention, the corrosion depth exceeded 0.600 mm and the corrosion resistance was inferior.
 本発明の実施形態に係る厚鋼板は、造船、海洋構造物、橋梁等、塗装耐食性および/または現場施工性の向上(すなわち、伸び特性の向上)が要求される分野に広く適用でき、特に限定されるものではないが、船体バラストタンクの上甲板等の船舶用厚鋼板が、具体的な適用先として挙げられる。 The thick steel plate according to the embodiment of the present invention can be widely applied to fields such as shipbuilding, offshore structures, bridges, etc. where improvement of coating corrosion resistance and / or on-site workability (that is, improvement of elongation characteristics) is required, and is particularly limited. Although not to be applied, thick steel plates for ships such as the upper deck of a hull ballast tank can be mentioned as a specific application destination.
 本出願は、出願日が2020年10月5日である日本国特許出願、特願第2020-168729号を基礎出願とする優先権主張を伴う。特願第2020-168729号は参照することにより本明細書に取り込まれる。 This application is accompanied by a priority claim based on Japanese Patent Application No. 2020-168729, the filing date of which is October 5, 2020. Japanese Patent Application No. 2020-168729 is incorporated herein by reference.

Claims (5)

  1.  C :0.01質量%以上、0.30質量%以下、
     Si:0.01質量%以上、2.0質量%以下、
     Mn:0.85質量%以上、2.00質量%以下、
     P :0質量%超、0.015質量%以下、
     S :0質量%超、0.005質量%以下、
     Al:0.005質量%以上、0.10質量%以下、
     Cr:0.01質量%以上、0.5質量%以下、
     Ti:0.005質量%以上、0.20質量%以下、
     Ca:0.0001質量%以上、0.005質量%以下、
     N :0.0001質量%以上、0.010質量%以下、および
     Cu+Ni:0.50質量%以上、0.85質量%以下
    を含有し、残部がFeおよび不可避不純物からなり、
     金属組織が、全金属組織に対する面積率で70%以上のフェライトを含み、残部がパーライト、ベイナイトおよびマルテンサイトよりなる群から選ばれる1種以上からなり、
     フェライト粒径が、3μm以上40μm以下であり、
     日本海事協会の船級規則K編材料(2019年度版)に準拠した標点間距離が200mmのNK-U1号の試験片を用いて引張試験したときに、引張強度が400MPa以上520MPa以下、破断伸びが16%以上、かつ均一伸びが13.5%以上である、伸び特性と耐食性に優れた低強度の厚鋼板。
    C: 0.01% by mass or more, 0.30% by mass or less,
    Si: 0.01% by mass or more, 2.0% by mass or less,
    Mn: 0.85% by mass or more, 2.00% by mass or less,
    P: More than 0% by mass, 0.015% by mass or less,
    S: More than 0% by mass, 0.005% by mass or less,
    Al: 0.005% by mass or more, 0.10% by mass or less,
    Cr: 0.01% by mass or more, 0.5% by mass or less,
    Ti: 0.005% by mass or more, 0.20% by mass or less,
    Ca: 0.0001% by mass or more, 0.005% by mass or less,
    N: 0.0001% by mass or more and 0.010% by mass or less, and Cu + Ni: 0.50% by mass or more and 0.85% by mass or less, and the balance is composed of Fe and unavoidable impurities.
    The metallographic structure contains ferrite with an area ratio of 70% or more with respect to the total metallic structure, and the balance consists of one or more selected from the group consisting of pearlite, bainite and martensite.
    The ferrite grain size is 3 μm or more and 40 μm or less.
    Tensile strength is 400 MPa or more and 520 MPa or less, fracture elongation when a tensile test is performed using a test piece of NK-U1 with a distance between gauge points of 200 mm in accordance with Nippon Kaiji Kyokai's ship class regulation K edition material (FY2019 version). Is 16% or more, and the uniform elongation is 13.5% or more, and is a low-strength thick steel sheet having excellent elongation characteristics and corrosion resistance.
  2.  複合サイクル試験168日後の塗装スクラッチ部の平均腐食深さが、0.600mm以下である、請求項1に記載の厚鋼板。 The thick steel sheet according to claim 1, wherein the average corrosion depth of the painted scratch portion after 168 days of the composite cycle test is 0.600 mm or less.
  3.  以下の(a)および(b)の少なくとも1つをさらに含有する請求項1または2に記載の厚鋼板。
    (a)B:0.0001質量%以上、0.010質量%以下、V:0.01質量%以上、0.50質量%以下、およびNb:0.001質量%以上、0.50質量%以下よりなる群から選ばれる1種以上
    (b)Co:0.005質量%以上、0.20質量%以下、REM:0.005質量%以上、0.20質量%以下、Zr:0.005質量%以上、0.20質量%以下、およびMg:0.0001質量%以上、0.005質量%以下よりなる群から選ばれる1種以上
    The thick steel plate according to claim 1 or 2, further comprising at least one of the following (a) and (b).
    (A) B: 0.0001% by mass or more, 0.010% by mass or less, V: 0.01% by mass or more, 0.50% by mass or less, and Nb: 0.001% by mass or more, 0.50% by mass. One or more selected from the group consisting of the following (b) Co: 0.005% by mass or more, 0.20% by mass or less, REM: 0.005% by mass or more, 0.20% by mass or less, Zr: 0.005 One or more selected from the group consisting of mass% or more, 0.20 mass% or less, and Mg: 0.0001 mass% or more, 0.005 mass% or less.
  4.  請求項1または2に記載の成分組成を満たす鋼を1100℃以上に加熱する工程と、
     圧延温度を1100℃以下および再結晶圧下率を80%以上にし、下記式(1)を満たすように熱間圧延を行う工程と、
     空冷する工程と、を含む、請求項1または2に記載の厚鋼板の製造方法。
     0.08FRT+0.1Tom-0.5ε+10≧69 ・・・(1)
     ただし、
     FRT:仕上げ圧延完了温度(℃)
     Tom:最終パス~最終1パス前の圧延パス間時間(秒)
     ε  :鋼板の表面、t/4位置およびt/2位置(t:板厚)の各位置おける累積歪みの合計値であり、下記式(2)式で算出される。なお、各位置における累積歪みは下記式(3)で算出される。また、各パスの歪みは下記式(4)で算出される。
     ε=εyt(表面)+εyt(t/4)+εyt(t/2) ・・・(2)
     εyt=εy1+εy2+εy3+・・・+εyn ・・・(3)
     εyi=C×(2y/h)+1.15×ln(H/h) ・・・(4)
     式(2)~(4)において、
     ε:板厚方向y位置における相当塑性ひずみ、
     εyi:iパス目の板厚方向y位置における相当塑性ひずみ、
     y:板厚中心からの距離(mm)、h:出側板厚(mm)、H:入側板厚(mm)、
     C=B×(H/2R)B2×r ・・・(5)
     式(5)において、
     B=0.18381+0.34435μ+1.4086×μ
     B=0.076669-2.0566μ+2.1128×μ
     ただし、μ:摩擦係数、R:ロール半径(mm)、r:圧下率
    A step of heating steel satisfying the component composition according to claim 1 or 2 to 1100 ° C. or higher, and
    A step of hot rolling so that the rolling temperature is 1100 ° C. or lower and the recrystallization reduction rate is 80% or more and the following formula (1) is satisfied.
    The method for manufacturing a thick steel sheet according to claim 1 or 2, which comprises an air cooling step.
    0.08FRT +0.1Tom-0.5ε T +10 ≧ 69 ・ ・ ・ (1)
    however,
    FRT: Finish rolling completion temperature (° C)
    Tom: Time between the last pass and the rolling pass one pass before the last pass (seconds)
    ε T : The total value of the cumulative strains at each position of the surface of the steel sheet, the t / 4 position and the t / 2 position (t: plate thickness), and is calculated by the following equation (2). The cumulative strain at each position is calculated by the following equation (3). Further, the distortion of each path is calculated by the following equation (4).
    ε T = ε yt (surface) + ε yt (t / 4) + ε yt (t / 2) ・ ・ ・ (2)
    ε yt = ε y1 + ε y2 + ε y3 + ... + ε yn ... (3)
    ε yi = C × (2y / h) 2 + 1.15 × ln (H / h) ・ ・ ・ (4)
    In equations (2) to (4)
    ε y : Equivalent plastic strain at y position in the plate thickness direction,
    ε yi : Equivalent plastic strain at the y position in the plate thickness direction of the i-pass,
    y: Distance from the center of plate thickness (mm), h: Outer side plate thickness (mm), H: Enter side plate thickness (mm),
    C = B 1 × (H / 2R) B2 × re 2 ... (5)
    In equation (5)
    B 1 = 0.18381 + 0.344435μ + 1.48066 × μ 2
    B 2 = 0.076669-2.0566μ + 2.1128 × μ 2
    However, μ: friction coefficient, R: roll radius (mm), re : reduction rate
  5.  請求項3に記載の成分組成を満たす鋼を1100℃以上に加熱する工程と、
     圧延温度を1100℃以下および再結晶圧下率を80%以上にし、下記式(1)を満たすように熱間圧延を行う工程と、
     空冷する工程と、を含む、請求項3に記載の厚鋼板の製造方法。
     0.08FRT+0.1Tom-0.5ε+10≧69 ・・・(1)
     ただし、
     FRT:仕上げ圧延完了温度(℃)
     Tom:最終パス~最終1パス前の圧延パス間時間(秒)
     ε  :鋼板の表面、t/4位置およびt/2位置(t:板厚)の各位置おける累積歪みの合計値であり、下記式(2)式で算出される。なお、各位置における累積歪みは下記式(3)で算出される。また、各パスの歪みは下記式(4)で算出される。
     ε=εyt(表面)+εyt(t/4)+εyt(t/2) ・・・(2)
     εyt=εy1+εy2+εy3+・・・+εyn ・・・(3)
     εyi=C×(2y/h)+1.15×ln(H/h) ・・・(4)
     式(2)~(4)において、
     ε:板厚方向y位置における相当塑性ひずみ、
     εyi:iパス目の板厚方向y位置における相当塑性ひずみ、
     y:板厚中心からの距離(mm)、h:出側板厚(mm)、H:入側板厚(mm)、
     C=B×(H/2R)B2×r ・・・(5)
     式(5)において、
     B=0.18381+0.34435μ+1.4086×μ
     B=0.076669-2.0566μ+2.1128×μ
     ただし、μ:摩擦係数、R:ロール半径(mm)、r:圧下率
    A step of heating steel satisfying the component composition according to claim 3 to 1100 ° C. or higher,
    A step of hot rolling so that the rolling temperature is 1100 ° C. or lower and the recrystallization reduction rate is 80% or more and the following formula (1) is satisfied.
    The method for manufacturing a thick steel sheet according to claim 3, further comprising an air cooling step.
    0.08FRT +0.1Tom-0.5ε T +10 ≧ 69 ・ ・ ・ (1)
    however,
    FRT: Finish rolling completion temperature (° C)
    Tom: Time between the last pass and the rolling pass one pass before the last pass (seconds)
    ε T : The total value of the cumulative strains at each position of the surface of the steel sheet, the t / 4 position and the t / 2 position (t: plate thickness), and is calculated by the following equation (2). The cumulative strain at each position is calculated by the following equation (3). Further, the distortion of each path is calculated by the following equation (4).
    ε T = ε yt (surface) + ε yt (t / 4) + ε yt (t / 2) ・ ・ ・ (2)
    ε yt = ε y1 + ε y2 + ε y3 + ... + ε yn ... (3)
    ε yi = C × (2y / h) 2 + 1.15 × ln (H / h) ・ ・ ・ (4)
    In equations (2) to (4)
    ε y : Equivalent plastic strain at y position in the plate thickness direction,
    ε yi : Equivalent plastic strain at the y position in the plate thickness direction of the i-pass,
    y: Distance from the center of plate thickness (mm), h: Outer side plate thickness (mm), H: Enter side plate thickness (mm),
    C = B 1 × (H / 2R) B2 × re 2 ... (5)
    In equation (5)
    B 1 = 0.18381 + 0.344435μ + 1.48066 × μ 2
    B 2 = 0.076669-2.0566μ + 2.1128 × μ 2
    However, μ: friction coefficient, R: roll radius (mm), re : reduction rate
PCT/JP2021/029621 2020-10-05 2021-08-11 Low-strength thick steel sheet having excellent elongation properties and corrosion resistance WO2022074933A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020237009461A KR20230051774A (en) 2020-10-05 2021-08-11 Low-strength thick steel plate with excellent elongation and corrosion resistance
CN202180062054.9A CN116057188A (en) 2020-10-05 2021-08-11 Low-strength thick steel plate with excellent elongation characteristics and corrosion resistance

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-168729 2020-10-05
JP2020168729A JP7350705B2 (en) 2020-10-05 2020-10-05 Low-strength thick steel plate with excellent elongation properties and corrosion resistance

Publications (1)

Publication Number Publication Date
WO2022074933A1 true WO2022074933A1 (en) 2022-04-14

Family

ID=81125182

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/029621 WO2022074933A1 (en) 2020-10-05 2021-08-11 Low-strength thick steel sheet having excellent elongation properties and corrosion resistance

Country Status (4)

Country Link
JP (1) JP7350705B2 (en)
KR (1) KR20230051774A (en)
CN (1) CN116057188A (en)
WO (1) WO2022074933A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008045195A (en) * 2006-08-21 2008-02-28 Kobe Steel Ltd High tensile strength thick steel plate and its production method
WO2011062000A1 (en) * 2009-11-20 2011-05-26 新日本製鐵株式会社 Thick steel plate for ship hull and process for production thereof
CN103225045A (en) * 2013-04-24 2013-07-31 北京科技大学 Preparation method of high plasticity medium and heavy slab with 690 MPa yield strength
JP2016125077A (en) * 2014-12-26 2016-07-11 新日鐵住金株式会社 High-strength and high-ductility thick steel plate and production method thereof
WO2019107700A1 (en) * 2017-12-01 2019-06-06 주식회사 포스코 High strength steel material having excellent hydrogen-induced cracking resistance and low-temperature impact toughness and manufacturing method therefor
WO2019176112A1 (en) * 2018-03-16 2019-09-19 日本製鉄株式会社 Steel sheet for coal/ore carrier hold
WO2020084332A1 (en) * 2018-10-23 2020-04-30 Arcelormittal Hot-rolled steel plate and a method of manufacturing thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5143707B2 (en) 2008-11-27 2013-02-13 株式会社神戸製鋼所 Marine steel
JP6180956B2 (en) 2014-02-13 2017-08-16 株式会社神戸製鋼所 Painted steel with excellent corrosion resistance

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008045195A (en) * 2006-08-21 2008-02-28 Kobe Steel Ltd High tensile strength thick steel plate and its production method
WO2011062000A1 (en) * 2009-11-20 2011-05-26 新日本製鐵株式会社 Thick steel plate for ship hull and process for production thereof
CN103225045A (en) * 2013-04-24 2013-07-31 北京科技大学 Preparation method of high plasticity medium and heavy slab with 690 MPa yield strength
JP2016125077A (en) * 2014-12-26 2016-07-11 新日鐵住金株式会社 High-strength and high-ductility thick steel plate and production method thereof
WO2019107700A1 (en) * 2017-12-01 2019-06-06 주식회사 포스코 High strength steel material having excellent hydrogen-induced cracking resistance and low-temperature impact toughness and manufacturing method therefor
WO2019176112A1 (en) * 2018-03-16 2019-09-19 日本製鉄株式会社 Steel sheet for coal/ore carrier hold
WO2020084332A1 (en) * 2018-10-23 2020-04-30 Arcelormittal Hot-rolled steel plate and a method of manufacturing thereof

Also Published As

Publication number Publication date
CN116057188A (en) 2023-05-02
JP2022060949A (en) 2022-04-15
KR20230051774A (en) 2023-04-18
JP7350705B2 (en) 2023-09-26

Similar Documents

Publication Publication Date Title
TWI391499B (en) Hot-rolled shape steel for ships and process for manufacturing the same
EP1179608B1 (en) Fuel tank made of ferritic stainless steel
JP5979063B2 (en) Method for producing marine steel with excellent corrosion resistance and base metal toughness
JP5353283B2 (en) Corrosion-resistant steel for marine vessels and method for producing the same
JP5130828B2 (en) High strength marine corrosion resistant steel and method for producing the same
WO2011122030A1 (en) Hot-dip galvanized steel sheet with high tensile strength and superior processability and method for producing same
JP2009046750A (en) Corrosion-resistant steel material for ship and manufacturing method therefor
JP4935579B2 (en) Corrosion resistant steel for ships
WO2019176112A1 (en) Steel sheet for coal/ore carrier hold
KR20130006546A (en) Hot-rolled shape steel for crude oil tanks and process for manufacturing the same
KR20110105400A (en) Steel sheet with small welding deformation and excellent corrosion resistance
JP5526667B2 (en) Hot rolled section steel for ship ballast tank with excellent corrosion resistance and method for producing the same
JP5488395B2 (en) High-strength thick steel plate with excellent arrest properties and corrosion resistance
JP2010150631A (en) Shape steel for vessel having excellent corrosion resistance, and method for producing the same
WO2022074933A1 (en) Low-strength thick steel sheet having excellent elongation properties and corrosion resistance
JP4494237B2 (en) Austenitic stainless steel material excellent in corrosion resistance, toughness and hot workability, and method for producing the same
JP7322932B2 (en) Thick steel plate, manufacturing method thereof, and structure
WO2013099183A1 (en) High-strength hot-rolled steel sheet and manufacturing method therefor
JP4317517B2 (en) High corrosion resistance hot rolled steel sheet with excellent workability and weld heat affected zone toughness and its manufacturing method
JP2012167371A (en) Corrosion resistant steel product for ship and method for producing the same
CN111748734A (en) 550 MPa-grade weather-resistant steel with stable rust layer for hot-rolled container and production method thereof
JP7327444B2 (en) Thick steel plate, method for manufacturing thick steel plate, and structure
JP7261364B1 (en) steel plate
JP2001262273A (en) Weather resistant steel tube excellent in weldability
JP3353392B2 (en) High strength steel excellent in corrosion resistance and method for producing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21877237

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237009461

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21877237

Country of ref document: EP

Kind code of ref document: A1