WO2013099183A1 - High-strength hot-rolled steel sheet and manufacturing method therefor - Google Patents

High-strength hot-rolled steel sheet and manufacturing method therefor Download PDF

Info

Publication number
WO2013099183A1
WO2013099183A1 PCT/JP2012/008190 JP2012008190W WO2013099183A1 WO 2013099183 A1 WO2013099183 A1 WO 2013099183A1 JP 2012008190 W JP2012008190 W JP 2012008190W WO 2013099183 A1 WO2013099183 A1 WO 2013099183A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
steel sheet
strength
hot
rolled steel
Prior art date
Application number
PCT/JP2012/008190
Other languages
French (fr)
Japanese (ja)
Inventor
船川 義正
珠子 有賀
永明 森安
貴幸 村田
浩 大和田
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to JP2013551225A priority Critical patent/JP5644964B2/en
Publication of WO2013099183A1 publication Critical patent/WO2013099183A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention has a tensile strength of 780 MPa or more and excellent stretch flangeability suitable for structural materials such as automobiles, transportation equipment, and building equipment, and has mechanical properties in the coil.
  • the present invention relates to a high-strength hot-rolled steel sheet, a high-strength hot-rolled plated steel sheet, and a method for manufacturing the same.
  • steel sheets for automotive parts have high press strength and stretch flange processing in addition to high strength. It is required to have processability such as property.
  • processability such as property.
  • automobiles are configured by combining many parts, individual parts are required to have a high degree of dimensional accuracy. Therefore, it is required for steel sheets for automobile parts to obtain parts having excellent dimensional accuracy by pressing or the like.
  • non-uniform mechanical properties such as strength and workability of high-strength steel plates, that is, fluctuations in mechanical properties within the coils of high-strength steel plates
  • the application of high-strength steel sheets to parts has been hindered.
  • non-uniformity in the steel strength coil induces fluctuations in the amount of springback that occurs during press processing (that is, the amount of springback that occurs in the pressed part becomes uneven in the pressed part), and the shape of the pressed part Make it unstable.
  • stretch flangeability becomes non-uniform, which may cause press cracks.
  • steel has a tensile strength of about 300 MPa class. Therefore, an increase in strength of a steel sheet, for example, an increase in strength due to a complex structure or refinement of crystal grains, causes variations in strength. This variation in strength is caused by temperature fluctuations and fluctuations in production in the longitudinal and width directions of the steel sheet in the rolling direction, and also by structural changes caused by differences in processing conditions. Therefore, in order to provide higher-quality automobile parts, in addition to imparting desired strength and workability to the steel sheet for automobile parts, these mechanical characteristics (particularly strength) do not vary within the coil. It is also extremely important to apply uniformly throughout the entire steel plate.
  • Patent Document 1 As a technique for improving the mechanical properties of a steel sheet for automobile parts, for example, in Patent Document 1, a high-strength steel sheet having a tensile strength of 500 MPa or more containing 60% or more of a ferrite structure is deformed after deformation of 20% or more. By including 50% or more of ferrite crystal grains with a structure in which dislocation cell structures aligned in one direction intersect in two or more directions in the region, the amount of springback during high-strength steel sheet pressing is suppressed. Thus, techniques for improving the shape freezing property of high-strength steel sheets have been proposed.
  • Patent Document 2 specifies the texture, r value, and uniform elongation anisotropy of a high-strength hot-rolled steel sheet, thereby improving the bending workability of the steel sheet and suppressing springback.
  • a technique for improving the shape freezing property of the glass has been proposed.
  • the steel sheet structure by ensuring that the ferrite volume fraction is 80% or less, the shape freezing property of the steel sheet is secured, and when the martensite or retained austenite volume fraction is 1% or more and 25% or less, the steel sheet A technique for ensuring the strength and formability of the steel has been proposed.
  • Patent Document 3 the texture and r value of the steel sheet are defined, the structure having the maximum area ratio in the steel sheet is made of ferrite, and the coarse cementite of the grain boundary is further reduced, thereby improving the bending workability of the steel sheet.
  • Techniques have been proposed for improving and suppressing springback, ensuring the shape freezing property of the steel sheet, and improving stretch flangeability.
  • Patent Document 4 discloses that a steel sheet composition is a composition in which one or more of Ti, Mo, and W are added, and carbides of 10 nm or less containing these elements are dispersed in ferrite, whereby a high-tensile hot-rolled steel sheet is obtained.
  • Patent Document 5 discloses a high-tensile hot-rolled steel sheet having a steel sheet composition in which at least one of Ti, Mo, and W is added, and carbides of 10 nm or less containing these elements are dispersed in ferrite.
  • a technique for improving the strength stability in the coil longitudinal direction has been proposed.
  • the volume fraction of the hard phase other than ferrite affects the steel plate strength, and the fluctuation of the hard phase volume fraction sensitive to changes in the manufacturing conditions unavoidably changes the steel plate strength.
  • non-uniform mechanical properties are increased in the coil. Therefore, even if the steel sheet obtained by such a technique is subjected to press working to form a pressed part, press cracking occurs or the shape of the pressed part becomes unstable, which is an industrially feasible technique. hard.
  • the interface between the soft ferrite and the hard second phase is likely to be a starting point for cracking during processing, and the workability is not stable. .
  • strength is ensured by adding 1% or more of Mn which is a solid solution strengthening element to a steel plate. Therefore, according to the technique proposed in Patent Document 4, the strength varies due to the segregation of Mn, and the fluctuation in strength in the width direction cannot be suppressed. Further, if the content of Mn, which is a solid solution strengthening element, is reduced for the purpose of suppressing segregation of Mn, the strength of the steel sheet is lowered, and a tensile strength of 780 MPa or more cannot be obtained.
  • Patent Document 5 proposes reducing the fluctuation in strength by reducing the Mn content of the steel sheet.
  • all of the steel sheets disclosed in the examples of Patent Document 5 contain 1% or more of Mn, which is a solid solution strengthening element, for the purpose of ensuring a desired steel sheet strength. That is, in the technique proposed in Patent Document 5, Mn segregation is still large, and the stability of the tensile strength in the coil longitudinal direction is not guaranteed. Further, the amount of change in strength in the width direction varies depending on the position in the coil longitudinal direction, and there is room for improvement in material uniformity.
  • Mn content which is a solid solution strengthening element
  • segregation of Mn
  • the strength of the steel sheet decreases, and a tensile strength of 780 MPa or more cannot be obtained.
  • Patent Document 4 and Patent Document 5 have not yet solved the problem of strength stability caused by segregation of Mn while maintaining a desired steel plate strength. Also, with these technologies, the high Mn content of the steel sheet induces cracking during press forming of the steel sheet due to Mn segregation, making it difficult to stably ensure excellent stretch flangeability. And sufficient stretch flangeability cannot always be obtained.
  • An object of the present invention is to provide a high-strength hot-rolled steel sheet having a small fluctuation in tensile properties inside a coil, excellent stretch flangeability, stable component dimensional accuracy, and a method for producing the same, which has been made under such circumstances.
  • the present inventors in addition to various factors affecting workability such as high strength of hot-rolled steel sheet and stretch flangeability, uniformity of mechanical properties in the coil of the steel sheet, especially steel sheet Various factors affecting the uniformity of strength were studied.
  • the present inventors have made the metal structure (microstructure) into a single phase, not a high strength by complex structure, in order to suppress the steel plate strength change in the coil and ensure the uniformity of the strength in the coil. Therefore, I thought that it should be oriented to higher strength.
  • the present inventors focused on the ferrite phase with excellent workability such as stretch flangeability, and examined a means for increasing the strength of the steel sheet after making the metal structure of the steel sheet a ferrite single phase structure. Proceeded.
  • the ferrite grain size of ferrite greatly depends on the steel sheet manufacturing conditions, particularly the cooling conditions after the end of hot rolling. Because the cooling rate tends to be unstable at the end of longitudinal direction of hot coil or top end and bottom end of hot coil and at the end of width direction, the ferrite crystal grain size at the end of steel plate is also coarsened. Easy to coarsening.
  • the present inventors have further studied a means for increasing the strength of a steel sheet having a metal structure of a ferrite single phase structure regardless of high Mn solid solution strengthening or crystal grain refinement. As a result, suppressing the Mn content in the steel sheet and precipitating fine Ti carbide in the individual ferrite crystal grains forming the ferrite single-phase structure maintains the workability of the steel sheet (stretch flange workability, etc.).
  • the present inventors have found that the tensile strength of the steel sheet is 780 MPa or more and that the fluctuation of the steel sheet strength is suppressed, and that it is extremely effective as a means for imparting uniform strength in the longitudinal direction and the width direction of the steel sheet.
  • Ti carbide is a phase interface precipitation type precipitate that precipitates simultaneously with the austenite ⁇ ferrite transformation in the cooling process after the hot rolling in the hot rolled steel sheet manufacturing process.
  • Ti carbide precipitated simultaneously with the austenite ⁇ ferrite transformation reaches the coiling temperature. It became clear that it became coarse during the cooling process and the desired steel plate strength could not be obtained.
  • the present inventors suppress the coarsening of Ti carbide by adjusting the ferrite transformation point of the steel to the same level as the coiling temperature, and fine Ti carbide throughout the longitudinal and width directions of the steel sheet. It came to the idea of making it precipitate uniformly. And in order to adjust the ferrite transformation point of steel to the same level as the coiling temperature, the amount of Mn contained in the steel sheet, the steel sheet manufacturing conditions, especially the cooling rate after the hot rolling and the coiling temperature should be specified. Was found to be important.
  • the present invention has been completed based on the above findings, and the gist thereof is as follows.
  • [1] By mass% C: more than 0.035% and 0.065% or less, Si: 0.2% or less, Mn: 0.65% or less, P: 0.03% or less, S: 0.02% or less, Al: 0.1% or less, N: 0.01% or less, Ti: 0.09% or more and 0.25% or less, with the balance being composed of Fe and inevitable impurities, with an area ratio of more than 95% being the ferrite phase, and the ferrite phase crystal grains
  • a high-strength hot-rolled steel sheet having a structure in which Ti carbide having an average particle size of 5 nm or less is finely dispersed, the ferrite crystal has an average crystal grain size of 1 ⁇ m or more, and a tensile strength of 780 MPa or more.
  • the steel material is subjected to hot rolling consisting of rough rolling and finish rolling. After finishing rolling, the steel material is cooled, wound, and hot rolled steel sheet.
  • the steel material in mass%, C: more than 0.035% and 0.065% or less, Si: 0.2% or less, Mn: 0.65% or less, P: 0.03% or less, S: 0.02% or less, Al: 0.1% or less, N: 0.01% or less, Ti: 0.09% or more and 0.25% or less, with the balance being Fe and inevitable impurities,
  • the finish rolling temperature of the finish rolling is 840 ° C. or more and 1050 ° C. or less, the average cooling rate from the end of finish cooling of the cooling to 750 ° C.
  • the mechanical property variation that could not be achieved conventionally is small, and the 780 MPa class (tensile strength: about 780 to 900 MPa) is high. It is possible to provide a high-strength hot-rolled steel sheet and a method for producing the same, and have a remarkable industrial effect.
  • FIG. 1 is a diagram showing a schematic shape of Ti carbide.
  • the hot-rolled steel sheet of the present invention has an area ratio of more than 95% of the ferrite phase, and Ti carbide having an average particle diameter of 5 nm or less is finely dispersed in the ferrite phase crystal grains. It has a tissue with a diameter of 1 ⁇ m or more. That is, the steel sheet of the present invention is characterized by having a ferrite single-phase metal structure and increasing the strength of the ferrite phase crystals with fine Ti carbides.
  • the amount of refinement strengthening is made constant, and further the cause of segregation, that is, the size of carbides that cause strength fluctuations and the amount of precipitation that induces fluctuations in carbides.
  • the amounts of Si and Mn are reduced. Thereby, strength fluctuation can be minimized by keeping the precipitation amount and size of Ti carbide in the steel plate constant, and the shape accuracy of the press-formed product is also improved.
  • the metal structure of the hot-rolled steel sheet is a ferrite single phase. If the metal structure of a hot-rolled steel sheet is a dual-phase steel sheet containing a hard phase such as martensite or bainite in addition to the ferrite phase, the strength changes depending on the volume fraction of the hard phase, resulting in non-uniform steel sheet strength. To do. Further, in order to ensure the workability of the hot-rolled steel sheet (elongation flange workability, etc.), it is preferable that the metal structure is a ferrite single phase.
  • the metal structure of the hot-rolled steel sheet is not a complete ferrite single phase, if the ferrite single phase is substantially the ferrite phase, that is, if the area ratio with respect to the entire metal structure is more than 95%, the above effect is sufficiently obtained. Can demonstrate. For this reason, in order to suppress fluctuations in strength, the metal structure is a ferrite phase with an area ratio exceeding 95%. Preferably it is 98% or more.
  • phases other than the ferrite phase include cementite, pearlite, bainite phase, martensite phase, residual austenite phase, etc., and these totals are acceptable if the area ratio is less than 5%. Is done. Preferably it is 2% or less.
  • the metal structure here means a structure observed at a magnification of 100 to 5000 using an optical microscope or a scanning electron microscope.
  • Ti carbide Ti is a strong carbide-forming element, and carbides containing Ti tend to be fine carbides having an extremely small average particle size. Therefore, in the present invention in which the strength of the hot-rolled steel sheet is increased by dispersively precipitating fine carbide in the hot-rolled steel sheet, the fine carbide to be dispersed and precipitated is Ti carbide. Thus, according to the present invention utilizing precipitation strengthening, that is, control is facilitated by increasing the steel sheet strength only by carbide control, and stable strength can be obtained.
  • Ti carbide in the present invention is expressed by a chemical formula of TixMyCz (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ z ⁇ 1, M: alloy element other than Ti; x + y ⁇ 1).
  • the carbide may contain carbide forming elements such as V and Mo other than Ti. However, y may be substantially zero.
  • Average particle size of Ti carbide 5 nm or less
  • the average particle size of Ti carbide that is dispersed and precipitated in the crystal grains of the ferrite phase is extremely important for imparting desired strength (tensile strength: 780 MPa or more) to hot-rolled steel sheets.
  • the average particle size of Ti carbide is 5 nm or less.
  • the fine carbide acts as a resistance to dislocation movement that occurs when deformation is applied to the steel sheet, thereby strengthening the hot-rolled steel sheet.
  • the average particle diameter of the fine carbide is set to 5 nm or less, the above action becomes more remarkable.
  • the average particle diameter of the fine carbide exceeds 5 nm, it becomes difficult to ensure the strength of a 780 MPa grade steel sheet. Therefore, the average particle diameter of Ti carbide is 5 nm or less.
  • FIG. 1 shows a schematic shape of Ti carbide.
  • the Ti carbide is elliptical, the arithmetic average of the long axis and the short axis is taken as the average particle diameter of the Ti carbide.
  • the diameter of the sphere is the average particle diameter of the Ti carbide.
  • the atomic ratio of Ti and C contained in Ti carbide It is preferable that the atomic ratio of Ti and C contained in Ti carbide satisfies the following formula (1).
  • Ti / C ⁇ 1.0 (1) Ti / C: atomic ratio of C and Ti in Ti carbide
  • Ti / C By making Ti / C less than 1, Ti carbide with a size of 5 nm or less is stabilized. Obtained. The coarsening of Ti carbide is limited by the diffusion of Ti in the steel.
  • Ti / C atomic ratio is less than 1.
  • the Ti / C atomic ratio can be controlled to a desired ratio by adjusting the steel plate composition and the manufacturing conditions of the steel plate. Conventionally, when Ti is added as a main carbide forming element, Ti / C may have exceeded 1.0 because it tends to be excessively added to C.
  • Average crystal grain size of ferrite phase 1 ⁇ m or more
  • the strength of a steel sheet improves when the crystal grains are refined.
  • the lower limit of the average crystal grain size of the ferrite phase is 1 ⁇ m.
  • the average crystal grain size of the ferrite phase exceeds 10 ⁇ m, there is a concern about a decrease in toughness. Therefore, the average crystal grain size of the ferrite phase is preferably 10 ⁇ m or less.
  • C Over 0.035% and below 0.065% C is an essential element for forming Ti carbide in the steel sheet and increasing the tensile strength to 780 MPa or more. If the C content is 0.035% or less, a tensile strength of 780 MPa class cannot be realized. On the other hand, when the C content exceeds 0.065%, pearlite is easily generated, and the stability of strength deteriorates. In addition, stretch flangeability deteriorates due to the formation of pearlite. Therefore, the C content is more than 0.035% and not more than 0.065%. Preferably they are 0.04% or more and 0.06% or less. In order to precipitate Ti carbide that satisfies the above formula (1), the C content is preferably 0.04% or more and 0.065% or less.
  • Si 0.2% or less
  • Si has been added as a solid solution strengthening element that increases strength while not decreasing elongation.
  • Si enhances hardenability and facilitates the formation of hard phases such as martensite phase and bainite phase, it inhibits the formation of a ferrite single phase structure. Therefore, the upper limit of Si content is 0.2%. Preferably, it is 0.1% or less. More preferably, it is 0.05% or less. There is no problem even if the Si content is zero.
  • Mn 0.65% or less Mn, like Si, has been positively added as a solid solution strengthening element in conventional high-strength steel sheets.
  • Mn, like Si enhances hardenability and facilitates the formation of hard phases such as martensite phase and bainite phase, and thus inhibits the formation of a ferrite single phase structure.
  • hard phases other than ferrite phase are mixed (more than 5% in area ratio), non-uniform steel sheet strength and deterioration of stretch flangeability are caused.
  • a large amount of Mn is contained, segregation easily occurs, and this segregation partially lowers the ferrite transformation point.
  • the Mn content is set to 0.65% or less. Preferably it is 0.5% or less. There is no problem even if the Mn content is zero.
  • the P content is 0.03% or less.
  • the P content is 0.02% or less, More preferably, it is 0.01% or less. There is no problem even if the P content is zero.
  • S 0.02% or less S forms TiS in steel and causes strength fluctuations.
  • TiS serves as a base point for fracture during stretch flange processing, thus lowering the tensile strength and causing fluctuations in strength. Therefore, in the present invention, it is preferable to reduce S as much as possible, and to be 0.02% or less. Preferably it is 0.005% or less, More preferably, it is 0.001% or less. There is no problem even if the S content is zero.
  • Al 0.1% or less
  • Al is an element that acts as a deoxidizer. In order to acquire such an effect, it is desirable to contain 0.01% or more, but when the content exceeds 0.1%, coarse alumina is formed, and the elongation flange workability deteriorates by becoming a starting point of fracture. Therefore, the Al content is 0.1% or less.
  • N 0.01% or less
  • N is a harmful element in the present invention and is preferably reduced as much as possible.
  • N combines with Ti in the steel to form TiN.
  • the N content is 0.01% or less.
  • Ti 0.09% to 0.25%
  • Ti is an indispensable element for forming Ti carbide to increase the strength of steel, and is one of the most important elements in the present invention.
  • the Ti content is less than 0.09%, the precipitation amount of Ti carbide becomes insufficient, and it becomes difficult to obtain a desired steel plate strength (tensile strength of 780 MPa or more).
  • the Ti content exceeds 0.25%, solid solution Ti increases and the coarsening of Ti carbide cannot be suppressed, making it difficult to obtain the desired steel sheet strength (tensile strength of 780 MPa or more). Therefore, the Ti content is 0.09% or more and 0.25% or less.
  • the Ti content is preferably 0.12% or more and 0.20% or less.
  • the above is the basic composition in the present invention.
  • Cu, Ni, Cr, Co, Mo, Sb, W, As, Pb, Mg, Ca, Sn, Ta, Nb, V , REM, Cs, Zr, B, and Hf may be contained in total of 1% or less. If these contents are 1% or less in total, the above-described effects of the present invention are not affected.
  • Components other than the above are Fe and inevitable impurities. For example, elements (Cu and the like) mixed from ore and scrap do not need to be reduced as long as they are below the total content.
  • Mo, W, Nb, and V which have a strong tendency to form carbide, may be added (content of impurities).
  • the steel sheet of the present invention may have a plating layer on the surface.
  • a plating layer By forming a plating layer on the surface of the steel sheet, the corrosion resistance of the hot-rolled steel sheet is improved, and a hot-rolled steel sheet suitable for a material for automobile parts exposed to severe corrosive environments can be obtained. Moreover, even if the surface of the steel sheet of the present invention is plated, the steel sheet characteristics of the present invention are not affected at all, and the above-described excellent effects of the present invention are still expressed.
  • the type of the plating layer is not particularly limited, and electroplating or hot dipping may be used. If it is hot dip plating, hot dip galvanization is mentioned as a suitable example. It may be alloyed hot dip galvanized alloyed after plating.
  • the plating layer of the present invention includes a pretreatment that is advantageous for chemical conversion treatment to disperse a metal or an oxide thereof on the surface.
  • hot rolling consisting of rough rolling and finish rolling is applied to a steel material having the above composition, and after finishing rolling, the steel material is cooled, wound, and made into a hot-rolled steel sheet.
  • the finish rolling temperature of the finish rolling is 840 ° C. or more and 1050 ° C. or less
  • the average cooling rate from the end of the cooling finish rolling to 750 ° C. is 30 ° C./s or more
  • the winding temperature of the winding is 570 It is characterized by the temperature being not lower than °C and not higher than 750 ° C.
  • the melting method of the steel material is not particularly limited, and a known melting method such as a converter or an electric furnace can be employed. Moreover, after melting, it is preferable to use a slab (steel material) by a continuous casting method because of problems such as segregation, but a slab can also be formed by a known casting method such as ingot-bundling rolling or thin slab continuous casting. good. In addition, when hot-rolling the slab after casting, the slab may be rolled after being reheated in a heating furnace, and when the temperature is maintained at a predetermined temperature or higher, direct rolling without heating the slab You may do it.
  • the steel material obtained as described above is subjected to heating, rough rolling and finish rolling.
  • the heating temperature of the steel material is preferably set to 1150 ° C. or higher.
  • the heating temperature of the steel material is excessively high, the surface is excessively oxidized and TiO 2 is generated and Ti is consumed. Is preferably 1350 ° C. or lower.
  • the step of heating the steel material before rough rolling is It can be omitted.
  • the rough rolling conditions are not particularly limited.
  • the finish rolling temperature is 1050 ° C. or lower. Preferably it is 980 degrees C or less. However, when the finish rolling temperature becomes extremely low, the average crystal grain size of the finally obtained ferrite becomes less than 1 ⁇ m. Furthermore, since there is concern about the generation of grains that have expanded in the rolling direction due to ferrite region rolling, the finish rolling temperature is set to 840 ° C. or higher. Preferably it is 880 degreeC or more.
  • the average cooling rate from the end of finish rolling to 750 ° C. is less than 30 ° C./s after the end of hot rolling, ferrite transformation starts in a temperature range higher than the coiling temperature described later. This makes it extremely difficult to achieve a desired steel sheet strength by uniformly dispersing and precipitating fine Ti carbide having an average particle diameter of 5 nm or less in the ferrite crystal grains in the longitudinal direction and the width direction of the steel sheet. Therefore, the average cooling rate from the end of finish rolling to 750 ° C. or lower is set to 30 ° C./s or higher. Preferably, it is 60 ° C./s or more.
  • Mn has the effect of shifting the nose of the ferrite transformation of steel to the long time side in the CCT diagram (continuous cooling transformation diagram). Therefore, when the Mn content in the steel is high, even if the cooling rate after the hot rolling is relatively slow (for example, about 10 to 30 ° C / s), the winding is performed before starting the ferrite transformation. It can be cooled to the coiling temperature and wound almost simultaneously with the ferrite transformation. However, as the Mn content in the steel decreases, the nose of the ferrite transformation of the steel in the CCT diagram shifts to the short time side.
  • the average cooling rate from the end of finish rolling to 750 ° C. is preferably 50 ° C./s or more, and 100 ° C./s or more. More preferably.
  • the average cooling rate is 500 ° C./s or less. It is preferable to set it to 300 ° C./s or less.
  • the average cooling rate is preferably set to 60 ° C./s or more and 300 ° C./s or less.
  • Winding temperature 570 ° C. or higher and 750 ° C. or lower
  • the coiling temperature is 570 ° C. or higher.
  • the coiling temperature exceeds 750 ° C., ferrite is easily obtained, but pearlite and coarse Ti carbide are generated and the strength is lowered. Therefore, the coiling temperature is 750 ° C. or lower.
  • the temperature is preferably 700 ° C. or lower.
  • the coiling temperature be 600 ° C. or higher and 680 ° C. or lower. Further, by setting the coiling temperature to 570 ° C. or more in addition to the finish rolling temperature, the ferrite average crystal grain size can be made 1 ⁇ m or more.
  • the area ratio is more than 95% ferrite phase
  • Ti carbide having an average particle size of 5 nm or less is finely dispersed in the ferrite phase crystal grains, the ferrite phase
  • a hot-rolled steel sheet having a structure with an average crystal grain size of 1 ⁇ m or more and a tensile strength of 780 MPa or more is obtained.
  • the desired Ti carbide is finely dispersed in the longitudinal direction and the width direction of the steel sheet, particularly by reducing the Mn content and defining the cooling and winding conditions after completion of hot rolling. Therefore, a steel sheet excellent in material uniformity in which unevenness in strength is suppressed can be obtained.
  • the difference in strength ⁇ TS between the tensile strength TSc at the center in the width direction of the steel sheet and the tensile strength TSe at a position 50 mm from the end in the width direction of the steel sheet is 20 MPa or less.
  • a steel plate with a small thickness can be obtained.
  • the steel sheet of the present invention is preferably 780 MPa class from the viewpoint of suppressing ⁇ TS.
  • a plated layer may be formed on the surface of the steel sheet by subjecting the hot-rolled steel sheet manufactured as described above to a plating process.
  • the plating process may be either electroplating or hot dipping.
  • a hot dip galvanizing process may be performed as the plating process, or an alloying process may be further performed after the hot dip galvanizing process.
  • a hot-rolled steel sheet having a thickness of 2.6 mm and a width of 1200 mm was prepared by hot rolling a steel material (slab) having a thickness of 250 mm having the composition shown in Table 1.
  • Table 2 shows the heating temperature, finish rolling temperature, average cooling rate from the end of finish rolling to 750 ° C., and the coiling temperature.
  • hot dip galvanizing treatment (plating bath composition: 0.1% Al-Zn, plating bath temperature: 470) is applied to some parts (hot rolled steel sheets No. 16, 17, 18). ° C) and further alloying treatment (alloying temperature: 520 ° C). The amount of plating adhered was 45 g / m 2 per side.
  • Samples were taken from the hot-rolled steel sheet (hot-rolled steel sheet, alloyed hot-dip galvanized steel sheet) obtained as described above, and subjected to structure observation, tensile test, and hole expansion test (hole expanding test).
  • the average crystal grain size, the average grain size of Ti carbide, the tensile strength, the hole expansion rate (stretch flangeability), and the strength difference between the central part and the end part in the width direction of the steel sheet were determined.
  • the test method was as follows. The sampling position of the test piece was 20 m from the tail end (outer end) of the coil (however, excluding test piece sampling for investigating the fluctuation of mechanical characteristics in the coil longitudinal direction, which will be described later).
  • Microstructure observation A specimen for microstructural observation is collected from the obtained hot-rolled steel sheet, polished on a cross section (L cross section) parallel to the rolling direction, corroded with nital, and optical microscope (magnification 500 times) And the structure
  • the atomic ratio Ti / C of C and Ti in Ti carbides is obtained by collecting the extraction residue and using EDX (energy dispersive X-ray analysis) to determine the Ti concentration and EELS (electron energy loss spectroscopy) to determine the C concentration. Quantitatively calculated.
  • Tensile test Tensile test specimens were collected from the obtained hot-rolled steel sheet, subjected to a tensile test in accordance with JIS Z2241, and measured for tensile properties (tensile strength TS). Tensile test specimens were sampled from the center of the width in the longitudinal direction and 50 mm from the end so that the rolling direction and the tensile direction were parallel, and the tensile strength of each test specimen was measured. Further, the difference ⁇ TS between the tensile strength TSc at the central part of the steel plate width and the tensile strength TSe at the position of 50 mm from the end of the steel plate width was determined. Table 3 shows the tensile strengths TSc and ⁇ TS at the center in the width direction. The magnitude relationship of tensile strength was all TSc> TSe.
  • All of the examples of the present invention have high tensile strength TS: 780 MPa or more and stretch flangeability with a hole expansion ratio ⁇ : more than 90%.
  • the difference in tensile strength ⁇ TS at the 50 mm position is less than 20 MPa, and it is a hot-rolled steel sheet with small strength fluctuation.
  • a predetermined high strength cannot be secured, or the hole expansion ratio ⁇ or the steel plate strength uniformity cannot be secured.
  • No. 4 and No. 7 hot-rolled steel sheets (coils) shown in Table 2 are each 40 m, 100 m, 300 m, 500 m from the longitudinal position shown in Table 4 (coil end (outside end of coil), At 700m), JIS No. 5 tensile test piece and hole expansion test piece were collected from the center in the width direction of the plate, and the tensile test and hole expansion test were carried out by the same method as (2) and (3) above. .
  • Table 4 shows the obtained results.
  • the difference ⁇ TS L in tensile strength at each position in the longitudinal direction with respect to the 40 m position in the longitudinal direction is also shown.
  • a sample having a difference ⁇ TS L of less than 20 MPa was evaluated as good ( ⁇ ).
  • the difference in tensile strength in the longitudinal direction ⁇ TS L is less than 20 MPa, and the steel sheet is a hot-rolled steel sheet having a small strength fluctuation.

Abstract

Provided are: a high-strength hot-rolled steel sheet that combines excellent strength and workability; and a manufacturing method therefor. By mass, said steel sheet contains more than 0.035% and no more than 0.065% carbon, up to 0.2% silicon, up to 0.65% manganese, up to 0.03% phosphorus, up to 0.02% sulfur, up to 0.1% aluminum, up to 0.01% nitrogen, and 0.09-0.25% titanium, with the remainder comprising iron and unavoidable impurities. By area fraction, a ferrite phase constitutes more than 95% of the metal structure, titanium carbide with a mean grain diameter of 5 nm or less is finely dispersed inside the crystal grains of the ferrite phase, and the mean diameter of said ferrite crystal grains is at least 1 µm. This results in a high-strength hot-rolled steel sheet with a tensile strength of at least 780 MPa.

Description

高強度熱延鋼板およびその製造方法High strength hot rolled steel sheet and method for producing the same
本発明は、自動車や輸送機材、建築機器などの構造物の素材に好適な、780MPa以上の引張強さと優れた伸びフランジ加工性(stretch flange formability)を有し、且つコイル内の機械的性質の変動の小さい高強度熱延鋼板、高強度熱延めっき鋼板およびその製造方法に関する。 The present invention has a tensile strength of 780 MPa or more and excellent stretch flangeability suitable for structural materials such as automobiles, transportation equipment, and building equipment, and has mechanical properties in the coil. The present invention relates to a high-strength hot-rolled steel sheet, a high-strength hot-rolled plated steel sheet, and a method for manufacturing the same.
地球環境保全の観点からCO2排出量を削減すべく、自動車車体の強度を維持しつつその軽量化を図り、自動車の燃費を改善することが、自動車業界において常に重要な課題とされている。自動車車体の強度を維持しつつ車体の軽量化を図るうえでは、自動車部品用素材となる鋼板の高強度化により、鋼板を薄肉化することが有効である。そのため、近年、自動車部品用素材として引張強さが780MPa以上の高強度熱延鋼板(薄鋼板)が積極的に適用されている。 In order to reduce CO 2 emissions from the viewpoint of global environmental conservation, maintaining the strength of automobile bodies while reducing their weight and improving automobile fuel efficiency has always been an important issue in the automobile industry. In order to reduce the weight of the vehicle body while maintaining the strength of the automobile body, it is effective to reduce the thickness of the steel sheet by increasing the strength of the steel sheet used as a material for automobile parts. Therefore, in recent years, high-strength hot-rolled steel sheets (thin steel sheets) having a tensile strength of 780 MPa or more have been actively applied as materials for automobile parts.
ここで、薄鋼板を素材とする自動車部品の多くは、プレス加工やバーリング加工等によって成形されるため、自動車部品用鋼板には高強度であることに加えて優れたプレス成形性、伸びフランジ加工性等の加工性を有することが要求される。また、自動車は多くの部品を組み合わせて構成されるため、個々の部品には高度の寸法精度が求められる。したがって、自動車部品用鋼板には、プレス加工等によって寸法精度に優れた部品が得られることも要求されている。
以上の理由により、高強度熱延鋼板を自動車部品等に適用するうえでは、強度と加工性を兼ね備え、且つプレス加工等によって寸法精度に優れた部品が得られるような高強度熱延鋼板の開発が必須となり、現在までに多くの研究が為され、様々な技術が提案されている。
Here, since many automotive parts made of thin steel sheets are formed by pressing or burring, etc., steel sheets for automotive parts have high press strength and stretch flange processing in addition to high strength. It is required to have processability such as property. In addition, since automobiles are configured by combining many parts, individual parts are required to have a high degree of dimensional accuracy. Therefore, it is required for steel sheets for automobile parts to obtain parts having excellent dimensional accuracy by pressing or the like.
For the above reasons, when applying high-strength hot-rolled steel sheets to automobile parts, etc., development of high-strength hot-rolled steel sheets that have both strength and workability and that are capable of obtaining parts with excellent dimensional accuracy by pressing etc. Has become essential, and many studies have been made to date, and various techniques have been proposed.
しかしながら、今日のますます高まる高強度化の要望に対応して、高強度鋼板の強度や加工性などの機械的性質の不均一、すなわち高強度鋼板のコイル内における機械的性質の変動が、自動車部品への高強度鋼板の適用を阻害するようになってきた。特に、鋼板強度のコイル内における不均一は、プレス加工時に発生するスプリングバック量の変動を誘発し(すなわち、プレス部品内に生じるスプリングバック量がプレス部品内で不均一となり)、プレス部品の形状を不安定にする。また、鋼板強度が不均一になると、伸びフランジ加工性も不均一になることから、プレス割れの原因にもなる。 However, in response to today's increasing demand for higher strength, non-uniform mechanical properties such as strength and workability of high-strength steel plates, that is, fluctuations in mechanical properties within the coils of high-strength steel plates, The application of high-strength steel sheets to parts has been hindered. In particular, non-uniformity in the steel strength coil induces fluctuations in the amount of springback that occurs during press processing (that is, the amount of springback that occurs in the pressed part becomes uneven in the pressed part), and the shape of the pressed part Make it unstable. In addition, if the steel plate strength becomes non-uniform, stretch flangeability becomes non-uniform, which may cause press cracks.
元来、鋼は300MPa級程度の引張強さであることから、鋼板の高強度化、例えば、複合組織化や結晶粒微細化による高強度化は、強度のばらつきを生じさせる原因となる。この強度のばらつきは、鋼板の圧延方向長手、幅方向における製造上の温度履歴や変動、さらには加工条件の違いにより生じた組織変動により引き起こされる。したがって、より高品質の自動車部品を提供するためには、自動車部品用鋼板に所望の強度・加工性を付与することに加えて、これらの機械的特性(特に強度)をコイル内でばらつくことなく鋼板全域に亘り均一に付与することも極めて重要となる。 Originally, steel has a tensile strength of about 300 MPa class. Therefore, an increase in strength of a steel sheet, for example, an increase in strength due to a complex structure or refinement of crystal grains, causes variations in strength. This variation in strength is caused by temperature fluctuations and fluctuations in production in the longitudinal and width directions of the steel sheet in the rolling direction, and also by structural changes caused by differences in processing conditions. Therefore, in order to provide higher-quality automobile parts, in addition to imparting desired strength and workability to the steel sheet for automobile parts, these mechanical characteristics (particularly strength) do not vary within the coil. It is also extremely important to apply uniformly throughout the entire steel plate.
自動車部品用鋼板の機械的特性を改善する技術として、例えば、特許文献1には、フェライト組織を60%以上含む引張強度500MPa以上の高強度鋼板において、歪量20%以上の変形後、該変形領域において一方向に並んだ転位セル構造が二方向以上に交差している組織を有するフェライト結晶粒が50%以上含むようにすることで、高強度鋼板のプレス加工時のスプリングバック量を抑制して高強度鋼板の形状凍結性を向上する技術が提案されている。 As a technique for improving the mechanical properties of a steel sheet for automobile parts, for example, in Patent Document 1, a high-strength steel sheet having a tensile strength of 500 MPa or more containing 60% or more of a ferrite structure is deformed after deformation of 20% or more. By including 50% or more of ferrite crystal grains with a structure in which dislocation cell structures aligned in one direction intersect in two or more directions in the region, the amount of springback during high-strength steel sheet pressing is suppressed. Thus, techniques for improving the shape freezing property of high-strength steel sheets have been proposed.
また、特許文献2には、高強度熱延鋼板の集合組織とr値および均一伸びの異方性を規定することで、鋼板の曲げ加工性を向上させ、スプリングバックを抑制し、高強度鋼板の形状凍結性を向上する技術が提案されている。また、鋼板組織について、フェライトの体積分率を80%以下とすることで鋼板の形状凍結性を確保し、マルテンサイトまたは残留オーステナイトの体積分率を1%以上25%以下とすることで、鋼板の強度や成形性を確保する技術が提案されている。更に、特許文献3には、鋼板の集合組織とr値を規定し、鋼板中で最大面積率を有する組織をフェライトとし、更に粒界の粗大セメンタイトを低減することで、鋼板の曲げ加工性を向上させ、スプリングバックを抑制し、鋼板の形状凍結性を確保するとともに伸びフランジ性を向上する技術が提案されている。 Patent Document 2 specifies the texture, r value, and uniform elongation anisotropy of a high-strength hot-rolled steel sheet, thereby improving the bending workability of the steel sheet and suppressing springback. A technique for improving the shape freezing property of the glass has been proposed. In addition, regarding the steel sheet structure, by ensuring that the ferrite volume fraction is 80% or less, the shape freezing property of the steel sheet is secured, and when the martensite or retained austenite volume fraction is 1% or more and 25% or less, the steel sheet A technique for ensuring the strength and formability of the steel has been proposed. Furthermore, in Patent Document 3, the texture and r value of the steel sheet are defined, the structure having the maximum area ratio in the steel sheet is made of ferrite, and the coarse cementite of the grain boundary is further reduced, thereby improving the bending workability of the steel sheet. Techniques have been proposed for improving and suppressing springback, ensuring the shape freezing property of the steel sheet, and improving stretch flangeability.
また、特許文献4には、鋼板組成をTiとMoおよびWの1種以上を添加した組成とし、これらの元素を含む10nm以下の炭化物をフェライト中に分散させることで、高張力熱延鋼板の幅方向における降伏強度の安定性の向上を図る技術が提案されている。また、特許文献5には、鋼板組成をTiとMoおよびWの1種以上を添加した組成とし、これらの元素を含む10nm以下の炭化物をフェライト中に分散させることで、高張力熱延鋼板のコイル長手方向の強度安定性の向上を図る技術が提案されている。 Patent Document 4 discloses that a steel sheet composition is a composition in which one or more of Ti, Mo, and W are added, and carbides of 10 nm or less containing these elements are dispersed in ferrite, whereby a high-tensile hot-rolled steel sheet is obtained. A technique for improving the stability of the yield strength in the width direction has been proposed. Patent Document 5 discloses a high-tensile hot-rolled steel sheet having a steel sheet composition in which at least one of Ti, Mo, and W is added, and carbides of 10 nm or less containing these elements are dispersed in ferrite. A technique for improving the strength stability in the coil longitudinal direction has been proposed.
特開2007-308771号公報JP 2007-308771 A 特開2004-250743号公報JP 2004-250743 A 特開2002-363693号公報JP 2002-363893 A 特開2003-321734号公報JP 2003-321734 A 特開2003-321735号公報JP 2003-321735 A
しかしながら、特許文献1で提案された技術では、フェライト以外の硬質相の体積率が鋼板強度に影響し、不可避的な製造条件の変化に対して敏感な硬質相体積率の変動が鋼板強度を変化させ、機械的性質の不均一がコイル内で大きくなってしまう。したがって、このような技術により得られた鋼板にプレス加工を施しプレス部品を成形しても、プレス割れが発生したりプレス部品の形状が不安定になり、工業的に実現性ある技術とは云い難い。また、鋼板にプレス加工等を施して所望の部品形状に成形する際、軟質のフェライトと硬質の第2相との界面が加工時の割れ発生起点となり易く、加工性が安定しないという問題も有する。 However, in the technique proposed in Patent Document 1, the volume fraction of the hard phase other than ferrite affects the steel plate strength, and the fluctuation of the hard phase volume fraction sensitive to changes in the manufacturing conditions unavoidably changes the steel plate strength. As a result, non-uniform mechanical properties are increased in the coil. Therefore, even if the steel sheet obtained by such a technique is subjected to press working to form a pressed part, press cracking occurs or the shape of the pressed part becomes unstable, which is an industrially feasible technique. hard. In addition, when the steel sheet is pressed into a desired part shape, the interface between the soft ferrite and the hard second phase is likely to be a starting point for cracking during processing, and the workability is not stable. .
また、特許文献2で提案された技術では、所望の集合組織をコイルの長手・幅方向の全域に亘り安定して得ることは難しく、さらには積極的に鋼板組織としてマルテンサイトや残留オーステナイトを用いることで強度の安定性は著しく劣化する。したがって、特許文献2で提案された技術においても、安定した形状凍結性を得ることができず、特許文献1で提案された技術と同様、鋼板にプレス加工を施してプレス部品を成形する際、プレス割れ、プレス部品の形状不安定等の問題が見られる。更に、特許文献3で提案された技術においても、所望の集合組織をコイルの長手・幅方向の全域に亘り安定して得ることが極めて困難であることから安定した強度は得られず、特許文献2で提案された技術と同様の問題が見られる。 In addition, with the technique proposed in Patent Document 2, it is difficult to stably obtain a desired texture throughout the entire length and width of the coil, and martensite and retained austenite are actively used as the steel sheet structure. As a result, the stability of the strength is significantly deteriorated. Therefore, even in the technique proposed in Patent Document 2, it is not possible to obtain a stable shape freezing property, and as in the technique proposed in Patent Document 1, when pressing a steel plate to form a pressed part, Problems such as press cracks and unstable shape of pressed parts are seen. Furthermore, even in the technique proposed in Patent Document 3, since it is extremely difficult to stably obtain a desired texture throughout the entire length and width of the coil, stable strength cannot be obtained. Problems similar to those proposed in 2 are observed.
また、特許文献4で提案された技術では、その実施例が示すように、鋼板に固溶強化元素であるMnを1%以上添加することで所望の鋼板強度を確保している。そのため、特許文献4で提案された技術によると、Mnの偏析が生じることにより強度がばらつき、幅方向の強度の変動を抑制することができない。また、Mnの偏析を抑制する目的で固溶強化元素であるMn含有量を低減すると鋼板強度が低下し、780MPa以上の引張強さが得られない。 Moreover, in the technique proposed by patent document 4, as the Example shows, the desired steel plate intensity | strength is ensured by adding 1% or more of Mn which is a solid solution strengthening element to a steel plate. Therefore, according to the technique proposed in Patent Document 4, the strength varies due to the segregation of Mn, and the fluctuation in strength in the width direction cannot be suppressed. Further, if the content of Mn, which is a solid solution strengthening element, is reduced for the purpose of suppressing segregation of Mn, the strength of the steel sheet is lowered, and a tensile strength of 780 MPa or more cannot be obtained.
一方、特許文献5では、鋼板のMn含有量を低減することで、強度の変動を低減することが提案されている。しかしながら、特許文献5の実施例に開示された鋼板はいずれも、所望の鋼板強度を確保する目的で固溶強化元素であるMnを1%以上含有している。すなわち、特許文献5で提案された技術では、依然としてMnの偏析が大きく、コイル長手方向の引張強度の安定性は保証されていない。また、コイル長手方向の位置の違いで幅方向の強度の変化量も異なり、材質均一性について改善の余地がある。更に、Mnの偏析( segregation of Mn )を抑制する目的で固溶強化元素であるMn含有量を低減すると鋼板強度が低下し、780MPa以上の引張強さが得られない。 On the other hand, Patent Document 5 proposes reducing the fluctuation in strength by reducing the Mn content of the steel sheet. However, all of the steel sheets disclosed in the examples of Patent Document 5 contain 1% or more of Mn, which is a solid solution strengthening element, for the purpose of ensuring a desired steel sheet strength. That is, in the technique proposed in Patent Document 5, Mn segregation is still large, and the stability of the tensile strength in the coil longitudinal direction is not guaranteed. Further, the amount of change in strength in the width direction varies depending on the position in the coil longitudinal direction, and there is room for improvement in material uniformity. Furthermore, if the Mn content, which is a solid solution strengthening element, is reduced for the purpose of suppressing segregation of Mn (“segregation” of “Mn”), the strength of the steel sheet decreases, and a tensile strength of 780 MPa or more cannot be obtained.
以上のように、特許文献4および特許文献5で提案された技術においても、依然として所望の鋼板強度を維持しつつMnの偏析に起因した強度安定性の問題を解消するに至っていない。また、これらの技術では、鋼板のMn含有量が高いことから、Mn偏析に起因して鋼板のプレス成形加工時に割れを誘発するので、優れた伸びフランジ加工性を安定的に確保することが困難であり、必ずしも十分な伸びフランジ加工性を得ることができない。 As described above, even the techniques proposed in Patent Document 4 and Patent Document 5 have not yet solved the problem of strength stability caused by segregation of Mn while maintaining a desired steel plate strength. Also, with these technologies, the high Mn content of the steel sheet induces cracking during press forming of the steel sheet due to Mn segregation, making it difficult to stably ensure excellent stretch flangeability. And sufficient stretch flangeability cannot always be obtained.
このように、上記した従来技術では、高強度で且つ高加工性、高形状凍結性等の機械的特性に優れた鋼板としながらも、コイル内部での機械的特性、特に強度の変動は大きく、伸びフランジ加工性の変動も大きいことから、コイル内での強度と加工性の変動を抑制した高強度鋼板とするに至っていない。そのため、従来技術では、所望の強度を有するとともに寸法精度が安定したプレス部品を工業的に大量生産することが極めて困難である。
本発明は、こうした状況下でなされたものでコイル内部の引張特性の変動が小さく、伸びフランジ加工性に優れ、部品寸法精度の安定した高強度熱延鋼板およびその製造方法を提供することを目的とする。
As described above, in the above-described conventional technology, the mechanical characteristics inside the coil, particularly the strength variation is large, while the steel sheet is excellent in mechanical properties such as high strength and high workability and high shape freezing property. Since the variation in stretch flangeability is large, it has not yet been a high-strength steel sheet that suppresses variations in strength and workability within the coil. For this reason, it is extremely difficult to industrially mass-produce press parts having desired strength and stable dimensional accuracy with the prior art.
An object of the present invention is to provide a high-strength hot-rolled steel sheet having a small fluctuation in tensile properties inside a coil, excellent stretch flangeability, stable component dimensional accuracy, and a method for producing the same, which has been made under such circumstances. And
上記課題を解決すべく、本発明者らは、熱延鋼板の高強度化と伸びフランジ加工性等の加工性に及ぼす各種要因に加え、鋼板のコイル内における機械的特性の均一性、特に鋼板強度の均一性に及ぼす各種要因について鋭意検討した。
伸びフランジ加工性等の加工性を維持しつつ鋼板を引張強さ780MPa以上に高強度化する手段としては、例えば軟質なフェライトにマルテンサイト組織やベイナイト組織を分散させて複合組織化する手段が挙げられる。しかしながら、鋼板組織を複合組織とした場合、コイル内における各相分率の変動や各相の硬さの変化が重なり合い鋼板強度はコイル内で大きく変動する。そこで本発明者らは、コイル内の鋼板強度変化を抑制してコイル内強度の均一性を確保するには、複合組織化による高強度化ではなく、金属組織( microstructure )を単相化したうえで高強度化を指向すべきと考えた。また、本発明者らは、伸びフランジ加工性等の加工性に優れたフェライト相に着目し、鋼板の金属組織をフェライト単相組織としたうえで、鋼板の高強度化を図る手段について検討を進めた。
In order to solve the above-mentioned problems, the present inventors, in addition to various factors affecting workability such as high strength of hot-rolled steel sheet and stretch flangeability, uniformity of mechanical properties in the coil of the steel sheet, especially steel sheet Various factors affecting the uniformity of strength were studied.
As a means for increasing the strength of a steel sheet to a tensile strength of 780 MPa or more while maintaining workability such as stretch flangeability, for example, there is a means for forming a composite structure by dispersing martensite structure or bainite structure in soft ferrite. It is done. However, when the steel sheet structure is a composite structure, the variation in each phase fraction in the coil and the change in the hardness of each phase overlap, and the steel sheet strength varies greatly within the coil. Therefore, the present inventors have made the metal structure (microstructure) into a single phase, not a high strength by complex structure, in order to suppress the steel plate strength change in the coil and ensure the uniformity of the strength in the coil. Therefore, I thought that it should be oriented to higher strength. In addition, the present inventors focused on the ferrite phase with excellent workability such as stretch flangeability, and examined a means for increasing the strength of the steel sheet after making the metal structure of the steel sheet a ferrite single phase structure. Proceeded.
金属組織をフェライト単相組織とした鋼板を高強度化する手段としては、Mn添加量を高めることによる固溶強化や結晶粒微細化による強化手段が考えられる。しかしながら本発明者らによる検討の結果、これらの強化手段はいずれもコイル内の鋼板強度や伸びフランジ加工性の変動の要因となり、鋼板強度の均一性を確保するうえでは不利であることが明らかになった。 As means for enhancing the strength of a steel sheet having a ferrite single phase structure as a metal structure, solid solution strengthening by increasing the amount of Mn added or strengthening means by crystal grain refinement can be considered. However, as a result of investigations by the present inventors, it is clear that all of these strengthening means cause fluctuations in the strength of the steel sheet in the coil and stretch flangeability, and are disadvantageous in ensuring the uniformity of the steel sheet strength. became.
鋼中のMn量が多いとMnが偏析し、オーステナイト変態が遅延して硬質相ができ易くなったり、固溶強化量が他の部分よりも大きくなることで、鋼板強度と加工性の不均一を招来する。そのため、Mn添加により鋼板の高強度化を図ろうとする場合、上記したMn偏析に起因して鋼板幅方向の引張強さが不均一になることと、これにより伸びフランジ加工性も不均一になることを本発明者らは知見した。
また、フェライト結晶粒微細化(grain size refinement)により鋼板の引張強さを780MPa以上とする場合には、フェライトの結晶粒径を約1μm未満とすることが必要となる。しかし、フェライトの結晶粒径を鋼板全域に亘り約1μm未満とすることは容易でない。フェライトの結晶粒径は、鋼板製造条件、特に熱間圧延終了後の冷却条件に大きく依存する。鋼板の長手方向端部( end of longitudinal direction of hot coil  or  top end and bottom end of hot coil )や幅方向端部では冷却速度が不安定となり易いため、鋼板端部におけるフェライト結晶粒径も粗大化(coarsening)し易い。
If the amount of Mn in the steel is large, Mn segregates, the austenite transformation is delayed and it becomes easier to form a hard phase, or the amount of solid solution strengthening is larger than other parts, resulting in uneven steel plate strength and workability. Invite Therefore, when trying to increase the strength of the steel sheet by adding Mn, the tensile strength in the width direction of the steel sheet becomes non-uniform due to the Mn segregation described above, and the stretch flangeability becomes non-uniform due to this. The present inventors have found that.
Further, when the tensile strength of the steel sheet is made 780 MPa or more by grain size refinement, the crystal grain size of ferrite needs to be less than about 1 μm. However, it is not easy to make the ferrite grain size less than about 1 μm over the entire area of the steel sheet. The crystal grain size of ferrite greatly depends on the steel sheet manufacturing conditions, particularly the cooling conditions after the end of hot rolling. Because the cooling rate tends to be unstable at the end of longitudinal direction of hot coil or top end and bottom end of hot coil and at the end of width direction, the ferrite crystal grain size at the end of steel plate is also coarsened. Easy to coarsening.
このようなことから、本発明者らは、高Mn固溶強化や結晶粒微細化によらず、金属組織をフェライト単相組織とした鋼板の高強度化を図る手段について更に検討を進めた。その結果、鋼板中のMn含有量を抑制し、フェライト単相組織を形成する個々のフェライト結晶粒中に微細なTi炭化物を析出させることが、鋼板の加工性(伸びフランジ加工性等)を維持しつつ鋼板の引張強さを780MPa以上とし、しかも鋼板強度の変動を抑制し、鋼板の長手方向および幅方向に亘り均一な強度を付与する手段として極めて有効であることを知見した。 For these reasons, the present inventors have further studied a means for increasing the strength of a steel sheet having a metal structure of a ferrite single phase structure regardless of high Mn solid solution strengthening or crystal grain refinement. As a result, suppressing the Mn content in the steel sheet and precipitating fine Ti carbide in the individual ferrite crystal grains forming the ferrite single-phase structure maintains the workability of the steel sheet (stretch flange workability, etc.). However, the present inventors have found that the tensile strength of the steel sheet is 780 MPa or more and that the fluctuation of the steel sheet strength is suppressed, and that it is extremely effective as a means for imparting uniform strength in the longitudinal direction and the width direction of the steel sheet.
また、鋼板の加工性(伸びフランジ加工性等)を維持しつつ鋼板の引張強さを780MPa以上とするためには、Ti炭化物を十分に微細化する必要があること、更に、Ti炭化物のTi含有量が原子比でC含有量以上になると、炭化物が粗大化し易くなり、熱延鋼板特性に悪影響を及ぼす場合があることを知見した。
一方、フェライトの結晶粒径が極度に小さくなると、鋼板強度の不均一の要因となるため、フェライト平均結晶粒径は1μm以上とすることが鋼板強度の不均一抑止に有効であることを知見した。
In addition, in order to maintain the workability of the steel sheet (stretch flange workability, etc.) while the steel sheet has a tensile strength of 780 MPa or more, it is necessary to sufficiently refine the Ti carbide, and further, Ti carbide Ti It has been found that when the content is more than the C content by atomic ratio, the carbide tends to be coarsened, which may adversely affect the properties of the hot-rolled steel sheet.
On the other hand, if the crystal grain size of ferrite becomes extremely small, it becomes a factor of non-uniformity of steel sheet strength, so it has been found that ferrite average crystal grain size of 1 μm or more is effective in suppressing non-uniformity of steel sheet strength. .
更に、Ti炭化物は、熱延鋼板製造工程における熱間圧延終了後の冷却過程で析出するが、鋼中のMn量が多いとMnが偏析し、Ti炭化物の析出のタイミングがMn偏析している部分で遅くなり、他の部分に比べてMn偏析している部分が過剰に硬質化し、鋼板強度の不均一を招来することが明らかになった。また、本発明者らは、従来の高強度鋼板では常識とされてきた1%以上のMn添加が上記強度変動の原因であり、これを低減することで強度を安定化できる技術を新たに見い出した。 Furthermore, Ti carbide precipitates during the cooling process after hot rolling in the hot-rolled steel sheet manufacturing process, but if the amount of Mn in the steel is large, Mn segregates, and the timing of Ti carbide precipitation is Mn segregated. It became clear that the Mn segregation part became excessively hard compared with the other parts, resulting in non-uniform steel plate strength. In addition, the present inventors have found a new technology that can stabilize the strength by reducing this, which is caused by the addition of 1% or more of Mn, which has been common knowledge in conventional high-strength steel sheets. It was.
 また、Ti炭化物は、熱延鋼板製造工程における熱間圧延終了後の冷却過程で、オーステナイト→フェライト変態と同時に析出する相界面析出型の析出物である。ここで、本発明者らによる検討の結果、鋼のフェライト変態点が熱延鋼板製造工程における巻取り温度よりも大幅に高いと、オーステナイト→フェライト変態と同時に析出したTi炭化物が巻取り温度までの冷却過程で粗大化してしまい、所望の鋼板強度が得られないことが明らかになった。 Further, Ti carbide is a phase interface precipitation type precipitate that precipitates simultaneously with the austenite → ferrite transformation in the cooling process after the hot rolling in the hot rolled steel sheet manufacturing process. Here, as a result of the study by the present inventors, when the ferrite transformation point of the steel is significantly higher than the coiling temperature in the hot-rolled steel sheet manufacturing process, Ti carbide precipitated simultaneously with the austenite → ferrite transformation reaches the coiling temperature. It became clear that it became coarse during the cooling process and the desired steel plate strength could not be obtained.
そこで、本発明者らは、鋼のフェライト変態点を巻取り温度と同程度に調整することで、Ti炭化物の粗大化を抑制し、鋼板の長手方向および幅方向全域に亘り微細なTi炭化物を均一に析出させることに思い至った。そして、鋼のフェライト変態点を巻取り温度と同程度に調整するためには、鋼板に含まれるMn量や、鋼板製造条件、特に熱間圧延終了後の冷却速度や巻取り温度を規定することが重要であることを知見した。 Therefore, the present inventors suppress the coarsening of Ti carbide by adjusting the ferrite transformation point of the steel to the same level as the coiling temperature, and fine Ti carbide throughout the longitudinal and width directions of the steel sheet. It came to the idea of making it precipitate uniformly. And in order to adjust the ferrite transformation point of steel to the same level as the coiling temperature, the amount of Mn contained in the steel sheet, the steel sheet manufacturing conditions, especially the cooling rate after the hot rolling and the coiling temperature should be specified. Was found to be important.
 本発明は上記の知見に基づき完成されたものであり、その要旨は次のとおりである。
[1] 質量%で、
C :0.035%超0.065%以下、    Si:0.2%以下、
Mn:0.65%以下、             P :0.03%以下、
S :0.02%以下、        Al:0.1%以下、
N :0.01%以下、         Ti:0.09%以上0.25%以下
を含有し、残部がFeおよび不可避的不純物からなる組成を有し、面積率で95%超がフェライト相であり、該フェライト相の結晶粒内に平均粒子径が5nm以下であるTi炭化物が微細分散し、前記フェライト相の平均結晶粒径が1μm以上である組織を有し、引張強さが780MPa以上である高強度熱延鋼板。
The present invention has been completed based on the above findings, and the gist thereof is as follows.
[1] By mass%
C: more than 0.035% and 0.065% or less, Si: 0.2% or less,
Mn: 0.65% or less, P: 0.03% or less,
S: 0.02% or less, Al: 0.1% or less,
N: 0.01% or less, Ti: 0.09% or more and 0.25% or less, with the balance being composed of Fe and inevitable impurities, with an area ratio of more than 95% being the ferrite phase, and the ferrite phase crystal grains A high-strength hot-rolled steel sheet having a structure in which Ti carbide having an average particle size of 5 nm or less is finely dispersed, the ferrite crystal has an average crystal grain size of 1 μm or more, and a tensile strength of 780 MPa or more.
[2] 前記[1]において、前記Ti炭化物に含まれるCとTiの原子数比が下記(1)式を満足することを特徴とする高強度熱延鋼板。
  記
Ti/C <1.0 ・・・ (1)
(Ti/C:Ti炭化物中のCとTiの原子数比)
[2] The high-strength hot-rolled steel sheet according to [1], wherein an atomic ratio of C and Ti contained in the Ti carbide satisfies the following formula (1).
Record
Ti / C <1.0 (1)
(Ti / C: atomic ratio of C and Ti in Ti carbide)
[3] 前記[1]または[2]において、前記組成に加えてさらに、質量%で、Cu、Ni、Cr、Co、Mo、Sb、W、As、Pb、Mg、Ca、Sn、Ta、Nb、V、REM、Cs、Zr、B、Hfのいずれか1種以上を合計で1%以下含有することを特徴とする高強度熱延鋼板。 [3] In the above [1] or [2], in addition to the composition, in addition to mass, Cu, Ni, Cr, Co, Mo, Sb, W, As, Pb, Mg, Ca, Sn, Ta, A high-strength hot-rolled steel sheet containing 1% or less in total of any one of Nb, V, REM, Cs, Zr, B, and Hf.
[4] 前記[1]ないし[3]のいずれかにおいて、鋼板表面にめっき層を有することを特徴とする高強度熱延鋼板。 [4] The high-strength hot-rolled steel sheet according to any one of [1] to [3], wherein the steel sheet surface has a plating layer.
[5] 前記[4]において、前記めっき層が、亜鉛めっき層または亜鉛含有合金めっき層であることを特徴とする高強度熱延鋼板。 [5] The high-strength hot-rolled steel sheet according to [4], wherein the plating layer is a zinc plating layer or a zinc-containing alloy plating layer.
[6] 鋼素材に、粗圧延と仕上げ圧延からなる熱間圧延を施し、仕上げ圧延終了後、冷却し、巻き取り、熱延鋼板とするにあたり、
前記鋼素材を、質量%で、
C :0.035%超0.065%以下、    Si:0.2%以下、
Mn:0.65%以下、             P :0.03%以下、
S :0.02%以下、        Al:0.1%以下、
N :0.01%以下、         Ti:0.09%以上0.25%以下
を含有し、残部がFeおよび不可避的不純物からなる組成とし、
前記仕上げ圧延の仕上げ圧延温度を840℃以上1050℃以下とし、前記冷却の仕上げ圧延終了から750℃までの平均冷却速度を30℃/s以上とし、前記巻き取りの巻取り温度を570℃以上750℃以下とすることを特徴とする、引張強さが780MPa以上である高強度熱延鋼板の製造方法。
[6] The steel material is subjected to hot rolling consisting of rough rolling and finish rolling. After finishing rolling, the steel material is cooled, wound, and hot rolled steel sheet.
The steel material in mass%,
C: more than 0.035% and 0.065% or less, Si: 0.2% or less,
Mn: 0.65% or less, P: 0.03% or less,
S: 0.02% or less, Al: 0.1% or less,
N: 0.01% or less, Ti: 0.09% or more and 0.25% or less, with the balance being Fe and inevitable impurities,
The finish rolling temperature of the finish rolling is 840 ° C. or more and 1050 ° C. or less, the average cooling rate from the end of finish cooling of the cooling to 750 ° C. is 30 ° C./s or more, and the winding temperature of the winding is 570 ° C. or more and 750 ° C. A method for producing a high-strength hot-rolled steel sheet having a tensile strength of 780 MPa or more, characterized in that the temperature is not higher than ° C.
[7] 前記[6]において、前記組成に加えてさらに、質量%で、Cu、Ni、Cr、Co、Mo、Sb、W、As、Pb、Mg、Ca、Sn、Ta、Nb、V、REM、Cs、Zr、B、Hfのいずれか1種以上を合計で1%以下含有することを特徴とする高強度熱延鋼板の製造方法。 [7] In the above [6], in addition to the composition, in addition to mass, Cu, Ni, Cr, Co, Mo, Sb, W, As, Pb, Mg, Ca, Sn, Ta, Nb, V, A method for producing a high-strength hot-rolled steel sheet, comprising a total of 1% or less of any one of REM, Cs, Zr, B, and Hf.
本発明によれば、多量のMnや合金元素を添加することなく組織を最適化することで、従来なし得なかった機械的性質の変動が小さい780MPa級(引張強さ:780~900MPa程度)高強度熱延鋼板およびその製造方法を提供することが可能となり、産業上格段の効果を奏する。 According to the present invention, by optimizing the structure without adding a large amount of Mn or alloy elements, the mechanical property variation that could not be achieved conventionally is small, and the 780 MPa class (tensile strength: about 780 to 900 MPa) is high. It is possible to provide a high-strength hot-rolled steel sheet and a method for producing the same, and have a remarkable industrial effect.
図1は、Ti炭化物の概略形状を示す図である。FIG. 1 is a diagram showing a schematic shape of Ti carbide.
 以下、本発明について詳細に説明する。
 まず、本発明鋼板の組織および炭化物の限定理由について説明する。
 本発明の熱延鋼板は、面積率で95%超がフェライト相であり、該フェライト相の結晶粒内に平均粒子径が5nm以下であるTi炭化物が微細分散し、前記フェライト相の平均結晶粒径が1μm以上である組織を有する。すなわち、本発明の鋼板は、実質的にフェライト単相の金属組織を有し、該フェライト相の結晶を微細なTi炭化物で高強度化することを特徴とする。また、フェライトの結晶粒微細化を積極的に行わないことで細粒化強化量を一定とし、さらに偏析の原因、すなわち強度変動の原因となる炭化物の大きさや析出量の変動を誘発する炭化物の析出のタイミングのばらつきの原因を解消するために、SiおよびMn量を低減する。これにより、鋼板内部でのTi炭化物の析出量と大きさを一定に保つことで強度変動を極小化でき、延いてはプレス成形品の形状精度も向上する。
Hereinafter, the present invention will be described in detail.
First, the structure of the steel sheet of the present invention and the reasons for limiting the carbide will be described.
The hot-rolled steel sheet of the present invention has an area ratio of more than 95% of the ferrite phase, and Ti carbide having an average particle diameter of 5 nm or less is finely dispersed in the ferrite phase crystal grains. It has a tissue with a diameter of 1 μm or more. That is, the steel sheet of the present invention is characterized by having a ferrite single-phase metal structure and increasing the strength of the ferrite phase crystals with fine Ti carbides. Also, by not actively refining ferrite grains, the amount of refinement strengthening is made constant, and further the cause of segregation, that is, the size of carbides that cause strength fluctuations and the amount of precipitation that induces fluctuations in carbides. In order to eliminate the cause of the variation in the timing of precipitation, the amounts of Si and Mn are reduced. Thereby, strength fluctuation can be minimized by keeping the precipitation amount and size of Ti carbide in the steel plate constant, and the shape accuracy of the press-formed product is also improved.
 フェライト相:面積率で95%超(金属組織全体に対する面積率)
本発明では、熱延鋼板の金属組織をフェライト単相とすることが重要である。熱延鋼板の金属組織を、フェライト相に加えてマルテンサイトやベイナイトなどの硬質相を含む二相鋼板とした場合、硬質相の体積分率で強度が変わってしまい、鋼板強度の不均一を招来する。また、熱延鋼板の加工性(伸びフランジ加工性等)を確保するうえでも、金属組織をフェライト単相とすることが好ましい。但し、熱延鋼板の金属組織が完全なフェライト単相でなくても、実質的にフェライト単相、すなわち金属組織全体に対する面積率で95%超がフェライト相であれば、上記の効果を十分に発揮できる。このため、強度変動を抑えるために金属組織は面積率で95%超のフェライト相とする。好ましくは98%以上である。
Ferrite phase: Over 95% in area ratio (area ratio relative to the entire metal structure)
In the present invention, it is important that the metal structure of the hot-rolled steel sheet is a ferrite single phase. If the metal structure of a hot-rolled steel sheet is a dual-phase steel sheet containing a hard phase such as martensite or bainite in addition to the ferrite phase, the strength changes depending on the volume fraction of the hard phase, resulting in non-uniform steel sheet strength. To do. Further, in order to ensure the workability of the hot-rolled steel sheet (elongation flange workability, etc.), it is preferable that the metal structure is a ferrite single phase. However, even if the metal structure of the hot-rolled steel sheet is not a complete ferrite single phase, if the ferrite single phase is substantially the ferrite phase, that is, if the area ratio with respect to the entire metal structure is more than 95%, the above effect is sufficiently obtained. Can demonstrate. For this reason, in order to suppress fluctuations in strength, the metal structure is a ferrite phase with an area ratio exceeding 95%. Preferably it is 98% or more.
なお、本発明の熱延鋼板において、フェライト相以外の相としては、セメンタイト、パーライト、ベイナイト相、マルテンサイト相、残留オーステナイト相等が挙げられ、これらの合計は面積率で5%未満であれば許容される。好ましくは2%以下である。ここでいう、金属組織とは、光学顕微鏡や走査型電子顕微鏡を用いて100~5000倍で観察される組織をいう。 In the hot-rolled steel sheet of the present invention, examples of phases other than the ferrite phase include cementite, pearlite, bainite phase, martensite phase, residual austenite phase, etc., and these totals are acceptable if the area ratio is less than 5%. Is done. Preferably it is 2% or less. The metal structure here means a structure observed at a magnification of 100 to 5000 using an optical microscope or a scanning electron microscope.
Ti炭化物
 Tiは強力な炭化物形成元素であり、Tiを含む炭化物は、その平均粒子径が極めて小さい微細炭化物となる傾向が強い。そのため、熱延鋼板中に微細炭化物を分散析出( dispersively precipitation )させることにより熱延鋼板の高強度化を図る本発明においては、分散析出させる微細炭化物をTi炭化物とする。このように、析出強化を活用する本発明によると、すなわち炭化物制御のみで鋼板強度を上げることで制御をた易くし、安定した強度が得られる。ここで、本発明においてTi炭化物とは、TixMyCz(0<x≦1、0≦y<1、0<z≦1、M:Ti以外の合金元素;x+y≦1)の化学式で表現されるものとし、炭化物中にTi以外のVやMoなどの炭化物形成元素を含んでいてもよい。ただし、yが実質的にゼロであってもよい。
Ti carbide Ti is a strong carbide-forming element, and carbides containing Ti tend to be fine carbides having an extremely small average particle size. Therefore, in the present invention in which the strength of the hot-rolled steel sheet is increased by dispersively precipitating fine carbide in the hot-rolled steel sheet, the fine carbide to be dispersed and precipitated is Ti carbide. Thus, according to the present invention utilizing precipitation strengthening, that is, control is facilitated by increasing the steel sheet strength only by carbide control, and stable strength can be obtained. Here, Ti carbide in the present invention is expressed by a chemical formula of TixMyCz (0 <x ≦ 1, 0 ≦ y <1, 0 <z ≦ 1, M: alloy element other than Ti; x + y ≦ 1). The carbide may contain carbide forming elements such as V and Mo other than Ti. However, y may be substantially zero.
 Ti炭化物の平均粒子径:5nm以下
熱延鋼板に所望の強度(引張強さ:780MPa以上)を付与するうえでは、上記フェライト相の結晶粒内に分散析出させるTi炭化物の平均粒子径が極めて重要であり、本発明においてはTi炭化物の平均粒子径を5nm以下とする。マトリックス中に微細炭化物が析出すると、その微細炭化物が、鋼板に変形が加わった際に生じる転位の移動に対する抵抗として作用することにより熱延鋼板が強化される。ここで、微細炭化物の平均粒子径を5nm以下とすると、上記の作用がより一層顕著となる。一方、微細炭化物の平均粒子径が5nmを上回ると、780MPa級の鋼板強度を確保することが困難となる。したがって、Ti炭化物の平均粒子径は5nm以下とする。
Average particle size of Ti carbide: 5 nm or less The average particle size of Ti carbide that is dispersed and precipitated in the crystal grains of the ferrite phase is extremely important for imparting desired strength (tensile strength: 780 MPa or more) to hot-rolled steel sheets. In the present invention, the average particle size of Ti carbide is 5 nm or less. When fine carbide precipitates in the matrix, the fine carbide acts as a resistance to dislocation movement that occurs when deformation is applied to the steel sheet, thereby strengthening the hot-rolled steel sheet. Here, when the average particle diameter of the fine carbide is set to 5 nm or less, the above action becomes more remarkable. On the other hand, if the average particle diameter of the fine carbide exceeds 5 nm, it becomes difficult to ensure the strength of a 780 MPa grade steel sheet. Therefore, the average particle diameter of Ti carbide is 5 nm or less.
図1に、Ti炭化物の概略形状を示す。Ti炭化物が図1のように円盤状をしている場合、円盤の直径をD、厚さをtとすると、Ti炭化物の平均粒子径dは次式で算出される値とする。
 d=(D+t)/2
 一方、Ti炭化物が楕円状の場合は、長軸と短軸の算術平均をTi炭化物の平均粒子径とする。また、Ti炭化物が球状の場合は、球の直径をTi炭化物の平均粒子径とする。
FIG. 1 shows a schematic shape of Ti carbide. In the case where the Ti carbide has a disk shape as shown in FIG. 1, assuming that the diameter of the disk is D and the thickness is t, the average particle diameter d of the Ti carbide is a value calculated by the following equation.
d = (D + t) / 2
On the other hand, when the Ti carbide is elliptical, the arithmetic average of the long axis and the short axis is taken as the average particle diameter of the Ti carbide. When the Ti carbide is spherical, the diameter of the sphere is the average particle diameter of the Ti carbide.
Ti炭化物に含まれるTiとCの原子数比
 Ti炭化物に含まれるTiとCの原子数比は、次の(1)式を満足することが好ましい。
Ti/C <1.0 ・・・ (1)
(Ti/C:Ti炭化物中のCとTiの原子数比)
 Ti炭化物の微細化を図るうえではTi炭化物中のTi/Cの原子数比を制御することも有効であり、上記Ti/Cを1未満とすることで大きさ5nm以下のTi炭化物が安定して得られる。Ti炭化物の粗大化は、Tiの鋼中の拡散で律速される。すなわち、Ti炭化物の粗大化はTi固溶量に大きく影響されることから、Ti/Cが1以上ではTi炭化物が粗大化し易くなり、安定した強度を得ることができなくなる場合がある。このため、上記Ti/C原子数比を1未満とすることが好ましい。なお、上記Ti/C原子数比は、鋼板組成や鋼板の製造条件を調整することによって所望の比率に制御することができる。従来、Tiを主な炭化物形成元素として添加する場合、Cに対して過剰に添加しがちであることもあり、Ti/Cは1.0を超えていたと思われる。
The atomic ratio of Ti and C contained in Ti carbide It is preferable that the atomic ratio of Ti and C contained in Ti carbide satisfies the following formula (1).
Ti / C <1.0 (1)
(Ti / C: atomic ratio of C and Ti in Ti carbide)
It is also effective to control the atomic ratio of Ti / C in Ti carbide in order to reduce the size of Ti carbide. By making Ti / C less than 1, Ti carbide with a size of 5 nm or less is stabilized. Obtained. The coarsening of Ti carbide is limited by the diffusion of Ti in the steel. That is, since the coarsening of Ti carbide is greatly affected by the amount of Ti solid solution, when Ti / C is 1 or more, Ti carbide tends to coarsen and stable strength may not be obtained. For this reason, it is preferable that the Ti / C atomic ratio is less than 1. The Ti / C atomic ratio can be controlled to a desired ratio by adjusting the steel plate composition and the manufacturing conditions of the steel plate. Conventionally, when Ti is added as a main carbide forming element, Ti / C may have exceeded 1.0 because it tends to be excessively added to C.
フェライト相の平均結晶粒径:1μm以上
 一般的に、結晶粒を微細化すると鋼板強度は向上する。しかし、本発明では、鋼板強度を安定させるべく、析出強化以外の強度変動因子となる要素を極力排除することが必要となる。ここで、フェライト平均結晶粒径が1μmを下回ると、細粒化強化量が急激に増大し、強度が結晶粒径に大きく依存するようになり、強度が不安定となる。したがって、本発明では、フェライト相の平均結晶粒径の下限を1μmとする。好ましくは、1.5μm以上である。一方、フェライト相の平均結晶粒径が10μmを超えると、靭性の低下が懸念されるため、フェライト相の平均結晶粒径は10μm以下とすることが好ましい。
Average crystal grain size of ferrite phase: 1 μm or more Generally, the strength of a steel sheet improves when the crystal grains are refined. However, in the present invention, in order to stabilize the steel sheet strength, it is necessary to eliminate as much as possible elements that are strength variation factors other than precipitation strengthening. Here, when the ferrite average crystal grain size is less than 1 μm, the amount of fine grain strengthening increases rapidly, the strength greatly depends on the crystal grain size, and the strength becomes unstable. Therefore, in the present invention, the lower limit of the average crystal grain size of the ferrite phase is 1 μm. Preferably, it is 1.5 μm or more. On the other hand, if the average crystal grain size of the ferrite phase exceeds 10 μm, there is a concern about a decrease in toughness. Therefore, the average crystal grain size of the ferrite phase is preferably 10 μm or less.
 次に、本発明熱延鋼板の成分組成の限定理由について説明する。なお、以下の成分組成を表す%は、特に断らない限り質量%を意味するものとする。
C:0.035%超0.065%以下
Cは、鋼板中でTi炭化物を形成して引張強度を780MPa以上に上昇させるうえで必須の元素である。C含有量が0.035%以下では、780MPa級の引張強さが実現できなくなる。一方、C含有量が0.065%を超えると、パーライトが生成し易くなり強度の安定性が劣化する。また、パーライトの生成で伸びフランジ加工性も劣化する。したがって、C含有量は0.035%超0.065%以下とする。好ましくは0.04%以上0.06%以下である。なお、前記(1)式を満足するTi炭化物を析出させるためには、C含有量を0.04%以上0.065%以下とすることが好ましい。
Next, the reason for limiting the component composition of the hot-rolled steel sheet of the present invention will be described. In addition,% showing the following component composition shall mean the mass% unless there is particular notice.
C: Over 0.035% and below 0.065%
C is an essential element for forming Ti carbide in the steel sheet and increasing the tensile strength to 780 MPa or more. If the C content is 0.035% or less, a tensile strength of 780 MPa class cannot be realized. On the other hand, when the C content exceeds 0.065%, pearlite is easily generated, and the stability of strength deteriorates. In addition, stretch flangeability deteriorates due to the formation of pearlite. Therefore, the C content is more than 0.035% and not more than 0.065%. Preferably they are 0.04% or more and 0.06% or less. In order to precipitate Ti carbide that satisfies the above formula (1), the C content is preferably 0.04% or more and 0.065% or less.
Si:0.2%以下
Siは、従来の高強度鋼板では強度を上げる一方で伸びを下げない固溶強化元素として、添加することが定法とされてきた。しかしながら、Siは焼入れ性を高めてマルテンサイト相やベイナイト相などの硬質相の生成を容易とすることから、フェライト単相組織の形成を阻害する。したがって、Si含有量の上限を0.2%とする。好ましくは、0.1%以下である。さらに好ましくは0.05%以下である。Si含有量はゼロであっても問題ない。
Si: 0.2% or less
In conventional high-strength steel sheets, Si has been added as a solid solution strengthening element that increases strength while not decreasing elongation. However, since Si enhances hardenability and facilitates the formation of hard phases such as martensite phase and bainite phase, it inhibits the formation of a ferrite single phase structure. Therefore, the upper limit of Si content is 0.2%. Preferably, it is 0.1% or less. More preferably, it is 0.05% or less. There is no problem even if the Si content is zero.
Mn:0.65%以下
Mnは、Siと同様に従来の高強度鋼板では固溶強化元素として積極的に添加されてきた。しかしながら、MnはSiと同様に焼き入れ性を高めてマルテンサイト相やベイナイト相などの硬質相の生成を容易とすることから、フェライト単相組織の形成を阻害する。フェライト相以外の硬質相が混在(面積率で5%以上混在)することで、鋼板強度の不均一や伸びフランジ加工性の劣化を招来する。また、Mnを多く含有すると、偏析が容易に生じ、この偏析によりフェライト変態点が部分的に低温化する。ここで、本発明の強化機構であるTi炭化物の析出はオーステナイト→フェライト変態と同時に析出する。しかし、上記の如くフェライト変態点が鋼板中で不均一になると、Ti炭化物の析出量や大きさも不均一となり、結果として強度の安定性が劣化する。したがって、Mn含有量は0.65%以下とする。好ましくは0.5%以下である。Mn含有量はゼロであっても問題ない。
Mn: 0.65% or less
Mn, like Si, has been positively added as a solid solution strengthening element in conventional high-strength steel sheets. However, Mn, like Si, enhances hardenability and facilitates the formation of hard phases such as martensite phase and bainite phase, and thus inhibits the formation of a ferrite single phase structure. When hard phases other than ferrite phase are mixed (more than 5% in area ratio), non-uniform steel sheet strength and deterioration of stretch flangeability are caused. Further, when a large amount of Mn is contained, segregation easily occurs, and this segregation partially lowers the ferrite transformation point. Here, precipitation of Ti carbide, which is the strengthening mechanism of the present invention, occurs simultaneously with the austenite → ferrite transformation. However, when the ferrite transformation point becomes non-uniform in the steel sheet as described above, the precipitation amount and size of Ti carbide also become non-uniform, resulting in a deterioration in strength stability. Therefore, the Mn content is set to 0.65% or less. Preferably it is 0.5% or less. There is no problem even if the Mn content is zero.
P:0.03%以下
Pは、その含有量が0.03%を超えると偏析が顕著になり、Ti炭化物の微細析出を阻害する。したがって、P含有量は0.03%以下とする。好ましくは0.02%以下であり、より好ましくは0.01%以下である。P含有量はゼロであっても問題ない。
P: 0.03% or less
When the content of P exceeds 0.03%, segregation becomes prominent and inhibits fine precipitation of Ti carbide. Therefore, the P content is 0.03% or less. Preferably it is 0.02% or less, More preferably, it is 0.01% or less. There is no problem even if the P content is zero.
S :0.02%以下
 Sは、鋼中でTiSを形成し、強度変動の原因にもなる。特にTiSは、伸びフランジ加工時に破壊の基点となることから、引張強さを低下させ、強度変動の原因となる。そのため、本発明ではSを極力低減することが好ましく、0.02%以下とする。好ましくは0.005%以下、より好ましくは0.001%以下である。S含有量はゼロであっても問題ない。
S: 0.02% or less S forms TiS in steel and causes strength fluctuations. In particular, TiS serves as a base point for fracture during stretch flange processing, thus lowering the tensile strength and causing fluctuations in strength. Therefore, in the present invention, it is preferable to reduce S as much as possible, and to be 0.02% or less. Preferably it is 0.005% or less, More preferably, it is 0.001% or less. There is no problem even if the S content is zero.
Al:0.1%以下
 Alは、脱酸剤として作用する元素である。このような効果を得るためには0.01%以上含有することが望ましいが、その含有量が0.1%を超えると粗大なアルミナが生じ、破壊の起点となることで伸びフランジ加工性が劣化する。したがって、Al含有量は0.1%以下とする。
Al: 0.1% or less Al is an element that acts as a deoxidizer. In order to acquire such an effect, it is desirable to contain 0.01% or more, but when the content exceeds 0.1%, coarse alumina is formed, and the elongation flange workability deteriorates by becoming a starting point of fracture. Therefore, the Al content is 0.1% or less.
N :0.01%以下
 Nは、本発明においては有害な元素であり、極力低減することが好ましい。Nは、鋼中でTiと結合してTiNを形成する。ここで、N含有量が0.01%を超えると、粗大なTiN量が多くなり、鋼板の引張強さの変動が特に低強度側に大きくなる。したがって、N含有量は0.01%以下とする。好ましくは0.006%以下である。N含有量はゼロであっても問題ない。
N: 0.01% or less N is a harmful element in the present invention and is preferably reduced as much as possible. N combines with Ti in the steel to form TiN. Here, when the N content exceeds 0.01%, the amount of coarse TiN increases, and the fluctuation of the tensile strength of the steel sheet increases particularly on the low strength side. Therefore, the N content is 0.01% or less. Preferably it is 0.006% or less. There is no problem even if the N content is zero.
Ti:0.09%以上0.25%以下
Tiは、Ti炭化物を形成して鋼を高強度化するために必要不可欠な元素であり、本発明において最も重要な元素の一つである。Ti含有量が0.09%を下回ると、Ti炭化物の析出量が不十分となり、所望の鋼板強度(引張強さ780MPa以上)を得ることが困難となる。一方、Ti含有量が0.25%を超えると、固溶Tiが多くなりTi炭化物の粗大化が抑制できなくなることから、所望の鋼板強度(引張強さ780MPa以上)を得ることが困難となる。したがって、Ti含有量は0.09%以上0.25%以下とする。
なお、前記(1)式を満足するTi炭化物を析出させるためには、Ti含有量を0.12%以上0.20%以下とすることが好ましい。
Ti: 0.09% to 0.25%
Ti is an indispensable element for forming Ti carbide to increase the strength of steel, and is one of the most important elements in the present invention. When the Ti content is less than 0.09%, the precipitation amount of Ti carbide becomes insufficient, and it becomes difficult to obtain a desired steel plate strength (tensile strength of 780 MPa or more). On the other hand, if the Ti content exceeds 0.25%, solid solution Ti increases and the coarsening of Ti carbide cannot be suppressed, making it difficult to obtain the desired steel sheet strength (tensile strength of 780 MPa or more). Therefore, the Ti content is 0.09% or more and 0.25% or less.
In order to precipitate Ti carbide that satisfies the above formula (1), the Ti content is preferably 0.12% or more and 0.20% or less.
以上が、本発明における基本組成であるが、上記した基本組成に加えてさらに、Cu、Ni、Cr、Co、Mo、Sb、W、As、Pb、Mg、Ca、Sn、Ta、Nb、V、REM、Cs、Zr、B、Hfのいずれか1種以上を合計で1%以下含有してもよい。これらの含有量が合計で1%以下であれば、上記した本発明の効果に影響を及ぼさない。上記以外の成分は、Feおよび不可避的不純物である。例えば、鉱石やスクラップから混入する元素(Cu等)は、上記合計含有量以下であれば、とくに低減する必要はない。ただし、本願では比較的安価なTiを主な炭化物形成元素として用いるので、炭化物形成傾向の強いMo、W、Nb、Vは無添加(不純物程度の含有量)でよい。 The above is the basic composition in the present invention. In addition to the basic composition described above, Cu, Ni, Cr, Co, Mo, Sb, W, As, Pb, Mg, Ca, Sn, Ta, Nb, V , REM, Cs, Zr, B, and Hf may be contained in total of 1% or less. If these contents are 1% or less in total, the above-described effects of the present invention are not affected. Components other than the above are Fe and inevitable impurities. For example, elements (Cu and the like) mixed from ore and scrap do not need to be reduced as long as they are below the total content. However, since relatively inexpensive Ti is used as the main carbide forming element in the present application, Mo, W, Nb, and V, which have a strong tendency to form carbide, may be added (content of impurities).
 本発明の鋼板は、表面にめっき層を有するものとしてもよい。鋼板表面にめっき層を形成することにより、熱延鋼板の耐食性が向上し、厳しい腐食環境に晒される自動車部品の素材に好適な熱延鋼板が得られる。また、本発明の鋼板の表面にめっきを施しても、本発明の鋼板特性に何ら影響を与えることはなく、依然として前記した本発明の優れた効果を発現する。このめっき層の種類は特に限定されず、電気めっきでも溶融めっきでも構わない。溶融めっきであれば、好適な例として溶融亜鉛めっきが挙げられる。めっき後に合金化した合金化溶融亜鉛めっきとしてもよい。また、化成処理に有利な前処理を行い、表面に金属もしくはその酸化物を分散させることも本発明のめっき層に含まれる。 The steel sheet of the present invention may have a plating layer on the surface. By forming a plating layer on the surface of the steel sheet, the corrosion resistance of the hot-rolled steel sheet is improved, and a hot-rolled steel sheet suitable for a material for automobile parts exposed to severe corrosive environments can be obtained. Moreover, even if the surface of the steel sheet of the present invention is plated, the steel sheet characteristics of the present invention are not affected at all, and the above-described excellent effects of the present invention are still expressed. The type of the plating layer is not particularly limited, and electroplating or hot dipping may be used. If it is hot dip plating, hot dip galvanization is mentioned as a suitable example. It may be alloyed hot dip galvanized alloyed after plating. In addition, the plating layer of the present invention includes a pretreatment that is advantageous for chemical conversion treatment to disperse a metal or an oxide thereof on the surface.
 次に、本発明の熱延鋼板の製造方法について説明する。
本発明は、上記した組成の鋼素材に、粗圧延と仕上げ圧延からなる熱間圧延を施し、仕上げ圧延終了後、冷却し、巻き取り、熱延鋼板とする。この際、前記仕上げ圧延の仕上げ圧延温度を840℃以上1050℃以下とし、前記冷却の仕上げ圧延終了から750℃までの平均冷却速度を30℃/s以上とし、前記巻き取りの巻取り温度を570℃以上750℃以下とすることを特徴とする。
Next, the manufacturing method of the hot rolled steel sheet of the present invention will be described.
In the present invention, hot rolling consisting of rough rolling and finish rolling is applied to a steel material having the above composition, and after finishing rolling, the steel material is cooled, wound, and made into a hot-rolled steel sheet. At this time, the finish rolling temperature of the finish rolling is 840 ° C. or more and 1050 ° C. or less, the average cooling rate from the end of the cooling finish rolling to 750 ° C. is 30 ° C./s or more, and the winding temperature of the winding is 570 It is characterized by the temperature being not lower than ℃ and not higher than 750 ° C.
 本発明において、鋼素材の溶製方法は特に限定されず、転炉、電気炉等、公知の溶製方法を採用することができる。また、溶製後、偏析等の問題から連続鋳造法によりスラブ(鋼素材)とするのが好ましいが、造塊-分塊圧延法、薄スラブ連鋳法等、公知の鋳造方法でスラブとしても良い。なお、鋳造後にスラブを熱間圧延するにあたり、加熱炉でスラブを再加熱した後に圧延しても良いし、所定温度以上の温度を保持している場合には、スラブを加熱することなく直送圧延しても良い。 In the present invention, the melting method of the steel material is not particularly limited, and a known melting method such as a converter or an electric furnace can be employed. Moreover, after melting, it is preferable to use a slab (steel material) by a continuous casting method because of problems such as segregation, but a slab can also be formed by a known casting method such as ingot-bundling rolling or thin slab continuous casting. good. In addition, when hot-rolling the slab after casting, the slab may be rolled after being reheated in a heating furnace, and when the temperature is maintained at a predetermined temperature or higher, direct rolling without heating the slab You may do it.
 上記の如く得られた鋼素材に、加熱、粗圧延および仕上げ圧延を施すが、本発明では、粗圧延前に鋼素材中の炭化物を溶解しておく必要がある。炭化物形成元素であるTiを含有する本発明においては、鋼素材の加熱温度を1150℃以上とすることが好ましい。但し、鋼素材の加熱温度が過剰に高くなると、表面が過剰に酸化されTiO2が生じてTiが消費され、鋼板にした場合に表面近傍の硬さの低下が生じ易くなるため、上記加熱温度は1350℃以下とすることが好ましい。また、先述のとおり、粗圧延前の鋼素材が、所定温度以上の温度を保持しており、鋼素材中の炭化物が溶解している場合には、粗圧延前の鋼素材を加熱する工程は省略可能である。なお、粗圧延条件については特に限定する必要はない。 The steel material obtained as described above is subjected to heating, rough rolling and finish rolling. In the present invention, it is necessary to dissolve carbides in the steel material before rough rolling. In the present invention containing Ti which is a carbide forming element, the heating temperature of the steel material is preferably set to 1150 ° C. or higher. However, if the heating temperature of the steel material is excessively high, the surface is excessively oxidized and TiO 2 is generated and Ti is consumed. Is preferably 1350 ° C. or lower. In addition, as described above, when the steel material before rough rolling maintains a temperature equal to or higher than a predetermined temperature, and the carbide in the steel material is dissolved, the step of heating the steel material before rough rolling is It can be omitted. The rough rolling conditions are not particularly limited.
仕上げ圧延温度:840℃以上1050℃以下
仕上げ圧延温度が1050℃を上回ると、最終的に得られるフェライト結晶粒が必要以上に粗大化し易くなり、鋼板強度が顕著に低下する。したがって、仕上げ圧延温度は1050℃以下とする。好ましくは980℃以下である。但し、仕上げ圧延温度が極度に低くなると、最終的に得られるフェライトの平均結晶粒径が1μm未満になる。さらには、フェライト域圧延により圧延方向に展伸した粒の発生が懸念されるため、仕上げ圧延温度は840℃以上とする。好ましくは880℃以上である。
Final rolling temperature: 840 ° C. or higher and 1050 ° C. or lower When the final rolling temperature exceeds 1050 ° C., the finally obtained ferrite crystal grains are easily coarsened more than necessary, and the steel sheet strength is significantly reduced. Accordingly, the finish rolling temperature is 1050 ° C. or lower. Preferably it is 980 degrees C or less. However, when the finish rolling temperature becomes extremely low, the average crystal grain size of the finally obtained ferrite becomes less than 1 μm. Furthermore, since there is concern about the generation of grains that have expanded in the rolling direction due to ferrite region rolling, the finish rolling temperature is set to 840 ° C. or higher. Preferably it is 880 degreeC or more.
仕上げ圧延終了から750℃までの平均冷却速度:30℃/s以上
冷却速度の適正化は、熱延鋼板の組織を、熱延鋼板の長手方向および幅方向全域にわたり所望の組織、すなわち、フェライトの結晶粒内に平均粒子径が5nm以下であるTi炭化物が微細分散した組織とするうえで極めて重要である。
Average cooling rate from finish rolling to 750 ° C: 30 ° C / s or more Optimizing the cooling rate can be achieved by changing the structure of the hot-rolled steel sheet over the entire length and width of the hot-rolled steel sheet. This is extremely important for obtaining a finely dispersed structure of Ti carbide having an average particle diameter of 5 nm or less in the crystal grains.
熱間圧延終了後、仕上げ圧延終了から750℃までの平均冷却速度が30℃/sを下回ると、後述する巻取り温度よりも高い温度域でフェライト変態が開始してしまう。これにより、フェライトの結晶粒内に平均粒子径が5nm以下である微細なTi炭化物を鋼板の長手方向および幅方向に亘り均一に分散析出させて所望の鋼板強度とすることが極めて困難となる。したがって、仕上げ圧延終了から750℃以下までの平均冷却速度を30℃/s以上とする。好ましくは60℃/s以上である。 When the average cooling rate from the end of finish rolling to 750 ° C. is less than 30 ° C./s after the end of hot rolling, ferrite transformation starts in a temperature range higher than the coiling temperature described later. This makes it extremely difficult to achieve a desired steel sheet strength by uniformly dispersing and precipitating fine Ti carbide having an average particle diameter of 5 nm or less in the ferrite crystal grains in the longitudinal direction and the width direction of the steel sheet. Therefore, the average cooling rate from the end of finish rolling to 750 ° C. or lower is set to 30 ° C./s or higher. Preferably, it is 60 ° C./s or more.
なお、Mnは、CCT図(連続冷却変態線図)において鋼のフェライト変態のノーズを長時間側へシフトさせる効果を有する。そのため、鋼中のMn含有量が高い場合には、熱間圧延終了後の冷却速度が比較的遅い場合(例えば、10~30℃/s程度)であってもフェライト変態を開始する前に巻取り温度まで冷却し、フェライト変態とほぼ同時に巻取ることができる。しかしながら、鋼中のMn含有量が低くなるにつれてCCT図における鋼のフェライト変態のノーズが短時間側へシフトする。つまり、低Mn鋼の場合、熱間圧延終了後にフェライト変態させずに巻取り温度まで冷却してフェライト変態とほぼ同時に巻取るためには、熱間圧延終了後から巻取り温度に冷却するまでの時間を短時間化すること、すなわち熱間圧延終了後の冷却速度を速くすることが必要となる。 Mn has the effect of shifting the nose of the ferrite transformation of steel to the long time side in the CCT diagram (continuous cooling transformation diagram). Therefore, when the Mn content in the steel is high, even if the cooling rate after the hot rolling is relatively slow (for example, about 10 to 30 ° C / s), the winding is performed before starting the ferrite transformation. It can be cooled to the coiling temperature and wound almost simultaneously with the ferrite transformation. However, as the Mn content in the steel decreases, the nose of the ferrite transformation of the steel in the CCT diagram shifts to the short time side. In other words, in the case of low-Mn steel, in order to cool to the coiling temperature without ferrite transformation after the hot rolling is completed and to wind the ferrite transformation almost simultaneously with the ferrite transformation, from the end of hot rolling to the cooling to the coiling temperature. It is necessary to shorten the time, that is, to increase the cooling rate after the hot rolling is completed.
したがって、本発明においては、例えばMn含有量が0.5%以下である場合には、仕上げ圧延終了から750℃までの平均冷却速度を50℃/s以上とすることが好ましく、100℃/s以上とすることがより好ましい。
但し、上記平均冷却速度が過剰に大きくなると、鋼板幅方向の温度ムラが著しくなり幅方向での機械的特性が不均一になるおそれがあることから、上記平均冷却速度は500℃/s以下とすることが好ましく、300℃/s以下とすることがより好ましい。
また、前記(1)式を満足するTi炭化物を析出させるためには、上記平均冷却速度を60℃/s以上300℃/s以下とすることが好ましい。
Therefore, in the present invention, for example, when the Mn content is 0.5% or less, the average cooling rate from the end of finish rolling to 750 ° C. is preferably 50 ° C./s or more, and 100 ° C./s or more. More preferably.
However, if the average cooling rate is excessively large, temperature unevenness in the width direction of the steel sheet becomes remarkable, and mechanical characteristics in the width direction may become non-uniform, so the average cooling rate is 500 ° C./s or less. It is preferable to set it to 300 ° C./s or less.
Further, in order to precipitate Ti carbide satisfying the formula (1), the average cooling rate is preferably set to 60 ° C./s or more and 300 ° C./s or less.
巻取り温度:570℃以上750℃以下
巻き取り温度が570℃を下回ると、ベイニティックフェライトやベイナイトが生じるようになり、金属組織を実質的にフェライト単相とすることが困難となる。したがって、巻取り温度は570℃以上とする。一方、巻取り温度が750℃を超えると、フェライトは得られ易くなるものの、パーライトや粗大なTi炭化物が生成して強度が低下する。したがって、巻取り温度は750℃以下とする。より確実にパーライトや粗大なTi炭化物の生成を抑止するには700℃以下とすることが好ましい。また、前記(1)式を満足するTi炭化物を析出させるためには、巻取り温度を600℃以上680℃以下とすることがより好ましい。また、前記仕上げ圧延温度に加えて巻取り温度を570℃以上とすることで、フェライト平均結晶粒径を1μm以上とすることができる。
Winding temperature: 570 ° C. or higher and 750 ° C. or lower When the winding temperature is lower than 570 ° C., bainitic ferrite and bainite are generated, making it difficult to make the metal structure substantially a ferrite single phase. Therefore, the coiling temperature is 570 ° C. or higher. On the other hand, when the coiling temperature exceeds 750 ° C., ferrite is easily obtained, but pearlite and coarse Ti carbide are generated and the strength is lowered. Therefore, the coiling temperature is 750 ° C. or lower. In order to more reliably suppress the formation of pearlite and coarse Ti carbide, the temperature is preferably 700 ° C. or lower. In order to precipitate Ti carbide that satisfies the above formula (1), it is more preferable that the coiling temperature be 600 ° C. or higher and 680 ° C. or lower. Further, by setting the coiling temperature to 570 ° C. or more in addition to the finish rolling temperature, the ferrite average crystal grain size can be made 1 μm or more.
 以上のように、本発明の方法によると、面積率で95%超がフェライト相であり、該フェライト相の結晶粒内に平均粒子径が5nm以下であるTi炭化物が微細分散し、前記フェライト相の平均結晶粒径が1μm以上である組織を有する引張強さが780MPa以上の熱延鋼板が得られる。 As described above, according to the method of the present invention, the area ratio is more than 95% ferrite phase, Ti carbide having an average particle size of 5 nm or less is finely dispersed in the ferrite phase crystal grains, the ferrite phase A hot-rolled steel sheet having a structure with an average crystal grain size of 1 μm or more and a tensile strength of 780 MPa or more is obtained.
また、本発明によると、特にMn含有量を低減するとともに熱間圧延終了後の冷却・巻取り条件を規定することで、鋼板の長手方向と幅方向に亘り上記した所望のTi炭化物が微細分散されるため、強度の不均一が抑制された材質均一性に優れた鋼板が得られる。具体的には、板幅:600~1600mmの鋼板において、鋼板幅方向中央部の引張強さTScと鋼板幅方向端部から50mmの位置における引張強さTSeとの差ΔTSが20MPa以下という強度変動の小さい鋼板が得られる。なお、本発明の鋼板は780MPa級とすることが、ΔTSを抑制する観点から好適である。 In addition, according to the present invention, the desired Ti carbide is finely dispersed in the longitudinal direction and the width direction of the steel sheet, particularly by reducing the Mn content and defining the cooling and winding conditions after completion of hot rolling. Therefore, a steel sheet excellent in material uniformity in which unevenness in strength is suppressed can be obtained. Specifically, for steel sheets with a plate width of 600 to 1600 mm, the difference in strength ΔTS between the tensile strength TSc at the center in the width direction of the steel sheet and the tensile strength TSe at a position 50 mm from the end in the width direction of the steel sheet is 20 MPa or less. A steel plate with a small thickness can be obtained. The steel sheet of the present invention is preferably 780 MPa class from the viewpoint of suppressing ΔTS.
なお、本発明においては、以上のようにして製造された熱延鋼板に対し、めっき処理を施すことにより、鋼板表面にめっき層を形成してもよい。めっき処理は、電気めっき、溶融めっきのいずれでも構わない。例えば、めっき処理として溶融亜鉛めっき処理を施し、或いは溶融亜鉛めっき処理後、更に合金化処理を施してもよい。 In the present invention, a plated layer may be formed on the surface of the steel sheet by subjecting the hot-rolled steel sheet manufactured as described above to a plating process. The plating process may be either electroplating or hot dipping. For example, a hot dip galvanizing process may be performed as the plating process, or an alloying process may be further performed after the hot dip galvanizing process.
表1に示す組成を有する肉厚250mmの鋼素材(スラブ)に熱間圧延を施し、板厚2.6mm、板幅1200mmの熱延鋼板を作成した。鋼素材の加熱温度、仕上げ圧延温度、仕上げ圧延終了から750℃までの平均冷却速度および巻取り温度は表2に示すとおりである。続いて酸洗で表層のスケールを除去した後、一部(熱延鋼板No.16,17,18)については、溶融亜鉛めっき処理(めっき浴組成:0.1%Al-Zn、めっき浴温度:470℃)を施し、更に合金化処理(合金化温度:520℃)を施した。なお、めっき付着量は片面当たり45g/m2とした。 A hot-rolled steel sheet having a thickness of 2.6 mm and a width of 1200 mm was prepared by hot rolling a steel material (slab) having a thickness of 250 mm having the composition shown in Table 1. Table 2 shows the heating temperature, finish rolling temperature, average cooling rate from the end of finish rolling to 750 ° C., and the coiling temperature. Subsequently, after removing the scale of the surface layer by pickling, hot dip galvanizing treatment (plating bath composition: 0.1% Al-Zn, plating bath temperature: 470) is applied to some parts (hot rolled steel sheets No. 16, 17, 18). ° C) and further alloying treatment (alloying temperature: 520 ° C). The amount of plating adhered was 45 g / m 2 per side.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 上記により得られた熱延鋼板(熱延鋼板、合金化溶融亜鉛めっき鋼板)から試験片を採取し、組織観察、引張試験、穴拡げ試験( hole expanding test )を行い、フェライト相の面積率および平均結晶粒径、Ti炭化物の平均粒子径、引張強さ、穴拡げ率(伸びフランジ加工性)および鋼板幅方向中央部と端部との強度差を求めた。試験方法は次のとおりとした。なお、試験片の採取位置はコイルの尾端(外側の端)から20mとした(但し、後述するコイル長手方向の機械的特性の変動調査のための試験片採取を除く)。 Samples were taken from the hot-rolled steel sheet (hot-rolled steel sheet, alloyed hot-dip galvanized steel sheet) obtained as described above, and subjected to structure observation, tensile test, and hole expansion test (hole expanding test). The average crystal grain size, the average grain size of Ti carbide, the tensile strength, the hole expansion rate (stretch flangeability), and the strength difference between the central part and the end part in the width direction of the steel sheet were determined. The test method was as follows. The sampling position of the test piece was 20 m from the tail end (outer end) of the coil (however, excluding test piece sampling for investigating the fluctuation of mechanical characteristics in the coil longitudinal direction, which will be described later).
(1)組織観察
得られた熱延鋼板より組織観察用試験片を採取して圧延方向と平行な断面(L断面)について研磨し、ナイタール(nital)で腐食して光学顕微鏡(倍率500倍)および走査型電子顕微鏡(倍率3000倍)で組織を観察し、組織を判別し、フェライト相およびフェライト相以外の組織の面積率を求めた。
また、圧延方向に平行な断面を鏡面研磨し、ナイタール腐食液で腐食し、フェライト粒を現出させて光学顕微鏡(倍率:100倍)で組織を撮像した。得られた組織写真について、圧延方向、板厚方向にそれぞれ10本の直線を、100μm以上の間隔で引き、粒界と直線との交点の数をかぞえた。全長を交点の数で割ったものをフェライト粒一つの線分長さとして、これに1.13を乗じてASTMフェライト粒径を求めた。
更に、鋼板から採取した薄膜を用いて、透過型電子顕微鏡(倍率340000倍)で100個以上のTi炭化物を観察し、前記した規定に従いTi炭化物の平均粒子径を求めた。
Ti炭化物中のCとTiの原子数比Ti/Cは、抽出残さを捕集してEDX(エネルギー分散型X線分析)でTi濃度を、EELS(電子エネルギー損失分光法)でC濃度をそれぞれ定量して算出した。
(1) Microstructure observation A specimen for microstructural observation is collected from the obtained hot-rolled steel sheet, polished on a cross section (L cross section) parallel to the rolling direction, corroded with nital, and optical microscope (magnification 500 times) And the structure | tissue was observed with the scanning electron microscope (magnification 3000 times), the structure | tissue was discriminate | determined, and the area ratio of structure | tissues other than a ferrite phase and a ferrite phase was calculated | required.
Further, a cross section parallel to the rolling direction was mirror-polished, corroded with a nital corrosive solution, ferrite grains were revealed, and the structure was imaged with an optical microscope (magnification: 100 times). In the obtained structure photograph, 10 straight lines were drawn in the rolling direction and the plate thickness direction at intervals of 100 μm or more, and the number of intersections between the grain boundaries and the straight lines was counted. The total length divided by the number of intersections was taken as the line segment length of one ferrite grain, and this was multiplied by 1.13 to determine the ASTM ferrite grain size.
Further, using a thin film collected from the steel sheet, 100 or more Ti carbides were observed with a transmission electron microscope (magnification of 340000 times), and the average particle diameter of Ti carbide was determined according to the above-mentioned rules.
The atomic ratio Ti / C of C and Ti in Ti carbides is obtained by collecting the extraction residue and using EDX (energy dispersive X-ray analysis) to determine the Ti concentration and EELS (electron energy loss spectroscopy) to determine the C concentration. Quantitatively calculated.
(2)引張試験
得られた熱延鋼板から引張試験用試験片を採取し、JIS Z2241の規定に準じた引張試験を行い、引張特性(引張強さTS)を測定した。引張試験片は長手方向の幅中央と端から50mmの位置から圧延方向と引張方向が平行になるように採取し、それぞれの試験片について引張強さを測定した。また、鋼板幅中央部の引張強さTScと鋼板幅端部から50mm位置の引張強さTSeとの差ΔTSを求めた。幅方向中央部の引張強さTScおよびΔTSを表3に示す。引張強さの大小関係は、全てTSc>TSeであった。
(2) Tensile test Tensile test specimens were collected from the obtained hot-rolled steel sheet, subjected to a tensile test in accordance with JIS Z2241, and measured for tensile properties (tensile strength TS). Tensile test specimens were sampled from the center of the width in the longitudinal direction and 50 mm from the end so that the rolling direction and the tensile direction were parallel, and the tensile strength of each test specimen was measured. Further, the difference ΔTS between the tensile strength TSc at the central part of the steel plate width and the tensile strength TSe at the position of 50 mm from the end of the steel plate width was determined. Table 3 shows the tensile strengths TSc and ΔTS at the center in the width direction. The magnitude relationship of tensile strength was all TSc> TSe.
(3)穴拡げ試験
得られた熱延鋼板から130mm角のサンプルを切り出し、中央に10mmφの穴をクリアランス12.5%で打ち抜き、ポンチ側から頂角60度の円錐ポンチで穴を拡げた。板厚を貫通する明瞭な亀裂が発生した段階でポンチを止め、試験片を取り出してその穴の直径を測定した。穴拡げ後の穴径と穴拡げ前の穴径の差を穴拡げ前の値で割りそれに100を掛けた数字を穴拡げ率λとし、伸びフランジ加工性の指標として求めた。
 得られた結果を表3に示す。
(3) Hole expansion test A 130 mm square sample was cut out from the obtained hot-rolled steel sheet, a 10 mmφ hole was punched in the center with a clearance of 12.5%, and the hole was expanded with a conical punch with a vertex angle of 60 degrees from the punch side. The punch was stopped when a clear crack penetrating the plate thickness occurred, the specimen was taken out, and the diameter of the hole was measured. The difference between the hole diameter after the hole expansion and the hole diameter before the hole expansion was divided by the value before the hole expansion and multiplied by 100 to obtain the hole expansion ratio λ, which was obtained as an index of stretch flangeability.
The obtained results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
本発明例はいずれも、引張強さTS:780MPa以上の高強度と、穴拡げ率λ:90%超の伸びフランジ加工性を兼備し、しかも鋼板幅中央部の引張強さと鋼板幅端部から50mm位置の引張強さの差ΔTSが20MPa未満であり、強度変動の小さい熱延鋼板となっている。一方、本発明の範囲を外れる比較例は、所定の高強度が確保できていないか、穴拡げ率λ或いは鋼板強度均一性が確保できていない。 All of the examples of the present invention have high tensile strength TS: 780 MPa or more and stretch flangeability with a hole expansion ratio λ: more than 90%. The difference in tensile strength ΔTS at the 50 mm position is less than 20 MPa, and it is a hot-rolled steel sheet with small strength fluctuation. On the other hand, in a comparative example that is out of the scope of the present invention, a predetermined high strength cannot be secured, or the hole expansion ratio λ or the steel plate strength uniformity cannot be secured.
表2に示すNo.4、No.7の熱延鋼板(コイル)について、表4に示す長手方向の各位置(コイルの尾端(コイルの外側の端)から40m、100m、300m、500m、700mの位置)で、板幅方向中央部から、JIS 5号引張試験片、穴拡げ試験片を採取し、上記(2)、(3)と同様の方法により引張試験、穴拡げ試験を実施した。得られた結果を表4に示す。なお、長手方向の40m位置を基準にした長手方向各位置での引張り強さの差ΔTSLも併せて示す。また、差ΔTSLが20MPa未満であるものを良好(○)とした。 No. 4 and No. 7 hot-rolled steel sheets (coils) shown in Table 2 are each 40 m, 100 m, 300 m, 500 m from the longitudinal position shown in Table 4 (coil end (outside end of coil), At 700m), JIS No. 5 tensile test piece and hole expansion test piece were collected from the center in the width direction of the plate, and the tensile test and hole expansion test were carried out by the same method as (2) and (3) above. . Table 4 shows the obtained results. In addition, the difference ΔTS L in tensile strength at each position in the longitudinal direction with respect to the 40 m position in the longitudinal direction is also shown. A sample having a difference ΔTS L of less than 20 MPa was evaluated as good (◯).
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
表4に示すいずれのコイルにおいても、長手方向の引張強さの差ΔTSLが20MPa未満であり、強度変動の小さい熱延鋼板となっている。 In any of the coils shown in Table 4, the difference in tensile strength in the longitudinal direction ΔTS L is less than 20 MPa, and the steel sheet is a hot-rolled steel sheet having a small strength fluctuation.

Claims (7)

  1. 質量%で、
    C :0.035%超0.065%以下、    Si:0.2%以下、
    Mn:0.65%以下、             P :0.03%以下、
    S :0.02%以下、        Al:0.1%以下、
    N :0.01%以下、         Ti:0.09%以上0.25%以下
    を含有し、残部がFeおよび不可避的不純物からなる組成を有し、面積率で95%超がフェライト相であり、該フェライト相の結晶粒内に平均粒子径が5nm以下であるTi炭化物が微細分散し、前記フェライト相の平均結晶粒径が1μm以上である組織を有し、引張強さが780MPa以上である高強度熱延鋼板。
    % By mass
    C: more than 0.035% and 0.065% or less, Si: 0.2% or less,
    Mn: 0.65% or less, P: 0.03% or less,
    S: 0.02% or less, Al: 0.1% or less,
    N: 0.01% or less, Ti: 0.09% or more and 0.25% or less, with the balance being composed of Fe and inevitable impurities, with an area ratio of more than 95% being the ferrite phase, and the ferrite phase crystal grains A high-strength hot-rolled steel sheet having a structure in which Ti carbide having an average particle diameter of 5 nm or less is finely dispersed, the ferrite phase has an average crystal grain diameter of 1 μm or more, and a tensile strength of 780 MPa or more.
  2.  前記Ti炭化物に含まれるCとTiの原子数比が下記(1)式を満足する、請求項1に記載の高強度熱延鋼板。

    Ti/C <1.0 ・・・ (1)
    (Ti/C:Ti炭化物中のCとTiの原子数比)
    The high-strength hot-rolled steel sheet according to claim 1, wherein the atomic ratio of C and Ti contained in the Ti carbide satisfies the following formula (1).
    Record
    Ti / C <1.0 (1)
    (Ti / C: atomic ratio of C and Ti in Ti carbide)
  3.  前記組成に加えてさらに、質量%で、Cu、Ni、Cr、Co、Mo、Sb、W、As、Pb、Mg、Ca、Sn、Ta、Nb、V、REM、Cs、Zr、B、Hfのいずれか1種以上を合計で1%以下含有する、請求項1または2に記載の高強度熱延鋼板。 In addition to the above composition, Cu, Ni, Cr, Co, Mo, Sb, W, As, Pb, Mg, Ca, Sn, Ta, Nb, V, REM, Cs, Zr, B, Hf The high-strength hot-rolled steel sheet according to claim 1 or 2, which contains a total of 1% or less of any one of the above.
  4.  鋼板表面にめっき層を有する、請求項1ないし3のいずれかに記載の高強度熱延鋼板。 The high-strength hot-rolled steel sheet according to any one of claims 1 to 3, wherein the steel sheet surface has a plating layer.
  5.  前記めっき層が、亜鉛めっき層または亜鉛含有合金めっき層である、請求項4に記載の高強度熱延鋼板。 The high-strength hot-rolled steel sheet according to claim 4, wherein the plating layer is a zinc plating layer or a zinc-containing alloy plating layer.
  6. 鋼素材に、粗圧延と仕上げ圧延からなる熱間圧延を施し、仕上げ圧延終了後、冷却し、巻き取り、熱延鋼板とするにあたり、
    前記鋼素材を、質量%で、
    C :0.035%超0.065%以下、    Si:0.2%以下、
    Mn:0.65%以下、             P :0.03%以下、
    S :0.02%以下、        Al:0.1%以下、
    N :0.01%以下、         Ti:0.09%以上0.25%以下
    を含有し、残部がFeおよび不可避的不純物からなる組成とし、
    前記仕上げ圧延の仕上げ圧延温度を840℃以上1050℃以下とし、前記冷却の仕上げ圧延終了から750℃までの平均冷却速度を30℃/s以上とし、前記巻き取りの巻取り温度を570℃以上750℃以下とすることを特徴とする、引張強さが780MPa以上である高強度熱延鋼板の製造方法。
    The steel material is subjected to hot rolling consisting of rough rolling and finish rolling, and after finishing rolling, cooling, winding, hot rolling steel sheet,
    The steel material in mass%,
    C: more than 0.035% and 0.065% or less, Si: 0.2% or less,
    Mn: 0.65% or less, P: 0.03% or less,
    S: 0.02% or less, Al: 0.1% or less,
    N: 0.01% or less, Ti: 0.09% or more and 0.25% or less, with the balance being Fe and inevitable impurities,
    The finish rolling temperature of the finish rolling is 840 ° C. or more and 1050 ° C. or less, the average cooling rate from the end of the cooling finish rolling to 750 ° C. is 30 ° C./s or more, and the winding temperature of the winding is 570 ° C. or more and 750 ° C. A method for producing a high-strength hot-rolled steel sheet having a tensile strength of 780 MPa or more, characterized in that the temperature is not higher than ° C.
  7.  前記組成に加えてさらに、質量%で、Cu、Ni、Cr、Co、Mo、Sb、W、As、Pb、Mg、Ca、Sn、Ta、Nb、V、REM、Cs、Zr、B、Hfのいずれか1種以上を合計で1%以下含有する、請求項6に記載の高強度熱延鋼板の製造方法。 In addition to the above composition, Cu, Ni, Cr, Co, Mo, Sb, W, As, Pb, Mg, Ca, Sn, Ta, Nb, V, REM, Cs, Zr, B, Hf The manufacturing method of the high intensity | strength hot-rolled steel plate of Claim 6 which contains any 1 or more of these in total 1% or less.
PCT/JP2012/008190 2011-12-28 2012-12-21 High-strength hot-rolled steel sheet and manufacturing method therefor WO2013099183A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013551225A JP5644964B2 (en) 2011-12-28 2012-12-21 High strength hot rolled steel sheet and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-287471 2011-12-28
JP2011287471 2011-12-28

Publications (1)

Publication Number Publication Date
WO2013099183A1 true WO2013099183A1 (en) 2013-07-04

Family

ID=48696726

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/008190 WO2013099183A1 (en) 2011-12-28 2012-12-21 High-strength hot-rolled steel sheet and manufacturing method therefor

Country Status (3)

Country Link
JP (1) JP5644964B2 (en)
TW (1) TWI506147B (en)
WO (1) WO2013099183A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114752725A (en) * 2022-04-02 2022-07-15 湖南华菱涟源钢铁有限公司 Pickled plate and production method thereof
EP4112761A4 (en) * 2020-02-25 2023-08-16 Baoshan Iron & Steel Co., Ltd. Steel for glass lining and production method therefor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI509087B (en) * 2014-07-21 2015-11-21 China Steel Corp High strength hot rolled steel

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56169727A (en) * 1980-05-29 1981-12-26 Nippon Kokan Kk <Nkk> Manufacture of hot-rolled steel plate for enameled product having excellent antifishscale property
JP2000212690A (en) * 1998-11-20 2000-08-02 Nkk Corp High strength hot rolled steel sheet excellent in formability and surface property and its production
JP2000273577A (en) * 1999-03-19 2000-10-03 Nkk Corp High tensile strength hot rolled steel plate excellent in stretch-flanging workability and material stability and its production
JP2003321735A (en) * 2002-04-30 2003-11-14 Jfe Steel Kk High formability, high tensile strength steel sheet having excellent stability in strength, production method therefor and working method therefor
JP2004137607A (en) * 2004-02-06 2004-05-13 Jfe Steel Kk High tensile strength hot rolled steel sheet having excellent precision blanking workability and red scale flaw resistance
JP2005154809A (en) * 2003-11-21 2005-06-16 Jfe Steel Kk High strength thin steel sheet for welded joint having excellent press formability, and welded joint obtained by using the same
WO2011162412A1 (en) * 2010-06-25 2011-12-29 Jfeスチール株式会社 High-strength hot-rolled steel sheet having excellent stretch flangeability and method for producing same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4525299B2 (en) * 2004-10-29 2010-08-18 Jfeスチール株式会社 High-strength hot-rolled steel sheet excellent in workability and manufacturing method thereof
JP5482205B2 (en) * 2010-01-05 2014-05-07 Jfeスチール株式会社 High strength hot rolled steel sheet and method for producing the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56169727A (en) * 1980-05-29 1981-12-26 Nippon Kokan Kk <Nkk> Manufacture of hot-rolled steel plate for enameled product having excellent antifishscale property
JP2000212690A (en) * 1998-11-20 2000-08-02 Nkk Corp High strength hot rolled steel sheet excellent in formability and surface property and its production
JP2000273577A (en) * 1999-03-19 2000-10-03 Nkk Corp High tensile strength hot rolled steel plate excellent in stretch-flanging workability and material stability and its production
JP2003321735A (en) * 2002-04-30 2003-11-14 Jfe Steel Kk High formability, high tensile strength steel sheet having excellent stability in strength, production method therefor and working method therefor
JP2005154809A (en) * 2003-11-21 2005-06-16 Jfe Steel Kk High strength thin steel sheet for welded joint having excellent press formability, and welded joint obtained by using the same
JP2004137607A (en) * 2004-02-06 2004-05-13 Jfe Steel Kk High tensile strength hot rolled steel sheet having excellent precision blanking workability and red scale flaw resistance
WO2011162412A1 (en) * 2010-06-25 2011-12-29 Jfeスチール株式会社 High-strength hot-rolled steel sheet having excellent stretch flangeability and method for producing same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MASAHIKO MORITA ET AL.: "Development of Hot rolled High Strength Steels Hardened by Precipitation hardening with High Stretch Flanging", CURRENT ADVANCES IN MATERIALS AND PROCESSES, vol. 5, no. 6, September 1992 (1992-09-01), pages 1863 - 1866 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4112761A4 (en) * 2020-02-25 2023-08-16 Baoshan Iron & Steel Co., Ltd. Steel for glass lining and production method therefor
CN114752725A (en) * 2022-04-02 2022-07-15 湖南华菱涟源钢铁有限公司 Pickled plate and production method thereof
CN114752725B (en) * 2022-04-02 2023-11-17 湖南华菱涟源钢铁有限公司 Pickle sheet and production method thereof

Also Published As

Publication number Publication date
TW201333220A (en) 2013-08-16
JPWO2013099183A1 (en) 2015-04-30
TWI506147B (en) 2015-11-01
JP5644964B2 (en) 2014-12-24

Similar Documents

Publication Publication Date Title
JP5838796B2 (en) High-strength hot-rolled steel sheet excellent in stretch flangeability and manufacturing method thereof
KR101314979B1 (en) Hot-dip galvanized steel sheet with high tensile strength and superior processability and method for producing same
JP5609786B2 (en) High-tensile hot-rolled steel sheet excellent in workability and manufacturing method thereof
JP5321671B2 (en) High-tensile hot-rolled steel sheet with excellent strength and workability uniformity and method for producing the same
JP4925611B2 (en) High strength steel plate and manufacturing method thereof
JP5321672B2 (en) High-tensile hot-rolled steel sheet with excellent material uniformity and manufacturing method thereof
WO2013111556A1 (en) High-strength hot-rolled steel sheet and method for producing same
JP5884476B2 (en) High-tensile hot-rolled steel sheet excellent in bending workability and manufacturing method thereof
JP5821864B2 (en) High-strength hot-rolled steel sheet excellent in burring workability and manufacturing method thereof
JP5644964B2 (en) High strength hot rolled steel sheet and method for producing the same
JP5610089B2 (en) High-tensile hot-rolled steel sheet and manufacturing method thereof
JP5594438B2 (en) High tensile hot rolled galvanized steel sheet and method for producing the same
CN114585758A (en) High-strength steel sheet, impact absorbing member, and method for producing high-strength steel sheet
WO2013099196A1 (en) High-tension hot-rolled steel sheet and manufacturing method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12861426

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013551225

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12861426

Country of ref document: EP

Kind code of ref document: A1