WO2022074900A1 - Fusible insulated wire and self-fusion coil - Google Patents

Fusible insulated wire and self-fusion coil Download PDF

Info

Publication number
WO2022074900A1
WO2022074900A1 PCT/JP2021/027615 JP2021027615W WO2022074900A1 WO 2022074900 A1 WO2022074900 A1 WO 2022074900A1 JP 2021027615 W JP2021027615 W JP 2021027615W WO 2022074900 A1 WO2022074900 A1 WO 2022074900A1
Authority
WO
WIPO (PCT)
Prior art keywords
fused
layer
insulating
self
melting point
Prior art date
Application number
PCT/JP2021/027615
Other languages
French (fr)
Japanese (ja)
Inventor
正宏 柳原
勝夫 羽生
昇平 駒村
Original Assignee
東京特殊電線株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京特殊電線株式会社 filed Critical 東京特殊電線株式会社
Priority to CN202180035142.XA priority Critical patent/CN115668410A/en
Publication of WO2022074900A1 publication Critical patent/WO2022074900A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/02Disposition of insulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F5/00Coils
    • H01F5/06Insulation of windings

Definitions

  • the present invention relates to a fused insulating electric wire and a self-bonded coil.
  • a fused insulating electric wire having a fused layer composed of an epoxy resin as a main component and a modified ether type polyester resin added, and having improved adhesiveness in a low temperature range of 100 to 150 ° C. is known.
  • Patent Document 1 Japanese Patent No. 2890280
  • Patent Document 2 Japanese Patent Application Laid-Open No. 3-08414.
  • a fused insulating electric wire having a fused layer formed by extruding a nylon-based hot melt resin containing a polyamide resin as a main component of a modified polyolefin resin and a thermoplastic resin to which calcium carbonate is added at a temperature of 200 ° C.
  • Patent Document 3 Japanese Unexamined Patent Publication No. 202-134191.
  • the heat resistant grade required for a general consumer equipment transformer is Class B (allowable temperature 130 ° C) or Class F (allowable temperature 155 ° C) specified in JIS standard (JIS C4003: 2010). Therefore, there is a problem that the insulating material of the transformer is deteriorated by the heat treatment when the fused insulated wire is made into a coil, and there is a problem that the performance of the fused insulated wire is deteriorated.
  • the present invention has been made in view of the above circumstances, and provides a fusion-sensitive insulated wire having a configuration excellent in insulation performance and having a configuration that can be applied to a coil of a transformer for consumer equipment and a self-bonding coil for consumer equipment.
  • the purpose is to provide.
  • a fused layer is formed on the outer periphery of an insulating layer formed on the outer periphery of a conductor, and the fused layer is a polyester-based hot melt adhesive containing a copolymerized polyester resin as a main component. It is a structure formed by extruding a thermoplastic resin to which an agent and a filler are added, and is characterized in that the melting point of the fused layer is more than 50 ° C. and 95 ° C. or lower.
  • the fused layer formed by extruding a thermoplastic resin containing a copolymerized polyester resin formed on the outer periphery of the insulating layer as a main component and having a filler added thereof provides an excellent insulating performance.
  • the melting point of the fused layer made of a thermoplastic resin containing a copolymerized polyester resin as a main component and a polyester-based hot melt adhesive added is set to a coil of a transformer for consumer equipment and a self-bonded coil for consumer equipment.
  • the melting point of the fused layer is preferably more than 60 ° C and less than 92 ° C.
  • the melting point of the fused layer is more preferably more than 68 ° C and less than 91 ° C.
  • the insulating layer is formed by wrapping an insulating tape. This makes it easy to reduce the outer diameter while improving the insulation. It is more preferable that the insulating layer has three layers.
  • the copolymerized polyester resin is polyethylene terephthalate, and the insulating property is further enhanced.
  • the filler is calcium carbonate, which further enhances the adhesion between the insulating layer and the fused layer.
  • the thickness of one side of the fusion layer in the radial direction is 20 to 40 ⁇ m, and the outer diameter may be suitable for a coil of a transformer for a small consumer device or a self-bonding coil for a small consumer device. It can be done easily.
  • a fusion layer is formed on the outer periphery of an insulating layer formed on the outer periphery of a conductor, and the fusion layer is a polyester hot melt adhesive containing a copolymerized polyester resin as a main component.
  • the fused insulating wire formed by extruding the thermoplastic resin to which the filler is added is spirally wound, and the adjacent fused layers in the fused insulated wire are fused to each other. It is characterized in that the melting point of the fused layer is more than 50 ° C. and 95 ° C. or lower.
  • the fused layer in the fused insulated wire can be a self-bonding coil made of a fused insulated wire having excellent insulating performance by preventing deterioration of the insulating layer while maintaining good adhesiveness. ..
  • the fused layer in the fused insulated wire constituting the self-bonded coil can prevent the self-bonded coil from unraveling due to the temperature during transportation and the temperature during storage while maintaining good adhesiveness.
  • the melting point of the fused layer is preferably more than 60 ° C and less than 92 ° C.
  • the melting point of the fused layer is more preferably more than 68 ° C and less than 91 ° C.
  • the copolymerized polyester resin is polyethylene terephthalate, and the filler is calcium carbonate.
  • the thickness of one side in the radial direction of the fused layer in the fused insulated wire is 20 to 40 ⁇ m. As a result, a high-performance and compact self-bonding coil can be realized.
  • a fusion-sensitive insulated wire having a configuration that is excellent in insulation performance and that can be applied to a coil of a transformer for consumer equipment or a self-bonding coil.
  • FIG. 1 is a structural diagram schematically showing the structure of a fused insulated wire according to an embodiment of the present invention.
  • FIG. 2 is a schematic external view showing an example of a self-bonding coil to which the fusion-sensitive insulated wire shown in FIG. 1 is applied.
  • the fused insulated wire 1 of the present embodiment is applied to, for example, a coil of a transformer for consumer equipment. It is also applied to, for example, a self-bonding coil.
  • the members having the same function may be designated by the same reference numerals, and the repeated description thereof may be omitted.
  • the fused insulating electric wire 1 shown in FIG. 1 includes a conductor 2, a first insulating layer 3a formed on the outer periphery of the conductor 2, a second insulating layer 3b formed on the outer periphery of the first insulating layer 3a, and a first layer. 2 It is configured to have a third insulating layer 3c formed on the outer periphery of the insulating layer 3b and a fusion layer 4 formed on the outer periphery of the third insulating layer 3c. That is, the insulating layer 3 is formed of three layers on the outer periphery of the conductor 2, and the fusion layer 4 is formed on the outer periphery thereof.
  • the conductor 2 may be any conductive material, but is preferably a conductive conductor that can be soldered.
  • a composite material such as copper or a copper alloy, aluminum or an aluminum alloy, or copper clad aluminum, or a metal having excellent solderability may be plated on these materials.
  • metal having excellent solderability include tin, solder, nickel, gold, silver, copper, palladium, or alloys of these materials.
  • the conductor 2 can be a single wire or a stranded conductor.
  • a lubricant or an antioxidant may be applied to the surface of each conductor wire.
  • the lubricant improves the slipperiness of the conductor wire, which makes the stranded wire easier, and also makes the individual conductor wire slippery when coiling with the finally obtained insulated wire.
  • the linearity can be made easier.
  • the antioxidant has an effect of preventing the oxidation of the conductor wire, and can prevent the oxidation that may occur at the time of twisting or winding the tape.
  • the single wire or the stranded wire constituting the conductor 2 may be provided with an insulating film in advance. Examples of the insulating film include an enamel film and an oxide film.
  • a urethane-based or polyester-based enamel film that does not interfere with soldering is preferable.
  • a conductor wire having an insulating film arranged in advance it is preferable to use.
  • a copper wire having a diameter of 4.5 mm is drawn to a diameter of 0.5 mm to form a round conductor 2 having a circular or elliptical cross section.
  • a stranded wire obtained by twisting a plurality of strands and having a cross section similar to a round shape such as a circle or an ellipse can be used as the conductor 2.
  • the conductor 2 is a stranded wire, it is preferable because the conductor 2 is composed of seven strands so that the cross section can be made into a shape closer to a round shape such as a circle or an ellipse.
  • the conductor 2 is a stranded wire composed of five or more strands.
  • the insulating layer 3 has one or more insulating layers.
  • the insulating layer 3 is preferably composed of two or more insulating layers.
  • Examples of the material of the insulating layer 3 include polyethylene naphthalate (PEN), polyimide (PI), polyphenylene sulfide (PPS), ethylene-ethylene tetrafluoroethylene copolymer (ETFE), and ethylene tetrafluoride-propylene hexafluoride.
  • PEN polyethylene naphthalate
  • PPS polyphenylene sulfide
  • ETFE ethylene-ethylene tetrafluoroethylene copolymer
  • ethylene tetrafluoride-propylene hexafluoride examples thereof include a polymer (FEP), a fluorinated resin copolymer (perfluoroalkoxy alkane resin: PFA), polyetheretherketone (PEEK), polyethylene terephthalate (PET), polyamide (PA) and the like
  • the insulating layer 3 is configured by tape winding insulation with insulating tape as an example.
  • the thickness of the insulating tape is preferably, for example, 4 ⁇ m or more and 25 ⁇ m or less.
  • the width of the insulating tape in this case is preferably, for example, 2 mm or more and 20 mm or less.
  • the thickness and width of the insulating tape are appropriately set according to the application, and the thickness and width of each insulating tape may be the same when two or more layers of tape are wound and insulated. May vary in thickness and width.
  • the insulating layer 3 is tape-wound with two or more layers by insulating tape.
  • the plurality of insulating tapes to be tape-wound and insulated at least the overlapping portion of the insulating tapes is an adhesive layer, and both are adhered to each other.
  • the adhesive layer is provided on at least one insulating tape among the plurality of insulating tapes.
  • the constituent material of the adhesive layer include an adhesive material that is solidified by heat, ionizing radiation, or the like.
  • the adhesive material to be bonded and solidified by heat is a heat-bondable material, and examples thereof include heat-bonded adhesive materials such as polyester-based, acrylic-based, and epoxy-based materials.
  • each insulating tape is spirally wound in the opposite direction to each other.
  • the winding form of each insulating tape is appropriately set according to the application.
  • the insulating layer 3 when configured to be tape-wound with three or more layers by insulating tape, high insulating properties can be realized.
  • This configuration is certified as an insulated wire that meets safety standards such as IEC60950, and can be used as a wire for coils such as an isolation transformer and an IH heater.
  • IEC60950 safety standards
  • IH heater an IH heater
  • an insulating tape is wrapped around the outer periphery of the conductor 2 to form the first insulating layer 3a.
  • the insulating tape is wrapped around the outer periphery of the first insulating layer 3a via the adhesive layer to form the second insulating layer 3b, and the insulating tape is wrapped around the outer periphery of the second insulating layer 3b via the adhesive layer.
  • the thickness of the insulating layer 3 on one side in the radial direction is, for example, 10 to 300 ⁇ m.
  • thermoplastic resin is extruded on the outer periphery of the conductor 2 to form the first insulating layer 3a, and the thermoplastic resin is formed on the outer periphery of the first insulating layer 3a.
  • the resin can be extruded to form the second insulating layer 3b, and the thermoplastic resin can be extruded on the outer periphery of the second insulating layer 3b to form the third insulating layer 3c.
  • the fused layer 4 is formed on the outer periphery of the third insulating layer 3c and is self-fused by heating.
  • the fused layer 4 is formed by extruding a thermoplastic resin containing a copolymerized polyester resin as a main component and a polyester-based hot melt adhesive and a filler added.
  • the temperature of the heating unit in the extruder is set to 170 to 250 ° C. as an example.
  • the melting point of the fused layer 4 is more than 60 ° C and less than 92 ° C.
  • the thickness of the fused layer 4 on one side in the radial direction is, for example, 10 to 50 ⁇ m.
  • the copolymerized polyester resin is polyethylene terephthalate
  • the filler is calcium carbonate (CaCO 3 ).
  • the self-bonding coil 10 shown in FIG. 2 is composed of the fused insulating electric wire 1 of the above-described embodiment.
  • the mandrel rod is wound around a mandrel rod (winding jig) having a diameter 5 to 20 times the diameter of the conductor 2 while keeping the fused layer 4 and the fused layer 4 in close contact with each other, and then the mandrel rod is removed.
  • the coil is heated by standing in a constant temperature bath set to a temperature higher than the melting point of the fusion layer 4 at 10 to 30 ° C. for 3 to 10 minutes to form a helical self-bonding coil 10 having an air core.
  • the temperature of the constant temperature bath is, for example, 110 to 130 ° C.
  • a tunnel furnace, a batch furnace, a hot air blower, or other known heating means can be applied.
  • the tip portion 10a and the tip portion 10b of the fused insulating electric wire 1 are immersed in a solder bath, and the conductor 2 is solder-plated.
  • the fused insulating electric wire 1 is heated by a solder bath or a soldering iron, the insulating layer 3 and the fused layer 4 are melted and the conductor 2 can be easily solder-plated.
  • the coil is not limited to the round self-bonding coil 10 as shown in FIG. 2, and the spiral coil has various shapes such as a record winding coil, a pancake coil, a square coil, and a conical coil. It is possible to apply to.
  • the manufacturing method of the fused insulating electric wire 1 is as described above.
  • the conductor 2 is a copper wire having a diameter of 0.5 mm, the thickness of one side of the first insulating layer 3a in the radial direction is 40 ⁇ m, the thickness of one side of the second insulating layer 3b in the radial direction is 30 ⁇ m, and the thickness of the third insulating layer 3b is 30 ⁇ m.
  • the thickness of the layer 3c on one side in the radial direction is 20 ⁇ m, and the thickness of the fused layer 4 on one side in the radial direction is 30 ⁇ m.
  • the melting point of the fused layer 4 was adjusted to be lowered by increasing the compatibility between the copolymerized polyester resin and the polyester-based hot melt adhesive. Then, the self-bonding coils 10 of Examples 1 to 10 were manufactured according to the above-mentioned method for manufacturing the self-bonding coil 10. The number of samples is 20 each. In Example 1, the melting point of the fused layer is 52.3 ° C, in Example 2 the melting point of the fused layer is 57.4 ° C, and in Example 3 the melting point of the fused layer is 61.7 ° C.
  • Example 4 the melting point of the fused layer is 68.0 ° C.
  • Example 5 the melting point of the fused layer is 70.1 ° C
  • Example 6 the melting point of the fused layer is 74.0 ° C.
  • Example 7 the melting point of the fused layer is 81.0 ° C
  • Example 8 the melting point of the fused layer is 83.8 ° C
  • Example 9 the melting point of the fused layer is 91.2 ° C.
  • the melting point of the fused layer is 95.0 ° C.
  • the melting point was about 100 ° C. (99 to 105 ° C.) when only the thermoplastic adhesive made of the copolymerized polyester resin was used.
  • the evaluation conditions for the adhesive strength of each sample are as follows.
  • the adhesive strength of the fused layer is determined by pulling the adhesive strength of the fused layer in the direction in which the tip on one side and the tip on the other side are opposite to each other in the wire drawing direction of the conductor in each sample at room temperature using a tensile tester.
  • the peel strength required for the fused layers adjacent to each other to peel off was measured.
  • the evaluation criteria for adhesive strength are as follows: A rank is when the average peel strength is 3N or more, B rank is when the average peel strength is 2N or more and less than 3N, and C rank is when the average peel strength is 1N or more and less than 2N. And said.
  • the evaluation conditions for the storage stability of each sample are as follows. For storage stability, each sample was allowed to stand at a predetermined storage temperature for 240 hours using a constant temperature bath, then taken out, and whether or not the fused layer had tack (stickiness) was checked by contact with the fingertips.
  • the evaluation criteria for storage stability were A rank for no tack at a storage temperature of 60 ° C, B rank for no tack at a storage temperature of 50 ° C, and C rank for no tack at a storage temperature of 40 ° C.
  • the temperature of 60 ° C. assumes the heat-resistant temperature required for mailing
  • the temperature of 40 ° C. assumes the heat-resistant temperature required for storage.
  • Table 1 shows the evaluation results of the adhesive strength and storage stability of each sample.
  • the adhesive strength was A rank and the storage stability was C rank.
  • the adhesive strength was A rank or B rank or higher, and the storage stability was A rank or B rank or higher.
  • the adhesive strength was C rank and the storage stability was A rank.
  • the adhesive strength is less than 1N, which is insufficient for a self-bonding coil. Examples 1 to 10 were found to have excellent properties in both adhesive strength and storage stability as compared with the prior art.
  • the meltable insulated wire of the above-described embodiment can be applied not only to a self-bondable coil but also to a coil of a transformer for consumer equipment and a known coil or inductor for electronic equipment.

Abstract

The present invention addresses the problem of providing a fusible insulated wire having a configuration that has excellent insulation performance and is applicable to transformers and coils for consumer appliances. As a solution, a fusible insulated wire (1) has insulating layers (3a), (3b), (3c) formed at the outer periphery of a conductor (2), and a fusion layer (4) formed at the outer periphery of the insulating layer (3c), the fusion layer (4) is formed by extruding a thermoplastic resin containing a copolyester resin as a main component, a polyester-based hot-melt adhesive and a filler, and the fusion point of the fusion layer (4) is 50 °C to 95 °C (exclusive of 50).

Description

融着性絶縁電線及び自己融着コイルFusing insulated wires and self-fusing coils
 本発明は、融着性絶縁電線及び自己融着コイルに関する。 The present invention relates to a fused insulating electric wire and a self-bonded coil.
 従来、エポキシ樹脂を主成分として変性エーテル型ポリエステル樹脂を添加して構成された融着層を有し、温度100~150℃の低温域での接着性を向上させた融着性絶縁電線が知られている(特許文献1:特許第2890280公報)。また、共重合ポリアミド樹脂を主成分として構成された融着皮膜を有し、融点を110~130℃とした融着性絶縁電線が提案されている(特許文献2:特開平3-089414号公報)。そして、変性ポリオレフィン樹脂を主成分としてポリアミド樹脂を含有してナイロン系ホットメルト樹脂と炭酸カルシウムが添加された熱可塑性樹脂を温度が200℃で押出して形成した融着層を有する融着性絶縁電線が知られている(特許文献3:特開2020-113491号公報)。 Conventionally, a fused insulating electric wire having a fused layer composed of an epoxy resin as a main component and a modified ether type polyester resin added, and having improved adhesiveness in a low temperature range of 100 to 150 ° C. is known. (Patent Document 1: Japanese Patent No. 2890280). Further, a fused insulating electric wire having a fused film composed mainly of a copolymerized polyamide resin and having a melting point of 110 to 130 ° C. has been proposed (Patent Document 2: Japanese Patent Application Laid-Open No. 3-08414). ). Then, a fused insulating electric wire having a fused layer formed by extruding a nylon-based hot melt resin containing a polyamide resin as a main component of a modified polyolefin resin and a thermoplastic resin to which calcium carbonate is added at a temperature of 200 ° C. Is known (Patent Document 3: Japanese Unexamined Patent Publication No. 202-134191).
特許第2890280公報Japanese Patent No. 2890280 特開平3-089414号公報Japanese Unexamined Patent Publication No. 3-08414 特開2020-113491号公報Japanese Unexamined Patent Publication No. 202-134191
 一般的な民生機器用変圧器に求められる耐熱グレードはJIS規格(JIS C4003:2010)に定めるB種(許容温度が130℃)またはF種(許容温度が155℃)である。そのため、融着性絶縁電線をコイルにする際の加熱処理によって変圧器の絶縁材料が劣化するという問題や融着性絶縁電線の性能が劣化するという問題がある。しかしながら、エポキシ樹脂を主成分とした融着層は温度をさらに低くすることが困難であり、また、ポリアミド樹脂を含有した融着層は吸湿によってピンホールやクレージング等が発生し易く絶縁性能が劣り、従来技術では耐熱グレードの低い民生機器用変圧器のコイルや民生機器用の自己融着コイルへの適用が困難であった。 The heat resistant grade required for a general consumer equipment transformer is Class B (allowable temperature 130 ° C) or Class F (allowable temperature 155 ° C) specified in JIS standard (JIS C4003: 2010). Therefore, there is a problem that the insulating material of the transformer is deteriorated by the heat treatment when the fused insulated wire is made into a coil, and there is a problem that the performance of the fused insulated wire is deteriorated. However, it is difficult to further lower the temperature of the fused layer containing an epoxy resin as a main component, and the fused layer containing a polyamide resin is liable to cause pinholes and crazing due to moisture absorption, and its insulating performance is inferior. In the prior art, it was difficult to apply it to the coil of a transformer for consumer equipment with low heat resistance grade and the self-bonding coil for consumer equipment.
 本発明は、上記事情に鑑みてなされ、絶縁性能に優れた構成としつつ、民生機器用変圧器のコイルや民生機器用の自己融着コイルへの適用が可能な構成の融着性絶縁電線を提供することを目的とする。 INDUSTRIAL APPLICABILITY The present invention has been made in view of the above circumstances, and provides a fusion-sensitive insulated wire having a configuration excellent in insulation performance and having a configuration that can be applied to a coil of a transformer for consumer equipment and a self-bonding coil for consumer equipment. The purpose is to provide.
 一実施形態として、以下に開示する解決策により、前記課題を解決する。 As an embodiment, the above-mentioned problem is solved by the solution disclosed below.
 本発明に係る融着性絶縁電線は、導体の外周に形成された絶縁層の外周に融着層が形成されており、前記融着層は共重合ポリエステル樹脂を主成分としてポリエステル系ホットメルト接着剤およびフィラーが添加された熱可塑性樹脂を押出して形成された構成であり、前記融着層の融点は50℃超かつ95℃以下であることを特徴とする。 In the fused insulating electric wire according to the present invention, a fused layer is formed on the outer periphery of an insulating layer formed on the outer periphery of a conductor, and the fused layer is a polyester-based hot melt adhesive containing a copolymerized polyester resin as a main component. It is a structure formed by extruding a thermoplastic resin to which an agent and a filler are added, and is characterized in that the melting point of the fused layer is more than 50 ° C. and 95 ° C. or lower.
 この構成によれば、絶縁層の外周に形成された共重合ポリエステル樹脂を主成分としフィラーが添加された熱可塑性樹脂を押出して形成された融着層によって絶縁性能に優れた構成となる。尚且つ、共重合ポリエステル樹脂を主成分としてポリエステル系ホットメルト接着剤が添加された熱可塑性樹脂からなる融着層の融点は、民生機器用変圧器のコイルや民生機器用の自己融着コイルへの適用が可能な構成にできる。つまり、融着層は良好な接着性を維持しつつ輸送時の温度や保管時の温度によって自己融着することが防止できる。また、融着層は良好な接着性を維持しつつ融着性絶縁電線が適用される変圧器の絶縁材料が劣化することが防止できる。 According to this configuration, the fused layer formed by extruding a thermoplastic resin containing a copolymerized polyester resin formed on the outer periphery of the insulating layer as a main component and having a filler added thereof provides an excellent insulating performance. Moreover, the melting point of the fused layer made of a thermoplastic resin containing a copolymerized polyester resin as a main component and a polyester-based hot melt adhesive added is set to a coil of a transformer for consumer equipment and a self-bonded coil for consumer equipment. Can be configured to be applicable. That is, the fused layer can be prevented from being self-fused by the temperature during transportation or the temperature during storage while maintaining good adhesiveness. Further, the fused layer can prevent deterioration of the insulating material of the transformer to which the fused insulated wire is applied while maintaining good adhesiveness.
 前記融着層の融点は60℃超かつ92℃未満が好ましい。前記融着層の融点は68℃超かつ91℃未満がより好ましい。一例として、前記絶縁層は絶縁テープをラップ巻きして形成している。これにより、絶縁性を高めつつ外径を小型にすることが容易にできる。前記絶縁層は3層になっていることがより好ましい。一例として、前記共重合ポリエステル樹脂はポリエチレンテレフタレートであり、絶縁性がより高められる。一例として、前記フィラーは炭酸カルシウムであり、絶縁層と融着層との密着性がより高められる。一例として、前記融着層の径方向の片側の厚みは20~40μmであり、小型の民生機器用変圧器のコイルや小型の民生機器用の自己融着コイルに好適な外径にすることが容易にできる。 The melting point of the fused layer is preferably more than 60 ° C and less than 92 ° C. The melting point of the fused layer is more preferably more than 68 ° C and less than 91 ° C. As an example, the insulating layer is formed by wrapping an insulating tape. This makes it easy to reduce the outer diameter while improving the insulation. It is more preferable that the insulating layer has three layers. As an example, the copolymerized polyester resin is polyethylene terephthalate, and the insulating property is further enhanced. As an example, the filler is calcium carbonate, which further enhances the adhesion between the insulating layer and the fused layer. As an example, the thickness of one side of the fusion layer in the radial direction is 20 to 40 μm, and the outer diameter may be suitable for a coil of a transformer for a small consumer device or a self-bonding coil for a small consumer device. It can be done easily.
 本発明に係る自己融着コイルは、導体の外周に形成された絶縁層の外周に融着層が形成されており、前記融着層は共重合ポリエステル樹脂を主成分としてポリエステル系ホットメルト接着剤およびフィラーが添加された熱可塑性樹脂を押出して形成されている融着性絶縁電線が螺旋状に巻回されており、前記融着性絶縁電線における隣接した前記融着層は互いに融着された構成であり、前記融着層の融点は50℃超かつ95℃以下であることを特徴とする。 In the self-bonding coil according to the present invention, a fusion layer is formed on the outer periphery of an insulating layer formed on the outer periphery of a conductor, and the fusion layer is a polyester hot melt adhesive containing a copolymerized polyester resin as a main component. And the fused insulating wire formed by extruding the thermoplastic resin to which the filler is added is spirally wound, and the adjacent fused layers in the fused insulated wire are fused to each other. It is characterized in that the melting point of the fused layer is more than 50 ° C. and 95 ° C. or lower.
 この構成によれば、融着性絶縁電線における融着層は良好な接着性を維持しつつ絶縁層の劣化が防止できて絶縁性能に優れた融着性絶縁電線からなる自己融着コイルにできる。自己融着コイルを構成する融着性絶縁電線における融着層は良好な接着性を維持しつつ輸送時の温度や保管時の温度によって自己融着コイルがほどけることが防止できる。 According to this configuration, the fused layer in the fused insulated wire can be a self-bonding coil made of a fused insulated wire having excellent insulating performance by preventing deterioration of the insulating layer while maintaining good adhesiveness. .. The fused layer in the fused insulated wire constituting the self-bonded coil can prevent the self-bonded coil from unraveling due to the temperature during transportation and the temperature during storage while maintaining good adhesiveness.
 前記融着層の融点は60℃超かつ92℃未満が好ましい。前記融着層の融点は68℃超かつ91℃未満がより好ましい。一例として、前記共重合ポリエステル樹脂はポリエチレンテレフタレートであり、前記フィラーは炭酸カルシウムである。一例として、前記融着性絶縁電線における前記融着層の径方向の片側の厚みは20~40μmである。これにより、高性能かつ小型の自己融着コイルが実現できる。 The melting point of the fused layer is preferably more than 60 ° C and less than 92 ° C. The melting point of the fused layer is more preferably more than 68 ° C and less than 91 ° C. As an example, the copolymerized polyester resin is polyethylene terephthalate, and the filler is calcium carbonate. As an example, the thickness of one side in the radial direction of the fused layer in the fused insulated wire is 20 to 40 μm. As a result, a high-performance and compact self-bonding coil can be realized.
 本発明によれば、絶縁性能に優れた構成としつつ、民生機器用変圧器のコイルや自己融着コイルへの適用が可能な構成の融着性絶縁電線が実現できる。 According to the present invention, it is possible to realize a fusion-sensitive insulated wire having a configuration that is excellent in insulation performance and that can be applied to a coil of a transformer for consumer equipment or a self-bonding coil.
図1は本発明の実施形態に係る融着性絶縁電線の構造を模式的に示す構造図である。FIG. 1 is a structural diagram schematically showing the structure of a fused insulated wire according to an embodiment of the present invention. 図2は図1に示す融着性絶縁電線を適用した自己融着コイルの例を示す概略の外観図である。FIG. 2 is a schematic external view showing an example of a self-bonding coil to which the fusion-sensitive insulated wire shown in FIG. 1 is applied.
 以下、図面を参照して、本発明の実施形態について詳しく説明する。本実施形態の融着性絶縁電線1は、例えば、民生機器用変圧器のコイルに適用される。また例えば、自己融着コイルに適用される。なお、実施形態を説明するための全図において、同一の機能を有する部材には同一の符号を付し、その繰り返しの説明は省略する場合がある。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The fused insulated wire 1 of the present embodiment is applied to, for example, a coil of a transformer for consumer equipment. It is also applied to, for example, a self-bonding coil. In all the drawings for explaining the embodiment, the members having the same function may be designated by the same reference numerals, and the repeated description thereof may be omitted.
(融着性絶縁電線)
 先ず、本実施形態に係る融着性絶縁電線1とその製造方法について、図1に基づいて以下に説明する。
(Fusionable insulated wire)
First, the fused insulated wire 1 and the manufacturing method thereof according to the present embodiment will be described below with reference to FIG.
 図1に示す融着性絶縁電線1は、導体2と、導体2の外周に形成された第1絶縁層3aと、第1絶縁層3aの外周に形成された第2絶縁層3bと、第2絶縁層3bの外周に形成された第3絶縁層3cと、第3絶縁層3cの外周に形成された融着層4を有する構成である。つまり、導体2の外周に絶縁層3が三層で形成されてその外周に融着層4が形成されている構成である。 The fused insulating electric wire 1 shown in FIG. 1 includes a conductor 2, a first insulating layer 3a formed on the outer periphery of the conductor 2, a second insulating layer 3b formed on the outer periphery of the first insulating layer 3a, and a first layer. 2 It is configured to have a third insulating layer 3c formed on the outer periphery of the insulating layer 3b and a fusion layer 4 formed on the outer periphery of the third insulating layer 3c. That is, the insulating layer 3 is formed of three layers on the outer periphery of the conductor 2, and the fusion layer 4 is formed on the outer periphery thereof.
 導体2は、導電材料であればよいが、はんだ付け可能な導電性の導体であることが好ましい。例えば、銅又は銅合金、アルミニウム又はアルミニウム合金、銅クラッドアルミニウム等の複合材料、或いは、これらの材料にはんだ付け性に優れた金属がめっきされたものであってもよい。導体自体のはんだ付けが容易でない場合には、はんだ付け性に優れた金属をめっき等によって設けることが好ましい。はんだ付け性に優れた金属としては、錫、はんだ、ニッケル、金、銀、銅、パラジウム、またはこれらの材料の合金が挙げられる。 The conductor 2 may be any conductive material, but is preferably a conductive conductor that can be soldered. For example, a composite material such as copper or a copper alloy, aluminum or an aluminum alloy, or copper clad aluminum, or a metal having excellent solderability may be plated on these materials. When it is not easy to solder the conductor itself, it is preferable to provide a metal having excellent solderability by plating or the like. Metals with excellent solderability include tin, solder, nickel, gold, silver, copper, palladium, or alloys of these materials.
 導体2は、単線または撚線を用いることができる。撚線の場合には、それぞれの導体素線の表面には、滑剤や酸化防止剤が塗布されていてもよい。滑剤は、導体素線の滑り性をよくするので、撚線を一層容易にするとともに、最終的に得られた絶縁電線でコイル巻線する際に個々の導体素線の滑りがよくなって巻線性をより容易にすることができる。酸化防止剤は、導体素線の酸化を防止する作用を有し、撚線時やテープ巻時の起こりうる酸化を防ぐことができる。また、導体2を構成する単線又は撚線は、予め絶縁皮膜が設けられていてもよい。絶縁皮膜は、例えばエナメル皮膜や酸化皮膜が挙げられる。絶縁皮膜としては、はんだ付けに支障がないウレタン系やポリエステル系等のエナメル皮膜が好ましい。特に表皮効果による高周波損失を低減したい場合は、予め絶縁皮膜が配された導体素線を用いることが好ましい。 The conductor 2 can be a single wire or a stranded conductor. In the case of stranded wire, a lubricant or an antioxidant may be applied to the surface of each conductor wire. The lubricant improves the slipperiness of the conductor wire, which makes the stranded wire easier, and also makes the individual conductor wire slippery when coiling with the finally obtained insulated wire. The linearity can be made easier. The antioxidant has an effect of preventing the oxidation of the conductor wire, and can prevent the oxidation that may occur at the time of twisting or winding the tape. Further, the single wire or the stranded wire constituting the conductor 2 may be provided with an insulating film in advance. Examples of the insulating film include an enamel film and an oxide film. As the insulating film, a urethane-based or polyester-based enamel film that does not interfere with soldering is preferable. In particular, when it is desired to reduce the high frequency loss due to the skin effect, it is preferable to use a conductor wire having an insulating film arranged in advance.
 一例として、直径4.5mmの銅線を直径0.5mmに伸線加工して、断面が円形や楕円形などの丸形状の導体2にする。上記以外の構成として、素線を複数撚った撚線であって、断面が円形や楕円形などの丸形状に近似した撚線を導体2として用いることができる。導体2が撚線のときは、7本の素線から構成されることで断面が円形や楕円形などの丸形状により近似した形状にできるので好ましい。なお、5本以上の素線から構成される撚線を導体2にする場合もある。 As an example, a copper wire having a diameter of 4.5 mm is drawn to a diameter of 0.5 mm to form a round conductor 2 having a circular or elliptical cross section. As a configuration other than the above, a stranded wire obtained by twisting a plurality of strands and having a cross section similar to a round shape such as a circle or an ellipse can be used as the conductor 2. When the conductor 2 is a stranded wire, it is preferable because the conductor 2 is composed of seven strands so that the cross section can be made into a shape closer to a round shape such as a circle or an ellipse. In some cases, the conductor 2 is a stranded wire composed of five or more strands.
 絶縁層3は1層以上の絶縁層を有する。絶縁層3は2層以上の絶縁層から構成されることが好ましい。絶縁層3の材質としては例えば、ポリエチレンナフタレート(PEN)、ポリイミド(PI)、ポリフェニレンサルファイド(PPS)、エチレン-四フッ化エチレン共重合体(ETFE)、四フッ化エチレン-六フッ化プロピレン共重合体(FEP)、フッ素化樹脂共重合体(ペルフルオロアルコキシフッ素樹脂:PFA)、ポリエーテルエーテルケトン(PEEK)、ポリエチレンテレフタレート(PET)、ポリアミド(PA)等を挙げることができる。絶縁層3の材質は用途に応じて適宜設定される。 The insulating layer 3 has one or more insulating layers. The insulating layer 3 is preferably composed of two or more insulating layers. Examples of the material of the insulating layer 3 include polyethylene naphthalate (PEN), polyimide (PI), polyphenylene sulfide (PPS), ethylene-ethylene tetrafluoroethylene copolymer (ETFE), and ethylene tetrafluoride-propylene hexafluoride. Examples thereof include a polymer (FEP), a fluorinated resin copolymer (perfluoroalkoxy alkane resin: PFA), polyetheretherketone (PEEK), polyethylene terephthalate (PET), polyamide (PA) and the like. The material of the insulating layer 3 is appropriately set according to the application.
 絶縁層3は一例として絶縁テープによるテープ巻絶縁によって構成される。この場合の絶縁テープの厚さは例えば4μm以上かつ25μm以下であることが好ましい。また、この場合の絶縁テープの幅は例えば2mm以上かつ20mm以下であることが好ましい。絶縁テープの厚さや幅は用途に応じて適宜設定されるものであり、二層以上でテープ巻絶縁する場合のそれぞれの絶縁テープの厚さおよび幅を同じにするときがあり、それぞれの絶縁テープの厚さおよび幅を異ならせるときがある。 The insulating layer 3 is configured by tape winding insulation with insulating tape as an example. In this case, the thickness of the insulating tape is preferably, for example, 4 μm or more and 25 μm or less. Further, the width of the insulating tape in this case is preferably, for example, 2 mm or more and 20 mm or less. The thickness and width of the insulating tape are appropriately set according to the application, and the thickness and width of each insulating tape may be the same when two or more layers of tape are wound and insulated. May vary in thickness and width.
 絶縁層3は一例として絶縁テープによって二層以上でテープ巻絶縁されることが好ましい。テープ巻絶縁される複数の絶縁テープのうち少なくともそれら絶縁テープの重なり部分は接着層となっており、両者は接着されている。接着層は、複数の絶縁テープのうち少なくとも1つの絶縁テープに設けられている。接着層の構成材料としては、熱又は電離放射線等で固化する接着材料を挙げることができる。熱で接着固化する接着材料は、熱融着性材料であり、例えばポリエステル系、アクリル系、エポキシ系等の熱融着接着材料を挙げることができる。例えば紫外線などの電離放射線で接着固化する接着材料としては、アクリル系、エポキシ系等の電離放射線接着材料を挙げることができる。それぞれの絶縁テープは互いに逆方向に螺旋状に巻き付けられていることが好ましい。それぞれの絶縁テープの巻き付け形態は用途に応じて適宜設定される。 As an example, it is preferable that the insulating layer 3 is tape-wound with two or more layers by insulating tape. Of the plurality of insulating tapes to be tape-wound and insulated, at least the overlapping portion of the insulating tapes is an adhesive layer, and both are adhered to each other. The adhesive layer is provided on at least one insulating tape among the plurality of insulating tapes. Examples of the constituent material of the adhesive layer include an adhesive material that is solidified by heat, ionizing radiation, or the like. The adhesive material to be bonded and solidified by heat is a heat-bondable material, and examples thereof include heat-bonded adhesive materials such as polyester-based, acrylic-based, and epoxy-based materials. For example, examples of the adhesive material that is adhered and solidified by ionizing radiation such as ultraviolet rays include an ionizing radiation adhesive material such as acrylic and epoxy. It is preferable that each insulating tape is spirally wound in the opposite direction to each other. The winding form of each insulating tape is appropriately set according to the application.
 特に、絶縁層3を絶縁テープによって三層以上でテープ巻絶縁される構成にした場合、高い絶縁性を実現できる。この構成は、例えばIEC60950等の安全規格を満たす絶縁電線として認証されており、絶縁トランスやIHヒータ等のコイル用線材として用いることができる。絶縁層3を絶縁テープによって三層以上でテープ巻絶縁した構成の融着性絶縁電線1をトランス用のコイルに用いた場合には、一次側と二次側をより確実に絶縁することができる。一例として、図1のように、第1絶縁層3a、第2絶縁層3b及び第3絶縁層3cを有する場合、導体2の外周に絶縁テープをラップ巻きして第1絶縁層3aを形成し、第1絶縁層3aの外周に接着剤層を介して絶縁テープをラップ巻きして第2絶縁層3bを形成し、第2絶縁層3bの外周に接着剤層を介して絶縁テープをラップ巻きして第3絶縁層3cを形成する。絶縁層3の径方向の片側の厚みは一例として10~300μmである。 In particular, when the insulating layer 3 is configured to be tape-wound with three or more layers by insulating tape, high insulating properties can be realized. This configuration is certified as an insulated wire that meets safety standards such as IEC60950, and can be used as a wire for coils such as an isolation transformer and an IH heater. When a fusion-sensitive insulated wire 1 having a structure in which the insulating layer 3 is tape-wound with three or more layers with insulating tape is used for the transformer coil, the primary side and the secondary side can be more reliably insulated. .. As an example, as shown in FIG. 1, when the first insulating layer 3a, the second insulating layer 3b, and the third insulating layer 3c are provided, an insulating tape is wrapped around the outer periphery of the conductor 2 to form the first insulating layer 3a. , The insulating tape is wrapped around the outer periphery of the first insulating layer 3a via the adhesive layer to form the second insulating layer 3b, and the insulating tape is wrapped around the outer periphery of the second insulating layer 3b via the adhesive layer. To form the third insulating layer 3c. The thickness of the insulating layer 3 on one side in the radial direction is, for example, 10 to 300 μm.
 上記以外の構成として、例えば押出加工によって絶縁層3を形成する場合には、導体2の外周に熱可塑性樹脂を押出して第1絶縁層3aを形成し、第1絶縁層3aの外周に熱可塑性樹脂を押出して第2絶縁層3bを形成し、第2絶縁層3bの外周に熱可塑性樹脂を押出して第3絶縁層3cを形成することができる。 As a configuration other than the above, for example, when the insulating layer 3 is formed by extrusion processing, a thermoplastic resin is extruded on the outer periphery of the conductor 2 to form the first insulating layer 3a, and the thermoplastic resin is formed on the outer periphery of the first insulating layer 3a. The resin can be extruded to form the second insulating layer 3b, and the thermoplastic resin can be extruded on the outer periphery of the second insulating layer 3b to form the third insulating layer 3c.
 融着層4は、第3絶縁層3cの外周に形成されており、加熱によって自己融着する。融着層4は共重合ポリエステル樹脂を主成分としてポリエステル系ホットメルト接着剤およびフィラーが添加された熱可塑性樹脂を押出して形成されている構成である。押出機における加熱部の温度は、一例として170~250℃に設定される。本実施形態は、融着層4の融点は60℃超かつ92℃未満である。融着層4の径方向の片側の厚みは、一例として10~50μmである。一例として、前記共重合ポリエステル樹脂はポリエチレンテレフタレートであり、かつ、前記フィラーは炭酸カルシウム(CaCO3)である。 The fused layer 4 is formed on the outer periphery of the third insulating layer 3c and is self-fused by heating. The fused layer 4 is formed by extruding a thermoplastic resin containing a copolymerized polyester resin as a main component and a polyester-based hot melt adhesive and a filler added. The temperature of the heating unit in the extruder is set to 170 to 250 ° C. as an example. In this embodiment, the melting point of the fused layer 4 is more than 60 ° C and less than 92 ° C. The thickness of the fused layer 4 on one side in the radial direction is, for example, 10 to 50 μm. As an example, the copolymerized polyester resin is polyethylene terephthalate, and the filler is calcium carbonate (CaCO 3 ).
(自己融着コイル)
 続いて、本実施形態に係る自己融着コイル10とその製造方法について、図2に基づいて以下に説明する。
(Self-bonding coil)
Subsequently, the self-bonding coil 10 and the manufacturing method thereof according to the present embodiment will be described below with reference to FIG.
 図2に示す自己融着コイル10は、上述した実施形態の融着性絶縁電線1から構成される。一例として、導体2の直径に対して5~20倍の直径のマンドレル棒(巻き付け治具)に、融着層4と融着層4とを密接させながら巻き付けた後、マンドレル棒を外して、融着層4の融点よりも温度が10~30℃高温に設定された恒温槽に3~10分静置して加熱し、ヘリカル型で空芯の自己融着コイル10にする。恒温槽の温度は、一例として、110~130℃である。上記以外の構成として、加熱手段はトンネル炉、バッチ炉、熱風機、その他既知の加熱手段が適用できる。 The self-bonding coil 10 shown in FIG. 2 is composed of the fused insulating electric wire 1 of the above-described embodiment. As an example, the mandrel rod is wound around a mandrel rod (winding jig) having a diameter 5 to 20 times the diameter of the conductor 2 while keeping the fused layer 4 and the fused layer 4 in close contact with each other, and then the mandrel rod is removed. The coil is heated by standing in a constant temperature bath set to a temperature higher than the melting point of the fusion layer 4 at 10 to 30 ° C. for 3 to 10 minutes to form a helical self-bonding coil 10 having an air core. The temperature of the constant temperature bath is, for example, 110 to 130 ° C. As a configuration other than the above, as the heating means, a tunnel furnace, a batch furnace, a hot air blower, or other known heating means can be applied.
 図2に示す例は、自己融着コイル10は、融着性絶縁電線1の先端部10aと先端部10bがはんだ槽に浸漬されて導体2がはんだめっきされている。融着性絶縁電線1は、はんだ槽若しくは半田ごてにより加熱されることで絶縁層3および融着層4が溶けて導体2にはんだめっきすることが容易にできる。なお、図2に示したような丸型形状の自己融着コイル10に限定されず、渦巻きコイルとしてレコード巻き型コイルやパンケーキ型コイル、角型コイル、円錐型コイル等の様々な形状のコイルに適用することが可能である。 In the example shown in FIG. 2, in the self-bonding coil 10, the tip portion 10a and the tip portion 10b of the fused insulating electric wire 1 are immersed in a solder bath, and the conductor 2 is solder-plated. When the fused insulating electric wire 1 is heated by a solder bath or a soldering iron, the insulating layer 3 and the fused layer 4 are melted and the conductor 2 can be easily solder-plated. It should be noted that the coil is not limited to the round self-bonding coil 10 as shown in FIG. 2, and the spiral coil has various shapes such as a record winding coil, a pancake coil, a square coil, and a conical coil. It is possible to apply to.
 続いて、本実施形態に係る自己融着コイル10の各実施例について、以下に説明する。 Subsequently, each embodiment of the self-bonding coil 10 according to the present embodiment will be described below.
 融着性絶縁電線1の製造方法は上述のとおりである。導体2は直径0.5mmの銅線であり、第1絶縁層3aの径方向の片側の厚みは40μmであり、第2絶縁層3bの径方向の片側の厚みは30μmであり、第3絶縁層3cの径方向の片側の厚みは20μmであり、融着層4の径方向の片側の厚みは30μmである。融着層4を形成するに際して、共重合ポリエステル樹脂とポリエステル系ホットメルト接着剤との相溶性を高めることによって融着層4の融点を低くする方向に調整した。そして、上述の自己融着コイル10の製造方法にしたがって、実施例1~10の自己融着コイル10を作製した。試料数は各20個である。実施例1は融着層の融点が52.3℃であり、実施例2は融着層の融点が57.4℃であり、実施例3は融着層の融点が61.7℃であり、実施例4は融着層の融点が68.0℃であり、実施例5は融着層の融点が70.1℃であり、実施例6は融着層の融点が74.0℃であり、実施例7は融着層の融点が81.0℃であり、実施例8は融着層の融点が83.8℃であり、実施例9は融着層の融点が91.2℃であり、実施例10は融着層の融点が95.0℃である。ここで、共重合ポリエステル樹脂からなる熱可塑性接着剤のみとした場合の融点はおよそ100℃(99~105℃)となることを確認した。これら融点は、JIS K 6863-1994  ホットメルト接着剤の軟化点試験方法に準じて測定されたものである。 The manufacturing method of the fused insulating electric wire 1 is as described above. The conductor 2 is a copper wire having a diameter of 0.5 mm, the thickness of one side of the first insulating layer 3a in the radial direction is 40 μm, the thickness of one side of the second insulating layer 3b in the radial direction is 30 μm, and the thickness of the third insulating layer 3b is 30 μm. The thickness of the layer 3c on one side in the radial direction is 20 μm, and the thickness of the fused layer 4 on one side in the radial direction is 30 μm. When the fused layer 4 was formed, the melting point of the fused layer 4 was adjusted to be lowered by increasing the compatibility between the copolymerized polyester resin and the polyester-based hot melt adhesive. Then, the self-bonding coils 10 of Examples 1 to 10 were manufactured according to the above-mentioned method for manufacturing the self-bonding coil 10. The number of samples is 20 each. In Example 1, the melting point of the fused layer is 52.3 ° C, in Example 2 the melting point of the fused layer is 57.4 ° C, and in Example 3 the melting point of the fused layer is 61.7 ° C. In Example 4, the melting point of the fused layer is 68.0 ° C., in Example 5 the melting point of the fused layer is 70.1 ° C, and in Example 6 the melting point of the fused layer is 74.0 ° C. In Example 7, the melting point of the fused layer is 81.0 ° C, in Example 8 the melting point of the fused layer is 83.8 ° C, and in Example 9 the melting point of the fused layer is 91.2 ° C. In Example 10, the melting point of the fused layer is 95.0 ° C. Here, it was confirmed that the melting point was about 100 ° C. (99 to 105 ° C.) when only the thermoplastic adhesive made of the copolymerized polyester resin was used. These melting points were measured according to the softening point test method for JIS K 6863-1994 hot melt adhesives.
 各試料の接着強度の評価条件は次のとおりである。融着層の接着強度は、引張り試験機を用いて、常温にて各試料における導体の伸線方向に一方側の先端部と他方側の先端部とが互いに逆向きになる方向に引っ張って、互いに隣接した融着層が剥離するまでに要した剥離強度を測定した。接着強度の評価基準は、剥離強度の平均値が3N以上をAランクとし、剥離強度の平均値が2N以上かつ3N未満をBランクとし、剥離強度の平均値が1N以上かつ2N未満をCランクとした。 The evaluation conditions for the adhesive strength of each sample are as follows. The adhesive strength of the fused layer is determined by pulling the adhesive strength of the fused layer in the direction in which the tip on one side and the tip on the other side are opposite to each other in the wire drawing direction of the conductor in each sample at room temperature using a tensile tester. The peel strength required for the fused layers adjacent to each other to peel off was measured. The evaluation criteria for adhesive strength are as follows: A rank is when the average peel strength is 3N or more, B rank is when the average peel strength is 2N or more and less than 3N, and C rank is when the average peel strength is 1N or more and less than 2N. And said.
 各試料の保管安定性の評価条件は次のとおりである。保管安定性は、恒温槽を用いて、所定の保管温度にて各試料を240時間静置した後、取り出して、融着層にタック(べたつき)があるか否かを指先で接触確認した。保管安定性の評価基準は、保管温度60℃でタックなしをAランクとし、保管温度50℃でタックなしをBランクとし、保管温度40℃でタックなしをCランクとした。ここで、温度60℃は郵送時に必要な耐熱温度を想定しており、温度40℃は保管時に必要な耐熱温度を想定している。 The evaluation conditions for the storage stability of each sample are as follows. For storage stability, each sample was allowed to stand at a predetermined storage temperature for 240 hours using a constant temperature bath, then taken out, and whether or not the fused layer had tack (stickiness) was checked by contact with the fingertips. The evaluation criteria for storage stability were A rank for no tack at a storage temperature of 60 ° C, B rank for no tack at a storage temperature of 50 ° C, and C rank for no tack at a storage temperature of 40 ° C. Here, the temperature of 60 ° C. assumes the heat-resistant temperature required for mailing, and the temperature of 40 ° C. assumes the heat-resistant temperature required for storage.
 各試料の接着強度と保管安定性の評価結果を表1に示す。 Table 1 shows the evaluation results of the adhesive strength and storage stability of each sample.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、実施例1~2は、接着強度がAランクであり、かつ、保管安定性がCランクであった。実施例2~9は、接着強度がAランク若しくはBランク以上であり、かつ、保管安定性がAランク若しくはBランク以上であった。また、実施例10は、接着強度がCランクであり、かつ、保管安定性がAランクであった。また、融着層の融点がおよそ100℃である従来技術(比較例)では、接着強度が1N未満となり、自己融着コイルとしては不十分な接着力であった。実施例1~10は、従来技術と比較して、接着強度と保管安定性のいずれかないしは両方において、優れた特性であることが判明した。 As shown in Table 1, in Examples 1 and 2, the adhesive strength was A rank and the storage stability was C rank. In Examples 2 to 9, the adhesive strength was A rank or B rank or higher, and the storage stability was A rank or B rank or higher. Further, in Example 10, the adhesive strength was C rank and the storage stability was A rank. Further, in the conventional technique (comparative example) in which the melting point of the fused layer is about 100 ° C., the adhesive strength is less than 1N, which is insufficient for a self-bonding coil. Examples 1 to 10 were found to have excellent properties in both adhesive strength and storage stability as compared with the prior art.
 上述した実施形態の融着性絶縁電線は、自己融着性コイルのみならず、民生機器用変圧器のコイルや電子機器用の既知のコイル若しくはインダクタに適用できる。 The meltable insulated wire of the above-described embodiment can be applied not only to a self-bondable coil but also to a coil of a transformer for consumer equipment and a known coil or inductor for electronic equipment.
 本発明は、以上説明した実施例に限定されることなく、本発明を逸脱しない範囲において種々変更が可能である。

 
The present invention is not limited to the examples described above, and various modifications can be made without departing from the present invention.

Claims (6)

  1.  導体の外周に形成された絶縁層の外周に融着層が形成されており、前記融着層は共重合ポリエステル樹脂を主成分としてポリエステル系ホットメルト接着剤およびフィラーが添加された熱可塑性樹脂を押出して形成された構成であり、前記融着層の融点は50℃超かつ95℃以下であること
    を特徴とする融着性絶縁電線。
    A fusion layer is formed on the outer periphery of the insulating layer formed on the outer periphery of the conductor, and the fusion layer is a thermoplastic resin containing a copolymerized polyester resin as a main component and a polyester hot melt adhesive and a filler added. A fused insulating electric wire having a structure formed by extrusion and having a melting point of more than 50 ° C and a melting point of 95 ° C or lower.
  2.  前記共重合ポリエステル樹脂はポリエチレンテレフタレートであり、前記フィラーは炭酸カルシウムであること
    を特徴とする請求項1記載の融着性絶縁電線。
    The fused insulating electric wire according to claim 1, wherein the copolymerized polyester resin is polyethylene terephthalate and the filler is calcium carbonate.
  3.  前記融着層の融点は60℃超かつ92℃未満であること
    を特徴とする請求項1または2記載の融着性絶縁電線。
    The fused insulating electric wire according to claim 1 or 2, wherein the melting point of the fused layer is more than 60 ° C and less than 92 ° C.
  4.  導体の外周に形成された絶縁層の外周に融着層が形成されており、前記融着層は共重合ポリエステル樹脂を主成分としてポリエステル系ホットメルト接着剤およびフィラーが添加された熱可塑性樹脂を押出して形成されている融着性絶縁電線が螺旋状に巻回されており、前記融着性絶縁電線における隣接した前記融着層は互いに融着された構成であり、前記融着層の融点は50℃超かつ95℃以下であること
    を特徴とする自己融着コイル。
    A fusion layer is formed on the outer periphery of the insulating layer formed on the outer periphery of the conductor, and the fusion layer is a thermoplastic resin containing a copolymerized polyester resin as a main component and a polyester hot melt adhesive and a filler added. The fused insulating electric wire formed by extrusion is spirally wound, and the adjacent fused layers in the fused insulated wire are fused to each other, and the melting point of the fused layer is formed. Is a self-bonding coil characterized by being above 50 ° C and below 95 ° C.
  5.  前記共重合ポリエステル樹脂はポリエチレンテレフタレートであり、前記フィラーは炭酸カルシウムであること
    を特徴とする請求項4記載の自己融着コイル。
    The self-bonding coil according to claim 4, wherein the copolymerized polyester resin is polyethylene terephthalate and the filler is calcium carbonate.
  6.  前記融着層の融点は60℃超かつ92℃未満であること
    を特徴とする請求項4または5記載の自己融着コイル。

     
    The self-bonding coil according to claim 4 or 5, wherein the melting layer has a melting point of more than 60 ° C and less than 92 ° C.

PCT/JP2021/027615 2020-10-05 2021-07-27 Fusible insulated wire and self-fusion coil WO2022074900A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202180035142.XA CN115668410A (en) 2020-10-05 2021-07-27 Hot-adhesive insulated wire and self-adhesive coil

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-168353 2020-10-05
JP2020168353A JP7088999B2 (en) 2020-10-05 2020-10-05 A method for manufacturing a fusion-sensitive insulated wire and a method for manufacturing a self-bonding coil.

Publications (1)

Publication Number Publication Date
WO2022074900A1 true WO2022074900A1 (en) 2022-04-14

Family

ID=81125368

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/027615 WO2022074900A1 (en) 2020-10-05 2021-07-27 Fusible insulated wire and self-fusion coil

Country Status (4)

Country Link
JP (2) JP7088999B2 (en)
CN (1) CN115668410A (en)
TW (1) TW202215453A (en)
WO (1) WO2022074900A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60223866A (en) * 1984-04-19 1985-11-08 Furukawa Electric Co Ltd:The Self-welding insulated wire
JPH10134643A (en) * 1996-10-25 1998-05-22 Fujikura Ltd Insulated electric wire for electrification bonding
JPH11176246A (en) * 1997-10-24 1999-07-02 Furukawa Electric Co Ltd:The Multi-layer insulated wire and transformer using it
JP2002237218A (en) * 2001-02-08 2002-08-23 Yazaki Corp Welding electric wire for harness and its manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60223866A (en) * 1984-04-19 1985-11-08 Furukawa Electric Co Ltd:The Self-welding insulated wire
JPH10134643A (en) * 1996-10-25 1998-05-22 Fujikura Ltd Insulated electric wire for electrification bonding
JPH11176246A (en) * 1997-10-24 1999-07-02 Furukawa Electric Co Ltd:The Multi-layer insulated wire and transformer using it
JP2002237218A (en) * 2001-02-08 2002-08-23 Yazaki Corp Welding electric wire for harness and its manufacturing method

Also Published As

Publication number Publication date
CN115668410A (en) 2023-01-31
JP7088999B2 (en) 2022-06-21
JP2022060717A (en) 2022-04-15
JP2022113735A (en) 2022-08-04
TW202215453A (en) 2022-04-16

Similar Documents

Publication Publication Date Title
TWI550648B (en) Insulated wires and manufacturing methods using such coils and insulated wires
JP4579989B2 (en) Multilayer insulated wire and transformer using the same
JP5739810B2 (en) Multilayer insulated wire and transformer using the same
US6583361B2 (en) Flexible coaxial cable and a method of manufacturing it
US20140224522A1 (en) Insulated electric wire and method of manufacturing the same
JP4762474B2 (en) Multilayer insulated wire and transformer using the same
JP2013033607A (en) Electric insulated wire and manufacturing method thereof
TWI402861B (en) Multilayer insulated wires and transformers using them
US9773583B2 (en) Continously transposed conductor
KR20180090255A (en) Self-fusible insulated wires, coils and electric / electronic devices
WO1998031022A1 (en) Insulated electrical conductors
JP6355304B2 (en) Solderable insulated wire and manufacturing method thereof
JP6846882B2 (en) Flat insulated wire and its manufacturing method
WO2022074900A1 (en) Fusible insulated wire and self-fusion coil
JP5454297B2 (en) Insulated wire
JP2014103045A (en) Insulation wire and its manufacturing method
JP7166769B2 (en) SELF-FUSED INSULATED WIRE, METHOD FOR MANUFACTURING THE SAME, AND COIL
JP2008066024A (en) Extra-fine coaxial cable
JP5516303B2 (en) Insulated wire and manufacturing method thereof
JP5561238B2 (en) Insulated wire and manufacturing method thereof
JPS6333245B2 (en)
JP5256008B2 (en) Induction heating cooker
JP6747154B2 (en) Fuse-insulated electric wire and method for manufacturing fusible insulated wire
JP3464257B2 (en) Self-fusing multilayer insulated wire and transformer using the same
WO2021210668A1 (en) Heat-resistant insulated electric wire

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21877204

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21877204

Country of ref document: EP

Kind code of ref document: A1