WO2022073405A1 - 一种变压器及其绕组结构 - Google Patents

一种变压器及其绕组结构 Download PDF

Info

Publication number
WO2022073405A1
WO2022073405A1 PCT/CN2021/116647 CN2021116647W WO2022073405A1 WO 2022073405 A1 WO2022073405 A1 WO 2022073405A1 CN 2021116647 W CN2021116647 W CN 2021116647W WO 2022073405 A1 WO2022073405 A1 WO 2022073405A1
Authority
WO
WIPO (PCT)
Prior art keywords
winding
windings
insulation
basic
reinforced
Prior art date
Application number
PCT/CN2021/116647
Other languages
English (en)
French (fr)
Inventor
王富
王航
李随军
朱梅梅
Original Assignee
阳光电源股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 阳光电源股份有限公司 filed Critical 阳光电源股份有限公司
Publication of WO2022073405A1 publication Critical patent/WO2022073405A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/32Insulating of coils, windings, or parts thereof
    • H01F27/324Insulation between coil and core, between different winding sections, around the coil; Other insulation structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/32Insulating of coils, windings, or parts thereof

Definitions

  • the present application relates to the technical field of transformers, and in particular, to a transformer and its winding structure.
  • the voltage with a decisive voltage level higher than DVC-A (DC voltage ⁇ 60V, AC voltage RMS ⁇ 25V, AC voltage peak ⁇ 35.4V) is regarded as a non-safe voltage, referred to as strong current; in practice In applications, circuits that are directly connected to strong electricity or are only separated by functional insulation are also regarded as strong electricity; and if the human body is in direct contact with strong electricity, there is a danger of electric shock.
  • a casing or barrier can be added around the electrical appliance, and the strong-current windings and the power supply windings that supply power to conductive components such as external communication interfaces can be insulated, such as photovoltaic inverters (the battery panel string voltage is as high as 1100Vdc or even 1500Vdc), the power supply winding connected to its external communication interface (RS485 or CAN).
  • the insulation treatment can usually be reinforced insulation or double insulation.
  • reinforced insulation it can be seen from the photovoltaic safety standards that for the repetitive peak value of the working voltage across the insulating parts is greater than 700V and the voltage stress on the insulation is greater than 1kV/mm, the isolation transformer that realizes the reinforced insulation needs to meet the partial discharge requirements. Therefore, it is also necessary to perform partial discharge detection on transformers that realize reinforced insulation between windings.
  • the embodiments of the present application provide a transformer and its winding structure to solve the problem in the prior art that the photovoltaic high-voltage system transformer cannot achieve reinforced insulation due to its own partial discharge detection difficulty meeting the partial discharge requirements.
  • One aspect of the present application provides a winding structure of a transformer, comprising: reinforced insulation windings, at least two basic insulation windings, and at least one strong current winding; wherein:
  • the reinforced insulating windings, all the basic insulating windings and all the high-current windings are wound in layers along the skeleton of the main structure of the transformer;
  • At least one of the basic insulation windings Adjacent to the reinforced insulation winding, at least one of the basic insulation windings is wound at the front and back respectively, so that at least one basic insulation winding is wound between the reinforced insulation winding and any of the strong current windings.
  • the winding sequence of the high-current winding is prior to the reinforced insulation winding and the two basic insulation windings immediately before and after it; or,
  • the winding sequence of the reinforced insulation winding and the two basic insulation windings immediately adjacent to each other is prior to the strong current winding.
  • the insulated wires of the reinforced insulated winding and the basic insulated winding are three-layer insulated wires.
  • the insulating wires of the reinforced insulating winding and the basic insulating winding are enameled wires or Litz wires, and both are wrapped with insulating tapes.
  • the insulated wire of the high-current winding is an enameled wire, or a Litz wire.
  • the reinforced insulation winding, the basic insulation winding and the high-current winding each include: at least one winding; all the windings are wound on the same layer.
  • the reinforced insulation winding, the basic insulation winding and the high-current winding each include: at least one winding; when the number of the windings is greater than 1, all the windings are divided into at least two layers of windings. system.
  • the high-current windings for taking electricity from the photovoltaic panel, the inverter DC bus or the AC power grid;
  • the basic insulated winding is used to supply power to the control system of the inverter
  • the reinforced insulation winding is used for supplying power to the external communication interface and the dry node interface in the inverter.
  • the output ends of the two basic insulation windings are connected in parallel, or the output end of one basic insulation winding is suspended.
  • a transformer comprising: a main structure and a winding structure of the transformer as described above.
  • the main structure includes at least a skeleton and at least one set of retaining walls; wherein:
  • the retaining wall is arranged between the frame and the corresponding winding.
  • the present application provides a winding structure of a transformer.
  • the reinforced insulating winding, all the basic insulating windings and all the strong electric windings are wound along the skeleton of the main structure of the transformer; At least one basic insulating winding is wound between the winding and any strong current winding, so that the insulation thickness between the strong current winding and the reinforced insulating winding is increased, and then the discharge amount of the partial discharge test of the transformer is reduced. Therefore,
  • the invention solves the problem in the prior art that the transformer in the photovoltaic high-voltage system cannot achieve reinforced insulation due to its own partial discharge detection being difficult to meet the partial discharge requirements.
  • Figure 1 is a schematic diagram of partial discharge detection
  • FIG. 2-FIG. 15 are schematic diagrams of fourteen winding ways of the winding structure of the transformer provided by the embodiments of the application;
  • Fig. 16 is the winding structure of the transformer in the prior art
  • FIG. 17 is a schematic diagram of a reinforced insulation power supply solution for a photovoltaic high-voltage system provided by an embodiment of the present application.
  • the terms “comprising”, “comprising” or any other variation thereof are intended to encompass a non-exclusive inclusion such that a process, method, article or device comprising a list of elements includes not only those elements, but also no Other elements expressly listed, or which are also inherent to such a process, method, article or apparatus.
  • an element qualified by the phrase “comprising a" does not preclude the presence of additional identical elements in a process, method, article or apparatus that includes the element.
  • the first stage of partial discharge detection is: apply 1.875 times the maximum repetitive peak voltage U PD to the primary and secondary sides of the transformer with reinforced insulation between windings for 5s; the second stage is: The primary and secondary sides of the transformer are applied with 1.5 times the maximum repetitive peak voltage U PD for 15s, and the partial discharge charge of the transformer is measured at the same time. If the partial discharge charge is less than 10pC, the transformer is considered to meet the partial discharge requirements.
  • an embodiment of the present application provides a winding structure of a transformer, including: reinforced insulation windings, at least two basic insulation windings, and at least one strong current winding.
  • the number of basic insulating windings and strong current windings is selected according to the actual situation, which is not specifically limited here, and all fall within the protection scope of the present application.
  • the reinforced insulation winding is the winding that realizes reinforced insulation with the strong current winding.
  • it can be connected to the external conductive devices such as the external communication interface and the dry node interface in the inverter and supply power to it;
  • the basic insulation winding is the winding that realizes basic insulation with the strong current winding.
  • it can be connected to the control system in the inverter to supply power, and it can be regarded as a weak current winding; the strong current winding is used to receive strong current or output strong current.
  • the electrical winding can take power from photovoltaic panels, inverter DC bus or AC grid, or can supply power to drive circuits or power chips.
  • the reinforced insulation windings, all the basic insulation windings and all the strong current windings are wound in layers along the skeleton of the main structure of the transformer. At least one basic insulating winding is respectively wound at the front and rear, so that at least one basic insulating winding is wound between the reinforced insulating winding and any strong electric winding.
  • the reinforced insulating winding is adjacent to the reinforced insulating winding, and at least one basic insulating winding is wound around it, so that the reinforced insulating winding and any strong current winding are wound with At least one basic insulated winding, that is, the reinforced insulated winding, is separated from any strong current winding, so that the insulation thickness between the strong current winding and the reinforced insulated winding is increased, thereby reducing the discharge amount of the transformer partial discharge test has a significant effect. Therefore, It solves the problem that the transformer in the photovoltaic high-voltage (700V+) system cannot meet the partial discharge requirements due to its own partial discharge detection and cannot achieve reinforced insulation.
  • a potting glue process can usually be used, or a larger customized size and a higher relative tracking index (CTI) level can be used.
  • CTI relative tracking index
  • the winding structure of the transformer does not require potting glue treatment on the transformer, nor does it need to customize a transformer skeleton with a larger size and a higher CTI (Tracking Index) level, and use the transformer primary and secondary windings.
  • the three-layer insulated wire is wound, and the winding sequence of each winding can be reasonably arranged to have a significant effect on reducing the discharge amount of the partial discharge test of the transformer. Therefore, the winding structure of the transformer realizes the simplification of the power supply scheme and the production process. reduce and optimize the volume, weight and cost of the transformer with significant gains.
  • both the primary winding and the secondary winding of the transformer need to be wound with three layers of insulated wires, while the winding structure of the transformer provided in this embodiment has reinforced insulation between the insulation winding and the basic insulation winding.
  • the wire can be a three-layer insulated wire, an enameled wire wrapped with insulating tape on the outside, or a Litz wire wrapped with insulating tape on the outside. In practical applications, it includes but is not limited to the above-mentioned insulating materials, which are not specifically limited here. All are within the protection scope of the present application, depending on the specific circumstances.
  • the insulating wire of the high-voltage winding can only be made of enameled wire or Litz wire. In practical applications, including but not limited to the above-mentioned insulating materials, there is no specific limitation here, and they are all within the protection scope of the present application. Depends.
  • the insulated wire of the reinforced insulated winding or the basic insulated winding is: enameled wire or Litz wire wrapped with insulating tape
  • the thickness or number of layers of the insulating tape can be determined by the partial discharge effect, here There is no specific limitation, and they are all within the protection scope of the present application.
  • the interior of the reinforced insulation winding, the basic insulation winding and the strong current winding may include: at least one winding, and all windings may be wound on the same layer along the main structure skeleton of the transformer; and, when the number of windings is greater than 1, all The winding can be wound on the main structure skeleton of the transformer in at least two layers; no specific limitation is made here, and it depends on the specific situation, which is all within the protection scope of the present application.
  • the winding sequence of all strong current windings is at least prior to the reinforced insulation winding and the two basic insulation windings immediately before and after it.
  • the winding method is specifically as follows: the strong current winding is immediately adjacent to the reinforced insulated winding and the two basic insulated windings immediately before and after it, and is wound before it.
  • the winding structure of the transformer includes: a reinforced insulation winding, two basic insulation windings and a strong current winding.
  • the windings wound from the inside to the outside along the transformer skeleton are respectively They are: strong current winding Np, first basic insulation winding Ns1, reinforced insulation winding Nss, and second basic insulation winding Ns2.
  • the winding method is specifically as follows: the strong current winding is wound before the reinforced insulated winding and the two basic insulated windings immediately before and after it, except for the two basic insulated windings immediately before and after the reinforced insulated winding.
  • the other basic insulating windings can be wound immediately adjacent to the strong current winding and before it, as shown in Figure 3; it can also be wound immediately adjacent to the strong current winding and wound after it, as shown in Figure 4; it can also be wound with the strong current winding.
  • the electrical windings are spaced apart and wound after them, as shown in FIG. 5 .
  • the winding structures of the transformer shown in Figure 3, Figure 4 and Figure 5 all include: a reinforced insulation winding, three basic insulation windings and a strong current winding.
  • the windings wound in turn are: the first basic insulation winding Ns1, the strong current winding Np, the second basic insulation winding Ns2, the reinforced insulation winding Nss, and the third basic insulation winding Ns3;
  • the windings of the transformer shown in Figure 4 In the structure, the windings wound from the inside to the outside along the skeleton of the transformer are: strong current winding Np, first basic insulation winding Ns1, second basic insulation winding Ns2, reinforced insulation winding Nss, and third basic insulation winding Ns3;
  • the windings wound from the inside to the outside along the transformer skeleton are: strong current winding Np, first basic insulation winding Ns1, reinforced insulation winding Nss, second basic insulation winding
  • each of the other basic insulation windings can use the same winding method or different winding methods, that is, they can be set at any position. There is no specific limitation here, and the selection is made according to the actual situation of each of the remaining basic insulated windings, which are all within the protection scope of the present application.
  • the winding method is as follows: all the high-voltage windings are wound in sequence, and the reinforced insulating winding and the two basic insulating windings immediately before and after it are adjacent to all the high-voltage windings, and after winding.
  • the winding structure of the transformer includes: one reinforced insulating winding, two basic insulating windings and two strong current windings. They are: the first strong current winding Np1, the second strong current winding Np2, the first basic insulation winding Ns1, the reinforced insulation winding Nss, and the second basic insulation winding Ns2.
  • the winding method is specifically as follows: all the strong current windings are wound before the reinforced insulated winding and the two basic insulated windings immediately before and after it. Except for the two basic insulation windings that are immediately adjacent to the front and rear of the reinforced insulation winding, the other basic insulation windings can be wound immediately adjacent to and before all the strong current windings, as shown in Figure 7; they can be wound immediately adjacent to and after all the strong current windings. It can also be wound between any two strong current windings, as shown in Figure 9; it can also be separated from and wound after all the strong current windings, as shown in Figure 10.
  • the winding structures of the transformer shown in Fig. 7, Fig. 8, Fig. 9 and Fig. 10 all include: one reinforced insulating winding, three basic insulating windings and two high-current windings; in the winding structure of the transformer shown in Fig. 7, along the The windings wound from the inside to the outside of the transformer skeleton are: the first basic insulation winding Ns1, the first strong current winding Np1, the second strong current winding Np2, the second basic insulation winding Ns2, the reinforced insulation winding Nss, and the third basic insulation winding Nss.
  • Insulation winding Ns3 in the winding structure of the transformer shown in Figure 8, the windings wound from the inside to the outside along the transformer skeleton are: the first strong current winding Np1, the second strong current winding Np2, and the first basic insulating winding. Ns1, the second basic insulating winding Ns2, the reinforced insulating winding Nss, and the third basic insulating winding Ns3; in the winding structure of the transformer shown in FIG.
  • the windings wound from the inside to the outside along the transformer skeleton are: the first The strong current winding Np1, the first basic insulation winding Ns1, the second strong current winding Np2, the second basic insulation winding Ns2, the reinforced insulation winding Nss, and the third basic insulation winding Ns3; in the winding structure of the transformer shown in FIG. 10,
  • the windings wound from the inside to the outside along the transformer skeleton are: the first strong current winding Np1, the second strong current winding Np2, the first basic insulation winding Ns1, the reinforced insulation winding Nss, the second basic insulation winding Ns2, the third Basic insulated winding Ns3.
  • each of the other basic insulation windings can use the same winding method or different winding methods, that is, they can be set at any position. There is no specific limitation here, and the selection is made according to the actual situation of each of the remaining basic insulated windings, which are all within the protection scope of the present application.
  • the winding sequence of all high-current windings is at least behind the reinforced insulation winding and the two basic insulation windings immediately before and after it.
  • the winding sequence of a part of the strong current winding is at least prior to the reinforced insulation winding and the two basic insulation windings immediately before and after it, and the winding sequence of the other part of the strong current winding is at least behind the reinforced insulation winding and the two basic insulation windings immediately before and after it. Insulated windings.
  • the number of strong current windings must be greater than 1.
  • the winding method is specifically as follows: a part of the strong current windings are wound in sequence, and the reinforced insulated winding and the two basic insulated windings immediately adjacent to the front and rear are adjacent to the part of the strong current winding, and in its After winding; another part of the strong current winding is wound in turn, and the reinforced insulating winding and the two basic insulating windings immediately before and after it are adjacent to this part of the strong current winding, which is wound before it.
  • the winding of the transformer includes: one reinforced insulating winding, two basic insulating windings and two strong current windings; in the winding structure of the transformer, the windings wound from the inside to the outside along the transformer skeleton are: the first strong current winding Np1 , the first basic insulation winding Ns1, the reinforced insulation winding Nss, the second basic insulation winding Ns2, and the second strong current winding Np2.
  • the winding method is as follows: a part of the strong electric winding is wound before the reinforced insulation winding and the two basic insulation windings immediately before and after it, and the other part of the strong electric winding is wound before the reinforced insulation winding and The two basic insulating windings immediately before and after it are wound, and except for the two basic insulating windings that are immediately adjacent to the front and rear of the reinforced insulating winding, the other basic insulating windings can be wound immediately adjacent to any part of the strong current winding and wound before it, as shown in Figure 12 It can be wound immediately adjacent to any part of the strong current winding, as shown in Figure 13; it can also be wound between any two strong current windings, as shown in Figure 14.
  • FIGS 12, 13 and 14 are all shown by taking the remaining basic insulation windings adjacent to the first part of the strong current winding as an example, and the actual application is not limited to this.
  • the winding structure of the transformer shown here includes: one reinforced insulation winding, three basic insulation windings and three strong current windings; in the winding structure of the transformer shown in Figure 12, the windings are wound from the inside to the outside along the transformer skeleton The windings are: the first basic insulation winding Ns1, the first strong current winding Np1, the second strong current winding Np2, the second basic insulation winding Ns2, the reinforced insulation winding Nss, the third basic insulation winding Ns3, the third strong current winding Np3 ; In the winding structure of the transformer shown in Figure 13, the windings wound from the inside to the outside along the transformer skeleton are: the first strong current winding Np1, the second strong current winding Np2, the first basic insulation winding Ns1, the first The second basic insulating winding Ns2, the reinforced insulating wind
  • each of the other basic insulation windings can use the same winding method or different winding methods, that is, they can be set at any position. There is no specific limitation here, and the selection is made according to the actual situation of each of the remaining basic insulated windings, which are all within the protection scope of the present application.
  • the winding structures of the transformers shown in FIG. 15 and FIG. 16 both include: a first strong current main winding Np1-1, a first strong current secondary winding Np1-2, a second strong current winding Np2, and a third strong current winding Np3 , the first basic insulation winding Ns1, the second basic insulation winding Ns2 and the reinforced insulation winding Nss;
  • Figure 15 adopts the winding structure of the transformer provided by the application, and the windings wound from the inside to the outside along the transformer skeleton are respectively:
  • the windings wound from the inside to the outside along the transformer skeleton are respectively : The first strong current main winding Np1-1, the first strong current secondary winding Np1-2, the first basic insulation winding Ns1, the second basic insulation winding Ns2, the reinforced insulation winding Nss, the second strong current winding Np2, the third strong current winding Electrical winding Np3.
  • Table 1 shows the test results of the transformers with the structures shown in Fig. 15 and Fig. 16, and the corresponding partial discharge tests are performed according to the 1100V system voltage and the 1500V system voltage. It can be seen from Table 1 that the transformers with the structure shown in Fig. Under the 1500V system voltage, the measured partial discharge charge is less than 2pC, far less than the standard 10pC, which meets the partial discharge requirements.
  • the measured partial discharge charge exceeds 10pC under the 1100V system voltage, and the measured partial discharge charge exceeds 20pC under the 1500V system voltage, which are all larger than the standard requirements and do not meet the partial discharge requirements.
  • the winding structure of the transformer provided by the present application has a significant effect on reducing the discharge amount of the partial discharge test of the transformer.
  • Another embodiment of the present application provides a reinforced insulation power supply solution for a photovoltaic high-voltage system.
  • the power supply is designed according to the winding structure of the transformer provided in the above-mentioned embodiment of the present application.
  • the Np1 winding includes Np1-1 and Np1-2, and the Np1 winding can take power from the photovoltaic panel, the DC bus of the inverter, or the AC grid, the specific form is not limited .
  • the windings Np2 and Np3 are both directly connected to the winding Np1 or separated only by functional insulation. Therefore, the Np2 and Np3 windings are high-current windings; among them, the Np2 winding is the Boost and/or INV in the inverter.
  • the module and/or the single-tube drive power supply winding, and the Np2 winding can be one winding or multiple windings, and the specific number is not limited; the Np3 winding is the power supply winding for the auxiliary power chip VCC.
  • the Ns1 winding and the Ns2 winding are the power supply for the control system in the inverter, and meet the basic insulation with the Np1 winding. Therefore, the Ns1 winding and Ns2 are basic insulation windings, which can be regarded as weak current.
  • the Nss winding is used to supply power to the external interfaces such as external communication and dry nodes in the inverter, and it meets the reinforced insulation with the winding Np1. Therefore, the Nss winding is a reinforced insulation winding and is regarded as weak current.
  • the insulation treatment of the strong current winding and the power supply winding that supplies power to conductive components such as external communication interfaces can be double insulation.
  • the volume and space occupied by the double insulation circuit are large, and the cost is high; and the above-mentioned power supply scheme can effectively save the second-level power supply in the above scheme, thereby simplifying the auxiliary power supply scheme of the whole system.
  • the volume, weight, and cost optimization of the device have significant gains.
  • the two basic insulation windings adjacent to the reinforced insulation windings can be installed.
  • the output ends of the windings are connected in parallel to form a high-power power supply port, or the output end of either of the two can be left floating as a backup power supply port for later expansion; there is no specific limitation here, depending on the specific situation , all within the scope of protection of this application.
  • the output ends of at least two basic insulation windings are connected in parallel; and/or the output end of at least one basic insulation winding is suspended, so as to ensure that the reinforced insulation winding can be sandwiched by the two basic insulation windings.
  • the middle in order to increase the insulation thickness of the strong electric winding and the reinforced insulation winding.
  • the main structure of the transformer includes at least a skeleton and at least one set of retaining walls, wherein a retaining wall is placed on each of the left and right sides of the winding to form a set of retaining walls, and the retaining walls are arranged between the skeleton and the corresponding windings for the purpose of Increase the safety distance, especially the distance between the strong current winding and the magnetic core, to ensure that the winding of each winding meets the safety requirements, so as to avoid potential power safety hazards and ensure the power safety of the transformer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Coils Of Transformers For General Uses (AREA)

Abstract

本申请提供一种变压器及其绕组结构。在该变压器的绕组结构中,加强绝缘绕组、全部基本绝缘绕组以及全部强电绕组均沿变压器主结构的骨架分层绕制; 并且,紧邻加强绝缘绕组,其前后分别绕制有至少一个基本绝缘绕组,以使加强绝缘绕组与任意强电绕组之间均绕制有至少一个基本绝缘绕组,从而使得强电绕组与加强绝缘绕组之间的绝缘厚度增加,进而对该变压器局部放电试验的放电量降低具有显著效果,因此解决了现有技术中,光伏高压系统中变压器因自身局部放电检测难以达到局部放电要求而无法实现加强绝缘的问题。

Description

一种变压器及其绕组结构
本申请要求于2020年10月09日提交中国专利局、申请号为202011072144.X、发明名称为“一种变压器及其绕组结构”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及变压器技术领域,特别是涉及一种变压器及其绕组结构。
背景技术
光伏安规标准中,对于决定性电压等级高于DVC-A(直流电压≤60V,交流电压有效值≤25V,交流电压峰≤35.4V)的电压,视为非安全电压,简称强电;在实际应用中,与强电直接相连或者仅由功能绝缘隔开的电路,也同样被视为强电;并且,若人体直接接触强电,则会有触电危险。因此出于人体安全考虑,可以在电器周围增加外壳或者屏障,也可以对强电绕组以及为对外通信接口等导电部件供电的供电绕组进行绝缘处理,比如光伏逆变器(电池板组串电压高达1100Vdc甚至1500Vdc)中,与其对外通信接口(RS485或者CAN)相连的供电绕组。
其中,为了避免发生单一失效而导致电击危险,绝缘处理通常可以采用加强绝缘或者双重绝缘。当绝缘处理采用加强绝缘时,由光伏安规标准可知,对于跨在绝缘部件上的工作电压重复峰值大于700V且绝缘上的电压应力大于1kV/mm,实现加强绝缘的隔离变压器需要满足局部放电要求,因此还需要对实现绕组间加强绝缘的变压器进行局部放电检测。
但是,就目前而言,光伏高压系统中变压器的局部放电检测难以达到局部放电要求,从而无法实现加强绝缘。
发明内容
有鉴于此,本申请实施例提供一种变压器及其绕组结构,以解决现有技术中,光伏高压系统变压器因自身局部放电检测难以达到局部放电要求而无法实现加强绝缘的问题。
为实现上述目的,本申请实施例提供如下技术方案:
本申请一方面提供一种变压器的绕组结构,包括:加强绝缘绕组、至少两个基本绝缘绕组以及至少一个强电绕组;其中:
所述加强绝缘绕组、全部所述基本绝缘绕组以及全部所述强电绕组均沿所述变压器主结构的骨架分层绕制;
紧邻所述加强绝缘绕组,其前后分别绕制有至少一个所述基本绝缘绕组,以使所述加强绝缘绕组与任意所述强电绕组之间均绕制有至少一个所述基本绝缘绕组。
可选的,当所述强电绕组的个数等于1时:
所述强电绕组的绕制顺序先于所述加强绝缘绕组及其前后紧邻的两个所述基本绝缘绕组;或者,
所述加强绝缘绕组及其前后紧邻的两个所述基本绝缘绕组的绕制顺序先于所述强电绕组。
可选的,当所述强电绕组的个数大于等于2时:
存在至少一个所述强电绕组的绕制顺序先于所述加强绝缘绕组及其前后紧邻的两个所述基本绝缘绕组;和/或,
所述加强绝缘绕组及其前后紧邻的两个所述基本绝缘绕组的绕制顺序先于至少一个所述强电绕组。
可选的,所述加强绝缘绕组和所述基本绝缘绕组的绝缘线材为三层绝缘线。
可选的,所述加强绝缘绕组和所述基本绝缘绕组的绝缘线材为漆包线或者利兹线,且两者外部均包裹有绝缘胶带。
可选的,所述强电绕组的绝缘线材为漆包线,或者,利兹线。
可选的,所述加强绝缘绕组、所述基本绝缘绕组以及所述强电绕组,均包括:至少一个绕组;全部所述绕组均绕制于同一层。
可选的,所述加强绝缘绕组、所述基本绝缘绕组以及所述强电绕组,均包括:至少一个绕组;当所述绕组的个数大于1时,全部所述绕组分为至少两层绕制。
可选的,存在至少一个所述强电绕组用于从光伏电池板、逆变器直流母线或者交流电网取电;
存在至少一个所述强电绕组用于为驱动电路或者电源芯片供电;
所述基本绝缘绕组用于为逆变器的控制系统供电;
所述加强绝缘绕组用于为所述逆变器中的对外通信接口和干节点接口供电。
可选的,若所述基本绝缘绕组仅存在一路负载,则两个所述基本绝缘绕组的输出端并联连接,或者,一个所述基本绝缘绕组的输出端悬空。
本申请另一方面提供一种变压器,包括:主结构和如上述任一所述的变压器的绕组结构。
可选的,所述主结构至少包括骨架和至少一组挡墙;其中:
所述挡墙设置于所述骨架与对应的绕组之间。
由上述技术方案可知,本申请提供了一种变压器的绕组结构。其中,加强绝缘绕组、全部基本绝缘绕组以及全部强电绕组均沿变压器主结构的骨架分层绕制;并且,紧邻加强绝缘绕组,其前后分别绕制有至少一个基本绝缘绕组,以使加强绝缘绕组与任意强电绕组之间均绕制有至少一个基本绝缘绕组,从而使得强电绕组与加强绝缘绕组之间的绝缘厚度增加,进而对该变压器局部放电试验的放电量降低具有显著效果,因此解决了现有技术中,光伏高压系统中变压器因自身局部放电检测难以达到局部放电要求而无法实现加强绝缘的问题。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1为局部放电检测示意图;
图2-图15为本申请实施例提供的变压器的绕组结构的十四种绕制方式的示意图;
图16为现有技术中的变压器的绕组结构;
图17为本申请实施例提供的一种光伏高压系统加强绝缘供电电源方案的示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是 全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
由背景技术可知,需要对实现绕组间加强绝缘的变压器及进行局部放电检测。如图1所示,局部放电检测的第一阶段为:在实现绕组间加强绝缘的变压器中的原副边上施加1.875倍的最大重复峰值电压U PD,时间维持5s;第二阶段为:在该变压器的原副边施加1.5倍的最大重复峰值电压U PD,时间维持15s,并同时测量变压器的局部放电电荷量,若局部放电电荷量小于10pC,则认为该变压器满足局部放电需求。
但是,在现有技术中,光伏高压系统中变压器因自身局部放电检测难以达到局部放电要求,而无法实现加强绝缘。为了解决此问题,本申请实施例提供一种变压器的绕组结构,包括:加强绝缘绕组、至少两个基本绝缘绕组以及至少一个强电绕组。
其中,基本绝缘绕组和强电绕组的数量视实际情况进行选取,此处不做具体限定,均在本申请保护范围内。
需要说明的是,加强绝缘绕组即为与强电绕组实现加强绝缘的绕组,实际应用中,可以与逆变器中的对外通信接口、干节点接口等对外导电器件相连,并为其供电;而基本绝缘绕组即为与强电绕组实现基本绝缘的绕组,实际应用中,可以与逆变器中的控制系统相连、为其供电,可视为弱电绕组;强电绕组为接收强电或者输出强电的绕组,可以从光伏电池板、逆变器直流母线或者交流电网取电,或者可以为驱动电路或者电源芯片供电。
在该变压器的绕组结构中,加强绝缘绕组、全部基本绝缘绕组以及全部强电绕组均沿变压器主结构的骨架分层绕制,并且,在全部绕组的绕制过程中,紧邻加强绝缘绕组,其前后分别绕制有至少一个基本绝缘绕组,以使加强绝缘 绕组与任意强电绕组之间均绕制有至少一个基本绝缘绕组。
由上述说明可知,在本实施例提供的变压器的绕组结构中,紧邻加强绝缘绕组,其前后分别绕制有至少一个基本绝缘绕组,以使加强绝缘绕组与任意强电绕组之间均绕制有至少一个基本绝缘绕组,即加强绝缘绕组与任意强电绕组相隔,从而使得强电绕组与加强绝缘绕组之间的绝缘厚度增加,进而对该变压器局部放电试验的放电量降低具有显著效果,因此,解决了光伏高压(700V+)系统中变压器因自身局部放电检测难以达到局部放电要求,而无法实现加强绝缘的问题。
值得说明的是,在现有技术中,为使得变压器满足局部放电要求,通常可以采用灌封胶水工艺,或者,可以通过定制尺寸更大、相对漏电起痕指数(Comparative Tracking Index,CTI)等级更高的骨架;然而,上述措施不仅会使变压器的生产工艺难度增加,还会使变压器的体积、重量以及成本大幅增加。
而本实施例提供的变压器的绕组结构,不用对变压器进行灌封胶水处理,也不用定制尺寸更大、CTI(漏电起痕指数)等级更高的变压器骨架以及将变压器原边副边绕组均采用三层绝缘线绕制,只需将各个绕组的绕制顺序进行合理排列即可对降低变压器局部放电试验的放电量具有显著效果,所以该变压器的绕组结构实现了供电方案的简化和生产工艺的降低,并使变压器的体积、重量以及成本优化均有显著的增益效果。
还值得说明的是,现有技术中变压器的原边绕组和副边绕组均需采用三层绝缘线绕制,而本实施例提供的变压器的绕组结构,其加强绝缘绕组和基本绝缘绕组的绝缘线材可以为三层绝缘线,也可以为外部包裹有绝缘胶带的漆包线,或者,外部包裹有绝缘胶带的利兹线,在实际应用中,包括但不限于上述绝缘材料,此处不做具体限定,均在本申请的保护范围内,可视具体情况而定。并且,其强电绕组的绝缘线材仅采用漆包线或者利兹线即可,在实际应用中,包括但不限于上述绝缘材料,此处不做具体限定,均在本申请的保护范围内,可视具体情况而定。
需要说明的是,当加强绝缘绕组或基本绝缘绕组的绝缘线材为:外部包裹有绝缘胶带的漆包线或利兹线时,外部包裹的绝缘胶带的厚度或层数可视局部放电效果而定,此处不做具体限定,均在本申请的保护范围内。
可选的,加强绝缘绕组、基本绝缘绕组以及强电绕组内部均可以包括:至少一个绕组,且全部绕组可以绕制于沿变压器主结构骨架的同一层;以及,当绕组数量大于1时,全部绕组可以至少分两层绕制于变压器主结构骨架上;此处不做具体限定,可视具体情况而定,均在本申请的保护范围内。
在实际应用中,在保证紧邻加强绝缘绕组,其前后分别绕制有至少一个基本绝缘绕组,以使该加强绝缘绕组与任意强电绕组之间均绕制有至少一个基本绝缘绕组的前提下,变压器的绕组结构存在多种绕制方式,本申请另一实施例提供三种绕制方式,具体如下:
一、全部强电绕组的绕制顺序至少先于加强绝缘绕组及其前后紧邻的两个基本绝缘绕组。
(1)强电绕组的个数等于1的情况
当基本绝缘绕组的个数等于2时,该绕制方式具体为:强电绕组与加强绝缘绕组及其前后紧邻的两个基本绝缘绕组紧邻,且在其之前绕制。如图2所示,变压器的绕组结构均包括:一个加强绝缘绕组、两个基本绝缘绕组以及一个强电绕组,在该变压器的绕组结构中,沿变压器骨架由内而外依次绕制的绕组分别为:强电绕组Np、第一基本绝缘绕组Ns1、加强绝缘绕组Nss、第二基本绝缘绕组Ns2。
当基本绝缘绕组的个数大于2时,该绕制方式具体为:强电绕组在加强绝缘绕组及其前后紧邻的两个基本绝缘绕组之前绕制,而除加强绝缘绕组前后紧邻的两个基本绝缘绕组外,其余各个基本绝缘绕组可以紧邻强电绕组且在其之前绕制,如图3所示;也可以紧邻强电绕组且在其之后绕制,如图4所示;还可以与强电绕组相隔且在其之后绕制,如图5所示。
图3、图4和图5所示变压器的绕组结构均包括:一个加强绝缘绕组、三个基本绝缘绕组以及一个强电绕组,在图3所示的变压器的绕组结构中,沿变压器骨架由内而外依次绕制的绕组分别为:第一基本绝缘绕组Ns1、强电绕组Np、第二基本绝缘绕组Ns2、加强绝缘绕组Nss、第三基本绝缘绕组Ns3;在图4所示的变压器的绕组结构中,沿变压器骨架由内而外依次绕制的绕组分别为:强电绕组Np、第一基本绝缘绕组Ns1、第二基本绝缘绕组Ns2、加强绝 缘绕组Nss、第三基本绝缘绕组Ns3;在图5所示的变压器的绕组结构中,沿变压器骨架由内而外依次绕制的绕组分别为:强电绕组Np、第一基本绝缘绕组Ns1、加强绝缘绕组Nss、第二基本绝缘绕组Ns2、第三基本绝缘绕组Ns3。
需要说明的是,除加强绝缘绕组前后紧邻的两个基本绝缘绕组外,其余每个基本绝缘绕组可以采用相同的绕制方式,也可以采用不同的绕制方式,也即可以设置于任意位置,此处不做具体限定,视其余每个基本绝缘绕组的实际情况进行选择,均在本申请的保护范围内。
(2)强电绕组的个数大于1的情况
当基本绝缘绕组的个数等于2时,该绕制方式具体为:全部强电绕组依次紧邻绕制,加强绝缘绕组及其前后紧邻的两个基本绝缘绕组紧邻全部强电绕组,且在其之后绕制。如图6所示,变压器的绕组结构均包括:一个加强绝缘绕组、两个基本绝缘绕组以及两个强电绕组,在该变压器的绕组结构中,沿变压器骨架由内而外依次绕制的绕组分别为:第一强电绕组Np1、第二强电绕组Np2、第一基本绝缘绕组Ns1、加强绝缘绕组Nss、第二基本绝缘绕组Ns2。
当基本绝缘绕组的个数大于2时,该绕制方式具体为:全部强电绕组在加强绝缘绕组及其前后紧邻的两个基本绝缘绕组之前绕制。而除加强绝缘绕组前后紧邻的两个基本绝缘绕组外,其余各个基本绝缘绕组可以紧邻全部强电绕组且在其之前绕制,如图7所示;可以紧邻全部强电绕组且在其之后绕制,如图8所示;也可以在任意两个强电绕组之间绕制,如图9所示;还可以与全部强电绕组相隔且在其之后绕制,如图10所示。
图7、图8、图9和图10所示变压器的绕组结构均包括:一个加强绝缘绕组、三个基本绝缘绕组以及两个强电绕组;在图7所示的变压器的绕组结构中,沿变压器骨架由内而外依次绕制的绕组分别为:第一基本绝缘绕组Ns1、第一强电绕组Np1、第二强电绕组Np2、第二基本绝缘绕组Ns2、加强绝缘绕组Nss、第三基本绝缘绕组Ns3;在图8所示的变压器的绕组结构中,沿变压器骨架由内而外依次绕制的绕组分别为:第一强电绕组Np1、第二强电绕组Np2、第一基本绝缘绕组Ns1、第二基本绝缘绕组Ns2、加强绝缘绕组Nss、第三基本绝缘绕组Ns3;在图9所示的变压器的绕组结构中,沿变压器骨架由内而外依次绕制的绕组分别为:第一强电绕组Np1、第一基本绝缘绕组Ns1、第二强 电绕组Np2、第二基本绝缘绕组Ns2、加强绝缘绕组Nss、第三基本绝缘绕组Ns3;在图10所示的变压器的绕组结构中,沿变压器骨架由内而外依次绕制的绕组分别为:第一强电绕组Np1、第二强电绕组Np2、第一基本绝缘绕组Ns1、加强绝缘绕组Nss、第二基本绝缘绕组Ns2、第三基本绝缘绕组Ns3。
需要说明的是,除加强绝缘绕组前后紧邻的两个基本绝缘绕组外,其余每个基本绝缘绕组可以采用相同的绕制方式,也可以采用不同的绕制方式,也即可以设置于任意位置,此处不做具体限定,视其余每个基本绝缘绕组的实际情况进行选择,均在本申请的保护范围内。
二、全部强电绕组的绕制顺序至少落后于加强绝缘绕组及其前后紧邻的两个基本绝缘绕组。
需要说明的是,该绕制方式与上述绕制方式的区别仅在于,加强绝缘绕组及其前后紧邻的两个基本绝缘绕组与全部强电绕组的顺序,因此该绕制方式中的各种具体实施方式均与上述绕制方式相同,可通过参考上述绕制方式的具体说明过程,推导出该绕制方式的各种具体实施方式,所以此处不再赘述。
三、一部分强电绕组的绕制顺序至少先于加强绝缘绕组及其前后紧邻的两个基本绝缘绕组,另一部分强电绕组的绕制顺序至少落后于加强绝缘绕组及其前后紧邻的两个基本绝缘绕组。
此时,强电绕组的个数必定大于1。
当基本绝缘绕组的个数等于2时,该绕制方式具体为:一部分强电绕组依次紧邻绕制,加强绝缘绕组及其前后紧邻的两个基本绝缘绕组紧邻该部分强电绕组,且在其之后绕制;另一部分强电绕组依次紧邻绕制,加强绝缘绕组及其前后紧邻的两个基本绝缘绕组紧邻该部分强电绕组,其在其之前绕制,如图11所示,变压器的绕组结构均包括:一个加强绝缘绕组、两个基本绝缘绕组以及两个强电绕组;在该变压器的绕组结构中,沿变压器骨架由内而外依次绕制的绕组分别为:第一强电绕组Np1、第一基本绝缘绕组Ns1、加强绝缘绕组Nss、第二基本绝缘绕组Ns2、第二强电绕组Np2。
当基本绝缘绕组的个数大于2时,该绕制方式具体为:一部分强电绕组在加强绝缘绕组及其前后紧邻的两个基本绝缘绕组之前绕制,另一部分强电绕组在加强绝缘绕组及其前后紧邻的两个基本绝缘绕组之后绕制,而除加强绝缘绕 组前后紧邻的两个基本绝缘绕组外,其余各个基本绝缘绕组可以紧邻任一部分强电绕组且在其之前绕制,如图12所示;可以紧邻任一部分强电绕组且在其之后绕制,如图13所示;也可以在任意两个强电绕组之间绕制,如图14所示。
图12、图13和图14均以其余各个基本绝缘绕组与前一部分强电绕组相邻为例进行展示,实际应用中并不仅限于此。其所示变压器的绕组结构均包括:一个加强绝缘绕组、三个基本绝缘绕组以及三个强电绕组;在图12所示的变压器的绕组结构中,沿变压器骨架由内而外依次绕制的绕组分别为:第一基本绝缘绕组Ns1、第一强电绕组Np1、第二强电绕组Np2、第二基本绝缘绕组Ns2、加强绝缘绕组Nss、第三基本绝缘绕组Ns3、第三强电绕组Np3;在图13所示的变压器的绕组结构中,沿变压器骨架由内而外依次绕制的绕组分别为:第一强电绕组Np1、第二强电绕组Np2、第一基本绝缘绕组Ns1、第二基本绝缘绕组Ns2、加强绝缘绕组Nss、第三基本绝缘绕组Ns3、第三强电绕组Np3;在图14所示的变压器的绕组结构中,沿变压器骨架由内而外依次绕制的绕组分别为:第一强电绕组Np1、第一基本绝缘绕组Ns1、第二强电绕组Np2、第二基本绝缘绕组Ns2、加强绝缘绕组Nss、第三基本绝缘绕组Ns3、第三强电绕组Np3。
需要说明的是,除加强绝缘绕组前后紧邻的两个基本绝缘绕组外,其余每个基本绝缘绕组可以采用相同的绕制方式,也可以采用不同的绕制方式,也即可以设置于任意位置,此处不做具体限定,视其余每个基本绝缘绕组的实际情况进行选择,均在本申请的保护范围内。
需要说明的是,上述强电绕组的三种绕制方式,可视具体应用情况进行选择,此处不做具体限定,均在本申请的保护范围内。
为验证本申请实施例提供的变压器的绕组结构是否对变压器局部放电试验的放电量降低具有显著效果,分别对图15和图16所示的变压器的绕组结构进行局部放电试验。
其中,图15和图16所示的变压器的绕组结构均包括:第一强电主绕组Np1-1、第一强电副绕组Np1-2、第二强电绕组Np2、第三强电绕组Np3、第一基本绝缘绕组Ns1、第二基本绝缘绕组Ns2以及加强绝缘绕组Nss;图15 采用的是本申请提供的变压器的绕组结构,沿变压器骨架由内而外依次绕制的绕组分别为:第一强电主绕组Np1-1、第一强电副绕组Np1-2、第一基本绝缘绕组Ns1、加强绝缘绕组Nss、第二基本绝缘绕组Ns2、第二强电绕组Np2、第三强电绕组Np3;而图16作为对照方案,没有采用本申请提供的变压器的绕组结构,在加强绝缘绕组Nss的绕制位置与图15存在区别,其沿变压器骨架由内而外依次绕制的绕组分别为:第一强电主绕组Np1-1、第一强电副绕组Np1-2、第一基本绝缘绕组Ns1、第二基本绝缘绕组Ns2、加强绝缘绕组Nss、第二强电绕组Np2、第三强电绕组Np3。
表1 局部放电测试结果
Figure PCTCN2021116647-appb-000001
表1对采用图15和图16所示结构的变压器,按照1100V系统电压以及1500V系统电压进行对应局部放电试验后的试验结果表,由表1可知,采用图15所示结构的变压器在1100V和1500V系统电压下,实测局部放电电荷量均不到2pC,远小于标准规定的10pC,满足局部放电要求。
而采用图16所示结构的变压器在1100V系统电压下,实测局部放电电荷量超过10pC,在1500V系统电压下,实测局部放电电荷量超过20pC,均大于标准规定,不满足局部放电要求。
由此可知,本申请提供的变压器的绕组结构对降低变压器局部放电试验的放电量具有显著效果。
本申请另一实施例提供一种光伏高压系统加强绝缘供电电源方案,该供电电源是根据本申请上述实施例提供的变压器的绕组结构设计而成。
如图17所示,Np1绕组包括Np1-1和Np1-2,并且Np1绕组可以从光伏电池板取电,也可以从逆变器直流母线取电,还可以从交流电网取电,具体形式不限。
而绕组Np2绕组、Np3绕组均与绕组Np1存在直接相连或仅由功能绝缘隔开,因此,Np2绕组和Np3绕组均为强电绕组;其中,Np2绕组是为逆变器中Boost和/或INV模块和/或单管驱动供电的绕组,并且,Np2绕组可以是一个绕组,也可以是多个绕组,具体数量不限;Np3绕组是为辅助电源芯片VCC供电绕组。
Ns1绕组、Ns2绕组是为逆变器中控制系统等供电,与Np1绕组满足基本绝缘,因此Ns1绕组和Ns2为基本绝缘绕组,可视为弱电。
Nss绕组是为逆变器中对外通信、干节点等对外接口供电,与绕组Np1满足加强绝缘,因此Nss绕组为加强绝缘绕组,视作弱电。
需要说明的是,在现有技术中,对强电绕组以及为对外通信接口等导电部件供电的供电绕组进行的绝缘处理可以为双重绝缘,虽然采用双重绝缘也可以避免人体直接接触强电,但是双重绝缘电路所占用的体积、空间均较大,且成本较高;而上述供电电源方案可以有效节省掉上述方案中的第二级电源,从而实现了整个系统的辅助供电方案的简化,对变压器的体积、重量以及成本优化均有显著的增益效果。
还需要说明的是,当系统中基本绝缘绕组的需求小于2个时,即系统中基本绝缘绕组仅存在一路负载时,可以将与加强绝缘绕组紧邻的两个基本绝缘绕组,比如Ns1绕组和Ns2绕组的输出端并联连接,组成一个大功率供电口,或者,也可以将两者中任意一个的输出端悬空,作为后期扩展的备用供电口;此处不做具体限定,可视具体情况而定,均在本申请的保护范围内。也即,该绕组结构中,存在至少两个基本绝缘绕组的输出端并联连接;和/或,存在至少一个基本绝缘绕组的输出端悬空,从而确保加强绝缘绕组能够被两个基本绝缘绕组夹在中间,以加大强电绕组与加强绝缘绕组的绝缘厚度。
本申请另一实施例提供一种变压器,其具体结构包括:主结构和如上述实施例提供的变压器的绕组结构。
具体而言,变压器的主结构至少包括骨架和至少一组挡墙,其中,绕组左右两边各放一个挡墙进而构成一组挡墙,且挡墙设置于骨架与对应的绕组之间,用来增加安全距离,尤其是强电绕组和磁芯之间的距离,以保证各个绕组 的绕制满足安规要求,从而可以避免发生电力安全隐患,保证变压器的电力安全。
本发明中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的装置而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制。虽然本发明已以较佳实施例揭露如上,然而并非用以限定本发明。任何熟悉本领域的技术人员,在不脱离本发明技术方案范围情况下,都可利用上述揭示的方法和技术内容对本发明技术方案做出许多可能的变动和修饰,或修改为等同变化的等效实施例。因此,凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所做的任何简单修改、等同变化及修饰,均仍属于本发明技术方案保护的范围内。

Claims (12)

  1. 一种变压器的绕组结构,其特征在于,包括:加强绝缘绕组、至少两个基本绝缘绕组以及至少一个强电绕组;其中:
    所述加强绝缘绕组、全部所述基本绝缘绕组以及全部所述强电绕组均沿所述变压器的主结构的骨架分层绕制;
    紧邻所述加强绝缘绕组,其前后分别绕制有至少一个所述基本绝缘绕组,以使所述加强绝缘绕组与任意所述强电绕组之间均绕制有至少一个所述基本绝缘绕组。
  2. 根据权利要求1所述的变压器的绕组结构,其特征在于,当所述强电绕组的个数等于1时:
    所述强电绕组的绕制顺序先于所述加强绝缘绕组及其前后紧邻的两个所述基本绝缘绕组;或者,
    所述加强绝缘绕组及其前后紧邻的两个所述基本绝缘绕组的绕制顺序先于所述强电绕组。
  3. 根据权利要求1所述的变压器的绕组结构,其特征在于,当所述强电绕组的个数大于等于2时:
    存在至少一个所述强电绕组的绕制顺序先于所述加强绝缘绕组及其前后紧邻的两个所述基本绝缘绕组;和/或,
    所述加强绝缘绕组及其前后紧邻的两个所述基本绝缘绕组的绕制顺序先于至少一个所述强电绕组。
  4. 根据权利要求1-3任一所述的变压器的绕组结构,其特征在于,所述加强绝缘绕组和所述基本绝缘绕组的绝缘线材为三层绝缘线。
  5. 根据权利要求1-3任一所述的变压器的绕组结构,其特征在于,所述加强绝缘绕组和所述基本绝缘绕组的绝缘线材为漆包线或者利兹线,且两者外部均包裹有绝缘胶带。
  6. 根据权利要求1-3任一所述的变压器的绕组结构,其特征在于,所述强电绕组的绝缘线材为漆包线,或者,利兹线。
  7. 根据权利要求1-3任一所述的变压器的绕组结构,其特征在于,所述 加强绝缘绕组、所述基本绝缘绕组以及所述强电绕组,均包括:至少一个绕组;全部所述绕组均绕制于同一层。
  8. 根据权利要求1-3任一所述的变压器的绕组结构,其特征在于,所述加强绝缘绕组、所述基本绝缘绕组以及所述强电绕组,均包括:至少一个绕组;当所述绕组的个数大于1时,全部所述绕组分为至少两层绕制。
  9. 根据权利要求1-3任一所述的变压器的绕组结构,其特征在于,当所述强电绕组的个数大于等于2时:
    存在至少一个所述强电绕组用于从光伏电池板、逆变器直流母线或者交流电网取电;
    存在至少一个所述强电绕组用于为驱动电路或者电源芯片供电;
    所述基本绝缘绕组用于为逆变器的控制系统供电;
    所述加强绝缘绕组用于为所述逆变器中的对外通信接口和干节点接口供电。
  10. 根据权利要求1-3任一所述的变压器的绕组结构,其特征在于,若所述基本绝缘绕组仅存在一路负载,则两个所述基本绝缘绕组的输出端并联连接,或者,一个所述基本绝缘绕组的输出端悬空。
  11. 一种变压器,其特征在于,包括:主结构和如权利要求1-10任一所述的变压器的绕组结构。
  12. 根据权利要求11所述的变压器,其特征在于,所述主结构至少包括骨架和至少一组挡墙;其中:
    所述挡墙设置于所述骨架与对应的绕组之间。
PCT/CN2021/116647 2020-10-09 2021-09-06 一种变压器及其绕组结构 WO2022073405A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011072144.X 2020-10-09
CN202011072144.XA CN112216483B (zh) 2020-10-09 2020-10-09 一种变压器及其绕组结构

Publications (1)

Publication Number Publication Date
WO2022073405A1 true WO2022073405A1 (zh) 2022-04-14

Family

ID=74052940

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/116647 WO2022073405A1 (zh) 2020-10-09 2021-09-06 一种变压器及其绕组结构

Country Status (2)

Country Link
CN (1) CN112216483B (zh)
WO (1) WO2022073405A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112216483B (zh) * 2020-10-09 2022-04-08 阳光电源股份有限公司 一种变压器及其绕组结构

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203377071U (zh) * 2013-08-27 2014-01-01 崧顺电子(深圳)有限公司 抗共模干扰的变压器
CN203982986U (zh) * 2014-06-16 2014-12-03 深圳市迈思普电子有限公司 一种新型三明治绕法变压器
CN205159057U (zh) * 2015-11-10 2016-04-13 东莞市奥海电源科技有限公司 抵抗共模干扰的变压器绕线结构及便携式充电器
US20170117091A1 (en) * 2015-10-23 2017-04-27 Power Integrations, Inc. Power converter transformer with reduced leakage inductance
WO2020033325A1 (en) * 2018-08-06 2020-02-13 Google Llc Shielded electrical transformer
CN112216483A (zh) * 2020-10-09 2021-01-12 阳光电源股份有限公司 一种变压器及其绕组结构
CN113436865A (zh) * 2021-06-24 2021-09-24 珠海格力电器股份有限公司 一种变压器及开关电源电路

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62137814A (ja) * 1985-12-11 1987-06-20 Mitsubishi Electric Corp 樹脂モ−ルド形変成器
US5949221A (en) * 1998-05-21 1999-09-07 Siemens Westinghouse Power Corporation Line powered, primary side connected apparatus injecting voltage compensation into an electric power line using one transformer
JP4671019B2 (ja) * 2005-01-14 2011-04-13 サンケン電気株式会社 多出力型dc−dcコンバータ
WO2010014645A1 (en) * 2008-07-28 2010-02-04 Taps Manufacturing, Inc. Transient voltage and harmonic currents quashing (thq) transformers, transformer winding topology, and method of making the same
CN201975246U (zh) * 2011-01-23 2011-09-14 向荣集团有限公司 用于风力发电的树脂绝缘干式变压器
WO2015130681A1 (en) * 2014-02-25 2015-09-03 Essex Group, Inc. Insulated winding wire
CN204011021U (zh) * 2014-08-20 2014-12-10 南京智达电气有限公司 环氧浇注式电压互感器
CN108305764B (zh) * 2018-01-19 2020-09-08 全球能源互联网研究院有限公司 一种干式高频变压器
CN209401453U (zh) * 2019-03-18 2019-09-17 安徽衡孚电子科技有限公司 一种抗电磁干扰的变压器结构

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203377071U (zh) * 2013-08-27 2014-01-01 崧顺电子(深圳)有限公司 抗共模干扰的变压器
CN203982986U (zh) * 2014-06-16 2014-12-03 深圳市迈思普电子有限公司 一种新型三明治绕法变压器
US20170117091A1 (en) * 2015-10-23 2017-04-27 Power Integrations, Inc. Power converter transformer with reduced leakage inductance
CN205159057U (zh) * 2015-11-10 2016-04-13 东莞市奥海电源科技有限公司 抵抗共模干扰的变压器绕线结构及便携式充电器
WO2020033325A1 (en) * 2018-08-06 2020-02-13 Google Llc Shielded electrical transformer
CN112216483A (zh) * 2020-10-09 2021-01-12 阳光电源股份有限公司 一种变压器及其绕组结构
CN113436865A (zh) * 2021-06-24 2021-09-24 珠海格力电器股份有限公司 一种变压器及开关电源电路

Also Published As

Publication number Publication date
CN112216483B (zh) 2022-04-08
CN112216483A (zh) 2021-01-12

Similar Documents

Publication Publication Date Title
US10917023B2 (en) Power conversion system and method for pre charging DC-Bus capacitors therein
US7256675B2 (en) Energy transfer apparatus for reducing conductivity electromagnetic interference and manufacturing method thereof
CN112421966B (zh) 一种固态变压器
WO2022073405A1 (zh) 一种变压器及其绕组结构
CN103312178A (zh) 一种双向dc/dc变换器及应用其的电池检测设备
CN203013469U (zh) 降低开关电源emi干扰的变压器及包含该变压器的反激开关电源
Fan et al. High frequency high efficiency bidirectional DC-DC converter module design for 10 kVA solid state transformer
Du et al. An all silicon carbide 3 kv/540 v series-resonant converter for electric aircraft systems
CN102760571A (zh) 一种高频变压器的绕线方法
Feng et al. Design and implementation of DC-transformer using 10 kV SiC MOSFET for medium-voltage extreme fast charger
CN202839244U (zh) 一种高频变压器
CN203312422U (zh) 一种聚合物锂离子电池装置
CN211908759U (zh) 一种双向开关和快速开关
US20210067050A1 (en) Modular power conversion system with galvanic insulation
CN207517492U (zh) 一种变压器
Chattopadhyay et al. 50kW nano-crystalline core based three port transformer for triple active bridge converter
CN206250028U (zh) 一种单相大功率磁集成高频变压器
WO2020164085A1 (zh) 用于变压器绕组的导线及一种变压器
CN212934374U (zh) 一种隔离变压器的隔离结构、隔离变压器和充电电源模块
CN203466044U (zh) 同步变压器
CN219575365U (zh) 双管串联反激变压器
CN109066965A (zh) 一种电梯应急设备及系统
CN205920866U (zh) 电压可调的电力变压器
CN216084506U (zh) 一种变压器
JP2004080908A (ja) パルス電源装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21876925

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21876925

Country of ref document: EP

Kind code of ref document: A1