WO2022073380A1 - 量子比特的频率控制信号处理方法、超导量子芯片 - Google Patents

量子比特的频率控制信号处理方法、超导量子芯片 Download PDF

Info

Publication number
WO2022073380A1
WO2022073380A1 PCT/CN2021/111277 CN2021111277W WO2022073380A1 WO 2022073380 A1 WO2022073380 A1 WO 2022073380A1 CN 2021111277 W CN2021111277 W CN 2021111277W WO 2022073380 A1 WO2022073380 A1 WO 2022073380A1
Authority
WO
WIPO (PCT)
Prior art keywords
control signal
frequency control
qubit
target qubit
time
Prior art date
Application number
PCT/CN2021/111277
Other languages
English (en)
French (fr)
Inventor
张贞兴
周宇
郑亚锐
张胜誉
Original Assignee
腾讯科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 腾讯科技(深圳)有限公司 filed Critical 腾讯科技(深圳)有限公司
Priority to JP2022510154A priority Critical patent/JP7341318B2/ja
Priority to KR1020227001753A priority patent/KR20220047753A/ko
Priority to EP21851585.6A priority patent/EP4009248A4/en
Priority to US17/585,471 priority patent/US20220147859A1/en
Publication of WO2022073380A1 publication Critical patent/WO2022073380A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N10/00Quantum computing, i.e. information processing based on quantum-mechanical phenomena
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N10/00Quantum computing, i.e. information processing based on quantum-mechanical phenomena
    • G06N10/40Physical realisations or architectures of quantum processors or components for manipulating qubits, e.g. qubit coupling or qubit control
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R23/00Arrangements for measuring frequencies; Arrangements for analysing frequency spectra
    • G01R23/02Arrangements for measuring frequency, e.g. pulse repetition rate; Arrangements for measuring period of current or voltage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N10/00Quantum computing, i.e. information processing based on quantum-mechanical phenomena
    • G06N10/70Quantum error correction, detection or prevention, e.g. surface codes or magic state distillation

Definitions

  • the present application relates to signal processing technology, in particular to a frequency control signal processing method, device, superconducting quantum chip and storage medium for qubits.
  • the quantum bit (Qubit quantum bit) on the superconducting chip is the carrier of the quantum state and carries quantum information.
  • Superconducting quantum computing has the advantage of fast running speed and is widely used. Quantum computing is divided into single-bit logic gate calculation and two-bit logic gate calculation. Two-bit logic gate includes quantum state exchange operation, controlled NOT gate operation (CNOT controlled gate operation). non-gate operation) and controlled phase gate operation (controlled phase gate operation, CZ) and so on.
  • CNOT controlled gate operation controlled NOT gate operation
  • non-gate operation controlled phase gate operation
  • CZ controlled phase gate operation
  • the signal generated by the control device at room temperature needs to go through a series of lines to reach the superconducting quantum chip.
  • the line itself will introduce additional capacitance and inductance, and The skin effect of the line on the high-frequency signal will cause the actual bit to experience a different magnetic field change than expected, and the shape of the waveform will be distorted to a certain extent.
  • This distortion will have a great impact on the accuracy and speed of the multi-bit gate.
  • this part of the distortion mainly comes from the low temperature part of the device, wire, chip and package, it will change with temperature. Therefore, it is not possible to calibrate the distortion directly at room temperature. The distortion must therefore be measured with the bits themselves at low temperature.
  • the embodiments of the present application provide a frequency control signal processing method, device, superconducting quantum chip and storage medium for qubits.
  • the technical solutions of the embodiments of the present application are implemented as follows:
  • An embodiment of the present application provides a method for processing a frequency control signal of a quantum bit, and the method includes:
  • Quantum tomography measurement results are performed based on the target qubit, the density matrix of the target qubit is reconstructed, and the phase parameter of the target qubit is obtained;
  • the frequency control signal is adjusted based on the distortion amount of the frequency control signal of the target qubit.
  • the embodiment of the present application also provides a frequency control signal processing device for qubits, and the device includes:
  • a signal transmission module configured to determine the target qubit corresponding to the frequency control signal of the qubit
  • a signal processing module configured to configure a first square wave pulse for the target qubit
  • the signal processing module is configured to control the target quantum bit to rotate a first target distance around the Y-axis when the end time of the first square wave pulse reaches a first time threshold;
  • the signal processing module is configured to perform quantum tomography measurement on the target qubit when the end time of the first square wave pulse reaches a second time threshold;
  • the signal processing module is configured to perform a quantum tomography measurement result based on the target qubit, reconstruct the density matrix of the target qubit, and obtain the phase parameter of the target qubit;
  • the signal processing module is configured to adjust the first time threshold and iteratively measure the target qubit, so as to determine the frequency control of the target qubit through different phase parameters in the results of the iterative measurement Distortion of the signal;
  • the signal processing module is configured to adjust the frequency control signal based on the distortion amount of the frequency control signal of the target qubit.
  • the embodiment of the present application also provides a superconducting quantum chip, and the superconducting quantum chip includes:
  • a memory configured to store executable instructions
  • the processor is configured to implement the aforementioned method for processing a frequency control signal of a quantum bit when executing the executable instructions stored in the memory.
  • Embodiments of the present application further provide a computer-readable storage medium storing executable instructions, and when the executable instructions are executed by a processor, a method for processing a frequency control signal of a preorder qubit is implemented.
  • the present application determines the target qubit corresponding to the frequency control signal of the qubit; configures a first square wave pulse for the target qubit; when the end time of the first square wave pulse reaches a first time threshold, controls the The target qubit rotates a first target distance around the Y axis; when the end time of the first square wave pulse reaches a second time threshold, perform quantum tomography measurement on the target qubit; perform a quantum tomography measurement based on the target qubit Quantum tomography measurement results, reconstruct the density matrix of the target qubit, and obtain the phase parameter of the target qubit; adjust the first time threshold, and perform iterative measurement on the target qubit to achieve the Iterating the different phase parameters in the measurement results to determine the distortion amount of the frequency control signal of the target qubit; and adjusting the frequency control signal based on the distortion amount of the frequency control signal of the target qubit, thereby,
  • the invention provides a frequency control signal processing method for qubits, which can not only measure the distortion of the frequency control signal of supercon
  • FIG. 1 is a schematic diagram of a usage scenario of a frequency control signal processing method for qubits provided by an embodiment of the present application
  • FIG. 2 is a schematic diagram of the composition and structure of a frequency control signal processing device for qubits provided by an embodiment of the present application;
  • FIG. 3 is a schematic diagram of an optional process of frequency control signal processing of qubits in an embodiment of the present application
  • FIG. 4 is a schematic diagram of an optional process of frequency control signal processing of qubits in an embodiment of the present application
  • FIG. 5 is a schematic diagram of a frequency control signal processing effect of a quantum bit in an embodiment of the present application.
  • Fig. 6 is an optional process schematic diagram of the frequency control signal processing method of qubit
  • Fig. 7 is an optional process schematic diagram of the frequency control signal processing method of qubit
  • FIG. 8 is a schematic diagram of an optional process of frequency control signal processing of qubits in an embodiment of the present application.
  • FIG. 9 is a schematic diagram of a frequency control signal processing effect of a quantum bit in an embodiment of the present application.
  • the executed one or more operations may be real-time, or may have a set delay; Unless otherwise specified, there is no restriction on the order of execution of multiple operations to be executed.
  • one or more operations executed may be real-time, or may have a set delay; in Unless otherwise specified, there is no restriction on the order of execution of multiple operations to be executed.
  • Frequency control signal which controls the DC bias signal of the qubit.
  • Quantum State Tomography QST
  • quantum tomography which can measure the complete quantum state by using quantum tomography.
  • Transfer function a function used to describe the relationship between the input and output of the system
  • FIG. 1 is a schematic diagram of a usage scenario of the frequency control signal processing methods for qubits provided by the embodiments of the present application.
  • a derivative quantum computer is a device that uses quantum logic for general-purpose computing. Compared with traditional computers, superconducting quantum computers can greatly improve the computational efficiency when solving some specific problems, so they have attracted widespread attention. Superconducting quantum chips can use related semiconductor process technologies to achieve large-scale integration. At the same time, superconducting qubits show better performance than other physics in the key indicators required for quantum computing such as interaction control, selective operation, and error correction.
  • superconducting quantum computers mainly include superconducting quantum chips and hardware systems for chip control and measurement.
  • the hardware systems mainly include signal generators in various microwave frequency bands and devices in various microwave frequency bands, including but not limited to filtering. Amplifiers, amplifiers, isolators, etc., as well as dilution refrigerators equipped with microwave transmission lines.
  • the key technology of superconducting quantum computers is the precise control and accurate measurement of the state of qubits on superconducting quantum chips.
  • the intrinsic energy of superconducting qubits is in the gigahertz (GHz) microwave band, which realizes quantum gate operation and quantum state.
  • GHz gigahertz
  • Reading requires the application of pulsed microwave signals of specific phase, amplitude and duration to superconducting qubits, so superconducting quantum computers require a large number of signal sources in the GHz microwave band and arbitrary waveform signal modulation with a GHz sampling rate.
  • superconducting qubits need to be kept at a temperature of millikelvin to reduce thermal noise to maintain the coherent state of superconducting qubits for a long time.
  • a dilution refrigerator is used to provide a low-temperature environment for superconducting quantum chips. The dilution refrigerator needs to be equipped with a microwave transmission line to transmit the microwave signal prepared at room temperature to the superconducting qubit in a low temperature state.
  • the control subsystem can be configured to control the Qubit state for quantum computing, such as single-bit logic gate computing and two-bit logic gate computing; superconducting quantum chips are used to carry quantum computing information; measurement subsystems Used to read the final state of the Qubit and obtain the computational results of quantum computing.
  • the superconducting quantum chip is placed in a low temperature environment, and the control subsystem generates a pulse modulation signal according to the requirements of quantum computing operations, and inputs a series of microwave pulse sequences into the superconducting quantum chip to operate the quantum state of Qubit. After all operations are completed , the measurement system outputs the measurement pulse signal to the superconducting quantum chip, obtains the state information of Qubit through the change of the returned signal, and finally obtains the calculation result.
  • the frequency control signal processing device for qubits can be implemented in various forms, such as a supercomputer with the processing function of the frequency control signal processing device for qubits.
  • the conducting quantum chip may also be an integrated chip with the processing function of a frequency control signal processing device provided with qubits, such as the superconducting quantum chip 200 in the preceding figure 1 .
  • FIG. 2 is a schematic diagram of the composition and structure of a frequency control signal processing apparatus for qubits provided by an embodiment of the present application. It can be understood that FIG. 2 only shows an exemplary structure of the frequency control signal processing apparatus for qubits, but not the entire structure. Some or all of the structures shown in FIG. 2 may be implemented.
  • the frequency control signal processing apparatus for qubits includes: at least one processor 201 , a memory 202 , a user interface 203 , and at least one network interface 204 .
  • the various components in the frequency control signal processing device of the qubits are coupled together by the bus system 205 .
  • the bus system 205 is used to implement the connection communication between these components.
  • the bus system 205 also includes a power bus, a control bus and a status signal bus.
  • the various buses are labeled as bus system 205 in FIG. 2 .
  • the user interface 203 may include a display, a keyboard, a mouse, a trackball, a click wheel, keys, buttons, a touch pad or a touch screen, and the like.
  • the memory 202 may be either volatile memory or non-volatile memory, and may include both volatile and non-volatile memory.
  • the memory 202 in this embodiment of the present application can store data to support operations in the superconducting quantum chip in the terminal. Examples of such data include: any computer programs, such as operating systems and applications, used to operate on the terminal's superconducting quantum chip.
  • the operating system includes various system programs, such as a framework layer, a core library layer, a driver layer, etc., for implementing various basic services and processing hardware-based tasks.
  • Applications can contain various applications.
  • the frequency control signal processing apparatus for qubits provided in the embodiments of the present application may be implemented in a combination of software and hardware.
  • the frequency control signal processing apparatus for qubits provided in the embodiments of the present application may be implemented using hardware A processor in the form of a decoding processor, which is programmed to execute the frequency control signal processing method for qubits provided by the embodiments of the present application.
  • a processor in the form of a hardware decoding processor may adopt one or more Application Specific Integrated Circuits (ASIC, Application Specific Integrated Circuit), DSP, Programmable Logic Device (PLD, Programmable Logic Device), Complex Programmable Logic Device (CPLD, Complex Programmable Logic Device), Field Programmable Gate Array (FPGA, Field-Programmable Gate Array) or other electronic components.
  • ASIC Application Specific Integrated Circuit
  • DSP Digital Signal processor
  • PLD Programmable Logic Device
  • CPLD Complex Programmable Logic Device
  • FPGA Field-Programmable Gate Array
  • the frequency control signal processing apparatus for qubits provided by the embodiments of the present application may be directly embodied as software modules executed by the processor 201
  • the software module may be located in a storage medium
  • the storage medium may be located in the memory 202
  • the processor 201 reads the executable instructions included in the software module in the memory 202, combined with necessary hardware (for example, including the processor 201 and other devices connected to the bus 205) component) to complete the qubit frequency control signal processing method provided by the embodiment of the present application.
  • the processor 201 may be a superconducting electronic chip with signal processing capabilities, such as a general-purpose processor, a digital signal processor (DSP, Digital Signal Processor), or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, etc., where a general-purpose processor may be a microprocessor or any conventional processor, or the like.
  • DSP Digital Signal Processor
  • the apparatus provided by the embodiment of the present application may be directly executed by the processor 201 in the form of a hardware decoding processor, for example, by a or multiple application-specific integrated circuits (ASIC, Application Specific Integrated Circuit), DSP, Programmable Logic Device (PLD, Programmable Logic Device), Complex Programmable Logic Device (CPLD, Complex Programmable Logic Device), Field Programmable Gate Array ( FPGA, Field-Programmable Gate Array) or other electronic components to implement the frequency control signal processing method for qubits provided by the embodiments of the present application.
  • ASIC Application Specific Integrated Circuit
  • DSP Programmable Logic Device
  • PLD Programmable Logic Device
  • CPLD Complex Programmable Logic Device
  • FPGA Field-Programmable Gate Array
  • the memory 202 in the embodiment of the present application is used for storing various types of data to support the operation of the frequency control signal processing apparatus of the qubit. Examples of these data include: any executable instructions for operating on the frequency control signal processing apparatus of qubits, such as executable instructions, the program implementing the method for processing frequency control signals from qubits according to the embodiments of the present application may be contained in executable instruction.
  • the frequency control signal processing apparatus for qubits provided in the embodiments of the present application may be implemented in software.
  • FIG. 2 shows the frequency control signal processing apparatus for qubits stored in the memory 202, which may be Software in the form of programs and plug-ins, and includes a series of modules, as an example of the program stored in the memory 202, may include a frequency control signal processing device for qubits, and the frequency control signal processing device for qubits includes the following software modules Signal transmission module 2081 and signal processing module 2082.
  • each software module in the qubit frequency control signal processing device When the software module in the qubit frequency control signal processing device is read into the RAM by the processor 201 and executed, the qubit frequency control signal processing method provided by the embodiment of the present application will be implemented, wherein the qubit frequency control
  • the functions of each software module in the signal processing device including:
  • the signal transmission module 2081 is used to determine the target qubit corresponding to the frequency control signal of the qubit
  • a signal processing module 2082 configured to configure a first square wave pulse for the target qubit
  • the signal processing module 2082 is configured to control the target qubit to rotate a first target distance around the Y-axis when the end time of the first square wave pulse reaches a first time threshold;
  • the signal processing module 2082 configured to perform quantum tomography measurement on the target qubit when the end time of the first square wave pulse reaches a second time threshold;
  • the signal processing module 2082 is configured to perform a quantum tomography measurement result based on the target qubit, reconstruct the density matrix of the target qubit, and obtain the phase parameter of the target qubit;
  • the signal processing module 2082 is configured to adjust the first time threshold and perform iterative measurement on the target qubit, so as to determine the frequency of the target qubit through different phase parameters in the results of the iterative measurement Distortion of the control signal;
  • the signal processing module 2082 is configured to adjust the frequency control signal based on the distortion amount of the frequency control signal of the target qubit.
  • the adjustment of the bit frequency can usually be used for the generation of multi-bit quantum gate operations, which plays a crucial role in the formation of multi-bit entanglement and general quantum computing.
  • the qubit frequency can be tuned using the magnetic flux passing through the loop, i.e. the qubit frequency can be controlled using the magnetic flux produced by the current. Since the qubit chip is usually at an extremely low temperature (about 10mK), the signal generated by the control device at room temperature needs to go through a series of lines to reach the superconducting quantum chip.
  • the line itself will introduce additional capacitance and inductance, and The skin effect of the line on the high-frequency signal will cause the actual bit to experience a different magnetic field change than expected, and the shape of the waveform will be distorted to a certain extent.
  • This distortion will have a great impact on the accuracy and speed of the multi-bit gate.
  • this part of the distortion mainly comes from the low temperature part of the device, wire, chip and package, it will change with temperature. Therefore, it is not possible to calibrate the distortion directly at room temperature. The distortion must therefore be measured with the bits themselves at low temperature.
  • the transfer function form of the line part is H(f), and the corresponding time domain is h(t), then let the room temperature control device output the signal of Z(t), and the frequency domain function Z(f) of Z(t) satisfies Equation 2 : Z in (t)
  • F[Z(t)] represents the Fourier transform, refer to formula 3 for details,
  • FIG. 3 is a schematic diagram of an optional process of frequency control signal processing of qubits in the embodiment of the application, wherein the measurement of distortion is mainly performed by using the response of qubits to square waves, and quantum tomography can be mainly used.
  • Measurement QST Quantum State Tomography
  • the Experiment part is mainly used to measure the response
  • the Reference part is used as a reference.
  • FIG. 4 is a schematic diagram of an optional process of frequency control signal processing of qubits in the embodiment of the application.
  • the data processing part there are mainly the following steps:
  • Step 401 Model the transfer function.
  • Equation 4 the transfer function representation refers to Equation 4.
  • ⁇ A k, ⁇ k ⁇ are modeling parameters, representing the amplitude (A k ) and the corresponding decay constant ( ⁇ k ), respectively, and N represents the number of decay constants in the transfer function.
  • Step 402 Calculate the input square wave function Rect(t, A, L) according to the transfer function, and obtain the waveform v(t) after the transfer function.
  • Step 403 According to the relationship f q (z) between the bit frequency and the signal size, obtain a function f q (v(t)) of the change of the bit frequency with time.
  • Step 404 Integrate the bit frequency to obtain the phase change relationship ⁇ q (t).
  • Step 405 Determine the actual bit response.
  • the functional relationship ⁇ q (t) obtained in step 404 can be used to fit the function ⁇ q (t) to the processed data ⁇ ( ⁇ ), with ⁇ as the independent variable and ⁇ ( ⁇ ) as the dependent variable, to obtain the optimal Modeling parameters ⁇ k, A k ⁇ , as the actual bit response.
  • FIG. 5 is a schematic diagram of a frequency control signal processing effect of a quantum bit in an embodiment of the present application, wherein the related measurement scheme has the following problems:
  • the square wave since the square wave is Then applied to the qubits, the square wave itself causes the qubits to undergo phase accumulation. Therefore, it is impossible to judge whether the qubit is already in an unbiased state (that is, the frequency modulation signal is 0) at a certain time ⁇ from the processing result alone, that is, it cannot be judged from the processing result when the value of ⁇ is, because the square The shift in qubit frequency due to wave distortion has been almost eliminated.
  • the fitting function is mainly the fitting of the e-exponential function, the constant term will have a greater impact on the fitting parameters of the overall function, resulting in obvious deviations in the analysis of the coefficients in the transfer function.
  • the time L of the square wave and the subsequent waiting time ⁇ cannot be too long, otherwise the coherence of the qubit will be exceeded, and we get phase information is invalid.
  • the coherence of the bits is required to be good enough, and it must exceed about three times the reciprocal of the minimum attenuation constant ⁇ k , that is, T 2 ⁇ 3/min ⁇ k ⁇ , so as to ensure that the fitting process is relatively reliable. (that is, as shown in step 405).
  • the square wave length L when L is less than the actual decay time 1/ ⁇ k , the problem of mutual influence between the rising edge and the falling edge of the square wave will occur. This will lead to a large deviation between the actual measurement results and the real situation, as shown in Figure 5.
  • the time of the square wave is not less than 3 times the decay time 1/ ⁇ k
  • the response formed after the end of the square wave will be different from the long-term square wave.
  • Figure 5 shows the input of the signal and the output of the signal.
  • signal in is the input square wave, the start time is -500, the end time is 0, and the corresponding distortion output is the signal out line.
  • signal out 2 is the output signal corresponding to the input square wave with a start time of -1500 and an end time of 0.
  • FIG. 6 is a schematic diagram of an optional process of the frequency control signal processing method for qubits. Include the following steps:
  • Step 601 The frequency control signal processing device of the qubit determines the target qubit corresponding to the frequency control signal of the qubit.
  • the superconducting quantum chip is the core structure for realizing quantum computing.
  • the superconducting quantum chip is composed of a large number of qubits, each qubit is composed of a specific hardware circuit set on the quantum chip, and each qubit has at least two Distinguishable logical states, based on quantum programs, the logical states of qubits can be controllably changed, thereby realizing quantum computing.
  • the frequency control signal of the qubit is used to act on the qubit of the quantum chip to change the logical state of the qubit.
  • Step 602 The frequency control signal processing device of the qubit configures a first square wave pulse for the target qubit.
  • the configuration of the first square wave pulse for the target qubit may be implemented in the following manner:
  • the qubit is initially in the
  • This step uses a square wave to form a falling edge (rising edge).
  • This falling edge (rising edge) can be approximated as a step function, and the resulting distortion can be considered as the step response of the system, and the transmission properties of the system can be directly derived from the result of the step response.
  • the qubit since the qubit is always in the
  • the limitation of wave length thus, solves the deficiencies in the prior art that cannot be effectively measured on current qubits.
  • the distortion will be close to 0 about 50us after the end of the square wave, so L is usually selected around 50us.
  • the length of the square wave can also be selected to be relatively short.
  • the length of the square wave can be selected as 1us.
  • the selection of the square wave length L here does not need to be very precise, as long as there is no obvious mutual influence between the rising edge and the falling edge of the square wave.
  • Step 603 The frequency control signal processing device of the qubit controls the target qubit to rotate around the Y axis by a first target distance when the end time of the first square wave pulse reaches a first time threshold.
  • the Y/2 operation is applied to the qubit, so that the bit is in the
  • the qubit rotates around the Y axis by an angle of ⁇ /2. Further, when the rotation angle of the target qubit cannot be determined, the corresponding displacement of the target qubit can be controlled to rotate around the Y axis to achieve the same amount of ⁇ /2 angle around the Y axis. Effect. Then wait for time t 0 .
  • the selection of t 0 usually only needs to be more than 200ns to ensure the accuracy of the measurement.
  • the coherence of current qubits is usually in the order of us, so the selection of t 0 in the range of 200ns-1us is a relatively suitable value, which is completely feasible in processing.
  • Step 604 the frequency control signal processing device of the qubit performs quantum tomography measurement on the target qubit when the end time of the first square wave pulse reaches a second time threshold.
  • the state of the corresponding qubit can be determined according to the result of the quantum tomography measurement, for example, the qubit state (quantum state) at a certain time point is in the
  • Step 605 the frequency control signal processing device of the qubit performs a quantum tomography measurement result based on the target qubit, reconstructs the density matrix of the target qubit, and obtains the phase parameter of the target qubit.
  • performing quantum tomography measurement on the target qubit may be implemented in the following manner:
  • quantum tomography is performed on the target qubit.
  • the method further includes:
  • change the time ⁇ repeat the previous process (1)-4) process), and obtain the corresponding relationship between ⁇ and ⁇ . Since the choice of the value of ⁇ is not related to the coherence T2 of the qubit, which can be much larger than T2, very large values can be measured in practical processing, so that the phase of the bit can be observed to be nearly stable.
  • Step 606 The frequency control signal processing device of the qubit adjusts the first time threshold, and performs iterative measurement on the target qubit, so as to determine the target qubit through different phase parameters in the results of the iterative measurement The distortion amount of the frequency control signal.
  • FIG. 7 is a schematic diagram of an optional process of a frequency control signal processing method for qubits, which can be implemented by a superconducting quantum chip, and specifically includes the following steps:
  • Step 701 Based on the result of the iterative measurement, determine a transfer function matching the frequency control signal of the target qubit.
  • Step 702 According to the transfer function, determine the waveform characteristics of the first square wave pulse after passing through the transfer function.
  • Step 703 Based on the relationship between the frequency of the target qubit and the frequency control signal, determine the relationship between the frequency of the target qubit and the measurement time.
  • Step 704 Integrate the frequency of the target qubit to determine a third phase parameter.
  • Step 705 Based on the third phase parameter, determine a fitting expression between the phase parameter of the target qubit and the first time threshold, so as to determine the difference in the transfer function through the fitting expression
  • the parameters are optimized, and the distortion amount of the frequency control signal of the target qubit is determined through the optimized transfer function.
  • step 607 may be continued.
  • Step 607 The frequency control signal processing device of the qubit adjusts the frequency control signal based on the distortion amount of the frequency control signal of the target qubit.
  • adjusting the frequency control signal based on the distortion amount of the frequency control signal of the target qubit may be implemented in the following manner:
  • FIG. 8 is a schematic diagram of an optional process of frequency control signal processing of qubits in the embodiment of the present application, wherein the processing of data is mainly divided into the following steps:
  • ⁇ p k ⁇ is ⁇ A k , ⁇ k ⁇ ;
  • the relationship f q (z) between the bit frequency and the magnitude of the DC control signal the relationship f q (v(t)) of the bit frequency changes with time is obtained after the square wave is applied.
  • t ⁇ 0 the case of t ⁇ 0 is mainly investigated. For the case of t ⁇ 0, since the square wave has not ended when t ⁇ 0, that is, the step signal has not yet been generated, it is not necessary to consider it.
  • f q (0) represents the frequency of the bit when the frequency modulation signal is 0. Since f q (v(t)), f q (0), ⁇ , t 0 are all known, formula (6) can be completely determined.
  • the processing data point ⁇ is used as the independent variable ⁇ in formula (6), and the processing data ⁇ is used as the value of the function.
  • the parameter t 0 of the transfer function is used as the optimization variable, and the modeling parameter ⁇ p k ⁇ of the transfer function is used for numerical optimization to obtain the best modeling parameter.
  • gradient-free optimization algorithms can be selected, such as Nelder-Mead algorithm, Powell algorithm, CMA-ES algorithm, etc.
  • the waveform is modified (equation (3)) so that the signal finally arriving on the bit is the desired signal.
  • Heav(t) is the unit step function, which is defined as Equation 8:
  • FIG. 9 is a schematic diagram of a frequency control signal processing effect of a qubit in an embodiment of the present application, wherein FIG. 9 shows a frequency control signal for a frequency-tunable Transmon type superconducting qubit distortion measurement data.
  • the coherence data of the qubit is the energy relaxation time T 1 ⁇ 15us and the phase coherence time T 2 ⁇ 8us.
  • t 0 in formula (6) is selected as 500ns, and ⁇ changes from 10ns to 40us.
  • the processed measurements are shown as open circles in Figure 9. It can be seen from Fig. 9 that the result of the processing generally presents the result that the phase tends to 0 as the time ⁇ increases. From the processing results, when ⁇ is around 40us, the phase is close to stable. From this result, it can be estimated that the maximum time decay constant corresponding to the actual control signal distortion is about 10-20us. Therefore, it is relatively reasonable to choose the value of ⁇ to be up to 40us.
  • the solid line part in FIG. 5 is the fitting performed according to the fitting method in the preceding embodiment.
  • the parameters of the final fit refer to Table 1:
  • a data calibration process may also be performed, and parameters obtained by fitting in the data calibration process are used to model the transfer function.
  • the obtained processing result is the data shown by the hollow five-pointed star in FIG. 8 . From this, it can be determined that the phase of the quantum bit does not change significantly with time ⁇ , and therefore, the frequency control signal processing method for the quantum bit provided by the present application has high accuracy in measuring the transfer function. Therefore, the control circuit is corrected by using the properties of the measured transfer function, so as to achieve a fast frequency offset for the bits.
  • the target qubit corresponding to the frequency control signal of the qubit is determined; the first square wave pulse is configured for the target qubit; when the end time of the first square wave pulse reaches the first time threshold, controlling the target qubit to rotate around the Y axis by a first target distance; when the end time of the first square wave pulse reaches a second time threshold, perform quantum tomography measurement on the target qubit; based on the target quantum Quantum tomography measurement results are performed on the bits, the density matrix of the target qubits is reconstructed, and the phase parameters of the target qubits are obtained; the first time threshold is adjusted, and the target qubits are iteratively measured to achieve the pass
  • the different phase parameters in the results of the iterative measurement determine the distortion amount of the frequency control signal of the target qubit; based on the distortion amount of the frequency control signal of the target qubit, the frequency control signal is adjusted, by Therefore, the invention provides a frequency control signal processing method for qubits, which can not only measure the distortion of the
  • the provided frequency control signal processing method for qubits can still effectively measure distortion and reduce measurement errors.

Abstract

一种量子比特的频率控制信号处理方法、装置、超导量子芯片以及存储介质,方法包括:为目标量子比特配置第一方波脉冲;当第一方波脉冲的结束时间到达第一时间阈值时,控制目标量子比特绕Y轴转动第一目标距离;当第一方波脉冲的结束时间到达第二时间阈值时,对目标量子比特进行量子层析测量,以确定目标量子比特的状态;基于目标量子比特进行量子层析测量结果,确定目标量子比特的频率控制信号的畸变量;基于目标量子比特的频率控制信号的畸变量,对频率控制信号进行调整;由此,不但可以实现在室温条件下,对超导量子比特频率控制信号的畸变进行测量,而且可以利用测量出的传递函数的性质对控制线路进行修正,从而达到对比特实现快速的频率偏置。

Description

量子比特的频率控制信号处理方法、超导量子芯片
本申请基于申请号为202011073820.5、申请日为2020年10月09日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及信号处理技术,尤其涉及一种量子比特的频率控制信号处理方法、装置、超导量子芯片及存储介质。
背景技术
超导芯片上的量子比特(Qubit quantum bit)是量子态的载体,携带有量子信息。超导量子计算具有运行速度快的优点,得到人们广泛应用,量子计算分为单比特逻辑门计算和两比特逻辑门计算,两比特逻辑门包括量子态交换操作、受控非门操作(CNOT controlled non-gate operation)以及受控相位门操作(controlled phase gate operation,CZ)等。超导量子芯片的调控和读取是量子计算物理实现的重要环节,高精度量子调控和读取技术可提高量子计算结果的准确性。由于量子比特芯片通常处于极低温(约10mK的温度),室温的控制设备产生的信号需要经过一系列线路到达超导量子芯片上,在此过程中,由于线路本身会引入额外的电容电感,以及线路对高频信号的趋肤效应会导致实际比特感受的磁场变化与所期望的不同,波形的形状会出现一定的畸变,这个畸变会对多比特门的精度以及速度产生非常大的影响。同时由于这部分畸变主要来自于低温部分的器件、线材、芯片及封装,因而会随着温度而发生变化。因此无法直接在室温下对畸变进行校准。因而必须在低温下利用比特本身对畸变进行测量。
发明内容
本有鉴于此,本申请实施例提供一种量子比特的频率控制信号处理方法、装置、超导量子芯片及存储介质,本申请实施例的技术方案是这样实现的:
本申请实施例提供了一种量子比特的频率控制信号处理方法,所述方法包括:
确定量子比特的频率控制信号所对应的目标量子比特;
为所述目标量子比特配置第一方波脉冲;
当所述第一方波脉冲的结束时间到达第一时间阈值时,控制所述目标量子比特绕Y轴转动第一目标距离;
当所述第一方波脉冲的结束时间到达第二时间阈值时,对所述目标量子比特进行量子层析测量;
基于所述目标量子比特进行量子层析测量结果,重构所述目标量子比特的密度矩阵,得到所述目标量子比特的相位参数;
调整所述第一时间阈值,对所述目标量子比特进行迭代测量,以实现通过所述迭代测量的结果中的不同相位参数,确定所述目标量子比特的频率控制信号的畸变量;
基于所述目标量子比特的频率控制信号的畸变量,对所述频率控制信号进行调整。
本申请实施例还提供了一种量子比特的频率控制信号处理装置,所述装置包括:
信号传输模块,配置为确定量子比特的频率控制信号所对应的目标量子比特;
信号处理模块,配置为为所述目标量子比特配置第一方波脉冲;
所述信号处理模块,配置为当所述第一方波脉冲的结束时间到达第一 时间阈值时,控制所述目标量子比特绕Y轴转动第一目标距离;
所述信号处理模块,配置为当所述第一方波脉冲的结束时间到达第二时间阈值时,对所述目标量子比特进行量子层析测量;
所述信号处理模块,配置为基于所述目标量子比特进行量子层析测量结果,重构所述目标量子比特的密度矩阵,得到所述目标量子比特的相位参数;
所述信号处理模块,配置为调整所述第一时间阈值,对所述目标量子比特进行迭代测量,以实现通过所述迭代测量的结果中的不同相位参数,确定所述目标量子比特的频率控制信号的畸变量;
所述信号处理模块,配置为基于所述目标量子比特的频率控制信号的畸变量,对所述频率控制信号进行调整。
本申请实施例还提供了一种超导量子芯片,所述超导量子芯片包括:
存储器,配置为存储可执行指令;
处理器,配置为运行所述存储器存储的可执行指令时,实现前述的量子比特的频率控制信号处理方法。
本申请实施例还提供了一种计算机可读存储介质,存储有可执行指令,所述可执行指令被处理器执行时实现前序的量子比特的频率控制信号处理方法。
本申请通过确定量子比特的频率控制信号所对应的目标量子比特;为所述目标量子比特配置第一方波脉冲;当所述第一方波脉冲的结束时间到达第一时间阈值时,控制所述目标量子比特绕Y轴转动第一目标距离;当所述第一方波脉冲的结束时间到达第二时间阈值时,对所述目标量子比特进行量子层析测量;基于所述目标量子比特进行量子层析测量结果,重构所述目标量子比特的密度矩阵,得到所述目标量子比特的相位参数;调整所述第一时间阈值,对所述目标量子比特进行迭代测量,以实现通过所述 迭代测量的结果中的不同相位参数,确定所述目标量子比特的频率控制信号的畸变量;基于所述目标量子比特的频率控制信号的畸变量,对所述频率控制信号进行调整,由此,通过发明所提供的量子比特的频率控制信号处理方法,不但可以实现在室温状态下对对超导量子比特频率控制信号的畸变进行测量,从中分析出传递函数的性质,克服了传统技术中必须在低温下进行畸变测量的环境限制;而且可以利用测量出的传递函数的性质对控制线路进行修正,从而达到对比特实现快速的频率偏置,同时在比特相干性较差的情况下本申请所提供的量子比特的频率控制信号处理方法仍然能够对畸变进行有效测量,减少测量误差。
附图说明
为了更清楚地说明本申请实施例或相关技术中的技术方案,下面将对实施例或相关技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的量子比特的频率控制信号处理方法的使用场景示意图;
图2为本申请实施例提供的量子比特的频率控制信号处理装置的组成结构示意图;
图3为本申请实施例中量子比特的频率控制信号处理一个可选的过程示意图;
图4为本申请实施例中量子比特的频率控制信号处理一个可选的过程示意图;
图5为本申请实施例中量子比特的频率控制信号处理效果示意图;
图6为量子比特的频率控制信号处理方法一个可选的过程示意图;
图7为量子比特的频率控制信号处理方法一个可选的过程示意图;
图8为本申请实施例中量子比特的频率控制信号处理一个可选的过程示意图;
图9为本申请实施例中量子比特的频率控制信号处理效果示意图。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述,所描述的实施例不应视为对本申请的限制,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本申请保护的范围。
在以下的描述中,涉及到“一些实施例”,其描述了所有可能实施例的子集,但是可以理解,“一些实施例”可以是所有可能实施例的相同子集或不同子集,并且可以在不冲突的情况下相互结合。
对本申请实施例进行进一步详细说明之前,对本申请实施例中涉及的名词和术语进行说明,本申请实施例中涉及的名词和术语适用于如下的解释。
1)响应于,用于表示所执行的操作所依赖的条件或者状态,当满足所依赖的条件或状态时,所执行的一个或多个操作可以是实时的,也可以具有设定的延迟;在没有特别说明的情况下,所执行的多个操作不存在执行先后顺序的限制。
2)基于,用于表示所执行的操作所依赖的条件或者状态,当满足所依赖的条件或状态时,所执行的一个或多个操作可以是实时的,也可以具有设定的延迟;在没有特别说明的情况下,所执行的多个操作不存在执行先后顺序的限制。
3)超导量子比特,利用约瑟夫森结形成的超导量子电路。
4)频率控制信号,控制量子比特的直流偏置信号。
5)量子层析测量(Quantum State Tomograpy,QST),量子层析测量,利用量子层析测量可以测量出完整的量子态。
6)传递函数,用于描述系统输入输出关系的函数
下面对本申请实施例所提供的量子比特的频率控制信号处理方法进行说明,其中,图1为本申请实施例提供的量子比特的频率控制信号处理方法的使用场景示意图,参见图1,其中,超导量子计算机是一种使用量子逻辑进行通用计算的设备。相比传统计算机,超导量子计算机在解决一些特定问题时运算效率可大幅提高,因而受到广泛关注。超导量子芯片可以利用相关的半导体工艺技术实现大规模的集成,同时,超导量子比特在相互作用控制、选择性操作以及纠错等进行量子计算所需要的关键性指标方面展现出较其他物理体系更为优越的性能,是最有希望实现超导量子计算机的平台之一。具体来说,超导量子计算机主要包括超导量子芯片和用于芯片控制和测量的硬件系统,硬件系统主要包括各种微波频段的信号发生器和和各种微波频段的器件,包括不限于滤波器、放大器、隔离器等,以及配备微波传输线的稀释制冷机。超导量子计算机的关键技术是对超导量子芯片上量子比特状态的精密操控和准确测量,超导量子比特的本征能量处于吉赫兹(GHz)的微波波段,实现量子门操作和量子态的读取需要对超导量子比特施加特定相位、幅度和持续时间的脉冲微波信号,故而超导量子计算机需要大量GHz微波频段的信号源和GHz采样率的任意波形信号调制。另外,超导量子比特需要保持在毫开尔文的温度下降低热噪声以长时间的维持超导量子比特的相干状态,一般选择使用稀释制冷机为超导量子芯片提供低温环境。稀释制冷机需要配备微波传输线,将室温制备的微波信号传递给处于低温状态的超导量子比特。如图1所示,其中,控制子系统可以配置为控制量子比特Qubit状态进行量子计算,例如单比特逻辑门计算和 两比特逻辑门计算;超导量子芯片用于承载量子计算信息;测量子系统用于读取Qubit最终状态并获得量子计算的计算结果。将超导量子芯片置于低温环境中,控制子系统按照量子计算操作的需求产生脉冲调制信号,将一系列微波脉冲序列输入到超导量子芯片,对Qubit的量子态进行操作,所有操作完成后,测量系统输出测量脉冲信号到超导量子芯片,通过返回的信号变化得到Qubit的状态信息,最终得到计算结果。
下面对本申请实施例的量子比特的频率控制信号处理装置的结构做详细说明,量子比特的频率控制信号处理装置可以各种形式来实施,如带有量子比特的频率控制信号处理装置处理功能的超导量子芯片,也可以为设置有量子比特的频率控制信号处理装置处理功能的集成芯片,例如前序图1中的超导量子芯片200。图2为本申请实施例提供的量子比特的频率控制信号处理装置的组成结构示意图,可以理解,图2仅仅示出了量子比特的频率控制信号处理装置的示例性结构而非全部结构,根据需要可以实施图2示出的部分结构或全部结构。
本申请实施例提供的量子比特的频率控制信号处理装置包括:至少一个处理器201、存储器202、用户接口203和至少一个网络接口204。量子比特的频率控制信号处理装置中的各个组件通过总线系统205耦合在一起。可以理解,总线系统205用于实现这些组件之间的连接通信。总线系统205除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图2中将各种总线都标为总线系统205。
其中,用户接口203可以包括显示器、键盘、鼠标、轨迹球、点击轮、按键、按钮、触感板或者触摸屏等。
可以理解,存储器202可以是易失性存储器或非易失性存储器,也可包括易失性和非易失性存储器两者。本申请实施例中的存储器202能够存储数据以支持终端中的超导量子芯片中的操作。这些数据的示例包括:用 于在终端的超导量子芯片上操作的任何计算机程序,如操作系统和应用程序。其中,操作系统包含各种系统程序,例如框架层、核心库层、驱动层等,用于实现各种基础业务以及处理基于硬件的任务。应用程序可以包含各种应用程序。
在一些实施例中,本申请实施例提供的量子比特的频率控制信号处理装置可以采用软硬件结合的方式实现,作为示例,本申请实施例提供的量子比特的频率控制信号处理装置可以是采用硬件译码处理器形式的处理器,其被编程以执行本申请实施例提供的量子比特的频率控制信号处理方法。例如,硬件译码处理器形式的处理器可以采用一个或多个应用专用集成电路(ASIC,Application Specific Integrated Circuit)、DSP、可编程逻辑器件(PLD,Programmable Logic Device)、复杂可编程逻辑器件(CPLD,Complex Programmable Logic Device)、现场可编程门阵列(FPGA,Field-Programmable Gate Array)或其他电子元件。
作为本申请实施例提供的量子比特的频率控制信号处理装置采用软硬件结合实施的示例,本申请实施例所提供的量子比特的频率控制信号处理装置可以直接体现为由处理器201执行的软件模块组合,软件模块可以位于存储介质中,存储介质位于存储器202,处理器201读取存储器202中软件模块包括的可执行指令,结合必要的硬件(例如,包括处理器201以及连接到总线205的其他组件)完成本申请实施例提供的量子比特的频率控制信号处理方法。
作为示例,处理器201可以是一种超导电子芯片,具有信号的处理能力,例如通用处理器、数字信号处理器(DSP,Digital Signal Processor),或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等,其中,通用处理器可以是微处理器或者任何常规的处理器等。
作为本申请实施例提供的量子比特的频率控制信号处理装置采用硬件 实施的示例,本申请实施例所提供的装置可以直接采用硬件译码处理器形式的处理器201来执行完成,例如,被一个或多个应用专用集成电路(ASIC,Application Specific Integrated Circuit)、DSP、可编程逻辑器件(PLD,Programmable Logic Device)、复杂可编程逻辑器件(CPLD,Complex Programmable Logic Device)、现场可编程门阵列(FPGA,Field-Programmable Gate Array)或其他电子元件执行实现本申请实施例提供的量子比特的频率控制信号处理方法。
本申请实施例中的存储器202用于存储各种类型的数据以支持量子比特的频率控制信号处理装置的操作。这些数据的示例包括:用于在量子比特的频率控制信号处理装置上操作的任何可执行指令,如可执行指令,实现本申请实施例的从量子比特的频率控制信号处理方法的程序可以包含在可执行指令中。
在另一些实施例中,本申请实施例提供的量子比特的频率控制信号处理装置可以采用软件方式实现,图2示出了存储在存储器202中的量子比特的频率控制信号处理装置,其可以是程序和插件等形式的软件,并包括一系列的模块,作为存储器202中存储的程序的示例,可以包括量子比特的频率控制信号处理装置,量子比特的频率控制信号处理装置中包括以下的软件模块信号传输模块2081和信号处理模块2082。当量子比特的频率控制信号处理装置中的软件模块被处理器201读取到RAM中并执行时,将实现本申请实施例提供的量子比特的频率控制信号处理方法,其中,量子比特的频率控制信号处理装置中各个软件模块的功能,包括:
信号传输模块2081,用于确定量子比特的频率控制信号所对应的目标量子比特;
信号处理模块2082,用于为所述目标量子比特配置第一方波脉冲;
所述信号处理模块2082,用于当所述第一方波脉冲的结束时间到达第 一时间阈值时,控制所述目标量子比特绕Y轴转动第一目标距离;
所述信号处理模块2082,用于当所述第一方波脉冲的结束时间到达第二时间阈值时,对所述目标量子比特进行量子层析测量;
所述信号处理模块2082,用于基于所述目标量子比特进行量子层析测量结果,重构所述目标量子比特的密度矩阵,得到所述目标量子比特的相位参数;
所述信号处理模块2082,用于调整所述第一时间阈值,对所述目标量子比特进行迭代测量,以实现通过所述迭代测量的结果中的不同相位参数,确定所述目标量子比特的频率控制信号的畸变量;
所述信号处理模块2082,用于基于所述目标量子比特的频率控制信号的畸变量,对所述频率控制信号进行调整。
在多超导量子比特系统中,比特频率的调节通常可以用于多比特量子门操作的生成,对形成多比特纠缠,进行通用量子计算有着至关重要的作用。通常量子比特频率可以利用穿过回路中的磁通进行调节,即可以使用电流产生的磁通对量子比特频率进行控制。由于量子比特芯片通常处于极低温(约10mK的温度),室温的控制设备产生的信号需要经过一系列线路到达超导量子芯片上,在此过程中,由于线路本身会引入额外的电容电感,以及线路对高频信号的趋肤效应会导致实际比特感受的磁场变化与所期望的不同,波形的形状会出现一定的畸变,这个畸变会对多比特门的精度以及速度产生非常大的影响。同时由于这部分畸变主要来自于低温部分的器件、线材、芯片及封装,因而会随着温度而发生变化。因此无法直接在室温下对畸变进行校准。因而必须在低温下利用比特本身对畸变进行测量。
这一过程中,假设通过测量,得到了线路的传递函数为H(f),其对应的时域为h(t),其中H(f)与h(t)为傅里叶变换的关系,即:
Figure PCTCN2021111277-appb-000001
因此任意的信号Z in(t)经过线路之后,会变成Z out(t)=h(t)*Z in(t),其中*表示卷积过程,具体参考公式1:
Figure PCTCN2021111277-appb-000002
进一步地,则需要对信号进行标准的去卷积处理,使得、到达超导量子比特的信号是符合期望的信号。假设所期望的信号为Z 0(t)其频域为Z 0(f)=F[Z 0(t)]。线路部分的传递函数形式为H(f),对应的时域为h(t),则令室温控制设备输出Z(t)的信号,Z(t)的频域函数Z(f)满足公式2:Z in(t)
Figure PCTCN2021111277-appb-000003
其中,F[Z(t)]表示傅里叶变换,具体参考公式3,
Figure PCTCN2021111277-appb-000004
而信号Z(t)经过了线路,到达超导量子比特后,Z out(t)=h(t)*Z(t)=Z 0(t)则为所期望的Z 0(t)。
参考图3,图3为本申请实施例中量子比特的频率控制信号处理一个可选的过程示意图,其中,畸变的测量主要是利用量子比特对于方波的响应来进行,可以主要利用量子层析测量(QST Quantum State Tomography),测量在量子比特在施加了方波之后的响应,具体来说主要分成Experiment和Reference两部分。Experiment部分主要用来测量响应,而Reference部分则是用来作为参考。具体来说,Experiment部分步骤为:1)控制在目标量子比特上施加绕X轴转动角度
Figure PCTCN2021111277-appb-000005
2)在目标量子比特上施加长度为L、幅值为A的方波;3)等待时间τ之后,进行QST测量;4)重构出比特的密度矩阵ρ,记录此时比特的相位φexp t=argρ 01;5)改变时间τ,重复前序步骤1)-4)的过程。
Reference部分步骤为:1)在目标量子比特上施加绕X轴转动的
Figure PCTCN2021111277-appb-000006
2)在目标量子比特上施加长度为L、幅值为0的方波,即等待时间L;3)等待时间τ之后,进行QST测量;4)重构出比特的密度矩阵ρ,记录此时比特的相位φref=argρ 01;5)改变时间τ,重复步骤1)-步骤4)的过程。最终的数据为Δφ=φ exp tref。这样就测得了比特对于方波的响应。
参考图4,图4为本申请实施例中量子比特的频率控制信号处理一个可选的过程示意图,在数据处理部分,主要有以下几个步骤:
步骤401:对传递函数进行建模处理。
其中,传递函数表示参考公式4:
Figure PCTCN2021111277-appb-000007
其中{A k,γ k}为建模参数,分别表示幅值(A k)以及对应的衰减常数(γ k),N表示传递函数中衰减常数的数目。
步骤402:根据传递函数对输入的方波函数Rect(t,A,L)进行计算,得出经过传递函数之后的波形v(t)。
步骤403:根据比特频率与信号大小的关系f q(z),得出比特频率随时间的变化函数f q(v(t))。
步骤404:对比特频率进行积分,得出相位的变化关系φ q(t)。
步骤405:确定实际比特的响应。
具体可以利用步骤404所获得的函数关系φ q(t)对处理数据Δφ(τ)以τ作为自变量,Δφ(τ)作为因变量,拟合函数φ q(t),得出最佳的建模参数{γ k,A k},作为实际比特的响应。
在获得实际的传递函数之后,继续执行相应的标准的去卷积过程。
参考图5,图5为本申请实施例中量子比特的频率控制信号处理效果示意图,其中,相关的测量方案存在如下问题:
第一,由于方波是在
Figure PCTCN2021111277-appb-000008
之后施加至量子比特上,方波自身也会使 量子比特进行相位积累。因此单纯从处理结果上无法判断在某一个时间τ时,量子比特是否已经处于无偏置状态(即频率调制信号为0),即从处理结果上无法判断当τ是什么数值的时候,由于方波畸变带来的量子比特频率的偏移已经几乎消除。同时由于拟合函数中主要是e指数函数的拟合,因此常数项会对整体函数的拟合参数产生较大影响,从而导致对传递函数中系数的分析产生明显偏差。
第二,由于在方波作用至比特之前,比特处于|0>-i|1>态,因此方波的时间L与后续等待的时间τ不能太长,否则超过了量子比特的相干性,得到的相位信息便是无效的。对于这种情况,则要求比特的相干性要足够好,要超过最小的衰减常数γ k的倒数的三倍左右,即T 2□3/min{γk},这样才能保证拟合的过程相对可靠(即步骤405所示)。
第三,与第二点类似,由于相关方案受比特相干性的影响,无法在衰减常数γ k较小(即对应的衰减时间1/γ k较大)的情况下进行有效的测量。而对于目前通用的量子芯片封装PCB,通常而言,其衰减常数均比较小,γ k大约在1/(50us)至1/(10us)左右,即对应的衰减时间大约会在10us-50us左右。这样就要求T 2要接近30us-150us左右。而目前频率可调的超导量子比特,其T 2通常处于10us附近。因此,相关方案几乎无法在当前量子比特上进行有效的测量。
第四,相关方案中,由于比特相干性的影响,方波的长度L以及等待的时间τ,均需要在比特的相干性T 2之内。对于方波长度L,当L小于实际的衰减时间1/γ k时,会发生方波的上升沿与下降沿形成相互影响的问题。这个会导致实际测量得到的结果与真实情况出现较大的偏差,如图5所给出的偏差示意。当方波的时间没有小于衰减时间1/γ k的3倍时,实际输出的波形(如图5中的signal out)中,与在方波结束之后形成的响应与长时间 的方波相比会有一定的差别(如图5中的signal out 2,其方波的长度L=1500)。这说明当方波长度不够时,会使得方波的下降沿与上升沿之间形成相互影响。
图5示出了信号的输入与信号的输出。衰减常数γ k=0.002=1/500,对应幅值为:A k=-0.1。signal in为输入方波,其开始时间为-500,结束时间为0,对应的畸变输出为signal out这条线。signal out 2是开始时间为-1500,结束时间为0的输入方波对应的输出信号。
第五,相关方案需要进行对比处理,如图5中所示的Experiment和Reference。只有进行了对比处理,才能进行比较准确的拟合。否则,量子比特频率在处理过程中的略微偏移会造成最终的相位φ exp t中再额外叠加一个随时间τ线性增加的相位,造成最终拟合的不准确。
为了克服上述缺陷,本申请提供了一种量子比特的频率控制信号处理方法,由超导量子芯片实现,参考图6,图6为量子比特的频率控制信号处理方法一个可选的过程示意图,具体包括以下步骤:
步骤601:量子比特的频率控制信号处理装置确定量子比特的频率控制信号所对应的目标量子比特。
其中,超导量子芯片是实现量子计算的核心结构,超导量子芯片是由大量量子比特构成的,每个量子比特由设置在量子芯片上的特定硬件电路构成,每个量子比特具备至少两个可区分的逻辑状态,基于量子程序,量子比特的逻辑状态可以发生可控变化,进而实现量子计算。所述量子比特的频率控制信号用于作用在量子芯片的量子比特上改变量子比特的逻辑状态。
步骤602:量子比特的频率控制信号处理装置为所述目标量子比特配置第一方波脉冲。
在本申请的一些实施例中,所述为所述目标量子比特配置第一方波脉 冲,可以通过以下方式实现:
确定所述目标量子比特对应的第一方波脉冲的冲脉冲长度与脉冲幅值;确定所述第一方波脉冲的脉冲结束时间作为所述量子比特进行迭代测量的起始时间。其中,在目标量子比特上施加长度为L幅值为A的方波,以方波的结束时刻作为时间零点t=0。
量子比特初始处于|0>态,在施加第一个操作,即施加一个长度为L,幅值为A的方波之后(步骤601之后),仍然处于|0>。这一步利用一个方波形成一个下降沿(上升沿)。这个下降沿(上升沿)可以近似为一个阶跃函数,而所形成的畸变,则可以认为是系统的阶跃响应,从阶跃响应的结果可以直接导出系统的传输性质。另一方面,由于量子比特一直处于|0>态,不存在退相干过程或是能量弛豫的过程,因此方波的长度L可以远比量子比特的相干性长,从而消除量子比特相干性对方波长度的限制,由此,解决了现有技术中无法在当前量子比特上进行有效的测量的缺陷。通常而言,考虑实际情况下,畸变大约在方波结束后50us左右就会接近为0,因此通常L会选择50us附近。如果实际情况下,畸变在比较短的时间内就趋于0的话,方波的长度也可以选择比较短的。例如,当畸变在方波结束后1us左右的时间便趋于0,则方波的长度可以选择为1us。需要注意的是,这里方波长度L的选择不需要非常精确,只需满足方波的上升沿和下降沿之间没有明显的相互影响即可。为了便于后续说明,在一个实施例中,将方波结束的时刻记为t=0。
步骤603:量子比特的频率控制信号处理装置当所述第一方波脉冲的结束时间到达第一时间阈值时,控制所述目标量子比特绕Y轴转动第一目标距离。
其中,在等待了时间τ之后,即在t=τ时刻在量子比特上施加Y/2操作,使得比特处于|0>+|1>态,其中在量子比特上施加Y/2操作可以使得目标量子 比特绕Y轴转动π/2角度,进一步地,当不能确定目标量子比特的转动角度时,还可以控制目标量子比特绕Y轴转动相应的位移量达到绕Y轴转动π/2角度的相同效果。随后等待时间t 0,在这段过程中,由于方波产生了畸变,在方波结束后,仍然会存在有一部分的频率调节信号,因此量子比特会在t=τ至t=τ+t 0这段时间内积累相位。然后在t=τ+t 0时刻进行QST的测量。需要注意的是,这里t 0一般不能太短,否则这段时间内相位积累则会太小,不利于测量,而同时t 0也不宜过大,否则超过了量子比特的相干性T 2会导致后续的QST测量无意义。处理过程中发现t 0的选择通常只需要在200ns以上就可保证测量的准确性。当前的量子比特的相干性通常在us量级,因此t 0选择在200ns-1us这个范围内是一个相对合适的数值,在处理上是完全可行的。
步骤604:量子比特的频率控制信号处理装置当所述第一方波脉冲的结束时间到达第二时间阈值时,对所述目标量子比特进行量子层析测量。
由此,可以根据量子层析测量的结果,确定相应的量子比特的状态,例如某一时间点的量子比特状态(量子态)处于|0>态;或者,某一时间点的量子比特状态(量子态)处于|1>态,其中,|>表示狄拉克符号。
步骤605:量子比特的频率控制信号处理装置基于所述目标量子比特进行量子层析测量结果,重构所述目标量子比特的密度矩阵,得到所述目标量子比特的相位参数。
在本申请的一些实施例中,当所述第一方波脉冲的结束时间到达第二时间阈值时,对所述目标量子比特进行量子层析测量,可以通过以下方式实现:
基于所述第一时间阈值和所述第二时间阈值,确定所述相位累积时间区域;
基于所述相位累积时间区域,对所述目标量子比特进行量子层析测量。
在本申请的一些实施例中,所述方法还包括:
根据所述量子比特进行迭代测量的起始时间和所述第一时间阈值,确定所述量子比特对应的第一相位参数;基于所述第一时间阈值和所述第二时间阈值,确定所述量子比特的第二相位参数;基于所述第一相位参数和所述第二相位参数,确定不同测量时刻中所述目标量子比特的相位参数与所述第一时间阈值的对应关系。其中,由于QST测量的结果中,可以重构出量子比特的密度矩阵ρ(τ+t 0),并记录此时量子比特的相位信息φ(τ+t 0)=argρ 01(τ+t 0),其中ρ 01(τ+t 0)=<0|ρτ+t 0|1>。后面再对时间τ进行改变,重复之前的过程(第1)-4)过程),得出φ与τ的对应关系。由于τ的数值选择与量子比特的相干性T2没有联系,可以远远大于T 2,因此,可以在实际的处理中测量非常大的数值,使得此时能够观察到比特的相位接近稳定。这样就能保证在拟合过程中获取比较准确的参数估计,由此解决了现有技术中常数项会对整体函数的拟合参数产生较大影响,从而导致对传递函数中系数的分析产生明显偏差的缺陷。
另一方面,在整个测量方案中t 0保持不变。因此即使在处理过程中,量子比特的频率标定的与真实的结果有轻微的误差,其在时间t∈[τ,τ+t 0]这段时间内造成的相位偏移是固定的,即由于比特频率标定不准确造成的相位偏移为2πδft 0这个相位偏移与变化的时间τ是无关的,因此不会影响到最终的拟合,也无需进行对比处理,解决了现有技术中只有进行了对比处理才能进行准确拟合的缺陷,节省了使用成本。
步骤606:量子比特的频率控制信号处理装置调整所述第一时间阈值,对所述目标量子比特进行迭代测量,以实现通过所述迭代测量的结果中的不同相位参数,确定所述目标量子比特的频率控制信号的畸变量。
继续参考图7,图7为量子比特的频率控制信号处理方法一个可选的过程示意图,可以由超导量子芯片实现,具体包括以下步骤:
步骤701:基于所述迭代测量的结果,确定与所述目标量子比特的频率控制信号相匹配的传递函数。
步骤702:根据所述传递函数,确定所述第一方波脉冲经过所述传递函数后的波形特征。
步骤703:基于所述目标量子比特的频率与所述频率控制信号的关系,确定所述目标量子比特的频率与测量时间的关系。
步骤704:对所述目标量子比特的频率进行积分处理,确定第三相位参数。
步骤705:基于所述第三相位参数,确定所述目标量子比特的相位参数与所述第一时间阈值的拟合表达式,以实现通过所述拟合表达式确定所述传递函数中的不同参数进行优化,并通过经过优化的传递函数确定所述目标量子比特的频率控制信号的畸变量。
当确定目标量子比特的频率控制信号的畸变量之后还可以继续执行步骤607。
步骤607:量子比特的频率控制信号处理装置基于所述目标量子比特的频率控制信号的畸变量,对所述频率控制信号进行调整。
在本申请的一些实施例中,基于所述目标量子比特的频率控制信号的畸变量,对所述频率控制信号进行调整,可以通过以下方式实现:
基于所述目标量子比特的频率控制信号的畸变量,确定相对应的期望频率控制信号、频域参数、所述目标量子比特传输线路中的传递函数,以及所述传递函数对应的时间域参数;确定所述目标量子比特的实时频率控制信号,以及所述实时频率控制信号对应的频域函数;对所述实时频率控制信号进行去卷积处理,以实现实时频率控制信号对应的频域函数满足所述期望频率控制信号、频域参数、所述目标量子比特传输线路中的传递函数以及实时频率控制信号所构成的去卷积表达式。
其中,其中,参考图8,图8为本申请实施例中量子比特的频率控制信号处理一个可选的过程示意图,其中,数据的处理主要分成下面步骤:
对传递函数进行建模,用一组参数{p k}进行描述,即传递函数写为H(f,{p k}),其时域为h(t,{p k})。这里可以任意选择H(f,{p k})的形式,同样也可以选择公式5所示出的形式:
Figure PCTCN2021111277-appb-000009
其中{p k}为{A k,γ k};
根据传递函数对输入的幅值为A,长度为L的方波Rect(t,A,L)进行计算,得出方波在经过传递函数之后的波形,记为v(t),v(t)=h(t,{p k})*Rect(t,A,L),这里*表示卷积运算。需要注意的是时间零点的选择可以是任意的,在一个实施例中,以方波的结束时刻作为时间零点t=0。
根据比特频率与直流控制信号大小的关系f q(z),得出在施加了方波之后,比特频率随时间变化的关系f q(v(t)),这里主要考察t≥0的情况。对于t<0的情况,由于t<0时,方波还未结束,即阶跃信号尚未产生,因此可以不需要考虑。
对量子比特的频率fq(v(t))进行积分,得到相位。由于处理上测到的相位φ,为t∈[τ,τ+t 0]这段时间内,由于方波畸变造成的比特频率偏移的相位累积。因此其理论上可以通过公式6进行计算:
Figure PCTCN2021111277-appb-000010
其中f q(0)则表示当频率调制信号为0时比特的频率。由于f q(v(t)),f q(0),τ,t 0均已知,因而公式(6)可以完全确定。
将处理数据(τ,φ)利用公式(6)进行拟合,拟合过程中,以处理数据点τ作为公式(6)中的自变量τ,处理数据φφ作为函数的值,同时传入处理的参数t 0,以传递函数的建模参数{p k}作为优化变量,进行数值优化,得出最佳 的建模参数
Figure PCTCN2021111277-appb-000011
这里数值优化的方式可以有多种选择。通常可以选择无梯度的优化算法,比如Nelder–Mead算法、Powell算法,CMA-ES算法等等。
由上一步得出的最佳建模参数
Figure PCTCN2021111277-appb-000012
代入前述模型,得到传递函数
Figure PCTCN2021111277-appb-000013
利用前文所述的标准的去卷积方法,对波形进行修正(公式(3)),使得最终到达比特上的信号是所期望的信号。
通过以上方式,就可以对控制信号的波形畸变进行测量以及修正。考虑到公式(4)这种形式的传递函数可以比较好的描述实际体系的行为,这里进行详细的说明。对于形如公式(4)的传递函数,假设方波长度为L,幅值为A,结束时间为t=0,即方波函数Rect(t,A,L)满足公式7:
Rect(t,A,L)=A[Heav(t+L-Heav(t))]公式7
其中Heav(t)为单位阶跃函数,其定义为公式8:
Figure PCTCN2021111277-appb-000014
则经过传递函数之后,v(t)可以参考公式9:
Figure PCTCN2021111277-appb-000015
将公式(9)的形式代入比特f q与其控制信号大小z的关系f q(z)中即可得到比特频率随时间变化的关系f q(v(t))。再代入公式(6)中,进行数值积分便可得到φ与τ,t 0的关系。
由此,参考图9,图9为本申请实施例中量子比特的频率控制信号处理效果示意图,其中,图9示出了对于一个频率可调型的Transmon型的超导量子比特的频率控制信号的畸变的测量数据。该量子比特的相干性数据为能量弛豫时间T 1≈15us,相位相干时间T 2≈8us。处理测量方法可以根据前序 实施例中所提供的信号处理方法,其中选取的参数为方波的长度为40us,幅值为A=0.5(0.5代表任意波形发生器的幅值,与实际电压呈线性关系),公式(6)中的t 0选择为500ns,τ由10ns变化至40us。处理的测量结果如图9中空心圆点所示。从图9上可以看出,处理的结果随着时间τ的增大,总体呈现相位趋向于0的结果。从处理结果上看,当τ为40us附近,相位已经接近稳定。从这个结果上,能够估计出实际控制信号畸变所对应的最大的时间衰减常数大约在10-20us左右。因而,选择τ最长为40us这个数值是相对合理的。同时选择方波的长度L=40us也能够将其上升沿和下降沿之间的相互影响减到比较小的程度。
图5中的实线部分是根据前序实施例中的拟合方法进行的拟合。其中,传递函数的模型选择参考公式5,并且选定数量N=3。从拟合结果上看,拟合的效果比较好,处理的数据点基本处于拟合线上。最终拟合的参数参考表1:
表1
Figure PCTCN2021111277-appb-000016
从拟合数据上看,三个衰减常数对应的时间分别是
Figure PCTCN2021111277-appb-000017
Figure PCTCN2021111277-appb-000018
其中最长的时间常数为11.454us,这与前面的对衰减时间的预估是符合的。
进一步地,在本申请的一些实施例中还可以进行数据校准进程,在数据校准过程中拟合得到的参数,进行对传递函数的建模。得到的处理结果为图8中的空心五角星所示的数据。由此可以确定,量子比特的相位随时间τ没有明显的变化,因此,本申请所提供的量子比特的频率控制信号处理 方法对传递函数的测量准确性较高。从而利用测量出的传递函数的性质对控制线路进行修正,达到对比特实现快速的频率偏置。
本申请实施例通过确定量子比特的频率控制信号所对应的目标量子比特;为所述目标量子比特配置第一方波脉冲;当所述第一方波脉冲的结束时间到达第一时间阈值时,控制所述目标量子比特绕Y轴转动第一目标距离;当所述第一方波脉冲的结束时间到达第二时间阈值时,对所述目标量子比特进行量子层析测量;基于所述目标量子比特进行量子层析测量结果,重构所述目标量子比特的密度矩阵,得到所述目标量子比特的相位参数;调整所述第一时间阈值,对所述目标量子比特进行迭代测量,以实现通过所述迭代测量的结果中的不同相位参数,确定所述目标量子比特的频率控制信号的畸变量;基于所述目标量子比特的频率控制信号的畸变量,对所述频率控制信号进行调整,由此,通过发明所提供的量子比特的频率控制信号处理方法,不但可以实现对在室温状态下对超导量子比特频率控制信号的畸变进行测量,从中分析出传递函数的性质,克服了传统技术中必须在低温下进行畸变测量的环境限制;而且可以利用测量出的传递函数的性质对控制线路进行修正,从而达到对比特实现快速的频率偏置,同时在比特相干性较差的情况下本申请所提供的量子比特的频率控制信号处理方法仍然能够对畸变进行有效测量,减少测量误差。
以上所述,仅为本申请的实施例而已,并非用于限定本申请的保护范围,凡在本申请的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本申请的保护范围之内。

Claims (14)

  1. 一种量子比特的频率控制信号处理方法,所述方法由超导量子芯片执行,包括:
    确定量子比特的频率控制信号所对应的目标量子比特;
    为所述目标量子比特配置第一方波脉冲;
    当所述第一方波脉冲的结束时间到达第一时间阈值时,控制所述目标量子比特绕Y轴转动第一目标距离;
    当所述第一方波脉冲的结束时间到达第二时间阈值时,对所述目标量子比特进行量子层析测量;
    基于所述量子层析测量结果,重构所述目标量子比特的密度矩阵,得到所述目标量子比特的相位参数;
    调整所述第一时间阈值,对所述目标量子比特进行迭代测量,以实现通过所述迭代测量的结果中的不同相位参数,确定所述目标量子比特的频率控制信号的畸变量;
    基于所述畸变量,对所述频率控制信号进行调整。
  2. 根据权利要求1所述的方法,其中,所述为所述目标量子比特配置第一方波脉冲,包括:
    确定所述目标量子比特对应的第一方波脉冲的冲脉冲长度与脉冲幅值;
    确定所述第一方波脉冲的脉冲结束时间作为所述量子比特进行迭代测量的起始时间。
  3. 根据权利要求1所述的方法,其中,所述当所述第一方波脉冲的结束时间到达第二时间阈值时,对所述目标量子比特进行量子层析测量,包括:
    基于所述第一时间阈值和所述第二时间阈值,确定所述相位累积时间区域;
    基于所述相位累积时间区域,对所述目标量子比特进行量子层析测量。
  4. 根据权利要求1所述的方法,其中,所述方法还包括:
    根据所述量子比特进行迭代测量的起始时间和所述第一时间阈值,确定所述量子比特对应的第一相位参数;
    基于所述第一时间阈值和所述第二时间阈值,确定所述量子比特的第二相位参数;
    基于所述第一相位参数和所述第二相位参数,确定不同测量时刻中所述目标量子比特的相位参数与所述第一时间阈值的对应关系。
  5. 根据权利要求1所述的方法,其中,所述调整所述第一时间阈值,对所述目标量子比特进行迭代测量,以实现通过所述迭代测量的结果中的不同相位参数,确定所述目标量子比特的频率控制信号的畸变量,包括:
    基于所述迭代测量的结果,确定与所述目标量子比特的频率控制信号相匹配的传递函数;
    根据所述传递函数,确定所述第一方波脉冲经过所述传递函数后的波形特征;
    基于所述目标量子比特的频率与所述频率控制信号的关系,确定所述目标量子比特的频率与测量时间的关系;
    对所述目标量子比特的频率进行积分处理,确定第三相位参数;
    基于所述第三相位参数,确定所述目标量子比特的相位参数与所述第一时间阈值的拟合表达式,以实现通过所述拟合表达式确定所述传递函数中的不同参数进行优化,并通过经过优化的传递函数确定所述目标量子比特的频率控制信号的畸变量。
  6. 根据权利要求5所述的方法,其中,所述基于所述目标量子比特的 频率控制信号的畸变量,对所述频率控制信号进行调整,包括:
    基于所述目标量子比特的频率控制信号的畸变量,确定相对应的期望频率控制信号、频域参数、所述目标量子比特传输线路中的传递函数,以及所述传递函数对应的时间域参数;
    确定所述目标量子比特的实时频率控制信号,以及所述实时频率控制信号对应的频域函数;
    对所述实时频率控制信号进行去卷积处理,以实现实时频率控制信号对应的频域函数满足所述期望频率控制信号、频域参数、所述目标量子比特传输线路中的传递函数以及实时频率控制信号所构成的去卷积表达式。
  7. 一种量子比特的频率控制信号处理装置,其中,所述装置包括:
    信号传输模块,配置为确定量子比特的频率控制信号所对应的目标量子比特;
    信号处理模块,配置为为所述目标量子比特配置第一方波脉冲;
    所述信号处理模块,配置为当所述第一方波脉冲的结束时间到达第一时间阈值时,控制所述目标量子比特绕Y轴转动第一目标距离;
    所述信号处理模块,配置为当所述第一方波脉冲的结束时间到达第二时间阈值时,对所述目标量子比特进行量子层析测量;
    所述信号处理模块,配置为基于所述目标量子比特进行量子层析测量结果,重构所述目标量子比特的密度矩阵,得到所述目标量子比特的相位参数;
    所述信号处理模块,配置为调整所述第一时间阈值,对所述目标量子比特进行迭代测量,以实现通过所述迭代测量的结果中的不同相位参数,确定所述目标量子比特的频率控制信号的畸变量;
    所述信号处理模块,配置为基于所述目标量子比特的频率控制信号的畸变量,对所述频率控制信号进行调整。
  8. 根据权利要求7所述的装置,其中,
    所述信号处理模块,配置为确定所述目标量子比特对应的第一方波脉冲的冲脉冲长度与脉冲幅值;
    所述信号处理模块,配置为确定所述第一方波脉冲的脉冲结束时间作为所述量子比特进行迭代测量的起始时间。
  9. 根据权利要求7所述的装置,其中,
    所述信号处理模块,配置为基于所述第一时间阈值和所述第二时间阈值,确定所述相位累积时间区域;
    所述信号处理模块,配置为基于所述相位累积时间区域,对所述目标量子比特进行量子层析测量。
  10. 根据权利要求7所述的装置,其中,
    所述信号处理模块,配置为根据所述量子比特进行迭代测量的起始时间和所述第一时间阈值,确定所述量子比特对应的第一相位参数;
    所述信号处理模块,配置为基于所述第一时间阈值和所述第二时间阈值,确定所述量子比特的第二相位参数;
    所述信号处理模块,配置为基于所述第一相位参数和所述第二相位参数,确定不同测量时刻中所述目标量子比特的相位参数与所述第一时间阈值的对应关系。
  11. 根据权利要求7所述的装置,其中,
    所述信号处理模块,配置为基于所述迭代测量的结果,确定与所述目标量子比特的频率控制信号相匹配的传递函数;
    所述信号处理模块,配置为根据所述传递函数,确定所述第一方波脉冲经过所述传递函数后的波形特征;
    所述信号处理模块,配置为基于所述目标量子比特的频率与所述频率控制信号的关系,确定所述目标量子比特的频率与测量时间的关系;
    所述信号处理模块,配置为对所述目标量子比特的频率进行积分处理,确定第三相位参数;
    所述信号处理模块,配置为基于所述第三相位参数,确定所述目标量子比特的相位参数与所述第一时间阈值的拟合表达式,以实现通过所述拟合表达式确定所述传递函数中的不同参数进行优化,并通过经过优化的传递函数确定所述目标量子比特的频率控制信号的畸变量。
  12. 根据权利要求7所述的装置,其中,
    所述信号处理模块,配置为基于所述目标量子比特的频率控制信号的畸变量,确定相对应的期望频率控制信号、频域参数、所述目标量子比特传输线路中的传递函数,以及所述传递函数对应的时间域参数;
    所述信号处理模块,配置为确定所述目标量子比特的实时频率控制信号,以及所述实时频率控制信号对应的频域函数;
    所述信号处理模块,配置为对所述实时频率控制信号进行去卷积处理,以实现实时频率控制信号对应的频域函数满足所述期望频率控制信号、频域参数、所述目标量子比特传输线路中的传递函数以及实时频率控制信号所构成的去卷积表达式。
  13. 一种超导量子芯片,其中,所述超导量子芯片包括:
    存储器,配置为存储可执行指令;
    处理器,配置为运行所述存储器存储的可执行指令时,实现权利要求1至6任一项所述量子比特的频率控制信号处理方法。
  14. 一种计算机可读存储介质,存储有可执行指令,其中,所述可执行指令被处理器执行时实现权利要求1-6任一项所述量子比特的频率控制信号处理方法。
PCT/CN2021/111277 2020-10-09 2021-08-06 量子比特的频率控制信号处理方法、超导量子芯片 WO2022073380A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022510154A JP7341318B2 (ja) 2020-10-09 2021-08-06 量子ビットの周波数制御信号の処理方法、超伝導量子チップ
KR1020227001753A KR20220047753A (ko) 2020-10-09 2021-08-06 큐비트 및 초전도 양자 칩의 주파수 제어 신호를 프로세싱하기 위한 방법
EP21851585.6A EP4009248A4 (en) 2020-10-09 2021-08-06 METHOD OF PROCESSING A QUANTUM BIT FREQUENCY SIGNAL AND SUPERCONDUCTING QUANTUM CHIP
US17/585,471 US20220147859A1 (en) 2020-10-09 2022-01-26 Method for processing frequency control signal of qubit and superconducting quantum chip

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011073820.5 2020-10-09
CN202011073820.5A CN112149832B (zh) 2020-10-09 2020-10-09 量子比特的频率控制信号处理方法、超导量子芯片

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/585,471 Continuation US20220147859A1 (en) 2020-10-09 2022-01-26 Method for processing frequency control signal of qubit and superconducting quantum chip

Publications (1)

Publication Number Publication Date
WO2022073380A1 true WO2022073380A1 (zh) 2022-04-14

Family

ID=73952644

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/111277 WO2022073380A1 (zh) 2020-10-09 2021-08-06 量子比特的频率控制信号处理方法、超导量子芯片

Country Status (6)

Country Link
US (1) US20220147859A1 (zh)
EP (1) EP4009248A4 (zh)
JP (1) JP7341318B2 (zh)
KR (1) KR20220047753A (zh)
CN (1) CN112149832B (zh)
WO (1) WO2022073380A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115511095A (zh) * 2022-10-11 2022-12-23 北京百度网讯科技有限公司 含耦合器超导量子比特结构的设计信息输出方法及装置
CN115828823A (zh) * 2022-11-02 2023-03-21 北京百度网讯科技有限公司 超导量子芯片中读取腔与滤波器的版图信息输出方法及装置

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10333503B1 (en) 2018-11-26 2019-06-25 Quantum Machines Quantum controller with modular and dynamic pulse generation and routing
US10454459B1 (en) 2019-01-14 2019-10-22 Quantum Machines Quantum controller with multiple pulse modes
US10505524B1 (en) 2019-03-06 2019-12-10 Quantum Machines Synchronization in a quantum controller with modular and dynamic pulse generation and routing
US11164100B2 (en) 2019-05-02 2021-11-02 Quantum Machines Modular and dynamic digital control in a quantum controller
US10931267B1 (en) 2019-07-31 2021-02-23 Quantum Machines Frequency generation in a quantum controller
US11245390B2 (en) 2019-09-02 2022-02-08 Quantum Machines Software-defined pulse orchestration platform
US10862465B1 (en) 2019-09-02 2020-12-08 Quantum Machines Quantum controller architecture
US11043939B1 (en) 2020-08-05 2021-06-22 Quantum Machines Frequency management for quantum control
CN112149832B (zh) * 2020-10-09 2022-05-10 腾讯科技(深圳)有限公司 量子比特的频率控制信号处理方法、超导量子芯片
US11671180B2 (en) 2021-04-28 2023-06-06 Quantum Machines System and method for communication between quantum controller modules
CN113300781B (zh) * 2021-05-11 2022-09-06 山东浪潮科学研究院有限公司 一种超导量子比特读取脉冲的优化方法
CN113516246A (zh) * 2021-05-11 2021-10-19 阿里巴巴新加坡控股有限公司 参数优化方法、量子芯片的控制方法及装置
CN113516247A (zh) * 2021-05-20 2021-10-19 阿里巴巴新加坡控股有限公司 参数校准方法、量子芯片的控制方法、装置及系统
CN115409181B (zh) * 2021-05-28 2024-02-06 本源量子计算科技(合肥)股份有限公司 量子芯片的校准方法和装置、量子测控系统、量子计算机
CN113516248B (zh) * 2021-07-12 2022-04-12 北京百度网讯科技有限公司 一种量子门测试方法、装置及电子设备
CN115902393B (zh) * 2021-09-29 2024-04-05 本源量子计算科技(合肥)股份有限公司 Ac调制谱获取方法和装置、量子计算机
CN115902389B (zh) * 2021-08-26 2024-04-05 本源量子计算科技(合肥)股份有限公司 量子比特频率的测量方法、量子测控系统及量子计算机
CN115730667B (zh) * 2021-08-27 2024-02-06 本源量子计算科技(合肥)股份有限公司 量子计算机系统的延时的校准方法及校准装置
CN115841159B (zh) * 2021-09-18 2024-02-06 本源量子计算科技(合肥)股份有限公司 量子计算机系统延时的校准方法、校准装置及量子计算机
CN115840126B (zh) * 2021-09-18 2024-04-05 本源量子计算科技(合肥)股份有限公司 一种量子比特频率获取方法、量子测控系统和量子计算机
CN113919501B (zh) * 2021-10-11 2022-04-08 北京量子信息科学研究院 Cz门操作的校准方法、装置、计算机设备和存储介质
CN115329974B (zh) * 2022-08-04 2023-09-01 北京百度网讯科技有限公司 仿真方法、装置、设备及存储介质
CN115115055B (zh) * 2022-08-31 2022-12-06 合肥本源量子计算科技有限责任公司 联合读取信号的参数优化方法、装置及量子控制系统
CN115146781B (zh) * 2022-09-01 2022-12-06 合肥本源量子计算科技有限责任公司 联合读取信号的参数获取方法、装置及量子控制系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180225586A1 (en) * 2016-03-14 2018-08-09 International Business Machines Corporation Procedure for Systematic Tune Up of Crosstalk in a Cross-Resonance Gate and System Performing the Procedure and Using Results of the Same
CN110488091A (zh) * 2018-12-07 2019-11-22 合肥本源量子计算科技有限责任公司 一种基于串扰分析的超导量子比特调控方法
CN112149832A (zh) * 2020-10-09 2020-12-29 腾讯科技(深圳)有限公司 量子比特的频率控制信号处理方法、超导量子芯片

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2294448B1 (en) * 2008-01-09 2016-03-30 Surf Technology AS Nonlinear elastic imaging with two-frequency elastic pulse complexes
CN105372642B (zh) * 2015-11-06 2017-08-29 中国人民解放军空军装备研究院雷达与电子对抗研究所 一种基于调制频率测量的超高密度激光二维扫描装置
CN108732553B (zh) * 2018-06-01 2022-02-01 北京航空航天大学 一种激光雷达波形时刻鉴别方法与在线测距系统
AU2018247327B1 (en) 2018-07-23 2018-12-06 Q-CTRL Pty Ltd Multi-qubit control
CN109085728B (zh) * 2018-08-27 2020-10-27 中国科学技术大学 利用集成波导制备频率简并多光子纠缠源的方法和装置
CN109409526B (zh) * 2018-10-15 2021-08-10 合肥本源量子计算科技有限责任公司 一种单量子逻辑门操作的校准方法
CN109800882B (zh) * 2018-12-28 2020-10-09 华东计算技术研究所(中国电子科技集团公司第三十二研究所) 多位超导量子比特的扩展反馈测量装置
CN110896336B (zh) * 2019-11-18 2022-05-10 腾讯科技(深圳)有限公司 一种信号调控方法、装置、设备及存储介质
CN111260066B (zh) * 2020-01-14 2022-07-19 清华大学 一种实现双量子比特门操作的电路

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180225586A1 (en) * 2016-03-14 2018-08-09 International Business Machines Corporation Procedure for Systematic Tune Up of Crosstalk in a Cross-Resonance Gate and System Performing the Procedure and Using Results of the Same
CN110488091A (zh) * 2018-12-07 2019-11-22 合肥本源量子计算科技有限责任公司 一种基于串扰分析的超导量子比特调控方法
CN112149832A (zh) * 2020-10-09 2020-12-29 腾讯科技(深圳)有限公司 量子比特的频率控制信号处理方法、超导量子芯片

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TIAN YALI ET AL.: "Quantum Tomography of a Single Qubit Encoded in the Single Neutral Atom", ACTA SINICA QUANTUM OPTICA, vol. 25, no. 2, 30 June 2019 (2019-06-30), pages 117 - 122, XP055919644, ISSN: 1007-6654, DOI: 10.3788/JQO20192502.0102 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115511095A (zh) * 2022-10-11 2022-12-23 北京百度网讯科技有限公司 含耦合器超导量子比特结构的设计信息输出方法及装置
CN115828823A (zh) * 2022-11-02 2023-03-21 北京百度网讯科技有限公司 超导量子芯片中读取腔与滤波器的版图信息输出方法及装置

Also Published As

Publication number Publication date
JP7341318B2 (ja) 2023-09-08
CN112149832B (zh) 2022-05-10
EP4009248A4 (en) 2022-12-28
CN112149832A (zh) 2020-12-29
JP2023501857A (ja) 2023-01-20
KR20220047753A (ko) 2022-04-19
US20220147859A1 (en) 2022-05-12
EP4009248A1 (en) 2022-06-08

Similar Documents

Publication Publication Date Title
WO2022073380A1 (zh) 量子比特的频率控制信号处理方法、超导量子芯片
JP6771009B2 (ja) 共鳴励起下のキュービットの磁束制御
Rol et al. Time-domain characterization and correction of on-chip distortion of control pulses in a quantum processor
CN111260066B (zh) 一种实现双量子比特门操作的电路
CN111095307A (zh) 用于量子计算机器的硬件高效的变分量子本征值求解器
Premaratne et al. Microwave photon Fock state generation by stimulated Raman adiabatic passage
WO2018106556A1 (en) Tomography and generative data modeling via quantum boltzmann training
WO2020263278A1 (en) Tunable qubit coupler
WO2023142324A1 (zh) 基于超导量子耦合器实现双比特量子门的方法
CN113098803B (zh) 量子噪声信道的逆映射分解方法及装置、电子设备和介质
JP2022511605A (ja) 量子プログラムのノイズおよび較正適応コンパイル
Kempf et al. A fully covariant information-theoretic ultraviolet cutoff for scalar fields in expanding Friedmann Robertson Walker spacetimes
Premaratne et al. Implementation of a generalized controlled-NOT gate between fixed-frequency transmons
EP4257990A1 (en) Method and device for calibrating frequency of superconducting qubit, and readable storage medium
US11139817B1 (en) Voltage-controlled oscillator calibration
Sturma et al. Geometry effects on magnetization dynamics in circular cross-section wires
He et al. Coherence of one-dimensional quantum walk on cycles
Yuan et al. Domain‐wall dynamic instability
US20240004773A1 (en) Benchmarking protocol for quantum gates
Elkin et al. Multiphysics Numerical Method for Modeling Josephson Traveling-Wave Parametric Amplifiers
Dumoulin Stuyck et al. Silicon spin qubit noise characterization using real-time feedback protocols and wavelet analysis
Kunihiro et al. Pulse-Density-Modulated Microwave Generator Using Single-Flux-Quantum Circuits for Controlling Qubits
CN116670668A (zh) 动力学解耦驱动受控z门
Singhal et al. SQ-CARS: A Scalable Quantum Control and Readout System
Nakura et al. Measurement Devices

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022510154

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021851585

Country of ref document: EP

Effective date: 20220207

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21851585

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE