WO2022073300A1 - 一种高强高耐磨Al-Si合金及其制备方法和应用 - Google Patents

一种高强高耐磨Al-Si合金及其制备方法和应用 Download PDF

Info

Publication number
WO2022073300A1
WO2022073300A1 PCT/CN2020/137547 CN2020137547W WO2022073300A1 WO 2022073300 A1 WO2022073300 A1 WO 2022073300A1 CN 2020137547 W CN2020137547 W CN 2020137547W WO 2022073300 A1 WO2022073300 A1 WO 2022073300A1
Authority
WO
WIPO (PCT)
Prior art keywords
alloy
strength
wear
treatment
preparation
Prior art date
Application number
PCT/CN2020/137547
Other languages
English (en)
French (fr)
Inventor
李润霞
郝建飞
卞健从
陈斌
姜雄华
于宝义
Original Assignee
东莞理工学院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东莞理工学院 filed Critical 东莞理工学院
Publication of WO2022073300A1 publication Critical patent/WO2022073300A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D18/00Pressure casting; Vacuum casting
    • B22D18/02Pressure casting making use of mechanical pressure devices, e.g. cast-forging
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/026Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/03Making non-ferrous alloys by melting using master alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/06Making non-ferrous alloys with the use of special agents for refining or deoxidising
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/002Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working by rapid cooling or quenching; cooling agents used therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/043Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with silicon as the next major constituent

Definitions

  • the invention relates to the technical field of aluminum alloy materials, in particular to a high-strength and high-wear-resistant Al-Si alloy and a preparation method and application thereof.
  • Cast Al-Si alloy is the most important series of cast aluminum alloys. Due to its low density, high specific strength, and excellent casting properties, corrosion resistance, wear resistance, weldability and thermal expansion, it is widely used. It is used in aerospace, automobile, machinery and other industries to produce large, medium and small sizes with complex shapes, thin walls, corrosion resistance, high air tightness requirements, medium and high static loads or impact loads, and requiring work at higher temperatures. casting.
  • components such as automobile engines are usually die-casted using hypereutectic Al-Si alloys, but engine components prepared from existing alloy components have certain limitations in terms of strength and wear resistance.
  • a small amount of Cu and Mg elements are added to the hypereutectic Al-Si alloy to form strengthening phases such as Al 2 Cu, Mg 2 Si and Al-Si-Cu-Mg in the alloy, which can improve the strength of the alloy to a certain extent.
  • strengthening phases such as Al 2 Cu, Mg 2 Si and Al-Si-Cu-Mg in the alloy, which can improve the strength of the alloy to a certain extent.
  • Si due to the high content of Si in the alloy, a coarse bulk Si phase and a fibrous eutectic Si phase will be formed in the matrix after forming, which has a large splitting effect on the matrix, and the strength and wear resistance of the alloy need to be improved.
  • the purpose of the present invention is to provide a high-strength and high-wear-resistant Al-Si alloy and its preparation method and application.
  • the alloy provided by the present invention has higher strength and better wear resistance.
  • the invention provides a high-strength and high-wear-resistant Al-Si alloy, which in terms of mass percentage, comprises Si 16-23.5%, Cu 5-9%, Mg 3-6.2%, Zn 2-8%, Zr 0.1- 0.45%, La 0.2 ⁇ 0.7%, Er 0.1 ⁇ 0.3%, Mn ⁇ 0.2%, Fe ⁇ 0.15%, the balance is Al and inevitable impurities, among the inevitable impurities, the content of each impurity is low at 0.01%.
  • it includes Si 17.5-22%, Cu 5-8%, Mg 3.3-6%, Zn 3-7%, Zr 0.15-0.35%, La 0.2-0.5%, Er 0.2-0.3%, Mn 0.15-0.2 %, Fe 0.1 ⁇ 0.15%, the balance is Al and inevitable impurities.
  • the present invention provides the preparation method of the high-strength and high-wear-resistant Al-Si alloy described in the above technical solution, comprising the following steps:
  • the refining liquid is melt-treated based on the ultrasonic/electromagnetic compound field to obtain a treatment liquid
  • the preparation raw materials include pure aluminum ingots and master alloys;
  • the smelting includes: first smelting pure aluminum ingots, and after part of the pure aluminum ingots is melted, adding the master alloy for second smelting.
  • the temperature of the first smelting is 700-760° C. and the time is 2-6 h
  • the temperature of the second smelting is 710-770° C. and the time is 2-5 h.
  • the part of the pure aluminum ingot accounts for 45-65% of the total mass of the pure aluminum ingot.
  • the refining is powder refining.
  • the operation parameters of the powder refining include: the rotation speed of the deaerator is 110-150 rpm, the inlet pressure is 0.25-0.65 MPa, the powder output is 1.5-4.5 kg/min, and the refining time is 15-45 min.
  • the operating parameters of the melt processing include: ultrasonic power is 320-420W, ultrasonic frequency is 10-25kHz, electromagnetic frequency is 15-30kHz, and electromagnetic intensity is 100-180A.
  • the operating parameters of the squeeze casting include: the casting temperature is 660-760° C., the specific pressure is 450-750 MPa, the pressure holding time is 20-70 s, and the extrusion speed is 5-15 mm/s.
  • the squeeze casting further includes:
  • the quenched alloy ingot is subjected to T6 heat treatment to obtain a high-strength and high-wear-resistant Al-Si alloy.
  • the time of the quenching treatment is 30-150s;
  • the quenching medium used in the quenching treatment is a 10wt% NaCl aqueous solution, and the temperature of the NaCl aqueous solution is 15-25°C.
  • the T6 heat treatment includes solution treatment and aging treatment performed in sequence; the temperature of the solution treatment is 480-530°C, and the time is 5-100min; the temperature of the aging treatment is 150-220°C, and the time is 150-220°C. For 4 ⁇ 24h.
  • the present invention provides the application of the high-strength and high-wear-resistant Al-Si alloy described in the above technical solution or the high-strength and high-wear-resistant Al-Si alloy prepared by the preparation method described in the above technical solution in auto parts.
  • the invention provides a high-strength and high-wear-resistant Al-Si alloy, which in terms of mass percentage, comprises Si 16-23.5%, Cu 5-9%, Mg 3-6.2%, Zn 2-8%, Zr 0.1- 0.45%, La 0.2 ⁇ 0.7%, Er 0.1 ⁇ 0.3%, Mn ⁇ 0.2%, Fe ⁇ 0.15%, the balance is Al and inevitable impurities, among the inevitable impurities, the content of each impurity is low at 0.01%.
  • the present invention can improve the morphology of the Si phase, refine the crystal grains, and the alloy structure is uniform and has Higher strength and better wear resistance.
  • the results of the examples show that the tensile strength of the high-strength and high-wear-resistant Al-Si alloy provided by the present invention reaches 384MPa, the yield strength reaches 317MPa, the elongation is 2.7%, the hardness value is 217HB, and the friction coefficient is 0.301, which can meet the requirements of automobiles. Performance requirements of parts.
  • the present invention provides a method for preparing the high-strength and high-wear-resistant Al-Si alloy, which comprises the following steps: smelting the raw materials according to the composition of the high-strength and high-wear-resistant Al-Si alloy to obtain an alloy liquid; refining the alloy liquid , to obtain a refining liquid; perform melt treatment on the refining liquid based on the ultrasonic/electromagnetic composite field to obtain a treatment liquid; subject the treatment liquid to squeeze casting to obtain an alloy ingot; perform a quenching treatment on the alloy ingot, A quenched alloy ingot is obtained; the quenched alloy ingot is subjected to T6 heat treatment to obtain a high-strength and high-wear-resistant Al-Si alloy.
  • the method provided by the invention has simple steps and is easy to operate; the alloy segregation condition obtained by the method provided by the invention is improved, the utilization rate of raw materials is high, the grain size is small, the structure is uniform, the surface is smooth and clean, and the alloy has excellent wear resistance and mechanical properties. performance.
  • Fig. 1 is the microstructure diagram of the high-strength and high-wear-resistant Al-Si alloy prepared in Example 3;
  • FIG. 2 is a microstructure diagram of the Al-Si alloy prepared in Comparative Example 1.
  • FIG. 2 is a microstructure diagram of the Al-Si alloy prepared in Comparative Example 1.
  • the invention provides a high-strength and high-wear-resistant Al-Si alloy, which in terms of mass percentage, comprises Si 16-23.5%, Cu 5-9%, Mg 3-6.2%, Zn 2-8%, Zr 0.1- 0.45%, La 0.2 ⁇ 0.7%, Er 0.1 ⁇ 0.3%, Mn ⁇ 0.2%, Fe ⁇ 0.15%, the balance is Al and inevitable impurities, among the inevitable impurities, the content of each impurity is low at 0.01%.
  • the high-strength and high-wear-resistant Al-Si alloy provided by the present invention comprises Si 16-23.5%, preferably 17.5-22%, more preferably 17.7-21.5%.
  • the high-strength and high-wear-resistant Al-Si alloy provided by the present invention comprises Cu 5-9%, preferably 5-8%, more preferably 5.1-7.2%.
  • the high-strength and high-wear-resistant Al-Si alloy provided by the present invention includes 3-6.2% Mg, preferably 3.3-6%, and more preferably 3.5-5.2%.
  • the high-strength and high-wear-resistant Al-Si alloy provided by the present invention includes 2 to 8% of Zn, preferably 3 to 7%, and more preferably 3.2 to 6.1%.
  • the high-strength and high-wear-resistant Al-Si alloy provided by the present invention includes Zr 0.1-0.45%, preferably 0.15-0.35%, more preferably 0.18-0.3%.
  • the high-strength and high-wear-resistant Al-Si alloy provided by the present invention comprises La 0.2-0.7%, preferably 0.2-0.5%, more preferably 0.22-0.43%.
  • the high-strength and high-wear-resistant Al-Si alloy provided by the present invention comprises Er 0.1-0.3%, preferably 0.2-0.3%, more preferably 0.22-0.3%.
  • the high-strength and high-wear-resistant Al-Si alloy provided by the present invention includes Mn ⁇ 0.2%, preferably 0.15-0.2%.
  • the high-strength and high-wear-resistant Al-Si alloy provided by the present invention comprises Fe ⁇ 0.15%, preferably 0.1-0.15%.
  • the high-strength and high-wear-resistant Al-Si alloy provided by the present invention includes the balance of Al and inevitable impurities, and the content of each impurity in the inevitable impurities is less than 0.01%.
  • Si, Cu, Zn and Mg are the main elements of the alloy, and these alloy elements have the functions of solid solution strengthening and aging precipitation strengthening.
  • Mg and Si can precipitate Mg 2 Si strengthening phase
  • Cu and Al can precipitate Al 2 Cu strengthening phase, which further enhances the strength of the alloy.
  • the four alloying elements of Al, Si, Cu and Mg also form W (Al x Mg 5 Si 4 Cu) and Q (Al 5 Mg 8 Si 6 Cu 2 ) strengthening phases. .
  • the inventors have found that when the Si content is lower than 16%, the Cu content is lower than 5%, the Mg content is lower than 3%, and the Zn content is lower than 2%, the strength of the alloy decreases significantly, and the wear resistance also increases with
  • the Si content is higher than 23.5%, the Cu element content is higher than 9%, and the Mg element content is higher than 6.2%, a coarse second phase will be formed inside the alloy, and the plasticity of the alloy casting will decrease sharply, which will affect the later cutting. Processing; the maximum solid solubility of Zn in the alloy is 83.1%, which is basically completely dissolved into the matrix, and the second phase containing Zn cannot be detected. Therefore, Zn mainly plays a solid solution strengthening effect on the alloy.
  • the strength of the alloy can be significantly improved, and when the content of Zn is too high (eg, more than 8%), the stress cracking tendency of the alloy will be increased.
  • the present invention controls the content of Si, Cu, Mg and Zn within the above-mentioned ranges, which can balance the contradictory relationship between the strength, wear resistance and impact fracture toughness of the alloy. Requirements for component strength, wear resistance and toughness.
  • Zr, La and Er are trace elements added in the alloy, wherein the addition of Zr can precipitate the Al 3 Zr phase, which limits the precipitation of the coarse Mg 5 Al 8 phase along the grain boundary, while the Al 3 Zr crystal structure and grain size
  • the lattice constants are very similar to the matrix aluminum, and it is an excellent heterogeneous nucleation core of ⁇ -Al; when adding Zr and RE (La, Er) elements, the rare earth is easy to be enriched at the front of the solid/liquid interface, and it is enriched to a certain extent.
  • the Al 3 RE compound is formed, and the supercooling of the composition increases the branching process, the secondary dendrites increase, and finally the dendrite spacing decreases and the grains are refined; in addition, the surface activity of rare earth elements is relatively high.
  • the enrichment at the front of the solid/liquid interface makes it play a role in hindering the growth of ⁇ -Al grains, thereby hindering the growth process of grains and promoting the refinement of grains; a small amount of Fe is added to the alloy.
  • the present invention provides the preparation method of the high-strength and high-wear-resistant Al-Si alloy described in the above technical solution, comprising the following steps:
  • the refining liquid is melt-treated based on the ultrasonic/electromagnetic compound field to obtain a treatment liquid
  • the preparation raw materials are smelted according to the composition of the high-strength and high-wear-resistant Al-Si alloy to obtain the alloy liquid.
  • the preparation raw materials preferably include pure aluminum ingots, pure Mg, pure Zn and master alloys, and the master alloys preferably include Al-30%Si, Al-50%Cu, Al-10%Zr, Al- 10% La, Al-10% Er, Al-30% Mn and Al-50% Fe.
  • the smelting includes: first smelting pure aluminum ingots, and after part of the pure aluminum ingots is melted, adding the master alloy for second smelting; the temperature of the first smelting is preferably 700-760° C.
  • the time is preferably 2-6h, more preferably 2.5-4.5h; the temperature of the second smelting is preferably 710-770°C, more preferably 730-750°C, and the time is preferably 2 ⁇ 5h, more preferably 2.5 ⁇ 4h; the partial pure aluminum ingot preferably accounts for 45-65% of the total mass of the pure aluminum ingot, more preferably 50%.
  • the present invention refines the alloy liquid to obtain a refining liquid.
  • the refining is preferably powder refining
  • the operating parameters of the powder refining include: the rotation speed of the degasser is preferably 110-150 rpm, more preferably 120-135 rpm; the inlet pressure is preferably 0.25-0.65 MPa, more preferably 0.33-0.6MPa; powder output is preferably 1.5-4.5kg/min, more preferably 2.5-3.8kg/min; refining time is preferably 15-45min, more preferably 20-35min.
  • the refining agent used in the refining preferably includes Na 3 AlF 6 , Mg 2 N 3 , C 2 Cl 6 , NaCl and KCl, wherein the added amount of the Na 3 AlF 6 is preferably the total mass of the alloy liquid
  • the addition amount of the Mg 2 N 3 is preferably 4-8% of the total mass of the alloy liquid
  • the addition amount of the C 2 Cl 6 is preferably 2-4% of the total mass of the alloy liquid.
  • the total addition amount of NaCl and KCl is preferably 2-4% of the total mass of the alloy liquid
  • the mass ratio of NaCl and KCl is preferably 35:65.
  • the present invention if the rotational speed of the degasser is too high, the inlet pressure is too large, and the refining time is too long, the alloy liquid will be splashed, which is easy to cause danger. If the speed of the degasser is too low, the inlet pressure is too small, and the refining time is too short, there will be residual gas and slag in the alloy liquid, which will affect the quality of the ingot.
  • the present invention preferably controls the operation parameters of powder spray refining within the above range, which is beneficial to ensure good refining effect, greatly improve the cleanliness of the alloy, eliminate structural defects such as pores and inclusions, and ensure that the obtained alloy casting has no internal structure. Inclusions are generated to avoid inclusions affecting the properties of the alloy.
  • the present invention performs melt treatment on the refining liquid based on the ultrasonic/electromagnetic composite field to obtain the treatment liquid.
  • the operating parameters of the melt processing include: ultrasonic power is preferably 320-420W, more preferably 320-380W; ultrasonic frequency is preferably 10-25kHz, more preferably 15-20kHz; electromagnetic frequency is preferably 15 ⁇ 30kHz, more preferably 17 ⁇ 25kHz; electromagnetic intensity is preferably 100 ⁇ 180A, more preferably 125 ⁇ 150A.
  • the present invention when the ultrasonic power is small, the cavitation and acoustic flow effects are weak, and the effect of grain refinement cannot be achieved, but if the ultrasonic power is too large, the heat is transferred to the refining liquid to increase the temperature, and the greater the power The more obvious the heat transfer effect is, the longer the crystallization time is, the lower the grain refinement effect to a certain extent, and the waste of energy; when the electromagnetic frequency is too high, the stirring effect is relatively weak, and as the electromagnetic frequency decreases, the forced convection increases.
  • the present invention preferably controls the operating parameters of the melt treatment to be within the above-mentioned range. Through the vibration of the ultrasonic field and the stirring effect of the low-frequency electromagnetic field, the internal structure of the alloy can be effectively refined, and the solute segregation in the alloy can be improved.
  • the present invention performs squeeze casting of the treatment liquid to obtain a high-strength and high-wear-resistant Al-Si alloy.
  • the treatment liquid is preferably filtered, the filter plate used for the filtration is preferably a foam ceramic filter plate, and the porosity of the foam ceramic filter plate is preferably 80-120ppi .
  • the operating parameters of the squeeze casting include: the casting temperature is preferably 660-760°C, more preferably 680-740°C; the specific pressure is preferably 450-750MPa, more preferably 520-700MPa; the dwell time It is preferably 20 to 70 s, more preferably 30 to 60 s, and the extrusion speed is preferably 5 to 15 mm/s, more preferably 6 to 12 mm/s.
  • the liquid extrusion forming process is used to squeeze and cast the treatment liquid, wherein if the specific pressure is too low and the temperature of the treatment liquid is too low, the extrusion speed will be slow, and the treatment liquid may be easily solidified too quickly during the extrusion process.
  • the required mold before performing the squeeze casting, is preferably preheated; the temperature of the preheating is preferably 220-350°C, more preferably 250-310°C; the time is preferably 30-100min, More preferably, it is 50 to 90 minutes. In the present invention, if the preheating temperature of the mold is too high, it is easy to cause the growth of crystal grains during the extrusion casting process, and if the mold temperature is too low, it is easy to cause the treatment liquid to solidify too fast.
  • the squeeze casting in order to further improve the performance of the high-strength and high-wear-resistant Al-Si alloy, preferably further includes:
  • the quenched alloy ingot is subjected to T6 heat treatment to obtain a high-strength and high-wear-resistant Al-Si alloy.
  • the alloy ingot obtained after extrusion casting is subjected to quenching treatment to obtain the quenched alloy ingot.
  • the quenching treatment is to place the alloy ingot obtained after squeeze casting in a quenching medium for rapid cooling.
  • the time of the quenching treatment is preferably 30-150s, more preferably 30-100s.
  • the time of the quenching treatment refers to the time that the alloy ingot is in the quenching medium; the quenching medium It is preferably a 10wt% NaCl aqueous solution, and the temperature of the NaCl aqueous solution is 15-25°C, more preferably 16-22°C.
  • the obtained quenched alloy ingot is preferably placed in a ventilated place to air dry naturally.
  • the above-mentioned NaCl aqueous solution is preferably used for cooling, which can significantly increase the cooling rate, enable the alloy ingot to be sufficiently and rapidly cooled, and rapidly form a supersaturated solid solution inside the alloy, thereby laying a good foundation for the subsequent heat treatment process.
  • the present invention performs T6 heat treatment on the quenched alloy ingot to obtain a high-strength and high-wear-resistant Al-Si alloy.
  • the T6 heat treatment preferably includes solution treatment and aging treatment performed in sequence; the temperature of the solution treatment is preferably 480-530°C, more preferably 500-520°C; the time is preferably 5-100min, It is further preferably 30-90 minutes; the temperature of the aging treatment is preferably 150-220° C., more preferably 175-190° C., and the time is preferably 4-24 hours, and further preferably 8-15 hours.
  • the internal structure of the alloy is uniform and the crystal grains are fine, and during the extrusion casting forming process, the treatment liquid is There is a large plastic deformation, resulting in a higher internal energy of the alloy and a higher dislocation density. Therefore, only a short time of solution treatment is needed to eliminate the internal stress inside the alloy, and finally an Al-Si alloy with better mechanical properties and wear resistance can be obtained by aging treatment.
  • the present invention provides the application of the high-strength and high-wear-resistant Al-Si alloy described in the above technical solution or the high-strength and high-wear-resistant Al-Si alloy prepared by the preparation method described in the above technical solution in auto parts.
  • the alloy provided by the invention has low internal stress, smooth surface, uniform internal structure, small crystal grains and little difference in size, and at the same time, excellent performance, high strength and good wear resistance, and can be used for auto parts and can meet the requirements of Subsequent machining requirements can also meet the performance requirements of automobiles for internal parts of the body.
  • the high-strength and high-wear-resistant Al-Si alloy in this embodiment is composed of the following components by mass percentage: Si 18.0%, Cu 5.3%, Mg 4.1%, Zn4.2%, Zr 0.19%, La 0.24%, Er 0.24%, Mn is 0.21%, Fe is 0.11%, and the balance is Al and unavoidable impurities.
  • the content of each impurity is less than 0.01%.
  • high-strength and high-wear-resistant Al-Si alloy industrial pure aluminum ingots are added to the melting furnace, the temperature is raised to 730 °C, and the temperature is maintained for 4 hours. At this time, the pure aluminum ingots are melted to half, and pure Mg, pure Zn and other master alloys are added. (specifically Al-30%Si, Al-50%Cu, Al-10%Zr, Al-10%Er, Al-10%La, Al-30%Mn and Al-50%Fe), heated to 735°C , heat preservation smelting for 2.5h to obtain alloy liquid;
  • the operation parameters of the powder refining include: the rotation speed of the degasser is 125rpm, the inlet pressure is 0.35MPa, the powder output is 2.0kg/min, and the refining time is 25min;
  • the refining agents used in the powder spray refining include Na 3 AlF 6 , Mg 2 N 3 , C 2 Cl 6 , NaCl and KCl , wherein the addition amount of Na 3 AlF 6 is 3.5% of the total mass of the alloy liquid, the addition amount of Mg 2 N 3 is 4.5% of the total weight of the alloy liquid, and the addition amount of C 2 Cl 6 is 2.5% of the total weight of the alloy liquid , the total amount of NaCl and KCl added is 2.5% of the total mass of the alloy liquid, and the mass ratio of NaCl and KCl is 35:65;
  • the refining liquid is subjected to melt treatment based on the ultrasonic/electromagnetic compound field to obtain a treatment liquid; wherein, the operating parameters of the melt treatment include: ultrasonic power of 330W, ultrasonic frequency of 15kHz, electromagnetic frequency of 18kHz, and electromagnetic intensity of 125A;
  • the mold is preheated at 250° C. for 50 minutes, and the treatment liquid is transferred into the preheated mold for extrusion casting to obtain an alloy ingot; wherein, the treatment liquid is filtered through foam ceramics before extrusion casting.
  • the plate porosity is 110ppi
  • the operating parameters of the squeeze casting include: the casting temperature is 685°C, the specific pressure is 530MPa, the pressure holding time is 35s, and the extrusion speed is 6mm/s;
  • the alloy ingot is subjected to quenching treatment, wherein the quenching treatment time is 35s, the quenching medium is a 10wt% NaCl aqueous solution, and the temperature of the NaCl aqueous solution is 19°C; after the quenching treatment, it is naturally air-dried to obtain high-strength and high-wear-resistant Al -Si alloy.
  • the high-strength and high-wear-resistant Al-Si alloy in this embodiment is composed of the following components by mass percentage: Si 17.7%, Cu 5.1%, Mg 3.5%, Zn 3.2%, Zr 0.18%, La 0.22%, Er 0.22%, Mn 0.2%, Fe 0.12%, the balance is Al and unavoidable impurities, and the content of each impurity in the unavoidable impurities is less than 0.01%.
  • the industrial pure aluminum ingot is added to the melting furnace, the temperature is raised to 725 °C, and the heat preservation is smelted for 4.5 hours. At this time, the pure aluminum ingot is melted to half, and pure Mg, pure Zn and other intermediates are added. Alloys (specifically Al-30%Si, Al-50%Cu, Al-10%Zr, Al-10%Er, Al-10%La, Al-30%Mn and Al-50%Fe), heated to 730 °C, heat preservation and smelting for 4h to obtain alloy liquid;
  • the operation parameters of the powder refining include: the rotation speed of the degasser is 120rpm, the inlet pressure is 0.33MPa, the powder output is 2.5kg/min, and the refining time is 20min; the refining agents used in the powder spray refining include Na 3 AlF 6 , Mg 2 N 3 , C 2 Cl 6 , NaCl and KCl , wherein the addition amount of Na 3 AlF 6 is 3.4% of the total mass of the alloy liquid, the addition amount of Mg 2 N 3 is 4.3% of the total weight of the alloy liquid, and the addition amount of C 2 Cl 6 is 2.2% of the total weight of the alloy liquid , the total amount of NaCl and KCl added is 2.6% of the total mass of the alloy liquid, and the mass ratio of NaCl and KCl is 35:65;
  • the refining liquid is subjected to melt treatment based on the ultrasonic/electromagnetic composite field to obtain a treatment liquid; wherein, the operating parameters of the melt treatment include: ultrasonic power of 320W, ultrasonic frequency of 15kHz, electromagnetic frequency of 22kHz, and electromagnetic intensity of 125A;
  • the mold is preheated at 250° C. for 50 minutes, and the treatment liquid is transferred into the preheated mold for extrusion casting to obtain an alloy ingot; wherein, the treatment liquid is filtered through foam ceramics before extrusion casting.
  • the plate porosity is 100ppi) is filtered; the operating parameters of the squeeze casting include: the casting temperature is 680°C, the specific pressure is 520MPa, the pressure holding time is 30s, and the extrusion speed is 6mm/s;
  • the alloy ingot is subjected to quenching treatment, wherein the quenching treatment time is 30s, the quenching medium is a 10wt% NaCl aqueous solution, and the temperature of the NaCl aqueous solution is 17°C; after the quenching treatment, it is naturally air-dried to obtain a quenched alloy ingot;
  • the quenched alloy ingot is sequentially subjected to solution treatment and aging treatment, and then cooled in a furnace to obtain a high-strength and high-wear-resistant Al-Si alloy; wherein, the temperature of the solution treatment is 500° C. and the time is 90 minutes; the aging The treatment temperature was 175°C and the time was 15h.
  • the high-strength and high-wear-resistant Al-Si alloy in this embodiment is composed of the following mass percentages: Si 18.5%, Cu 6.6%, Mg 4.5%, Zn 4.2%, Zr 0.28%, La 0.35%, Er 0.25%, Mn 0.15%, Fe 0.11%, the balance is Al and unavoidable impurities, and the content of each impurity in the unavoidable impurities is less than 0.01%.
  • high-strength and high-wear-resistant Al-Si alloy industrial pure aluminum ingots are added to the melting furnace, heated to 740 ° C, heat preservation and smelting for 3 hours. At this time, the pure aluminum ingots are melted to half, and pure Mg, pure Zn and other master alloys are added. (Specifically Al-30%Si, Al-50%Cu, Al-10%Zr, Al-10%Er, Al-10%La, Al-30%Mn and Al-50%Fe), at 740°C Continue to heat preservation and smelting for 3h to obtain alloy liquid;
  • the operation parameters of the powder refining include: the rotation speed of the degasser is 130rpm, the inlet pressure is 0.45MPa, the powder output is 3.1kg/min, and the refining time is 30min; the refining agents used in the powder spray refining include Na 3 AlF 6 , Mg 2 N 3 , C 2 Cl 6 , NaCl and KCl , wherein the addition amount of Na 3 AlF 6 is 4.2% of the total mass of the alloy liquid, the addition amount of Mg 2 N 3 is 5.1% of the total weight of the alloy liquid, and the addition amount of C 2 Cl 6 is 2.8% of the total weight of the alloy liquid , the total amount of NaCl and KCl added is 3.1% of the total mass of the alloy liquid, and the mass ratio of NaCl and KCl is 35:65;
  • the refining liquid is subjected to melt treatment based on the ultrasonic/electromagnetic compound field to obtain a treatment liquid; wherein, the operating parameters of the melt treatment include: ultrasonic power of 350W, ultrasonic frequency of 18kHz, electromagnetic frequency of 17kHz, and electromagnetic intensity of 135A;
  • the mold is preheated at 300° C. for 75 minutes, and the treatment liquid is transferred into the preheated mold for extrusion casting to obtain an alloy ingot; wherein, the treatment liquid is filtered through foam ceramics before extrusion casting.
  • the plate porosity is 120ppi
  • the operating parameters of the squeeze casting include: the casting temperature is 720°C, the specific pressure is 600MPa, the pressure holding time is 45s, and the extrusion speed is 9mm/s;
  • the alloy ingot is subjected to quenching treatment, wherein the quenching treatment time is 30s, the quenching medium is a 10wt% NaCl aqueous solution, and the temperature of the NaCl aqueous solution is 20°C; after the quenching treatment, it is naturally air-dried to obtain a quenched alloy ingot;
  • the quenched alloy ingot is sequentially subjected to solution treatment and aging treatment, and then cooled in a furnace to obtain a high-strength and high-wear-resistant Al-Si alloy; wherein, the temperature of the solution treatment is 520° C., and the time is 60 minutes; the aging The treatment temperature was 180°C and the time was 12h.
  • the high-strength and high-wear-resistant Al-Si alloy in this embodiment is composed of the following components by mass: Si 21.5%, Cu 7.2%, Mg 5.2%, Zn 6.1%, Zr 0.3%, La 0.43%, Er 0.3%, Mn 0.2%, Fe 0.13%, the balance is Al and unavoidable impurities, and the content of each impurity in the unavoidable impurities is less than 0.01%.
  • the operation parameters of the powder refining include: the rotation speed of the degasser is 135rpm, the inlet pressure is 0.6MPa, the powder output is 3.8kg/min, and the refining time is 35min;
  • the refining agents used in the powder spray refining include Na 3 AlF 6 , Mg 2 N 3 , C 2 Cl 6 , NaCl and KCl , wherein the addition amount of Na 3 AlF 6 is 4.1% of the total mass of the alloy liquid, the addition amount of Mg 2 N 3 is 5.2% of the total weight of the alloy liquid, and the addition amount of C 2 Cl 6 is the total weight of the alloy liquid. 2.9%, the total amount of NaCl and KCl added is 3.1% of the total mass of the alloy liquid, and the mass ratio of NaCl and KCl is 35:65;
  • the refining liquid is subjected to melt treatment based on the ultrasonic/electromagnetic composite field to obtain a treatment liquid; wherein, the operating parameters of the melt treatment include: ultrasonic power is 380W, ultrasonic frequency is 20kHz, electromagnetic frequency is 25kHz, and electromagnetic intensity is 150A;
  • the mold is preheated at 310° C. for 90 minutes, and the treatment liquid is transferred into the preheated mold for extrusion casting to obtain an alloy ingot; wherein, the treatment liquid is filtered through foam ceramics before extrusion casting.
  • the plate porosity is 115ppi
  • the operating parameters of the squeeze casting include: the casting temperature is 760°C, the specific pressure is 700MPa, the pressure holding time is 60s, and the extrusion speed is 12mm/s;
  • the alloy ingot is subjected to quenching treatment, wherein the quenching treatment time is 30s, the quenching medium is a 10wt% NaCl aqueous solution, and the temperature of the NaCl aqueous solution is 24°C; after the quenching treatment, it is naturally air-dried to obtain a quenched alloy ingot;
  • the quenched alloy ingot is sequentially subjected to solution treatment and aging treatment, and then cooled in a furnace to obtain a high-strength and high-wear-resistant Al-Si alloy; wherein, the temperature of the solution treatment is 520° C., and the time is 30 minutes; the aging The treatment temperature was 190°C and the time was 8h.
  • the high-strength and high-wear-resistant Al-Si alloy in this embodiment is composed of the following components by mass percentage: Si 17.7%, Cu 5.1%, Mg 3.5%, Zr 0.18%, La 0.22%, Er 0.22%, Mn 0.2%, Fe 0.12%, the balance is Al and unavoidable impurities, and the content of each impurity in the unavoidable impurities is less than 0.01%.
  • the operation parameters of the powder refining include: the rotation speed of the degasser is 120rpm, the inlet pressure is 0.33MPa, the powder output is 2.5kg/min, and the refining time is 20min; the refining agents used in the powder spray refining include Na 3 AlF 6 , Mg 2 N 3 , C 2 Cl 6 , NaCl and KCl , wherein the addition amount of Na 3 AlF 6 is 3% of the total mass of the alloy liquid, the addition amount of Mg 2 N 3 is 4.1% of the total weight of the alloy liquid, and the addition amount of C 2 Cl 6 is 3.1% of the total weight of the alloy liquid , the total amount of NaCl and KCl added is 2.1% of the total mass of the alloy liquid, and the mass ratio of NaCl and KCl is 35:65;
  • the refining liquid is subjected to melt treatment based on the ultrasonic/electromagnetic composite field to obtain a treatment liquid; wherein, the operating parameters of the melt treatment include: ultrasonic power of 320W, ultrasonic frequency of 15kHz, electromagnetic frequency of 22kHz, and electromagnetic intensity of 125A;
  • the mold is preheated at 250° C. for 50 minutes, and the treatment liquid is transferred into the preheated mold for extrusion casting to obtain an alloy ingot; wherein, the treatment liquid is filtered through foam ceramics before extrusion casting.
  • the plate porosity is 90ppi
  • the operating parameters of the squeeze casting include: the casting temperature is 680°C, the specific pressure is 520MPa, the pressure holding time is 30s, and the extrusion speed is 6mm/s;
  • the alloy ingot is subjected to quenching treatment, wherein the quenching treatment time is 30s, the quenching medium is a 10wt% NaCl aqueous solution, and the temperature of the NaCl aqueous solution is 25°C; after the quenching treatment, it is naturally air-dried to obtain a quenched alloy ingot;
  • the quenched alloy ingot is sequentially subjected to solution treatment and aging treatment, and then cooled in a furnace to obtain a high-strength and high-wear-resistant Al-Si alloy; wherein, the temperature of the solution treatment is 500° C. and the time is 90 minutes; the aging The treatment temperature was 175°C and the time was 15h.
  • the Al-Si alloy in this comparative example is composed of the following components by mass percentage: Si 13.5%, Cu 0.4%, Mg 0.32%, and the balance is Al and inevitable impurities. Among the inevitable impurities, each impurity The content is lower than 0.01%.
  • the preparation method of Al-Si alloy in this comparative example comprises the following steps:
  • the industrial pure aluminum ingot is added to the melting furnace, the temperature is raised to 700 °C, and the temperature is maintained for 5 hours. At this time, the pure aluminum ingot is melted to half, and pure Mg and other intermediate alloys (specifically Al-30% Si and Al-50%Cu), heat up to 710°C, heat preservation and smelting for 3.5h to obtain alloy liquid;
  • pure Mg and other intermediate alloys specifically Al-30% Si and Al-50%Cu
  • the operation parameters of the powder refining include: the rotation speed of the degasser is 100rpm, the inlet pressure is 0.2MPa, the powder output is 1.8kg/min, and the refining time is 15min;
  • the refining agents used in the powder spray refining include Na 3 AlF 6 , Mg 2 N 3 , C 2 Cl 6 , NaCl and KCl , wherein the addition amount of Na 3 AlF 6 is 3.1% of the total mass of the alloy liquid, the addition amount of Mg 2 N 3 is 7.1% of the total weight of the alloy liquid, and the addition amount of C 2 Cl 6 is 3.6% of the total weight of the alloy liquid , the total amount of NaCl and KCl added is 3.8% of the total mass of the alloy liquid, and the mass ratio of NaCl and KCl is 35:65;
  • the refining liquid is subjected to melt treatment based on the ultrasonic/electromagnetic composite field to obtain a treatment liquid; wherein, the operating parameters of the melt treatment include: ultrasonic power of 220W, ultrasonic frequency of 15kHz, electromagnetic frequency of 15kHz, and electromagnetic intensity of 100A;
  • the mold is preheated at 200° C. for 30 minutes, and the treatment liquid is transferred into the preheated mold for extrusion casting to obtain an alloy ingot; wherein, the treatment liquid is filtered through foam ceramics before extrusion casting.
  • the plate porosity is 100ppi
  • the operating parameters of the squeeze casting include: the casting temperature is 680°C, the specific pressure is 400MPa, the pressure holding time is 20s, and the extrusion speed is 6mm/s;
  • the alloy ingot is subjected to quenching treatment, wherein the quenching treatment time is 30s, the quenching medium is a 10wt% NaCl aqueous solution, and the temperature of the NaCl aqueous solution is 17°C; after the quenching treatment, it is naturally air-dried to obtain a quenched alloy ingot;
  • the quenched alloy ingot is sequentially subjected to solution treatment and aging treatment, and then cooled with a furnace to obtain an Al-Si alloy; wherein, the temperature of the solution treatment is 500° C., and the time is 180 minutes; the temperature of the aging treatment is 200°C for 24h.
  • the alloys prepared in Examples 1 to 4 and Comparative Examples 1 to 2 were tested for performance, wherein the tensile test was completed on the WGW-100H universal material testing machine, and the hardness test was completed on the HB3000 Brinell hardness tester. The performance test was completed on the MMU-5G material end face high temperature friction and wear testing machine.
  • tensile strength is tested according to GB 228-2000 standard
  • yield strength is tested according to GB 228-2000 standard
  • elongation is tested according to GB/T 17737.308-2018 standard
  • hardness is tested according to GB/T 231.1-2009 standard
  • friction coefficient is tested according to GB/T 231.1-2009 standard GB 3142-82 standard test; the results are shown in Table 1.
  • Figure 1 is a microstructure diagram of the high-strength and high-wear-resistant Al-Si alloy prepared in Example 3. It can be seen from Figure 1 that the Al-Si alloy has a good microstructure refinement effect after extrusion forming, the size of the Si phase is reduced, and the dendritic The ⁇ -Al transforms into an equiaxed shape, so it has better mechanical properties.
  • Figure 2 is a microstructure diagram of the Al-Si alloy prepared in Comparative Example 1. It can be seen from Figure 2 that since no rare earth elements are added to the Al-Si alloy structure, the degree of grain refinement is weakened.

Abstract

一种高强高耐磨Al-Si合金及其制备方法和应用,属于铝合金材料技术领域。本发明提供的高强高耐磨Al-Si合金,按质量百分含量计,包括Si 16~23.5%,Cu 5~9%,Mg 3~6.2%,Zn 2~8%,Zr 0.1~0.45%,La 0.2~0.7%,Er 0.1~0.3%,Mn≤0.2%,Fe≤0.15%,余量为Al和不可避免的杂质,所述不可避免的杂质中,每种杂质的含量均低于0.01%。通过在合金中加入少量的Zr、La、Er和较多的Zn,同时控制合金中Si、Cu和Mg的含量,可以改善Si相形貌,细化晶粒,且合金组织均匀,具有较高的强度和较好的耐磨性。

Description

一种高强高耐磨Al-Si合金及其制备方法和应用
本申请要求于2020年10月09日提交中国专利局、申请号为CN202011072733.8、发明名称为“一种高强高耐磨Al-Si合金及其制备方法和应用”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及铝合金材料技术领域,具体涉及一种高强高耐磨Al-Si合金及其制备方法和应用。
背景技术
铸造Al-Si合金是铸造铝合金中最重要的一个系列,由于其密度小、比强度高,同时具有优异的铸造性能、耐蚀性能、耐磨损性能、可焊性及热膨胀性,广泛地应用于航空航天、汽车、机械等行业,用来生产形状复杂、薄壁、耐蚀、气密性要求高、承受中高静载荷或冲击载荷、要求在较高温度下工作的大、中、小型铸件。例如现有技术中汽车发动机等部件,通常采用过共晶Al-Si合金进行压铸成形,但是现有合金成分制备的发动机部件在强度和耐磨性等方面均有一定的局限性。在过共晶Al-Si合金中加入少量的Cu元素和Mg元素,在合金中形成Al 2Cu、Mg 2Si以及Al-Si-Cu-Mg等强化相,可以在一定程度上提高合金的强度,但是由于合金中Si含量较高,成形后会在基体中形成粗大的块状Si相和纤维状的共晶Si相,对基体有较大的割裂作用,合金的强度和耐磨性有待提高。
发明内容
本发明的目的在于提供一种高强高耐磨Al-Si合金及其制备方法和应用,本发明提供的合金具有较高的强度和较好的耐磨性。
为了实现上述发明目的,本发明提供以下技术方案:
本发明提供了一种高强高耐磨Al-Si合金,按质量百分含量计,包括Si 16~23.5%,Cu 5~9%,Mg 3~6.2%,Zn 2~8%,Zr 0.1~0.45%,La 0.2~0.7%,Er 0.1~0.3%,Mn≤0.2%,Fe≤0.15%,余量为Al和不可避免的杂质,所述 不可避免的杂质中,每种杂质的含量均低于0.01%。
优选地,包括Si 17.5~22%,Cu 5~8%,Mg 3.3~6%,Zn 3~7%,Zr 0.15~0.35%,La 0.2~0.5%,Er 0.2~0.3%,Mn 0.15~0.2%,Fe 0.1~0.15%,余量为Al和不可避免的杂质。
本发明提供了上述技术方案所述高强高耐磨Al-Si合金的制备方法,包括以下步骤:
按高强高耐磨Al-Si合金的成分将制备原料进行熔炼,得到合金液;
将所述合金液进行精炼,得到精炼液;
基于超声/电磁复合场对所述精炼液进行熔体处理,得到处理液;
将所述处理液进行挤压铸造,得到高强高耐磨Al-Si合金。
优选地,所述制备原料包括纯铝锭和中间合金;
所述熔炼包括:将纯铝锭进行第一熔炼,待部分纯铝锭熔化后,加入所述中间合金进行第二熔炼。
优选地,所述第一熔炼的温度为700~760℃,时间为2~6h,所述第二熔炼的温度为710~770℃,时间为2~5h。
优选地,所述部分纯铝锭占纯铝锭总质量的45~65%。
优选地,所述精炼为喷粉精炼。
优选地,所述喷粉精炼的操作参数包括:除气机的旋转速度为110~150rpm,进口压力为0.25~0.65MPa,出粉量为1.5~4.5kg/min,精炼时间为15~45min。
优选地,所述熔体处理的操作参数包括:超声功率为320~420W,超声频率为10~25kHz,电磁频率为15~30kHz,电磁强度为100~180A。
优选地,所述挤压铸造的操作参数包括:浇铸温度为660~760℃,比压为450~750MPa,保压时间为20~70s,挤压速度为5~15mm/s。
优选地,所述挤压铸造后还包括:
将挤压铸造后所得合金铸锭进行淬火处理,得到淬火合金铸锭;
将所述淬火合金铸锭进行T6热处理,得到高强高耐磨Al-Si合金。
优选地,所述淬火处理的时间为30~150s;所述淬火处理采用的淬火介质为10wt%的NaCl水溶液,所述NaCl水溶液的温度为15~25℃。
优选地,所述T6热处理包括依次进行的固溶处理和时效处理;所述固溶处理的温度为480~530℃,时间为5~100min;所述时效处理的温度为150~220℃,时间为4~24h。
本发明提供了上述技术方案所述高强高耐磨Al-Si合金或上述技术方案所述制备方法制备得到的高强高耐磨Al-Si合金在汽车零部件中的应用。
本发明提供了一种高强高耐磨Al-Si合金,按质量百分含量计,包括Si 16~23.5%,Cu 5~9%,Mg 3~6.2%,Zn 2~8%,Zr 0.1~0.45%,La 0.2~0.7%,Er 0.1~0.3%,Mn≤0.2%,Fe≤0.15%,余量为Al和不可避免的杂质,所述不可避免的杂质中,每种杂质的含量均低于0.01%。本发明通过在合金中加入少量的Zr、La、Er和较多的Zn,同时控制合金中Si、Cu和Mg的含量,可以改善Si相形貌,细化晶粒,且合金组织均匀,具有较高的强度和较好的耐磨性。实施例的结果显示,本发明提供的高强高耐磨Al-Si合金的抗拉强度达到384MPa,屈服强度达到317MPa,延伸率为2.7%,硬度值为217HB,摩擦系数为0.301,能够满足汽车对零部件的性能要求。
本发明提供了所述高强高耐磨Al-Si合金的制备方法,包括以下步骤:按高强高耐磨Al-Si合金的成分将制备原料进行熔炼,得到合金液;将所述合金液进行精炼,得到精炼液;基于超声/电磁复合场对所述精炼液进行熔体处理,得到处理液;将所述处理液进行挤压铸造,得到合金铸锭;将所述合金铸锭进行淬火处理,得到淬火合金铸锭;将所述淬火合金铸锭进行T6热处理,得到高强高耐磨Al-Si合金。本发明提供的方法步骤简单,便于操作;采用本发明提供的方法得到的合金偏析情况得到改善,原料利用率高,且晶粒尺寸细小、组织均匀,表面光洁,具有优异的耐磨性能和力学性能。
说明书附图
图1为实施例3制备的高强高耐磨Al-Si合金的显微组织图;
图2为对比例1制备的Al-Si合金的显微组织图。
具体实施方式
本发明提供了一种高强高耐磨Al-Si合金,按质量百分含量计,包括 Si 16~23.5%,Cu 5~9%,Mg 3~6.2%,Zn 2~8%,Zr 0.1~0.45%,La 0.2~0.7%,Er 0.1~0.3%,Mn≤0.2%,Fe≤0.15%,余量为Al和不可避免的杂质,所述不可避免的杂质中,每种杂质的含量均低于0.01%。
按质量百分含量计,本发明提供的高强高耐磨Al-Si合金包括Si 16~23.5%,优选为17.5~22%,进一步优选为17.7~21.5%。
按质量百分含量计,本发明提供的高强高耐磨Al-Si合金包括Cu 5~9%,优选为5~8%,进一步优选为5.1~7.2%。
按质量百分含量计,本发明提供的高强高耐磨Al-Si合金包括Mg 3~6.2%,优选为3.3~6%,进一步优选为3.5~5.2%。
按质量百分含量计,本发明提供的高强高耐磨Al-Si合金包括Zn 2~8%,优选为3~7%,进一步优选为3.2~6.1%。
按质量百分含量计,本发明提供的高强高耐磨Al-Si合金包括Zr 0.1~0.45%,优选为0.15~0.35%,进一步优选为0.18~0.3%。
按质量百分含量计,本发明提供的高强高耐磨Al-Si合金包括La 0.2~0.7%,优选为0.2~0.5%,进一步优选为0.22~0.43%。
按质量百分含量计,本发明提供的高强高耐磨Al-Si合金包括Er 0.1~0.3%,优选为0.2~0.3%,进一步优选为0.22~0.3%。
按质量百分含量计,本发明提供的高强高耐磨Al-Si合金包括Mn≤0.2%,优选为0.15~0.2%。
按质量百分含量计,本发明提供的高强高耐磨Al-Si合金包括Fe≤0.15%,优选为0.1~0.15%。
本发明提供的高强高耐磨Al-Si合金包括余量的Al和不可避免的杂质,所述不可避免的杂质中,每种杂质的含量均低于0.01%。
在本发明中,Si、Cu、Zn和Mg是合金的主要元素,这些合金元素具有固溶强化和时效析出强化的作用,另外Mg和Si可以析出Mg 2Si强化相,Cu和Al可以析出Al 2Cu强化相,进一步增强合金的强度,同时Al、Si、Cu和Mg四种合金元素也会形成W(Al xMg 5Si 4Cu)和Q(Al 5Mg 8Si 6Cu 2)强化相。具体的,发明人研究发现,当Si含量低于16%、Cu含量低于5%、Mg含量低于3%以及Zn含量低于2%时,合金的强度 显著下降,且耐磨性也随之下降;当Si含量高于23.5%、Cu元素含量高于9%、Mg元素含量高于6.2%时,在合金内部会形成粗大的第二相,合金铸件的塑性急剧降低,影响后期的切削加工;Zn在合金中的最大固溶度为83.1%,基本完全固溶到基体中,检测不到含有Zn的第二相,所以Zn主要对合金起到固溶强化作用,当合金中添加Zn的含量大于2%时,可以显著提高合金的强度,当Zn含量过高(如超过8%),会增加合金的应力开裂倾向。本发明将Si、Cu、Mg和Zn的含量控制在上述范围内,可以平衡合金的强度、耐磨性能和抗冲击断裂韧性之间的矛盾关系,将其应用于汽车零部件中,可以满足汽车对零部件强度、耐磨性和韧性的要求。
在本发明中,Zr、La和Er是合金中添加的微量元素,其中,添加Zr可以析出Al 3Zr相,限制了粗大的Mg 5Al 8相沿晶界析出,同时Al 3Zr晶体结构和晶格常数均与基体铝极为相似,是α-Al优良的异质形核核心;在添加Zr的同时添加RE(La、Er)元素,稀土易在固/液界面前沿富集,富集到一定程度,形成了Al 3RE化合物,并增大了成分过冷而使分枝过程加剧,二次枝晶增多,最终使枝晶间距减小,晶粒细化;此外,稀土元素的表面活性较大,在固/液界面前沿的富集使其起到阻碍α-Al晶粒长大的作用,从而使晶粒的长大过程受阻,促进了晶粒的细化;合金中添加少量的Fe元素,其可以在合金中形成硬质针状相,使基体强化,提高合金的耐磨性;合金中添加少量的Mn元素,可以形成Al 6Mn的弥散质点,阻止再结晶粗大化,提高再结晶温度,同时与合金的不纯净含铁杂质形成Al 3FeMn,使Fe的化合物形态从针状转变为块状,可以在一定程度提高合金的韧性。
本发明提供了上述技术方案所述高强高耐磨Al-Si合金的制备方法,包括以下步骤:
按高强高耐磨Al-Si合金的成分将制备原料进行熔炼,得到合金液;
将所述合金液进行精炼,得到精炼液;
基于超声/电磁复合场对所述精炼液进行熔体处理,得到处理液;
将所述处理液进行挤压铸造,得到高强高耐磨Al-Si合金。
本发明按高强高耐磨Al-Si合金的成分将制备原料进行熔炼,得到合 金液。在本发明中,所述制备原料优选包括纯铝锭、纯Mg、纯Zn和中间合金,所述中间合金优选包括Al-30%Si、Al-50%Cu、Al-10%Zr、Al-10%La、Al-10%Er、Al-30%Mn和Al-50%Fe。在本发明中,所述熔炼包括:将纯铝锭进行第一熔炼,待部分纯铝锭熔化后,加入所述中间合金进行第二熔炼;所述第一熔炼的温度优选为700~760℃,进一步优选为725~755℃,时间优选为2~6h,进一步优选为2.5~4.5h;所述第二熔炼的温度优选为710~770℃,进一步优选为730~750℃,时间优选为2~5h,进一步优选为2.5~4h;所述部分纯铝锭优选占纯铝锭总质量的45~65%,进一步优选为50%。本发明采用分步熔炼可以有效提高熔炼效率,减少热量散失,并能防止熔炼温度过高而发生过烧的现象。
得到合金液后,本发明将所述合金液进行精炼,得到精炼液。在本发明中,所述精炼优选为喷粉精炼,所述喷粉精炼的操作参数包括:除气机的旋转速度优选为110~150rpm,进一步优选为120~135rpm;进口压力优选为0.25~0.65MPa,进一步优选为0.33~0.6MPa;出粉量优选为1.5~4.5kg/min,进一步优选为2.5~3.8kg/min;精炼时间优选为15~45min,进一步优选为20~35min。在本发明中,所述精炼采用的精炼剂优选包括Na 3AlF 6、Mg 2N 3、C 2Cl 6、NaCl和KCl,其中,所述Na 3AlF 6的添加量优选为合金液总质量的3~5%,所述Mg 2N 3的添加量优选为合金液总质量的4~8%,所述C 2Cl 6的添加量优选为合金液总质量的2~4%,所述NaCl和KCl的总添加量优选为合金液总质量的2~4%,所述NaCl和KCl的质量比优选为35:65。在本发明中,若除气机转速过高、进口压力过大、精炼时间过长,会造成合金液的喷溅,易产生危险,同时会对精炼的高纯氩气(99.9%)和精炼剂造成浪费;除气机转速过低、进口压力过小、精炼时间过短,合金液内部会有残留的气体和渣质,影响铸锭质量。本发明优选控制喷粉精炼的操作参数在上述范围内,有利于保证具有较好的精炼效果,大幅度地提高合金的洁净度,消除气孔、夹杂等组织缺陷,确保获得的合金铸件组织内部无夹杂物产生,避免夹杂物影响合金性能。
得到精炼液后,本发明基于超声/电磁复合场对所述精炼液进行熔体处理,得到处理液。在本发明中,所述熔体处理的操作参数包括:超声功 率优选为320~420W,进一步优选为320~380W;超声频率优选为10~25kHz,进一步优选为15~20kHz;电磁频率优选为15~30kHz,进一步优选为17~25kHz;电磁强度优选为100~180A,进一步优选为125~150A。在本发明中,当超声功率较小时,空化和声流效应都较弱,不能达到细化晶粒的效果,但超声功率过大,热量传递到精炼液中使其温度增加,功率越大热量传递效果越明显,导致结晶时间延长,一定程度上降低晶粒的细化效果,同时浪费能源;当电磁频率过高时,搅拌作用相对较弱,随着电磁频率的降低,强迫对流增强。本发明优选控制熔体处理的操作参数在上述范围内,通过超声场的振动以及低频电磁场的搅拌作用,可以有效细化合金内部的组织,改善合金内部的溶质偏析情况。
得到处理液后,本发明将所述处理液进行挤压铸造,得到高强高耐磨Al-Si合金。在本发明中,进行所述挤压铸造前,优选将所述处理液进行过滤,所述过滤采用的过滤板优选为沫陶瓷过滤板,所述沫陶瓷过滤板的孔隙度优选为80~120ppi。在本发明中,所述挤压铸造的操作参数包括:浇铸温度优选为660~760℃,进一步优选为680~740℃;比压优选为450~750MPa,进一步优选为520~700MPa;保压时间优选为20~70s,进一步优选为30~60s;挤压速度优选为5~15mm/s,进一步优选为6~12mm/s。本发明利用液态挤压成形工艺,对处理液进行挤压铸造,其中,若比压过低,处理液温度过低,则挤压速度慢,挤压过程中易导致处理液过快凝固,不能够完全冲型,铸锭易产生缺陷;若比压过大,处理液温度过高,则挤压速度快,模具内部易卷入气体使处理液溢出。在本发明中,进行所述挤压铸造前,优选对所需模具进行预热;所述预热的温度优选为220~350℃,进一步优选为250~310℃;时间优选为30~100min,进一步优选为50~90min。在本发明中,模具预热温度过高,易在挤压铸造过程中造成晶粒的长大,模具温度过低易使处理液凝固过快。
在本发明中,为了进一步提高高强高耐磨Al-Si合金性能,所述挤压铸造后优选还包括:
将挤压铸造后所得合金铸锭进行淬火处理,得到淬火合金铸锭;
将所述淬火合金铸锭进行T6热处理,得到高强高耐磨Al-Si合金。
本发明将挤压铸造后所得合金铸锭进行淬火处理,得到淬火合金铸锭。在本发明中,所述淬火处理具体是将挤压铸造后所得合金铸锭置于淬火介质中进行快速冷却。在本发明中,所述淬火处理的时间优选为30~150s,进一步优选为30~100s,在本发明中,所述淬火处理的时间指合金铸锭处于淬火介质中的时间;所述淬火介质优选为10wt%的NaCl水溶液,所述NaCl水溶液的温度为15~25℃,进一步优选为16~22℃。淬火处理后,本发明优选将所得淬火合金铸锭放置在通风处自然风干。本发明优选采用上述NaCl水溶液进行冷却,可以显著提高冷却速度,使合金铸锭充分、快速冷却,在合金内部快速形成过饱和固溶体,为后续的热处理工艺奠定良好的基础。
得到淬火合金铸锭后,本发明将所述淬火合金铸锭进行T6热处理,得到高强高耐磨Al-Si合金。在本发明中,所述T6热处理优选包括依次进行的固溶处理和时效处理;所述固溶处理的温度优选为480~530℃,进一步优选为500~520℃;时间优选为5~100min,进一步优选为30~90min;所述时效处理的温度优选为150~220℃,进一步优选为175~190℃,时间优选为4~24h,进一步优选为8~15h。在本发明中,由于基于超声/电磁复合场对精炼液进行熔体处理,在超声振动和电磁搅拌的共同作用下使得合金内部组织均匀,晶粒细小,且挤压铸造成形过程中,处理液有较大的塑性变形,导致合金内部能量较高,位错密度较大。因此,只需要较短时间的固溶处理,消除合金内部的内应力,最后经时效处理得到具有较好力学性能和耐磨性能的Al-Si合金。
本发明提供了上述技术方案所述高强高耐磨Al-Si合金或上述技术方案所述制备方法制备得到的高强高耐磨Al-Si合金在汽车零部件中的应用。本发明提供的合金内应力低、表面光洁、内部组织均匀、晶粒细小且尺寸相差不大,同时性能优良,具有较高的强度和较好的耐磨性能,用于汽车零部件,能够满足后续的机械加工要求,同时可以满足汽车对车身内部零部件性能的要求。
下面将结合本发明中的实施例,对本发明中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全 部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
本实施例中高强高耐磨Al-Si合金,由以下质量百分比的成分组成:Si 18.0%,Cu 5.3%,Mg 4.1%,Zn4.2%,Zr 0.19%,La 0.24%,Er 0.24%,Mn 0.21%,Fe 0.11%,余量为Al和不可避免的杂质,所述不可避免的杂质中,每种杂质的含量均低于0.01%。
本实施例中高强高耐磨Al-Si合金的制备方法,包括以下步骤:
按照高强高耐磨Al-Si合金的配方,将工业纯铝锭加入熔炼炉中,升温至730℃,保温熔炼4h,此时纯铝锭熔化到一半,加入纯Mg、纯Zn和其它中间合金(具体为Al-30%Si、Al-50%Cu、Al-10%Zr、Al-10%Er、Al-10%La、Al-30%Mn和Al-50%Fe),升温至735℃,保温熔炼2.5h,得到合金液;
将除气机的精炼管插入所述合金液中进行喷粉精炼,以实现除气和除渣处理,得到精炼液;其中,所述喷粉精炼的操作参数包括:除气机的旋转速度为125rpm,进口压力为0.35MPa,出粉量为2.0kg/min,精炼时间为25min;所述喷粉精炼采用的精炼剂包括Na 3AlF 6、Mg 2N 3、C 2Cl 6、NaCl和KCl,其中,Na 3AlF 6的添加量为合金液总质量的3.5%,Mg 2N 3的添加量为合金液总质量的4.5%,C 2Cl 6的添加量为合金液总质量的2.5%,NaCl和KCl的总添加量为合金液总质量的2.5%,所述NaCl和KCl的质量比为35:65;
基于超声/电磁复合场对所述精炼液进行熔体处理,得到处理液;其中,所述熔体处理的操作参数包括:超声功率为330W,超声频率为15kHz,电磁频率为18kHz,电磁强度为125A;
将模具在250℃条件下预热50min,将所述处理液转入预热后的模具中,进行挤压铸造,得到合金铸锭;其中,所述处理液进行挤压铸造前经泡沫陶瓷过滤板(孔隙度为110ppi)过滤;所述挤压铸造的操作参数包括:浇铸温度为685℃,比压为530MPa,保压时间为35s,挤压速度为6mm/s;
将所述合金铸锭进行淬火处理,其中,淬火处理的时间为35s,淬火 介质为10wt%的NaCl水溶液,所述NaCl水溶液的温度为19℃;淬火处理后自然风干,得到高强高耐磨Al-Si合金。
实施例2
本实施例中高强高耐磨Al-Si合金,由以下质量百分比的成分组成:Si 17.7%,Cu 5.1%,Mg 3.5%,Zn 3.2%,Zr 0.18%,La 0.22%,Er 0.22%,Mn 0.2%,Fe 0.12%,余量为Al和不可避免的杂质,所述不可避免的杂质中,每种杂质的含量均低于0.01%。
本实施例中高强高耐磨Al-Si合金的制备方法,包括以下步骤:
按照高强高耐磨Al-Si合金的配方,将工业纯铝锭加入熔炼炉中,升温至725℃,保温熔炼4.5h,此时纯铝锭熔化到一半,加入纯Mg、纯Zn和其它中间合金(具体为Al-30%Si、Al-50%Cu、Al-10%Zr、Al-10%Er、Al-10%La、Al-30%Mn和Al-50%Fe),升温至730℃,保温熔炼4h,得到合金液;
将除气机的精炼管插入所述合金液中进行喷粉精炼,以实现除气和除渣处理,得到精炼液;其中,所述喷粉精炼的操作参数包括:除气机的旋转速度为120rpm,进口压力为0.33MPa,出粉量为2.5kg/min,精炼时间为20min;所述喷粉精炼采用的精炼剂包括Na 3AlF 6、Mg 2N 3、C 2Cl 6、NaCl和KCl,其中,Na 3AlF 6的添加量为合金液总质量的3.4%,Mg 2N 3的添加量为合金液总质量的4.3%,C 2Cl 6的添加量为合金液总质量的2.2%,NaCl和KCl的总添加量为合金液总质量的2.6%,所述NaCl和KCl的质量比为35:65;
基于超声/电磁复合场对所述精炼液进行熔体处理,得到处理液;其中,所述熔体处理的操作参数包括:超声功率为320W,超声频率为15kHz,电磁频率为22kHz,电磁强度为125A;
将模具在250℃条件下预热50min,将所述处理液转入预热后的模具中,进行挤压铸造,得到合金铸锭;其中,所述处理液进行挤压铸造前经泡沫陶瓷过滤板(孔隙度为100ppi)过滤;所述挤压铸造的操作参数包括:浇铸温度为680℃,比压为520MPa,保压时间为30s,挤压速度为6mm/s;
将所述合金铸锭进行淬火处理,其中,淬火处理的时间为30s,淬火介质为10wt%的NaCl水溶液,所述NaCl水溶液的温度为17℃;淬火处理后自然风干,得到淬火合金铸锭;
将所述淬火合金铸锭依次进行固溶处理和时效处理,之后随炉冷却得到高强高耐磨Al-Si合金;其中,所述固溶处理的温度为500℃,时间为90min;所述时效处理的温度为175℃,时间为15h。
实施例3
本实施例中高强高耐磨Al-Si合金,由以下质量百分比的成分组成:Si 18.5%,Cu 6.6%,Mg 4.5%,Zn 4.2%,Zr 0.28%,La 0.35%,Er 0.25%,Mn 0.15%,Fe 0.11%,余量为Al和不可避免的杂质,所述不可避免的杂质中,每种杂质的含量均低于0.01%。
本实施例中高强高耐磨Al-Si合金的制备方法,包括以下步骤:
按照高强高耐磨Al-Si合金的配方,将工业纯铝锭加入熔炼炉中,升温至740℃,保温熔炼3h,此时纯铝锭熔化到一半,加入纯Mg、纯Zn和其它中间合金(具体为Al-30%Si、Al-50%Cu、Al-10%Zr、Al-10%Er、Al-10%La、Al-30%Mn和Al-50%Fe),在740℃条件下继续保温熔炼3h,得到合金液;
将除气机的精炼管插入所述合金液中进行喷粉精炼,以实现除气和除渣处理,得到精炼液;其中,所述喷粉精炼的操作参数包括:除气机的旋转速度为130rpm,进口压力为0.45MPa,出粉量为3.1kg/min,精炼时间为30min;所述喷粉精炼采用的精炼剂包括Na 3AlF 6、Mg 2N 3、C 2Cl 6、NaCl和KCl,其中,Na 3AlF 6的添加量为合金液总质量的4.2%,Mg 2N 3的添加量为合金液总质量的5.1%,C 2Cl 6的添加量为合金液总质量的2.8%,NaCl和KCl的总添加量为合金液总质量的3.1%,所述NaCl和KCl的质量比为35:65;
基于超声/电磁复合场对所述精炼液进行熔体处理,得到处理液;其中,所述熔体处理的操作参数包括:超声功率为350W,超声频率为18kHz,电磁频率为17kHz,电磁强度为135A;
将模具在300℃条件下预热75min,将所述处理液转入预热后的模具 中,进行挤压铸造,得到合金铸锭;其中,所述处理液进行挤压铸造前经泡沫陶瓷过滤板(孔隙度为120ppi)过滤;所述挤压铸造的操作参数包括:浇铸温度为720℃,比压为600MPa,保压时间为45s,挤压速度为9mm/s;
将所述合金铸锭进行淬火处理,其中,淬火处理的时间为30s,淬火介质为10wt%的NaCl水溶液,所述NaCl水溶液的温度为20℃;淬火处理后自然风干,得到淬火合金铸锭;
将所述淬火合金铸锭依次进行固溶处理和时效处理,之后随炉冷却得到高强高耐磨Al-Si合金;其中,所述固溶处理的温度为520℃,时间为60min;所述时效处理的温度为180℃,时间为12h。
实施例4
本实施例中高强高耐磨Al-Si合金,由以下质量百分比的成分组成:Si 21.5%,Cu 7.2%,Mg 5.2%,Zn 6.1%,Zr 0.3%,La 0.43%,Er 0.3%,Mn 0.2%,Fe 0.13%,余量为Al和不可避免的杂质,所述不可避免的杂质中,每种杂质的含量均低于0.01%。
本实施例中高强高耐磨Al-Si合金的制备方法,包括以下步骤:
按照高强高耐磨Al-Si合金的配方,将工业纯铝锭加入熔炼炉中,升温至755℃,保温熔炼2.5h,此时纯铝锭熔化到一半,加入纯Mg、纯Zn和其它中间合金(具体为Al-30%Si、Al-50%Cu、Al-10%Zr、Al-10%Er、Al-10%La、Al-30%Mn和Al-50%Fe),降温至750℃,保温熔炼2.5h,得到合金液;
将除气机的精炼管插入所述合金液中进行喷粉精炼,以实现除气和除渣处理,得到精炼液;其中,所述喷粉精炼的操作参数包括:除气机的旋转速度为135rpm,进口压力为0.6MPa,出粉量为3.8kg/min,精炼时间为35min;所述喷粉精炼采用的精炼剂包括Na 3AlF 6、Mg 2N 3、C 2Cl 6、NaCl和KCl,其中,Na 3AlF 6的添加量为合金液总质量的4,1%,Mg 2N 3的添加量为合金液总质量的5.2%,C 2Cl 6的添加量为合金液总质量的2.9%,NaCl和KCl的总添加量为合金液总质量的3.1%,所述NaCl和KCl的质量比为35:65;
基于超声/电磁复合场对所述精炼液进行熔体处理,得到处理液;其中,所述熔体处理的操作参数包括:超声功率为380W,超声频率为20kHz,电磁频率为25kHz,电磁强度为150A;
将模具在310℃条件下预热90min,将所述处理液转入预热后的模具中,进行挤压铸造,得到合金铸锭;其中,所述处理液进行挤压铸造前经泡沫陶瓷过滤板(孔隙度为115ppi)过滤;所述挤压铸造的操作参数包括:浇铸温度为760℃,比压为700MPa,保压时间为60s,挤压速度为12mm/s;
将所述合金铸锭进行淬火处理,其中,淬火处理的时间为30s,淬火介质为10wt%的NaCl水溶液,所述NaCl水溶液的温度为24℃;淬火处理后自然风干,得到淬火合金铸锭;
将所述淬火合金铸锭依次进行固溶处理和时效处理,之后随炉冷却得到高强高耐磨Al-Si合金;其中,所述固溶处理的温度为520℃,时间为30min;所述时效处理的温度为190℃,时间为8h。
对比例1
本实施例中高强高耐磨Al-Si合金,由以下质量百分比的成分组成:Si 17.7%,Cu 5.1%,Mg 3.5%,Zr 0.18%,La 0.22%,Er 0.22%,Mn 0.2%,Fe 0.12%,余量为Al和不可避免的杂质,所述不可避免的杂质中,每种杂质的含量均低于0.01%。
本实施例中高强高耐磨Al-Si合金的制备方法,包括以下步骤:
按照高强高耐磨Al-Si合金的配方,将工业纯铝锭加入熔炼炉中,升温至725℃,保温熔炼4.5h,此时纯铝锭熔化到一半,加入纯Mg和其它中间合金(具体为Al-30%Si、Al-50%Cu、、Al-10%Zr、Al-10%Er、Al-10%La、Al-30%Mn和Al-50%Fe),升温至730℃,保温熔炼4h,得到合金液;
将除气机的精炼管插入所述合金液中进行喷粉精炼,以实现除气和除渣处理,得到精炼液;其中,所述喷粉精炼的操作参数包括:除气机的旋转速度为120rpm,进口压力为0.33MPa,出粉量为2.5kg/min,精炼时间为20min;所述喷粉精炼采用的精炼剂包括Na 3AlF 6、Mg 2N 3、C 2Cl 6、NaCl和KCl,其中,Na 3AlF 6的添加量为合金液总质量的3%,Mg 2N 3的添加量为合金液总质量的4.1%,C 2Cl 6的添加量为合金液总质量的3.1%,NaCl 和KCl的总添加量为合金液总质量的2.1%,所述NaCl和KCl的质量比为35:65;
基于超声/电磁复合场对所述精炼液进行熔体处理,得到处理液;其中,所述熔体处理的操作参数包括:超声功率为320W,超声频率为15kHz,电磁频率为22kHz,电磁强度为125A;
将模具在250℃条件下预热50min,将所述处理液转入预热后的模具中,进行挤压铸造,得到合金铸锭;其中,所述处理液进行挤压铸造前经泡沫陶瓷过滤板(孔隙度为90ppi)过滤;所述挤压铸造的操作参数包括:浇铸温度为680℃,比压为520MPa,保压时间为30s,挤压速度为6mm/s;
将所述合金铸锭进行淬火处理,其中,淬火处理的时间为30s,淬火介质为10wt%的NaCl水溶液,所述NaCl水溶液的温度为25℃;淬火处理后自然风干,得到淬火合金铸锭;
将所述淬火合金铸锭依次进行固溶处理和时效处理,之后随炉冷却得到高强高耐磨Al-Si合金;其中,所述固溶处理的温度为500℃,时间为90min;所述时效处理的温度为175℃,时间为15h。
对比例2
本对比例中Al-Si合金,由以下质量百分比的成分组成:Si 13.5%,Cu 0.4%,Mg 0.32%,余量为Al和不可避免的杂质,所述不可避免的杂质中,每种杂质的含量均低于0.01%。
本对比例中Al-Si合金的制备方法,包括以下步骤:
按照Al-Si合金的配方,将工业纯铝锭加入熔炼炉中,升温至700℃,保温熔炼5h,此时纯铝锭熔化到一半,加入纯Mg和其它中间合金(具体为Al-30%Si和Al-50%Cu),升温至710℃,保温熔炼3.5h,得到合金液;
将除气机的精炼管插入所述合金液中进行喷粉精炼,以实现除气和除渣处理,得到精炼液;其中,所述喷粉精炼的操作参数包括:除气机的旋转速度为100rpm,进口压力为0.2MPa,出粉量为1.8kg/min,精炼时间为15min;所述喷粉精炼采用的精炼剂包括Na 3AlF 6、Mg 2N 3、C 2Cl 6、NaCl和KCl,其中,Na 3AlF 6的添加量为合金液总质量的3.1%,Mg 2N 3的添加 量为合金液总质量的7.1%,C 2Cl 6的添加量为合金液总质量的3.6%,NaCl和KCl的总添加量为合金液总质量的3.8%,所述NaCl和KCl的质量比为35:65;
基于超声/电磁复合场对所述精炼液进行熔体处理,得到处理液;其中,所述熔体处理的操作参数包括:超声功率为220W,超声频率为15kHz,电磁频率为15kHz,电磁强度为100A;
将模具在200℃条件下预热30min,将所述处理液转入预热后的模具中,进行挤压铸造,得到合金铸锭;其中,所述处理液进行挤压铸造前经泡沫陶瓷过滤板(孔隙度为100ppi)过滤;所述挤压铸造的操作参数包括:浇铸温度为680℃,比压为400MPa,保压时间为20s,挤压速度为6mm/s;
将所述合金铸锭进行淬火处理,其中,淬火处理的时间为30s,淬火介质为10wt%的NaCl水溶液,所述NaCl水溶液的温度为17℃;淬火处理后自然风干,得到淬火合金铸锭;
将所述淬火合金铸锭依次进行固溶处理和时效处理,之后随炉冷却得到Al-Si合金;其中,所述固溶处理的温度为500℃,时间为180min;所述时效处理的温度为200℃,时间为24h。
对实施例1~4和对比例1~2制备的合金进行性能测试,其中,拉伸试验在WGW-100H型万能材料试验机上完成,硬度测试是在HB3000型布氏硬度仪上完成,耐磨性能测试在MMU-5G材料端面高温摩擦磨损试验机上完成。
具体的,抗拉强度按照GB 228-2000标准测试,屈服强度按照GB 228-2000标准测试,延伸率按照GB/T 17737.308-2018标准测试,硬度按照GB/T 231.1-2009标准测试,摩擦系数按照GB 3142-82标准测试;结果如表1所示。
由表1可知,本发明通过加入Zn、Mn、Zr以及稀土元素La和Er,且将合金成分控制在特定含量范围,保证所得合金具有较高的强度以及耐磨性,综合性能优异。
表1实施例1~4和对比例1~2制备的合金的性能测试结果
Figure PCTCN2020137547-appb-000001
图1为实施例3制备的高强高耐磨Al-Si合金的显微组织图,由图1可知,经挤压成形后Al-Si合金组织细化效果好,Si相尺寸减小,树枝状的α-Al转变为等轴状,因此具有较好的力学性能。
图2为对比例1制备的Al-Si合金的显微组织图,由图2可知,由于Al-Si合金组织中未加入析出稀土元素,晶粒的细化程度减弱。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (14)

  1. 一种高强高耐磨Al-Si合金,按质量百分含量计,包括Si 16~23.5%,Cu 5~9%,Mg 3~6.2%,Zn 2~8%,Zr 0.1~0.45%,La 0.2~0.7%,Er 0.1~0.3%,Mn≤0.2%,Fe≤0.15%,余量为Al和不可避免的杂质,所述不可避免的杂质中,每种杂质的含量均低于0.01%。
  2. 根据权利要求1所述的高强高耐磨Al-Si合金,其特征在于,包括Si 17.5~22%,Cu 5~8%,Mg 3.3~6%,Zn 3~7%,Zr 0.15~0.35%,La 0.2~0.5%,Er 0.2~0.3%,Mn 0.15~0.2%,Fe 0.1~0.15%,余量为Al和不可避免的杂质。
  3. 权利要求1或2所述高强高耐磨Al-Si合金的制备方法,包括以下步骤:
    按高强高耐磨Al-Si合金的成分将制备原料进行熔炼,得到合金液;
    将所述合金液进行精炼,得到精炼液;
    基于超声/电磁复合场对所述精炼液进行熔体处理,得到处理液;
    将所述处理液进行挤压铸造,得到高强高耐磨Al-Si合金。
  4. 根据权利要求3所述的制备方法,其特征在于,所述制备原料包括纯铝锭和中间合金;
    所述熔炼包括:将纯铝锭进行第一熔炼,待部分纯铝锭熔化后,加入所述中间合金进行第二熔炼。
  5. 根据权利要求4所述的制备方法,其特征在于,所述第一熔炼的温度为700~760℃,时间为2~6h,所述第二熔炼的温度为710~770℃,时间为2~5h。
  6. 根据权利要求4所述的制备方法,其特征在于,所述部分纯铝锭占纯铝锭总质量的45~65%。
  7. 根据权利要求3所述的制备方法,其特征在于,所述精炼为喷粉精炼。
  8. 根据权利要求7所述的制备方法,其特征在于,所述喷粉精炼的操作参数包括:除气机的旋转速度为110~150rpm,进口压力为 0.25~0.65MPa,出粉量为1.5~4.5kg/min,精炼时间为15~45min。
  9. 根据权利要求3所述的制备方法,其特征在于,所述熔体处理的操作参数包括:超声功率为320~420W,超声频率为10~25kHz,电磁频率为15~30kHz,电磁强度为100~180A。
  10. 根据权利要求3所述的制备方法,其特征在于,所述挤压铸造的操作参数包括:浇铸温度为660~760℃,比压为450~750MPa,保压时间为20~70s,挤压速度为5~15mm/s。
  11. 根据权利要求3~10任一项所述的制备方法,其特征在于,所述挤压铸造后还包括:
    将挤压铸造后所得合金铸锭进行淬火处理,得到淬火合金铸锭;
    将所述淬火合金铸锭进行T6热处理,得到高强高耐磨Al-Si合金。
  12. 根据权利要求11所述的制备方法,其特征在于,所述淬火处理的时间为30~150s;所述淬火处理采用的淬火介质为10wt%的NaCl水溶液,所述NaCl水溶液的温度为15~25℃。
  13. 根据权利要求11所述的制备方法,其特征在于,所述T6热处理包括依次进行的固溶处理和时效处理;所述固溶处理的温度为480~530℃,时间为5~100min;所述时效处理的温度为150~220℃,时间为4~24h。
  14. 权利要求1或2所述高强高耐磨Al-Si合金或权利要求3~13任一项所述制备方法制备得到的高强高耐磨Al-Si合金在汽车零部件中的应用。
PCT/CN2020/137547 2020-10-09 2020-12-18 一种高强高耐磨Al-Si合金及其制备方法和应用 WO2022073300A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011072733.8A CN112210696B (zh) 2020-10-09 2020-10-09 一种高强高耐磨Al-Si合金及其制备方法和应用
CN202011072733.8 2020-10-09

Publications (1)

Publication Number Publication Date
WO2022073300A1 true WO2022073300A1 (zh) 2022-04-14

Family

ID=74053457

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/137547 WO2022073300A1 (zh) 2020-10-09 2020-12-18 一种高强高耐磨Al-Si合金及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN112210696B (zh)
WO (1) WO2022073300A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116676515A (zh) * 2023-06-02 2023-09-01 佛山市营鑫新材料有限公司 一种Al-Mn-Zn-Ce压铸阳极合金及其制备方法和用途
CN116926387A (zh) * 2023-09-14 2023-10-24 中南大学 一种耐热高强Al-Si合金和制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112792321B (zh) * 2021-02-01 2022-12-06 安徽江宏制动器有限公司 一种汽车用制动盘的生产工艺
CN115141959B (zh) * 2021-07-28 2023-09-22 中南大学 一种高耐磨性高强韧性铝硅系合金及其制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0270037A (ja) * 1988-09-02 1990-03-08 Furukawa Alum Co Ltd 耐摩耗性アルミニウム合金材
JPH04325648A (ja) * 1991-04-25 1992-11-16 Sumitomo Electric Ind Ltd アルミニウム焼結合金の製造方法
JPH06212337A (ja) * 1992-10-07 1994-08-02 Brunswick Corp 内燃機関
US20050221110A1 (en) * 2004-03-31 2005-10-06 Daido Metal Company Ltd. Plain bearing and method of manufacturing the same
CN101627138A (zh) * 2006-08-04 2010-01-13 滕内多拉内马克有限公司 用于浇铸具有无衬套汽缸的发动机组的耐磨铝合金
CN103031473A (zh) * 2009-03-03 2013-04-10 中国科学院苏州纳米技术与纳米仿生研究所 高韧性Al-Si系压铸铝合金的加工方法
CN104357715A (zh) * 2014-12-08 2015-02-18 广州立中锦山合金有限公司 汽车变速器泵体专用铝合金及其制备方法
CN104674089A (zh) * 2015-02-02 2015-06-03 安徽省斯特嘉汽车零部件有限公司 一种抗腐蚀耐磨铝合金轮毂材料的制备方法
CN107058816A (zh) * 2017-01-23 2017-08-18 沈阳工业大学 一种半固态成形过共晶Al‑Si合金及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11269592A (ja) * 1998-03-24 1999-10-05 Sumitomo Light Metal Ind Ltd 焼入れ感受性の低いAl−過共晶Si合金およびその製造方法
CN103740986B (zh) * 2014-01-02 2016-01-13 上海大学 汽车用铝合金耐磨材料及制备Al-Si-Cu-Mg系合金的汽车零部件的方法
CN105039799A (zh) * 2015-07-12 2015-11-11 张小龙 一种硅铝合金材料及其制备方法
CN106591639A (zh) * 2016-11-11 2017-04-26 湖北万佳宏铝业股份有限公司 一种导电铝合金材料及其制备方法
CN111001777A (zh) * 2019-12-30 2020-04-14 武汉工程大学 一种含铁铝合金的复合场处理及高压挤压成形方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0270037A (ja) * 1988-09-02 1990-03-08 Furukawa Alum Co Ltd 耐摩耗性アルミニウム合金材
JPH04325648A (ja) * 1991-04-25 1992-11-16 Sumitomo Electric Ind Ltd アルミニウム焼結合金の製造方法
JPH06212337A (ja) * 1992-10-07 1994-08-02 Brunswick Corp 内燃機関
US20050221110A1 (en) * 2004-03-31 2005-10-06 Daido Metal Company Ltd. Plain bearing and method of manufacturing the same
CN101627138A (zh) * 2006-08-04 2010-01-13 滕内多拉内马克有限公司 用于浇铸具有无衬套汽缸的发动机组的耐磨铝合金
CN103031473A (zh) * 2009-03-03 2013-04-10 中国科学院苏州纳米技术与纳米仿生研究所 高韧性Al-Si系压铸铝合金的加工方法
CN104357715A (zh) * 2014-12-08 2015-02-18 广州立中锦山合金有限公司 汽车变速器泵体专用铝合金及其制备方法
CN104674089A (zh) * 2015-02-02 2015-06-03 安徽省斯特嘉汽车零部件有限公司 一种抗腐蚀耐磨铝合金轮毂材料的制备方法
CN107058816A (zh) * 2017-01-23 2017-08-18 沈阳工业大学 一种半固态成形过共晶Al‑Si合金及其制备方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116676515A (zh) * 2023-06-02 2023-09-01 佛山市营鑫新材料有限公司 一种Al-Mn-Zn-Ce压铸阳极合金及其制备方法和用途
CN116676515B (zh) * 2023-06-02 2024-01-30 佛山市营鑫新材料有限公司 一种Al-Mn-Zn-Ce压铸阳极合金及其制备方法和用途
CN116926387A (zh) * 2023-09-14 2023-10-24 中南大学 一种耐热高强Al-Si合金和制备方法
CN116926387B (zh) * 2023-09-14 2023-12-15 中南大学 一种耐热高强Al-Si合金和制备方法

Also Published As

Publication number Publication date
CN112210696B (zh) 2022-02-25
CN112210696A (zh) 2021-01-12

Similar Documents

Publication Publication Date Title
WO2022073300A1 (zh) 一种高强高耐磨Al-Si合金及其制备方法和应用
WO2022073301A1 (zh) 一种Al-Si合金及其制备方法和应用
CN109881063B (zh) 一种高强韧高模量压铸镁合金及其制备方法
CN109881062B (zh) 一种高强韧高模量挤压铸造镁合金及其制备方法
CN111411247B (zh) 一种再生变形铝合金熔体的复合处理方法
CN110724861B (zh) 高性能铝合金发动机缸盖及其铸造方法
CN109778027B (zh) 一种高强度a356合金的制备方法
CN113061787A (zh) 一种高强高韧Al-Si-Cu-Mg-Cr-Mn-Ti系铸造合金及其制备方法
CN108342606B (zh) 一种混合稀土改善原位铝基复合材料组织和性能的方法
CN102899540A (zh) 一种超大规格铝合金扁锭及其铸造方法
CN113737070A (zh) 一种高屈服强度铸造铝合金及其制备方法
CN115852214B (zh) 一种可热处理强化高强韧铝合金及制备方法
CN104532078A (zh) 一种ahs铝合金及其铝合金挤压棒
Li et al. Effect of Y content on microstructure and mechanical properties of 2519 aluminum alloy
CN110408807A (zh) 一种亚共晶Al-Si铸造合金及其制备方法
CN114231800B (zh) 一种高性能低碳铝合金与制备方法
CN111636017A (zh) 一种半固态成形铝合金以及制备方法
CN108977711B (zh) 一种压铸镁合金材料及其制备方法
CN109852856B (zh) 一种高强韧高模量金属型重力铸造镁合金及其制备方法
CN110029255B (zh) 一种高强韧高模量砂型重力铸造镁合金及其制备方法
CN109355540B (zh) 一种高强度Mg-Zn-Cu-Zr-Cr-Ca合金及其制备方法
CN108588524B (zh) 一种金属型重力铸造镁合金材料及其制备方法
CN109136701B (zh) 一种砂型重力铸造镁合金材料及其制备方法
He et al. Effect of phosphorus modification on the microstructure and mechanical properties of DC cast Al-17.5 Si-4.5 Cu-1Zn-0.7 Mg-0.5 Ni alloy
CN108220704B (zh) 一种含镨和镱的耐腐蚀压铸铝合金的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20956615

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20956615

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 13/09/2023)