CN109852856B - 一种高强韧高模量金属型重力铸造镁合金及其制备方法 - Google Patents

一种高强韧高模量金属型重力铸造镁合金及其制备方法 Download PDF

Info

Publication number
CN109852856B
CN109852856B CN201910308785.1A CN201910308785A CN109852856B CN 109852856 B CN109852856 B CN 109852856B CN 201910308785 A CN201910308785 A CN 201910308785A CN 109852856 B CN109852856 B CN 109852856B
Authority
CN
China
Prior art keywords
magnesium
alloy
intermediate alloy
pure
gravity casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910308785.1A
Other languages
English (en)
Other versions
CN109852856A (zh
Inventor
王渠东
魏杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fengyang L S Light Alloy Net Forming Co ltd
SHANGHAI LIGHT ALLOY NET FORMING NATIONAL ENGINEERING RESEARCH CENTER CO LTD
Shanghai Jiaotong University
Original Assignee
Fengyang L S Light Alloy Net Forming Co ltd
SHANGHAI LIGHT ALLOY NET FORMING NATIONAL ENGINEERING RESEARCH CENTER CO LTD
Shanghai Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fengyang L S Light Alloy Net Forming Co ltd, SHANGHAI LIGHT ALLOY NET FORMING NATIONAL ENGINEERING RESEARCH CENTER CO LTD, Shanghai Jiaotong University filed Critical Fengyang L S Light Alloy Net Forming Co ltd
Priority to CN201910308785.1A priority Critical patent/CN109852856B/zh
Publication of CN109852856A publication Critical patent/CN109852856A/zh
Application granted granted Critical
Publication of CN109852856B publication Critical patent/CN109852856B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Continuous Casting (AREA)

Abstract

本发明公开了一种高强韧高模量金属型重力铸造镁合金及其制备方法,由按质量百分数计的如下元素组成:a%的Al,b%的La、Ce、Pr中的一种或几种的混合,c%的Mn,合计含有d%的RE稀土元素Gd、Y、Sm、Nd、Er、Eu、Ho、Tm、Lu、Dy、Yb中的一种或几种元素,合计含有e%的Si、Ge、Ca、Li、Sn、Zn、Sb中的一种或几种元素,总量小于0.2%的杂质,余量为Mg;a、b、c,d和e满足3.5≤a≤6.5、0.5≤b≤4.5、0.01≤c≤1.5、0.01≤d≤2.5和0<e≤5.0。原料经预热、熔化或浇铸,重熔后金属型重力铸造得镁合金铸件,方法简单、工艺稳定性好且可控度高。

Description

一种高强韧高模量金属型重力铸造镁合金及其制备方法
技术领域
本发明属于有色金属材料及其加工领域,具体涉及一种高强韧高模量金属型重力铸造镁合金及其制备方法。
背景技术
镁及其合金是目前工业上可应用的最轻质金属结构材料,具有密度小(约为铝的2/3,钢的1/4)、比强度和比刚度高、阻尼性、切削加工性、铸造性能好等优点,已广泛应用于汽车、通讯电子、航空航天、军事等领域。近年来,随着航空航天及交通运输工具的迅速发展,运转所需的动力功率越来越大,因此对材料构件的强韧性和抗弹性应变能力提出了更高的要求。但镁合金较低的绝对强度、塑性以及弹性模量制约了其在这些领域的进一步推广与应用,使得高强韧高模量镁合金的需求越来越高。
AE44(Mg-4Al-4RE,wt.%)镁合金是迄今商用镁合金中,既具备优异的室温力学性能,又兼备良好高温抗蠕变性能的一种合金。其优异的力学性能得益于Al元素和RE元素生成的Al11RE3强化相,但由于大部分Al11RE3强化相为针状,会在第二相尖端产生应力集中,恶化材料性能。针对此问题,中国专利CN108588524A通过合金化Gd、Y、Sm等元素变质针状Al11RE3相为短棒状或颗粒状,并引入Al2RE强化相,显著提高了合金的强韧性。针对提升镁合金模量,根据混合定律可知,引入高模量增强体可以提高基体模量。中国专利CN105624502A和CN104087800A分别公布了通过添加氧化铝和SiC颗粒,以获得高模量镁基复合材料的制备方法。但通过外加高模量增强体与基体界面容易存在匹配不佳问题,且常规铸造难以保证增强体在基体中均匀分布。而通过添加合金元素原位生成高模量增强相可以较好地解决上述问题,中国专利CN104928549A和CN104928550A就采用在镁合金中添加Al、Li、Si等元素形成Al3Li、Mg2Si等高模量增强相以提高镁合金模量。
目前,引入高模量增强相虽能有效地提高镁合金模量,但通过合金化原位生成的高模量增强相如Al3Li、Mg2Si、Al2Ca等均属于脆性相,分布在晶界会成为裂纹萌生点,降低镁合金强韧性,特别是塑性。
发明内容
本发明的目的在于针对现有技术的不足,提供一种高强韧高模量金属型重力铸造镁合金及其制备方法。通过合理调控组分比例,控制增强相析出形态和比例,使得该合金在室温条件下同时具备高强韧性和高弹性模量。本发明提供的合金能够满足高强韧高模量的轻质材料和(或)零部件制造的需求。
本发明的目的可以通过以下技术方案来实现:
一种高强韧高模量金属型重力铸造镁合金,由按质量百分数计的如下元素组成:a%的Al,b%的La、Ce、Pr中的一种或几种的混合,c%的Mn,合计含有d%的RE稀土元素Gd、Y、Sm、Nd、Er、Eu、Ho、Tm、Lu、Dy、Yb中的一种或几种元素,合计含有e%的Si、Ge、Ca、Li、Sn、Zn、Sb中的一种或几种元素,总量小于0.2%的杂质,余量为Mg,a、b、c,d和e满足下述式子(1)~(5),
(1)3.5≤a≤6.5;
(2)0.5≤b≤4.5;
(3)0.01≤c≤1.5;
(4)0.01≤d≤2.5;
(5)0<e≤5.0。
优选的,所述式(3)中c的范围值为:0.2≤c≤1.0。Mn元素添加量≥0.2能够显著提高镁合金的耐腐蚀性能、增强时效响应效果及提高弹性模量等,但添加量>1.0,会生成粗大的Al-Mn-RE相,恶化材料性能。
优选的,所述式(4)中d的范围值为:0.1≤d≤2.5。Gd、Y、Sm等稀土元素在Mg中的固溶度较大,式(4)中d的添加量≥0.1时效强化、变质Al11RE3第二相效果更佳,但添加量>2.5会造成第二相的粗化,在服役过程中割裂基体,并作为裂纹萌生点严重恶化材料力学性能。
优选的,所述式(5)中e的范围值为:0.2≤e≤4.0。Si、Ge、Ca、Li、Sn等元素在Mg中固溶度较小,在含Al稀土镁合金中,主要与其他合金元素形成增强相强化合金性能。式(5)中e的添加量≥0.1提高合金模量的效果更为显著,但添加量>4.0增强相会过分粗化,使得合金强韧性急剧降低。
合金元素的单独作用
其中,1)Al用于均衡合金强度、塑性、改善铸造工艺性能,使本发明适合工业批量生产。2)La、Ce、Pr元素用于提高合金力学性能,La、Ce、Pr元素与铝优先生成Al11RE3相,抑制生成热稳性差的Mg17Al12相,提高合金的室温和高温力学性能;此外,La、Ce、Pr能够除去熔炼时镁合金熔体中的杂质,达到除气精炼、净化熔体的效果。3)Mn用于提高合金的耐腐蚀性能,Mn可与镁合金中铁或其它重金属元素形成化合物,使其大部分作为熔渣除去;Mn还可促进合金的时效强化效果,形成Al-Mn纳米时效相,进一步提高合金强韧性及模量;此外,720℃下,Mn在Mg中的固溶度为~1.1at.%,在金属型重力铸造工艺下,部分Mn元素来不及析出形成过饱和固溶体,减小基体晶格常数,提高合金弹性模量。4)Gd、Y、Sm等稀土元素在Mg中固溶度较大,在含Al镁合金中主要以三种形式存在:固溶在基体中;偏聚在晶界、相界和枝晶界;固溶在化合物中或形成化合物。向合金中添加上述稀土元素,能起到固溶强化,提高强度的作用。进一步增加上述稀土的含量,会与Al元素优先生成细小颗粒状高熔点Al2RE金属间化合物,能作为异质形核核心细化晶粒,并弥散分布于基体中,改变合金断裂过程中裂纹萌生位置和扩展途径,进一步提高合金的塑性。此外,Gd、Y、Sm等稀土元素的添加还可以促进含Al镁合金的时效强化效果,进一步提高合金的强度及模量。5)Si、Ge、Ca、Li、Sn等元素在Mg中固溶度较低,在含Al镁合金中主要与Mg或Al生成增强相。如表1所示,以上元素与Mg或Al优先生成的增强相弹性模量范围为80~120GPa。根据混合定律可知,合金基体内分布的增强相模量越高,体积比越大,合金的模量越高。而Mg的测试模量值为39~46GPa,因此表1中所示的增强相均能够有效地提高镁合金的弹性模量。
表1:增强相的弹性模量
Figure BDA0002030748530000031
合金元素的协同作用
本发明中高强韧高模量镁合金,可进一步调控不同组分的添加元素种类及含量,可以进一步细化晶粒、变质第二相,提高合金强韧性和弹性模量。1)Gd、Y、Sm等稀土元素在Mg中的溶质分配系数k<1,且稀土元素化学活性极强,可偏聚并吸附在长大的晶粒界面或枝晶界面上,阻碍晶粒和枝晶长大,能显著细化晶粒、颗粒化Al11RE3针状相,大幅提高合金性能,尤其是塑性。2)Gd、Y、Sm等稀土元素可以变质汉字状Mg2Si和呈网状分布的Al2Ca为颗粒状,降低高模量增强相对基体的割裂作用,能提高合金模量的同时,不降低合金的强韧性。
优选的,所述镁合金材料中,3.6%≤b+d≤7.0%。进一步优选的,所述镁合金材料中,4.5%≤b+d≤6.0%。
上述高强韧高模量金属型重力铸造镁合金的制备方法,包括如下步骤,
S1:熔炼合金,将纯Mg、纯Al、镁稀土中间合金、铝锰或镁锰中间合金、以及其余组分分别预热;
优选的,所述步骤S1中,预热温度为200~250℃,预热时间为2~6小时。所述预热温度及时间能够有效去除原材料的水分,并能避免原材料表面在预热过程中过度氧化问题。
优选的,所述步骤S1中,镁稀土中间合金为镁富铈混合稀土中间合金、镁镧中间合金、镁铈中间合金、镁镨中间合金、镁钐中间合金、镁钆中间合金、镁钇中间合金、镁富钇混合稀土中间合金、镁钕中间合金、镁镨钕混合稀土中间合金、镁铒中间合金、镁铕中间合金、镁钬中间合金、镁铥中间合金、镁镥中间合金、镁镝中间合金、镁镱中间合金中的一种或几种中间合金的组合。
所述富铈混合稀土中含有La、Ce、Pr三种稀土元素。
优选的,所述步骤S1中,其余组分为镁基中间合金或铝基中间合金或纯金属。所述镁基中间合金为镁硅中间合金、镁钙中间合金、镁锂中间合金、镁锌中间合金、镁锑中间合金中的一种或几种中间合金的组合;所述铝基中间合金为铝硅中间合金,铝锗中间合金、铝钙中间合金、铝锂中间合金、铝锡中间合金、铝锑中间合金中的一种或几种中间合金的组合;所述纯金属为纯硅、纯锌中的一种或两种。
S2:将预热后的纯Mg在保护气氛中进行完全熔化;在670~690℃加入预热后的纯Al;当温度升到720~740℃,加入预热后的中间合金或纯金属;待中间合金或纯金属完全熔化后升温至720~740℃,加入精炼剂进行精炼,精炼后在710-730℃进行静置,冷却至680~700℃后撇去浮渣,得到镁合金熔体,或浇注得到镁合金铸锭;
优选的,步骤S2中,加入精炼剂进行精炼,精炼后在720℃,进行静置。精炼温度选择720℃,精炼效果最佳,能够最大程度上除气除渣,净化熔体。
所述步骤S2的保护气氛为SF6和CO2的混合气体。优选的,所述SF6和CO2的体积比为1:99。
所述步骤S2的精炼剂为含无机盐的镁合金精炼剂,优选的,含钠盐、钾盐、氟盐的无机盐镁合金精炼剂或六氯乙烷。
优选的,精炼剂的加入量为所有原料总质量的1-5%。
S3:对步骤S2中的镁合金熔体或镁合金铸锭重熔后进行金属型重力铸造,获得镁合金铸件。
优选的,所述步骤S3中,将所述镁合金熔体或镁合金铸锭重熔后,在680~700℃下浇注到预热至220~300℃的金属模具中,冷却,获得镁合金铸件。进一步优选的,所述金属型重力铸造的冷却速率为1~50℃/s。所述浇注温度能够保证熔体在模具中的具备较好流动性,且避免熔体温度过高造成的烧损。
本发明生产的高强韧高模量金属型重力铸造镁合金可直接使用,或是将铸件进行固溶处理、人工时效处理;
优选的,所述固溶处理的温度为400~550℃,所述固溶处理的时间为4~48小时;所述人工时效处理的温度为175~225℃,所述时效处理的时间为1~32小时。所述固溶处理工艺能最大程度上将第二相溶入镁基体中;所述时效处理工艺能使铸件获得显著的时效强化效果。
或是将步骤S3中制备的镁合金铸件直接进行人工时效处理,所述时效处理的温度为175~225℃,所述时效处理的时间为1~32小时。
优选的,所述热处理工艺冷却方式为空冷或水冷。
与现有技术相比,本发明的有益效果在于:
1、本发明制备的镁合金材料与现有技术相比,提高弹性模量的同时又能保证较好的强韧性。本发明利用合金化方法原位引入Mg2Si、Al2Ca或Al3Li等高模量强化相,显著提高了合金弹性模量;
2、Gd、Y、Nd等RE元素除了能够大幅细化基体,变质Al11RE3针状相,引入Al2RE强化相,提高合金的强韧性,还可以变质汉字状Mg2Si、网状Al2Ca增强相,降低对基体的割裂作用,提高合金弹性模量的同时又能够兼备较好的强韧性。
3、本制备方法简单、工艺稳定性好、工艺可控度高。
本发明的核心发明点为:已有技术虽能够提高镁合金弹性模量,但一般都会使得合金强韧性降低,尤其是合金的塑性。但本发明通过添加Si、Ca、Li等元素引入高模量强化相,同时合金中Gd、Y、Nd等RE元素能够变质添加以上元素生成的高模量强化相,降低高模量强化相对基体的割裂作用,保证合金强韧性不受影响,甚至还能够进一步提高合金的强韧性。
具体实施方式
下面结合实施例,对本发明作进一步说明:
本发明中所用的各种中间合金均为市售产品,所述镁稀土中间合金购于赣州飞腾轻合金有限公司。
实施例1:
金属型重力铸造镁合金的合金成分(质量百分数):3.50%Al、1.72%Ce、0.87%La、0.91%Pr、1.04%Sm、0.03%Tb、0.04%Er、0.50%Si、0.20%Mn,其它不可避免的杂质小于0.2%,其余为Mg。
本实施例涉及常规稀土镁合金的熔炼方法和本发明中的合金金属型重力铸造方法:
其中,熔炼工序在SF6和CO2混合气体保护条件下进行,步骤如下:
(1)烘料:将熔炼原料在200℃预热3小时;
(2)熔镁:将烘干后的纯镁放入有SF6/CO2气体保护的坩埚电阻炉中熔化;
(3)加纯铝和镁锰中间合金:当纯镁完全熔化,温度达到670℃后,加入预热后的纯铝、镁锰中间合金;
(4)加中间合金:当温度升到720℃,加入预热后的镁富铈混合稀土中间合金、镁钐中间合金、镁铽中间合金、镁铒中间合金、镁硅中间合金。
(5)待中间合金完全熔化后,熔体温度回升至720℃时加入精炼剂进行精炼,精炼后在720℃进行静置,冷却至680℃后撇去浮渣,得到镁合金熔体,浇铸得到镁合金铸锭;
金属型重力铸造工序为:
将所述镁合金铸锭重熔后,在680℃下浇注到预热至300℃的金属型模具中,获得镁合金铸件,冷却速率测试为26.7℃/s。
本发明实施例1的室温力学性能测试结果如表2所示。
实施例2:
高强韧高模量金属型重力铸造镁合金的合金成分(质量百分数):4.12%Al、0.50%Ce、1.06%Sm、1.36%Gd、0.03%Eu、0.01%Dy、0.02%Ho、0.01%Tm、0.01%Lu、0.50%Si、0.01%Mn,其它不可避免的杂质小于0.2%,其余为Mg。
本实施例涉及常规稀土镁合金的熔炼方法和本发明中的合金金属型重力铸造方法:
其中,熔炼工序在SF6和CO2混合气体保护条件下进行,步骤如下:
(1)烘料:将熔炼原料在250℃预热2小时;
(2)熔镁:将烘干后的纯镁放入有SF6/CO2气体保护的坩埚电阻炉中熔化;
(3)加纯铝和镁锰中间合金:当纯镁完全熔化,温度达到680℃后,加入预热后的纯铝、镁锰中间合金;
(4)加中间合金:当温度升到730℃,加入预热后的镁铈中间合金、镁钐中间合金、镁钆中间合金、铝硅中间合金、镁铕中间合金、镁镝中间合金、镁钬中间合金、镁铥中间合金、镁镥中间合金;
(5)待中间合金完全熔化后,熔体温度回升至730℃时加入精炼剂进行精炼,精炼后在720℃进行静置,冷却至690℃后撇去浮渣,得到镁合金熔体;
金属型重力铸造工序为:
将所述镁合金熔体,在690℃下浇注到预热至250℃的金属型模具中,获得镁合金铸件,冷却速率测试为31.5℃/s。
本发明实施例2的室温力学性能测试结果如表2所示。
实施例3:
高强韧高模量金属型重力铸造镁合金的合金成分(质量百分数):5.67%Al、2.20%Ce、1.13%La、1.17%Pr、0.01%Yb、5.00%Si、0.41%Mn,其它不可避免的杂质小于0.2%,其余为Mg。
本实施例涉及常规稀土镁合金的熔炼方法和本发明中的合金金属型重力铸造方法:
其中,熔炼工序在SF6和CO2混合气体保护条件下进行,步骤如下:
(1)烘料:将熔炼原料在250℃预热2小时;
(2)熔镁:将烘干后的纯镁放入有SF6/CO2气体保护的坩埚电阻炉中熔化;
(3)加纯铝和镁锰中间合金:当纯镁完全熔化,温度达到680℃后,加入预热后的纯铝、镁锰中间合金;
(4)加中间合金:当温度升到730℃,加入预热后的镁富铈混合稀土中间合金、镁钐中间合金、铝硅中间合金、镁镱中间合金;
(5)待中间合金完全熔化后,熔体温度回升至730℃时加入精炼剂进行精炼,精炼后在720℃进行静置,冷却至690℃后撇去浮渣,得到镁合金熔体;
金属型重力铸造工序为:
将所述镁合金熔体,在690℃下浇注到预热至220℃的金属型模具中,获得镁合金铸件,冷却速率测试为22.8℃/s。
本发明实施例3的室温力学性能测试结果如表2所示。
实施例4:
高强韧高模量金属型重力铸造镁合金的合金成分(质量百分数):4.69%Al、1.57%Ce、1.73%La、0.16%Sm、0.11%Nd、0.40%Gd、0.31%Y、1.00%Si、0.34%Mn,其它不可避免的杂质小于0.2%,其余为Mg。
本实施例涉及常规稀土镁合金的熔炼方法和本发明中的合金金属型重力铸造方法:
其中,熔炼工序在SF6和CO2混合气体保护条件下进行,步骤如下:
(1)烘料:将熔炼原料在200℃预热6小时;
(2)熔镁:将烘干后的纯镁放入有SF6/CO2气体保护的坩埚电阻炉中熔化;
(3)加纯铝和镁锰中间合金:当纯镁完全熔化,温度达到690℃后,加入预热后的纯铝、镁锰中间合金;
(4)加中间合金:当温度升到740℃,加入预热后的镁镧铈混合稀土中间合金、镁钐中间合金、镁钕中间合金、镁钆中间合金、镁钇中间合金和镁硅中间合金;
(5)待中间合金熔化后,熔体温度回升至740℃时加入精炼剂进行精炼,精炼后在720℃进行静置,冷却至700℃后撇去浮渣,得到镁合金熔体;
金属型重力铸造工序为:
将所述镁合金熔体在700℃下浇注到预热至220℃的金属型模具中,获得镁合金铸件,冷却速率测试为47.1℃/s。
本发明实施例4的室温力学性能测试结果如表2所示。
实施例5:
高强韧高模量金属型重力铸造镁合金的合金成分(质量百分数):5.11%Al、1.57%Ce、1.71%La、0.16%Sm、0.11%Nd、0.40%Gd、0.31%Y、1.00%Si、1.50%Zn、0.34%Mn,其它不可避免的杂质小于0.2%,其余为Mg。
本实施例涉及常规稀土镁合金的熔炼方法和本发明中的合金金属型重力铸造方法:
其中,熔炼工序在SF6和CO2混合气体保护条件下进行,步骤如下:
(1)烘料:将熔炼原料在200℃预热3小时;
(2)熔镁:将烘干后的纯镁放入有SF6/CO2气体保护的坩埚电阻炉中熔化;
(3)加纯铝、纯锌和铝锰中间合金:当纯镁完全熔化,温度达到670℃后,加入预热后的纯铝、纯锌、铝锰中间合金;
(4)加中间合金:当温度升到720℃,加入预热后的镁镧中间合金、镁铈中间合金、镁钐中间合金、镁钕中间合金、镁钆中间合金、镁钇中间合金、镁硅中间合金;
(5)待中间合金熔化后,熔体温度回升至720℃时加入精炼剂进行精炼,精炼后在720℃进行静置,冷却至680℃后撇去浮渣,得到镁合金熔体;
金属型重力铸造工序为:
将所述镁合金熔体在680℃下浇注到预热至240℃的金属型模具中,获得镁合金铸件,冷却速率测试为46.8℃/s。
本发明实施例5的室温力学性能测试结果如表2所示。
实施例6:
高强韧高模量金属型重力铸造镁合金的合金成分(质量百分数):5.50%Al、1.57%Ce、1.71%La、0.16%Sm、0.11%Nd、0.40%Gd、0.31%Y、1.50%Si、2.00%Zn、0.34%Mn,其它不可避免的杂质小于0.2%,其余为Mg。
本实施例涉及常规稀土镁合金的熔炼方法和本发明中的合金金属型重力铸造方法:
其中,熔炼工序在SF6和CO2混合气体保护条件下进行,步骤如下:
(1)烘料:将熔炼原料在200℃预热3小时;
(2)熔镁:将烘干后的纯镁放入有SF6/CO2气体保护的坩埚电阻炉中熔化;
(3)加纯铝、纯锌和镁锰中间合金:当纯镁完全熔化,温度达到690℃后,加入预热后的纯铝、纯锌、镁锰中间合金;
(4)加中间合金:当温度升到740℃,加入预热后的镁镧中间合金、镁铈中间合金、镁钐中间合金、镁钕中间合金、镁钆中间合金、镁钇中间合金、镁硅中间合金;
(5)待中间合金熔化后,熔体温度回升至740℃时加入精炼剂进行精炼,精炼后在720℃进行静置,冷却至680℃后撇去浮渣,得到镁合金熔体;
金属型重力铸造工序为:
将所述镁合金熔体在680℃下浇注到预热至250℃的金属型模具中,获得镁合金铸件,冷却速率测试为32.7℃/s。
本发明实施例6的室温力学性能测试结果如表2所示。
实施例7:
高强韧高模量金属型重力铸造镁合金的合金成分(质量百分数):6.50%Al、1.57%Ce、1.71%La、0.16%Sm、0.11%Nd、0.40%Gd、0.31%Y、2.00%Si、2.00%Zn、0.34%Mn,其它不可避免的杂质小于0.2%,其余为Mg。
本实施例涉及常规稀土镁合金的熔炼方法和本发明中的合金金属型重力铸造方法:
其中,熔炼工序在SF6和CO2混合气体保护条件下进行,步骤如下:
(1)烘料:将熔炼原料在200℃预热3小时;
(2)熔镁:将烘干后的纯镁放入有SF6/CO2气体保护的坩埚电阻炉中熔化;
(3)加纯铝、纯锌和铝锰中间合金:当纯镁完全熔化,温度达到680℃后,加入预热后的纯铝、纯锌、铝锰中间合金;
(4)加中间合金:当温度升到730℃,加入预热好的镁镧中间合金、镁铈中间合金、镁钐中间合金、镁钕中间合金、镁钆中间合金、镁钇中间合金、镁硅中间合金;
(5)待中间合金完全熔化后,熔体温度回升至730℃时加入精炼剂进行精炼,精炼后在720℃进行静置,冷却至700℃后撇去浮渣,得到镁合金熔体;
金属型重力铸造工序为:
将所述镁合金熔体在700℃下浇注到预热至300℃的金属型模具中,获得镁合金铸件,冷却速率测试为1.0℃/s。
本发明实施例7的室温力学性能测试结果如表2所示。
实施例8:
高强韧高模量金属型重力铸造镁合金的合金成分(质量百分数):5.30%Al、1.57%Ce、1.71%La、0.16%Sm、0.11%Nd、0.40%Gd、0.31%Y、1.00%Ge、1.00%Zn、1.50%Mn,其它不可避免的杂质小于0.2%,其余为Mg。
本实施例涉及常规稀土镁合金的熔炼方法和本发明中的合金金属型重力铸造方法:
其中,熔炼工序在SF6和CO2混合气体保护条件下进行,步骤如下:
(1)烘料:将熔炼原料在200℃预热3小时;
(2)熔镁:将烘干后的纯镁放入有SF6/CO2气体保护的坩埚电阻炉中熔化;
(3)加纯铝、纯锌和铝锰中间合金:当纯镁完全熔化,温度达到670℃后,加入预热后的纯铝、纯锌、铝锰中间合金;
(4)加中间合金:当温度升到720℃,加入预热后的镁镧中间合金、镁铈中间合金、镁钐中间合金、镁钕中间合金、镁钆中间合金、镁钇中间合金、镁锗中间合金;
(5)待中间合金熔化后,熔体温度回升至720℃时加入精炼剂进行精炼,精炼后在720℃进行静置,冷却至680℃后撇去浮渣,得到镁合金熔体;
金属型重力铸造工序为:
将所述镁合金熔体在680℃下浇注到预热至220℃的金属型模具中,获得镁合金铸件,冷却速率测试为50℃/s。
本发明实施例8的室温力学性能测试结果如表2所示。
实施例9:
高强韧高模量金属型重力铸造镁合金的合金成分(质量百分数):6.00%Al、1.57%Ce、1.71%La、0.16%Sm、0.11%Nd、0.40%Gd、0.31%Y、0.70%Li、0.34%Mn,其它不可避免的杂质小于0.2%,其余为Mg。
本实施例涉及常规稀土镁合金的熔炼方法和本发明中的合金金属型重力铸造方法:
其中,熔炼工序在SF6和CO2混合气体保护条件下进行,步骤如下:
(1)烘料:将熔炼原料在200℃预热3小时;
(2)熔镁:将烘干后的纯镁放入有SF6/CO2气体保护的坩埚电阻炉中熔化;
(3)加纯铝和铝锰中间合金:当纯镁完全熔化,温度达到690℃后,加入预热后的纯铝、铝锰中间合金;
(4)加中间合金:当温度升到740℃,加入预热后的镁镧中间合金、镁铈中间合金、镁钐中间合金、镁钕中间合金、镁钆中间合金、镁钇中间合金、镁锂中间合金;
(5)待中间合金熔化后,熔体温度回升至740℃时加入精炼剂进行精炼,精炼后在720℃进行静置,冷却至690℃后撇去浮渣,得到镁合金熔体;
金属型重力铸造工序为:
将所述镁合金熔体在690℃下浇注到预热至220℃的金属型模具中,获得镁合金铸件,冷却速率测试为42.7℃/s。
本发明实施例9的室温力学性能测试结果如表2所示。
实施例10:
高强韧高模量金属型重力铸造镁合金的合金成分(质量百分数):6.00%Al、1.57%Ce、1.71%La、0.16%Sm、0.11%Nd、0.40%Gd、0.31%Y、0.70%Li、0.50%Si、1.00%Zn、0.34%Mn,其它不可避免的杂质小于0.2%,其余为Mg。
本实施例涉及常规稀土镁合金的熔炼方法和本发明中的合金金属型重力铸造方法:
其中,熔炼工序在SF6和CO2混合气体保护条件下进行,步骤如下:
(1)烘料:将熔炼原料在200℃预热3小时;
(2)熔镁:将烘干后的纯镁放入有SF6/CO2气体保护的坩埚电阻炉中熔化;
(3)加纯铝、纯锌和铝锰中间合金:当纯镁完全熔化,温度达到680℃后,加入预热后的纯铝、纯锌、铝锰中间合金;
(4)加中间合金:当温度升到730℃,加入预热后的镁镧中间合金、镁铈中间合金、镁钐中间合金、镁钕中间合金、镁钆中间合金、镁钇中间合金、镁锂中间合金、铝硅中间合金;
(5)待中间合金熔化后,熔体温度回升至730℃时加入精炼剂进行精炼,精炼后在720℃进行静置,冷却至690℃后撇去浮渣,得到镁合金熔体;
金属型重力铸造工序为:
将所述镁合金熔体在690℃下浇注到预热至280℃的金属型模具中,获得镁合金铸件,冷却速率测试为32.4℃/s。
本发明实施例10的室温力学性能测试结果如表2所示。
实施例11:
金属型重力铸造镁合金的合金成分(质量百分数):5.00%Al、1.57%Ce、1.71%La、0.16%Sm、0.11%Nd、0.40%Gd、0.31%Y、0.20%Ca、0.34%Mn,其它不可避免的杂质小于0.2%,其余为Mg。
本实施例涉及常规稀土镁合金的熔炼方法和本发明中的合金金属型重力铸造方法:
其中,熔炼工序在SF6和CO2混合气体保护条件下进行,步骤如下:
(1)烘料:将熔炼原料在200℃预热3小时;
(2)熔镁:将烘干后的纯镁放入有SF6/CO2气体保护的坩埚电阻炉中熔化;
(3)加纯铝和镁锰中间合金:当纯镁完全熔化,温度达到690℃后,加入预热后的纯铝、镁锰中间合金;
(4)加中间合金:当温度升到740℃,加入预热后的镁镧中间合金、镁铈中间合金、镁钐中间合金、镁钕中间合金、镁钆中间合金、镁钇中间合金、镁钙中间合金;
(5)待中间合金熔化后,熔体温度回升至740℃时加入精炼剂进行精炼,精炼后在720℃进行静置,冷却至700℃后撇去浮渣,得到镁合金熔体;
金属型重力铸造工序为:
将所述镁合金熔体在700℃下浇注到预热至220℃的金属型模具中,获得镁合金铸件,冷却速率测试为49.2℃/s。
本发明实施例11的室温力学性能测试结果如表2所示。
实施例12:
高强韧高模量金属型重力铸造镁合金的合金成分(质量百分数):5.00%Al、1.57%Ce、1.71%La、0.16%Sm、0.11%Nd、0.40%Gd、0.31%Y、0.50%Ca、0.34%Mn,其它不可避免的杂质小于0.2%,其余为Mg。
本实施例涉及常规稀土镁合金的熔炼方法和本发明中的合金金属型重力铸造方法:
其中,熔炼工序在SF6和CO2混合气体保护条件下进行,步骤如下:
(1)烘料:将熔炼原料在200℃预热3小时;
(2)熔镁:将烘干后的纯镁放入有SF6/CO2气体保护的坩埚电阻炉中熔化;
(3)加纯铝和铝锰中间合金:当纯镁完全熔化,温度达到680℃后,加入预热后的纯铝、铝锰中间合金;
(4)加中间合金:当温度升到730℃,加入预热后的镁镧中间合金、镁铈中间合金、镁钐中间合金、镁钕中间合金、镁钆中间合金、镁钇中间合金、镁钙中间合金;
(5)待中间合金熔化后,熔体温度回升至730℃时加入精炼剂进行精炼,精炼后在720℃进行静置,冷却至690℃后撇去浮渣,得到镁合金熔体;
金属型重力铸造工序为:
将所述镁合金熔体在690℃下浇注到预热至250℃的金属型模具中,获得镁合金铸件,冷却速率测试为44.1℃/s。
本发明实施例12的室温力学性能测试结果如表2所示。
实施例13:
高强韧高模量金属型重力铸造镁合金的合金成分(质量百分数):5.00%Al、1.57%Ce、1.71%La、0.16%Sm、0.11%Nd、0.40%Gd、0.31%Y、0.50%Ca、0.20%Sb、0.34%Mn,其它不可避免的杂质小于0.2%,其余为Mg。
本实施例涉及常规稀土镁合金的熔炼方法和本发明中的合金金属型重力铸造方法:
其中,熔炼工序在SF6和CO2混合气体保护条件下进行,步骤如下:
(1)烘料:将熔炼原料在200℃预热3小时;
(2)熔镁:将烘干后的纯镁放入有SF6/CO2气体保护的坩埚电阻炉中熔化;
(3)加纯铝和铝锰中间合金:当纯镁完全熔化,温度达到670℃后,加入预热后的纯铝、铝锰中间合金;
(4)加中间合金:当温度升到720℃,加入预热后的镁镧中间合金、镁铈中间合金、镁钐中间合金、镁钕中间合金、镁钆中间合金、镁钇中间合金、铝钙中间合金、铝锑中间合金;
(5)待镁稀土中间合金熔化后,熔体温度回升至720℃时加入精炼剂进行精炼,精炼后在720℃进行静置,冷却至680℃后撇去浮渣,得到镁合金熔体;
金属型重力铸造工序为:
将所述镁合金熔体在680℃下浇注到预热至280℃的金属型模具中,获得镁合金铸件,冷却速率测试为32.1℃/s。
本发明实施例13的室温力学性能测试结果如表2所示。
实施例14:
高强韧高模量金属型重力铸造镁合金的合金成分(质量百分数):4.50%Al、1.57%Ce、1.71%La、0.16%Sm、0.11%Nd、0.40%Gd、0.31%Y、1.00%Sn、0.73%Mn,其它不可避免的杂质小于0.2%,其余为Mg。
本实施例涉及常规稀土镁合金的熔炼方法和本发明中的合金金属型重力铸造方法:
其中,熔炼工序在SF6和CO2混合气体保护条件下进行,步骤如下:
(1)烘料:将熔炼原料在200℃预热3小时;
(2)熔镁:将烘干后的纯镁放入有SF6/CO2气体保护的坩埚电阻炉中熔化;
(3)加纯铝和铝锰中间合金:当纯镁完全熔化,温度达到670℃后,加入预热后的纯铝、铝锰中间合金;
(4)加中间合金:当温度升到720℃,加入预热后的镁镧中间合金、镁铈中间合金、镁钐中间合金、镁钕中间合金、镁钆中间合金、镁钇中间合金、铝锡中间合金;
(5)待中间合金熔化后,熔体温度回升至720℃时加入精炼剂进行精炼,精炼后在720℃进行静置,冷却至680℃后撇去浮渣,得到镁合金熔体;
金属型重力铸造工序为:
将所述镁合金熔体在680℃下浇注到预热至240℃的金属型模具中,获得镁合金铸件,冷却速率测试为27.8℃/s。
本发明实施例14的室温力学性能测试结果如表2所示。
实施例15:
高强韧高模量金属型重力铸造镁合金的合金成分(质量百分数):4.50%Al、1.57%Ce、1.71%La、0.16%Sm、0.11%Nd、0.40%Gd、0.31%Y、2.00%Sn、1.20%Mn,其它不可避免的杂质小于0.2%,其余为Mg。
本实施例涉及常规稀土镁合金的熔炼方法和本发明中的合金金属型重力铸造方法:
其中,熔炼工序在SF6和CO2混合气体保护条件下进行,步骤如下:
(1)烘料:将熔炼原料在200℃预热3小时;
(2)熔镁:将烘干后的纯镁放入有SF6/CO2气体保护的坩埚电阻炉中熔化;
(3)加纯铝和铝锰中间合金:当纯镁完全熔化,温度达到670℃后,加入预热后的纯铝、铝锰中间合金;
(4)加中间合金:当温度升到720℃,加入预热后的镁镧中间合金、镁铈中间合金、镁钐中间合金、镁钕中间合金、镁钆中间合金、镁钇中间合金、铝锡中间合金;
(5)待中间合金熔化后,熔体温度回升至720℃时加入精炼剂进行精炼,精炼后在720℃进行静置,冷却至680℃后撇去浮渣,得到镁合金熔体;
金属型重力铸造工序为:
将所述镁合金熔体在680℃下浇注到预热至250℃的金属型模具中,获得镁合金铸件,冷却速率测试为25.4℃/s。
本发明实施例15的室温力学性能测试结果如表2所示。
比较例1
比较例1金属型重力铸造镁合金的合金成分(质量百分数):6.00%Al、1.57%Ce、1.71%La、0.16%Sm、0.11%Nd、0.40%Gd、0.31%Y、0.34%Mn,其它不可避免的杂质小于0.2%,其余为Mg。
本实施例涉及常规稀土镁合金的熔炼方法和本发明中的合金金属型重力铸造方法:
其中,熔炼工序在SF6和CO2混合气体保护条件下进行,步骤如下:
(1)烘料:将熔炼原料在200℃预热3小时;
(2)熔镁:将烘干后的纯镁放入有SF6/CO2气体保护的坩埚电阻炉中熔化;
(3)加纯铝和铝锰中间合金:当纯镁完全熔化,温度达到680℃后,加入预热后的纯铝、铝锰中间合金;
(4)加中间合金:当温度升到730℃,加入预热后的镁镧中间合金、镁铈中间合金、镁钐中间合金、镁钕中间合金、镁钆中间合金、镁钇中间合金、;
(5)待中间合金熔化后,熔体温度回升至730℃时加入精炼剂进行精炼,精炼后在720℃进行静置,冷却至690℃后撇去浮渣,得到镁合金熔体;
金属型重力铸造工序为:
将所述镁合金熔体在690℃下浇注到预热至220℃的金属型模具中,获得镁合金铸件,冷却速率测试为41.8℃/s。
本发明比较例1的室温力学性能测试结果如表2所示。
表2为本发明实施例1~实施例15和对比例1得到的高强韧高模量金属型重力铸造镁合金室温力学性能测试结果
表2
抗拉强度/MPa 延伸率/% 模量/GPa
实施例1 228 9.8 49.5
实施例2 219 11.7 49.2
实施例3 233 6.7 54.8
实施例4 228 7.4 54.1
实施例5 241 9.4 55.4
实施例6 238 8.7 58.1
实施例7 231 7.8 58
实施例8 210 6.4 56.2
实施例9 238 10.9 57.4
实施例10 246 10.8 59.4
实施例11 235 9.1 51.9
实施例12 241 7.2 54.2
实施例13 244 8.4 58.1
实施例14 233 9.4 50.1
实施例15 239 8.7 52.1
对比例1 230 9.6 49.4
由表2可知,本发明实施例得到的高强韧高模量金属型重力铸造镁合金具有优异的室温力学性能,保证强韧性的同时,显著提高了镁合金的弹性模量。
实施例16
将本发明实施例10得到的高强韧高模量金属型重力铸造镁合金在175℃下进行32小时的时效处理,所述时效处理的冷却方式为空冷。
本发明实施例16的室温力学性能测试结果如表3所示。
实施例17
将本发明实施例10得到的高强韧高模量金属型重力铸造镁合金在200℃下进行16小时的时效处理,所述时效处理的冷却方式为水冷。
本发明实施例17的室温力学性能测试结果如表3所示。
实施例18
将本发明实施例10得到的高强韧高模量金属型重力铸造镁合金在225℃下进行1小时的时效处理,所述时效处理的冷却方式为水冷。
本发明实施例18的室温力学性能测试结果如表3所示。
实施例19
将本发明实施例10得到的高强韧高模量金属型重力铸造镁合金在400℃下进行48小时的固溶处理以及在175℃下进行32小时的时效处理,所述固溶及时效处理的冷却方式为水冷。
本发明实施例19的室温力学性能测试结果如表3所示。
实施例20
将本发明实施例10得到的高强韧高模量金属型重力铸造镁合金在500℃下进行24小时的固溶处理以及在200℃下进行16小时的时效处理,所述时效处理的冷却方式为水冷。
本发明实施例20的室温力学性能测试结果如表3所示。
实施例21
将本发明实施例10得到的高强韧高模量金属型重力铸造镁合金在550℃下进行4小时的固溶处理以及在225℃下进行1小时的时效处理,所述固溶及时效处理的冷却方式为水冷。
本发明实施例21的室温力学性能测试结果如表3所示。
表3为实施例16~实施例21得到的高强韧高模量金属型重力铸造镁合金室温力学性能测试结果。
表3
抗拉强度/MPa 延伸率/% 模量/GPa
实施例16 255 10.6 60.4
实施例17 263 9.9 60.9
实施例18 254 10.1 59.2
实施例19 266 9.8 62.0
实施例20 283 9.4 66.5
实施例21 269 9.7 60.2
由表3可知,本发明提供的热处理工艺可以进一步提高镁合金的强韧性和弹性模量。其中实施例20提供的热处理工艺提高合金的强韧性和弹性模量最为显著。

Claims (1)

1.一种高强韧高模量金属型重力铸造镁合金,其特征在于,由按质量百分数计的如下元素组成:6.00%Al、1.57%Ce、1.71%La、0.16%Sm、0.11%Nd、0.40%Gd、0.31%Y、0.70%Li、0.50%Si、1.00%Zn、0.34%Mn,其它不可避免的杂质小于0.2%,其余为Mg;
所述高强韧高模量金属型重力铸造镁合金通过金属型重力铸造方法制备得到,其中,熔炼工序在SF6和CO2混合气体保护条件下进行,步骤如下:
(1)烘料:将熔炼原料在200℃预热3小时;
(2)熔镁:将烘干后的纯镁放入有SF6/CO2气体保护的坩埚电阻炉中熔化;
(3)加纯铝、纯锌和铝锰中间合金:当纯镁完全熔化,温度达到680℃后,加入预热后的纯铝、纯锌、铝锰中间合金;
(4)加中间合金:当温度升到730℃,加入预热后的镁镧中间合金、镁铈中间合金、镁钐中间合金、镁钕中间合金、镁钆中间合金、镁钇中间合金、镁锂中间合金、铝硅中间合金;
(5)待中间合金熔化后,熔体温度回升至730℃时加入精炼剂进行精炼,精炼后在720℃进行静置,冷却至690℃后撇去浮渣,得到镁合金熔体;
金属型重力铸造工序为:将所述镁合金熔体在690℃下浇注到预热至280℃的金属型模具中,冷却速率为32.4℃/s,获得镁合金铸件。
CN201910308785.1A 2019-04-17 2019-04-17 一种高强韧高模量金属型重力铸造镁合金及其制备方法 Active CN109852856B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910308785.1A CN109852856B (zh) 2019-04-17 2019-04-17 一种高强韧高模量金属型重力铸造镁合金及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910308785.1A CN109852856B (zh) 2019-04-17 2019-04-17 一种高强韧高模量金属型重力铸造镁合金及其制备方法

Publications (2)

Publication Number Publication Date
CN109852856A CN109852856A (zh) 2019-06-07
CN109852856B true CN109852856B (zh) 2021-03-19

Family

ID=66889182

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910308785.1A Active CN109852856B (zh) 2019-04-17 2019-04-17 一种高强韧高模量金属型重力铸造镁合金及其制备方法

Country Status (1)

Country Link
CN (1) CN109852856B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113981287A (zh) * 2021-10-29 2022-01-28 长春理工大学 一种熔体吸气型自发泡多孔镁合金及其制备方法
CN114645170B (zh) * 2022-03-11 2023-07-28 上海交通大学 一种可快速高温固溶处理的铸造镁稀土合金及其制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB596102A (en) * 1945-07-19 1947-12-29 Rupert Martin Bradbury A new magnesium base alloy
CN103045922A (zh) * 2013-01-16 2013-04-17 安徽江淮汽车股份有限公司 一种耐热铸造镁合金
CN103757510A (zh) * 2014-01-02 2014-04-30 河南科技大学 一种多元耐热镁合金
CN104046870A (zh) * 2014-07-09 2014-09-17 北京汽车股份有限公司 一种高弹性模量镁合金及其制备方法
CN104928546A (zh) * 2015-06-16 2015-09-23 上海交通大学 一种高强度高模量铸造镁稀土合金及其制备方法
CN106609331A (zh) * 2016-12-22 2017-05-03 上海交通大学 高塑性压铸镁合金及其成形方法
CN108385006A (zh) * 2018-03-19 2018-08-10 山西瑞格金属新材料有限公司 高强度阻燃压铸镁合金及其制备方法
CN108588524A (zh) * 2018-07-23 2018-09-28 上海交通大学 一种金属型重力铸造镁合金材料及其制备方法
CN108796327A (zh) * 2018-06-28 2018-11-13 郑州大学 一种高塑性、低各向异性变形镁合金板材及其制备方法
CN109161770A (zh) * 2018-11-23 2019-01-08 重庆大学 一种高模量镁合金及其制备方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB596102A (en) * 1945-07-19 1947-12-29 Rupert Martin Bradbury A new magnesium base alloy
CN103045922A (zh) * 2013-01-16 2013-04-17 安徽江淮汽车股份有限公司 一种耐热铸造镁合金
CN103757510A (zh) * 2014-01-02 2014-04-30 河南科技大学 一种多元耐热镁合金
CN104046870A (zh) * 2014-07-09 2014-09-17 北京汽车股份有限公司 一种高弹性模量镁合金及其制备方法
CN104928546A (zh) * 2015-06-16 2015-09-23 上海交通大学 一种高强度高模量铸造镁稀土合金及其制备方法
CN106609331A (zh) * 2016-12-22 2017-05-03 上海交通大学 高塑性压铸镁合金及其成形方法
CN108385006A (zh) * 2018-03-19 2018-08-10 山西瑞格金属新材料有限公司 高强度阻燃压铸镁合金及其制备方法
CN108796327A (zh) * 2018-06-28 2018-11-13 郑州大学 一种高塑性、低各向异性变形镁合金板材及其制备方法
CN108588524A (zh) * 2018-07-23 2018-09-28 上海交通大学 一种金属型重力铸造镁合金材料及其制备方法
CN109161770A (zh) * 2018-11-23 2019-01-08 重庆大学 一种高模量镁合金及其制备方法

Also Published As

Publication number Publication date
CN109852856A (zh) 2019-06-07

Similar Documents

Publication Publication Date Title
CN109881063B (zh) 一种高强韧高模量压铸镁合金及其制备方法
CN109881062B (zh) 一种高强韧高模量挤压铸造镁合金及其制备方法
CN108467979B (zh) 一种金属型重力铸造铝合金材料及其制备方法
CN109972009B (zh) 一种高强韧高模量变形镁合金及其制备方法
CN108642336B (zh) 一种挤压铸造铝合金材料及其制备方法
CN108977710B (zh) 一种挤压铸造镁合金材料及其制备方法
CN108486441B (zh) 一种砂型重力铸造铝合金材料及其制备方法
CN112143945B (zh) 一种多种复合稀土元素的高强韧性铸造铝硅合金及其制备方法
EP2369025B1 (en) Magnesium alloy and magnesium alloy casting
CN109778027B (zh) 一种高强度a356合金的制备方法
CN113061787A (zh) 一种高强高韧Al-Si-Cu-Mg-Cr-Mn-Ti系铸造合金及其制备方法
CN108342606B (zh) 一种混合稀土改善原位铝基复合材料组织和性能的方法
CN109930045B (zh) 适于重力铸造的高强韧耐热Mg-Gd合金及其制备方法
CN113774259B (zh) 一种Al-Cu-Mg合金及消除有害含铁相的方法
CN115418537B (zh) 一种免热处理压铸铝合金及其制备方法和应用
CN109852856B (zh) 一种高强韧高模量金属型重力铸造镁合金及其制备方法
CN110029255B (zh) 一种高强韧高模量砂型重力铸造镁合金及其制备方法
CN109852859B (zh) 适于重力铸造的高强韧耐热Mg-Y-Er合金及其制备方法
CN115852217A (zh) 一种高强度易挤压铝合金及其型材挤压方法
CN108977711B (zh) 一种压铸镁合金材料及其制备方法
CN108588524B (zh) 一种金属型重力铸造镁合金材料及其制备方法
RU2687359C1 (ru) Литейный магниевый сплав
CN109136701B (zh) 一种砂型重力铸造镁合金材料及其制备方法
WO2011032433A1 (zh) W-re高强耐热铝合金材料及其制备方法
CN109943759B (zh) 适于重力铸造的高强韧耐热Mg-Er合金及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant