WO2022071463A1 - Viscous composition - Google Patents

Viscous composition Download PDF

Info

Publication number
WO2022071463A1
WO2022071463A1 PCT/JP2021/036041 JP2021036041W WO2022071463A1 WO 2022071463 A1 WO2022071463 A1 WO 2022071463A1 JP 2021036041 W JP2021036041 W JP 2021036041W WO 2022071463 A1 WO2022071463 A1 WO 2022071463A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
cellulose
viscous composition
salt
composition
Prior art date
Application number
PCT/JP2021/036041
Other languages
French (fr)
Japanese (ja)
Inventor
香澄 茂川
博史 山口
Original Assignee
住友精化株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友精化株式会社 filed Critical 住友精化株式会社
Priority to JP2022554079A priority Critical patent/JPWO2022071463A1/ja
Publication of WO2022071463A1 publication Critical patent/WO2022071463A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • A23L29/20Foods or foodstuffs containing additives; Preparation or treatment thereof containing gelling or thickening agents
    • A23L29/206Foods or foodstuffs containing additives; Preparation or treatment thereof containing gelling or thickening agents of vegetable origin
    • A23L29/262Cellulose; Derivatives thereof, e.g. ethers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/02Inorganic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/36Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
    • A61K47/38Cellulose; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/04Dispersions; Emulsions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/19Cosmetics or similar toiletry preparations characterised by the composition containing inorganic ingredients
    • A61K8/20Halogens; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/73Polysaccharides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/02Cellulose; Modified cellulose
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere

Definitions

  • the present disclosure relates to a viscous composition and the like, and more particularly to a viscous composition containing cellulose nanocrystals.
  • the contents of all documents described in this specification are incorporated herein by reference.
  • Polymer thickeners are widely used for preparing viscous compositions in various fields, such as cosmetics and food fields.
  • hydroxyethyl cellulose HEC
  • HEC hydroxyethyl cellulose
  • the present inventors have studied to find a novel means for providing a viscous composition containing hydroxyethyl cellulose and a salt but having excellent viscosity and stability.
  • the present inventors have prepared a viscous composition obtained by mixing nanocellulose, particularly cellulose nanocrystal, with hydroxyethyl cellulose and dissolving it in water, which is a stable composition in which the viscosity does not easily decrease even when a salt is added. I found something and repeated further studies.
  • Item 1 Contains cellulose nanocrystals, hydroxyethyl cellulose, water-soluble salts, as well as water, The viscosity at 25 ° C. is 10,000 mPa ⁇ s or more (preferably 10,000 to 20,000 mPa ⁇ s). Viscous composition.
  • Item 2. Item 2. The viscous composition according to Item 1, wherein the hydroxyethyl cellulose is hydroxyethyl cellulose crosslinked with a cross-linking agent.
  • Hydroxyethyl cellulose crosslinked with the crosslinking agent A crosslinked hydroxyethyl cellulose containing 0.35% by mass or more (preferably 0.35 to 2% by mass) of a crosslinking agent.
  • Item 4. Item 2. The viscous composition according to Item 2 or 3, wherein the cross-linking agent is a dialdehyde compound.
  • Item 5. Item 2. The viscous composition according to any one of Items 1 to 4, wherein the content of the water-soluble salt is 0.1% by mass or more (preferably 1 to 10% by mass).
  • the magnitude relationship between the storage elastic modulus G'and the loss elastic modulus G'' obtained by the frequency dispersion measurement is the storage elastic modulus G'> the loss elastic modulus G'> in the entire frequency range of 0.1 rad / s to 100 rad / s.
  • Item 3. The viscous composition according to any one of Items 1 to 6.
  • Item 8. A method for producing a viscous composition, which comprises mixing (1) a mixture of cellulose nanocrystals and hydroxyethyl cellulose with water, and (2) adding a water-soluble salt to the mixture.
  • (1) A method for producing a viscous composition for adding a water-soluble salt which comprises mixing a mixture of cellulose nanocrystals and hydroxyethyl cellulose with water.
  • Item 8. The method according to Item 8 or 9, further comprising mixing (0) cellulose nanocrystals and hydroxyethyl cellulose before (1).
  • a viscous composition containing hydroxyethyl cellulose and a salt but having excellent viscosity and stability is provided.
  • the present disclosure preferably includes, but is not limited to, a viscous composition, a method for producing the same, and the like, and the present disclosure includes all disclosed in the present specification and recognized by those skilled in the art.
  • the viscous composition included in the present disclosure contains cellulose nanocrystals, hydroxyethyl cellulose, and water.
  • the viscous composition included in the present disclosure may be referred to as "the composition of the present disclosure”.
  • the compositions of the present disclosure also include viscous compositions containing salts in addition to cellulose nanocrystals, hydroxyethyl cellulose, and water.
  • those containing salt may be referred to as “salt-containing compositions of the present disclosure”
  • those containing no salt may be referred to as “salt-free compositions of the present disclosure”.
  • Cellulose nanocrystal is a kind of nanocellulose.
  • examples of nanocellulose made from wood or the like include cellulose nanofibers (CNF) and cellulose nanocrystals (CNC).
  • CNF cellulose nanofibers
  • CNC cellulose nanocrystals
  • nanocellulose having a length of about 5 to 10 ⁇ m or more is often referred to as cellulose nanofiber (CNF)
  • CNC cellulose nanocrystal
  • the nanocrystalline cellulose described in Patent Document 1 Japanese Patent Laid-Open No. 2012-531478 can be preferably used.
  • Cellulose is a natural polymer material that constitutes woody biomass and agricultural biomass together with hemicellulose and lignin. It is a homopolymer of repeating units of glucose linked by ⁇ -1,4-glycosidic bonds. Cellulose is formed linearly by ⁇ -1,4-glycosidic bonds, and they interact strongly with each other through hydrogen bonds. Due to its regular structure and strong hydrogen bonds, the cellulose polymer is highly crystalline and aggregates to form partial structures and microfibrils. Then, the microfibrils aggregate to form cellulosic fibers.
  • Nanocellulose is a rod-shaped fibril with a length / diameter ratio of approximately 20-200.
  • nanocellulose can be prepared, for example, from chemical pulp of wood fiber or agricultural fiber by removing the amorphous region mainly by acid hydrolysis to produce nano-sized fibril.
  • Cellulose nanocrystals can be formed and stabilized in an aqueous suspension by, for example, sonicating the fibrils or passing them through a high shear microfluidizer.
  • the second method is mainly physical processing. Bundles of microfibrils, usually tens of nanometers (nm) to several micrometer ( ⁇ m) in diameter, called cellulose microfibrils or microfibrillated cellulose, are produced by using high pressure homogenization and grinding. .. Steps with high intensity sonication have also been used to isolate fibril from natural cellulose fibers. High-intensity ultrasound can generate very strong mechanical vibration forces, which allows the separation of cellulose fibrils from biomass. This method produces microfibrillated cellulose having a diameter of less than about 60 nm, more preferably about 4 nm to about 15 nm, and a length of less than 1000 nm. Microfibrillated cellulose can also be subjected to, for example, further chemical, enzymatic and / or mechanical treatments. The microfibrillated cellulose can also be used as a cellulose nanocrystal.
  • the cellulose nanocrystals used in the compositions of the present disclosure are, for example, by removing amorphous regions from pulp by acid hydrolysis, or by physical treatment such as high pressure treatment, pulverization treatment, and ultrasonic treatment. It can be appropriately prepared by treatment (and even by using these in combination).
  • the cellulose portion of the cellulose nanocrystal used in the composition of the present disclosure may be a cellulose sulfate (cellulose sulfate).
  • a sodium salt is preferable. That is, the cellulose portion of the cellulose nanocrystal used in the composition of the present disclosure may be cellulose sulfate sodium sulfate.
  • the composition of the present disclosure can have excellent viscosity and stability even if a salt is contained.
  • cellulose nanocrystal indicates a crystal of nano-sized cellulose
  • the cellulose may be an unmodified form or a modified form.
  • the cellulose modified product for example, cellulose sulfate (particularly sodium cellulose sulfate) is preferably mentioned.
  • examples of the CNC include nanocellulose having a thickness of about 1 to 100 nm and a length of about 50 to 500 nm.
  • the upper or lower limit of the thickness range (1 to 100 nm) is, for example, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, and so on.
  • the thickness range may be 2 to 99 nm.
  • the upper limit or the lower limit of the length range (50 to 500 nm) is, for example, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 210, 220, 230, 240, 250, 260, 270, 280, 290, 300, 310, 320, 330, 340, 350, 360, 370, 380, 390, 400, 410, 420, 430, 440, 450, 460, 470, 480, or 490 nm May be.
  • the length range may be 60 to 490 nm.
  • the ratio (length / thickness) of the length (nm) to the thickness (nm) can be, for example, about 1 to 200.
  • the upper or lower limit of the range of the ratio is, for example, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21. , 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46. , 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71.
  • the hydroxyethyl cellulose (HEC) used in the composition of the present disclosure is not particularly limited as long as the effect is not impaired.
  • hydroxyethyl cellulose not cross-linked with a cross-linking agent non-cross-linked HEC
  • hydroxyethyl cellulose cross-linked with a cross-linking agent cross-linked HEC
  • Cross-linked HEC is more preferred.
  • cross-linking agent examples include polyvalent aldehyde compounds (preferably dialdehyde compounds) such as glutaraldehyde and glioxal, 2,2-bishydroxymethylbutanol-tris [3- (1-aziridinyl) propionate], 1,8-.
  • polyvalent aziridin compounds such as hexamethylene diethylene urea
  • polyvalent isocyanate compounds such as tolylene diisocyanate and hexamethylene diisocyanate. Of these, dialdehyde compounds are preferred, and glyoxal is particularly preferred.
  • the cross-linking agent may be used alone or in combination of two or more.
  • Cross-linking of hydroxyethyl cellulose with a cross-linking agent can be carried out by a known method or a method that can be easily conceived from a known method. For example, it can be carried out by the method described in Japanese Patent Publication No. 58-43402.
  • the cross-linked HEC preferably has a cross-linking agent content of, for example, 0.05% by mass or more, and more preferably about 0.05 to 2% by mass.
  • the upper or lower limit of the cross-linking agent content ratio range is, for example, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.11, 0.12, 0.13, 0.14, 0.15, 0.16, 0.17, 0.18, 0.19, 0.2, 0.21, 0.22, 0.23, 0.24, 0.25, 0.
  • the cross-linking agent content ratio range may be 0.1 to 1% by mass. In particular, 0.35% by mass or more is preferable.
  • Cross-linking of hydroxyethyl cellulose with a cross-linking agent can be carried out by a known method or a method that can be easily conceived from a known method. For example, it can be carried out by the method described in Japanese Patent Publication No. 58-43402.
  • the HEC (including non-crosslinked HEC and crosslinked HEC) preferably has a viscosity of a 1.33% by mass (w / w%) aqueous solution at 25 ° C. of 4000 mPa ⁇ s or more, and more preferably 4000 to 18000 mPa ⁇ s. preferable.
  • the upper or lower limit of the viscosity range is, for example, 4100, 4200, 4300, 4400, 4500, 4600, 4700, 4800, 4900, 5000, 5100, 5200, 5300, 5400, 5500, 5600, 5700, 5800, 5900, 6000.
  • the viscosity range may be 4100 to 17900 mPa ⁇ s.
  • the HEC (including the non-crosslinked HEC and the crosslinked HEC) is not particularly limited, but the molecular weight is preferably, for example, about 1800000 to 430000.
  • the upper or lower limit of the molecular weight range is, for example, 19000000, 2000000, 210000, 2200, 230000, 2400000, 25, 260000, 2700, 280000, 2900, 3000, 3100, 3200, 3300, 3400, 3500, 3600, 3700, 380000, It may be 3900000, 4000, 410000, or 4200000.
  • the molecular weight range may be 1900000 to 4200000.
  • the molecular weight is a mass average molecular weight obtained by gel permeation chromatography (GPC) and converted into polyethylene oxide.
  • GPC gel permeation chromatography
  • Examples of the column for measuring the mass average molecular weight in terms of polyethylene glycol by GPC include Shodex OHpak SB-807HQ, Shodex OHpak SB-806HQ, Shodex OHpak SB-804HQ and the like. Detailed GPC measurement conditions are shown below.
  • HEC is a compound in which the OH group of cellulose is OR (R indicates H or CH 2 CH 2 OH), and is contained in the composition of the present disclosure.
  • HEC including non-crosslinked HEC and crosslinked HEC
  • a group other than H or CH 2 CH 2 OH may be present as R of the OR, but it is preferable that no hydrophobic group is present as R.
  • R an alkyl group, particularly a linear chain having 6 to 20 carbon atoms (6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20) or Those having a branched chain alkyl group (more specifically, for example, a cetyl group) may be used, but it is preferable not to use them.
  • the composition of the present disclosure contains water as a solvent. Further, a solvent other than water may be further contained as long as the effect of the composition of the present disclosure is not impaired.
  • the solvent other than water include water-soluble solvents, and for example, water-soluble organic solvents are preferable.
  • the water-soluble organic solvent include monohydric or divalent alkyl alcohols having 1 to 6 carbon atoms (1, 2, 3, 4, 5, or 6), and more specifically, for example. Examples thereof include ethanol and butylene glycol.
  • the value of the storage elastic modulus (G') is larger than the value of the loss elastic modulus (G'') (that is, the storage elastic modulus G'> the loss elastic modulus G'').
  • the one is preferable.
  • the composition of the present disclosure preferably has a loss tangent (tan ⁇ ) of less than 1 (that is, tan ⁇ ⁇ 1).
  • the loss tangent (tan ⁇ ) is the ratio (G ′′ / G ′) of the storage elastic modulus (G ′) and the loss elastic modulus (G ′′), and is used as one of the indexes of the viscoelastic property.
  • the larger the value of the loss tangent the smaller the elastic modulus.
  • the loss tangent is used as an index of sol and gel, and usually tan ⁇ > 1 is sol and tan ⁇ ⁇ 1 is gel.
  • the values of the storage elastic modulus G ′ and the loss elastic modulus G ′′ can be measured at 25 ° C. using a viscoelasticity measuring device (leometer). More specifically, after confirming the linear region by measuring the strain dispersion at 1 Hz, an appropriate distortion is selected within the range of the linear region, and the frequency dispersion at 25 ° C. (frequency: 0.1 rad / s to 100 rad / s). And observe the magnitude relationship between G'and G''.
  • the storage elastic modulus G'and the loss elastic modulus G'' obtained by frequency dispersion measurement have a magnitude relationship of the storage elastic modulus G in the entire range of frequency: 0.1 rad / s to 100 rad / s. '> Loss elastic modulus G'' is preferable.
  • composition of the present disclosure has a viscosity at 25 ° C. of 10,000 mPa ⁇ s or more, preferably 10,000 to 20,000 mPa ⁇ s.
  • the upper or lower limit of the viscosity range is, for example, 10100, 10200, 10300, 10400, 10500, 10600, 10700, 10800, 10900, 11000, 11100, 11200, 11300, 11400, 11500, 11600, 11700, 11800, 11900, 12000.
  • the viscosity range may be 8100 to 19,900 mPa ⁇ s.
  • the viscosity is a value measured at 25 ° C. using a rotary viscometer manufactured by BrookField (model number: DVE, spindle: LV) at a rotation speed of 20 rpm.
  • the spindle used for measurement is spindle LV-1 when it is less than 200 mPa ⁇ s, spindle LV-2 when it is 200 mPa ⁇ s or more and less than 1000 mPa ⁇ s, and 1000 mPa ⁇ s or more and less than 4000 mPa ⁇ s.
  • a water-soluble salt is preferable as the salt.
  • the water-soluble salt include water-soluble inorganic salts and organic salts.
  • the inorganic salt include hydrochloride, hydrobromide, sulfate, nitrate, phosphate, phosphate ester salt and the like
  • examples of the organic salt include acetate, 2,2-dichloroacetate and the like.
  • these salts include sodium salt, potassium salt, lithium salt, ammonium salt, calcium salt, magnesium salt, iron salt, zinc salt, copper salt, manganese salt, aluminum salt and the like. .. Among them, hydrochloride, phosphate, phosphate ester salt, acetate, ascorbate, ascorbic acid phosphate, asparagate, carbonate, citrate, fumarate, lactate, maleate, apple Acid salts, malonates, oxalates and the like are preferable, and these sodium salts, potassium salts, ammonium salts, calcium salts, magnesium salts and the like are more preferable.
  • examples of the salt include sodium chloride, sodium ascorbate, magnesium ascorbate, sodium ascorbate, and the like.
  • sodium chloride, ascorbic acid salt, ascorbic acid derivative salt (for example, ascorbic acid phosphate) and the like are preferable.
  • the salt can be used alone or in combination of two or more.
  • CNC is preferably about 0.05 to 1 part by mass.
  • the upper or lower limit of the range is, for example, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, It may be 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, or 0.95.
  • the range may be 0.1 to 0.8.
  • the CNC content in the composition of the present disclosure is not particularly limited as long as the effect is not impaired, and examples thereof include about 0.1 to 5% by mass.
  • the upper or lower limit of the range is, for example, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.1, 1.2.
  • the HEC (including non-crosslinked HEC and crosslinked HEC) content in the composition of the present disclosure is not particularly limited as long as the effect is not impaired, but is, for example, about 0.1 to 5% by mass. Can be mentioned.
  • the upper or lower limit of the range is, for example, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.1, 1.2.
  • the salt content in the salt-containing composition of the present disclosure is preferably 0.1% by mass or more, more preferably about 0.1 to 10% by mass.
  • the upper or lower limit of the range (0.1 to 10% by mass) is, for example, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2, 2.1, 2.2, 2. 3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3, 3.1, 3.2, 3.3, 3.4, 3.5, 3. 6, 3.7, 3.8, 3.9, 4, 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.
  • composition of the present disclosure preferably has a transmittance of 10% or more.
  • the transmittance is, for example, 11% or more, 12% or more, 13% or more, 14% or more, 15% or more, 16% or more, 17% or more, 18% or more, 19% or more, 20% or more, 21% or more.
  • the upper limit of the transmittance is not particularly limited, but for example, 95% or less can be exemplified.
  • the transmittance is specifically a value obtained by measuring the transmittance (% T) of UV (425 nm) (calibrated so that the distilled water has a transmittance of 100%).
  • the high transmittance of the composition means that the transparency of the composition is high. It is not always required that the composition be transparent, but it is preferable because it is in high demand especially in the cosmetics field.
  • Such excellent transmittance can be achieved when the HEC used is a crosslinked HEC and the crosslinker content ratio of the crosslinked HEC is relatively high.
  • the ratio is preferably 0.35% by mass or more, more preferably about 0.35 to 2% by mass.
  • composition of the present disclosure may contain components other than CNC, HEC (including non-crosslinked HEC and crosslinked HEC), salt, and water as long as the effect is not impaired.
  • HEC including non-crosslinked HEC and crosslinked HEC
  • salt including salt, and water as long as the effect is not impaired.
  • examples of such an ingredient include simple substances and ingredients known in the fields of pharmaceuticals, cosmetics, and foods.
  • the composition of the present disclosure can be prepared, for example, by mixing CNC and HEC (including non-crosslinked HEC and crosslinked HEC) and then mixing the mixture with water. Thus, it is desirable to mix CNC and HEC before adding to water.
  • the composition of the present disclosure can have the above-mentioned excellent viscosity not only when it does not contain a salt but also when it contains a salt.
  • both CNC and HEC used for mixing before being added to water are powders. Further, the mixture of CNC and HEC to be added to water is preferably a powder.
  • the salt-containing composition of the present disclosure can be prepared, for example, by adding a salt to a viscous composition prepared by adding a mixture of CNC and HEC to water and mixing them as necessary.
  • a viscous composition prepared by adding a mixture of CNC and HEC to water and mixing them as necessary is useful as a viscous composition for salt addition.
  • composition of the present disclosure has excellent viscosity and viscoelasticity, it is useful in technical fields in which products required to have such properties exist, for example, in the fields of pharmaceuticals, cosmetics, and foods. That is, the composition of the present disclosure can be preferably used, for example, as a pharmaceutical composition, a cosmetic composition, a food composition, or the like.
  • Measurement conditions Leometer: TA Instrument AR-2000ex Plate: 60 mm, 1 ° cone plate Measurement temperature: 25 ° C Distortion: 0.1 to 10% (selected within the range of the linear region obtained in the distortion dispersion measurement at 1 Hz) Frequency: 0.1 rad / s to 100 rad / s [Viscosity measurement] The viscosity of each viscous composition was measured at 25 ° C. using a rotary viscometer (model number: DVE, spindle: LV) manufactured by BrookField at a rotation speed of 20 rpm.
  • the spindle used for measurement is spindle LV-1 when it is less than 200 mPa ⁇ s, spindle LV-2 when it is 200 mPa ⁇ s or more and less than 1000 mPa ⁇ s, and 1000 mPa ⁇ s or more and less than 4000 mPa ⁇ s.
  • the transmittance of each viscous composition was measured as follows.
  • a spectrophotometer (model number: UV-1850) manufactured by Shimadzu Corporation was used for the measurement. First, the sample was placed in a cell for UV measurement (optical path length 1 cm), and defoamed by a centrifuge at 2,000 rpm for 5 minutes. If the defoaming was not completed, the same operation was performed with a centrifuge, and it was confirmed that the bubbles were completely removed from the upper part of the sample. Then, the sample was set in a spectrophotometer, and the transmittance was measured with the measurement wavelength set to 425 nm. The distilled water was calibrated so as to have a transmittance of 100%. [Stability] It was visually confirmed whether the components contained in each viscous composition did not separate.
  • HEC CF-Y
  • HEC SZ-25F
  • AQUAPEC HV-505E is a carbomer
  • AQUAPEC HV-501ER is a (Acrylate / alkyl acrylate (C10-30)) cross polymer.
  • the HECs used were all cross-linked HECs cross-linked with a cross-linking agent (glyoxal), and the content of the cross-linking agent in each cross-linked HEC was 0.55% by mass for HEC (CF-Y) and HEC (SZ-25F). Is 0.29% by mass.
  • a powder of crystal nanocellulose and a powder of a water-soluble polymer (HEC) are mixed, and the mixed powder is stirred and mixed with ion-exchanged water to dissolve it, and a water-soluble salt (specifically, a water-soluble salt (specifically)) is added thereto.
  • a water-soluble salt specifically, a water-soluble salt (specifically)
  • sodium chloride or L-ascorbic acid phosphate magnesium was mixed to prepare a viscous composition. More specifically, 0.33 g of cellulose nanocrystals and 1 g of hydroxyethyl cellulose are mixed in a powder state, the mixed powder is put into 93.67 g of water, and the mixture is stirred with a 4-paddle stirring blade at 500 rpm for 4 hours to gel.
  • the viscous compositions of Comparative Examples 3 to 4 were prepared by dispersing crystal nanocellulose in ion-exchanged water, dissolving a water-soluble salt in the viscous composition, and finally dissolving a water-soluble polymer.
  • Examples 1 to 4 the viscoelasticity, viscosity, and transmittance of the composition before mixing the water-soluble salt were also measured.
  • the viscous compositions of Comparative Examples 1 and 2 were prepared by stirring and mixing a water-soluble polymer (AQUAPEC) in ion-exchanged water, dispersing the mixture, neutralizing the pH to 7 with NaOH, and further mixing and mixing a water-soluble salt.
  • AQUAPEC water-soluble polymer
  • Comparative Examples 1 and 2 the viscoelasticity and viscosity of the composition before mixing the water-soluble salt were also measured. The results are also shown in Table 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Nanotechnology (AREA)
  • Birds (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Medical Informatics (AREA)
  • Materials Engineering (AREA)
  • Biophysics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Nutrition Science (AREA)
  • Food Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Provided is a viscous composition that, while containing hydroxyethyl cellulose and a salt, has excellent viscosity and stability. More specifically, provided is a viscous composition that contains cellulose nanocrystals, hydroxyethyl cellulose, a water-soluble salt, and water, and has a viscosity of at least 10,000 mPa∙s at 25°C.

Description

粘性組成物Viscous composition
 本開示は、粘性組成物等に関し、より詳細にはセルロースナノクリスタルを含有する粘性組成物に関する。なお、本明細書に記載される全ての文献の内容は参照により本明細書に組み込まれる。 The present disclosure relates to a viscous composition and the like, and more particularly to a viscous composition containing cellulose nanocrystals. The contents of all documents described in this specification are incorporated herein by reference.
 高分子増粘剤は、様々な分野、例えば化粧品分野や食品分野において、粘性組成物を調製するために広く用いられている。 Polymer thickeners are widely used for preparing viscous compositions in various fields, such as cosmetics and food fields.
 しかし、高分子増粘剤による増粘効果は、一般に、塩により低下する傾向にある。また、高分子増粘剤と塩とを含有する組成物は、一般に、安定性も悪くなる傾向にある。例えば、ヒドロキシエチルセルロース(HEC)も高分子増粘剤として広く用いられる成分であるが、塩によりその増粘効果が低下してしまう可能性があるため、ヒドロキシエチルセルロース及び塩を含有しつつ優れた粘性及び安定性を有する粘性組成物を調製することは容易ではなかった。 However, the thickening effect of the polymer thickener generally tends to be reduced by the salt. In addition, a composition containing a polymer thickener and a salt generally tends to have poor stability. For example, hydroxyethyl cellulose (HEC) is also a component widely used as a polymer thickener, but since the thickening effect may be reduced by a salt, it contains hydroxyethyl cellulose and a salt and has excellent viscosity. And it was not easy to prepare a viscous composition with stability.
特表2012-531478号公報Special Table 2012-531478 Gazette 特表2014-510846号公報Japanese Patent Publication No. 2014-510846
 そこで、本発明者らは、ヒドロキシエチルセルロース及び塩を含有しつつも優れた粘性及び安定性を有する粘性組成物を提供する新規な手段を見いだすため検討を行った。 Therefore, the present inventors have studied to find a novel means for providing a viscous composition containing hydroxyethyl cellulose and a salt but having excellent viscosity and stability.
 本発明者らは、ナノセルロース、特にセルロースナノクリスタルを、ヒドロキシエチルセルロースと混合し、これを水に溶解させて得られる粘性組成物が、塩を加えても粘度低下が起こり難く安定な組成物であることを見いだし、さらに検討を重ねた。 The present inventors have prepared a viscous composition obtained by mixing nanocellulose, particularly cellulose nanocrystal, with hydroxyethyl cellulose and dissolving it in water, which is a stable composition in which the viscosity does not easily decrease even when a salt is added. I found something and repeated further studies.
 本開示は例えば以下の項に記載の主題を包含する。
項1.
セルロースナノクリスタル、ヒドロキシエチルセルロース、水溶性塩、並びに水を含有し、
25℃における粘度が10000mPa・s以上(好ましくは10000~20000mPa・s)である、
粘性組成物。
項2.
前記ヒドロキシエチルセルロースが架橋剤で架橋されたヒドロキシエチルセルロースである、項1に記載の粘性組成物。
項3.
前記架橋剤で架橋されたヒドロキシエチルセルロースが、
架橋剤を0.35質量%以上(好ましくは0.35~2質量%)含有する架橋ヒドロキシエチルセルロースである、
項2に記載の粘性組成物。
項4.
前記架橋剤がジアルデヒド化合物である、項2又は3に記載の粘性組成物。
項5.
水溶性塩の含有量が、0.1質量%以上(好ましくは1~10質量%)である、項1~4のいずれかに記載の粘性組成物。
項6.
透過率が10%以上である、項1~5のいずれかに記載の粘性組成物。
項7.
周波数分散測定によって得られる貯蔵弾性率G’、損失弾性率G’’の大小関係が、周波数0.1rad/s~100rad/sの全範囲において、貯蔵弾性率G’>損失弾性率G’’である、項1~6のいずれかに記載の粘性組成物。
項8.
(1)セルロースナノクリスタル及びヒドロキシエチルセルロースの混合物を水に混合すること、並びに
(2)当該混合物にさらに水溶性塩を加えること
を含む、粘性組成物の製造方法。
項9.
(1)セルロースナノクリスタル及びヒドロキシエチルセルロースの混合物を水に混合すること
を含む、水溶性塩添加用の粘性組成物の製造方法。
項10.
(1)の前に、さらに
(0)セルロースナノクリスタル及びヒドロキシエチルセルロースを混合すること
を含む、項8又は9に記載の方法。
The present disclosure includes, for example, the subjects described in the following sections.
Item 1.
Contains cellulose nanocrystals, hydroxyethyl cellulose, water-soluble salts, as well as water,
The viscosity at 25 ° C. is 10,000 mPa · s or more (preferably 10,000 to 20,000 mPa · s).
Viscous composition.
Item 2.
Item 2. The viscous composition according to Item 1, wherein the hydroxyethyl cellulose is hydroxyethyl cellulose crosslinked with a cross-linking agent.
Item 3.
Hydroxyethyl cellulose crosslinked with the crosslinking agent
A crosslinked hydroxyethyl cellulose containing 0.35% by mass or more (preferably 0.35 to 2% by mass) of a crosslinking agent.
Item 2. The viscous composition according to Item 2.
Item 4.
Item 2. The viscous composition according to Item 2 or 3, wherein the cross-linking agent is a dialdehyde compound.
Item 5.
Item 2. The viscous composition according to any one of Items 1 to 4, wherein the content of the water-soluble salt is 0.1% by mass or more (preferably 1 to 10% by mass).
Item 6.
Item 2. The viscous composition according to any one of Items 1 to 5, which has a transmittance of 10% or more.
Item 7.
The magnitude relationship between the storage elastic modulus G'and the loss elastic modulus G'' obtained by the frequency dispersion measurement is the storage elastic modulus G'> the loss elastic modulus G'> in the entire frequency range of 0.1 rad / s to 100 rad / s. Item 3. The viscous composition according to any one of Items 1 to 6.
Item 8.
A method for producing a viscous composition, which comprises mixing (1) a mixture of cellulose nanocrystals and hydroxyethyl cellulose with water, and (2) adding a water-soluble salt to the mixture.
Item 9.
(1) A method for producing a viscous composition for adding a water-soluble salt, which comprises mixing a mixture of cellulose nanocrystals and hydroxyethyl cellulose with water.
Item 10.
Item 8. The method according to Item 8 or 9, further comprising mixing (0) cellulose nanocrystals and hydroxyethyl cellulose before (1).
 ヒドロキシエチルセルロース及び塩を含有しつつも優れた粘性及び安定性を有する粘性組成物が提供される。 A viscous composition containing hydroxyethyl cellulose and a salt but having excellent viscosity and stability is provided.
 以下、本開示に包含される各実施形態について、さらに詳細に説明する。本開示は、粘性組成物及びその製造方法等を好ましく包含するが、これらに限定されるわけではなく、本開示は本明細書に開示され当業者が認識できる全てを包含する。 Hereinafter, each embodiment included in the present disclosure will be described in more detail. The present disclosure preferably includes, but is not limited to, a viscous composition, a method for producing the same, and the like, and the present disclosure includes all disclosed in the present specification and recognized by those skilled in the art.
 本開示に包含される粘性組成物は、セルロースナノクリスタル、ヒドロキシエチルセルロース、及び水を含有する。本開示に包含される当該粘性組成物を「本開示の組成物」ということがある。本開示の組成物は、セルロースナノクリスタル、ヒドロキシエチルセルロース、及び水に加え、さらに塩を含有する粘性組成物も包含する。本開示の組成のうち、塩を含有するものを「本開示の塩含有組成物」と、塩を含有しないものを「本開示の塩非含有組成物」と、それぞれ呼ぶことがある。 The viscous composition included in the present disclosure contains cellulose nanocrystals, hydroxyethyl cellulose, and water. The viscous composition included in the present disclosure may be referred to as "the composition of the present disclosure". The compositions of the present disclosure also include viscous compositions containing salts in addition to cellulose nanocrystals, hydroxyethyl cellulose, and water. Among the compositions of the present disclosure, those containing salt may be referred to as "salt-containing compositions of the present disclosure", and those containing no salt may be referred to as "salt-free compositions of the present disclosure".
 セルロースナノクリスタルは、ナノセルロースの1種である。特に木材等を原料とするナノセルロースとして、セルロースナノファイバー(CNF)とセルロースナノクリスタル(CNC)が挙げられる。ナノセルロースのうち、長さが比較的長いものを、セルロースナノファイバー(CNF)と呼び、長さが比較的短いものをセルロースナノクリスタル(CNC)と呼ぶ。限定されるわけでは無いが、長さがおよそ5~10μm若しくはそれ以上のナノセルロースをセルロースナノファイバー(CNF)とし、長さがCNFよりも短いものをセルロースナノクリスタル(CNC)とすることが多いようである。 Cellulose nanocrystal is a kind of nanocellulose. In particular, examples of nanocellulose made from wood or the like include cellulose nanofibers (CNF) and cellulose nanocrystals (CNC). Among nanocellulose, those having a relatively long length are called cellulose nanofibers (CNF), and those having a relatively short length are called cellulose nanocrystals (CNC). Although not limited, nanocellulose having a length of about 5 to 10 μm or more is often referred to as cellulose nanofiber (CNF), and those having a length shorter than CNF are often referred to as cellulose nanocrystal (CNC). It seems.
 本開示の組成物に用いるCNCとしては、例えば上記特許文献1(特表2012-531478号公報)に記載のナノ結晶セルロースを好ましく用いることができる。 As the CNC used in the composition of the present disclosure, for example, the nanocrystalline cellulose described in Patent Document 1 (Japanese Patent Laid-Open No. 2012-531478) can be preferably used.
  セルロースは、ヘミセルロース及びリグニンと共に木質バイオマス及び農業バイオマスを構成する天然ポリマー材料である。それは、β-1,4-グリコシド結合により連結されたグルコースの繰り返し単位のホモポリマーである。β-1,4-グリコシド結合によってセルロースは直鎖状に形成され、それらは水素結合を通して相互に強力に作用し合う。その規則的な構造及び強力な水素結合のため、セルロースポリマーは高結晶質であり、凝集して部分構造体及びミクロフィブリルを形成する。そして、ミクロフィブリルが凝集して、セルロース系繊維を形成する。 Cellulose is a natural polymer material that constitutes woody biomass and agricultural biomass together with hemicellulose and lignin. It is a homopolymer of repeating units of glucose linked by β-1,4-glycosidic bonds. Cellulose is formed linearly by β-1,4-glycosidic bonds, and they interact strongly with each other through hydrogen bonds. Due to its regular structure and strong hydrogen bonds, the cellulose polymer is highly crystalline and aggregates to form partial structures and microfibrils. Then, the microfibrils aggregate to form cellulosic fibers.
  木質バイオマス又は農業バイオマスから精製したセルロースは、細菌のプロセスにより大規模に崩壊又は生成することができる。セルロース系材料がナノサイズの繊維により構成され、該材料の性質がそのナノファイバーの構造により決定する場合、これらのポリマーはナノセルロースと言われる。一般的に、ナノセルロースは、およそ20~200の長さ/直径比を有する棒状のフィブリルである。 Cellulose purified from woody biomass or agricultural biomass can be disrupted or produced on a large scale by bacterial processes. When a cellulosic material is composed of nano-sized fibers and the properties of the material are determined by the structure of the nanofibers, these polymers are referred to as nanocellulose. In general, nanocellulose is a rod-shaped fibril with a length / diameter ratio of approximately 20-200.
  一般的にナノセルロースの調製は2つの方法により説明することができる。第1の方法においては、ナノセルロースは、例えば木質繊維又は農業繊維の化学パルプから、主に酸加水分解によって非晶領域を除き、ナノサイズのフィブリルを生成することにより調製することができる。当該フィブリルを、例えば超音波処理するか、又は高剪断マイクロフルイダイザーに通すかすることにより、水性懸濁液中でセルロースナノクリスタルを生成及び安定化することができる。 Generally, the preparation of nanocellulose can be explained by two methods. In the first method, nanocellulose can be prepared, for example, from chemical pulp of wood fiber or agricultural fiber by removing the amorphous region mainly by acid hydrolysis to produce nano-sized fibril. Cellulose nanocrystals can be formed and stabilized in an aqueous suspension by, for example, sonicating the fibrils or passing them through a high shear microfluidizer.
  第2の方法は、主に物理的処理である。セルロースミクロフィブリル又はミクロフィブリル化セルロース等と呼ばれる、通常数十ナノメートル(nm)~数マイクロメートル(μm)の直径を有するミクロフィブリルの束が、高圧均質化及び粉砕処理を用いることにより生成される。高強度超音波処理を用いた工程も、天然のセルロース繊維からフィブリルを単離するのに用いられてきた。高強度超音波は、非常に強い機械的振動力を生み出すことができ、そのためセルロースフィブリルのバイオマスからの分離が可能となる。この方法は、約60nm未満、より好ましくは約4nm~約15nmの直径、及び1000nm未満の長さを有するミクロフィブリル化セルロースを生成する。ミクロフィブリル化セルロースには、例えばさらに化学的、酵素的及び/又は機械的処理を施すこともできる。当該ミクロフィブリル化セルロースもセルロースナノクリスタルとして用いることができる。 The second method is mainly physical processing. Bundles of microfibrils, usually tens of nanometers (nm) to several micrometer (μm) in diameter, called cellulose microfibrils or microfibrillated cellulose, are produced by using high pressure homogenization and grinding. .. Steps with high intensity sonication have also been used to isolate fibril from natural cellulose fibers. High-intensity ultrasound can generate very strong mechanical vibration forces, which allows the separation of cellulose fibrils from biomass. This method produces microfibrillated cellulose having a diameter of less than about 60 nm, more preferably about 4 nm to about 15 nm, and a length of less than 1000 nm. Microfibrillated cellulose can also be subjected to, for example, further chemical, enzymatic and / or mechanical treatments. The microfibrillated cellulose can also be used as a cellulose nanocrystal.
 つまりは概すれば、本開示の組成物に用いるセルロースナノクリスタルは、例えばパルプから、酸加水分解により非結晶領域を除くことにより、あるいは、高圧処理、粉砕処理、超音波処理等の物理的な処理により、(またさらにはこれらを組み合わせて用いることにより)適宜調製することができる。 In other words, the cellulose nanocrystals used in the compositions of the present disclosure are, for example, by removing amorphous regions from pulp by acid hydrolysis, or by physical treatment such as high pressure treatment, pulverization treatment, and ultrasonic treatment. It can be appropriately prepared by treatment (and even by using these in combination).
 また、本開示の組成物に用いるセルロースナノクリスタルのセルロース部分は、硫酸セルロース塩(セルロース硫酸塩)であってもよい。塩としてはナトリウム塩が好ましい。つまり、本開示の組成物に用いるセルロースナノクリスタルのセルロース部分は、セルロース硫酸ナトリウムであってもよい。上記の通り、本開示の組成物においては、塩が含有されていても優れた粘度及び安定性を有することができる。 Further, the cellulose portion of the cellulose nanocrystal used in the composition of the present disclosure may be a cellulose sulfate (cellulose sulfate). As the salt, a sodium salt is preferable. That is, the cellulose portion of the cellulose nanocrystal used in the composition of the present disclosure may be cellulose sulfate sodium sulfate. As described above, the composition of the present disclosure can have excellent viscosity and stability even if a salt is contained.
 よって、本開示においては、「セルロースナノクリスタル」若しくは「CNC」との文言は、ナノサイズのセルロースの結晶を示しており、当該セルロースは非修飾体であっても修飾体であってもよい。セルロース修飾体としては、上記の通り、例えばセルロース硫酸塩(特にセルロース硫酸ナトリウム)が好ましく挙げられる。 Therefore, in the present disclosure, the wording "cellulose nanocrystal" or "CNC" indicates a crystal of nano-sized cellulose, and the cellulose may be an unmodified form or a modified form. As described above, as the cellulose modified product, for example, cellulose sulfate (particularly sodium cellulose sulfate) is preferably mentioned.
 特に限定はされないが、CNCとしては、例えば、太さが1~100nm程度、長さが50~500nm程度、のナノセルロースを挙げることができる。当該太さの範囲(1~100nm)の上限又は下限は、例えば、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40、41、42、43、44、45、46、47、48、49、50、51、52、53、54、55、56、57、58、59、60、61、62、63、64、65、66、67、68、69、70、71、72、73、74、75、76、77、78、79、80、81、82、83、84、85、86、87、88、89、90、91、92、93、94、95、96、97、98、又は99nmであってもよい。例えば、当該太さの範囲は2~99nmであってもよい。また、当該長さの範囲(50~500nm)の上限又は下限は、例えば60、70、80、90、100、
110、120、130、140、150、160、170、180、190、200、
210、220、230、240、250、260、270、280、290、300、
310、320、330、340、350、360、370、380、390、400、
410、420、430、440、450、460、470、480、又は490nm
であってもよい。例えば、当該長さの範囲は60~490nmであってもよい。
Although not particularly limited, examples of the CNC include nanocellulose having a thickness of about 1 to 100 nm and a length of about 50 to 500 nm. The upper or lower limit of the thickness range (1 to 100 nm) is, for example, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, and so on. 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, It may be 93, 94, 95, 96, 97, 98, or 99 nm. For example, the thickness range may be 2 to 99 nm. Further, the upper limit or the lower limit of the length range (50 to 500 nm) is, for example, 60, 70, 80, 90, 100,
110, 120, 130, 140, 150, 160, 170, 180, 190, 200,
210, 220, 230, 240, 250, 260, 270, 280, 290, 300,
310, 320, 330, 340, 350, 360, 370, 380, 390, 400,
410, 420, 430, 440, 450, 460, 470, 480, or 490 nm
May be. For example, the length range may be 60 to 490 nm.
 また、CNCとしては、長さ(nm)と太さ(nm)の比(長さ/太さ)が、例えば1~200程度のもの挙げることができる。当該比の範囲の上限又は下限は、例えば2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40、41、42、43、44、45、46、47、48、49、50、51、52、53、54、55、56、57、58、59、60、61、62、63、64、65、66、67、68、69、70、71、72、73、74、75、76、77、78、79、80、81、82、83、84、85、86、87、88、89、90、91、92、93、94、95、96、97、98、99、100、101、102、103、104、105、106、107、108、109、110、111、112、113、114、115、116、117、118、119、120、121、122、123、124、125、126、127、128、129、130、131、132、133、134、135、136、137、138、139、140、141、142、143、144、145、146、147、148、149、150、151、152、153、154、155、156、157、158、159、160、161、162、163、164、165、166、167、168、169、170、171、172、173、174、175、176、177、178、179、180、181、182、183、184、185、186、187、188、189、190、191、192、193、194、195、196、197、198、又は199であってもよい。例えば、当該比の範囲は2~190であってもよい。 Further, as the CNC, the ratio (length / thickness) of the length (nm) to the thickness (nm) can be, for example, about 1 to 200. The upper or lower limit of the range of the ratio is, for example, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21. , 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46. , 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71. , 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96 , 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121. , 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146. 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171 , 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196. It may be 197, 198, or 199. For example, the range of the ratio may be 2 to 190.
 本開示の組成物に用いるヒドロキシエチルセルロース(HEC)は、効果が損なわれない限り、特に限定はされない。 The hydroxyethyl cellulose (HEC) used in the composition of the present disclosure is not particularly limited as long as the effect is not impaired.
 例えば、架橋剤で架橋されていないヒドロキシエチルセルロース(非架橋HEC)も、架橋剤で架橋されたヒドロキシエチルセルロース(架橋HEC)も、本開示の組成物のHECとして好ましく用いることができる。架橋HECがより好ましい。 For example, hydroxyethyl cellulose not cross-linked with a cross-linking agent (non-cross-linked HEC) and hydroxyethyl cellulose cross-linked with a cross-linking agent (cross-linked HEC) can be preferably used as the HEC of the composition of the present disclosure. Cross-linked HEC is more preferred.
 架橋剤としては、例えば、グルタルアルデヒドやグリオキザール等の多価アルデヒド化合物(好ましくはジアルデヒド化合物)、2,2-ビスヒドロキシメチルブタノール-トリス[3-(1-アジリジニル)プロピオネート]、1,8-ヘキサメチレンジエチレンウレア等の多価アジリジン化合物、トリレンジイソシアネート、ヘキサメチレンジイソシアネート等の多価イソシアネート化合物等を挙げることができる。中でも、ジアルデヒド化合物が好ましく、グリオキザールが特に好ましい。架橋剤は、1種単独で又は2種以上を組み合わせて用いることができる。 Examples of the cross-linking agent include polyvalent aldehyde compounds (preferably dialdehyde compounds) such as glutaraldehyde and glioxal, 2,2-bishydroxymethylbutanol-tris [3- (1-aziridinyl) propionate], 1,8-. Examples thereof include polyvalent aziridin compounds such as hexamethylene diethylene urea and polyvalent isocyanate compounds such as tolylene diisocyanate and hexamethylene diisocyanate. Of these, dialdehyde compounds are preferred, and glyoxal is particularly preferred. The cross-linking agent may be used alone or in combination of two or more.
 架橋剤によるヒドロキシエチルセルロースの架橋は、公知の方法又は公知の方法から容易に想到できる方法により行うことができる。例えば、特公昭58-43402号公報に記載の方法により行うことができる。 Cross-linking of hydroxyethyl cellulose with a cross-linking agent can be carried out by a known method or a method that can be easily conceived from a known method. For example, it can be carried out by the method described in Japanese Patent Publication No. 58-43402.
 架橋HECは、架橋剤含有割合が、例えば0.05質量%以上であるものが好ましく、0.05~2質量%程度であるものがさらに好ましい。当該架橋剤含有割合範囲の上限又は下限は、例えば、0.05、0.06、0.07、0.08、0.09、0.1、0.11、0.12、0.13、0.14、0.15、0.16、0.17、0.18、0.19、0.2、0.21、0.22、0.23、0.24、0.25、0.26、0.27、0.28、0.29、0.3、0.31、0.32、0.33、0.34、0.35、0.36、0.37、0.38、0.39、0.40、0.41、0.42、0.43、0.44、0.45、0.46、0.47、0.48、0.49、0.5、0.51、0.52、0.53、0.54、0.55、0.56、0.57、0.58、0.59、0.6、0.61、0.62、0.63、0.64、0.65、0.66、0.67、0.68、0.69、0.7、0.71、0.72、0.73、0.74、0.75、0.76、0.77、0.78、0.79、0.8、0.81、0.82、0.83、0.84、0.85、0.86、0.87、0.88、0.89、0.9、0.91、0.92、0.93、0.94、0.95、0.96、0.97、0.98、0.99、1、1.01、1.02、1.03、1.04、1.05、1.06、1.07、1.08、1.09、1.1、1.11、1.12、1.13、1.14、1.15、1.16、1.17、1.18、1.19、1.2、1.21、1.22、1.23、1.24、1.25、1.26、1.27、1.28、1.29、1.3、1.31、1.32、1.33、1.34、1.35、1.36、1.37、1.38、1.39、1.4、1.41、1.42、1.43、1.44、1.45、1.46、1.47、1.48、1.49、1.5、1.51、1.52、1.53、1.54、1.55、1.56、1.57、1.58、1.59、1.6、1.61、1.62、1.63、1.64、1.65、1.66、1.67、1.68、1.69、1.7、1.71、1.72、1.73、1.74、1.75、1.76、1.77、1.78、1.79、1.8、1.81、1.82、1.83、1.84、1.85、1.86、1.87、1.88、1.89、1.9、1.91、1.92、1.93、1.94、1.95、1.96、1.97、1.98、又は1.99質量%であってもよい。例えば当該架橋剤含有割合範囲は0.1~1質量%であってもよい。なお、特に、0.35質量%以上が好ましい。 The cross-linked HEC preferably has a cross-linking agent content of, for example, 0.05% by mass or more, and more preferably about 0.05 to 2% by mass. The upper or lower limit of the cross-linking agent content ratio range is, for example, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.11, 0.12, 0.13, 0.14, 0.15, 0.16, 0.17, 0.18, 0.19, 0.2, 0.21, 0.22, 0.23, 0.24, 0.25, 0. 26, 0.27, 0.28, 0.29, 0.3, 0.31, 0.32, 0.33, 0.34, 0.35, 0.36, 0.37, 0.38, 0.39, 0.40, 0.41, 0.42, 0.43, 0.44, 0.45, 0.46, 0.47, 0.48, 0.49, 0.5, 0. 51, 0.52, 0.53, 0.54, 0.55, 0.56, 0.57, 0.58, 0.59, 0.6, 0.61, 0.62, 0.63, 0.64, 0.65, 0.66, 0.67, 0.68, 0.69, 0.7, 0.71, 0.72, 0.73, 0.74, 0.75, 0. 76, 0.77, 0.78, 0.79, 0.8, 0.81, 0.82, 0.83, 0.84, 0.85, 0.86, 0.87, 0.88, 0.89, 0.9, 0.91, 0.92, 0.93, 0.94, 0.95, 0.96, 0.97, 0.98, 0.99, 1, 1.01, 1.02, 1.03, 1.04, 1.05, 1.06, 1.07, 1.08, 1.09, 1.1, 1.11, 1.12, 1.13, 1. 14, 1.15, 1.16, 1.17, 1.18, 1.19, 1.2, 1.21, 1.22, 1.23, 1.24, 1.25, 1.26, 1.27, 1.28, 1.29, 1.3, 1.31, 1.32, 1.33, 1.34, 1.35, 1.36, 1.37, 1.38 1. 39, 1.4, 1.41, 1.42, 1.43, 1.44, 1.45, 1.46, 1.47, 1.48, 1.49, 1.5, 1.51, 1.52, 1.53, 1.54, 1.55, 1.56, 1.57, 1.58, 1.59, 1.6, 1.61, 1.62, 1.63, 1. 64, 1.65, 1.66, 1.67, 1.68, 1.69, 1.7, 1.71, 1.72, 1.73, 1.74, 1.75, 1.76, 1.77, 1.78, 1.79, 1.8, 1.81, 1.82, 1.83, 1.84, 1.85, 1.86, 1.87, 1.88, 1. It may be 89, 1.9, 1.91, 1.92, 1.93, 1.94, 1.95, 1.96, 1.97, 1.98, or 1.99% by mass. For example, the cross-linking agent content ratio range may be 0.1 to 1% by mass. In particular, 0.35% by mass or more is preferable.
 架橋剤によるヒドロキシエチルセルロースの架橋は、公知の方法又は公知の方法から容易に想到できる方法により行うことができる。例えば、特公昭58-43402号公報に記載の方法により行うことができる。 Cross-linking of hydroxyethyl cellulose with a cross-linking agent can be carried out by a known method or a method that can be easily conceived from a known method. For example, it can be carried out by the method described in Japanese Patent Publication No. 58-43402.
 HEC(非架橋HEC及び架橋HECを包含する)は、1.33質量%(w/w%)水溶液の25℃における粘度が4000mPa・s以上のものが好ましく、4000~18000mPa・sのものがより好ましい。当該粘度範囲の上限又は下限は、例えば、4100、4200、4300、4400、4500、4600、4700、4800、4900、5000、5100、5200、5300、5400、5500、5600、5700、5800、5900、6000、6100、6200、6300、6400、6500、6600、6700、6800、6900、7000、7100、7200、7300、7400、7500、7600、7700、7800、7900、8000、8100、8200、8300、8400、8500、8600、8700、8800、8900、9000、9100、9200、9300、9400、9500、9600、9700、9800、9900、10000、10100、10200、10300、10400、10500、10600、10700、10800、10900、11000、11100、11200、11300、11400、11500、11600、11700、11800、11900、12000、12100、12200、12300、12400、12500、12600、12700、12800、12900、13000、13100、13200、13300、13400、13500、13600、13700、13800、13900、14000、14100、14200、14300、14400、14500、14600、14700、14800、14900、15000、15100、15200、15300、15400、15500、15600、15700、15800、15900、16000、16100、16200、16300、16400、16500、16600、16700、16800、16900、17000、17100、17200、17300、17400、17500、17600、17700、17800、又は17900mPa・sであってもよい。例えば当該粘度範囲は4100~17900mPa・sであってもよい。 The HEC (including non-crosslinked HEC and crosslinked HEC) preferably has a viscosity of a 1.33% by mass (w / w%) aqueous solution at 25 ° C. of 4000 mPa · s or more, and more preferably 4000 to 18000 mPa · s. preferable. The upper or lower limit of the viscosity range is, for example, 4100, 4200, 4300, 4400, 4500, 4600, 4700, 4800, 4900, 5000, 5100, 5200, 5300, 5400, 5500, 5600, 5700, 5800, 5900, 6000. , 6100, 6200, 6300, 6400, 6500, 6600, 6700, 6800, 6900, 7000, 7100, 7200, 7300, 7400, 7500, 7600, 7700, 7800, 7900, 8000, 8100, 8200, 8300, 8400, 8500. , 8600, 8700, 8800, 8900, 9000, 9100, 9200, 9300, 9400, 9500, 9600, 9700, 9800, 9900, 10000, 10100, 10200, 10300, 10400, 10500, 10600, 10700, 10800, 10900, 11000 , 11100, 11200, 11300, 11400, 11500, 11600, 11700, 11800, 11900, 12000, 12100, 12200, 12300, 12400, 12500, 12600, 12700, 12800, 12900, 13000, 13100, 13200, 13300, 13400, 13500. , 13600, 13700, 13800, 13900, 14000, 14100, 14200, 14300, 14400, 14500, 14600, 14700, 14800, 14900, 15000, 15100, 15200, 15300, 15400, 15500, 15600, 15700, 15800, 15900, 16000. , 16100, 16200, 16300, 16400, 16500, 16600, 16700, 16800, 16900, 17000, 17100, 17200, 17300, 17400, 17500, 17600, 17700, 17800, or 17900 mPa · s. For example, the viscosity range may be 4100 to 17900 mPa · s.
 また、HEC(非架橋HEC及び架橋HECを包含する)は、特に限定はされないが、分子量が例えば1800000~4300000程度であることが好ましい。当該分子量範囲の上限または下限は、例えば1900000、2000000、2100000、2200000、2300000、2400000、25、2600000、2700000、2800000、2900000、3000000、3100000、3200000、3300000、3400000、3500000、3600000、3700000、3800000、3900000、4000000、4100000、又は4200000であってもよい。例えば当該分子量範囲は1900000~4200000であってもよい。 Further, the HEC (including the non-crosslinked HEC and the crosslinked HEC) is not particularly limited, but the molecular weight is preferably, for example, about 1800000 to 430000. The upper or lower limit of the molecular weight range is, for example, 19000000, 2000000, 210000, 2200, 230000, 2400000, 25, 260000, 2700, 280000, 2900, 3000, 3100, 3200, 3300, 3400, 3500, 3600, 3700, 380000, It may be 3900000, 4000, 410000, or 4200000. For example, the molecular weight range may be 1900000 to 4200000.
 なお、当該分子量は、ゲルパーミエーションクロマトグラフィー(GPC)で測定を行い、ポリエチレンオキサイド換算により求められる質量平均分子量である。GPCによってポリエチレングリコール換算による質量平均分子量を測定する際のカラムとしては、例えば、Shodex OHpak SB-807HQ、Shodex OHpak SB-806HQ、Shodex OHpak SB-804HQ等が挙げられる。詳細なGPC測定条件を次に示す。
装置:TOSOH HLC-8220 GPC
カラム:Shodex OHpak SB-807HQ、OHpak SB-806 HQ、 OHpak SB-804 HQ
移動相:0.2M-NaNO3
流速:0.6ml/min
カラム温度:40℃
標準サンプル:PEO Mw:3.76×104、1.07×105、1.43×105、2.77×105、5.8×105、7.86×105
サンプル濃度:0.06質量%
 また、特に制限されるわけでは無いが、HECは、セルロースのOH基がOR(RはH又はCHCHOHを示す)になった化合物であるところ、本開示の組成物に含有されるHEC(非架橋HEC及び架橋HECを包含する)においては、当該ORのRとしてH又はCHCHOH以外の基が存在していてもよいが、Rとして疎水基は存在しないことが好ましい。例えば、当該Rとしてアルキル基、特に炭素数6~20(6、7、8、9、10、11、12、13、14、15、16、17、18、19、又は20)の直鎖若しくは分岐鎖アルキル基(より具体的には、例えばセチル基)が存在するものは、使用してもよいが、使用しないことが好ましい。
The molecular weight is a mass average molecular weight obtained by gel permeation chromatography (GPC) and converted into polyethylene oxide. Examples of the column for measuring the mass average molecular weight in terms of polyethylene glycol by GPC include Shodex OHpak SB-807HQ, Shodex OHpak SB-806HQ, Shodex OHpak SB-804HQ and the like. Detailed GPC measurement conditions are shown below.
Equipment: TOSOH HLC-8220 GPC
Columns: Shodex OHpak SB-807HQ, OHpak SB-806 HQ, OHpak SB-804 HQ
Mobile phase: 0.2M-NaNO 3
Flow velocity: 0.6 ml / min
Column temperature: 40 ° C
Standard sample: PEO Mw: 3.76 × 10 4 , 1.07 × 10 5 , 1.43 × 10 5 , 2.77 × 10 5 , 5.8 × 10 5 , 7.86 × 10 5
Sample concentration: 0.06% by mass
Further, although not particularly limited, HEC is a compound in which the OH group of cellulose is OR (R indicates H or CH 2 CH 2 OH), and is contained in the composition of the present disclosure. In HEC (including non-crosslinked HEC and crosslinked HEC), a group other than H or CH 2 CH 2 OH may be present as R of the OR, but it is preferable that no hydrophobic group is present as R. For example, as the R, an alkyl group, particularly a linear chain having 6 to 20 carbon atoms (6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20) or Those having a branched chain alkyl group (more specifically, for example, a cetyl group) may be used, but it is preferable not to use them.
 本開示の組成物は溶媒として水を含有する。また、本開示の組成物の効果を損なわない範囲であれば、水以外の溶媒をさらに含有してもよい。水以外の溶媒としては、例えば、水溶性溶媒が挙げられ、例えば水溶性有機溶媒が好ましい。水溶性有機溶媒としては、具合的には例えば炭素数1~6(1、2、3、4、5、又は6)の1価若しくは2価のアルキルアルコールが挙げられ、より具体的には例えばエタノール、ブチレングリコール等が挙げられる。 The composition of the present disclosure contains water as a solvent. Further, a solvent other than water may be further contained as long as the effect of the composition of the present disclosure is not impaired. Examples of the solvent other than water include water-soluble solvents, and for example, water-soluble organic solvents are preferable. Examples of the water-soluble organic solvent include monohydric or divalent alkyl alcohols having 1 to 6 carbon atoms (1, 2, 3, 4, 5, or 6), and more specifically, for example. Examples thereof include ethanol and butylene glycol.
 また、本開示の組成物は、貯蔵弾性率(G’)の値の方が損失弾性率(G’’)の値よりも大きい(すなわち、貯蔵弾性率G’>損失弾性率G’’)ものが好ましい。言い換えれば、本開示の組成物は、損失正接(tanδ)が1より小さい(すなわち、tanδ<1)ものが好ましい。損失正接(tanδ)は、貯蔵弾性率(G’)と損失弾性率(G’’)の比(G’’/G’)であり、粘弾性的な性質の指標の一つとして用いられる。損失正接の値が大きいほど反発弾性率が小さくなる。例えば、損失正接はゾル、ゲルの指標として用いられ、通常はtanδ>1でゾル、tanδ<1でゲルとされる。 Further, in the composition of the present disclosure, the value of the storage elastic modulus (G') is larger than the value of the loss elastic modulus (G'') (that is, the storage elastic modulus G'> the loss elastic modulus G''). The one is preferable. In other words, the composition of the present disclosure preferably has a loss tangent (tan δ) of less than 1 (that is, tan δ <1). The loss tangent (tan δ) is the ratio (G ″ / G ′) of the storage elastic modulus (G ′) and the loss elastic modulus (G ″), and is used as one of the indexes of the viscoelastic property. The larger the value of the loss tangent, the smaller the elastic modulus. For example, the loss tangent is used as an index of sol and gel, and usually tan δ> 1 is sol and tan δ <1 is gel.
 貯蔵弾性率G’及び損失弾性率G’’の値は、25℃において、粘弾性測定装置(レオメーター)を用いて測定することができる。より具体的には、1Hzにおける歪み分散測定により、線形領域を確認後、線形領域の範囲内で適当な歪みを選択し、25℃における周波数分散(周波数:0.1rad/s~100rad/s)を測定して、G‘とG’’の大小関係を観測する。 The values of the storage elastic modulus G ′ and the loss elastic modulus G ″ can be measured at 25 ° C. using a viscoelasticity measuring device (leometer). More specifically, after confirming the linear region by measuring the strain dispersion at 1 Hz, an appropriate distortion is selected within the range of the linear region, and the frequency dispersion at 25 ° C. (frequency: 0.1 rad / s to 100 rad / s). And observe the magnitude relationship between G'and G''.
 本開示の組成物は、周波数分散測定によって得られる貯蔵弾性率G’、損失弾性率G’’の大小関係が、周波数:0.1rad/s~100rad/sの全範囲において、貯蔵弾性率G’>損失弾性率G’’であることが好ましい。 In the composition of the present disclosure, the storage elastic modulus G'and the loss elastic modulus G'' obtained by frequency dispersion measurement have a magnitude relationship of the storage elastic modulus G in the entire range of frequency: 0.1 rad / s to 100 rad / s. '> Loss elastic modulus G'' is preferable.
 また、本開示の組成物は、25℃における粘度が、10000mPa・s以上であり、好ましくは10000~20000mPa・sである。当該粘度範囲の上限又は下限は、例えば、10100、10200、10300、10400、10500、10600、10700、10800、10900、11000、11100、11200、11300、11400、11500、11600、11700、11800、11900、12000、12100、12200、12300、12400、12500、12600、12700、12800、12900、13000、13100、13200、13300、13400、13500、13600、13700、13800、13900、14000、14100、14200、14300、14400、14500、14600、14700、14800、14900、15000、15100、15200、15300、15400、15500、15600、15700、15800、15900、16000、16100、16200、16300、16400、16500、16600、16700、16800、16900、17000、17100、17200、17300、17400、17500、17600、17700、17800、17900、18000、18100、18200、18300、18400、18500、18600、18700、18800、18900、19000、19100、19200、19300、19400、19500、19600、19700、19800、又は19900mPa・sであってもよい。例えば、当該粘度範囲は8100~19900mPa・sであってもよい。 Further, the composition of the present disclosure has a viscosity at 25 ° C. of 10,000 mPa · s or more, preferably 10,000 to 20,000 mPa · s. The upper or lower limit of the viscosity range is, for example, 10100, 10200, 10300, 10400, 10500, 10600, 10700, 10800, 10900, 11000, 11100, 11200, 11300, 11400, 11500, 11600, 11700, 11800, 11900, 12000. , 12100, 12200, 12300, 12400, 12500, 12600, 12700, 12800, 12900, 13000, 13100, 13200, 13300, 13400, 13500, 13600, 13700, 13800, 13900, 14000, 14100, 14200, 14300, 14400, 14500. , 14600, 14700, 14800, 14900, 15000, 15100, 15200, 15300, 15400, 15500, 15600, 15700, 15800, 15900, 16000, 16100, 16200, 16300, 16400, 16500, 16600, 16700, 16800, 16900, 17000. , 17100, 17200, 17300, 17400, 17500, 17600, 17700, 17800, 17900, 18000, 18100, 18200, 18300, 18400, 18500, 18600, 18700, 18800, 18900, 19000, 19100, 19200, 19300, 19400, 19500. , 19600, 19700, 19800, or 19900 mPa · s. For example, the viscosity range may be 8100 to 19,900 mPa · s.
 なお、本開示において、粘度は、25℃において、BrookField社製の回転粘度計(型番:DVE、スピンドル:LV)を用い、回転速度を毎分20回転として測定した値である。なお、測定に使用するスピンドルは、目安として、200mPa・s未満の場合はスピンドルLV-1、200mPa・s以上1000mPa・s未満の場合はスピンドルLV-2、1000mPa・s以上4000mPa・s未満の場合はスピンドルLV-3、4000mPa・s以上の場合はスピンドルLV-4とした。 In the present disclosure, the viscosity is a value measured at 25 ° C. using a rotary viscometer manufactured by BrookField (model number: DVE, spindle: LV) at a rotation speed of 20 rpm. As a guide, the spindle used for measurement is spindle LV-1 when it is less than 200 mPa · s, spindle LV-2 when it is 200 mPa · s or more and less than 1000 mPa · s, and 1000 mPa · s or more and less than 4000 mPa · s. Is Spindle LV-3, and Spindle LV-4 in the case of 4000 mPa · s or more.
 また、本開示の組成物が塩を含有する場合(すなわち、本開示の塩含有組成物)において、当該塩としては、水溶性塩が好ましい。水溶性塩としては、例えば、水溶性の無機塩及び有機塩が挙げられる。無機塩としては、例えば塩酸塩、臭化水素酸塩、硫酸塩、硝酸塩、リン酸塩、リン酸エステル塩などが挙げられ、有機塩としては、例えば酢酸塩、2,2-ジクロロ酢酸塩、アジピン酸塩、アルギン酸塩、アスコルビン酸塩、アスコルビン酸リン酸塩、アスパラギン酸塩、ベンゼンスルホン酸塩、安息香酸塩、4-アセトアミド安息香酸塩、カンファー酸塩、カンファー-10-スルホン酸塩、カプリン酸塩、カプロン酸塩、カプリル酸塩、炭酸塩、桂皮酸塩、クエン酸塩、シクラミン酸塩、ドデシルスルホン酸塩、エタン-1,2-ジスルホン酸塩、エタンスルホン酸塩、2-ヒドロキシエタンスルホン酸塩、ギ酸塩、フマル酸塩、ガラクタル酸塩、ゲンチシン酸塩、グルコヘプトン酸塩、グルコン酸塩、グルクロン酸塩、グルタミン酸塩、グルタル酸塩、2-オキソ-グルタル酸塩、グリセロリン酸塩、グリコール酸塩、馬尿酸塩、イソ酪酸塩、乳酸塩、ラクトビオン酸塩、ラウリン酸塩、マレイン酸塩、リンゴ酸塩、マロン酸塩、マンデル酸塩、メタンスルホン酸塩、粘液酸塩、ナフタレン-1,5-ジスルホン酸塩、ナフタレン-2-スルホン酸塩、1-ヒドロキシ-2-ナフトエ酸塩、ニコチン酸塩、オレイン酸塩、オロチン酸塩、シュウ酸塩、パルミチン酸塩、パモ酸塩、プロピオン酸塩、ピログルタミン酸塩、ピルビン酸塩、サリチル酸塩、4-アミノサリチル酸塩、セバシン酸塩、ステアリン酸塩、コハク酸塩、酒石酸塩、チオシアン酸塩、p-トルエンスルホン酸塩、トリフルオロ酢酸塩、ウンデシレン酸塩等が挙げられる。また、より具体的には、これらの塩としては、ナトリウム塩、カリウム塩、リチウム塩、アンモニウム塩、カルシウム塩、マグネシウム塩、鉄塩、亜鉛塩、銅塩、マンガン塩、アルミニウム塩等が挙げられる。中でも、塩酸塩、リン酸塩、リン酸エステル塩、酢酸塩、アスコルビン酸塩、アスコルビン酸リン酸塩、アスパラギン酸塩、炭酸塩、クエン酸塩、フマル酸塩、乳酸塩、マレイン酸塩、リンゴ酸塩、マロン酸塩、シュウ酸塩等が好ましく、これらのナトリウム塩、カリウム塩、アンモニウム塩、カルシウム塩、マグネシウム塩等がより好ましい。 Further, when the composition of the present disclosure contains a salt (that is, the salt-containing composition of the present disclosure), a water-soluble salt is preferable as the salt. Examples of the water-soluble salt include water-soluble inorganic salts and organic salts. Examples of the inorganic salt include hydrochloride, hydrobromide, sulfate, nitrate, phosphate, phosphate ester salt and the like, and examples of the organic salt include acetate, 2,2-dichloroacetate and the like. Adipate, alginate, ascorbate, ascorbic acid phosphate, asparagate, benzenesulfonate, benzoate, 4-acetamide benzoate, camphorate, camphor-10-sulfonate, caprin Acids, capronates, caprilates, carbonates, cinnamic acid salts, citrates, cyclamates, dodecylsulfonates, ethane-1,2-disulfonates, ethanesulfonates, 2-hydroxyethane Sulfonate, grate, fumarate, galactalate, gentisate, glucoheptone, gluconate, glucronate, glutamate, glutarate, 2-oxo-glutarate, glycerophosphate, Glycolate, horse urate, isobutyrate, lactate, lactobionate, laurate, maleate, malate, malonate, mandelate, methanesulfonate, mucilage, naphthalene- 1,5-Disulfonate, Naphthalene-2-sulfonate, 1-hydroxy-2-naphthoate, nicotinate, oleate, olotinate, oxalate, palmitate, pamoate, Propionate, pyroglutamate, pyruvate, salicylate, 4-aminosalicylate, cevacinate, stearate, succinate, tartrate, thiocyanate, p-toluenesulfonate, trifluoroacetic acid Examples thereof include salt and undecylene salt. More specifically, examples of these salts include sodium salt, potassium salt, lithium salt, ammonium salt, calcium salt, magnesium salt, iron salt, zinc salt, copper salt, manganese salt, aluminum salt and the like. .. Among them, hydrochloride, phosphate, phosphate ester salt, acetate, ascorbate, ascorbic acid phosphate, asparagate, carbonate, citrate, fumarate, lactate, maleate, apple Acid salts, malonates, oxalates and the like are preferable, and these sodium salts, potassium salts, ammonium salts, calcium salts, magnesium salts and the like are more preferable.
 当該塩としては、より具体的には、例えば、塩化ナトリウム、アスコルビン酸ナトリウム、アスコルビン酸リン酸マグネシウム、アスコルビン酸リン酸ナトリウム等が好ましく挙げられる。中でも塩化ナトリウムおよびアスコルビン酸塩、アスコルビン酸誘導体塩(例えばアスコルビン酸リン酸塩)等が好ましい。 More specifically, examples of the salt include sodium chloride, sodium ascorbate, magnesium ascorbate, sodium ascorbate, and the like. Of these, sodium chloride, ascorbic acid salt, ascorbic acid derivative salt (for example, ascorbic acid phosphate) and the like are preferable.
 塩は、1種単独で又は2種以上を組み合わせて用いることができる。 The salt can be used alone or in combination of two or more.
 本開示の組成物における、CNC及びHEC(非架橋HEC及び架橋HECを包含する)の含有量比は、効果が損なわれない範囲であれば特に限定はされないが、例えば、HEC1質量部に対して、CNC0.05~1質量部程度が好ましい。当該範囲の上限又は下限は、例えば、0.1、0.15、0.2、0.25、0.3、0.35、0.4、0.45、0.5、0.55、0.6、0.65、0.7、0.75、0.8、0.85、0.9、又は0.95であってもよい。例えば当該範囲は0.1~0.8であってもよい。 The content ratio of CNC and HEC (including non-crosslinked HEC and crosslinked HEC) in the composition of the present disclosure is not particularly limited as long as the effect is not impaired, but is not particularly limited, for example, with respect to 1 part by mass of HEC. , CNC is preferably about 0.05 to 1 part by mass. The upper or lower limit of the range is, for example, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, It may be 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, or 0.95. For example, the range may be 0.1 to 0.8.
 また、本開示の組成物における、CNC含有量は、効果が損なわれない範囲であれば特に限定はされないが、例えば0.1~5質量%程度が挙げられる。当該範囲の上限又は下限は、例えば0.2、0.3、0.4、0.5、0.6、0.7、0.8、0.9、1、1.1、1.2、1.3、1.4、1.5、1.6、1.7、1.8、1.9、2、2.1、2.2、2.3、2.4、2.5、2.6、2.7、2.8、2.9、3、3.1、3.2、3.3、3.4、3.5、3.6、3.7、3.8、3.9、4、4.1、4.2、4.3、4.4、4.5、4.6、4.7、4.8、又は4.9質量%であってもよい。例えば当該範囲は0.2~2質量%であってもよい。 Further, the CNC content in the composition of the present disclosure is not particularly limited as long as the effect is not impaired, and examples thereof include about 0.1 to 5% by mass. The upper or lower limit of the range is, for example, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.1, 1.2. , 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2, 2.1, 2.2, 2.3, 2.4, 2.5 , 2.6, 2.7, 2.8, 2.9, 3, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8 It may be 3.9, 4, 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, or 4.9% by mass. .. For example, the range may be 0.2 to 2% by mass.
 また、本開示の組成物における、HEC(非架橋HEC及び架橋HECを包含する)含有量は、効果が損なわれない範囲であれば特に限定はされないが、例えば0.1~5質量%程度が挙げられる。当該範囲の上限又は下限は、例えば0.2、0.3、0.4、0.5、0.6、0.7、0.8、0.9、1、1.1、1.2、1.3、1.4、1.5、1.6、1.7、1.8、1.9、2、2.1、2.2、2.3、2.4、2.5、2.6、2.7、2.8、2.9、3、3.1、3.2、3.3、3.4、3.5、3.6、3.7、3.8、3.9、4、4.1、4.2、4.3、4.4、4.5、4.6、4.7、4.8、又は4.9質量%であってもよい。例えば当該範囲は0.2~2質量%であってもよい。 The HEC (including non-crosslinked HEC and crosslinked HEC) content in the composition of the present disclosure is not particularly limited as long as the effect is not impaired, but is, for example, about 0.1 to 5% by mass. Can be mentioned. The upper or lower limit of the range is, for example, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.1, 1.2. , 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2, 2.1, 2.2, 2.3, 2.4, 2.5 , 2.6, 2.7, 2.8, 2.9, 3, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8 It may be 3.9, 4, 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, or 4.9% by mass. .. For example, the range may be 0.2 to 2% by mass.
 また、本開示の塩含有組成物における、塩の含有量は、0.1質量%以上が好ましく、0.1~10質量%程度がより好ましい。当該範囲(0.1~10質量%)の上限又は下限は、例えば0.2、0.3、0.4、0.5、0.6、0.7、0.8、0.9、1、1.1、1.2、1.3、1.4、1.5、1.6、1.7、1.8、1.9、2、2.1、2.2、2.3、2.4、2.5、2.6、2.7、2.8、2.9、3、3.1、3.2、3.3、3.4、3.5、3.6、3.7、3.8、3.9、4、4.1、4.2、4.3、4.4、4.5、4.6、4.7、4.8、4.9、55.1、5.2、5.3、5.4、5.5、5.6、5.7、5.8、5.9、6、6.1、6.2、6.3、6.4、6.5、6.6、6.7、6.8、6.9、7、7.1、7.2、7.3、7.4、7.5、7.6、7.7、7.8、7.9、8、8.1、8.2、8.3、8.4、8.5、8.6、8.7、8.8、8.9、9、9.1、9.2、9.3、9.4、9.5、9.6、9.7、9.8、又は9.9質量%であってもよい。例えば当該範囲は、1~10質量%若しくは1.5~8質量%であってもよい。 Further, the salt content in the salt-containing composition of the present disclosure is preferably 0.1% by mass or more, more preferably about 0.1 to 10% by mass. The upper or lower limit of the range (0.1 to 10% by mass) is, for example, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2, 2.1, 2.2, 2. 3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3, 3.1, 3.2, 3.3, 3.4, 3.5, 3. 6, 3.7, 3.8, 3.9, 4, 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4. 9, 55.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9, 6, 6.1, 6.2, 6. 3, 6.4, 6.5, 6.6, 6.7, 6.8, 6.9, 7, 7.1, 7.2, 7.3, 7.4, 7.5, 7. 6, 7.7, 7.8, 7.9, 8, 8.1, 8.2, 8.3, 8.4, 8.5, 8.6, 8.7, 8.8, 8.8. It may be 9, 9, 9.1, 9.2, 9.3, 9.4, 9.5, 9.6, 9.7, 9.8, or 9.9 mass%. For example, the range may be 1 to 10% by mass or 1.5 to 8% by mass.
 また、本開示の組成物は、透過率が10%以上であることが好ましい。当該透過率は、例えば、11%以上、12%以上、13%以上、14%以上、15%以上、16%以上、17%以上、18%以上、19%以上、20%以上、21%以上、22%以上、23%以上、24%以上、25%以上、26%以上、27%以上、28%以上、29%以上、30%以上、31%以上、32%以上、33%以上、34%以上、35%以上、36%以上、37%以上、38%以上、39%以上、40%以上、41%以上、42%以上、43%以上、44%以上、45%以上、46%以上、47%以上、48%以上、49%以上、又は50%以上であってもよい。なお、当該透過率の上限は、特に限定はされないが、例えば95%以下が例示できる。94%以下、93%以下、92%以下、91%以下、90%以下、89%以下、88%以下、87%以下、86%以下、85%以下、84%以下、83%以下、82%以下、81%以下、80%以下、79%以下、78%以下、77%以下、76%以下、75%以下、74%以下、73%以下、72%以下、71%以下、70%以下、69%以下、68%以下、67%以下、66%以下、又は65%以下であってもよい。より好ましくは、当該透過率は、15~95%程度である。 Further, the composition of the present disclosure preferably has a transmittance of 10% or more. The transmittance is, for example, 11% or more, 12% or more, 13% or more, 14% or more, 15% or more, 16% or more, 17% or more, 18% or more, 19% or more, 20% or more, 21% or more. , 22% or more, 23% or more, 24% or more, 25% or more, 26% or more, 27% or more, 28% or more, 29% or more, 30% or more, 31% or more, 32% or more, 33% or more, 34 % Or more, 35% or more, 36% or more, 37% or more, 38% or more, 39% or more, 40% or more, 41% or more, 42% or more, 43% or more, 44% or more, 45% or more, 46% or more , 47% or more, 48% or more, 49% or more, or 50% or more. The upper limit of the transmittance is not particularly limited, but for example, 95% or less can be exemplified. 94% or less, 93% or less, 92% or less, 91% or less, 90% or less, 89% or less, 88% or less, 87% or less, 86% or less, 85% or less, 84% or less, 83% or less, 82% 81% or less, 80% or less, 79% or less, 78% or less, 77% or less, 76% or less, 75% or less, 74% or less, 73% or less, 72% or less, 71% or less, 70% or less, It may be 69% or less, 68% or less, 67% or less, 66% or less, or 65% or less. More preferably, the transmittance is about 15 to 95%.
 なお、当該透過率は、具体的にはUV(425nm)の透過率(%T)を測定した値(蒸留水が透過率100%となるように校正)である。 The transmittance is specifically a value obtained by measuring the transmittance (% T) of UV (425 nm) (calibrated so that the distilled water has a transmittance of 100%).
 組成物の透過率が高いということは、組成物の透明度が高いということである。組成物が透明であることは必ずしも求められるわけではないが、透明であると特に化粧品分野において需要が高く、好ましい。 The high transmittance of the composition means that the transparency of the composition is high. It is not always required that the composition be transparent, but it is preferable because it is in high demand especially in the cosmetics field.
 このような優れた透過率は、用いるHECが架橋HECであり、且つ架橋HECの架橋剤含有割合が、比較的高いことにより達成され得る。上述の通り、当該割合は0.35質量%以上が好ましく、0.35~2質量%程度がさらに好ましい。 Such excellent transmittance can be achieved when the HEC used is a crosslinked HEC and the crosslinker content ratio of the crosslinked HEC is relatively high. As described above, the ratio is preferably 0.35% by mass or more, more preferably about 0.35 to 2% by mass.
 本開示の組成物は、効果を損なわない範囲において、CNC、HEC(非架橋HEC及び架橋HECを包含する)、塩、及び水以外の成分を含有してもよい。このような成分としては、例えば医薬品分野、化粧品分野、食品分野において公知の単体や成分を挙げることができる。 The composition of the present disclosure may contain components other than CNC, HEC (including non-crosslinked HEC and crosslinked HEC), salt, and water as long as the effect is not impaired. Examples of such an ingredient include simple substances and ingredients known in the fields of pharmaceuticals, cosmetics, and foods.
 本開示の組成物は、例えば、CNC及びHEC(非架橋HEC及び架橋HECを包含する)を混合した上で、当該混合物を水に混合することを経て、調製することができる。このように、水に添加する前に、CNCとHECとを混合しておくことが望ましい。本開示の組成物は、当該方法で調整することにより、塩を含有しない場合はもちろん、塩を含有したとしても、上述した優れた粘度を有することができる。 The composition of the present disclosure can be prepared, for example, by mixing CNC and HEC (including non-crosslinked HEC and crosslinked HEC) and then mixing the mixture with water. Thus, it is desirable to mix CNC and HEC before adding to water. By adjusting by the method, the composition of the present disclosure can have the above-mentioned excellent viscosity not only when it does not contain a salt but also when it contains a salt.
 なお、水に添加する前の混合に用いるCNC及びHECは、ともに粉体であることが好ましい。また、水に添加するためのCNC及びHECの混合物は、粉体であることが好ましい。 It is preferable that both CNC and HEC used for mixing before being added to water are powders. Further, the mixture of CNC and HEC to be added to water is preferably a powder.
 本開示の塩含有組成物は、例えば、CNC及びHECの混合物を水に添加して必要に応じて混合して調製した粘性組成物に、さらに塩を加えることにより調製することができる。なお、CNC及びHECの混合物を水に添加して必要に応じて混合して調製した粘性組成物は、塩添加用の粘性組成物として有用である。 The salt-containing composition of the present disclosure can be prepared, for example, by adding a salt to a viscous composition prepared by adding a mixture of CNC and HEC to water and mixing them as necessary. A viscous composition prepared by adding a mixture of CNC and HEC to water and mixing them as necessary is useful as a viscous composition for salt addition.
 本開示の組成物は、優れた粘性及び粘弾性を有することから、このような特性が求められる製品が存在する技術分野、例えば医薬品分野、化粧品分野、及び食品分野等において有用である。すなわち、本開示の組成物は、例えば医薬品組成物、化粧品組成物、食品組成物等として好ましく用いられ得る。 Since the composition of the present disclosure has excellent viscosity and viscoelasticity, it is useful in technical fields in which products required to have such properties exist, for example, in the fields of pharmaceuticals, cosmetics, and foods. That is, the composition of the present disclosure can be preferably used, for example, as a pharmaceutical composition, a cosmetic composition, a food composition, or the like.
 なお、本明細書において「含む」とは、「本質的にからなる」と、「からなる」をも包含する(The term "comprising" includes "consisting essentially of” and "consisting of.")。また、本開示は、本明細書に説明した構成要件を任意の組み合わせを全て包含する。 In addition, in this specification, "includes" also includes "consisting of" and "consisting of" (The term "comprising" includes "consisting essentially of" and "consisting of."). In addition, the present disclosure includes all combinations of the constituent elements described herein.
 また、上述した本開示の各実施形態について説明した各種特性(性質、構造、機能等)は、本開示に包含される主題を特定するにあたり、どのように組み合わせられてもよい。すなわち、本開示には、本明細書に記載される組み合わせ可能な各特性のあらゆる組み合わせからなる主題が全て包含される。 Further, the various characteristics (property, structure, function, etc.) described for each embodiment of the present disclosure described above may be combined in any way in specifying the subject matter included in the present disclosure. That is, the present disclosure includes all subjects consisting of any combination of each of the combinable properties described herein.
 以下、例を示して本開示の実施形態をより具体的に説明するが、本開示の実施形態は下記の例に限定されるものではない。
[粘弾性測定]
  各粘性組成物について、市販の粘弾性測定装置(レオメーター)を用い、周波数分散にてG’(貯蔵弾性率)、G”(損失弾性率)を求めた。
Hereinafter, embodiments of the present disclosure will be described in more detail with reference to examples, but the embodiments of the present disclosure are not limited to the following examples.
[Viscoelasticity measurement]
For each viscous composition, G'(storage elastic modulus) and G "(loss elastic modulus) were determined by frequency dispersion using a commercially available viscoelasticity measuring device (leometer).
  測定条件
  レオメーター:TAインスツルメント製  AR-2000ex
  プレート:60mm、1°コーンプレート
  測定温度:25℃
  歪み:0.1~10%(1Hzにおける歪み分散測定において得られた線形領域の範囲で選定)
 周波数:0.1rad/s~100rad/s
[粘度測定]
 各粘性組成物について、25℃において、BrookField社製の回転粘度計(型番:DVE、スピンドル:LV)を用い、回転速度を毎分20回転として、粘度を測定した。なお、測定に使用するスピンドルは、目安として、200mPa・s未満の場合はスピンドルLV-1、200mPa・s以上1000mPa・s未満の場合はスピンドルLV-2、1000mPa・s以上4000mPa・s未満の場合はスピンドルLV-3、4000mPa・s以上の場合はスピンドルLV-4とした。
[透過率]
 各粘性組成物の透過率は、次のようにして測定した。
Measurement conditions Leometer: TA Instrument AR-2000ex
Plate: 60 mm, 1 ° cone plate Measurement temperature: 25 ° C
Distortion: 0.1 to 10% (selected within the range of the linear region obtained in the distortion dispersion measurement at 1 Hz)
Frequency: 0.1 rad / s to 100 rad / s
[Viscosity measurement]
The viscosity of each viscous composition was measured at 25 ° C. using a rotary viscometer (model number: DVE, spindle: LV) manufactured by BrookField at a rotation speed of 20 rpm. As a guide, the spindle used for measurement is spindle LV-1 when it is less than 200 mPa · s, spindle LV-2 when it is 200 mPa · s or more and less than 1000 mPa · s, and 1000 mPa · s or more and less than 4000 mPa · s. Is Spindle LV-3, and Spindle LV-4 in the case of 4000 mPa · s or more.
[Transmittance]
The transmittance of each viscous composition was measured as follows.
 測定には、島津製作所社製の分光光度計(型番:UV-1850)を用いた。まずサンプルをUV測定用のセル(光路長1cm)に入れ、遠心分離器にて毎分2,000回転で5分間の操作により脱泡した。脱泡が完了していない場合は遠心分離機にて同様の操作を行い、泡が完全に試料上部から抜けることを確認した。その後、試料を分光光度計にセットし、測定波長を425nmとして透過率を測定した。なお、蒸留水を透過率100%になるように校正した。
[安定性]
 各粘性組成物に含まれる成分が分離を起こしていないか、目視で確認した。
[粘性組成物の調製及び評価]
 クリスタルナノセルロースとして、Cellulose Nanocrystals(Alberta-Pacific Forest Industries Inc.製)を用いた。なお、Cellulose Nanocrystals の一部はセルロース硫酸ナトリウムである。
A spectrophotometer (model number: UV-1850) manufactured by Shimadzu Corporation was used for the measurement. First, the sample was placed in a cell for UV measurement (optical path length 1 cm), and defoamed by a centrifuge at 2,000 rpm for 5 minutes. If the defoaming was not completed, the same operation was performed with a centrifuge, and it was confirmed that the bubbles were completely removed from the upper part of the sample. Then, the sample was set in a spectrophotometer, and the transmittance was measured with the measurement wavelength set to 425 nm. The distilled water was calibrated so as to have a transmittance of 100%.
[Stability]
It was visually confirmed whether the components contained in each viscous composition did not separate.
[Preparation and evaluation of viscous composition]
Cellulose Nanocrystals (manufactured by Alberta-Pacific Forest Industries Inc.) was used as the crystal nanocellulose. A part of Cellulose Nanocrystals is sodium cellulose sulfate.
 また、各種市販水溶性ポリマー(いずれも粉体)を購入して用いた。HEC(CF-Y)、HEC(SZ-25F)、AQUPEC HV-505E、及びAQUPEC HV-501ERは住友精化株式会社製である。なお、AQUPEC HV-505Eはカルボマー(カルボキシビニルポリマー)、AQUPEC HV-501ERは(アクリレーツ/アクリル酸アルキル(C10-30))クロスポリマーである。また、用いたHECは全て架橋剤(グリオキザール)により架橋された架橋HECであり、各架橋HECにおける架橋剤含有量は、HEC(CF-Y)は0.55質量%、HEC(SZ-25F)は0.29質量%である。 In addition, various commercially available water-soluble polymers (all powders) were purchased and used. HEC (CF-Y), HEC (SZ-25F), AQUAPEC HV-505E, and AQUAPEC HV-501ER are manufactured by Sumitomo Seika Chemical Co., Ltd. AQUAPEC HV-505E is a carbomer (carboxyvinyl polymer), and AQUAPEC HV-501ER is a (Acrylate / alkyl acrylate (C10-30)) cross polymer. The HECs used were all cross-linked HECs cross-linked with a cross-linking agent (glyoxal), and the content of the cross-linking agent in each cross-linked HEC was 0.55% by mass for HEC (CF-Y) and HEC (SZ-25F). Is 0.29% by mass.
 表1の組成に従って、クリスタルナノセルロースの粉体及び水溶性ポリマー(HEC)の粉体を混合し、当該混合粉体をイオン交換水に撹拌混合して溶解させ、これにさらに水溶性塩(具体的には、塩化ナトリウム又はL-アスコルビン酸リン酸エステルマグネシウム)を混合して、粘性組成物を調製した。より具体的には、セルロースナノクリスタル0.33gとヒドロキシエチルセルロース1gを粉の状態で混合し、その混合粉末を水93.67gに投入し、4枚パドル攪拌翼500rpmにて4時間攪拌し、ゲル化させた。得られた95gのゲルに対して水溶性塩を5g添加し、パドルにてさらに10分ほど攪拌し粘性組成物を調製した。その後、遠心分離器にて脱泡した後に粘弾性、粘度、及び透過率の測定を行った。 According to the composition shown in Table 1, a powder of crystal nanocellulose and a powder of a water-soluble polymer (HEC) are mixed, and the mixed powder is stirred and mixed with ion-exchanged water to dissolve it, and a water-soluble salt (specifically, a water-soluble salt (specifically)) is added thereto. Specifically, sodium chloride or L-ascorbic acid phosphate magnesium) was mixed to prepare a viscous composition. More specifically, 0.33 g of cellulose nanocrystals and 1 g of hydroxyethyl cellulose are mixed in a powder state, the mixed powder is put into 93.67 g of water, and the mixture is stirred with a 4-paddle stirring blade at 500 rpm for 4 hours to gel. I made it. 5 g of a water-soluble salt was added to the obtained 95 g of gel, and the mixture was further stirred with a paddle for about 10 minutes to prepare a viscous composition. Then, after defoaming with a centrifuge, viscoelasticity, viscosity, and transmittance were measured.
 但し、比較例3~4の粘性組成物については、クリスタルナノセルロースをイオン交換水に分散させ、これに水溶性塩を溶解させ、最後に水溶性ポリマーを溶解させて調製した。また、実施例1~4については、水溶性塩を混合する前の組成物の粘弾性、粘度、及び透過率も測定した。比較例1~2の粘性組成物は、水溶性ポリマー(AQUPEC)をイオン交換水に撹拌混合して分散させ、NaOHでpH7に中和し、これにさらに水溶性塩を混合して調製した。また、比較例1~2については、水溶性塩を混合する前の組成物の粘弾性及び粘度も測定した。結果を表1にあわせて示す。 However, the viscous compositions of Comparative Examples 3 to 4 were prepared by dispersing crystal nanocellulose in ion-exchanged water, dissolving a water-soluble salt in the viscous composition, and finally dissolving a water-soluble polymer. For Examples 1 to 4, the viscoelasticity, viscosity, and transmittance of the composition before mixing the water-soluble salt were also measured. The viscous compositions of Comparative Examples 1 and 2 were prepared by stirring and mixing a water-soluble polymer (AQUAPEC) in ion-exchanged water, dispersing the mixture, neutralizing the pH to 7 with NaOH, and further mixing and mixing a water-soluble salt. For Comparative Examples 1 and 2, the viscoelasticity and viscosity of the composition before mixing the water-soluble salt were also measured. The results are also shown in Table 1.
 なお、表1においては、周波数:0.1rad/s~100rad/sの全範囲においてG’がG’’より大きい場合はG’>G’’、0.1rad/s~100rad/sの全範囲においてG’がG’’より小さい場合はG’<G’’と記載した。また、0.1rad/s~100rad/sの範囲においてG’とG’’の大小関係が逆転するケースおよび、0.1rad/s~100rad/sの全範囲においてG’とG’’が一致したケースはなかった。 In Table 1, when G'is larger than G'' in the whole range of frequency: 0.1 rad / s to 100 rad / s, G'> G'' and all of 0.1 rad / s to 100 rad / s. When G'is smaller than G'in the range, it is described as G'<G'. In addition, there are cases where the magnitude relationship between G'and G'is reversed in the range of 0.1 rad / s to 100 rad / s, and G'and G'match in the entire range of 0.1 rad / s to 100 rad / s. There was no case.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001

Claims (10)

  1. セルロースナノクリスタル、ヒドロキシエチルセルロース、水溶性塩、並びに水を含有し、
    25℃における粘度が10000mPa・s以上である、
    粘性組成物。
    Contains cellulose nanocrystals, hydroxyethyl cellulose, water-soluble salts, as well as water,
    The viscosity at 25 ° C. is 10,000 mPa · s or more.
    Viscous composition.
  2. 前記ヒドロキシエチルセルロースが架橋剤で架橋されたヒドロキシエチルセルロースである、請求項1に記載の粘性組成物。 The viscous composition according to claim 1, wherein the hydroxyethyl cellulose is hydroxyethyl cellulose crosslinked with a cross-linking agent.
  3. 前記架橋剤で架橋されたヒドロキシエチルセルロースが、
    架橋剤を0.35質量%以上含有する架橋ヒドロキシエチルセルロースである、
    請求項2に記載の粘性組成物。
    Hydroxyethyl cellulose crosslinked with the crosslinking agent
    A crosslinked hydroxyethyl cellulose containing 0.35% by mass or more of a crosslinking agent.
    The viscous composition according to claim 2.
  4. 前記架橋剤がジアルデヒド化合物である、請求項2又は3に記載の粘性組成物。 The viscous composition according to claim 2 or 3, wherein the cross-linking agent is a dialdehyde compound.
  5. 水溶性塩の含有量が、0.1質量%以上である、請求項1~4のいずれかに記載の粘性組成物。 The viscous composition according to any one of claims 1 to 4, wherein the content of the water-soluble salt is 0.1% by mass or more.
  6. 透過率が10%以上である、請求項1~5のいずれかに記載の粘性組成物。 The viscous composition according to any one of claims 1 to 5, which has a transmittance of 10% or more.
  7. 周波数分散測定によって得られる貯蔵弾性率G’、損失弾性率G’’の大小関係が、周波数0.1rad/s~100rad/sの全範囲において、貯蔵弾性率G’>損失弾性率G’’である、請求項1~6のいずれかに記載の粘性組成物。 The magnitude relationship between the storage elastic modulus G'and the loss elastic modulus G'' obtained by the frequency dispersion measurement is the storage elastic modulus G'> the loss elastic modulus G'> in the entire frequency range of 0.1 rad / s to 100 rad / s. The viscous composition according to any one of claims 1 to 6.
  8. (1)セルロースナノクリスタル及びヒドロキシエチルセルロースの混合物を水に混合すること、並びに
    (2)当該混合物にさらに水溶性塩を加えること
    を含む、粘性組成物の製造方法。
    A method for producing a viscous composition, which comprises mixing (1) a mixture of cellulose nanocrystals and hydroxyethyl cellulose with water, and (2) adding a water-soluble salt to the mixture.
  9. (1)セルロースナノクリスタル及びヒドロキシエチルセルロースの混合物を水に混合すること
    を含む、水溶性塩添加用の粘性組成物の製造方法。
    (1) A method for producing a viscous composition for adding a water-soluble salt, which comprises mixing a mixture of cellulose nanocrystals and hydroxyethyl cellulose with water.
  10. (1)の前に、さらに
    (0)セルロースナノクリスタル及びヒドロキシエチルセルロースを混合すること
    を含む、請求項8又は9に記載の方法。
    The method according to claim 8 or 9, further comprising mixing (0) cellulose nanocrystals and hydroxyethyl cellulose before (1).
PCT/JP2021/036041 2020-10-02 2021-09-30 Viscous composition WO2022071463A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022554079A JPWO2022071463A1 (en) 2020-10-02 2021-09-30

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020167876 2020-10-02
JP2020-167876 2020-10-02

Publications (1)

Publication Number Publication Date
WO2022071463A1 true WO2022071463A1 (en) 2022-04-07

Family

ID=80951644

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/036041 WO2022071463A1 (en) 2020-10-02 2021-09-30 Viscous composition

Country Status (2)

Country Link
JP (1) JPWO2022071463A1 (en)
WO (1) WO2022071463A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023013535A1 (en) * 2021-08-06 2023-02-09 住友精化株式会社 Viscous composition
WO2023013537A1 (en) * 2021-08-06 2023-02-09 住友精化株式会社 Viscous composition

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5843402B2 (en) * 1977-02-18 1983-09-27 フジケミカル株式会社 Manufacturing method of hydroxyethylcellulose
JP2012531478A (en) * 2009-06-30 2012-12-10 アルバータ イノベイツ−テクノロジー フューチャーズ Anti-icing liquid for aircraft formulated with nanocrystalline cellulose
JP2015527451A (en) * 2012-07-31 2015-09-17 ハーキュリーズ・インコーポレーテッド Stabilized multiphase aqueous composition
WO2018061890A1 (en) * 2016-09-29 2018-04-05 住友精化株式会社 Method for producing water-soluble hydroxyethyl cellulose
JP2018104616A (en) * 2016-12-28 2018-07-05 株式会社パイロットコーポレーション Water-based ink composition for writing instruments, and the writing instruments using the same
JP2019520393A (en) * 2016-07-08 2019-07-18 アストラゼネカ・アクチエボラーグAstrazeneca Aktiebolag Pharmaceutical composition
CN110183698A (en) * 2019-06-28 2019-08-30 陕西科技大学 A kind of poly- polyisocyanates composite membrane of HEC/CNC/ and its preparation method and application

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5843402B2 (en) * 1977-02-18 1983-09-27 フジケミカル株式会社 Manufacturing method of hydroxyethylcellulose
JP2012531478A (en) * 2009-06-30 2012-12-10 アルバータ イノベイツ−テクノロジー フューチャーズ Anti-icing liquid for aircraft formulated with nanocrystalline cellulose
JP2015527451A (en) * 2012-07-31 2015-09-17 ハーキュリーズ・インコーポレーテッド Stabilized multiphase aqueous composition
JP2019520393A (en) * 2016-07-08 2019-07-18 アストラゼネカ・アクチエボラーグAstrazeneca Aktiebolag Pharmaceutical composition
WO2018061890A1 (en) * 2016-09-29 2018-04-05 住友精化株式会社 Method for producing water-soluble hydroxyethyl cellulose
JP2018104616A (en) * 2016-12-28 2018-07-05 株式会社パイロットコーポレーション Water-based ink composition for writing instruments, and the writing instruments using the same
CN110183698A (en) * 2019-06-28 2019-08-30 陕西科技大学 A kind of poly- polyisocyanates composite membrane of HEC/CNC/ and its preparation method and application

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LENFANT GILLES, MARIE-CLAUDE HEUZEY, THEO G.M. VAN DE VEN PIERRE J. CARREAU: "GELATION OF CRYSTALLINE NANOCELLULOSE IN THE PRESENCE OF HYDROXYETHYL CELLULOSE", THE CANADIAN JOURNAL OF CHEMICAL ENGINEERING, vol. 95, 21 April 2017 (2017-04-21), pages 1891 - 1900, XP055918199 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023013535A1 (en) * 2021-08-06 2023-02-09 住友精化株式会社 Viscous composition
WO2023013537A1 (en) * 2021-08-06 2023-02-09 住友精化株式会社 Viscous composition

Also Published As

Publication number Publication date
JPWO2022071463A1 (en) 2022-04-07

Similar Documents

Publication Publication Date Title
Wang et al. Fabrication and characterization of chitin nanofibers through esterification and ultrasound treatment
WO2022071474A1 (en) Viscous composition
Azzam et al. Preparation by grafting onto, characterization, and properties of thermally responsive polymer-decorated cellulose nanocrystals
CN107532377B (en) Nanoflibrillar cellulose product
Rebouillat et al. State of the art manufacturing and engineering of nanocellulose: a review of available data and industrial applications
EP1078008B1 (en) Microfibrillar cellulose derivatized to comprise anionic charges
Jin et al. Comparison of curdlan and its carboxymethylated derivative by means of Rheology, DSC, and AFM
WO2022071463A1 (en) Viscous composition
WO2022071473A1 (en) Viscous composition
US20030027883A1 (en) Biopolymers obtained by solid state irradiation in an unsaturated gaseous atmosphere
CN112494430B (en) Preparation method of pharmaceutical composition and pharmaceutical composition
EP3024976A1 (en) Method of modifying nanofibrillar cellulose composition
Andrade et al. Stable microfluidized bacterial cellulose suspension
WO2022071461A1 (en) Viscous composition
Martins et al. Dry Bacterial Cellulose and Carboxymethyl Cellulose formulations with interfacial-active performance: processing conditions and redispersion
Pawcenis et al. Effect of hydrolysis time, pH and surfactant type on stability of hydrochloric acid hydrolyzed nanocellulose
JP2024501782A (en) Homogeneous biopolymer suspension, its manufacturing process and its use
Furtado et al. Characterization of spray-dried nanofibrillated cellulose and effect of different homogenization methods on the stability and rheological properties of the reconstituted suspension
JP2023539608A (en) Efficient green process for preparation of nanocellulose, novel modified nanocellulose and its applications
JP7191616B2 (en) gel composition
Branciforti et al. Morphological and rheological behaviors of micro-nanofibrillated NaOH-pretreated Aspen wood
Jiang et al. Characterization of bamboo shoot cellulose nanofibers modified by TEMPO oxidation and ball milling method and its application in W/O emulsion
WO2023013533A1 (en) Viscous composition
Mel’nikov et al. Deformation-strength properties of films derived from hydroxyethylcellulose filled with micro-and nanocrystalline cellulose
WO2023013535A1 (en) Viscous composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21875759

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022554079

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21875759

Country of ref document: EP

Kind code of ref document: A1