WO2022071461A1 - Viscous composition - Google Patents

Viscous composition Download PDF

Info

Publication number
WO2022071461A1
WO2022071461A1 PCT/JP2021/036039 JP2021036039W WO2022071461A1 WO 2022071461 A1 WO2022071461 A1 WO 2022071461A1 JP 2021036039 W JP2021036039 W JP 2021036039W WO 2022071461 A1 WO2022071461 A1 WO 2022071461A1
Authority
WO
WIPO (PCT)
Prior art keywords
cellulose
mpa
viscous composition
elastic modulus
present disclosure
Prior art date
Application number
PCT/JP2021/036039
Other languages
French (fr)
Japanese (ja)
Inventor
香澄 茂川
慎哉 岡崎
博史 山口
Original Assignee
住友精化株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友精化株式会社 filed Critical 住友精化株式会社
Priority to JP2022554078A priority Critical patent/JPWO2022071461A1/ja
Publication of WO2022071461A1 publication Critical patent/WO2022071461A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • A23L29/20Foods or foodstuffs containing additives; Preparation or treatment thereof containing gelling or thickening agents
    • A23L29/206Foods or foodstuffs containing additives; Preparation or treatment thereof containing gelling or thickening agents of vegetable origin
    • A23L29/262Cellulose; Derivatives thereof, e.g. ethers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/36Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
    • A61K47/38Cellulose; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/04Dispersions; Emulsions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/73Polysaccharides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/02Cellulose; Modified cellulose
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere

Definitions

  • the present disclosure relates to a viscous composition and the like, and more particularly to a viscous composition containing cellulose nanocrystals.
  • the contents of all documents described in this specification are incorporated herein by reference.
  • Nano-sized cellulose is called nanocellulose.
  • Examples of nanocellulose include cellulose nanocrystals (CNC), cellulose nanofibers (CNF), and bacterial nanocellulose produced by bacteria.
  • Nanocellulose is being studied for application to various materials due to its excellent properties.
  • the present inventors have conducted studies for the purpose of preparing a viscous composition containing nanocellulose, particularly cellulose nanocrystals, and having excellent viscosity.
  • a viscous composition containing a specific hydroxyethyl cellulose (HEC) together with cellulose nanocrystals may have excellent viscosity and viscoelasticity, and further studies have been conducted.
  • HEC hydroxyethyl cellulose
  • Item 1 Contains cellulose nanocrystals, hydroxyethyl cellulose, and water, The hydroxyethyl cellulose is hydroxyethyl cellulose crosslinked with a cross-linking agent.
  • the magnitude relationship between the storage elastic modulus G'and the loss elastic modulus G'' obtained by the frequency dispersion measurement is the storage elastic modulus G'> the loss elastic modulus G'> in the entire frequency range of 0.1 rad / s to 100 rad / s.
  • the viscosity at 25 ° C. is 9000 mPa ⁇ s or more (preferably 9000 to 20000 mPa ⁇ s). Viscous composition.
  • the viscosity of the 1.33 mass% aqueous solution at 25 ° C. is 4000 mPa ⁇ s or more (preferably 4000 to 18000 mPa ⁇ s).
  • Item 2. The viscous composition according to Item 1.
  • Item 3. The viscous composition according to Item 1 or 2, wherein the cross-linking agent is a dialdehyde compound.
  • Item 4. Item 6. The viscous composition according to any one of Items 1 to 3, wherein the cellulose nanocrystal is a nano-sized cellulose sulfate crystal.
  • a viscous composition containing hydroxyethyl cellulose (HEC) together with cellulose nanocrystals and having excellent viscosity and viscoelasticity.
  • HEC hydroxyethyl cellulose
  • the present disclosure preferably includes, but is not limited to, a viscous composition, a method for producing the same, and the like, and the present disclosure includes all disclosed in the present specification and recognized by those skilled in the art.
  • the viscous composition included in the present disclosure contains cellulose nanocrystals, hydroxyethyl cellulose, and water.
  • the viscous composition included in the present disclosure may be referred to as "the composition of the present disclosure”.
  • Cellulose nanocrystal is a kind of nanocellulose.
  • examples of nanocellulose made from wood or the like include cellulose nanofibers (CNF) and cellulose nanocrystals (CNC).
  • CNF cellulose nanofibers
  • CNC cellulose nanocrystals
  • nanocellulose having a length of about 5 to 10 ⁇ m or more is often referred to as cellulose nanofiber (CNF)
  • CNC cellulose nanocrystal
  • the nanocrystalline cellulose described in Patent Document 1 Japanese Patent Laid-Open No. 2012-531478 can be preferably used.
  • Cellulose is a natural polymer material that constitutes woody biomass and agricultural biomass together with hemicellulose and lignin. It is a homopolymer of repeating units of glucose linked by ⁇ -1,4-glycosidic bonds. Cellulose is formed linearly by ⁇ -1,4-glycosidic bonds, and they interact strongly with each other through hydrogen bonds. Due to its regular structure and strong hydrogen bonds, the cellulose polymer is highly crystalline and aggregates to form partial structures and microfibrils. Then, the microfibrils aggregate to form cellulosic fibers.
  • Nanocellulose is a rod-shaped fibril with a length / diameter ratio of approximately 20-200.
  • nanocellulose can be prepared, for example, from chemical pulp of wood fiber or agricultural fiber by removing the amorphous region mainly by acid hydrolysis to produce nano-sized fibril.
  • Cellulose nanocrystals can be formed and stabilized in an aqueous suspension by, for example, sonicating the fibrils or passing them through a high shear microfluidizer.
  • the second method is mainly physical processing. Bundles of microfibrils, usually tens of nanometers (nm) to several micrometer ( ⁇ m) in diameter, called cellulose microfibrils or microfibrillated cellulose, are produced by using high pressure homogenization and grinding. .. Steps with high intensity sonication have also been used to isolate fibril from natural cellulose fibers. High-intensity ultrasound can generate very strong mechanical vibration forces, which allows the separation of cellulose fibrils from biomass. This method produces microfibrillated cellulose having a diameter of less than about 60 nm, more preferably about 4 nm to about 15 nm, and a length of less than 1000 nm. Microfibrillated cellulose can also be subjected to, for example, further chemical, enzymatic and / or mechanical treatments. The microfibrillated cellulose can also be used as a cellulose nanocrystal.
  • the cellulose nanocrystals used in the compositions of the present disclosure are, for example, by removing amorphous regions from pulp by acid hydrolysis, or by physical treatment such as high pressure treatment, pulverization treatment, and ultrasonic treatment. It can be appropriately prepared by treatment (and even by using these in combination).
  • the cellulose portion of the cellulose nanocrystal used in the composition of the present disclosure may be a cellulose sulfate (cellulose sulfate).
  • a sodium salt is preferable. That is, the cellulose portion of the cellulose nanocrystal used in the composition of the present disclosure may be cellulose sulfate sodium sulfate.
  • cellulose nanocrystal indicates a crystal of nano-sized cellulose
  • the cellulose may be an unmodified form or a modified form.
  • the cellulose modified product for example, cellulose sulfate (particularly sodium cellulose sulfate) is preferably mentioned.
  • examples of the CNC include nanocellulose having a thickness of about 1 to 100 nm and a length of about 50 to 500 nm.
  • the upper or lower limit of the thickness range (1 to 100 nm) is, for example, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, and so on.
  • the thickness range may be 2 to 99 nm.
  • the upper limit or the lower limit of the length range (50 to 500 nm) is, for example, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 210, 220, 230, 240, 250, 260, 270, 280, 290, 300, 310, 320, 330, 340, 350, 360, 370, 380, 390, 400, 410, 420, 430, 440, 450, 460, 470, 480, or 490 nm May be.
  • the length range may be 60 to 490 nm.
  • the ratio (length / thickness) of the length (nm) to the thickness (nm) can be, for example, about 1 to 200.
  • the upper or lower limit of the range of the ratio is, for example, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21. , 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46. , 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71.
  • the hydroxyethyl cellulose (HEC) used in the composition of the present disclosure is hydroxyethyl cellulose crosslinked with a cross-linking agent (in the present specification, it may be referred to as cross-linked HEC).
  • cross-linking agent examples include polyvalent aldehyde compounds (preferably dialdehyde compounds) such as glutaraldehyde and glioxal, 2,2-bishydroxymethylbutanol-tris [3- (1-aziridinyl) propionate], 1,8-.
  • polyvalent aziridin compounds such as hexamethylene diethylene urea
  • polyvalent isocyanate compounds such as tolylene diisocyanate and hexamethylene diisocyanate. Of these, dialdehyde compounds are preferred, and glyoxal is particularly preferred.
  • the cross-linking agent may be used alone or in combination of two or more.
  • Cross-linking of hydroxyethyl cellulose with a cross-linking agent can be carried out by a known method or a method that can be easily conceived from a known method. For example, it can be carried out by the method described in Japanese Patent Publication No. 58-43402.
  • the crosslinked HEC preferably has a viscosity of a 1.33% by mass (w / w%) aqueous solution at 25 ° C. of 4000 mPa ⁇ s or more, and more preferably 4000 to 18000 mPa ⁇ s.
  • the upper or lower limit of the viscosity range is, for example, 4100, 4200, 4300, 4400, 4500, 4600, 4700, 4800, 4900, 5000, 5100, 5200, 5300, 5400, 5500, 5600, 5700, 5800, 5900, 6000.
  • the viscosity range may be 4100 to 17900 mPa ⁇ s.
  • the crosslinked HEC is not particularly limited, but preferably has a molecular weight of, for example, about 1800000 to 4300000.
  • the upper or lower limit of the molecular weight range is, for example, 19000000, 2000000, 210000, 2200, 230000, 2400000, 25, 260000, 2700, 280000, 2900, 3000, 3100, 3200, 3300, 3400, 3500, 3600, 3700, 380000, It may be 3900000, 4000, 410000, or 4200000.
  • the molecular weight range may be 1900000 to 4200000.
  • the molecular weight is a mass average molecular weight obtained by gel permeation chromatography (GPC) and converted into polyethylene oxide.
  • GPC gel permeation chromatography
  • Examples of the column for measuring the mass average molecular weight in terms of polyethylene glycol by GPC include Shodex OHpak SB-807HQ, Shodex OHpak SB-806HQ, Shodex OHpak SB-804HQ and the like. Detailed GPC measurement conditions are shown below.
  • HEC is a compound in which the OH group of cellulose is OR (R indicates H or CH 2 CH 2 OH), and is contained in the composition of the present disclosure.
  • a group other than H or CH 2 CH 2 OH may be present as R of the OR, but it is preferable that no hydrophobic group is present as R.
  • R an alkyl group, particularly a linear chain having 6 to 20 carbon atoms (6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20) or Those having a branched chain alkyl group (more specifically, for example, a cetyl group) may be used, but it is preferable not to use them.
  • the composition of the present disclosure contains water as a solvent. Further, a solvent other than water may be further contained as long as the effect of the composition of the present disclosure is not impaired.
  • the solvent other than water include water-soluble solvents, and for example, water-soluble organic solvents are preferable.
  • the water-soluble organic solvent include monohydric or divalent alkyl alcohols having 1 to 6 carbon atoms (1, 2, 3, 4, 5, or 6), and more specifically, for example. Examples thereof include ethanol and butylene glycol.
  • the composition of the present disclosure has a storage elastic modulus (G') larger than a loss elastic modulus (G'') value (that is, storage elastic modulus G'> loss elastic modulus G''). preferable.
  • the composition of the present disclosure preferably has a loss tangent (tan ⁇ ) of less than 1 (that is, tan ⁇ ⁇ 1).
  • the loss tangent (tan ⁇ ) is the ratio (G ′′ / G ′) of the storage elastic modulus (G ′) and the loss elastic modulus (G ′′), and is used as one of the indexes of the viscoelastic property.
  • the larger the value of the loss tangent the smaller the elastic modulus.
  • the loss tangent is used as an index of sol and gel, and usually tan ⁇ > 1 is sol and tan ⁇ ⁇ 1 is gel.
  • the values of the storage elastic modulus G ′ and the loss elastic modulus G ′′ can be measured at 25 ° C. using a viscoelasticity measuring device (leometer). More specifically, after confirming the linear region by measuring the strain dispersion at 1 Hz, an appropriate distortion is selected within the range of the linear region, and the frequency dispersion at 25 ° C. (frequency: 0.1 rad / s to 100 rad / s). And observe the magnitude relationship between G'and G''.
  • the storage elastic modulus G'and the loss elastic modulus G'' obtained by frequency dispersion measurement have a magnitude relationship of the storage elastic modulus G in the entire range of frequency: 0.1 rad / s to 100 rad / s. It is preferable that'> loss elastic modulus G''.
  • composition of the present disclosure has a viscosity at 25 ° C. of 9000 mPa ⁇ s or more, preferably 9000 to 20000 mPa ⁇ s.
  • the upper or lower limit of the viscosity range is, for example, 9100, 9200, 9300, 9400, 9500, 9600, 9700, 9800, 9900, 10000, 10100, 10200, 10300, 10400, 10500, 10600, 10700, 10800, 10900, 11000.
  • the viscosity is a value measured at 25 ° C. using a rotary viscometer manufactured by BrookField (model number: DVE, spindle: LV) at a rotation speed of 20 rpm.
  • the spindle used for measurement is spindle LV-1 when it is less than 200 mPa ⁇ s, spindle LV-2 when it is 200 mPa ⁇ s or more and less than 1000 mPa ⁇ s, and 1000 mPa ⁇ s or more and less than 4000 mPa ⁇ s.
  • the content ratio of CNC and crosslinked HEC in the composition of the present disclosure is not particularly limited as long as the effect is not impaired, but for example, about 0.05 to 1 part by mass of CNC with respect to 1 part by mass of crosslinked HEC. Is preferable.
  • the upper or lower limit of the range is, for example, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, It may be 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, or 0.95.
  • the range may be 0.1 to 0.8.
  • the CNC content in the composition of the present disclosure is not particularly limited as long as the effect is not impaired, and examples thereof include about 0.1 to 5% by mass.
  • the upper or lower limit of the range is, for example, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.1, 1.2.
  • composition of the present disclosure may contain components other than CNC, crosslinked HEC, and water as long as the effect is not impaired.
  • examples of such an ingredient include simple substances and ingredients known in the fields of pharmaceuticals, cosmetics, and foods.
  • the method for preparing the composition of the present disclosure is not particularly limited.
  • it can be prepared by mixing CNC and crosslinked HEC, or by dissolving them in water in order.
  • it is dissolved in water, it is preferable to mix it (for example, stirring and mixing).
  • composition of the present disclosure has excellent viscosity and viscoelasticity, it is useful in technical fields in which products required to have such properties exist, for example, in the fields of pharmaceuticals, cosmetics, and foods. That is, the composition of the present disclosure can be preferably used, for example, as a pharmaceutical composition, a cosmetic composition, a food composition, or the like.
  • Measurement conditions Leometer: TA Instrument AR-2000ex Plate: 60 mm, 1 ° cone plate Measurement temperature: 25 ° C Distortion: 0.1 to 10% (selected within the range of the linear region obtained in the distortion dispersion measurement at 1 Hz) Frequency: 0.1 rad / s to 100 rad / s [Viscosity measurement] The viscosity of each viscous composition was measured at 25 ° C. using a rotary viscometer (model number: DVE, spindle: LV) manufactured by BrookField at a rotation speed of 20 rpm.
  • the spindle used for measurement is spindle LV-1 when it is less than 200 mPa ⁇ s, spindle LV-2 when it is 200 mPa ⁇ s or more and less than 1000 mPa ⁇ s, and 1000 mPa ⁇ s or more and less than 4000 mPa ⁇ s.
  • Cellulose Nanocrystals manufactured by Alberta-Pacific Forest Industries Inc.
  • CEOLUS manufactured by Asahi Kasei
  • a part of Cellulose Nanocrystals is sodium cellulose sulfate.
  • water-soluble polymers All powders were purchased and used.
  • the water-soluble polymers 1, 2, 3, 4, 5, 6 and 7 were obtained from Sumitomo Seika Chemical Co., Ltd., and the water-soluble polymers 8 and 9 were obtained from DSP Gokyo Food & Chemicals (see Table 1).
  • the water-soluble polymers 1 to 6 are crosslinked HECs crosslinked by glyoxal, and the water-soluble polymers 7 are uncrosslinked HECs.
  • a cellulose powder and a water-soluble polymer powder were mixed, and the mixed powder was stirred and mixed with ion-exchanged water to dissolve the mixture to prepare a viscous composition. Then, the viscoelasticity and viscosity of the viscous composition were measured. The results are also shown in Table 1.

Abstract

Provided is a viscous composition that contains cellulose nanocrystals in a favorable manner. More specifically, provided is a viscous composition comprising cellulose nanocrystals, hydroxyethyl cellulose, and water, wherein the hydroxyethyl cellulose has been cross-linked with a crosslinking agent, storage modulus G'>loss modulus G'', and viscosity at 25°C is not less than 9,000 mPa·s.

Description

粘性組成物Viscous composition
 本開示は、粘性組成物等に関し、より詳細にはセルロースナノクリスタルを含有する粘性組成物に関する。なお、本明細書に記載される全ての文献の内容は参照により本明細書に組み込まれる。 The present disclosure relates to a viscous composition and the like, and more particularly to a viscous composition containing cellulose nanocrystals. The contents of all documents described in this specification are incorporated herein by reference.
 ナノサイズのセルロースはナノセルロースと呼ばれている。ナノセルロースには、セルロースナノクリスタル(CNC)やセルロースナノファイバー(CNF)、バクテリアによって生成されるバクテリアナノセルロース等がある。 Nano-sized cellulose is called nanocellulose. Examples of nanocellulose include cellulose nanocrystals (CNC), cellulose nanofibers (CNF), and bacterial nanocellulose produced by bacteria.
 ナノセルロースは、その優れた特性のため、様々な材料への応用が研究されている。 Nanocellulose is being studied for application to various materials due to its excellent properties.
特表2012-531478号公報Special Table 2012-531478 Gazette 特表2014-510846号公報Japanese Patent Publication No. 2014-510846
本発明者らは、ナノセルロース、特にセルロースナノクリスタルを含有し、優れた粘性を有する粘性組成物を調製することを目的に検討を行った。 The present inventors have conducted studies for the purpose of preparing a viscous composition containing nanocellulose, particularly cellulose nanocrystals, and having excellent viscosity.
 本発明者らは、特定のヒドロキシエチルセルロース(HEC)をセルロースナノクリスタルとともに含有する粘性組成物が、優れた粘性及び粘弾性を有する可能性を見いだし、さらに検討を重ねた。 The present inventors have found that a viscous composition containing a specific hydroxyethyl cellulose (HEC) together with cellulose nanocrystals may have excellent viscosity and viscoelasticity, and further studies have been conducted.
 本開示は例えば以下の項に記載の主題を包含する。
項1.
セルロースナノクリスタル、ヒドロキシエチルセルロース、及び水を含有し、
前記ヒドロキシエチルセルロースが架橋剤で架橋されたヒドロキシエチルセルロースであり、
周波数分散測定によって得られる貯蔵弾性率G’、損失弾性率G’’の大小関係が、周波数0.1rad/s~100rad/sの全範囲において、貯蔵弾性率G’>損失弾性率G’’であり、
25℃における粘度が9000mPa・s以上(好ましくは9000~20000mPa・s)である、
粘性組成物。
項2.
前記架橋剤で架橋されたヒドロキシエチルセルロースが、
その1.33質量%水溶液の、25℃における粘度が4000mPa・s以上(好ましくは4000~18000mPa・s)である、
項1に記載の粘性組成物。
項3.
前記架橋剤がジアルデヒド化合物である、項1又は2に記載の粘性組成物。
項4.
セルロースナノクリスタルが、ナノサイズのセルロース硫酸塩クリスタルである、項1~3のいずれかに記載の粘性組成物。
The present disclosure includes, for example, the subjects described in the following sections.
Item 1.
Contains cellulose nanocrystals, hydroxyethyl cellulose, and water,
The hydroxyethyl cellulose is hydroxyethyl cellulose crosslinked with a cross-linking agent.
The magnitude relationship between the storage elastic modulus G'and the loss elastic modulus G'' obtained by the frequency dispersion measurement is the storage elastic modulus G'> the loss elastic modulus G'> in the entire frequency range of 0.1 rad / s to 100 rad / s. And
The viscosity at 25 ° C. is 9000 mPa · s or more (preferably 9000 to 20000 mPa · s).
Viscous composition.
Item 2.
Hydroxyethyl cellulose crosslinked with the crosslinking agent
The viscosity of the 1.33 mass% aqueous solution at 25 ° C. is 4000 mPa · s or more (preferably 4000 to 18000 mPa · s).
Item 2. The viscous composition according to Item 1.
Item 3.
Item 2. The viscous composition according to Item 1 or 2, wherein the cross-linking agent is a dialdehyde compound.
Item 4.
Item 6. The viscous composition according to any one of Items 1 to 3, wherein the cellulose nanocrystal is a nano-sized cellulose sulfate crystal.
 ヒドロキシエチルセルロース(HEC)をセルロースナノクリスタルとともに含有し、且つ優れた粘性及び粘弾性を有する粘性組成物が提供される。 Provided is a viscous composition containing hydroxyethyl cellulose (HEC) together with cellulose nanocrystals and having excellent viscosity and viscoelasticity.
 以下、本開示に包含される各実施形態について、さらに詳細に説明する。本開示は、粘性組成物及びその製造方法等を好ましく包含するが、これらに限定されるわけではなく、本開示は本明細書に開示され当業者が認識できる全てを包含する。 Hereinafter, each embodiment included in the present disclosure will be described in more detail. The present disclosure preferably includes, but is not limited to, a viscous composition, a method for producing the same, and the like, and the present disclosure includes all disclosed in the present specification and recognized by those skilled in the art.
 本開示に包含される粘性組成物は、セルロースナノクリスタル、ヒドロキシエチルセルロース、及び水を含有する。本開示に包含される当該粘性組成物を「本開示の組成物」ということがある。 The viscous composition included in the present disclosure contains cellulose nanocrystals, hydroxyethyl cellulose, and water. The viscous composition included in the present disclosure may be referred to as "the composition of the present disclosure".
 セルロースナノクリスタルは、ナノセルロースの1種である。特に木材等を原料とするナノセルロースとして、セルロースナノファイバー(CNF)とセルロースナノクリスタル(CNC)が挙げられる。ナノセルロースのうち、長さが比較的長いものを、セルロースナノファイバー(CNF)と呼び、長さが比較的短いものをセルロースナノクリスタル(CNC)と呼ぶ。限定されるわけでは無いが、長さがおよそ5~10μm若しくはそれ以上のナノセルロースをセルロースナノファイバー(CNF)とし、長さがCNFよりも短いものをセルロースナノクリスタル(CNC)とすることが多いようである。  Cellulose nanocrystal is a kind of nanocellulose. In particular, examples of nanocellulose made from wood or the like include cellulose nanofibers (CNF) and cellulose nanocrystals (CNC). Among nanocellulose, those having a relatively long length are called cellulose nanofibers (CNF), and those having a relatively short length are called cellulose nanocrystals (CNC). Although not limited, nanocellulose having a length of about 5 to 10 μm or more is often referred to as cellulose nanofiber (CNF), and those having a length shorter than CNF are often referred to as cellulose nanocrystal (CNC). It seems. The
 本開示の組成物に用いるCNCとしては、例えば上記特許文献1(特表2012-531478号公報)に記載のナノ結晶セルロースを好ましく用いることができる。 As the CNC used in the composition of the present disclosure, for example, the nanocrystalline cellulose described in Patent Document 1 (Japanese Patent Laid-Open No. 2012-531478) can be preferably used.
 セルロースは、ヘミセルロース及びリグニンと共に木質バイオマス及び農業バイオマスを構成する天然ポリマー材料である。それは、β-1,4-グリコシド結合により連結されたグルコースの繰り返し単位のホモポリマーである。β-1,4-グリコシド結合によってセルロースは直鎖状に形成され、それらは水素結合を通して相互に強力に作用し合う。その規則的な構造及び強力な水素結合のため、セルロースポリマーは高結晶質であり、凝集して部分構造体及びミクロフィブリルを形成する。そして、ミクロフィブリルが凝集して、セルロース系繊維を形成する。 Cellulose is a natural polymer material that constitutes woody biomass and agricultural biomass together with hemicellulose and lignin. It is a homopolymer of repeating units of glucose linked by β-1,4-glycosidic bonds. Cellulose is formed linearly by β-1,4-glycosidic bonds, and they interact strongly with each other through hydrogen bonds. Due to its regular structure and strong hydrogen bonds, the cellulose polymer is highly crystalline and aggregates to form partial structures and microfibrils. Then, the microfibrils aggregate to form cellulosic fibers.
 木質バイオマス又は農業バイオマスから精製したセルロースは、細菌のプロセスにより大規模に崩壊又は生成することができる。セルロース系材料がナノサイズの繊維により構成され、該材料の性質がそのナノファイバーの構造により決定する場合、これらのポリマーはナノセルロースと言われる。一般的に、ナノセルロースは、およそ20~200の長さ/直径比を有する棒状のフィブリルである。 Cellulose purified from woody biomass or agricultural biomass can be disrupted or produced on a large scale by bacterial processes. When a cellulosic material is composed of nano-sized fibers and the properties of the material are determined by the structure of the nanofibers, these polymers are referred to as nanocellulose. In general, nanocellulose is a rod-shaped fibril with a length / diameter ratio of approximately 20-200.
 一般的にナノセルロースの調製は2つの方法により説明することができる。第1の方法においては、ナノセルロースは、例えば木質繊維又は農業繊維の化学パルプから、主に酸加水分解によって非晶領域を除き、ナノサイズのフィブリルを生成することにより調製することができる。当該フィブリルを、例えば超音波処理するか、又は高剪断マイクロフルイダイザーに通すかすることにより、水性懸濁液中でセルロースナノクリスタルを生成及び安定化することができる。 Generally, the preparation of nanocellulose can be explained by two methods. In the first method, nanocellulose can be prepared, for example, from chemical pulp of wood fiber or agricultural fiber by removing the amorphous region mainly by acid hydrolysis to produce nano-sized fibril. Cellulose nanocrystals can be formed and stabilized in an aqueous suspension by, for example, sonicating the fibrils or passing them through a high shear microfluidizer.
 第2の方法は、主に物理的処理である。セルロースミクロフィブリル又はミクロフィブリル化セルロース等と呼ばれる、通常数十ナノメートル(nm)~数マイクロメートル(μm)の直径を有するミクロフィブリルの束が、高圧均質化及び粉砕処理を用いることにより生成される。高強度超音波処理を用いた工程も、天然のセルロース繊維からフィブリルを単離するのに用いられてきた。高強度超音波は、非常に強い機械的振動力を生み出すことができ、そのためセルロースフィブリルのバイオマスからの分離が可能となる。この方法は、約60nm未満、より好ましくは約4nm~約15nmの直径、及び1000nm未満の長さを有するミクロフィブリル化セルロースを生成する。ミクロフィブリル化セルロースには、例えばさらに化学的、酵素的及び/又は機械的処理を施すこともできる。当該ミクロフィブリル化セルロースもセルロースナノクリスタルとして用いることができる。 The second method is mainly physical processing. Bundles of microfibrils, usually tens of nanometers (nm) to several micrometer (μm) in diameter, called cellulose microfibrils or microfibrillated cellulose, are produced by using high pressure homogenization and grinding. .. Steps with high intensity sonication have also been used to isolate fibril from natural cellulose fibers. High-intensity ultrasound can generate very strong mechanical vibration forces, which allows the separation of cellulose fibrils from biomass. This method produces microfibrillated cellulose having a diameter of less than about 60 nm, more preferably about 4 nm to about 15 nm, and a length of less than 1000 nm. Microfibrillated cellulose can also be subjected to, for example, further chemical, enzymatic and / or mechanical treatments. The microfibrillated cellulose can also be used as a cellulose nanocrystal.
 つまりは概すれば、本開示の組成物に用いるセルロースナノクリスタルは、例えばパルプから、酸加水分解により非結晶領域を除くことにより、あるいは、高圧処理、粉砕処理、超音波処理等の物理的な処理により、(またさらにはこれらを組み合わせて用いることにより)適宜調製することができる。 In other words, the cellulose nanocrystals used in the compositions of the present disclosure are, for example, by removing amorphous regions from pulp by acid hydrolysis, or by physical treatment such as high pressure treatment, pulverization treatment, and ultrasonic treatment. It can be appropriately prepared by treatment (and even by using these in combination).
 また、本開示の組成物に用いるセルロースナノクリスタルのセルロース部分は、硫酸セルロース塩(セルロース硫酸塩)であってもよい。塩としてはナトリウム塩が好ましい。つまり、本開示の組成物に用いるセルロースナノクリスタルのセルロース部分は、セルロース硫酸ナトリウムであってもよい。 Further, the cellulose portion of the cellulose nanocrystal used in the composition of the present disclosure may be a cellulose sulfate (cellulose sulfate). As the salt, a sodium salt is preferable. That is, the cellulose portion of the cellulose nanocrystal used in the composition of the present disclosure may be cellulose sulfate sodium sulfate.
 よって、本開示においては、「セルロースナノクリスタル」若しくは「CNC」との文言は、ナノサイズのセルロースの結晶を示しており、当該セルロースは非修飾体であっても修飾体であってもよい。セルロース修飾体としては、上記の通り、例えばセルロース硫酸塩(特にセルロース硫酸ナトリウム)が好ましく挙げられる。 Therefore, in the present disclosure, the wording "cellulose nanocrystal" or "CNC" indicates a crystal of nano-sized cellulose, and the cellulose may be an unmodified form or a modified form. As described above, as the cellulose modified product, for example, cellulose sulfate (particularly sodium cellulose sulfate) is preferably mentioned.
 特に限定はされないが、CNCとしては、例えば、太さが1~100nm程度、長さが50~500nm程度、のナノセルロースを挙げることができる。当該太さの範囲(1~100nm)の上限又は下限は、例えば、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40、41、42、43、44、45、46、47、48、49、50、51、52、53、54、55、56、57、58、59、60、61、62、63、64、65、66、67、68、69、70、71、72、73、74、75、76、77、78、79、80、81、82、83、84、85、86、87、88、89、90、91、92、93、94、95、96、97、98、又は99nmであってもよい。例えば、当該太さの範囲は2~99nmであってもよい。また、当該長さの範囲(50~500nm)の上限又は下限は、例えば60、70、80、90、100、
110、120、130、140、150、160、170、180、190、200、
210、220、230、240、250、260、270、280、290、300、
310、320、330、340、350、360、370、380、390、400、
410、420、430、440、450、460、470、480、又は490nm
であってもよい。例えば、当該長さの範囲は60~490nmであってもよい。
Although not particularly limited, examples of the CNC include nanocellulose having a thickness of about 1 to 100 nm and a length of about 50 to 500 nm. The upper or lower limit of the thickness range (1 to 100 nm) is, for example, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, and so on. 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, It may be 93, 94, 95, 96, 97, 98, or 99 nm. For example, the thickness range may be 2 to 99 nm. Further, the upper limit or the lower limit of the length range (50 to 500 nm) is, for example, 60, 70, 80, 90, 100,
110, 120, 130, 140, 150, 160, 170, 180, 190, 200,
210, 220, 230, 240, 250, 260, 270, 280, 290, 300,
310, 320, 330, 340, 350, 360, 370, 380, 390, 400,
410, 420, 430, 440, 450, 460, 470, 480, or 490 nm
May be. For example, the length range may be 60 to 490 nm.
 また、CNCとしては、長さ(nm)と太さ(nm)の比(長さ/太さ)が、例えば1~200程度のもの挙げることができる。当該比の範囲の上限又は下限は、例えば2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40、41、42、43、44、45、46、47、48、49、50、51、52、53、54、55、56、57、58、59、60、61、62、63、64、65、66、67、68、69、70、71、72、73、74、75、76、77、78、79、80、81、82、83、84、85、86、87、88、89、90、91、92、93、94、95、96、97、98、99、100、101、102、103、104、105、106、107、108、109、110、111、112、113、114、115、116、117、118、119、120、121、122、123、124、125、126、127、128、129、130、131、132、133、134、135、136、137、138、139、140、141、142、143、144、145、146、147、148、149、150、151、152、153、154、155、156、157、158、159、160、161、162、163、164、165、166、167、168、169、170、171、172、173、174、175、176、177、178、179、180、181、182、183、184、185、186、187、188、189、190、191、192、193、194、195、196、197、198、又は199であってもよい。例えば、当該比の範囲は2~190であってもよい。 Further, as the CNC, the ratio (length / thickness) of the length (nm) to the thickness (nm) can be, for example, about 1 to 200. The upper or lower limit of the range of the ratio is, for example, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21. , 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46. , 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71. , 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96 , 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121. , 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146. 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171 , 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196. It may be 197, 198, or 199. For example, the range of the ratio may be 2 to 190.
 本開示の組成物に用いるヒドロキシエチルセルロース(HEC)は、架橋剤で架橋されたヒドロキシエチルセルロース(本明細書では、架橋HECということがある)である。 The hydroxyethyl cellulose (HEC) used in the composition of the present disclosure is hydroxyethyl cellulose crosslinked with a cross-linking agent (in the present specification, it may be referred to as cross-linked HEC).
 架橋剤としては、例えば、グルタルアルデヒドやグリオキザール等の多価アルデヒド化合物(好ましくはジアルデヒド化合物)、2,2-ビスヒドロキシメチルブタノール-トリス[3-(1-アジリジニル)プロピオネート]、1,8-ヘキサメチレンジエチレンウレア等の多価アジリジン化合物、トリレンジイソシアネート、ヘキサメチレンジイソシアネート等の多価イソシアネート化合物等を挙げることができる。中でも、ジアルデヒド化合物が好ましく、グリオキザールが特に好ましい。架橋剤は、1種単独で又は2種以上を組み合わせて用いることができる。 Examples of the cross-linking agent include polyvalent aldehyde compounds (preferably dialdehyde compounds) such as glutaraldehyde and glioxal, 2,2-bishydroxymethylbutanol-tris [3- (1-aziridinyl) propionate], 1,8-. Examples thereof include polyvalent aziridin compounds such as hexamethylene diethylene urea and polyvalent isocyanate compounds such as tolylene diisocyanate and hexamethylene diisocyanate. Of these, dialdehyde compounds are preferred, and glyoxal is particularly preferred. The cross-linking agent may be used alone or in combination of two or more.
 架橋剤によるヒドロキシエチルセルロースの架橋は、公知の方法又は公知の方法から容易に想到できる方法により行うことができる。例えば、特公昭58-43402号公報に記載の方法により行うことができる。 Cross-linking of hydroxyethyl cellulose with a cross-linking agent can be carried out by a known method or a method that can be easily conceived from a known method. For example, it can be carried out by the method described in Japanese Patent Publication No. 58-43402.
 架橋HECは、1.33質量%(w/w%)水溶液の25℃における粘度が4000mPa・s以上のものが好ましく、4000~18000mPa・sのものがより好ましい。当該粘度範囲の上限又は下限は、例えば、4100、4200、4300、4400、4500、4600、4700、4800、4900、5000、5100、5200、5300、5400、5500、5600、5700、5800、5900、6000、6100、6200、6300、6400、6500、6600、6700、6800、6900、7000、7100、7200、7300、7400、7500、7600、7700、7800、7900、8000、8100、8200、8300、8400、8500、8600、8700、8800、8900、9000、9100、9200、9300、9400、9500、9600、9700、9800、9900、10000、10100、10200、10300、10400、10500、10600、10700、10800、10900、11000、11100、11200、11300、11400、11500、11600、11700、11800、11900、12000、12100、12200、12300、12400、12500、12600、12700、12800、12900、13000、13100、13200、13300、13400、13500、13600、13700、13800、13900、14000、14100、14200、14300、14400、14500、14600、14700、14800、14900、15000、15100、15200、15300、15400、15500、15600、15700、15800、15900、16000、16100、16200、16300、16400、16500、16600、16700、16800、16900、17000、17100、17200、17300、17400、17500、17600、17700、17800、又は17900mPa・sであってもよい。例えば当該粘度範囲は4100~17900mPa・sであってもよい。 The crosslinked HEC preferably has a viscosity of a 1.33% by mass (w / w%) aqueous solution at 25 ° C. of 4000 mPa · s or more, and more preferably 4000 to 18000 mPa · s. The upper or lower limit of the viscosity range is, for example, 4100, 4200, 4300, 4400, 4500, 4600, 4700, 4800, 4900, 5000, 5100, 5200, 5300, 5400, 5500, 5600, 5700, 5800, 5900, 6000. , 6100, 6200, 6300, 6400, 6500, 6600, 6700, 6800, 6900, 7000, 7100, 7200, 7300, 7400, 7500, 7600, 7700, 7800, 7900, 8000, 8100, 8200, 8300, 8400, 8500. , 8600, 8700, 8800, 8900, 9000, 9100, 9200, 9300, 9400, 9500, 9600, 9700, 9800, 9900, 10000, 10100, 10200, 10300, 10400, 10500, 10600, 10700, 10800, 10900, 11000 , 11100, 11200, 11300, 11400, 11500, 11600, 11700, 11800, 11900, 12000, 12100, 12200, 12300, 12400, 12500, 12600, 12700, 12800, 12900, 13000, 13100, 13200, 13300, 13400, 13500. , 13600, 13700, 13800, 13900, 14000, 14100, 14200, 14300, 14400, 14500, 14600, 14700, 14800, 14900, 15000, 15100, 15200, 15300, 15400, 15500, 15600, 15700, 15800, 15900, 16000. , 16100, 16200, 16300, 16400, 16500, 16600, 16700, 16800, 16900, 17000, 17100, 17200, 17300, 17400, 17500, 17600, 17700, 17800, or 17900 mPa · s. For example, the viscosity range may be 4100 to 17900 mPa · s.
 また、架橋HECは、特に限定はされないが、分子量が例えば1800000~4300000程度であることが好ましい。当該分子量範囲の上限または下限は、例えば1900000、2000000、2100000、2200000、2300000、2400000、25、2600000、2700000、2800000、2900000、3000000、3100000、3200000、3300000、3400000、3500000、3600000、3700000、3800000、3900000、4000000、4100000、又は4200000であってもよい。例えば当該分子量範囲は1900000~4200000であってもよい。 The crosslinked HEC is not particularly limited, but preferably has a molecular weight of, for example, about 1800000 to 4300000. The upper or lower limit of the molecular weight range is, for example, 19000000, 2000000, 210000, 2200, 230000, 2400000, 25, 260000, 2700, 280000, 2900, 3000, 3100, 3200, 3300, 3400, 3500, 3600, 3700, 380000, It may be 3900000, 4000, 410000, or 4200000. For example, the molecular weight range may be 1900000 to 4200000.
 なお、当該分子量は、ゲルパーミエーションクロマトグラフィー(GPC)で測定を行い、ポリエチレンオキサイド換算により求められる質量平均分子量である。GPCによってポリエチレングリコール換算による質量平均分子量を測定する際のカラムとしては、例えば、Shodex OHpak SB-807HQ、Shodex OHpak SB-806HQ、Shodex OHpak SB-804HQ等が挙げられる。詳細なGPC測定条件を次に示す。
装置:TOSOH HLC-8220 GPC
カラム:Shodex OHpak SB-807HQ、OHpak SB-806 HQ、 OHpak SB-804 HQ
移動相:0.2M-NaNO3
流速:0.6ml/min
カラム温度:40℃
標準サンプル:PEO Mw:3.76×104、1.07×105、1.43×105、2.77×105、5.8×105、7.86×105
サンプル濃度:0.06質量%
 また、特に制限されるわけでは無いが、HECは、セルロースのOH基がOR(RはH又はCHCHOHを示す)になった化合物であるところ、本開示の組成物に含有される架橋HECにおいては、当該ORのRとしてH又はCHCHOH以外の基が存在していてもよいが、Rとして疎水基は存在しないことが好ましい。例えば、当該Rとしてアルキル基、特に炭素数6~20(6、7、8、9、10、11、12、13、14、15、16、17、18、19、又は20)の直鎖若しくは分岐鎖アルキル基(より具体的には、例えばセチル基)が存在するものは、使用してもよいが、使用しないことが好ましい。
The molecular weight is a mass average molecular weight obtained by gel permeation chromatography (GPC) and converted into polyethylene oxide. Examples of the column for measuring the mass average molecular weight in terms of polyethylene glycol by GPC include Shodex OHpak SB-807HQ, Shodex OHpak SB-806HQ, Shodex OHpak SB-804HQ and the like. Detailed GPC measurement conditions are shown below.
Equipment: TOSOH HLC-8220 GPC
Columns: Shodex OHpak SB-807HQ, OHpak SB-806 HQ, OHpak SB-804 HQ
Mobile phase: 0.2M-NaNO 3
Flow velocity: 0.6 ml / min
Column temperature: 40 ° C
Standard sample: PEO Mw: 3.76 × 10 4 , 1.07 × 10 5 , 1.43 × 10 5 , 2.77 × 10 5 , 5.8 × 10 5 , 7.86 × 10 5
Sample concentration: 0.06% by mass
Further, although not particularly limited, HEC is a compound in which the OH group of cellulose is OR (R indicates H or CH 2 CH 2 OH), and is contained in the composition of the present disclosure. In the crosslinked HEC, a group other than H or CH 2 CH 2 OH may be present as R of the OR, but it is preferable that no hydrophobic group is present as R. For example, as the R, an alkyl group, particularly a linear chain having 6 to 20 carbon atoms (6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20) or Those having a branched chain alkyl group (more specifically, for example, a cetyl group) may be used, but it is preferable not to use them.
 本開示の組成物は溶媒として水を含有する。また、本開示の組成物の効果を損なわない範囲であれば、水以外の溶媒をさらに含有してもよい。水以外の溶媒としては、例えば、水溶性溶媒が挙げられ、例えば水溶性有機溶媒が好ましい。水溶性有機溶媒としては、具合的には例えば炭素数1~6(1、2、3、4、5、又は6)の1価若しくは2価のアルキルアルコールが挙げられ、より具体的には例えばエタノール、ブチレングリコール等が挙げられる。 The composition of the present disclosure contains water as a solvent. Further, a solvent other than water may be further contained as long as the effect of the composition of the present disclosure is not impaired. Examples of the solvent other than water include water-soluble solvents, and for example, water-soluble organic solvents are preferable. Examples of the water-soluble organic solvent include monohydric or divalent alkyl alcohols having 1 to 6 carbon atoms (1, 2, 3, 4, 5, or 6), and more specifically, for example. Examples thereof include ethanol and butylene glycol.
 本開示の組成物は、貯蔵弾性率(G’)の値の方が損失弾性率(G’’)の値よりも大きい(すなわち、貯蔵弾性率G’>損失弾性率G’’)ものが好ましい。言い換えれば、本開示の組成物は、損失正接(tanδ)が1より小さい(すなわち、tanδ<1)ものが好ましい。損失正接(tanδ)は、貯蔵弾性率(G’)と損失弾性率(G’’)の比(G’’/G’)であり、粘弾性的な性質の指標の一つとして用いられる。損失正接の値が大きいほど反発弾性率が小さくなる。例えば、損失正接はゾル、ゲルの指標として用いられ、通常はtanδ>1でゾル、tanδ<1でゲルとされる。 The composition of the present disclosure has a storage elastic modulus (G') larger than a loss elastic modulus (G'') value (that is, storage elastic modulus G'> loss elastic modulus G''). preferable. In other words, the composition of the present disclosure preferably has a loss tangent (tan δ) of less than 1 (that is, tan δ <1). The loss tangent (tan δ) is the ratio (G ″ / G ′) of the storage elastic modulus (G ′) and the loss elastic modulus (G ″), and is used as one of the indexes of the viscoelastic property. The larger the value of the loss tangent, the smaller the elastic modulus. For example, the loss tangent is used as an index of sol and gel, and usually tan δ> 1 is sol and tan δ <1 is gel.
 貯蔵弾性率G’及び損失弾性率G’’の値は、25℃において、粘弾性測定装置(レオメーター)を用いて測定することができる。より具体的には、1Hzにおける歪み分散測定により、線形領域を確認後、線形領域の範囲内で適当な歪みを選択し、25℃における周波数分散(周波数:0.1rad/s~100rad/s)を測定して、G‘とG’’の大小関係を観測する。 The values of the storage elastic modulus G ′ and the loss elastic modulus G ″ can be measured at 25 ° C. using a viscoelasticity measuring device (leometer). More specifically, after confirming the linear region by measuring the strain dispersion at 1 Hz, an appropriate distortion is selected within the range of the linear region, and the frequency dispersion at 25 ° C. (frequency: 0.1 rad / s to 100 rad / s). And observe the magnitude relationship between G'and G''.
 本開示の組成物は、周波数分散測定によって得られる貯蔵弾性率G’、損失弾性率G’’の大小関係が、周波数:0.1rad/s~100rad/sの全範囲において、貯蔵弾性率G’>損失弾性率G’’であるものが好ましい。 In the composition of the present disclosure, the storage elastic modulus G'and the loss elastic modulus G'' obtained by frequency dispersion measurement have a magnitude relationship of the storage elastic modulus G in the entire range of frequency: 0.1 rad / s to 100 rad / s. It is preferable that'> loss elastic modulus G''.
 また、本開示の組成物は、25℃における粘度が、9000mPa・s以上であり、好ましくは9000~20000mPa・sである。当該粘度範囲の上限又は下限は、例えば9100、9200、9300、9400、9500、9600、9700、9800、9900、10000、10100、10200、10300、10400、10500、10600、10700、10800、10900、11000、11100、11200、11300、11400、11500、11600、11700、11800、11900、12000、12100、12200、12300、12400、12500、12600、12700、12800、12900、13000、13100、13200、13300、13400、13500、13600、13700、13800、13900、14000、14100、14200、14300、14400、14500、14600、14700、14800、14900、15000、15100、15200、15300、15400、15500、15600、15700、15800、15900、16000、16100、16200、16300、16400、16500、16600、16700、16800、16900、17000、17100、17200、17300、17400、17500、17600、17700、17800、17900、18000、18100、18200、18300、18400、18500、18600、18700、18800、18900、19000、19100、19200、19300、19400、19500、19600、19700、19800、又は19900mPa・sであってもよい。例えば、当該粘度範囲は8100~19900mPa・sであってもよい。 Further, the composition of the present disclosure has a viscosity at 25 ° C. of 9000 mPa · s or more, preferably 9000 to 20000 mPa · s. The upper or lower limit of the viscosity range is, for example, 9100, 9200, 9300, 9400, 9500, 9600, 9700, 9800, 9900, 10000, 10100, 10200, 10300, 10400, 10500, 10600, 10700, 10800, 10900, 11000. 11100, 11200, 11300, 11400, 11500, 11600, 11700, 11800, 11900, 12000, 12100, 12200, 12300, 12400, 12500, 12600, 12700, 12800, 12900, 13000, 13100, 13200, 13300, 13400, 13500, 13600, 13700, 13800, 13900, 14000, 14100, 14200, 14300, 14400, 14500, 14600, 14700, 14800, 14900, 15000, 15100, 15200, 15300, 15400, 15500, 15600, 15700, 15800, 15900, 16000, 16100, 16200, 16300, 16400, 16500, 16600, 16700, 16800, 16900, 17000, 17100, 17200, 17300, 17400, 17500, 17600, 17700, 17800, 17900, 18000, 18100, 18200, 18300, 18400, 18500, It may be 18600, 18700, 18800, 18900, 19000, 19100, 19200, 19300, 19400, 19500, 19600, 19700, 19800, or 19900 mPa · s. For example, the viscosity range may be 8100 to 19,900 mPa · s.
 なお、本開示において、粘度は、25℃において、BrookField社製の回転粘度計(型番:DVE、スピンドル:LV)を用い、回転速度を毎分20回転として測定した値である。なお、測定に使用するスピンドルは、目安として、200mPa・s未満の場合はスピンドルLV-1、200mPa・s以上1000mPa・s未満の場合はスピンドルLV-2、1000mPa・s以上4000mPa・s未満の場合はスピンドルLV-3、4000mPa・s以上の場合はスピンドルLV-4とした。 In the present disclosure, the viscosity is a value measured at 25 ° C. using a rotary viscometer manufactured by BrookField (model number: DVE, spindle: LV) at a rotation speed of 20 rpm. As a guide, the spindle used for measurement is spindle LV-1 when it is less than 200 mPa · s, spindle LV-2 when it is 200 mPa · s or more and less than 1000 mPa · s, and 1000 mPa · s or more and less than 4000 mPa · s. Is Spindle LV-3, and Spindle LV-4 in the case of 4000 mPa · s or more.
 本開示の組成物における、CNC及び架橋HECの含有量比は、効果が損なわれない範囲であれば特に限定はされないが、例えば、架橋HEC1質量部に対して、CNC0.05~1質量部程度が好ましい。当該範囲の上限又は下限は、例えば、0.1、0.15、0.2、0.25、0.3、0.35、0.4、0.45、0.5、0.55、0.6、0.65、0.7、0.75、0.8、0.85、0.9、又は0.95であってもよい。例えば当該範囲は0.1~0.8であってもよい。 The content ratio of CNC and crosslinked HEC in the composition of the present disclosure is not particularly limited as long as the effect is not impaired, but for example, about 0.05 to 1 part by mass of CNC with respect to 1 part by mass of crosslinked HEC. Is preferable. The upper or lower limit of the range is, for example, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, It may be 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, or 0.95. For example, the range may be 0.1 to 0.8.
 また、本開示の組成物における、CNC含有量は、効果が損なわれない範囲であれば特に限定はされないが、例えば0.1~5質量%程度が挙げられる。当該範囲の上限又は下限は、例えば0.2、0.3、0.4、0.5、0.6、0.7、0.8、0.9、1、1.1、1.2、1.3、1.4、1.5、1.6、1.7、1.8、1.9、2、2.1、2.2、2.3、2.4、2.5、2.6、2.7、2.8、2.9、3、3.1、3.2、3.3、3.4、3.5、3.6、3.7、3.8、3.9、4、4.1、4.2、4.3、4.4、4.5、4.6、4.7、4.8、又は4.9質量%であってもよい。例えば当該範囲は0.2~2質量%であってもよい。 Further, the CNC content in the composition of the present disclosure is not particularly limited as long as the effect is not impaired, and examples thereof include about 0.1 to 5% by mass. The upper or lower limit of the range is, for example, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.1, 1.2. , 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2, 2.1, 2.2, 2.3, 2.4, 2.5 , 2.6, 2.7, 2.8, 2.9, 3, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8 It may be 3.9, 4, 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, or 4.9% by mass. .. For example, the range may be 0.2 to 2% by mass.
 本開示の組成物は、効果を損なわない範囲において、CNC、架橋HEC、及び水以外の成分を含有してもよい。このような成分としては、例えば医薬品分野、化粧品分野、食品分野において公知の単体や成分を挙げることができる。 The composition of the present disclosure may contain components other than CNC, crosslinked HEC, and water as long as the effect is not impaired. Examples of such an ingredient include simple substances and ingredients known in the fields of pharmaceuticals, cosmetics, and foods.
 本開示の組成物の調製方法は、特に制限はされない。例えば、CNCと架橋HECとを混合したうえで、あるいは順番に、水に溶解させることで調製することができる。水に溶解させる際には、混合(例えば撹拌混合)することが好ましい。 The method for preparing the composition of the present disclosure is not particularly limited. For example, it can be prepared by mixing CNC and crosslinked HEC, or by dissolving them in water in order. When it is dissolved in water, it is preferable to mix it (for example, stirring and mixing).
 本開示の組成物は、優れた粘性及び粘弾性を有することから、このような特性が求められる製品が存在する技術分野、例えば医薬品分野、化粧品分野、及び食品分野等において有用である。すなわち、本開示の組成物は、例えば医薬品組成物、化粧品組成物、食品組成物等として好ましく用いられ得る。 Since the composition of the present disclosure has excellent viscosity and viscoelasticity, it is useful in technical fields in which products required to have such properties exist, for example, in the fields of pharmaceuticals, cosmetics, and foods. That is, the composition of the present disclosure can be preferably used, for example, as a pharmaceutical composition, a cosmetic composition, a food composition, or the like.
 なお、本明細書において「含む」とは、「本質的にからなる」と、「からなる」をも包含する(The term "comprising" includes "consisting essentially of” and "consisting of.")。また、本開示は、本明細書に説明した構成要件を任意の組み合わせを全て包含する。 In addition, in this specification, "includes" also includes "consisting of" and "consisting of" (The term "comprising" includes "consisting essentially of" and "consisting of."). In addition, the present disclosure includes all combinations of the constituent elements described herein.
 また、上述した本開示の各実施形態について説明した各種特性(性質、構造、機能等)は、本開示に包含される主題を特定するにあたり、どのように組み合わせられてもよい。すなわち、本開示には、本明細書に記載される組み合わせ可能な各特性のあらゆる組み合わせからなる主題が全て包含される。 Further, the various characteristics (property, structure, function, etc.) described for each embodiment of the present disclosure described above may be combined in any way in specifying the subject matter included in the present disclosure. That is, the present disclosure includes all subjects consisting of any combination of each of the combinable properties described herein.
 以下、例を示して本開示の実施形態をより具体的に説明するが、本開示の実施形態は下記の例に限定されるものではない。
[粘弾性測定]
 各粘性組成物について、市販の粘弾性測定装置(レオメーター)を用い、周波数分散にてG’(貯蔵弾性率)、G”(損失弾性率)を求めた。
Hereinafter, embodiments of the present disclosure will be described in more detail with reference to examples, but the embodiments of the present disclosure are not limited to the following examples.
[Viscoelasticity measurement]
For each viscous composition, G'(storage elastic modulus) and G "(loss elastic modulus) were determined by frequency dispersion using a commercially available viscoelasticity measuring device (leometer).
 測定条件
 レオメーター:TAインスツルメント製  AR-2000ex
 プレート:60mm、1°コーンプレート
 測定温度:25℃
 歪み:0.1~10%(1Hzにおける歪み分散測定において得られた線形領域の範囲で選定)
 周波数:0.1rad/s~100rad/s
[粘度測定]
 各粘性組成物について、25℃において、BrookField社製の回転粘度計(型番:DVE、スピンドル:LV)を用い、回転速度を毎分20回転として、粘度を測定した。なお、測定に使用するスピンドルは、目安として、200mPa・s未満の場合はスピンドルLV-1、200mPa・s以上1000mPa・s未満の場合はスピンドルLV-2、1000mPa・s以上4000mPa・s未満の場合はスピンドルLV-3、4000mPa・s以上の場合はスピンドルLV-4とした。
[粘性組成物の調製及び評価]
 クリスタルナノセルロースとして、Cellulose Nanocrystals(Alberta-Pacific Forest Industries Inc.製)を、結晶セルロースとしてCEOLUS(旭化成製)を、それぞれ用いた。なお、Cellulose Nanocrystals の一部はセルロース硫酸ナトリウムである。
Measurement conditions Leometer: TA Instrument AR-2000ex
Plate: 60 mm, 1 ° cone plate Measurement temperature: 25 ° C
Distortion: 0.1 to 10% (selected within the range of the linear region obtained in the distortion dispersion measurement at 1 Hz)
Frequency: 0.1 rad / s to 100 rad / s
[Viscosity measurement]
The viscosity of each viscous composition was measured at 25 ° C. using a rotary viscometer (model number: DVE, spindle: LV) manufactured by BrookField at a rotation speed of 20 rpm. As a guide, the spindle used for measurement is spindle LV-1 when it is less than 200 mPa · s, spindle LV-2 when it is 200 mPa · s or more and less than 1000 mPa · s, and 1000 mPa · s or more and less than 4000 mPa · s. Is Spindle LV-3, and Spindle LV-4 in the case of 4000 mPa · s or more.
[Preparation and evaluation of viscous composition]
Cellulose Nanocrystals (manufactured by Alberta-Pacific Forest Industries Inc.) was used as the crystal nanocellulose, and CEOLUS (manufactured by Asahi Kasei) was used as the crystalline cellulose. A part of Cellulose Nanocrystals is sodium cellulose sulfate.
 また、各種市販水溶性ポリマー(いずれも粉体)を購入して用いた。水溶性ポリマー1、2、3、4、5、6、7は住友精化製、8、9はDSP五協フード&ケミカルより入手した(表1参照)。なお、水溶性ポリマー1~6はグリオキザールにより架橋された架橋HECであり、水溶性ポリマー7は未架橋HECである。 In addition, various commercially available water-soluble polymers (all powders) were purchased and used. The water-soluble polymers 1, 2, 3, 4, 5, 6 and 7 were obtained from Sumitomo Seika Chemical Co., Ltd., and the water-soluble polymers 8 and 9 were obtained from DSP Gokyo Food & Chemicals (see Table 1). The water-soluble polymers 1 to 6 are crosslinked HECs crosslinked by glyoxal, and the water-soluble polymers 7 are uncrosslinked HECs.
 表1の組成に従って、セルロースの粉体及び水溶性ポリマーの粉体を混合し、当該混合粉体をイオン交換水に撹拌混合して溶解させ、粘性組成物を調製した。そして、粘性組成物の粘弾性及び粘度を測定した。結果を表1にあわせて示す。 According to the composition shown in Table 1, a cellulose powder and a water-soluble polymer powder were mixed, and the mixed powder was stirred and mixed with ion-exchanged water to dissolve the mixture to prepare a viscous composition. Then, the viscoelasticity and viscosity of the viscous composition were measured. The results are also shown in Table 1.
 なお、表1においては、周波数:0.1rad/s~100rad/sの全範囲においてG’がG’’より大きい場合はG’>G’’、0.1rad/s~100rad/sの全範囲においてG’がG’’より小さい場合はG’<G’’と記載した。また、0.1rad/s~100rad/sの範囲においてG’とG’’の大小関係が逆転するケースおよび、0.1rad/s~100rad/sの全範囲においてG’とG’’が一致したケースはなかった。また、同じ組成で調製した異なるサンプルの測定結果がG’>G’’の場合とG’<G’’の場合があり、その場合はG’>G’’orG’<G’’と記載した。 In Table 1, when G'is larger than G'' in the whole range of frequency: 0.1 rad / s to 100 rad / s, G'> G'' and all of 0.1 rad / s to 100 rad / s. When G'is smaller than G'in the range, it is described as G'<G'. In addition, there are cases where the magnitude relationship between G'and G'is reversed in the range of 0.1 rad / s to 100 rad / s, and G'and G'match in the entire range of 0.1 rad / s to 100 rad / s. There was no case. Further, the measurement results of different samples prepared with the same composition may be G'> G'' or G'<G', and in that case, it is described as G'> G'or G'<G'. bottom.
 また、用いた水溶性ポリマーについては、その水溶性ポリマーの1.33質量%水溶液を別途調製し、上記の粘度測定の方法にて、当該1.33質量%水溶液の粘度を測定した。結果を、表1に「ポリマー粘度」として併せて示す。 As for the water-soluble polymer used, a 1.33% by mass aqueous solution of the water-soluble polymer was separately prepared, and the viscosity of the 1.33% by mass aqueous solution was measured by the above-mentioned method for measuring viscosity. The results are also shown in Table 1 as "Polymer Viscosity".
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001

Claims (4)

  1. セルロースナノクリスタル、ヒドロキシエチルセルロース、及び水を含有し、
    前記ヒドロキシエチルセルロースが架橋剤で架橋されたヒドロキシエチルセルロースであり、
    周波数分散測定によって得られる貯蔵弾性率G’、損失弾性率G’’の大小関係が、周波数0.1rad/s~100rad/sの全範囲において、貯蔵弾性率G’>損失弾性率G’’であり、
    25℃における粘度が9000mPa・s以上である、
    粘性組成物。
    Contains cellulose nanocrystals, hydroxyethyl cellulose, and water,
    The hydroxyethyl cellulose is hydroxyethyl cellulose crosslinked with a cross-linking agent.
    The magnitude relationship between the storage elastic modulus G'and the loss elastic modulus G'' obtained by the frequency dispersion measurement is the storage elastic modulus G'> the loss elastic modulus G'> in the entire frequency range of 0.1 rad / s to 100 rad / s. And
    The viscosity at 25 ° C. is 9000 mPa · s or more.
    Viscous composition.
  2. 前記架橋剤で架橋されたヒドロキシエチルセルロースが、
    その1.33質量%水溶液の、25℃における粘度が4000mPa・s以上である、
    請求項1に記載の粘性組成物。
    Hydroxyethyl cellulose crosslinked with the crosslinking agent
    The viscosity of the 1.33 mass% aqueous solution at 25 ° C. is 4000 mPa · s or more.
    The viscous composition according to claim 1.
  3. 前記架橋剤がジアルデヒド化合物である、請求項1又は2に記載の粘性組成物。 The viscous composition according to claim 1 or 2, wherein the cross-linking agent is a dialdehyde compound.
  4. セルロースナノクリスタルが、ナノサイズのセルロース硫酸塩クリスタルである、請求項1~3のいずれかに記載の粘性組成物。 The viscous composition according to any one of claims 1 to 3, wherein the cellulose nanocrystal is a nano-sized cellulose sulfate crystal.
PCT/JP2021/036039 2020-10-02 2021-09-30 Viscous composition WO2022071461A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022554078A JPWO2022071461A1 (en) 2020-10-02 2021-09-30

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-167875 2020-10-02
JP2020167875 2020-10-02

Publications (1)

Publication Number Publication Date
WO2022071461A1 true WO2022071461A1 (en) 2022-04-07

Family

ID=80951642

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/036039 WO2022071461A1 (en) 2020-10-02 2021-09-30 Viscous composition

Country Status (2)

Country Link
JP (1) JPWO2022071461A1 (en)
WO (1) WO2022071461A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023013537A1 (en) * 2021-08-06 2023-02-09 住友精化株式会社 Viscous composition
WO2023013535A1 (en) * 2021-08-06 2023-02-09 住友精化株式会社 Viscous composition

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5843402B2 (en) * 1977-02-18 1983-09-27 フジケミカル株式会社 Manufacturing method of hydroxyethylcellulose
JP2012531478A (en) * 2009-06-30 2012-12-10 アルバータ イノベイツ−テクノロジー フューチャーズ Anti-icing liquid for aircraft formulated with nanocrystalline cellulose
JP2015527451A (en) * 2012-07-31 2015-09-17 ハーキュリーズ・インコーポレーテッド Stabilized multiphase aqueous composition
WO2018061890A1 (en) * 2016-09-29 2018-04-05 住友精化株式会社 Method for producing water-soluble hydroxyethyl cellulose
JP2018104616A (en) * 2016-12-28 2018-07-05 株式会社パイロットコーポレーション Water-based ink composition for writing instruments, and the writing instruments using the same
JP2019520393A (en) * 2016-07-08 2019-07-18 アストラゼネカ・アクチエボラーグAstrazeneca Aktiebolag Pharmaceutical composition
CN110183698A (en) * 2019-06-28 2019-08-30 陕西科技大学 A kind of poly- polyisocyanates composite membrane of HEC/CNC/ and its preparation method and application

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5843402B2 (en) * 1977-02-18 1983-09-27 フジケミカル株式会社 Manufacturing method of hydroxyethylcellulose
JP2012531478A (en) * 2009-06-30 2012-12-10 アルバータ イノベイツ−テクノロジー フューチャーズ Anti-icing liquid for aircraft formulated with nanocrystalline cellulose
JP2015527451A (en) * 2012-07-31 2015-09-17 ハーキュリーズ・インコーポレーテッド Stabilized multiphase aqueous composition
JP2019520393A (en) * 2016-07-08 2019-07-18 アストラゼネカ・アクチエボラーグAstrazeneca Aktiebolag Pharmaceutical composition
WO2018061890A1 (en) * 2016-09-29 2018-04-05 住友精化株式会社 Method for producing water-soluble hydroxyethyl cellulose
JP2018104616A (en) * 2016-12-28 2018-07-05 株式会社パイロットコーポレーション Water-based ink composition for writing instruments, and the writing instruments using the same
CN110183698A (en) * 2019-06-28 2019-08-30 陕西科技大学 A kind of poly- polyisocyanates composite membrane of HEC/CNC/ and its preparation method and application

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LENFANT GILLES, HEUZEY MARIE-CLAUDE, VAN DE VEN THEO G. M., CARREAU PIERRE J.: "Gelation of crystalline nanocellulose in the presence of hydroxyethyl cellulose", CANADIAN JOURNAL OF CHEMICAL ENGINEERING, vol. 95, no. 10, 1 October 2017 (2017-10-01), pages 1891 - 1900, XP055917889, ISSN: 0008-4034, DOI: 10.1002/cjce.22846 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023013537A1 (en) * 2021-08-06 2023-02-09 住友精化株式会社 Viscous composition
WO2023013535A1 (en) * 2021-08-06 2023-02-09 住友精化株式会社 Viscous composition

Also Published As

Publication number Publication date
JPWO2022071461A1 (en) 2022-04-07

Similar Documents

Publication Publication Date Title
Salimi et al. Production of nanocellulose and its applications in drug delivery: A critical review
Markstedt et al. Biomimetic inks based on cellulose nanofibrils and cross-linkable xylans for 3D printing
Li et al. Cellulose nanoparticles: structure–morphology–rheology relationships
Meesorn et al. A simple and versatile strategy to improve the mechanical properties of polymer nanocomposites with cellulose nanocrystals
Missoum et al. Organization of aliphatic chains grafted on nanofibrillated cellulose and influence on final properties
WO2022071473A1 (en) Viscous composition
Eyholzer et al. Preparation and characterization of water-redispersible nanofibrillated cellulose in powder form
Ioelovich Cellulose as a nanostructured polymer: a short review
Tang et al. Preparation and characterization of nanocrystalline cellulose via low-intensity ultrasonic-assisted sulfuric acid hydrolysis
Azzam et al. Preparation by grafting onto, characterization, and properties of thermally responsive polymer-decorated cellulose nanocrystals
Natterodt et al. Polymer nanocomposites with cellulose nanocrystals featuring adaptive surface groups
WO2022071461A1 (en) Viscous composition
Pahimanolis et al. Nanofibrillated cellulose/carboxymethyl cellulose composite with improved wet strength
Mattos et al. Accounting for substrate interactions in the measurement of the dimensions of cellulose nanofibrils
Velásquez-Cock et al. Improved redispersibility of cellulose nanofibrils in water using maltodextrin as a green, easily removable and non-toxic additive
Bandera et al. Influence of mechanical treatments on the properties of cellulose nanofibers isolated from microcrystalline cellulose
Rol et al. Nanocellulose production by twin-screw extrusion: simulation of the screw profile to increase the productivity
de Souza et al. Property evaluations of dry-cast reconstituted bacterial cellulose/tamarind xyloglucan biocomposites
Velásquez-Cock et al. Poly (vinyl alcohol) as a capping agent in oven dried cellulose nanofibrils
WO2022071474A1 (en) Viscous composition
Cheng et al. New approach for the fabrication of carboxymethyl cellulose nanofibrils and the reinforcement effect in water-borne polyurethane
WO2022071463A1 (en) Viscous composition
de Souza et al. A new approach for the use of anionic surfactants: nanocellulose modification and development of biodegradable nanocomposites
Shchipunov et al. Hydrogels formed through regulated self-organization of gradually charging chitosan in solution of xanthan
Ahola Properties and interfacial behaviour of cellulose nanofibrils

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21875757

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022554078

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21875757

Country of ref document: EP

Kind code of ref document: A1