WO2022071355A1 - 光変調器とそれを用いた光送信装置 - Google Patents
光変調器とそれを用いた光送信装置 Download PDFInfo
- Publication number
- WO2022071355A1 WO2022071355A1 PCT/JP2021/035752 JP2021035752W WO2022071355A1 WO 2022071355 A1 WO2022071355 A1 WO 2022071355A1 JP 2021035752 W JP2021035752 W JP 2021035752W WO 2022071355 A1 WO2022071355 A1 WO 2022071355A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- modulation
- signal
- wiring
- driver circuit
- circuit element
- Prior art date
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 97
- 230000005540 biological transmission Effects 0.000 title abstract description 13
- 239000000758 substrate Substances 0.000 claims description 40
- 230000017525 heat dissipation Effects 0.000 claims description 6
- 230000001902 propagating effect Effects 0.000 claims description 6
- 238000007599 discharging Methods 0.000 claims 1
- 230000000644 propagated effect Effects 0.000 abstract 1
- 239000000463 material Substances 0.000 description 6
- 238000000034 method Methods 0.000 description 5
- 230000003014 reinforcing effect Effects 0.000 description 5
- 238000013461 design Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- GQYHUHYESMUTHG-UHFFFAOYSA-N lithium niobate Chemical compound [Li+].[O-][Nb](=O)=O GQYHUHYESMUTHG-UHFFFAOYSA-N 0.000 description 3
- WSMQKESQZFQMFW-UHFFFAOYSA-N 5-methyl-pyrazole-3-carboxylic acid Chemical compound CC1=CC(C(O)=O)=NN1 WSMQKESQZFQMFW-UHFFFAOYSA-N 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 239000012790 adhesive layer Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000013307 optical fiber Substances 0.000 description 2
- 230000000149 penetrating effect Effects 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 238000002788 crimping Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000009429 electrical wiring Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 230000036039 immunity Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000001947 vapour-phase growth Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/03—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
- G02F1/035—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect in an optical waveguide structure
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/015—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction
- G02F1/025—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction in an optical waveguide structure
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/21—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour by interference
- G02F1/212—Mach-Zehnder type
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/21—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour by interference
- G02F1/225—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour by interference in an optical waveguide structure
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F2202/00—Materials and properties
- G02F2202/20—LiNbO3, LiTaO3
Definitions
- the present invention relates to an optical modulator and an optical transmission device using the same, and in particular, is applied to a modulation substrate having an optical waveguide and a modulation electrode for modulating a light wave propagating in the optical waveguide, and a modulation electrode.
- the present invention relates to an optical modulator in which a driver circuit element for generating a modulated signal is housed in a housing.
- an optical modulator using a modulation substrate having an optical waveguide and a modulation electrode that modulates a light wave propagating in the optical waveguide is widely used.
- optical modulators have become smaller and have lower power consumption.
- an InP semiconductor electric / optical conversion element chip (modulation substrate) and a driver IC (driver circuit element) are housed in the same housing. The development of optical modulators housed in is in progress.
- the modulation signal also becomes a microwave of 60 GHz or more due to the request for widening the bandwidth, and when the driver circuit element and the modulation substrate are connected by conventional wire bonding, the high frequency characteristic deteriorates due to the increase in the inductance component.
- differential signals differential signals
- single-ended signals have been used as modulation signals for driving optical modulators.
- Differential signals are noise tolerant and effective for lines with long wiring lengths, but are subject to design restrictions on wiring and tend to have large transmission losses.
- the single-ended signal is easily affected by external noise, but has the advantages of being easy to design, shortening the wiring length, and reducing transmission loss.
- DSP digital signal processor
- the modulation signal output from the DSP is wired to the driver circuit element arranged in the housing of the optical modulator using the differential signal.
- the driver circuit element has a structure in which signal amplifiers are combined in multiple stages, and as the output signal, a differential signal having excellent signal quality when the wiring length of the transmission line is long is often used. Therefore, by wiring a plurality of signals from the driver circuit element to the modulation board, the wiring length becomes long. As a result, the transmission loss of the modulated signal is deteriorated.
- the problem to be solved by the present invention is to solve the above-mentioned problems and to provide an optical modulator that suppresses deterioration of high frequency characteristics from the driver circuit element to the modulation substrate. Furthermore, it is an object of the present invention to provide an optical modulator capable of efficiently applying a differential signal output from a driver circuit element to a modulation electrode as a single-ended signal. Another object of the present invention is to provide an optical transmission device using these light modulators.
- the light modulator and the optical transmitter of the present invention have the following technical features.
- a modulation substrate having an optical waveguide and a modulation electrode for modulating a light wave propagating in the optical waveguide and a driver circuit element for generating a modulation signal applied to the modulation electrode are housed in a housing.
- a wiring board provided with an output terminal for outputting a modulation signal on the upper surface side of the driver circuit element and a wiring for electrically connecting the output terminal and the modulation electrode is the driver circuit element and the driver circuit element. It is characterized in that it is arranged so as to straddle both of them on the upper side of the modulation board.
- the wiring of the wiring board, the output terminal, and the modulation electrode are electrically connected by flip-chip bonding.
- the wiring board receives a differential signal from the driver circuit element, and the modulation electrode receives only one signal of the differential signal. It is characterized in that it is configured to output.
- the other signal of the differential signal is terminated by a terminator provided on the wiring board.
- the terminator is provided on a surface of the wiring board located on the back side of the surface facing the modulation board.
- the wiring board is provided with a heat radiating means for releasing heat generated from the terminator.
- An optical transmitter comprising the optical modulator according to any one of (1) to (6) above and a signal generator for generating a modulation signal to be input to the driver circuit element. ..
- a modulation substrate having an optical waveguide and a modulation electrode for modulating a light wave propagating in the optical waveguide, and a driver circuit element for generating a modulation signal applied to the modulation electrode are housed in a housing.
- an output terminal for outputting a modulation signal is provided on the upper surface side of the driver circuit element, and a wiring board provided with a wiring for electrically connecting the output terminal and the modulation electrode is the driver circuit element. Since it is arranged so as to straddle both of them on the upper side of the modulation board, it is possible to provide an optical modulator in which the transmission loss from the driver circuit element to the modulation board is reduced.
- the wiring board is configured to receive a differential signal from the driver circuit element and output only one signal of the differential signal to the modulation electrode, the difference output from the driver circuit element. It is possible to provide an optical modulator capable of efficiently applying a dynamic signal to a modulation electrode as a single-ended signal.
- the present invention applies to a modulation substrate 1 having an optical waveguide 200 and a modulation electrode 10 for modulating a light wave propagating in the optical waveguide, and an application to the modulation electrode.
- a driver circuit element 2 for generating a modulated signal is housed in a housing (3)
- an output terminal for outputting a modulated signal is provided on the upper surface side of the driver circuit element, and the output terminal and the output terminal are provided.
- the wiring board 4 provided with the wiring for electrically connecting the modulation electrode is characterized in that the wiring board 4 is arranged on the upper side of the driver circuit element and the modulation board so as to straddle both of them.
- a ferroelectric substrate having an electro-optical effect such as lithium niobate (LN), lithium tantalate (LT), or PLZT (lead lanthanate titanate zirconate), or a reinforced substrate made of these materials is used. Those with a phase growth film formed are available. Further, a substrate using various materials such as a semiconductor material such as InP or an organic material can also be used.
- a rib-type optical waveguide having a convex portion corresponding to the optical waveguide is used on the substrate, such as etching the surface of a substrate other than the optical waveguide or forming grooves on both sides of the optical waveguide. It is possible. It is also possible to form an optical waveguide by forming a high refractive index portion on the surface of the substrate by a thermal diffusion method, a proton exchange method, or the like for Ti or the like. It is also possible to form a composite optical waveguide by diffusing a high-refractive index material in the rib-type optical waveguide portion.
- the thickness of the modulation substrate on which the optical waveguide is formed may be composed of a thin plate of 10 ⁇ m or less, more preferably 5 ⁇ m or less in order to achieve speed matching between the microwave and the light wave of the modulation signal.
- the height of the rib-type optical waveguide is set to 2 ⁇ m or less, more preferably 1 ⁇ m or less. It is also possible to form a vapor phase growth film on the reinforcing substrate and process the film into the shape of an optical waveguide.
- the modulation substrate composed of thin plates is adhesively fixed to the reinforcing substrate via direct bonding or an adhesive layer such as resin in order to increase the mechanical strength.
- an adhesive layer such as resin
- a material having a lower refractive index than the optical waveguide and the substrate on which the optical waveguide is formed and having a thermal expansion coefficient close to that of the optical waveguide or the like, for example, quartz or the like is preferably used.
- quartz or the like is preferably used as the same material as the thin plate such as the LN substrate.
- a modulation electrode and a bias electrode are formed along the optical wave guide.
- the electrode can be formed by laminating Au on a base metal such as Au or Ti by a plating method.
- the driver circuit element 2 is arranged adjacent to the modulation substrate 1.
- the driver circuit element 2 has a configuration in which signal amplifiers are connected in multiple stages, and is configured to input a differential signal which is a modulated signal and output an amplified differential signal.
- the modulated signal S is generated by a digital signal processor (DSP) or the like arranged outside the housing.
- DSP digital signal processor
- the modulated signal S is introduced into the housing 3 via the electric signal introducing means 6 as shown in FIGS. 1, 2 and 4.
- the electric signal introducing means flexible wiring or various wiring means such as lead pins or connector terminals can be used. In the following, flexible wiring will be mainly described, but the description is not limited to this.
- the flexible wiring 6 which is an electric signal introducing means is connected to the relay board 5 in the housing. As shown in FIG. 3 or 5, an electric wiring 60 is formed on the flexible wiring 6 and an electric wiring 50 is formed on the relay board 5. As a result, a path for the external electric signal to the input terminal of the driver circuit element 2 is secured.
- the optical wave L1 is input from the outside to the optical waveguide of the modulation substrate 1 arranged in the housing 3 via an optical fiber. Further, the light wave output from the modulation substrate 1 is emitted to the outside as output light L2 via an optical fiber.
- Reference numerals 7 and 70 are collimators incorporating a lens or the like.
- Reference numeral 30 in FIG. 2 and the like is the lid portion of the housing 3.
- a spatial optical system such as a lens or a prism is used to connect the light wave between the modulation substrate 1 and the collimators 7 and 70.
- a part of optical components such as a polarization beam splitter is arranged in the housing. It is also possible to attach a lens block or the like to the end face of the modulation substrate 1 to reduce the alignment adjustment work of the optical components.
- FIG. 3 is a diagram illustrating a configuration including a modulation board 1 and a driver circuit element 2 of FIGS. 1 and 2 in more detail. Further, FIGS. 5 and 6 are diagrams for explaining the configuration including the modulation board 1 and the driver circuit element 2 of FIG. 4 in more detail. 6 is a plan view of FIG. 5, but even in the plan view of FIG. 3, the figure on the right side from the driver circuit element 2 of FIG. 6 is the same drawing.
- the wiring 60 is formed on the flexible substrate, the relay board 5 is provided with the via 50, and the wiring 60 is padded via the via 50. It is electrically connected to 51.
- the pad portion 20 which is an input terminal of the driver circuit element 2 and the pad portion 51 are connected by wire bonding 8.
- the wiring 50 of the relay board 5 is connected from the wiring 60 of the electric signal introducing means 6.
- the input terminal (pad portion) 20 of the driver circuit element is electrically connected via the device.
- Wire bonding 8 is used for the connection between the terminals.
- FIG. 6, which is a plan view of FIG. 5 an input terminal 52 and an output terminal 53 are separately arranged on the relay board 5, and the two terminals are connected by wiring 50. May be.
- An insulating substrate made of alumina or aluminum nitride ceramic is used for the wiring board 4 connecting the driver circuit element 2 and the modulation electrode 10 of the modulation board 1, and the upper surface or the lower surface of the wiring board 4 of FIG. 3 or FIG. 5 is used. Electrical wiring is formed in. In FIG. 6, the wiring 40 and the terminator 41 are arranged on the upper surface side of the wiring board 4.
- a via 43 penetrating the wiring board 4 is formed, and the pad portion 42 provided on the lower surface of the wiring board 4 and the electric wiring 40 provided on the upper surface are electrically connected.
- the connection between the wiring board (pad section 42) and the output terminal (20') of the driver circuit element 2 or the connection between the wiring board (pad section 42') and the pad section 100 of the modulation electrode of the modulation board 1 is a flip chip. It is done in Bond. Specifically, there are a method in which both pad portions are formed of Au electrode pads and connected by crimping by applying heat / vibration, or a bump connection using a conductive adhesive 9 (9').
- FIG. 7 is a plan view showing an example of the modulation substrate 1 used in FIGS. 3 or 5 (FIG. 6). As shown in FIG. 7, an optical waveguide 200 is formed on the modulation substrate 1, and a modulation electrode 10 is formed on the acting portion of the optical waveguide 200.
- the modulation electrode is composed of a signal electrode and a ground electrode, and in FIG. 7, only a part of the signal electrode is illustrated. It is also possible to provide a bias electrode to control the DC bias voltage of the interference type optical modulator using the Mach-Zehnder type optical waveguide.
- the modulation electrode 10 is electrically connected to an input terminal (pad portion) 100 for inputting a modulation signal by wiring 101.
- the optical waveguide is configured to enter and emit light waves from the same end face of the modulation substrate, but the present invention is not limited to this, and the optical waveguide is bent at a right angle to receive light incident from one side surface of the modulation substrate. It can also be configured to emit from the adjacent side surface adjacent to the side surface. Further, it is also possible to form a long branch waveguide of the Mach-Zehnder type optical waveguide of the optical waveguide of FIG. 7 and to bend the branch waveguide by 180 degrees.
- FIG. 8 is a diagram showing an example of the wiring board 4. For simplification of the description, only the wiring for one differential signal is shown.
- the output signal of the driver circuit element is introduced on the left side of the wiring board 4 of FIG. 8, and the wiring 40 corresponding to the differential signal (S + , S- ) and the ground (G) is provided on the wiring board 4. ing.
- the arrangement of the differential signal and the ground and the number of wirings are set corresponding to the output terminals of the driver circuit element.
- similar wiring patterns are provided in parallel on the wiring board 4 according to the number of modulated signals. Will be.
- the grounding wiring G may be shared between adjacent wirings.
- one signal (S + ) of the differential signal is output to the modulation electrode as a single-ended signal, and the other signal (S ⁇ ) is terminated by a terminator.
- a terminator As a terminator. It can be configured by providing a terminating resistor 41R between the signal wiring and the ground wiring. Further, in order to absorb the microwave emitted from the end of the terminated signal wiring ( S- ), it is also possible to provide a portion 400 connecting between the ground wirings so as to surround the signal wiring. Further, the terminating resistor 41R may be arranged as close as possible to the vicinity of the electrode of the driver circuit element (left side in FIG. 8) in order to prevent unnecessary reflection of the S - signal wiring.
- the terminating device can be configured not only by arranging a resistor film having a terminating resistance 41R, but also as a single chip-shaped electric component incorporating a resistor or the like. In the case of such a chip-shaped terminator, it is electrically connected and fixed to the wiring 40 on the wiring board 4 with a conductive adhesive.
- FIG. 9 the wiring of FIG. 9A is formed on the lower surface of the wiring board 4, and only the terminator 41 is arranged on the upper surface of the wiring board 4 as shown in FIG. 9B.
- a via for wiring is formed on the wiring board 4 corresponding to the position of the terminator 41.
- FIG. 10 (b) has the same configuration as that of FIG. 3 or 5, and the wiring 40 is formed on the upper surface of the wiring board.
- the terminator 41 is arranged on the upper surface.
- FIG. 10 (b) it is also possible to arrange the wiring 40 and the terminator 41 together on the lower surface of the wiring board as shown in FIG. 10 (c).
- FIG. 10A it is also possible to arrange the wiring 40 on the upper surface of the wiring board and arrange the termination device 41 on the lower surface. In this case, the wiring 40 and the terminator 41 are connected by a via 43 ”.
- the reason for providing the terminator on the upper surface of the wiring board 4 is the signal wiring ( Since the electric signal is converted into heat at the terminating resistor (terminating part) of S- ), it is located farther from the modulation board 1 in order to protect the heat-sensitive modulation board and suppress the drift phenomenon due to heat.
- a heat dissipation means in which a conductive member is arranged in a through hole or a through hole is provided around the termination device as shown in FIG. 11, or a grounding wiring is provided as shown in FIG. It is possible to provide a penetrating via in a part of the wiring and use it as a heat dissipation means.
- These through holes (particularly through holes in which the conductive member is arranged) or through vias also contribute to suppressing the propagation of the terminated microwaves to the modulation substrate side.
- optical modulator By providing the above-mentioned optical modulator and a signal generator (DSP, etc.) that generates a modulation signal to be input to the driver circuit element in the optical modulator, it is possible to provide an optical transmitter having the same effect. It will be possible.
- DSP signal generator
- an optical modulator in which the transmission loss from the driver circuit element to the modulation substrate is reduced. Further, it is also possible to provide an optical modulator capable of efficiently applying a differential signal output from a driver circuit element to a modulation electrode as a single-ended signal. Further, it is possible to provide an optical transmission device using these light modulators.
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
Abstract
ドライバ回路素子から変調基板への伝送損失を低減した光変調器を提供することを可能とする。 光導波路(200)と該光導波路を伝搬する光波を変調するための変調電極(10)とを有する変調基板(1)と、該変調電極(10)に印加される変調信号を生成するドライバ回路素子(2)とを筐体(3)内に収容した光変調器において、該ドライバ回路素子(2)の上面側に変調信号を出力する出力端子(20')を設け、該出力端子(20')と該変調電極(10)とを電気的に接続する配線を備えた配線基板(4)が、該ドライバ回路素子(2)と該変調基板(1)との上側で両者に跨って配置されていることを特徴とする。
Description
本発明は、光変調器とそれを用いた光送信装置に関し、特に、光導波路と該光導波路を伝搬する光波を変調するための変調電極とを有する変調基板と、該変調電極に印加される変調信号を生成するドライバ回路素子とを筐体内に収容した光変調器に関する。
光通信分野又は光計測分野において、光導波路と該光導波路を伝搬する光波を変調する変調電極とを有する変調基板を利用した光変調器が多用されている。近年の光変調器は小型/低消費電力化が進み、例えば、特許文献1に示すように、InP半導体の電気/光変換素子チップ(変調基板)とドライバIC(ドライバ回路素子)を同じ筐体に収容した光変調器の開発が進んでいる。
また、広帯域化の要請により変調信号も60GHz以上のマイクロ波となり、ドライバ回路素子と変調基板との間を従来のワイヤーボンディングで接続した場合には、インダクタンス成分が増えることにより高周波特性が劣化する。
従来より、光変調器を駆動する変調信号には、差動信号(ディファレンシャル信号)とシングルエンド信号が利用されている。差動信号はノイズ耐性があり、配線長が長い線路に対して有効であるが、配線に係るデザイン上の制約を受け、伝送損失が大きい傾向がある。他方、シングルエンド信号は、外部からのノイズの影響を受けやすいが、デザインがしやすく、配線長を短くでき、伝送損失を少なくするメリットがある。
近年のデジタル信号処理技術の進展により、光伝送装置内にはデジタル信号プロセッサー(DSP)デバイスが多用される。DSPデバイス内は小信号で動作するので、他のデバイスからのノイズ耐性を高める必要があり、変調信号は差動信号が多用される。
DSPから出力される変調信号は、光変調器の筐体内に配置されるドライバ回路素子まで差動信号を用いて配線される。ドライバ回路素子は、信号増幅器が多段に組み合わされた構造をしており、出力信号は、伝送線路の配線長が長い場合において信号品質が優れる、差動信号が多用される。このため、ドライバ回路素子から複数の信号を変調基板へ配線することにより、配線長も長くなる。その結果、変調信号の伝送損失が劣化する原因となる。
一方で、広帯域化のため、ドライバ回路素子にて増幅された変調信号を、電気/光変換素子(変調基板)に限りなく少ない伝送損失で配線(最短配線)する必要がある。また、変調基板も小型/集積化により、変調電極への配線はデザイン上の制約を受けるので、シングルエンド信号による配線が望ましい。
本発明が解決しようとする課題は、上述したような問題を解決し、ドライバ回路素子から変調基板への高周波特性劣化を抑制した光変調器を提供することである。さらには、ドライバ回路素子から出力される差動信号を、シングルエンド信号として変調電極に効率的に印加することが可能な光変調器を提供することである。また、これらの光変調器を用いた光伝送装置を提供することである。
上記課題を解決するため、本発明の光変調器及び光送信装置は、以下のような技術的特徴を有する。
(1) 光導波路と該光導波路を伝搬する光波を変調するための変調電極とを有する変調基板と、該変調電極に印加される変調信号を生成するドライバ回路素子とを筐体内に収容した光変調器において、該ドライバ回路素子の上面側に変調信号を出力する出力端子を設け、該出力端子と該変調電極とを電気的に接続する配線を備えた配線基板が、該ドライバ回路素子と該変調基板との上側で両者に跨って配置されていることを特徴とする。
(1) 光導波路と該光導波路を伝搬する光波を変調するための変調電極とを有する変調基板と、該変調電極に印加される変調信号を生成するドライバ回路素子とを筐体内に収容した光変調器において、該ドライバ回路素子の上面側に変調信号を出力する出力端子を設け、該出力端子と該変調電極とを電気的に接続する配線を備えた配線基板が、該ドライバ回路素子と該変調基板との上側で両者に跨って配置されていることを特徴とする。
(2) 上記(1)に記載の光変調器において、該配線基板の配線と、該出力端子及び該変調電極とは、フリップチップボンディングで電気的に接続されていることを特徴とする。
(3) 上記(1)又は(2)に記載の光変調器において、該配線基板は、該ドライバ回路素子から差動信号を受入れ、該変調電極には該差動信号の一方の信号のみを出力するよう構成されていることを特徴とする。
(4) 上記(3)に記載の光変調器において、該差動信号の他方の信号は、該配線基板に設けられた終端器により終端されていることを特徴とする。
(5) 上記(4)に記載の光変調器において、該終端器は、該配線基板の該変調基板に対向する面に対して裏側に位置する面に設けられていることを特徴とする。
(6) 上記(4)又は(5)に記載の光変調器において、該配線基板には、該終端器から発生する熱を放出する放熱手段が設けられていることを特徴とする。
(7) 上記(1)乃至(6)のいずれかに記載の光変調器と、該ドライバ回路素子に入力する変調信号を生成する信号発生器とを備えることを特徴とする光送信装置である。
本発明により、光導波路と該光導波路を伝搬する光波を変調するための変調電極とを有する変調基板と、該変調電極に印加される変調信号を生成するドライバ回路素子とを筐体内に収容した光変調器において、該ドライバ回路素子の上面側に変調信号を出力する出力端子を設け、該出力端子と該変調電極とを電気的に接続する配線を備えた配線基板が、該ドライバ回路素子と該変調基板との上側で両者に跨って配置されているので、ドライバ回路素子から変調基板への伝送損失を低減した光変調器を提供することが可能となる。
しかも、該配線基板は、該ドライバ回路素子から差動信号を受入れ、該変調電極には該差動信号の一方の信号のみを出力するよう構成されているので、ドライバ回路素子から出力される差動信号を、シングルエンド信号として変調電極に効率的に印加することが可能な光変調器を提供することができる。
以下、本発明について好適例を用いて詳細に説明する。
本発明は、図1乃至3又は図4乃至6に示すように、光導波路200と該光導波路を伝搬する光波を変調するための変調電極10とを有する変調基板1と、該変調電極に印加される変調信号を生成するドライバ回路素子2とを筐体(3)内に収容した光変調器において、該ドライバ回路素子の上面側に変調信号を出力する出力端子を設け、該出力端子と該変調電極とを電気的に接続する配線を備えた配線基板4が、該ドライバ回路素子と該変調基板との上側で両者に跨って配置されていることを特徴とする。
本発明は、図1乃至3又は図4乃至6に示すように、光導波路200と該光導波路を伝搬する光波を変調するための変調電極10とを有する変調基板1と、該変調電極に印加される変調信号を生成するドライバ回路素子2とを筐体(3)内に収容した光変調器において、該ドライバ回路素子の上面側に変調信号を出力する出力端子を設け、該出力端子と該変調電極とを電気的に接続する配線を備えた配線基板4が、該ドライバ回路素子と該変調基板との上側で両者に跨って配置されていることを特徴とする。
変調基板としては、ニオブ酸リチウム(LN)又はタンタル酸リチウム(LT)、PLZT(ジルコン酸チタン酸鉛ランタン)などの電気光学効果を有する強誘電体基板又は、補強基板上にこれらの材料による気相成長膜を形成したものが利用可能である。
また、InPなどの半導体材料又は有機材料など種々の材料を利用した基板も利用可能である。
また、InPなどの半導体材料又は有機材料など種々の材料を利用した基板も利用可能である。
光導波路の形成方法としては、光導波路以外の基板表面をエッチングしたり、光導波路の両側に溝を形成するなど、基板に光導波路に対応する部分を凸状としたリブ型光導波路を利用することが可能である。また、Tiなどを熱拡散法又はプロトン交換法などで基板表面に高屈折率部分を形成することで光導波路を形成することも可能である。リブ型光導波路部分に高屈折率材料を拡散するなど、複合的な光導波路を形成することも可能である。
光導波路を形成した変調基板の厚さは、変調信号のマイクロ波と光波との速度整合を図るため、10μm以下、より好ましくは5μm以下の薄板で構成しても良い。また、リブ型光導波路の高さは、2μm以下、より好ましくは1μm以下に設定される。また、補強基板の上に気相成長膜を形成し、当該膜を光導波路の形状に加工することも可能である。
薄板で構成した変調基板は、機械的強度を高めるため、直接接合又は樹脂等の接着層を介して、補強基板に接着固定される。直接接合する補強基板としては、光導波路及び光導波路を形成した基板よりも屈折率が低く、光導波路などと熱膨張率が近い材料、例えば石英等が好適に利用される。また、接着層を介して補強基板に接合する際には、LN基板など薄板と同じ材料を補強基板として利用することも可能である。
光導波路に沿って変調電極及びバイアス電極が形成される。電極の形成方法としては、Au又はTiなどの下地金属の上にメッキ法によりAuを積層することで構成することができる。
図1及び2、又は図4に示すように、変調基板1に隣接して、ドライバ回路素子2が配置される。ドライバ回路素子2は、信号増幅器を多段に接続した構成をしており、変調信号である差動信号を入力し、増幅した差動信号を出力するよう構成されている。例えば、変調信号Sは、筐体外に配置されたデジタル信号プロセッサー(DSP)などで発生される。変調信号Sは、図1、2及び4に示すような電気信号導入手段6を介して筐体3内に導入される。電気信号導入手段は、フレキシブル配線又は、リードピン、またはコネクタ端子などの各種の配線手段が使用可能である。以下では、フレキシブル配線を中心に説明するが、これに限定されるものではない。
電気信号導入手段であるフレキシブル配線6は、筐体内の中継基板5に接続される。図3又は5に示すように、フレキシブル配線6には電気配線60が、中継基板5には電気配線50が各々に形成されている。これにより、外部の電気信号がドライバ回路素子2の入力端子に至る経路が確保されている。
図1に示すように、筐体3内に配置される変調基板1の光導波路には、外部から光ファイバーを介して光波L1が入力される。また、変調基板1から出力される光波は、外部に光ファイバーを介して出力光L2として出射される。符号7及び70は、レンズ等を組み込んだコリメータである。図2等の符号30は、筐体3の蓋部分である。
図4に示すように、変調基板1とコリメータ7及び70との光波の接続には、レンズ又はプリズムなどの空間光学系による接続が用いられる。特に、2つの出力光を偏波合成する際には、偏光ビームスプリッターなどの光学部品の一部を筐体内に配置する。また、変調基板1の端面にレンズブロックなどを貼り付け、光学部品のアライメント調整作業を少なくすることも可能である。
図3は、図1及び2の変調基板1及びドライバ回路素子2を含む構成を、より詳細に説明する図である。また、図5及び6は、図4の変調基板1及びドライバ回路素子2を含む構成を、より詳細に説明する図である。図6は、図5の平面図であるが、図3の平面図であっても、図6のドライバ回路素子2から右側の図は、同じ図面となる。
図3のように、フレキシブル配線6を用いる場合には、フレキシブル基板上に配線60が形成され、さらに、中継基板5には、ビア50が設けられ、ビア50を介して、配線60はパッド部51に電気的に接続されている。ドライバ回路素子2の入力端子であるパッド部20と前記パッド部51とはワイヤーボンディング8で接続されている。
図4の電気信号導入手段6(フレキシブル又はリジッドな基板が使用可能である。)を用いる場合は、図5に示すように、電気信導入手段6の配線60から、中継基板5の配線50を介して、ドライバ回路素子の入力端子(パッド部)20とが電気的に接続される。端子間の接続にはワイヤーボンディング8が利用される。また、図5の平面図である図6に示すように、中継基板5上には、入力用端子52と出力用端子53を別途配置し、両者の端子間を配線50で接続するよう構成しても良い。
ドライバ回路素子2と変調基板1の変調電極10とを接続する配線基板4には、アルミナ又は窒化アルミのセラミックを利用した絶縁基板が用いられ、図3又は図5の配線基板4の上面又は下面に電気配線が形成されている。図6では、配線基板4の上面側に配線40及び終端器41を配置している。
図3又は図5では、配線基板4を貫通するビア43が形成され、配線基板4の下面に設けられたパッド部42と上面に設けられた電気配線40とが電気的に接続されている。配線基板(パッド部42)とドライバ回路素子2の出力端子(20’)との接続又は、配線基板(パッド部42’)と変調基板1の変調電極のパッド部100との接続は、フリップチップボンドで行われている。具体的には、両者のパッド部をAu電極パッドで形成し、熱/振動印加による圧着で接続する方法又は、導電性接着剤9(9’)によるバンプ接続などがある。
図7は、図3又は図5(図6)などに使用される変調基板1の一例を示す平面図である。図7に示すように、変調基板1には光導波路200が形成され、光導波路200の作用部には変調電極10が形成されている。変調電極は信号電極と接地電極で構成され、図7では、信号電極の一部のみ例示している。また、マッハツェンダー型光導波路を用いた干渉型光変調器のDCバイアス電圧を制御するためバイアス電極を設けることも可能である。
変調電極10は、変調信号を入力する入力端子(パッド部)100と、配線101により電気的に接続されている。図7では、光導波路は、変調基板の同じ端面から光波を入射及び出射するよう構成しているが、これに限らず、光導波路を直角に曲げ、変調基板の一側面から入射した光を当該側面に隣接する隣の側面から出射するよう構成することも可能である。また、図7の光導波路のマッハツェンダー型光導波路の分岐導波路を長く形成し、分岐導波路を180度曲げるように構成することも可能である。
図8は、配線基板4の一例を示す図である。説明を簡略化するため、1つの差動信号に関する配線のみを図示する。
図8の配線基板4の左側にはドライバ回路素子の出力信号が導入され、配線基板4上には、差動信号(S+,S-)と接地(G)に対応した配線40が設けられている。差動信号と接地の配置及び配線の数は、ドライバ回路素子の出力端子に対応して設定される。また、図6の4つの差動信号を利用する場合のように、複数の変調信号を出力する場合には、配線基板4にも変調信号の数に対応して同様な配線パターンが並列に設けられる。なお、接地用の配線Gについては、隣接する配線間で共用する場合もある。
図8の配線基板4の左側にはドライバ回路素子の出力信号が導入され、配線基板4上には、差動信号(S+,S-)と接地(G)に対応した配線40が設けられている。差動信号と接地の配置及び配線の数は、ドライバ回路素子の出力端子に対応して設定される。また、図6の4つの差動信号を利用する場合のように、複数の変調信号を出力する場合には、配線基板4にも変調信号の数に対応して同様な配線パターンが並列に設けられる。なお、接地用の配線Gについては、隣接する配線間で共用する場合もある。
図8では、差動信号の一方の信号(S+)を変調電極にシングルエンド信号として出力し、他方の信号(S-)は、終端器で終端されている。終端器としては。信号配線と接地配線との間に終端抵抗41Rを設けることで構成することが可能である。また、終端した信号配線(S-)の端部から放出されるマイクロ波を吸収するため、信号配線を取り囲むように接地配線間を接続する部分400を設けることも可能である。また、終端抵抗41Rの配置は、S-信号配線の不要な反射を防ぐために、ドライバ回路素子の電極の近傍(図8の左側)に、可能な限り、配置してもよい。
終端器の構成は、図8に示すように終端抵抗41Rとなる抵抗体膜を配置するだけでなく、抵抗器などを組み込んだ1つのチップ状の電気部品として構成することも可能であり、このようなチップ状の終端器の場合は、配線基板4上の配線40に導電性接着剤で電気的に接続して固定される。
図9は、配線基板4の下面に図9(a)の配線を形成し、図9(b)のように、終端器41のみ配線基板4の上面に配置したものである。終端器41の位置に対応して、配線用のビアが、配線基板4に形成されている。この配線基板を側面図で示すと図10(b)のような構成となる、図10(a)は、図3又は図5と同様の構成であり、配線基板の上面に配線40を形成し、同じく上面に終端器41を配置している。図10(b)のアレンジで、図10(c)のように、配線基板の下面に配線40と終端器41を、共に配置することも可能である。さらに、図10(a)のアレンジで、配線基板の上面に配線40を配置し、下面に終端器41を配置することも可能である。この場合には、配線40と終端器41とは、ビア43”で接続されている。
図10(a)及び図10(b)のように、配線基板4の上面(配線基板の変調基板に対向する面に対して裏側に位置する面)に終端器を設ける理由は、信号配線(S-)の終端抵抗(終端部)において、電気信号が熱に変換されるので、熱に弱い変調基板の保護及び熱によるドリフト現象を抑制するために、変調基板1より、より離れた位置に終端器を設けることによる。
また、配線基板4の放熱効果を高めるため、図11に示すように終端器の周辺に貫通孔又は貫通孔に導電部材を配置した放熱手段を設けたり、図12に示すように、接地用配線の一部に貫通ビアを設け、放熱手段とすることが可能である。これらの貫通孔(特に導電部材を配置した貫通孔)又は貫通ビアなどは、終端されたマイクロ波が変調基板側に伝搬するのを抑制することにも寄与する。
上述した光変調器と、該光変調器内のドライバ回路素子に入力する変調信号を生成する信号発生器(DSPなど)とを備えることで、同様の効果を有する光送信装置を提供することも可能となる。
以上のように、本発明によれば、ドライバ回路素子から変調基板への伝送損失を低減した光変調器を提供することが可能となる。さらに、ドライバ回路素子から出力される差動信号を、シングルエンド信号として変調電極に効率的に印加することが可能な光変調器を提供することも可能となる。また、これらの光変調器を用いた光伝送装置を提供することができる。
1 変調基板
2 ドライバ回路素子
3 筐体
4 配線基板
2 ドライバ回路素子
3 筐体
4 配線基板
Claims (7)
- 光導波路と該光導波路を伝搬する光波を変調するための変調電極とを有する変調基板と、
該変調電極に印加される変調信号を生成するドライバ回路素子とを筐体内に収容した光変調器において、
該ドライバ回路素子の上面側に変調信号を出力する出力端子を設け、
該出力端子と該変調電極とを電気的に接続する配線を備えた配線基板が、該ドライバ回路素子と該変調基板との上側で両者に跨って配置されていることを特徴とする光変調器。 - 請求項1に記載の光変調器において、該配線基板の配線と、該出力端子及び該変調電極とは、フリップチップボンディングで電気的に接続されていることを特徴とする光変調器。
- 請求項1又は2に記載の光変調器において、該配線基板は、該ドライバ回路素子から差動信号を受入れ、該変調電極には該差動信号の一方の信号のみを出力するよう構成されていることを特徴とする光変調器。
- 請求項3に記載の光変調器において、該差動信号の他方の信号は、該配線基板に設けられた終端器により終端されていることを特徴とする光変調器。
- 請求項4に記載の光変調器において、該終端器は、該配線基板の該変調基板に対向する面に対して裏側に位置する面に設けられていることを特徴とする光変調器。
- 請求項4又は5に記載の光変調器において、該配線基板には、該終端器から発生する熱を放出する放熱手段が設けられていることを特徴とする光変調器。
- 請求項1乃至6のいずれかに記載の光変調器と、該ドライバ回路素子に入力する変調信号を生成する信号発生器とを備えることを特徴とする光送信装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US18/022,707 US20230314851A1 (en) | 2020-09-29 | 2021-09-29 | Optical modulator and optical transmission device using same |
EP21875655.9A EP4224248A1 (en) | 2020-09-29 | 2021-09-29 | Optical modulator and optical transmission device using same |
CN202180058935.3A CN116157722A (zh) | 2020-09-29 | 2021-09-29 | 光调制器及使用该光调制器的光发送装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020-163991 | 2020-09-29 | ||
JP2020163991A JP7468279B2 (ja) | 2020-09-29 | 2020-09-29 | 光変調器とそれを用いた光送信装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022071355A1 true WO2022071355A1 (ja) | 2022-04-07 |
Family
ID=80949188
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/035752 WO2022071355A1 (ja) | 2020-09-29 | 2021-09-29 | 光変調器とそれを用いた光送信装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20230314851A1 (ja) |
EP (1) | EP4224248A1 (ja) |
JP (1) | JP7468279B2 (ja) |
CN (1) | CN116157722A (ja) |
WO (1) | WO2022071355A1 (ja) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090304395A1 (en) * | 2008-06-05 | 2009-12-10 | Jin Hong | Tunable Electrical Return-to-Zero Modulation Method and Apparatus |
JP2014164243A (ja) | 2013-02-27 | 2014-09-08 | Sumitomo Electric Ind Ltd | 光変調モジュール、半導体光変調素子 |
US20170194308A1 (en) * | 2016-01-04 | 2017-07-06 | Infinera Corporation | Photonic integrated circuit package |
JP2018189699A (ja) * | 2017-04-28 | 2018-11-29 | 日本電信電話株式会社 | 光送信器 |
WO2019239683A1 (ja) * | 2018-06-14 | 2019-12-19 | 三菱電機株式会社 | 光変調器及び光送信モジュール |
WO2020115999A1 (ja) * | 2018-12-05 | 2020-06-11 | 住友大阪セメント株式会社 | 光変調器 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014160176A (ja) * | 2013-02-20 | 2014-09-04 | Sumitomo Electric Ind Ltd | 駆動回路 |
-
2020
- 2020-09-29 JP JP2020163991A patent/JP7468279B2/ja active Active
-
2021
- 2021-09-29 WO PCT/JP2021/035752 patent/WO2022071355A1/ja unknown
- 2021-09-29 CN CN202180058935.3A patent/CN116157722A/zh active Pending
- 2021-09-29 EP EP21875655.9A patent/EP4224248A1/en active Pending
- 2021-09-29 US US18/022,707 patent/US20230314851A1/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090304395A1 (en) * | 2008-06-05 | 2009-12-10 | Jin Hong | Tunable Electrical Return-to-Zero Modulation Method and Apparatus |
JP2014164243A (ja) | 2013-02-27 | 2014-09-08 | Sumitomo Electric Ind Ltd | 光変調モジュール、半導体光変調素子 |
US20170194308A1 (en) * | 2016-01-04 | 2017-07-06 | Infinera Corporation | Photonic integrated circuit package |
JP2018189699A (ja) * | 2017-04-28 | 2018-11-29 | 日本電信電話株式会社 | 光送信器 |
WO2019239683A1 (ja) * | 2018-06-14 | 2019-12-19 | 三菱電機株式会社 | 光変調器及び光送信モジュール |
WO2020115999A1 (ja) * | 2018-12-05 | 2020-06-11 | 住友大阪セメント株式会社 | 光変調器 |
Also Published As
Publication number | Publication date |
---|---|
CN116157722A (zh) | 2023-05-23 |
US20230314851A1 (en) | 2023-10-05 |
JP7468279B2 (ja) | 2024-04-16 |
JP2022056145A (ja) | 2022-04-08 |
EP4224248A1 (en) | 2023-08-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11940708B2 (en) | Optical modulator | |
JP6237706B2 (ja) | 光モジュール及び光送受信装置 | |
US20200174205A1 (en) | Optical component and optical module using the same | |
WO2010004850A1 (ja) | 光配線構造 | |
JP2005128440A (ja) | 電気回路を内蔵する光導波路モジュール及びその製造方法 | |
WO2020121928A1 (ja) | 光送信機 | |
WO2017130450A1 (ja) | 光変調器及びそれを用いた光送信装置 | |
JP2006284838A (ja) | 光変調器 | |
JP2020091378A (ja) | 光変調器 | |
JP4056545B2 (ja) | 高周波線路の接続構造 | |
WO2022071355A1 (ja) | 光変調器とそれを用いた光送信装置 | |
JP7087360B2 (ja) | 光変調器及びそれを用いた光送信装置 | |
WO2022163724A1 (ja) | 光変調器とそれを用いた光送信装置 | |
US7633667B2 (en) | Apparatus and method of forming high performance integrated RF optical module | |
US11442329B2 (en) | Optical waveguide element, optical modulator, optical modulation module, and optical transmission apparatus | |
JP7567471B2 (ja) | 光変調器とそれを用いた光送信装置 | |
JP2017181851A (ja) | 光変調器 | |
WO2023188199A1 (ja) | 光導波路素子及びそれを用いた光変調デバイス並びに光送信装置 | |
WO2023188366A1 (ja) | 光デバイスとそれを用いた光送信装置 | |
JP6729133B2 (ja) | 光変調器 | |
JP7098930B2 (ja) | 光変調器及びそれを用いた光送信装置 | |
JP7495359B2 (ja) | 光モジュール | |
JP7388021B2 (ja) | 光デバイス | |
WO2023053332A1 (ja) | 光導波路素子及びそれを用いた光変調デバイス並びに光送信装置 | |
WO2024013827A1 (ja) | 高速光送受信装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21875655 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2021875655 Country of ref document: EP Effective date: 20230502 |