WO2022071209A1 - 工作機械の制御装置 - Google Patents

工作機械の制御装置 Download PDF

Info

Publication number
WO2022071209A1
WO2022071209A1 PCT/JP2021/035332 JP2021035332W WO2022071209A1 WO 2022071209 A1 WO2022071209 A1 WO 2022071209A1 JP 2021035332 W JP2021035332 W JP 2021035332W WO 2022071209 A1 WO2022071209 A1 WO 2022071209A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluctuation
speed
command
spindle motor
condition
Prior art date
Application number
PCT/JP2021/035332
Other languages
English (en)
French (fr)
Inventor
航希 及川
Original Assignee
ファナック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ファナック株式会社 filed Critical ファナック株式会社
Priority to US18/044,029 priority Critical patent/US20240012386A1/en
Priority to CN202180065479.5A priority patent/CN116194851A/zh
Priority to DE112021004523.7T priority patent/DE112021004523T5/de
Priority to JP2022553945A priority patent/JPWO2022071209A1/ja
Publication of WO2022071209A1 publication Critical patent/WO2022071209A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/404Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control arrangements for compensation, e.g. for backlash, overshoot, tool offset, tool wear, temperature, machine construction errors, load, inertia
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/4093Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by part programming, e.g. entry of geometrical information as taken from a technical drawing, combining this with machining and material information to obtain control information, named part programme, for the NC machine
    • G05B19/40937Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by part programming, e.g. entry of geometrical information as taken from a technical drawing, combining this with machining and material information to obtain control information, named part programme, for the NC machine concerning programming of machining or material parameters, pocket machining
    • G05B19/40938Tool management
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q15/00Automatic control or regulation of feed movement, cutting velocity or position of tool or work
    • B23Q15/007Automatic control or regulation of feed movement, cutting velocity or position of tool or work while the tool acts upon the workpiece
    • B23Q15/12Adaptive control, i.e. adjusting itself to have a performance which is optimum according to a preassigned criterion
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/19Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path
    • G05B19/33Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path using an analogue measuring device
    • G05B19/37Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path using an analogue measuring device for continuous-path control
    • G05B19/371Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path using an analogue measuring device for continuous-path control the positional error is used to control continuously the servomotor according to its magnitude
    • G05B19/378Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path using an analogue measuring device for continuous-path control the positional error is used to control continuously the servomotor according to its magnitude with a combination of feedback covered by G05B19/373 - G05B19/376
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/41Servomotor, servo controller till figures
    • G05B2219/41256Chattering control

Definitions

  • the present invention relates to a control device for a machine tool.
  • Patent Document 1 Conventionally, there has been known a technique for suppressing regenerative self-excited chatter vibration generated in cutting by periodically changing the spindle speed of a machine tool (see, for example, Patent Document 1).
  • the machine tool described in Patent Document 1 changes at least one of the average rotation speed, amplitude, and period of the rotation axis of the machine tool by changing a predetermined parameter when chatter vibration occurs.
  • the control device of the machine tool calculates a fluctuation command based on the speed command of the spindle motor in the machine tool and the fluctuation condition for fluctuating the rotation speed of the spindle motor, and uses the speed command and the fluctuation command.
  • the speed deviation indicating the difference between the speed command and the actual speed of the spindle motor within a predetermined period is within the first allowable range with the fluctuation command calculation unit that generates the speed control command that controls the speed of the spindle motor based on the above. It is provided with a speed deviation determining unit for determining whether or not the speed deviation is, and a condition changing unit for changing the fluctuation condition when the speed deviation is outside the first permissible range.
  • the machine tool control device calculates a fluctuation command based on a speed command of the spindle motor in the machine tool and a fluctuation condition for fluctuating the rotational speed of the spindle motor, and uses the speed command and the fluctuation command.
  • a fluctuation command calculation unit that generates a speed control command that controls the speed of the spindle motor based on the above, and a torque that determines whether or not the torque command for the spindle motor within a predetermined period is within the second allowable range. It includes a command determination unit and a condition change unit that changes the fluctuation condition when the torque command is outside the second permissible range.
  • the control device of the machine tool calculates a fluctuation command based on the speed command of the spindle motor in the machine tool and the fluctuation condition for fluctuating the rotation speed of the spindle motor, and uses the speed command and the fluctuation command.
  • the fluctuation command calculation unit that generates a speed control command for controlling the speed of the spindle motor based on the speed command, and the speed deviation based on the speed command and the actual speed of the spindle motor within a predetermined period are within the first allowable range.
  • the speed deviation determination unit for determining whether or not the torque command for the spindle motor within the predetermined period is within the second allowable range, and the speed deviation determination unit determines whether or not the torque command is within the second allowable range.
  • FIG. 1 is a diagram showing an outline of a machine tool 1 according to the present embodiment.
  • the machine tool 1 is a device for performing predetermined machining such as cutting according to the control of the numerical control device 2.
  • the machine tool 1 includes a motor control device 10 for controlling a motor. Further, the motor control device 10 includes a fluctuation command calculation unit 11, a speed control unit 12, a current control unit 13, a current detection unit 14, a speed deviation determination unit 15, a torque command determination unit 16, and a condition change unit. 17 and.
  • the motor control device 10 aims to suppress the regenerative self-excited chatter vibration generated during the cutting process of the machine tool 1.
  • the chatter vibration means a vibration continuously generated between a tool and a work in a machine tool. Chatter vibration is generally divided into forced chatter vibration and self-excited chatter vibration according to the factors that cause vibration.
  • Forced chatter vibration is generated under the influence of the forced vibration source.
  • self-excited vibration occurs when a certain condition is satisfied due to the overlap of the dynamic characteristics of the machine tool and the cutting process even if there is no specific vibration source.
  • the regenerative self-excited chatter vibrations are chatter vibrations caused by fluctuations in chip thickness.
  • the causes of the regenerative self-excited chatter vibration in the spindle motor mainly include 1) insufficient torque of the spindle motor and 2) insufficient followability of the spindle motor.
  • the torque command of the spindle motor is saturated and the actual speed amplitude of the spindle motor is reduced, so that the chatter suppression effect is unintentionally reduced and chatter vibration is generated.
  • the torque command of the spindle motor includes both the load torque of the spindle motor (including inertia, cutting load, etc.) and the acceleration / deceleration torque generated by the speed fluctuation. Therefore, it is difficult for the machine tool operator to determine whether or not the torque command is saturated in order to adjust the fluctuation condition when the speed of the spindle motor fluctuates.
  • the frequency response of the spindle motor is insufficient and the actual speed amplitude of the spindle motor is reduced, so that the chatter suppression effect is unintentionally reduced and chatter vibration is generated. ..
  • the frequency response of the spindle motor changes depending on multiple factors such as the configuration of the machine tool (for example, motor capacity, control gain, load inertia, etc.). Therefore, it is difficult for the machine tool operator to determine whether or not the followability of the motor is insufficient in order to adjust the fluctuation condition when the speed of the spindle motor fluctuates.
  • the motor control device 10 effectively suppresses such regenerative self-excited vibration by performing the control as shown below.
  • the fluctuation command calculation unit 11 calculates a fluctuation command based on the speed command of the spindle motor 18 in the machine tool 1 and fluctuation conditions for changing the rotation speed of the spindle motor 18, and speed control is performed based on the speed command and the fluctuation command. Generate a command.
  • the fluctuation command calculation unit 11 calculates the fluctuation command including the fluctuation condition based on the speed command and the fluctuation condition of the spindle motor 18.
  • the fluctuation condition includes a fluctuation amplitude rate for changing the amplitude of the speed command and a fluctuation frequency rate for changing the frequency of the speed command.
  • the fluctuation condition may be arbitrarily set by the user as a parameter, or may be a preset default value.
  • the fluctuation command calculation unit 11 superimposes the speed command on the calculated fluctuation command, and generates a speed control command for controlling the speed of the spindle motor 18. That is, the speed control command includes a speed command and a fluctuation command.
  • the speed control unit 12 is the difference between the speed command and the actual speed based on the speed command output from the numerical control device 2 and the actual speed feedback signal of the spindle motor 18 output from the speed detection unit 19 (for example, an encoder). Calculate the velocity deviation indicating. Then, the speed control unit 12 generates a torque command by performing proportional integral control (PI control) on the speed deviation, and outputs the torque command to the current control unit 13. Further, the speed control unit 12 outputs the calculated speed deviation to the speed deviation determination unit 15.
  • PI control proportional integral control
  • the current control unit 13 generates a voltage command for driving the spindle motor 18 based on the torque command output from the speed control unit 12 and the actual current feedback signal output from the current detection unit 14, and issues the voltage command. Output to the spindle motor 18. Further, the current control unit 13 outputs a torque command to the torque command determination unit 16.
  • the current detection unit 14 detects the current value of the spindle motor 18 and outputs the detected current value to the current control unit 13 as an actual current feedback signal.
  • the speed deviation determination unit 15 determines whether or not the speed deviation indicating the difference between the speed command and the actual speed of the spindle motor 18 within a predetermined period is within the first allowable range.
  • the predetermined period may be, for example, one cycle or a half cycle of the fluctuation cycle for varying the rotation speed of the spindle motor 18. Then, the speed deviation determination unit 15 monitors the speed deviation every one cycle or half cycle of the fluctuation cycle, and determines whether or not the speed deviation is within the first permissible range.
  • the speed deviation determination unit 15 determines whether or not the speed deviation exceeds the first allowable range.
  • the torque command determination unit 16 determines whether the torque command for the spindle motor 18 within a predetermined period is within the second allowable range.
  • the predetermined period may be, for example, one cycle or a half cycle of the fluctuation cycle for varying the rotation speed of the spindle motor 18. Then, the torque command determination unit 16 monitors the torque command every one cycle or half cycle of the fluctuation cycle, and determines whether or not the torque command is within the second allowable range.
  • the torque command determination unit 16 determines whether or not the torque command exceeds the second allowable range.
  • the condition changing unit 17 changes the fluctuation condition when the speed deviation is out of the first permissible range. Specifically, the condition changing unit 17 changes the fluctuation amplitude rate and / or the fluctuation frequency rate as the fluctuation condition when the velocity deviation is out of the first permissible range.
  • condition changing unit 17 reduces the fluctuation amplitude rate and / or the fluctuation frequency rate when the velocity deviation exceeds the first allowable range.
  • condition changing unit 17 increases the fluctuation amplitude rate and / or the fluctuation frequency rate when the velocity deviation is less than the first allowable range.
  • condition changing unit 17 changes the fluctuation condition when the torque command is out of the second allowable range. Specifically, the condition changing unit 17 changes the fluctuation amplitude rate and / or the fluctuation frequency rate when the torque command is out of the second allowable range.
  • condition changing unit 17 reduces the fluctuation amplitude rate and / or the fluctuation frequency rate when the torque command exceeds the second allowable range.
  • condition changing unit 17 increases the fluctuation amplitude rate and / or the fluctuation frequency rate when the torque command is less than the second allowable range.
  • condition changing unit 17 may change the fluctuation condition when the speed deviation is out of the first allowable range and the torque command is out of the second allowable range.
  • FIG. 2 is a flowchart showing a processing flow of the motor control device 10 according to the present embodiment.
  • the fluctuation command calculation unit 11 calculates the fluctuation command including the fluctuation condition based on the speed command and the fluctuation condition of the spindle motor 18.
  • step S2 the fluctuation command calculation unit 11 superimposes the speed command on the fluctuation command calculated in step S1 and generates a speed control command for the spindle motor 18.
  • FIG. 3 is a diagram showing an example of a speed command, a fluctuation command, and a fluctuation condition.
  • the variation command has a variation amplitude and a variation frequency and is superimposed on the velocity command.
  • the fluctuation amplitude is calculated based on the speed command and the fluctuation amplitude rate
  • the fluctuation frequency is calculated based on the speed command and the fluctuation frequency rate.
  • the fluctuation amplitude and the fluctuation frequency are calculated by the following equations as shown in FIG.
  • Fluctuation amplitude [min -1 ] Velocity command [min -1 ] ⁇ (Variation amplitude rate [%] ⁇ 100)
  • Fluctuating frequency [Hz] (speed command [min -1 ] / 60) x (variable frequency rate [%] x 100)
  • the fluctuation command in FIG. 3 has a triangular wave type pattern, but is not limited to this, and the fluctuation command may have a pattern such as a sine wave, a square wave, or a rectangular wave. ..
  • step S3 the speed deviation determination unit 15 monitors the speed deviation every one cycle or half cycle of the fluctuation cycle, and determines whether or not the speed deviation is within the first allowable range. .. If the speed deviation is within the first permissible range (YES), the process proceeds to step S4. On the other hand, when the speed deviation is out of the second permissible range (NO), the process proceeds to step S5.
  • FIG. 4 is a diagram showing an example of the velocity deviation and the first allowable range.
  • the fluctuation period is calculated by taking the reciprocal of the fluctuation frequency in the fluctuation command.
  • the first permissible range is set to 0 to 300 min -1 .
  • the first permissible range may be arbitrarily set by the user, or a preset default value may be used. Further, the first allowable range may be calculated based on the maximum rotation speed of the spindle motor 18 or the speed command from the numerical control device 2.
  • the speed deviation determination unit 15 makes a determination by comparing the maximum value of the speed deviation, which is an absolute value, with the first allowable range, but the determination is not limited to this.
  • the speed deviation determination unit 15 may make a determination by comparing the average value of the speed deviation within a predetermined period with the first allowable range.
  • step S4 the torque command determination unit 16 monitors the torque command every one cycle or half cycle of the fluctuation cycle, and determines whether or not the torque command is within the second allowable range. .. If the torque command is within the second permissible range (YES), the process ends thereafter. On the other hand, when the torque command is out of the second allowable range (NO), the process proceeds to step S6.
  • FIG. 5 is a diagram showing an example of a torque command and a second allowable range.
  • the second allowable range is set from 60% (lower limit) to 90% (upper limit) of the absolute value of the torque command.
  • the second allowable range may be arbitrarily set by the user, or a preset default value may be used.
  • the torque command determination unit 16 makes a determination by comparing the maximum value of the torque command, which is an absolute value, with the second allowable range, but the determination is not limited to this.
  • the torque command determination unit 16 may make a determination by comparing the average value of the torque commands within a predetermined period with the second allowable range.
  • step S5 the speed deviation determination unit 15 determines whether or not the speed deviation exceeds the first permissible range. If the speed deviation exceeds the first permissible range (YES), the process proceeds to step S7. If the speed deviation does not exceed the first permissible range (NO), the process proceeds to step S8.
  • step S6 the torque command determination unit 16 determines whether or not the torque command exceeds the second allowable range. If the torque command exceeds the second permissible range (YES), the process proceeds to step S7. If the torque command does not exceed the second permissible range (NO), the process proceeds to step S8.
  • step S7 the condition changing unit 17 reduces the fluctuation amplitude rate and / or the fluctuation frequency rate as the fluctuation condition.
  • step S8 the condition changing unit 17 increases the fluctuation amplitude rate and / or the fluctuation frequency rate as the fluctuation condition.
  • the change ratio of the fluctuation amplitude rate and / or the fluctuation frequency rate is the current change magnification, the maximum value of the speed deviation, and the first permissible range of the speed deviation, as shown in the following equation. It may be calculated based on the maximum value of.
  • Change Magnification (Current Change Magnification) + ⁇ (Current Change Magnification)-(Maximum Velocity Deviation) / (Maximum Velocity Deviation First Allowable Range) x (Current Change Magnification) ⁇
  • Change magnification (Current change magnification) + ⁇ (Current change magnification)-(Maximum value of torque command) / (Maximum value of the second allowable range of torque command) x (Current change magnification) ⁇
  • variable amplitude rate and / or the variable frequency rate change magnification may be arbitrarily set by the user as a parameter, or a preset change factor may be used.
  • the process of step S4 is executed after the process of step S3, but instead of this, the process of step S3 may be executed after the process of step S4. In this case, the process of step S5 and the process of step S6 are switched.
  • the motor control device 10 calculates the fluctuation command based on the speed command of the spindle motor 18 in the machine tool 1 and the fluctuation condition for varying the rotation speed of the spindle motor 18.
  • the fluctuation command calculation unit 11 that generates a speed control command that controls the speed of the spindle motor 18 based on the speed command and the fluctuation command, and the speed deviation indicating the difference between the speed command and the actual speed of the spindle motor 18 within a predetermined period are A speed deviation determining unit 15 for determining whether or not the speed deviation is within the first allowable range, and a condition changing unit 17 for changing the fluctuation condition when the speed deviation is outside the first allowable range are provided.
  • the motor control device 10 can change the fluctuation condition according to the speed deviation of the spindle motor 18. Therefore, the motor control device 10 can adjust the optimum fluctuation conditions with respect to the followability of the spindle motor 18, and can obtain a stable and chatter suppressing effect.
  • the fluctuation condition includes the fluctuation amplitude rate for changing the amplitude of the speed command and the fluctuation frequency rate for changing the frequency of the speed command.
  • the condition changing unit 17 changes the fluctuation amplitude rate and / or the fluctuation frequency rate when the velocity deviation is out of the first permissible range.
  • the motor control device 10 can change the variable amplitude rate and / or the variable frequency rate according to the speed deviation of the spindle motor 18. Therefore, the motor control device 10 can appropriately adjust the fluctuation conditions.
  • the speed deviation determination unit 15 determines whether or not the speed deviation exceeds the first allowable range.
  • the condition changing unit 17 reduces the fluctuation amplitude rate and / or the fluctuation frequency rate when the velocity deviation exceeds the first allowable range. Further, the condition changing unit 17 increases the fluctuation amplitude rate and / or the fluctuation frequency rate when the velocity deviation is less than the first allowable range.
  • the motor control device 10 can increase or decrease the fluctuation amplitude rate and / or the fluctuation frequency rate according to the speed deviation of the spindle motor 18. Therefore, the motor control device 10 can appropriately adjust the fluctuation conditions.
  • the motor control device 10 calculates a fluctuation command based on the speed command of the spindle motor 18 in the machine tool 1 and the fluctuation condition for fluctuating the rotational speed of the spindle motor 18, and the spindle is based on the speed command and the fluctuation command.
  • the fluctuation command calculation unit 11 that generates a speed control command that controls the speed of the motor 18, and the torque command determination that determines whether or not the torque command for the spindle motor 18 within a predetermined period is within the second allowable range.
  • a unit 16 and a condition changing unit 17 that changes the fluctuation condition when the torque command is out of the second allowable range are provided.
  • the motor control device 10 can change the fluctuation condition according to the torque command of the spindle motor 18. Therefore, the motor control device 10 can adjust the optimum fluctuation conditions with respect to the load and torque margin of the spindle motor 18, and can obtain a stable and chatter suppressing effect.
  • the fluctuation condition includes the fluctuation amplitude rate for changing the amplitude of the speed command and the fluctuation frequency rate for changing the frequency of the speed command.
  • the condition changing unit 17 changes the fluctuation amplitude rate and / or the fluctuation frequency rate when the torque command is out of the second allowable range.
  • the motor control device 10 can change the fluctuation amplitude rate and / or the fluctuation frequency rate according to the torque command of the spindle motor 18. Therefore, the motor control device 10 can appropriately adjust the fluctuation conditions.
  • the torque command determination unit 16 determines whether or not the torque command exceeds the second allowable range.
  • the condition changing unit 17 reduces the fluctuation amplitude rate and / or the fluctuation frequency rate when the torque command exceeds the second allowable range. Further, the condition changing unit 17 increases the fluctuation amplitude rate and / or the fluctuation frequency rate when the torque command is less than the second allowable range.
  • the motor control device 10 can increase or decrease the fluctuation amplitude rate and / or the fluctuation frequency rate according to the torque command of the spindle motor 18. Therefore, the motor control device 10 can appropriately adjust the fluctuation conditions.
  • the motor control device 10 calculates a fluctuation command based on the speed command of the spindle motor 18 in the machine tool 1 and the fluctuation condition for fluctuating the rotation speed of the spindle motor 18, and the spindle is based on the speed command and the fluctuation command. Whether or not the speed deviation based on the fluctuation command calculation unit 11 that generates the speed control command that controls the speed of the motor 18 and the speed command and the actual speed of the spindle motor 18 within a predetermined period is within the first allowable range.
  • the speed deviation determination unit 15 for determining whether or not the torque command for the spindle motor 18 within a predetermined period is within the second allowable range, and the torque command determination unit 16 for determining whether or not the torque command is within the second allowable range, and the speed deviation is the first.
  • the condition changing unit 17 for changing the fluctuation condition is provided.
  • the motor control device 10 can change the fluctuation conditions according to the speed deviation and the torque command of the spindle motor 18. Therefore, the motor control device 10 can adjust the optimum fluctuation conditions with respect to the followability of the spindle motor 18 and the margin of load and torque of the spindle motor 18, and can obtain a stable and chatter suppressing effect.
  • the above-mentioned motor control device 10 can be realized by hardware, software, or a combination thereof. Further, the control method performed by the motor control device 10 can also be realized by hardware, software, or a combination thereof.
  • what is realized by software means that it is realized by a computer reading and executing a program.
  • Non-transitory computer-readable media include various types of tangible storage media (tangible studio media).
  • Examples of non-temporary computer-readable media include magnetic recording media (eg, hard disk drives), magneto-optical recording media (eg, magneto-optical disks), CD-ROMs (Read Only Memory), CD-Rs, CD-Rs / W, including semiconductor memory (for example, mask ROM, PROM (Programmable ROM), EPROM (Erasable PROM), flash ROM, RAM (random access memory)).
  • Machine tool 1 Machine tool 2 Numerical control device 10 Motor control device 11 Fluctuation command calculation unit 12 Speed control unit 13 Current control unit 14 Current detection unit 15 Speed deviation judgment unit 16 Torque command judgment unit 17 Condition change unit 18 Main shaft motor 19 Speed detection unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Geometry (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Electric Motors In General (AREA)
  • Automatic Control Of Machine Tools (AREA)
  • Numerical Control (AREA)

Abstract

最適な変動条件の調整が可能になり、安定したびびり抑制効果を得ることができる工作機械の制御装置を提供すること。工作機械の制御装置は、工作機械における主軸モータの速度指令及び前記主軸モータの回転速度を変動させるための変動条件に基づいて変動指令を算出し、前記速度指令及び前記変動指令に基づいて前記主軸モータの速度を制御する速度制御指令を生成する変動指令算出部と、所定期間内における前記速度指令と前記主軸モータの実速度との差を示す速度偏差が第1の許容範囲内であるか否かを判定する速度偏差判定部と、前記速度偏差が前記第1の許容範囲外である場合、前記変動条件を変更する条件変更部と、を備える。

Description

工作機械の制御装置
 本発明は、工作機械の制御装置に関する。
 従来より、工作機械の主軸速度を周期的に変動させることによって、切削加工において発生する再生型の自励びびり振動を抑制する技術が知られている(例えば、特許文献1参照)。
 特許文献1に記載の工作機械は、びびり振動が生じると、所定のパラメータを変更することにより工作機械の回転軸の平均回転速度、振幅及び周期のうちの少なくとも何れか一つを変更する。
特開2012-91283号公報
 このような工作機械において、安定したびびり抑制効果を得るためには、主軸モータの速度変動時の変動条件の適切な調整が必要である。しかし、変動条件の条件出しが煩雑なため、加工現場において変動条件の調整を行うことが困難である。そこで、最適な変動条件の調整が可能になり、安定したびびり抑制効果を得ることができる工作機械の制御装置が求められている。
 本開示に係る工作機械の制御装置は、工作機械における主軸モータの速度指令及び前記主軸モータの回転速度を変動させるための変動条件に基づいて変動指令を算出し、前記速度指令及び前記変動指令に基づいて前記主軸モータの速度を制御する速度制御指令を生成する変動指令算出部と、所定期間内における前記速度指令と前記主軸モータの実速度との差を示す速度偏差が第1の許容範囲内であるか否かを判定する速度偏差判定部と、前記速度偏差が前記第1の許容範囲外である場合、前記変動条件を変更する条件変更部と、を備える。
 本開示に係る工作機械の制御装置は、工作機械における主軸モータの速度指令及び前記主軸モータの回転速度を変動させるための変動条件に基づいて変動指令を算出し、前記速度指令及び前記変動指令に基づいて前記主軸モータの速度を制御する速度制御指令を生成する変動指令算出部と、所定期間内における前記主軸モータのためのトルク指令が第2の許容範囲内であるか否かを判定するトルク指令判定部と、前記トルク指令が前記第2の許容範囲外である場合、前記変動条件を変更する条件変更部と、を備える。
 本開示に係る工作機械の制御装置は、工作機械における主軸モータの速度指令及び前記主軸モータの回転速度を変動させるための変動条件に基づいて変動指令を算出し、前記速度指令及び前記変動指令に基づいて前記主軸モータの速度を制御する速度制御指令を生成する変動指令算出部と、所定期間内における前記速度指令と前記主軸モータの実速度とに基づく速度偏差が第1の許容範囲内であるか否かを判定する速度偏差判定部と、前記所定期間内における前記主軸モータのためのトルク指令が第2の許容範囲内であるか否かを判定するトルク指令判定部と、前記速度偏差が前記第1の許容範囲外であり、かつ前記トルク指令が前記第2の許容範囲外である場合、前記変動条件を変更する条件変更部と、を備える。
 本発明によれば、最適な変動条件の調整が可能になり、安定したびびり抑制効果を得ることができる。
本実施形態に係る工作機械の概要を示す図である。 本実施形態に係るモータ制御装置の処理の流れを示すフローチャートである。 速度指令、変動指令及び変動条件の一例を示す図である。 速度偏差及び第1の許容範囲の一例を示す図である。 トルク指令及び第2の許容範囲の一例を示す図である。
 以下、本発明の実施形態の一例について説明する。図1は、本実施形態に係る工作機械1の概要を示す図である。工作機械1は、数値制御装置2の制御に従い、切削加工等のような所定の加工を行うための装置である。
 工作機械1は、モータを制御するためのモータ制御装置10を備える。また、モータ制御装置10は、変動指令算出部11と、速度制御部12と、電流制御部13と、電流検出部14と、速度偏差判定部15と、トルク指令判定部16と、条件変更部17と、を備える。
 モータ制御装置10は、工作機械1の切削加工中に発生する再生型の自励びびり振動を抑制することを目的とする。ここで、びびり振動とは、工作機械において工具とワークとの間で継続的に発生する振動をいう。びびり振動は、概して、振動発生の要因から強制びびり振動と自励びびり振動とに分けられる。
 強制びびり振動は、強制的な振動源の影響を受けて発生する。一方、自励びびり振動は、特定の振動源がなくても工作機械の動特性と切削過程が重なって、ある条件を満たしたときに発生する。
 自励びびり振動のうち、再生型の自励びびり振動は、切り屑厚さの変動によって生じるびびり振動である。再生型の自励びびり振動を抑制するためには、工具の回転速度を調整することによって、切り屑の厚さを一定にする対策が必要である。
 一般的に、工作機械の主軸速度を周期的に変動させることによって、切削加工で発生する再生型の自励びびり振動を抑制する技術が知られている。
 再生型の自励びびり振動を安定して抑制するためには、主軸モータの速度変動時の変動条件の適切な調整が必要だが、条件出しが煩雑なため、加工現場での調整が困難である。
 ここで、主軸モータにおける再生型の自励びびり振動の発生要因としては、主に、1)主軸モータのトルク不足、及び2)主軸モータの追従性不足が挙げられる。
 主軸モータのトルク不足については、主軸モータのトルク指令が飽和し、主軸モータの実際の速度振幅が低下することによって、意図せずにびびり抑制効果が低下し、びびり振動が発生する。
 主軸モータのトルク指令は、主軸モータの負荷トルク(イナーシャ、切削負荷等を含む)と、速度変動によって生じる加減速トルクとの両方を含んでいる。そのため、主軸モータの速度変動時の変動条件を調整するために、工作機械のオペレータが、トルク指令が飽和していないかどうかを判断することは困難である。
 また、主軸モータの追従性不足については、主軸モータの周波数応答性が不足し、主軸モータの実際の速度振幅が低下することによって、意図せずにびびり抑制効果が低下し、びびり振動が発生する。
 主軸モータの周波数応答性は、工作機械の構成等のような複数の要因(例えば、モータ能力、制御ゲイン、負荷イナーシャ等)によって変化する。そのため、主軸モータの速度変動時の変動条件を調整するために、工作機械のオペレータが、モータの追従性が不足していないかどうかを判断することは困難である。
 本実施形態に係るモータ制御装置10は、以下に示すような制御を行うことによって、このような再生型の自励びびり振動を効果的に抑制する。
 変動指令算出部11は、工作機械1における主軸モータ18の速度指令及び主軸モータ18の回転速度を変動させるための変動条件に基づいて変動指令を算出し、速度指令及び変動指令に基づいて速度制御指令を生成する。
 具体的には、変動指令算出部11は、主軸モータ18の速度指令及び変動条件に基づいて、変動条件を含む変動指令を算出する。ここで、変動条件は、速度指令の振幅を変動させるための変動振幅率及び速度指令の周波数を変動させるための変動周波数率を含む。なお、変動条件は、パラメータとしてユーザによって任意に設定されてもよく、又は予め設定された既定値であってもよい。
 そして、変動指令算出部11は、算出された変動指令に速度指令を重畳し、主軸モータ18の速度を制御するための速度制御指令を生成する。すなわち、速度制御指令は、速度指令及び変動指令を含む。
 速度制御部12は、数値制御装置2から出力された速度指令及び速度検出部19(例えば、エンコーダ)から出力された主軸モータ18の実速度フィードバック信号に基づいて、速度指令と実速度との差を示す速度偏差を算出する。そして、速度制御部12は、速度偏差に比例積分制御(PI制御)を行うことによりトルク指令を生成し、トルク指令を電流制御部13へ出力する。また、速度制御部12は、算出した速度偏差を速度偏差判定部15へ出力する。
 電流制御部13は、速度制御部12から出力されたトルク指令及び電流検出部14から出力された実電流フィードバック信号に基づいて、主軸モータ18を駆動するための電圧指令を生成し、電圧指令を主軸モータ18へ出力する。また、電流制御部13は、トルク指令をトルク指令判定部16へ出力する。
 電流検出部14は、主軸モータ18の電流値を検出し、検出した電流値を実電流フィードバック信号として電流制御部13へ出力する。
 速度偏差判定部15は、所定期間内における速度指令と主軸モータ18の実速度との差を示す速度偏差が第1の許容範囲内であるか否かを判定する。ここで、所定期間は、例えば、主軸モータ18の回転速度を変動させるための変動周期の1周期又は半周期であってもよい。そして、速度偏差判定部15は、変動周期の1周期又は半周期ごとに、速度偏差を監視し、速度偏差が第1の許容範囲内であるか否かを判定する。
 また、速度偏差判定部15は、速度偏差が第1の許容範囲外である場合、速度偏差が第1の許容範囲を超えるか否かを判定する。
 トルク指令判定部16は、所定期間内における主軸モータ18のためのトルク指令が第2の許容範囲内であるかを判定する。ここで、所定期間は、例えば、主軸モータ18の回転速度を変動させるための変動周期の1周期又は半周期であってもよい。そして、トルク指令判定部16は、変動周期の1周期又は半周期ごとに、トルク指令を監視し、トルク指令が第2の許容範囲内であるか否かを判定する。
 また、トルク指令判定部16は、トルク指令が第2の許容範囲外である場合、トルク指令が第2の許容範囲を超えるか否かを判定する。
 条件変更部17は、速度偏差が第1の許容範囲外である場合、変動条件を変更する。具体的には、条件変更部17は、速度偏差が第1の許容範囲外である場合、変動条件としての変動振幅率及び/又は変動周波数率を変更する。
 また、条件変更部17は、速度偏差が第1の許容範囲を超える場合、変動振幅率及び/又は変動周波数率を減少させる。一方、条件変更部17は、速度偏差が第1の許容範囲未満である場合、変動振幅率及び/又は変動周波数率を増加させる。
 更に、条件変更部17は、トルク指令が第2の許容範囲外である場合、変動条件を変更する。具体的には、条件変更部17は、トルク指令が第2の許容範囲外である場合、変動振幅率及び/又は変動周波数率を変更する。
 また、条件変更部17は、トルク指令が第2の許容範囲を超える場合、変動振幅率及び/又は変動周波数率を減少させる。一方、条件変更部17は、トルク指令が第2の許容範囲未満である場合、変動振幅率及び/又は変動周波数率を増加させる。
 更に、条件変更部17は、速度偏差が第1の許容範囲外であり、かつトルク指令が第2の許容範囲外である場合、変動条件を変更してもよい。
 図2は、本実施形態に係るモータ制御装置10の処理の流れを示すフローチャートである。
 ステップS1において、変動指令算出部11は、主軸モータ18の速度指令及び変動条件に基づいて、変動条件を含む変動指令を算出する。
 ステップS2において、変動指令算出部11は、ステップS1において算出された変動指令に速度指令を重畳し、主軸モータ18のための速度制御指令を生成する。
 図3は、速度指令、変動指令及び変動条件の一例を示す図である。図3に示すように、変動指令は、変動振幅及び変動周波数を有し、速度指令に重畳される。変動振幅は、速度指令及び変動振幅率に基づいて算出され、変動周波数は、速度指令及び変動周波数率に基づいて算出される。
 変動振幅及び変動周波数は、図3にも示されるように、以下のような式によって算出される。
 変動振幅[min-1]=速度指令[min-1]×(変動振幅率[%]×100)
 変動周波数[Hz]=(速度指令[min-1]/60)×(変動周波数率[%]×100)
 また、図3における変動指令は、三角波型のパターンを有しているが、これに限定されず、変動指令は、例えば、正弦波、方形波、矩形波等のパターンを有していてもよい。
 図2に戻り、ステップS3において、速度偏差判定部15は、変動周期の1周期又は半周期ごとに、速度偏差を監視し、速度偏差が第1の許容範囲内であるか否かを判定する。
速度偏差が第1の許容範囲内である場合(YES)、処理は、ステップS4へ進む。一方、速度偏差が第2の許容範囲外である場合(NO)、処理は、ステップS5へ進む。
 図4は、速度偏差及び第1の許容範囲の一例を示す図である。図4において、変動周期は、変動指令における変動周波数の逆数を取ることによって算出される。図4に示す例では、第1の許容範囲は、0から300min-1に設定されている。第1の許容範囲は、ユーザによって任意に設定されてもよく、予め設定された既定値を用いてもよい。また、第1の許容範囲は、主軸モータ18の最高回転数や、数値制御装置2からの速度指令に基づいて算出されてもよい。
 また、図4に示す例では、速度偏差判定部15は、絶対値である速度偏差の最大値と、第1の許容範囲とを比較することによって判定を行っているが、これに限定されない。例えば、速度偏差判定部15は、所定期間内の速度偏差の平均値と、第1の許容範囲とを比較することによって判定を行ってもよい。
 図2に戻り、ステップS4において、トルク指令判定部16は、変動周期の1周期又は半周期ごとに、トルク指令を監視し、トルク指令が第2の許容範囲内であるか否かを判定する。トルク指令が第2の許容範囲内である場合(YES)、処理は、その後終了する。一方、トルク指令が第2の許容範囲外である場合(NO)、処理は、ステップS6へ進む。
 図5は、トルク指令及び第2の許容範囲の一例を示す図である。図5に示す例では、第2の許容範囲は、トルク指令の絶対値の60%(下限)から90%(上限)に設定されている。第2の許容範囲は、ユーザによって任意に設定されてもよく、予め設定された既定値を用いてもよい。
 また、図5に示す例では、トルク指令判定部16は、絶対値であるトルク指令の最大値と、第2の許容範囲とを比較することによって判定を行っているが、これに限定されない。例えば、トルク指令判定部16は、所定期間内のトルク指令の平均値と、第2の許容範囲とを比較することによって判定を行ってもよい。
 図2に戻り、ステップS5において、速度偏差判定部15は、速度偏差が第1の許容範囲を超えるか否かを判定する。速度偏差が第1の許容範囲を超える場合(YES)、処理は、ステップS7へ進む。速度偏差が第1の許容範囲を超えない場合(NO)、処理は、ステップS8へ進む。
 ステップS6において、トルク指令判定部16は、トルク指令が第2の許容範囲を超えるか否かを判定する。トルク指令が第2の許容範囲を超える場合(YES)、処理は、ステップS7へ進む。トルク指令が第2の許容範囲を超えない場合(NO)、処理は、ステップS8へ進む。
 ステップS7において、条件変更部17は、変動条件としての変動振幅率及び/又は変動周波数率を減少させる。
 ステップS8において、条件変更部17は、変動条件としての変動振幅率及び/又は変動周波数率を増加させる。
 ここで、ステップS7及びS8において、変動振幅率及び/又は変動周波数率の変更倍率は、下記の式に示すように、現在の変更倍率、速度偏差の最大値及び速度偏差の第1の許容範囲の最大値に基づいて算出されてもよい。
 変更倍率=(現在の変更倍率)+{(現在の変更倍率)-(速度偏差の最大値)/(速度偏差の第1の許容範囲の最大値)×(現在の変更倍率)}
 また、変動振幅率及び/又は変動周波数率の変更倍率は、下記の式に示すように、現在の変更倍率、トルク指令の最大値及びトルク指令の第2の許容範囲の最大値に基づいて算出されてもよい。
 変更倍率=(現在の変更倍率)+{(現在の変更倍率)-(トルク指令の最大値)/(トルク指令の第2の許容範囲の最大値)×(現在の変更倍率)}
 また、変動振幅率及び/又は変動周波数率の変更倍率は、パラメータとしてユーザによって任意に設定されてもよく、又は予め設定された変更倍率を用いてもよい。なお、図2に示すフローチャートでは、ステップS3の処理の後に、ステップS4の処理が実行されたが、これに代えて、ステップS4の処理の後に、ステップS3の処理が実行されてもよい。この場合、ステップS5の処理とステップS6の処理が入れ替わる。
 以上説明したように、本実施形態に係るモータ制御装置10は、工作機械1における主軸モータ18の速度指令及び主軸モータ18の回転速度を変動させるための変動条件に基づいて変動指令を算出し、速度指令及び変動指令に基づいて主軸モータ18の速度を制御する速度制御指令を生成する変動指令算出部11と、所定期間内における速度指令と主軸モータ18の実速度との差を示す速度偏差が第1の許容範囲内であるか否かを判定する速度偏差判定部15と、速度偏差が第1の許容範囲外である場合、変動条件を変更する条件変更部17と、を備える。
 これにより、モータ制御装置10は、主軸モータ18の速度偏差に応じて変動条件を変更することができる。そのため、モータ制御装置10は、主軸モータ18の追従性に対して最適な変動条件の調整が可能になり、安定したびびり抑制効果を得ることができる。
 また、変動条件は、速度指令の振幅を変動させるための変動振幅率及び速度指令の周波数を変動させるための変動周波数率を含む。条件変更部17は、速度偏差が第1の許容範囲外である場合、変動振幅率及び/又は変動周波数率を変更する。これにより、モータ制御装置10は、主軸モータ18の速度偏差に応じて変動振幅率及び/又は変動周波数率を変更することができる。よって、モータ制御装置10は、変動条件を適切に調整することができる。
 また、速度偏差判定部15は、速度偏差が第1の許容範囲外である場合、速度偏差が第1の許容範囲を超えるか否かを判定する。条件変更部17は、速度偏差が第1の許容範囲を超える場合、変動振幅率及び/又は変動周波数率を減少させる。また、条件変更部17は、速度偏差が第1の許容範囲未満である場合、変動振幅率及び/又は変動周波数率を増加させる。
 これにより、モータ制御装置10は、主軸モータ18の速度偏差に応じて変動振幅率及び/又は変動周波数率を増加又は減少させることができる。よって、モータ制御装置10は、変動条件を適切に調整することができる。
 また、モータ制御装置10は、工作機械1における主軸モータ18の速度指令及び主軸モータ18の回転速度を変動させるための変動条件に基づいて変動指令を算出し、速度指令及び変動指令に基づいて主軸モータ18の速度を制御する速度制御指令を生成する変動指令算出部11と、所定期間内における主軸モータ18のためのトルク指令が第2の許容範囲内であるか否かを判定するトルク指令判定部16と、トルク指令が第2の許容範囲外である場合、変動条件を変更する条件変更部17と、を備える。
 これにより、モータ制御装置10は、主軸モータ18のトルク指令に応じて変動条件を変更することができる。そのため、モータ制御装置10は、主軸モータ18の負荷及びトルクの余裕に対して最適な変動条件の調整が可能になり、安定したびびり抑制効果を得ることができる。
 また、変動条件は、速度指令の振幅を変動させるための変動振幅率及び速度指令の周波数を変動させるための変動周波数率を含む。条件変更部17は、トルク指令が第2の許容範囲外である場合、変動振幅率及び/又は変動周波数率を変更する。
 これにより、モータ制御装置10は、主軸モータ18のトルク指令に応じて変動振幅率及び/又は変動周波数率を変更することができる。よって、モータ制御装置10は、変動条件を適切に調整することができる。
 また、トルク指令判定部16は、トルク指令が第2の許容範囲外である場合、トルク指令が第2の許容範囲を超えるか否かを判定する。条件変更部17は、トルク指令が第2の許容範囲を超える場合、変動振幅率及び/又は変動周波数率を減少させる。また、条件変更部17は、トルク指令が第2の許容範囲未満である場合、変動振幅率及び/又は変動周波数率を増加させる。
 これにより、モータ制御装置10は、主軸モータ18のトルク指令に応じて変動振幅率及び/又は変動周波数率を増加又は減少させることができる。よって、モータ制御装置10は、変動条件を適切に調整することができる。
 また、モータ制御装置10は、工作機械1における主軸モータ18の速度指令及び主軸モータ18の回転速度を変動させるための変動条件に基づいて変動指令を算出し、速度指令及び変動指令に基づいて主軸モータ18の速度を制御する速度制御指令を生成する変動指令算出部11と、所定期間内における速度指令と主軸モータ18の実速度とに基づく速度偏差が第1の許容範囲内であるか否かを判定する速度偏差判定部15と、所定期間内における主軸モータ18のためのトルク指令が第2の許容範囲内であるか否かを判定するトルク指令判定部16と、速度偏差が第1の許容範囲外であり、かつトルク指令が第2の許容範囲外である場合、変動条件を変更する条件変更部17と、を備える。
 これにより、モータ制御装置10は、主軸モータ18の速度偏差及びトルク指令に応じて変動条件を変更することができる。そのため、モータ制御装置10は、主軸モータ18の追従性並びに主軸モータ18の負荷及びトルクの余裕に対して最適な変動条件の調整が可能になり、安定したびびり抑制効果を得ることができる。
 以上、本発明の実施形態について説明したが、上記のモータ制御装置10は、ハードウェア、ソフトウェア又はこれらの組み合わせにより実現することができる。また、上記のモータ制御装置10により行なわれる制御方法も、ハードウェア、ソフトウェア又はこれらの組み合わせにより実現することができる。ここで、ソフトウェアによって実現されるとは、コンピュータがプログラムを読み込んで実行することにより実現されることを意味する。
 プログラムは、様々なタイプの非一時的なコンピュータ可読媒体(non-transitory computer readable medium)を用いて格納され、コンピュータに供給することができる。非一時的なコンピュータ可読媒体は、様々なタイプの実体のある記録媒体(tangible storage medium)を含む。非一時的なコンピュータ可読媒体の例は、磁気記録媒体(例えば、ハードディスクドライブ)、光磁気記録媒体(例えば、光磁気ディスク)、CD-ROM(Read Only Memory)、CD-R、CD-R/W、半導体メモリ(例えば、マスクROM、PROM(Programmable ROM)、EPROM(Erasable PROM)、フラッシュROM、RAM(random access memory))を含む。
 また、上述した各実施形態は、本発明の好適な実施形態ではあるが、上記各実施形態のみに本発明の範囲を限定するものではない。本発明の要旨を逸脱しない範囲において種々の変更を施した形態での実施が可能である。
 1 工作機械
 2 数値制御装置
 10 モータ制御装置
 11 変動指令算出部
 12 速度制御部
 13 電流制御部
 14 電流検出部
 15 速度偏差判定部
 16 トルク指令判定部
 17 条件変更部
 18 主軸モータ
 19 速度検出部

Claims (7)

  1.  工作機械における主軸モータの速度指令及び前記主軸モータの回転速度を変動させるための変動条件に基づいて変動指令を算出し、前記速度指令及び前記変動指令に基づいて前記主軸モータの速度を制御する速度制御指令を生成する変動指令算出部と、
     所定期間内における前記速度指令と前記主軸モータの実速度との差を示す速度偏差が第1の許容範囲内であるか否かを判定する速度偏差判定部と、
     前記速度偏差が前記第1の許容範囲外である場合、前記変動条件を変更する条件変更部と、
     を備える工作機械の制御装置。
  2.  前記変動条件は、前記速度指令の振幅を変動させるための変動振幅率及び前記速度指令の周波数を変動させるための変動周波数率を含み、
     前記条件変更部は、前記速度偏差が前記第1の許容範囲外である場合、前記変動振幅率及び/又は前記変動周波数率を変更する、請求項1に記載の制御装置。
  3.  前記速度偏差判定部は、前記速度偏差が前記第1の許容範囲外である場合、前記速度偏差が前記第1の許容範囲を超えるか否かを判定し、
     前記条件変更部は、前記速度偏差が前記第1の許容範囲を超える場合、前記変動振幅率及び/又は前記変動周波数率を減少させ、
     前記条件変更部は、前記速度偏差が前記第1の許容範囲未満である場合、前記変動振幅率及び/又は前記変動周波数率を増加させる、請求項2に記載の制御装置。
  4.  工作機械における主軸モータの速度指令及び前記主軸モータの回転速度を変動させるための変動条件に基づいて変動指令を算出し、前記速度指令及び前記変動指令に基づいて前記主軸モータの速度を制御する速度制御指令を生成する変動指令算出部と、
     所定期間内における前記主軸モータのためのトルク指令が第2の許容範囲内であるか否かを判定するトルク指令判定部と、
     前記トルク指令が前記第2の許容範囲外である場合、前記変動条件を変更する条件変更部と、
     を備える工作機械の制御装置。
  5.  前記変動条件は、前記速度指令の振幅を変動させるための変動振幅率及び前記速度指令の周波数を変動させるための変動周波数率を含み、
     前記条件変更部は、前記トルク指令が前記第2の許容範囲外である場合、前記変動振幅率及び/又は前記変動周波数率を変更する、請求項4に記載の制御装置。
  6.  前記トルク指令判定部は、前記トルク指令が前記第2の許容範囲外である場合、前記トルク指令が前記第2の許容範囲を超えるか否かを判定し、
     前記条件変更部は、前記トルク指令が前記第2の許容範囲を超える場合、前記変動振幅率及び/又は前記変動周波数率を減少させ、
     前記条件変更部は、前記トルク指令が前記第2の許容範囲未満である場合、前記変動振幅率及び/又は前記変動周波数率を増加させる、請求項5に記載の制御装置。
  7.  工作機械における主軸モータの速度指令及び前記主軸モータの回転速度を変動させるための変動条件に基づいて変動指令を算出し、前記速度指令及び前記変動指令に基づいて前記主軸モータの速度を制御する速度制御指令を生成する変動指令算出部と、
     所定期間内における前記速度指令と前記主軸モータの実速度とに基づく速度偏差が第1の許容範囲内であるか否かを判定する速度偏差判定部と、
     前記所定期間内における前記主軸モータのためのトルク指令が第2の許容範囲内であるか否かを判定するトルク指令判定部と、
     前記速度偏差が前記第1の許容範囲外であり、かつ前記トルク指令が前記第2の許容範囲外である場合、前記変動条件を変更する条件変更部と、
     を備える工作機械の制御装置。
PCT/JP2021/035332 2020-10-02 2021-09-27 工作機械の制御装置 WO2022071209A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US18/044,029 US20240012386A1 (en) 2020-10-02 2021-09-27 Machine tool control device
CN202180065479.5A CN116194851A (zh) 2020-10-02 2021-09-27 机床的控制装置
DE112021004523.7T DE112021004523T5 (de) 2020-10-02 2021-09-27 Werkzeugmaschinen-Steuervorrichtung
JP2022553945A JPWO2022071209A1 (ja) 2020-10-02 2021-09-27

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020167531 2020-10-02
JP2020-167531 2020-10-02

Publications (1)

Publication Number Publication Date
WO2022071209A1 true WO2022071209A1 (ja) 2022-04-07

Family

ID=80949170

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/035332 WO2022071209A1 (ja) 2020-10-02 2021-09-27 工作機械の制御装置

Country Status (5)

Country Link
US (1) US20240012386A1 (ja)
JP (1) JPWO2022071209A1 (ja)
CN (1) CN116194851A (ja)
DE (1) DE112021004523T5 (ja)
WO (1) WO2022071209A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5727572B2 (ja) * 2013-10-10 2015-06-03 ファナック株式会社 モータ温度に応じて動作を変更する工作機械の制御装置及び制御方法
JP2020069621A (ja) * 2018-11-02 2020-05-07 株式会社ジェイテクト 歯車加工装置及び歯車加工方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5665047B2 (ja) 2010-10-27 2015-02-04 オークマ株式会社 工作機械

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5727572B2 (ja) * 2013-10-10 2015-06-03 ファナック株式会社 モータ温度に応じて動作を変更する工作機械の制御装置及び制御方法
JP2020069621A (ja) * 2018-11-02 2020-05-07 株式会社ジェイテクト 歯車加工装置及び歯車加工方法

Also Published As

Publication number Publication date
US20240012386A1 (en) 2024-01-11
CN116194851A (zh) 2023-05-30
DE112021004523T5 (de) 2023-07-06
JPWO2022071209A1 (ja) 2022-04-07

Similar Documents

Publication Publication Date Title
US8005574B2 (en) Vibration suppressing method and device
US9690281B2 (en) Machine tool and machining control device thereof
JP5160980B2 (ja) 振動抑制方法及び装置
WO2010014348A1 (en) A method, system, and apparatus for on-demand integrated adaptive control of machining operations
JP6464226B2 (ja) 電動機の制御装置
JP6501815B2 (ja) 主軸回転速度制御装置
JP6592143B2 (ja) 電動機の制御装置
JP6469171B2 (ja) 電動機の制御装置
CN111791087B (zh) 具有主轴以及进给轴的机床的控制装置
WO2022071209A1 (ja) 工作機械の制御装置
JP5499865B2 (ja) 多関節型ロボットの速度指令プロファイルの生成方法
JP7036786B2 (ja) 数値制御装置、プログラム及び制御方法
CN113646131A (zh) 具有多重振动检测的机床中的振动衰减
US9221140B2 (en) Method of machining workpiece with machine tool
JP2006150504A (ja) びびり振動予測防止加工装置、びびり振動予測防止加工装置のびびり振動予測防止方法
JP5767931B2 (ja) 工作機械の振動抑制方法および振動抑制装置
JP2015201112A (ja) 工作機械の加工制御装置
JP2004195613A (ja) 数値制御工作機械の切削送り速度制御方法と装置
WO2023067683A1 (ja) 工作機械の制御装置
US20160246284A1 (en) Numerical controller performing speed control that suppresses excessive positioning deviation
US20240131647A1 (en) Machine tool controller
WO2022196646A1 (ja) 工作機械の制御装置
JP2016161971A (ja) 工作機械における送り軸の制御方法及び工作機械
WO2022249317A1 (ja) 工作機械の制御装置
JP2021006952A (ja) パラメータ調整方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21875511

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022553945

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18044029

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 21875511

Country of ref document: EP

Kind code of ref document: A1