WO2022070765A1 - Work machine - Google Patents

Work machine Download PDF

Info

Publication number
WO2022070765A1
WO2022070765A1 PCT/JP2021/032424 JP2021032424W WO2022070765A1 WO 2022070765 A1 WO2022070765 A1 WO 2022070765A1 JP 2021032424 W JP2021032424 W JP 2021032424W WO 2022070765 A1 WO2022070765 A1 WO 2022070765A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling air
space
motor
fan
housing
Prior art date
Application number
PCT/JP2021/032424
Other languages
French (fr)
Japanese (ja)
Inventor
領祐 仲野
賢 伊縫
智翔 曹
Original Assignee
工機ホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 工機ホールディングス株式会社 filed Critical 工機ホールディングス株式会社
Priority to JP2022553711A priority Critical patent/JPWO2022070765A1/ja
Publication of WO2022070765A1 publication Critical patent/WO2022070765A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23DPLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
    • B23D49/00Machines or devices for sawing with straight reciprocating saw blades, e.g. hacksaws
    • B23D49/10Hand-held or hand-operated sawing devices with straight saw blades
    • B23D49/14Pad saws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23DPLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
    • B23D49/00Machines or devices for sawing with straight reciprocating saw blades, e.g. hacksaws
    • B23D49/10Hand-held or hand-operated sawing devices with straight saw blades
    • B23D49/16Hand-held or hand-operated sawing devices with straight saw blades actuated by electric or magnetic power or prime movers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q11/00Accessories fitted to machine tools for keeping tools or parts of the machine in good working condition or for cooling work; Safety devices specially combined with or arranged in, or specially adapted for use in connection with, machine tools
    • B23Q11/12Arrangements for cooling or lubricating parts of the machine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25FCOMBINATION OR MULTI-PURPOSE TOOLS NOT OTHERWISE PROVIDED FOR; DETAILS OR COMPONENTS OF PORTABLE POWER-DRIVEN TOOLS NOT PARTICULARLY RELATED TO THE OPERATIONS PERFORMED AND NOT OTHERWISE PROVIDED FOR
    • B25F5/00Details or components of portable power-driven tools not particularly related to the operations performed and not otherwise provided for

Definitions

  • the present invention relates to a working machine.
  • a fan that rotates by driving a motor is provided, and a control unit for controlling the driving of the motor is arranged on the side of the fan. Has been done.
  • the cooling air generated by the rotation of the fan flows to the control unit, and the heat generating member (cooled unit) such as the FET mounted on the motor or the control unit can be cooled by the cooling air. can.
  • an object of the present invention is to provide a working machine capable of improving the cooling performance of a cooled portion (heat generating member).
  • One or more embodiments of the present invention include a housing having an intake port and an exhaust port, a motor housed in the housing, and a motor housed in the housing, which is rotated by the drive of the motor and rotated inside the housing. It includes a fan that generates cooling air, a portion that is housed in the housing and generates heat during operation, and is cooled by the cooling air, and the cooling air is sucked into the inside of the housing from the intake port.
  • the upstream cooling air that flows into the fan and the downstream cooling air that flows out of the fan and is exhausted from the exhaust port to the outside of the housing are included, and the cooled portion is described as described above. It is a working machine that is cooled by the upstream cooling air and the downstream cooling air.
  • the housing has a first space through which the upstream cooling air passes and a second space through which the downstream cooling air passes. It is a working machine in which the cooling unit is exposed in the first space and the second space.
  • One or more embodiments of the present invention is a working machine in which the housing is composed of a plurality of divided housings, and the divided housing is formed with a holding portion for sandwiching the cooled portion. ..
  • the housing has a rectifying unit that partitions the first space and the second space and rectifies the upstream cooling air to guide it to the second space side.
  • the rectifying portion is a working machine in which an exposed portion for exposing a part of the cooled portion to the second space is formed.
  • the fan is arranged in the second space, and a guide hole communicating the first space and the second space is formed in the rectifying section.
  • This is a working machine in which the fan and the guide hole are arranged so as to face each other in the axial direction of the fan.
  • the cooled unit is a working machine that is a control unit that controls the motor.
  • control unit includes a control board connected to the motor and a box-shaped case containing the control board and having one side open in the thickness direction. It is a working machine that is configured to cool the bottom wall of the case with the cooling air.
  • control unit is arranged in the first space, and the intake port is arranged on the other side of the case in the thickness direction with respect to the bottom wall of the case. It is a working machine.
  • One or more embodiments of the present invention is a working machine in which the control unit partitions the first space and the second space.
  • One or more embodiments of the present invention is a working machine in which the bottom wall of the case is exposed to the first space and the opening of the case is opened to the second space side.
  • One or more embodiments of the present invention is a working machine in which a part of the cooled portion is arranged radially outside the fan, and the fan is configured as a centrifugal fan.
  • One or more embodiments of the present invention is a working machine in which the cooled portion is the motor.
  • One or more embodiments of the present invention include a housing having an intake port and an exhaust port, a motor housed in the housing, and inside the housing, which is housed in the housing and rotated by the drive of the motor. It includes a fan that generates cooling air, a cooled portion that is housed in the housing and generates heat during operation, and is cooled by the cooling air, and the cooled portion includes air before cooling the motor. , A working machine that is cooled by both air after cooling the motor.
  • the cooled portion is a working machine that is cooled by air after cooling the motor blown from the fan.
  • the cooling performance for the cooled portion can be improved.
  • FIG. 3 is a perspective view seen from diagonally left front, showing a state in which the control unit is sandwiched by the rear housing shown in FIG. 1.
  • FIG. 3 is an exploded perspective view of the rear housing and the control unit shown in FIG.
  • FIG. 3 is a rear view which shows the motor housing part in the rear housing shown in FIG. 1 and seen from the rear side.
  • sectional drawing (6-6 line sectional drawing of FIG. 5) seen from the left side which shows the assembly state of the split housing and the control part on the left side shown in FIG.
  • the saver saw 10 as a working machine according to the present embodiment will be described with reference to the drawings.
  • the arrows UP, FR, and RH appropriately shown in the drawings indicate the upper side, the front side, and the right side of the saver saw 10, respectively.
  • the vertical, front-back, and left-right directions of the saver saw 10 will be indicated unless otherwise specified.
  • the saver saw 10 is configured as a tool for cutting a work material such as a pipe.
  • the saver saw 10 includes a housing 12 constituting the outer shell of the saver saw 10, a motor 40 housed inside the housing 12, and a drive mechanism 50.
  • the saver saw 10 has a control unit 60 as a unit to be cooled for controlling the motor 40.
  • a cooling structure S is applied around the control unit 60, and the control unit 60 is cooled by the cooling structure S.
  • the housing 12 is formed in a hollow shape and is formed in a laterally substantially P-shape when viewed from the side.
  • the housing 12 includes a rear housing 13 constituting the rear portion of the housing 12 and a front housing 14 constituting the front portion of the housing 12.
  • the rear housing 13 is configured as a housing portion for accommodating the motor 40 described later
  • the front housing 14 is configured as a housing portion accommodating the drive mechanism 50 described later.
  • the front housing 14 has a resin front cover 14A, and a metal upper cover 14B and an undercover 14C located inside the front cover 14A. By assembling the upper cover 14B and the under cover 14C in the vertical direction, a space for accommodating the drive mechanism 50 is defined. The operator can perform the work while grasping the front portion (region having a small diameter) of the front cover 14A.
  • the rear housing 13 is composed of a pair of divided housings 15 divided into two in the left-right direction, and the rear housing 13 is formed by assembling the pair of divided housings 15 to each other (see FIG. 4).
  • the rear end portion of the rear housing 13 is configured as a handle portion 13A, and the handle portion 13A extends in the vertical direction.
  • a trigger 30 is provided on the upper end portion of the handle portion 13A so as to be pullable, and a switch mechanism portion 31 is provided on the rear side of the trigger portion 30.
  • the switch mechanism unit 31 has a switch (not shown) operated by the trigger 30, and the switch is electrically connected to a control unit 60 described later.
  • a battery pack 32 is detachably attached to the lower end of the rear end of the rear housing 13.
  • the battery pack 32 is electrically connected to a control unit 60 described later to supply electric power to a motor 40 described later.
  • a portion of the front portion of the rear housing 13 other than the upper end portion is configured as a motor housing portion 16 for accommodating a motor 40 described later.
  • the motor housing portion 16 is formed in a substantially bottomed cylinder shape that is open to the front side.
  • a fan guide 17 as a rectifying portion is provided in a portion on the front end side.
  • the fan guide 17 is formed in a plate shape with the front-rear direction as the plate thickness direction, and extends from the outer peripheral wall of the divided housing 15 toward the center side in the left-right direction of the saver saw 10.
  • the tip portions of the fan guides 17 formed in the split housing 15 are abutted against each other at the central portion in the left-right direction of the motor housing portion 16.
  • the inside of the motor housing portion 16 is divided back and forth by the fan guide 17. Specifically, the inside of the motor housing portion 16 is divided into a first space 16A constituting the rear portion of the motor housing portion 16 and a second space 16B constituting the front end portion of the motor housing portion 16 (). See FIG. 6).
  • a circular guide hole 17A is formed through the substantially central portion of the fan guide 17. As a result, the first space 16A and the second space 16B are communicated with each other by the guide hole 17A. Further, a front fixing portion 17B for fixing the control portion 60, which will be described later, is formed at the lower end portion of the fan guide 17.
  • the front fixing portion 17B is formed in a substantially concave shape that protrudes to the front side and is open to the rear side in a side view.
  • the upper wall of the front fixed portion 17B is configured as an inclined wall 17C that is inclined downward toward the front in a side view.
  • An exposed hole 17D as an exposed portion is formed through the inclined wall 17C in the central portion in the left-right direction, and the exposed hole 17D is abbreviated with the left-right direction as the longitudinal direction when viewed from the plate thickness direction of the inclined wall 17C. It is formed in a rectangular shape.
  • a first rear side fixing portion 18 (see FIG. 4) for fixing the control unit 60, which will be described later, is formed.
  • the first rear side fixing portion 18 is formed in a substantially U-shaped plate shape that is open to the front side in a side view, and extends from the right wall of the motor housing portion 16 to the center side in the left-right direction.
  • a second rear fixing portion 19 (see FIGS. 6 and 7) for fixing the control portion 60, which will be described later, is formed at the lower end portion of the left rear end portion of the motor housing portion 16.
  • the second rear fixing portion 19 is formed in a substantially L-shaped plate shape that is open to the front side and the upper side in a side view, and extends from the left wall of the motor housing portion 16 to the center side in the left-right direction.
  • a fixing piece 20 (see FIGS. 6 and 7) for fixing the control unit 60, which will be described later, is formed at the lower end of the left wall of the motor housing unit 16.
  • the fixed piece 20 is formed in a substantially rectangular plate shape with the vertical direction as the plate thickness direction, and extends from the left wall of the motor housing portion 16 to the center side in the left-right direction of the motor housing portion 16.
  • a pair of front and rear holding portions 21 (FIGS.
  • the holding portions 21 are the motor housing portions. It protrudes from the left and right side walls of the 16 toward the center side in the left-right direction of the motor housing portion 16 (in FIGS. 4 and 7, only the rear holding portion 21 is shown).
  • a plurality of (in this embodiment, eight locations) intake ports 22 are formed through the rear wall of the motor housing portion 16.
  • the intake port 22 is formed in an elongated hole shape with the left-right direction as the longitudinal direction.
  • the intake ports 22 arranged in the vertical direction form a pair, and the paired intake ports 22 are located at the upper and lower ends of the right and left portions of the rear wall of the motor housing portion 16, respectively.
  • the intake port 22 is arranged above the control unit 60 described later.
  • a foreign matter mixing prevention rib 22A protruding forward is formed on the lower edge portion of the intake port 22.
  • the foreign matter mixing prevention rib 22A extends in the left-right direction, and the front end portion of the foreign matter mixing prevention rib 22A is bent upward in a side view.
  • a plurality of (12 locations in the present embodiment) exhaust ports 23 are formed through the front end portion of the motor housing portion 16.
  • the exhaust port 23 is formed in a long hole shape with the circumferential direction of the motor housing portion 16 as the longitudinal direction.
  • the inside of the second space 16B and the outside of the motor housing portion 16 are communicated with each other by the exhaust port 23.
  • the exhaust ports 23 arranged in the front-rear direction form a pair, and the paired intake ports 22 are arranged side by side on the lower wall of the motor housing portion 16 in the left-right direction.
  • the paired exhaust ports 23 are arranged side by side in the vertical direction on the left and right side walls of the motor housing portion 16.
  • the motor 40 is housed in the first space 16A of the motor housing portion 16 of the housing 12.
  • the motor 40 includes a drive shaft 41, a rotor 42, a stator 43, and a motor substrate 45.
  • the drive shaft 41 is formed in a substantially columnar shape with the front-rear direction as the axial direction, and is arranged coaxially with the guide hole 17A.
  • the rear end portion of the drive shaft 41 is rotatably supported by the first bearing 33 fixed to the motor housing portion 16.
  • the drive shaft 41 is inserted through the guide hole 17A of the fan guide 17, and the front end portion of the drive shaft 41 is arranged in the front housing 14.
  • the front end side portion of the drive shaft 41 is rotatably supported by the second bearing 34 provided in the front housing 14.
  • a pinion gear 41A is formed on the outer peripheral portion of the front end portion of the drive shaft 41.
  • the rotor 42 is formed in a substantially cylindrical shape with the front-rear direction as the axial direction, and is configured to be integrally rotatable with the drive shaft 41 on the radial outer side of the drive shaft 41.
  • the stator 43 is formed in a substantially cylindrical shape with the front-rear direction as the axial direction, and is arranged on the outer side in the radial direction of the rotor 42.
  • the stator holder 44 of the stator 43 is sandwiched and held in the left-right direction by the motor holding ribs 24 (see FIGS. 4, 6, and 7) formed on the left and right side walls of the motor housing portion 16.
  • the motor substrate 45 is formed in a substantially annular plate shape with the front-rear direction as the plate thickness direction, and is fixed to the stator holder 44 on the rear side of the rotor 42 and the stator 43. One end of a coil wound around the stator holder 44 is connected to the motor board 45.
  • the drive mechanism 50 is housed in the front housing 14 (the area defined by the upper cover 14B and the undercover 14C).
  • the drive mechanism 50 includes a bevel gear 51, a motion conversion pin 52, and a plunger 53.
  • the bevel gear 51 is rotatably provided on the front side of the drive shaft 41 of the motor 40 with the vertical direction as the axial direction, and is meshed with the pinion gear 41A of the motor 40.
  • the motion conversion pin 52 is formed in a columnar shape with the vertical direction as the axial direction, and is fixed to the bevel gear 51 at a position eccentric with respect to the rotation axis of the bevel gear 51. The upper end of the motion conversion pin 52 projects upward from the bevel gear 51.
  • the plunger 53 is formed in a substantially columnar shape with the front-rear direction as the axial direction.
  • the plunger 53 is supported by the front housing 14 on the upper side of the bevel gear 51 so as to be reciprocally movable in the front-rear direction.
  • a connecting portion 54 is formed in a portion on the rear end side of the plunger 53, and the connecting portion 54 is formed in a groove shape that is open downward and extends in the left-right direction. Then, the upper end portion of the motion conversion pin 52 is inserted into the connecting portion 54, and the bevel gear 51 and the plunger 53 are connected to each other. As a result, the motor 40 is driven and the bevel gear 51 is rotated, so that the plunger 53 is configured to reciprocate in the front-rear direction.
  • a blade holder 55 is provided at the front end of the plunger 53, and a blade 56 is attached to the blade holder 55.
  • the blade 56 is formed in a substantially long plate shape with the front-rear direction as the longitudinal direction and the left-right direction as the plate thickness direction. Then, the rear end portion of the blade 56 is attached to the blade holder 55, and the blade 56 is arranged on the front side of the front housing 14.
  • a blade portion 56A is formed at the lower end portion of the blade 56. As a result, the blade 56 reciprocates in the front-rear direction, so that the work material is cut by the blade 56.
  • the control unit 60 is housed in the lower end portion of the first space 16A of the motor housing unit 16.
  • the control unit 60 includes a control board 62 and a case 61 for accommodating the control board 62.
  • the case 61 is formed in a rectangular box shape having a relatively shallow bottom with the vertical direction as the thickness direction. Further, the case 61 is open to one side (lower side) in the thickness direction.
  • the case 61 is configured to include a bottom wall 61A constituting the upper end of the case 61 and a side wall 61B extending downward from the outer peripheral portion of the bottom wall 61A.
  • a case inclined portion 61C is formed at the upper end portion of the side wall 61B. The case inclined portion 61C is inclined inward of the case 61 toward the upper side and is connected to the bottom wall 61A.
  • the case 61 is sandwiched in the left-right direction by the split housing 15 of the rear housing 13 and fixed to the motor housing portion 16. Specifically, the left and right side walls 61B of the case 61 are sandwiched in the left-right direction by the left and right holding portions 21 of the motor housing portion 16. As a result, the movement of the case 61 in the left-right direction is restricted by the holding portion 21. Further, the front end portion of the case 61 is arranged inside the front side fixing portion 17B of the motor housing portion 16, and the rear end portion of the case 61 is arranged inside the first rear side fixing portion 18, and the first 2 It is arranged on the upper side of the lower wall of the rear fixing portion 19.
  • the fixing piece 20 of the motor housing portion 16 is arranged on the upper side of the left end portion of the bottom wall 61A of the case 61. As a result, the vertical movement of the case 61 is restricted by the front fixing portion 17B, the first rear fixing portion 18, the second rear fixing portion 19, and the fixing piece 20.
  • the case 61 is arranged apart from the lower side of the stator 43 of the motor 40, and is arranged below the intake port 22 of the motor housing portion 16.
  • a cooling air passage 70 (see FIGS. 7 and 9) is formed between the motor 40 and the case 61. That is, the bottom wall 61A of the case 61 is housed in the first space 16A of the motor housing portion 16 so as to form a part of the wall portion of the cooling air passage 70.
  • the opening 61D of the case 61 opens to the bottom wall 61A on the side opposite to the cooling air passage 70, the intake port 22, and the guide hole 17A. Further, the rear end portion of the cooling air passage 70 communicates with the intake port 22, and the front end portion of the cooling air passage 70 communicates with the guide hole 17A.
  • the control board 62 is formed in a substantially rectangular plate shape with the vertical direction as the plate thickness direction.
  • the control board 62 is housed in the case 61 and fixed to the case 61.
  • On the lower surface of the control board 62 a plurality of (six in the present embodiment) switching elements (FETs) 63 (in a broad sense, elements grasped as heat-generating components) are provided.
  • FETs switching elements
  • the saver saw 10 has a fan 72 that generates a cooling air AR that cools the control unit 60.
  • the fan 72 is integrally rotatably fixed to the front end side portion of the drive shaft 41 of the motor 40, and is arranged on the front side of the fan guide 17 and in the second space 16B of the motor housing portion 16. That is, most of the control unit 60 is arranged between the intake port 22 of the motor housing unit 16 and the fan 72, and a part of the control unit 60 is arranged between the fan 72 and the exhaust port 23 of the motor housing unit 16. (Front end) is arranged.
  • the fan 72 is configured as a centrifugal fan to generate an air flow that causes air on the rear side of the fan 72 to flow outward in the radial direction of the fan 72.
  • a cooling air AR that is sucked into the motor housing portion 16 from the intake port 22 and discharged to the outside of the motor housing portion 16 from the exhaust port 23 is generated inside the motor housing portion 16.
  • the cooling air AR is sucked into the first space 16A from the intake port 22 and is sucked into the second space 16B and flows into the fan 72, and the upstream cooling air AR1 and the second space 16B.
  • Includes the downstream cooling air AR2 which is discharged outward from the fan 72 in the radial direction and is exhausted to the outside of the motor housing portion 16 from the exhaust port 23. That is, the air flow from the intake port 22 to the fan 72 (suction air) is the upstream cooling air AR1, and the air flow from the fan 72 to the exhaust port 23 (exhaust air) is the downstream cooling air AR2.
  • the upstream cooling air AR1 sucked into the first space 16A from the intake port 22 passes through the cooling air passage 70 and goes to the guide hole 17A side along the rear surface of the fan guide 17. It is designed to flow. That is, the fan guide 17 is configured to function as a guide portion that guides the upstream cooling air AR1 flowing in the first space 16A to the fan 72.
  • the motor 40 is driven by the pulling operation of the trigger 30.
  • the driving force of the motor 40 is transmitted to the plunger 53 of the drive mechanism 50, and the plunger 53 reciprocates in the front-rear direction.
  • the blade 56 attached to the plunger 53 reciprocates in the front-rear direction together with the plunger 53. Therefore, the blade 56 that reciprocates can cut the work material such as a pipe.
  • the fan 72 rotates around the axis of the drive shaft 41 together with the drive shaft 41 of the motor 40, and the air on the rear side (motor 40 side) of the fan 72 flows outward in the radial direction of the fan 72.
  • An air flow is generated.
  • the upstream cooling air AR1 is sucked into the first space 16A from the intake port 22 of the motor housing portion 16.
  • the intake port 22 communicates with the rear end portion of the cooling air passage 70. Therefore, the upstream cooling air AR1 sucked into the upper part of the first space 16A hits the motor board 45 of the motor 40 and flows to the lower side (cooling air passage 70 side) along the rear surface of the motor board 45. It flows into the rear end side of the cooling air passage 70. Further, the upstream cooling air AR1 sucked into the lower part of the first space 16A directly flows into the rear end side of the cooling air passage 70.
  • the upstream cooling air AR1 flowing into the rear end of the cooling air passage 70 flows forward in the cooling air passage 70 along the upper surface of the bottom wall 61A in the case 61 of the control unit 60. That is, the upstream cooling air AR1 flows in the cooling air passage 70 while cooling the case 61.
  • the upstream cooling air AR1 reaches the front end of the cooling air passage 70, it hits the lower end of the fan guide 17 and flows upward along the rear surface of the fan guide 17.
  • the upstream cooling air AR1 flowing upward along the fan guide 17 is sucked into the second space 16B from the guide hole 17A and flows into the fan 72.
  • the upstream cooling air AR1 sucked into the fan 72 flows out from the fan 72 radially outward as the downstream cooling air AR2. Then, the downstream cooling air AR2 discharged from the fan 72 is exhausted from the exhaust port 23 to the outside of the motor housing portion 16. At this time, the downstream cooling air AR2 flowing downward from the fan 72 is flowed downward along the front surface of the fan guide 17. Then, the downstream cooling air AR2 that has reached the lower end of the fan guide 17 flows downward and diagonally forward along the inclined wall 17C of the fan guide 17 and the case inclined portion 61C exposed from the exposed hole 17D, and flows downward. It is exhausted from the exhaust port 23 to the outside of the motor housing portion 16. That is, the downstream cooling air AR2 flows to the exhaust port 23 side while cooling the front end portion of the case 61.
  • the motor 40, the fan 72, and the control unit 60 are housed in the motor housing unit 16 of the housing 12, and the intake port 22 is housed in the motor housing unit 16. And the exhaust port 23 is formed.
  • cooling air AR that is sucked in from the intake port 22 and exhausted from the exhaust port 23 is generated in the motor housing portion 16.
  • Side cooling air AR2 is generated.
  • the control unit 60 having the switching element 63 that generates heat during operation is cooled by the upstream cooling air AR1 and the downstream cooling air AR2.
  • the control unit 60 can be efficiently cooled as compared with the configuration in which the control unit 60 is cooled by one of the upstream cooling air AR1 and the downstream cooling air AR2. Therefore, the cooling performance for the control unit 60 can be improved.
  • the air that has just entered the motor housing portion 16 from the intake port 22 has a high cooling effect because the temperature is low, and the rear end portion of the control unit 60 is the upstream portion of the upstream cooling air AR1 (air before cooling the motor 40). ), So the cooling effect is high.
  • the downstream cooling air AR2 tends to have a faster air flow
  • the control unit 60 can be suitably cooled by applying an exhaled air (air after cooling of the motor 40) having a high wind speed to the control unit 60.
  • the present invention has a cooling configuration utilizing the advantages of each of the suction air and the discharge air, such as applying a suction air having a relatively low temperature to the control unit 60 and also applying an discharge air having a high wind speed to the control unit 60. Is a feature.
  • the housing may become larger than necessary or the structure may be complicated because a sufficient flow path is formed.
  • design freedom can be obtained, and the housing becomes larger or more complicated.
  • the control unit 60 can be suitably cooled without this.
  • the motor housing unit 16 has a first space 16A through which the upstream cooling air AR1 passes and a second space 16B through which the downstream cooling air AR2 passes, and the control unit 60 has a first space. It is exposed to 16A and the second space 16B.
  • the control unit 60 is arranged between the intake port 22 and the fan 72. Further, a part (front end portion) of the control unit 60 is exposed to the second space 16B by the exposed hole 17D of the fan guide 17, and is arranged between the fan 72 and the exhaust port 23. As a result, the control unit 60 can be cooled by the upstream cooling air AR1 and the downstream cooling air AR2.
  • the motor housing portion 16 is provided with a fan guide 17 for partitioning the first space 16A and the second space 16B, and the upstream cooling air AR1 and the downstream cooling air AR2 are rectified by the fan guide 17. .. Specifically, the direction of the upstream cooling air AR1 flowing through the cooling air passage 70 is changed upward by the fan guide 17, and the upstream cooling air AR1 flows upward along the rear surface of the fan guide 17. It is sucked into the second space 16B from the guide hole 17A. As a result, the upstream cooling air AR1 can be efficiently flowed to the second space 16B side. Further, the downstream cooling air AR2 flowing out from the fan 72 flows downward along the front surface of the fan guide 17. Therefore, the front end portion of the control unit 60 can be cooled by the downstream cooling air AR2 while suppressing the backflow of the downstream cooling air AR2 to the first space 16A side by the fan guide 17.
  • the fan 72 is arranged in the second space 16B on the front side of the guide hole 17A.
  • the upstream cooling air AR1 can be efficiently discharged from the guide hole 17A to the second space 16B side by the air flow generated by the fan 72, and can flow into the fan 72.
  • the motor 40 and the control unit 60 are housed in the first space 16A, and the control unit 60 is arranged apart from each other on the radial outer side (lower side) of the motor 40.
  • a cooling air passage 70 for passing the upstream cooling air AR1 can be formed between the motor 40 and the control unit 60, and a part of the wall portion of the cooling air passage 70 can be formed in the control unit 60. It can be configured by the case 61. Therefore, the control unit 60 and the motor 40 can be efficiently cooled by the upstream cooling air AR1 passing through the cooling air passage 70.
  • the case 61 of the control unit 60 is formed in a substantially box shape open to the lower side, and the wall portion of the cooling air passage 70 is formed by the bottom wall 61A of the case 61.
  • the intake port 22 is arranged on the upper side of the case 61 (the side opposite to the opening 61D).
  • the upstream cooling air AR1 passing through the cooling air passage 70 moves forward along the upper surface of the bottom wall 61A to cool the control unit 60, and the upstream cooling air AR1 is the control board in the case 61. It is possible to suppress direct contact with the switching element 63 mounted on the 62 or the control board 62 or an electronic element such as wiring.
  • the chips generated during the operation of the saver saw 10 flow into the first space 16A together with the upstream cooling air AR1, it is possible to prevent the chips from hitting the control board 62 or the electronic element. Therefore, it is possible to improve the cooling performance for the control unit 60 while improving the protection performance for the control board 62.
  • the material to be processed is a metal, the protection performance against the control substrate 62 can be effectively improved.
  • the upstream cooling air AR1 flows forward along the upper surface of the bottom wall 61A of the control unit 60, the upstream cooling air AR1 can be smoothly flowed in the cooling air passage 70. Further, by partially partitioning the inside of the motor housing portion 16 by the control unit 60, the upper space and the lower space of the control unit 60 can be partitioned, and the first space 16A can be easily formed. That is, by attaching the control unit 60, the air passage of the upstream cooling air AR1 can be easily formed, and it is not necessary to provide the motor housing unit 16 with a structure (rib or the like) for forming the air passage more than necessary. ..
  • the control unit 60 is made to function as a wall for partitioning the first space 16A and also as a wall for partitioning the second space 16B.
  • the control unit 60 can be cooled by the upstream cooling air AR1 heading in the axial direction and the downstream cooling air AR2 heading outward in the radial direction, and the cooling air is controlled by a simple configuration without making a U-turn.
  • a suitable cooling configuration of the unit 60 can be realized.
  • the case 61 of the control unit 60 is sandwiched from the outside in the left-right direction by the sandwiching portion 21 of the motor housing portion 16. Specifically, the left and right holding portions 21 are arranged outside the intake port 22 in the left-right direction to sandwich the case 61 in the left-right direction. As a result, the case 61 can be fixed by the sandwiching portion 21 without obstructing the flow of the upstream cooling air AR1 in the cooling air passage 70.
  • the cooling structure S of the first modification has the same configuration as that of the present embodiment except for the following points. That is, in the cooling structure S of the first modification, the communication hole 17E is formed through the lower side of the front fixing portion 17B of the fan guide 17. As a result, the lower space of the control unit 60 and the second space 16B are communicated with each other by the communication hole 17E. That is, in the first modification, the second space 16B expands to the lower space of the control unit 60.
  • the space on the upstream side of the second space 16B and the first space 16A are partitioned by the fan guide 17, and the space on the downstream side of the second space 16B and the first space 16A are partitioned by the control unit 60.
  • the exhaust port 23 formed on the lower wall of the motor housing portion 16 is moved to the rear side as compared with the present embodiment. Specifically, the exhaust port 23 is arranged below the rear end portion of the control unit 60. As a result, the rear end portion of the second space 16B and the outside of the motor housing portion 16 are communicated with each other by the exhaust port 23.
  • the downstream cooling air AR2 flowing downward from the fan 72 flows downward along the front surface of the fan guide 17 and from the communication hole 17E of the fan guide 17. It flows into the space below the control unit 60. Then, the downstream cooling air AR2 that has flowed into the lower side of the control unit 60 flows to the rear side while cooling the lower side of the control unit 60, and flows from the exhaust port 23 on the lower side of the control unit 60 to the motor housing unit 16. It is leaked to the outside of. Therefore, even in the modification 1 of the cooling structure S, the control unit 60 can be cooled by the upstream cooling air AR1 and the downstream cooling air AR2. Therefore, even in the modification 1 of the cooling structure S, the cooling performance can be improved.
  • the control unit 60 is cooled from the opening 61D side of the case 61 by the downstream cooling air AR2. can do. That is, the control unit 60 can be cooled from both sides in the vertical direction (thickness direction of the control unit 60) by the upstream cooling air AR1 and the downstream cooling air AR2. Therefore, the cooling performance for the control unit 60 can be effectively improved.
  • the cooling structure S of the second modification has the same configuration as that of the present embodiment except for the following points. That is, in the cooling structure S of the second modification, the exhaust port 23 is formed on the left and right side walls of the motor housing portion 16. Specifically, the exhaust port 23 is formed at six locations on the upper portion and the lower portion of the motor housing portion 16 so as to overlap the rear end portion of the stator 43 of the motor 40 in a side view. It should be noted that only the left side surface portion is shown in the figure, and since the same exhaust port structure is actually provided on the right side surface, a total of 12 exhaust port 23s are formed in the present embodiment.
  • a partition wall 25 is formed on the rear side of the exhaust port 23, and the space outside the radial direction of the motor 40 is partitioned back and forth by the partition wall 25. That is, in the second modification, the cooling air passage 70 is shielded by the partition wall 25.
  • the portion of the fan guide 17 other than the front fixing portion 17B is omitted, and the flow path changing portion 26 is formed between the motor 40 and the fan 72.
  • the flow path changing portion 26 has a structure in which a cross section opened to the rear side is formed in a substantially U-shaped plate shape (rib shape) in a side view. Further, an insertion hole 26A penetrating in the front-rear direction is formed in the substantially central portion of the flow path changing portion 26, and the drive shaft 41 of the motor 40 inserts the inside of the insertion hole 26A. That is, the flow path changing portion 26 is a bowl-shaped component having an open bottom portion, and is provided so that the rear edge portion is in contact with or close to the front end portion of the stator 43. Half of the flow path changing portion 26 is provided on one of the pair of split housings 15, and the other half is provided on the other, and is formed by assembling the split housings 15 to each other.
  • the upstream cooling air AR1 flowing into the motor housing portion 16 from the intake port 22 flows into the motor 40 from the radial inside and the radial outside of the motor substrate 45, and the motor 40 It flows forward inside.
  • the upstream cooling air AR1 flows forward through the inside of the stator 43 and the portion between the rotor 42 and the stator 43.
  • the upstream cooling air AR1 flowing inside the motor 40 hits the flow path changing portion 26 and flows to the drive shaft 41 side along the rear surface of the flow path changing portion 26.
  • the upstream cooling air AR1 flows into the fan 72 from the insertion hole 26A.
  • the upstream cooling air AR1 flowing into the fan 72 flows out as the downstream cooling air AR2 to the outside in the radial direction of the fan 72.
  • the downstream cooling air AR2 flows to the exhaust port 23 side. Therefore, the downstream cooling air AR2 flows to the rear side along the front surface of the flow path changing portion 26, and also flows to the rear side on the upper side and the lower side of the motor 40. Then, the downstream cooling air AR2 that has flowed to the rear side on the upper side and the lower side of the motor 40 is exhausted from the exhaust port 23 to the outside of the motor housing portion 16.
  • the motor 40 sinator 43
  • the motor 40 corresponds to the cooled portion of the present invention, and the cooling performance for the motor 40 can be improved.
  • the downstream cooling air AR2 flowing to the lower side of the motor 40 flows between the motor 40 and the control unit 60, and is exhausted from the exhaust port 23 to the outside of the motor housing unit 16. Therefore, the control unit 60 and the motor 40 can be cooled by the downstream cooling air AR2.
  • the cooling structure S is applied to the saver saw 10 to cool the control unit 60 and the motor 40 of the saver saw 10, but the cooling structure S may be applied to other working machines. good.
  • the cooling structure S is applied to another working machine will be described as a variation of the working machine.
  • FIG. 13 is a partially broken plan view of the circular saw 100 as viewed from above.
  • the arrows FR and RH shown in FIG. 13 indicate the front side and the right side of the circular saw 100.
  • the circular saw 100 includes a base 102 and a circular saw main body 104.
  • the base 102 is formed in a substantially rectangular plate shape with the vertical direction as the plate thickness direction.
  • the circular saw main body 104 is arranged above the base 102 and is connected to the base 102.
  • the circular saw main body 104 includes a housing 110 that constitutes the outer shell of the circular saw main body 104, a motor 120 arranged in the housing 110, and a control unit 140 that controls the motor 120. Further, the circular saw main body 104 has a circular saw blade (not shown), and the circular saw blade is covered from above by the saw cover 152. Then, the rotational force of the motor 120 is transmitted to the circular saw blade, and the circular saw blade rotates to cut the material to be machined.
  • the housing 110 includes a motor housing portion 111 that accommodates the motor 120, and a controller housing portion 112 that is arranged behind the motor housing portion 111 and accommodates the control unit 140.
  • the motor housing portion 111 and the controller housing portion 112 are formed in a concave shape that is open to the right side, and the left portion of the motor housing portion 111 and the left portion of the controller housing portion 112 are partitioned by a partition wall 113.
  • a plurality of intake ports 114 are formed through the front portion of the left wall of the controller housing portion 112, and a plurality of exhaust ports 115 are formed through the rear portion of the left wall of the controller housing portion 112.
  • the motor 120 is housed in the motor housing portion 111.
  • the motor 120 includes a drive shaft 121 having an axial direction in the left-right direction, a rotor 122 arranged radially outside the drive shaft 121, and a stator 123 arranged radially outside the rotor 122. ing. Further, a ring plate-shaped motor substrate 125 is provided on the right side of the rotor 122 and the stator 123, and the motor substrate 125 is fixed to the stator holder 124 of the stator 123.
  • a fan 130 is integrally rotatable on the right side of the motor substrate 125, and the fan 130 is configured as a centrifugal fan.
  • the downstream cooling air AR4 generated by the fan 130 flows to the rear side and flows into the right end portion of the controller housing portion 112.
  • the control unit 140 is housed in the controller housing unit 112.
  • the control unit 140 has a case 142 that constitutes the outer shell of the control unit 140.
  • a control board (not shown) is housed in the case 142, and the motor 120 is connected to the control board.
  • the case 142 has a thickness direction in the front-rear direction, is formed in a substantially box shape open to the front side, and is fixed to the controller housing portion 112. Specifically, the right end portion of the case 142 is fixed to the fixing rib 112A of the controller housing portion 112, the bottom wall of the case 142 is fixed to the fixing rib 112B of the controller housing portion 112, and the left end portion of the case 142 is fixed. It is fixed to the fixed rib 112C and the fixed rib 112D of the controller housing portion 112.
  • the case 142 extends in the left-right direction in the controller housing portion 112. Specifically, the left end portion of the case 142 is arranged adjacent to the right side of the left wall of the controller housing portion 112, and the right end portion of the case 142 is arranged apart from the rear side of the fan 130. As a result, the inside of the controller housing unit 112 is partitioned in the front-rear direction by the case 142 of the control unit 140.
  • the space on the front side of the control unit 140 in the controller housing unit 112 is configured as the first space 116, and the first space 116 and the outside of the housing 110 are communicated with each other by the intake port 114.
  • the space behind the control unit 140 in the controller housing unit 112 is configured as the second space 117, and the second space 117 and the outside of the housing 110 are communicated with each other by the exhaust port 115. Further, the right end portion of the second space 117 is opened to the front side and is arranged on the rear side of the fan 130.
  • the fan 130 rotates around the drive shaft 121 together with the drive shaft 121 of the motor 120.
  • the upstream cooling air AR3 flows into the first space 116 of the controller housing portion 112 from the intake port 114.
  • the upstream cooling air AR3 flowing into the first space 116 flows to the right side while cooling the opening side of the case 142 in the control unit 140 and hits the fixed rib 112A.
  • the upstream cooling air AR3 that hits the fixed rib 112A flows to the front side (fan 130 side).
  • the upstream cooling air AR3 flows on both sides of the motor substrate 125 in the plate thickness direction and flows into the fan 130 from the left side.
  • the upstream cooling air AR3 that has flowed into the fan 130 is discharged from the fan 130 to the rear side as the downstream cooling air AR4, and the downstream cooling air AR4 flows into the right end of the second space 117 of the controller housing portion 112. ..
  • the downstream cooling air AR4 flowing in the right end portion of the second space 117 hits the rear wall of the controller housing portion 112 and flows to the exhaust port 115 side. That is, the downstream cooling air AR4 flows to the left in the second space 117 while cooling the bottom wall of the case 142 of the control unit 140. Then, the downstream cooling air AR4 is exhausted from the exhaust port 115 to the outside of the controller housing portion 112.
  • the upstream cooling air AR3 flowing into the fan 130 and the downstream cooling air AR4 flowing out from the fan 130 generated in the housing 110 by the rotation of the fan 130 are generated on the upstream side.
  • the control unit 140 is cooled by the cooling air AR3 (suction air) and the downstream cooling air AR4 (exhaust air). Therefore, even in the circular saw 100, the cooling performance for the control unit 140 can be improved.
  • the downstream cooling air AR4 may contain air after cooling the motor 120.
  • the control unit 140 is cooled from both sides in the thickness direction by the upstream cooling air AR3 and the downstream cooling air AR4. Thereby, the cooling performance for the control unit 140 can be effectively improved.
  • the opening side of the case 142 is positioned in the space through which the upstream cooling air AR3 passes. This is because the circular saw 100 is a tool that mainly processes wood, and the effect of the processed wood pieces on the electronic elements and the like is smaller than that of metal, and the electronic elements exposed from the case 142 are directly upstream cooling air AR3. This is the result of considering the preferential cooling by exposing to.
  • FIG. 14 is a cross-sectional view of the hammer drill 200 as viewed from the right side.
  • the arrow UP and the arrow FR shown in FIG. 14 indicate the upper side and the front side of the hammer drill 200.
  • the hammer drill 200 controls a housing 210 that constitutes the outer shell of the hammer drill 200, a motor 220 housed in the housing 210, a drive mechanism 250 that is driven by the driving force of the motor 220 and has a tip tool attached, and the motor 220. It is configured to include a control unit 240 and the like. When the motor 220 is driven, the driving force transmitted from the motor 220 to the drive mechanism 250 applies a rotational force and a striking force to the workpiece from the tip tool.
  • the housing 210 is formed in a hollow shape and is formed in a substantially P-shape in the horizontal direction.
  • the housing 210 includes a motor housing portion 211 constituting a lower front end portion of the housing 210 and a controller housing portion 212 arranged on the rear side of the motor housing portion 211, and is configured by a partition wall 213.
  • a partition is provided between the lower portion of the motor housing portion 211 and the lower portion of the controller housing portion 212.
  • a plurality of intake ports 214 are formed through the front portion of the lower wall of the controller housing portion 212, and a plurality of exhaust ports 215 are formed in the rear portion of the lower wall of the controller housing portion 212.
  • the motor 220 includes a drive shaft 221 having an axial direction in the vertical direction, a rotor 222 arranged radially outside the drive shaft 221 and a stator 223 arranged radially outside the rotor 222. ing. Further, an annular plate-shaped motor substrate 225 is provided on the upper side of the rotor 222 and the stator 223, and the motor substrate 225 is fixed to the stator holder 224 of the stator 223.
  • a fan 230 is integrally rotatable on the upper end of the drive shaft 221 on the upper side of the motor substrate 225, and the fan 230 is configured as a centrifugal fan. As a result, the downstream cooling air AR6 generated by the fan 230 flows from the fan 230 to the rear side and flows into the upper end portion of the controller housing portion 212.
  • the control unit 240 is housed in the controller housing unit 212.
  • the control unit 240 has a case 242 that constitutes the outer shell of the control unit 240.
  • a control board (not shown) is housed in the case 242, and the motor 220 is connected to the control board.
  • the case 242 has a thickness direction in the front-rear direction, is formed in a substantially box shape open to the rear side, and is fixed to the controller housing portion 212.
  • the case 242 extends in the vertical direction in the controller housing portion 212. Specifically, the lower end portion of the case 242 is arranged close to the upper side of the lower wall of the controller housing portion 212, and the upper end portion of the case 242 protrudes above the partition wall 213. As a result, the inside of the controller housing portion 212 is partitioned in the front-rear direction by the case 242 of the control portion 240.
  • the space on the front side of the control unit 240 in the controller housing unit 212 is configured as the first space 216, and the first space 216 and the outside of the controller housing unit 212 are communicated with each other by the intake port 214.
  • the space behind the control unit 240 in the controller housing unit 212 is configured as the second space 217, and the second space 217 and the outside of the controller housing unit 212 are communicated with each other by the exhaust port 215.
  • the fan 230 rotates around the axis of the drive shaft 221 together with the drive shaft 221 of the motor 220.
  • the upstream cooling air AR5 flows into the first space 216 of the controller housing portion 212 from the intake port 214.
  • the upstream cooling air AR5 that has flowed into the first space 216 flows upward while cooling the bottom wall of the case 242 of the control unit 240, and flows into the motor housing unit 211 from the upper side of the partition wall 213.
  • the upstream cooling air AR5 that has flowed into the motor housing portion 211 flows upward between the motor substrate 225 and the drive shaft 221 and flows into the fan 230.
  • the upstream cooling air AR5 that has flowed into the fan 230 is discharged from the fan 230 to the rear side as the downstream cooling air AR6, and the downstream cooling air AR6 flows into the upper end of the second space 217 of the controller housing portion 212. ..
  • the downstream cooling air AR6 flowing to the upper end of the second space 217 hits the rear wall of the controller housing portion 212 and flows downward in the second space 217 while cooling the control unit 240 from the opening side of the case 242. .. Then, the downstream cooling air AR6 is exhausted from the exhaust port 215 to the outside of the controller housing portion 212.
  • the upstream cooling air AR5 flowing into the fan 230 and the downstream cooling air AR6 flowing out from the fan 230 generated in the housing 210 by the rotation of the fan 230 are generated in the housing 210 to cool the upstream side.
  • the control unit 240 is cooled by the wind AR5 and the downstream cooling wind AR6. Therefore, even in the hammer drill 200, the cooling performance for the control unit 240 can be improved.
  • control unit 240 is cooled from both sides in the thickness direction by the upstream cooling air AR5 and the downstream cooling air AR6. Thereby, the cooling performance for the control unit 240 can be effectively improved.
  • control Part cooled part
  • 142 ... Case, 200 ... Hammadrill (working machine), 210 ... Housing, 214 ... Intake port, 215 ... Exhaust port, 216 ... First space, 217 ... Second space, 220 ... Motor, 230 ... Fan, 240 ... Control unit (cooled unit), 242 ... Case, AR ... Cooling air, AR1 ... Upstream cooling air, AR2 ... Downstream cooling air, AR3 ... Upstream cooling air, AR4 ... Downstream cooling air, AR5 ... upstream cooling air, AR6 ... downstream cooling air

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Portable Power Tools In General (AREA)

Abstract

The present invention improves cooling performance for a part to be cooled. A saber saw 10 has a motor 40, a fan 72, and a control part 60 accommodated in a motor housing section 16 of a housing 12, and an air inlet 22 and an air outlet 23 formed in the motor housing section 16. Thus, upstream side cooling air AR1, which is caused to flow into the motor housing section 16 from the air inlet 22 and to flow to the fan 72, and downstream side cooling air AR2, which is caused to flow out of the fan 72 and to be discharged to the outside of the motor housing section 16 from the air outlet 23, are generated. Then, the control part 60 is cooled by the upstream side cooling air AR1 and the downstream side cooling air AR2. This makes it possible to efficiently cool the control part 60, compared to a structure for cooling the control part 60 by one of the upstream side cooling air AR1 and the downstream side cooling air AR2. Therefore, it is possible to improve the cooling performance for the control part 60.

Description

作業機Working machine
本発明は、作業機に関するものである。 The present invention relates to a working machine.
下記特許文献1に記載の携帯用電気切断機(作業機)では、モータの駆動によって回転するファンが設けられており、ファンの側方には、モータの駆動を制御するための制御部が配置されている。これにより、モータの駆動時には、ファンの回転により生成された冷却風が制御部に流れて、モータや制御部に搭載されたFET等の発熱部材(被冷却部)を冷却風によって冷却することができる。 In the portable electric cutting machine (working machine) described in Patent Document 1 below, a fan that rotates by driving a motor is provided, and a control unit for controlling the driving of the motor is arranged on the side of the fan. Has been done. As a result, when the motor is driven, the cooling air generated by the rotation of the fan flows to the control unit, and the heat generating member (cooled unit) such as the FET mounted on the motor or the control unit can be cooled by the cooling air. can.
特開2013-193133号公報Japanese Unexamined Patent Publication No. 2013-193133
しかしながら、依然として発熱部品に対する冷却性能の向上は求められている状況である。また、特に近年では、例えば、モータの高出力化や高負荷の作業に対応するため、発熱部品がより高温化する傾向にある。このため、作業機では、発熱部材をより好適に冷却することができる構造にすることが望ましい。 However, there is still a demand for improved cooling performance for heat-generating components. Further, particularly in recent years, for example, in order to cope with high output of a motor and work with a high load, heat generating parts tend to have a higher temperature. Therefore, in the working machine, it is desirable to have a structure capable of more preferably cooling the heat generating member.
本発明は、上記事実を考慮して、被冷却部(発熱部材)に対する冷却性能を向上させることができる作業機を提供することを目的とする。 In consideration of the above facts, an object of the present invention is to provide a working machine capable of improving the cooling performance of a cooled portion (heat generating member).
本発明の1又はそれ以上の実施形態は、吸気口及び排気口を有するハウジングと、前記ハウジングに収容されたモータと、前記ハウジングに収容され、前記モータの駆動によって回転して前記ハウジングの内部において冷却風を発生させるファンと、前記ハウジングに収容され、作動時に発熱すると共に、前記冷却風によって冷却される被冷却部と、を備え、前記冷却風は、前記吸気口から前記ハウジングの内部に吸い込まれ且つ前記ファンに流入される上流側冷却風と、前記ファンから流出され且つ前記排気口から前記ハウジングの外部へ排気される下流側冷却風と、を含んでおり、前記被冷却部が、前記上流側冷却風及び前記下流側冷却風によって冷却される作業機である。 One or more embodiments of the present invention include a housing having an intake port and an exhaust port, a motor housed in the housing, and a motor housed in the housing, which is rotated by the drive of the motor and rotated inside the housing. It includes a fan that generates cooling air, a portion that is housed in the housing and generates heat during operation, and is cooled by the cooling air, and the cooling air is sucked into the inside of the housing from the intake port. The upstream cooling air that flows into the fan and the downstream cooling air that flows out of the fan and is exhausted from the exhaust port to the outside of the housing are included, and the cooled portion is described as described above. It is a working machine that is cooled by the upstream cooling air and the downstream cooling air.
本発明の1又はそれ以上の実施形態は、前記ハウジングは、前記上流側冷却風が通過する第1空間と、前記下流側冷却風が通過する第2空間と、を有しており、前記被冷却部が前記第1空間及び前記第2空間に露出されている作業機である。 In one or more embodiments of the present invention, the housing has a first space through which the upstream cooling air passes and a second space through which the downstream cooling air passes. It is a working machine in which the cooling unit is exposed in the first space and the second space.
本発明の1又はそれ以上の実施形態は、前記ハウジングは、複数の分割ハウジングによって構成されており、前記分割ハウジングには、前記被冷却部を挟持する挟持部が形成されている作業機である。 One or more embodiments of the present invention is a working machine in which the housing is composed of a plurality of divided housings, and the divided housing is formed with a holding portion for sandwiching the cooled portion. ..
本発明の1又はそれ以上の実施形態は、前記ハウジングには、前記第1空間と前記第2空間とを区画し且つ前記上流側冷却風を整流して前記第2空間側へガイドする整流部が設けられ、前記整流部には、前記被冷却部の一部を前記第2空間に露出させるための露出部が形成されている作業機である。 In one or more embodiments of the present invention, the housing has a rectifying unit that partitions the first space and the second space and rectifies the upstream cooling air to guide it to the second space side. Is provided, and the rectifying portion is a working machine in which an exposed portion for exposing a part of the cooled portion to the second space is formed.
本発明の1又はそれ以上の実施形態は、前記第2空間には、前記ファンが配置されており、前記整流部には、前記第1空間と前記第2空間とを連通するガイド孔が形成され、前記ファンの軸方向において前記ファン及び前記ガイド孔が対向して配置されている作業機である。 In one or more embodiments of the present invention, the fan is arranged in the second space, and a guide hole communicating the first space and the second space is formed in the rectifying section. This is a working machine in which the fan and the guide hole are arranged so as to face each other in the axial direction of the fan.
本発明の1又はそれ以上の実施形態は、前記被冷却部は、前記モータを制御する制御部である作業機である。 In one or more embodiments of the present invention, the cooled unit is a working machine that is a control unit that controls the motor.
本発明の1又はそれ以上の実施形態は、前記制御部は、前記モータに接続された制御基板と、前記制御基板を収容し、厚み方向一方側が開口された箱状のケースと、を含んで構成されており、前記冷却風によって前記ケースの底壁を冷却する作業機である。 In one or more embodiments of the present invention, the control unit includes a control board connected to the motor and a box-shaped case containing the control board and having one side open in the thickness direction. It is a working machine that is configured to cool the bottom wall of the case with the cooling air.
本発明の1又はそれ以上の実施形態は、前記制御部は、前記第1空間に配置されており、前記吸気口が、前記ケースの底壁に対して前記ケースの厚み方向他方側に配置されている作業機である。 In one or more embodiments of the present invention, the control unit is arranged in the first space, and the intake port is arranged on the other side of the case in the thickness direction with respect to the bottom wall of the case. It is a working machine.
本発明の1又はそれ以上の実施形態は、前記制御部が、前記第1空間と前記第2空間とを区画している作業機である。 One or more embodiments of the present invention is a working machine in which the control unit partitions the first space and the second space.
本発明の1又はそれ以上の実施形態は、前記ケースの底壁が、前記第1空間に露出され、前記ケースの開口部が、前記第2空間側へ開口されている作業機である。 One or more embodiments of the present invention is a working machine in which the bottom wall of the case is exposed to the first space and the opening of the case is opened to the second space side.
本発明の1又はそれ以上の実施形態は、前記被冷却部の一部が、前記ファンの径方向外側に配置されており、前記ファンが遠心ファンとして構成されている作業機である。 One or more embodiments of the present invention is a working machine in which a part of the cooled portion is arranged radially outside the fan, and the fan is configured as a centrifugal fan.
本発明の1又はそれ以上の実施形態は、前記被冷却部が、前記モータである作業機である。 One or more embodiments of the present invention is a working machine in which the cooled portion is the motor.
本発明の1又はそれ以上の実施形態は、吸気口及び排気口を有するハウジングと、前記ハウジングに収容されたモータと、前記ハウジングに収容され、前記モータの駆動によって回転して前記ハウジングの内部において冷却風を発生させるファンと、前記ハウジングに収容され、作動時に発熱すると共に、前記冷却風によって冷却される被冷却部と、を備え、前記被冷却部が、前記モータを冷却する前の空気と、前記モータを冷却したあとの空気の両方で冷却される作業機である。 One or more embodiments of the present invention include a housing having an intake port and an exhaust port, a motor housed in the housing, and inside the housing, which is housed in the housing and rotated by the drive of the motor. It includes a fan that generates cooling air, a cooled portion that is housed in the housing and generates heat during operation, and is cooled by the cooling air, and the cooled portion includes air before cooling the motor. , A working machine that is cooled by both air after cooling the motor.
本発明の1又はそれ以上の実施形態は、前記被冷却部は、前記ファンから送風された前記モータを冷却したあとの空気で冷却される作業機である。 In one or more embodiments of the present invention, the cooled portion is a working machine that is cooled by air after cooling the motor blown from the fan.
本発明の1又はそれ以上の実施形態によれば、被冷却部に対する冷却性能を向上させることができる。 According to one or more embodiments of the present invention, the cooling performance for the cooled portion can be improved.
本実施の形態に係るセーバソーを示す右側から見た側面図である。It is a side view seen from the right side which shows the saver saw which concerns on this embodiment. 図1に示されるセーバソーの内部を示す側断面図である。It is a side sectional view which shows the inside of the saver saw shown in FIG. 図1に示されるリヤハウジングによって制御部を挟み込んだ状態を示す左斜め前方から見た斜視図である。FIG. 3 is a perspective view seen from diagonally left front, showing a state in which the control unit is sandwiched by the rear housing shown in FIG. 1. 図3に示されるリヤハウジング及び制御部の分解斜視図である。FIG. 3 is an exploded perspective view of the rear housing and the control unit shown in FIG. 図1に示されるリヤハウジングにおけるモータハウジング部を示す後側から見た後面図である。It is a rear view which shows the motor housing part in the rear housing shown in FIG. 1 and seen from the rear side. 図5に示される左側の分割ハウジングと制御部との組付状態を示す左側から見た断面図(図5の6-6線断面図)である。It is sectional drawing (6-6 line sectional drawing of FIG. 5) seen from the left side which shows the assembly state of the split housing and the control part on the left side shown in FIG. 図1に示されるリヤハウジングのモータハウジング部の内部を示す前側から見た断面図(図1の7-7線断面図)である。It is sectional drawing (7-7 line sectional drawing of FIG. 1) seen from the front side which shows the inside of the motor housing part of the rear housing shown in FIG. 図2に示される制御部を示す下側から見た斜視図である。It is a perspective view which showed the control part shown in FIG. 2 and was seen from the lower side. 図2に示されるモータハウジング部の内部における冷却風の流れを説明するための側断面図である。It is a side sectional view for demonstrating the flow of the cooling air in the inside of the motor housing part shown in FIG. 図9に示される冷却構造の変形例における冷却風の流れを説明するための側断面図である。It is a side sectional view for demonstrating the flow of the cooling air in the modification of the cooling structure shown in FIG. 図9に示される冷却構造の他の変形例における冷却風の流れを説明するための側断面図である。It is a side sectional view for demonstrating the flow of the cooling air in another modification of the cooling structure shown in FIG. 図11に示される他の変形例における冷却風の流れを説明するための前側から見た断面図である。11 is a cross-sectional view seen from the front side for explaining the flow of cooling air in another modification shown in FIG. 11. 冷却構造を丸鋸に適用した例を示す一部破断した平面図である。It is a partially broken plan view which shows the example which applied the cooling structure to a circular saw. 冷却構造をハンマドリルに適用した例を示す一部破断した側断面図である。It is a partially broken side sectional view which shows the example which applied the cooling structure to a hammer drill.
以下、図面を用いて、本実施形態に係る作業機としてのセーバソー10について説明する。なお、図面において適宜示される矢印UP、矢印FR、及び矢印RHは、それぞれセーバソー10の上側、前側、及び右側を示している。そして、以下の説明において、上下、前後、左右の方向を用いて説明するときには、特に断りのない限り、セーバソー10の上下方向、前後方向、左右方向を示すものとする。 Hereinafter, the saver saw 10 as a working machine according to the present embodiment will be described with reference to the drawings. The arrows UP, FR, and RH appropriately shown in the drawings indicate the upper side, the front side, and the right side of the saver saw 10, respectively. In the following description, the vertical, front-back, and left-right directions of the saver saw 10 will be indicated unless otherwise specified.
セーバソー10は、パイプ等の被加工材に切断加工を施す工具として構成されている。図1及び図2に示されるように、セーバソー10は、セーバソー10の外郭を構成するハウジング12と、ハウジング12の内部に収容されたモータ40及び駆動機構50と、を含んで構成されている。また、セーバソー10は、モータ40を制御するための被冷却部としての制御部60を有している。さらに、セーバソー10では、制御部60の周辺において冷却構造Sが適用されており、冷却構造Sにより制御部60を冷却するようになっている。以下、セーバソー10の各構成について説明する。 The saver saw 10 is configured as a tool for cutting a work material such as a pipe. As shown in FIGS. 1 and 2, the saver saw 10 includes a housing 12 constituting the outer shell of the saver saw 10, a motor 40 housed inside the housing 12, and a drive mechanism 50. Further, the saver saw 10 has a control unit 60 as a unit to be cooled for controlling the motor 40. Further, in the saver saw 10, a cooling structure S is applied around the control unit 60, and the control unit 60 is cooled by the cooling structure S. Hereinafter, each configuration of the saver saw 10 will be described.
(ハウジング12について) ハウジング12は、中空状に形成されると共に側面視で横向きの略P字形状に形成されている。ハウジング12は、ハウジング12の後部を構成するリヤハウジング13と、ハウジング12の前部を構成するフロントハウジング14と、を含んで構成されている。リヤハウジング13は、後述するモータ40を収容するハウジング部として構成され、フロントハウジング14は、後述する駆動機構50を収容するハウジング部として構成されている。フロントハウジング14は、樹脂製のフロントカバー14Aと、フロントカバー14Aの内部に位置する金属製のアッパーカバー14B及びアンダーカバー14Cとを有する。アッパーカバー14Bとアンダーカバー14Cとが上下方向で組み付けられることによって、駆動機構50を収容する空間が画定される。作業者はフロントカバー14Aの前方部分(径が小さい領域)を把持しながら作業を行うことができる。 (Regarding the housing 12) The housing 12 is formed in a hollow shape and is formed in a laterally substantially P-shape when viewed from the side. The housing 12 includes a rear housing 13 constituting the rear portion of the housing 12 and a front housing 14 constituting the front portion of the housing 12. The rear housing 13 is configured as a housing portion for accommodating the motor 40 described later, and the front housing 14 is configured as a housing portion accommodating the drive mechanism 50 described later. The front housing 14 has a resin front cover 14A, and a metal upper cover 14B and an undercover 14C located inside the front cover 14A. By assembling the upper cover 14B and the under cover 14C in the vertical direction, a space for accommodating the drive mechanism 50 is defined. The operator can perform the work while grasping the front portion (region having a small diameter) of the front cover 14A.
リヤハウジング13は、左右方向に2分割された一対の分割ハウジング15によって構成されており、一対の分割ハウジング15を互いに組付けることで、リヤハウジング13が形成されている(図4参照)。リヤハウジング13の後端部は、ハンドル部13Aとして構成されており、ハンドル部13Aは、上下方向に延在されている。ハンドル部13Aの上端部には、トリガ30が引き操作可能に設けられており、トリガ30の後側には、スイッチ機構部31が設けられている。スイッチ機構部31は、トリガ30によって操作されるスイッチ(図示省略)を有しており、当該スイッチは、後述する制御部60に電気的に接続されている。 The rear housing 13 is composed of a pair of divided housings 15 divided into two in the left-right direction, and the rear housing 13 is formed by assembling the pair of divided housings 15 to each other (see FIG. 4). The rear end portion of the rear housing 13 is configured as a handle portion 13A, and the handle portion 13A extends in the vertical direction. A trigger 30 is provided on the upper end portion of the handle portion 13A so as to be pullable, and a switch mechanism portion 31 is provided on the rear side of the trigger portion 30. The switch mechanism unit 31 has a switch (not shown) operated by the trigger 30, and the switch is electrically connected to a control unit 60 described later.
リヤハウジング13の後端部における下端部には、バッテリパック32が着脱可能に取付けられている。バッテリパック32は、後述する制御部60に電気的に接続されて、後述するモータ40に電力を供給するようになっている。 A battery pack 32 is detachably attached to the lower end of the rear end of the rear housing 13. The battery pack 32 is electrically connected to a control unit 60 described later to supply electric power to a motor 40 described later.
図3~図7にも示されるように、リヤハウジング13の前部における上端部を除く部分は、後述するモータ40を収容するためのモータハウジング部16として構成されている。モータハウジング部16は、前側へ開放された略有底筒状に形成されている。モータハウジング部16の内部には、前端側の部分において、整流部としてのファンガイド17が設けられている。ファンガイド17は、前後方向を板厚方向とする板状に形成されて、分割ハウジング15の外周壁からセーバソー10の左右方向中央側へ延出されている。そして、分割ハウジング15に形成されたファンガイド17の先端部が、モータハウジング部16の左右方向中央部で互いに突き合わされている。これにより、ファンガイド17によって、モータハウジング部16の内部が前後に区画されている。具体的には、モータハウジング部16の内部が、モータハウジング部16の後部を構成する第1空間16Aと、モータハウジング部16の前端部を構成する第2空間16Bと、に区画されている(図6参照)。 As shown in FIGS. 3 to 7, a portion of the front portion of the rear housing 13 other than the upper end portion is configured as a motor housing portion 16 for accommodating a motor 40 described later. The motor housing portion 16 is formed in a substantially bottomed cylinder shape that is open to the front side. Inside the motor housing portion 16, a fan guide 17 as a rectifying portion is provided in a portion on the front end side. The fan guide 17 is formed in a plate shape with the front-rear direction as the plate thickness direction, and extends from the outer peripheral wall of the divided housing 15 toward the center side in the left-right direction of the saver saw 10. The tip portions of the fan guides 17 formed in the split housing 15 are abutted against each other at the central portion in the left-right direction of the motor housing portion 16. As a result, the inside of the motor housing portion 16 is divided back and forth by the fan guide 17. Specifically, the inside of the motor housing portion 16 is divided into a first space 16A constituting the rear portion of the motor housing portion 16 and a second space 16B constituting the front end portion of the motor housing portion 16 (). See FIG. 6).
ファンガイド17の略中央部には、円形状のガイド孔17Aが貫通形成されている。これにより、第1空間16Aと第2空間16Bとがガイド孔17Aによって連通されている。また、ファンガイド17の下端部には、後述する制御部60を固定するための前側固定部17Bが形成されている。前側固定部17Bは、側面視で前側へ突出し且つ後側へ開放された略凹状に形成されている。前側固定部17Bの上壁は、側面視で前側へ向かうに従い下側へ傾斜した傾斜壁17Cとして構成されている。傾斜壁17Cには、左右方向中央部において、露出部としての露出孔17Dが貫通形成されており、露出孔17Dは、傾斜壁17Cの板厚方向から見て、左右方向を長手方向とする略矩形状に形成されている。 A circular guide hole 17A is formed through the substantially central portion of the fan guide 17. As a result, the first space 16A and the second space 16B are communicated with each other by the guide hole 17A. Further, a front fixing portion 17B for fixing the control portion 60, which will be described later, is formed at the lower end portion of the fan guide 17. The front fixing portion 17B is formed in a substantially concave shape that protrudes to the front side and is open to the rear side in a side view. The upper wall of the front fixed portion 17B is configured as an inclined wall 17C that is inclined downward toward the front in a side view. An exposed hole 17D as an exposed portion is formed through the inclined wall 17C in the central portion in the left-right direction, and the exposed hole 17D is abbreviated with the left-right direction as the longitudinal direction when viewed from the plate thickness direction of the inclined wall 17C. It is formed in a rectangular shape.
また、モータハウジング部16の右側後端部における下端部には、後述する制御部60を固定するための第1後側固定部18(図4参照)が形成されている。第1後側固定部18は、側面視で前側へ開放された略U字形板状に形成されて、モータハウジング部16の右壁から左右方向中央側へ延出している。さらに、モータハウジング部16の左側後端部における下端部には、後述する制御部60を固定するための第2後側固定部19(図6及び図7参照)が形成されている。第2後側固定部19は、側面視で前側及び上側へ開放された略L字形板状に形成されて、モータハウジング部16の左壁から左右方向中央側へ延出している。また、モータハウジング部16の左壁の下端部には、後述する制御部60を固定するための固定片20(図6及び図7参照)が形成されている。固定片20は、上下方向を板厚方向とする略矩形板状に形成されて、モータハウジング部16の左壁からモータハウジング部16の左右方向中央側へ延出している。さらに、モータハウジング部16の左右の側壁の下端部には、第1空間16A内において、前後一対の挟持部21(図4及び図7)が形成されており、挟持部21は、モータハウジング部16の左右の側壁からモータハウジング部16の左右方向中央側へ突出している(図4及び図7では、後側の挟持部21のみが図示されている)。 Further, at the lower end portion of the right rear end portion of the motor housing portion 16, a first rear side fixing portion 18 (see FIG. 4) for fixing the control unit 60, which will be described later, is formed. The first rear side fixing portion 18 is formed in a substantially U-shaped plate shape that is open to the front side in a side view, and extends from the right wall of the motor housing portion 16 to the center side in the left-right direction. Further, a second rear fixing portion 19 (see FIGS. 6 and 7) for fixing the control portion 60, which will be described later, is formed at the lower end portion of the left rear end portion of the motor housing portion 16. The second rear fixing portion 19 is formed in a substantially L-shaped plate shape that is open to the front side and the upper side in a side view, and extends from the left wall of the motor housing portion 16 to the center side in the left-right direction. Further, a fixing piece 20 (see FIGS. 6 and 7) for fixing the control unit 60, which will be described later, is formed at the lower end of the left wall of the motor housing unit 16. The fixed piece 20 is formed in a substantially rectangular plate shape with the vertical direction as the plate thickness direction, and extends from the left wall of the motor housing portion 16 to the center side in the left-right direction of the motor housing portion 16. Further, a pair of front and rear holding portions 21 (FIGS. 4 and 7) are formed in the first space 16A at the lower ends of the left and right side walls of the motor housing portion 16, and the holding portions 21 are the motor housing portions. It protrudes from the left and right side walls of the 16 toward the center side in the left-right direction of the motor housing portion 16 (in FIGS. 4 and 7, only the rear holding portion 21 is shown).
モータハウジング部16の後壁には、複数(本実施の形態では、8箇所)の吸気口22(図5参照)が貫通形成されている。吸気口22は、左右方向を長手方向とする長孔状に形成されている。これにより、吸気口22によって、第1空間16Aの内部とモータハウジング部16の外部とが連通されている。そして、吸気口22では、上下方向に並ぶ吸気口22が対を成しており、対を成す吸気口22がモータハウジング部16の後壁の右部及び左部の上端部及び下端部にそれぞれ配置されている。また、吸気口22は、後述する制御部60よりも上側に配置されている。吸気口22の下側縁部には、前側へ突出した異物混入防止リブ22A(図6参照)が形成されている。異物混入防止リブ22Aは、左右方向に延在されると共に、異物混入防止リブ22Aの前端部が側面視で上側へ屈曲している。 A plurality of (in this embodiment, eight locations) intake ports 22 (see FIG. 5) are formed through the rear wall of the motor housing portion 16. The intake port 22 is formed in an elongated hole shape with the left-right direction as the longitudinal direction. As a result, the inside of the first space 16A and the outside of the motor housing portion 16 are communicated with each other by the intake port 22. In the intake port 22, the intake ports 22 arranged in the vertical direction form a pair, and the paired intake ports 22 are located at the upper and lower ends of the right and left portions of the rear wall of the motor housing portion 16, respectively. Have been placed. Further, the intake port 22 is arranged above the control unit 60 described later. A foreign matter mixing prevention rib 22A (see FIG. 6) protruding forward is formed on the lower edge portion of the intake port 22. The foreign matter mixing prevention rib 22A extends in the left-right direction, and the front end portion of the foreign matter mixing prevention rib 22A is bent upward in a side view.
モータハウジング部16の前端部には、複数(本実施の形態では、12箇所)の排気口23(図3参照)が貫通形成されている。排気口23は、モータハウジング部16の周方向を長手方向とする長孔状に形成されている。これにより、排気口23によって、第2空間16Bの内部とモータハウジング部16の外部とが連通されている。また、排気口23では、前後方向に並ぶ排気口23が対を成しており、対を成す吸気口22がモータハウジング部16の下壁に左右方向に並んで配置されている。さらに、対を成す排気口23が、モータハウジング部16の左右の側壁に上下方向に並んで配置されている。 A plurality of (12 locations in the present embodiment) exhaust ports 23 (see FIG. 3) are formed through the front end portion of the motor housing portion 16. The exhaust port 23 is formed in a long hole shape with the circumferential direction of the motor housing portion 16 as the longitudinal direction. As a result, the inside of the second space 16B and the outside of the motor housing portion 16 are communicated with each other by the exhaust port 23. Further, in the exhaust port 23, the exhaust ports 23 arranged in the front-rear direction form a pair, and the paired intake ports 22 are arranged side by side on the lower wall of the motor housing portion 16 in the left-right direction. Further, the paired exhaust ports 23 are arranged side by side in the vertical direction on the left and right side walls of the motor housing portion 16.
(モータ40について) 図2及び図9に示されるように、モータ40は、ハウジング12のモータハウジング部16の第1空間16A内に収容されている。モータ40は、駆動軸41と、ロータ42と、ステータ43と、モータ基板45と、を含んで構成されている。駆動軸41は、前後方向を軸方向とする略円柱状に形成されると共に、ガイド孔17Aと同軸状に配置されている。そして、駆動軸41の後端部が、モータハウジング部16に固定された第1軸受33に回転可能に支持されている。駆動軸41は、ファンガイド17のガイド孔17Aを挿通しており、駆動軸41の前端部がフロントハウジング14内に配置されている。そして、駆動軸41の前端側部分がフロントハウジング14内に設けられた第2軸受34に回転可能に支持されている。また、駆動軸41の前端部における外周部には、ピニオンギヤ41Aが形成されている。 (About the motor 40) As shown in FIGS. 2 and 9, the motor 40 is housed in the first space 16A of the motor housing portion 16 of the housing 12. The motor 40 includes a drive shaft 41, a rotor 42, a stator 43, and a motor substrate 45. The drive shaft 41 is formed in a substantially columnar shape with the front-rear direction as the axial direction, and is arranged coaxially with the guide hole 17A. The rear end portion of the drive shaft 41 is rotatably supported by the first bearing 33 fixed to the motor housing portion 16. The drive shaft 41 is inserted through the guide hole 17A of the fan guide 17, and the front end portion of the drive shaft 41 is arranged in the front housing 14. The front end side portion of the drive shaft 41 is rotatably supported by the second bearing 34 provided in the front housing 14. Further, a pinion gear 41A is formed on the outer peripheral portion of the front end portion of the drive shaft 41.
ロータ42は、前後方向を軸方向とする略円筒状に形成されて、駆動軸41の径方向外側において駆動軸41と一体回転可能に構成されている。ステータ43は、前後方向を軸方向とする略円筒状に形成されて、ロータ42の径方向外側に配置されている。そして、ステータ43のステータホルダ44が、モータハウジング部16の左右の側壁に形成されたモータ保持リブ24(図4、図6、及び図7参照)によって左右方向に挟み込まれて保持されている。 The rotor 42 is formed in a substantially cylindrical shape with the front-rear direction as the axial direction, and is configured to be integrally rotatable with the drive shaft 41 on the radial outer side of the drive shaft 41. The stator 43 is formed in a substantially cylindrical shape with the front-rear direction as the axial direction, and is arranged on the outer side in the radial direction of the rotor 42. The stator holder 44 of the stator 43 is sandwiched and held in the left-right direction by the motor holding ribs 24 (see FIGS. 4, 6, and 7) formed on the left and right side walls of the motor housing portion 16.
モータ基板45は、前後方向を板厚方向とする略円環板状に形成されると共に、ロータ42及びステータ43の後側において、ステータホルダ44に固定されている。モータ基板45には、ステータホルダ44に巻回されたコイルの一端部が接続されている。 The motor substrate 45 is formed in a substantially annular plate shape with the front-rear direction as the plate thickness direction, and is fixed to the stator holder 44 on the rear side of the rotor 42 and the stator 43. One end of a coil wound around the stator holder 44 is connected to the motor board 45.
(駆動機構50について) 図2に示されるように、駆動機構50は、フロントハウジング14内(アッパーカバー14Bとアンダーカバー14Cとで画定される領域)に収容されている。駆動機構50は、ベベルギヤ51と、運動変換ピン52と、プランジャ53と、を含んで構成されている。ベベルギヤ51は、モータ40の駆動軸41の前側において、上下方向を軸方向として回転可能に設けられると共に、モータ40のピニオンギヤ41Aに噛合されている。運動変換ピン52は、上下方向を軸方向とする円柱状に形成されると共に、ベベルギヤ51の回転軸線に対して偏心した位置において、ベベルギヤ51に固定されている。そして、運動変換ピン52の上端部が、ベベルギヤ51から上側へ突出している。 (Regarding the drive mechanism 50) As shown in FIG. 2, the drive mechanism 50 is housed in the front housing 14 (the area defined by the upper cover 14B and the undercover 14C). The drive mechanism 50 includes a bevel gear 51, a motion conversion pin 52, and a plunger 53. The bevel gear 51 is rotatably provided on the front side of the drive shaft 41 of the motor 40 with the vertical direction as the axial direction, and is meshed with the pinion gear 41A of the motor 40. The motion conversion pin 52 is formed in a columnar shape with the vertical direction as the axial direction, and is fixed to the bevel gear 51 at a position eccentric with respect to the rotation axis of the bevel gear 51. The upper end of the motion conversion pin 52 projects upward from the bevel gear 51.
プランジャ53は、前後方向を軸方向とする略円柱状に形成されている。プランジャ53は、ベベルギヤ51の上側において、前後方向に往復移動可能にフロントハウジング14に支持されている。プランジャ53の後端側の部分には、連結部54が形成されており、連結部54は、下側へ開放され且つ左右方向に延在された溝状に形成されている。そして、運動変換ピン52の上端部が連結部54内に挿入されて、ベベルギヤ51とプランジャ53とが連結されている。これにより、モータ40が駆動して、ベベルギヤ51が回転することで、プランジャ53が前後方向に往復移動するように構成されている。 The plunger 53 is formed in a substantially columnar shape with the front-rear direction as the axial direction. The plunger 53 is supported by the front housing 14 on the upper side of the bevel gear 51 so as to be reciprocally movable in the front-rear direction. A connecting portion 54 is formed in a portion on the rear end side of the plunger 53, and the connecting portion 54 is formed in a groove shape that is open downward and extends in the left-right direction. Then, the upper end portion of the motion conversion pin 52 is inserted into the connecting portion 54, and the bevel gear 51 and the plunger 53 are connected to each other. As a result, the motor 40 is driven and the bevel gear 51 is rotated, so that the plunger 53 is configured to reciprocate in the front-rear direction.
プランジャ53の前端部には、ブレードホルダ55が設けられており、ブレードホルダ55には、ブレード56が取付けられている。ブレード56は、前後方向を長手方向とし且つ左右方向を板厚方向とする略長尺板状に形成されている。そして、ブレード56の後端部がブレードホルダ55に取付けられて、ブレード56が、フロントハウジング14の前側に配置されている。ブレード56の下端部には、刃部56Aが形成されている。これにより、ブレード56が前後方向に往復移動することで、被加工材がブレード56によって切断されるようになっている。 A blade holder 55 is provided at the front end of the plunger 53, and a blade 56 is attached to the blade holder 55. The blade 56 is formed in a substantially long plate shape with the front-rear direction as the longitudinal direction and the left-right direction as the plate thickness direction. Then, the rear end portion of the blade 56 is attached to the blade holder 55, and the blade 56 is arranged on the front side of the front housing 14. A blade portion 56A is formed at the lower end portion of the blade 56. As a result, the blade 56 reciprocates in the front-rear direction, so that the work material is cut by the blade 56.
(制御部60について) 図2、図4、図6、及び図8に示されるように、制御部60は、モータハウジング部16の第1空間16Aの下端部内に収容されている。制御部60は、制御基板62と、制御基板62を収容するケース61と、を含んで構成されている。ケース61は、上下方向を厚み方向とした比較的底の浅い矩形箱状に形成されている。また、ケース61は、厚み方向一方(下側)へ開放されている。これにより、ケース61は、ケース61の上端を構成する底壁61Aと、底壁61Aの外周部から下側へ延出された側壁61Bと、を含んで構成されている。側壁61Bの上端部は、ケース傾斜部61Cが形成されている。ケース傾斜部61Cは、上側へ向かうに従いケース61の内側に傾斜されて底壁61Aに接続されている。 (Regarding the control unit 60) As shown in FIGS. 2, 4, 6, and 8, the control unit 60 is housed in the lower end portion of the first space 16A of the motor housing unit 16. The control unit 60 includes a control board 62 and a case 61 for accommodating the control board 62. The case 61 is formed in a rectangular box shape having a relatively shallow bottom with the vertical direction as the thickness direction. Further, the case 61 is open to one side (lower side) in the thickness direction. As a result, the case 61 is configured to include a bottom wall 61A constituting the upper end of the case 61 and a side wall 61B extending downward from the outer peripheral portion of the bottom wall 61A. A case inclined portion 61C is formed at the upper end portion of the side wall 61B. The case inclined portion 61C is inclined inward of the case 61 toward the upper side and is connected to the bottom wall 61A.
そして、ケース61が、リヤハウジング13の分割ハウジング15によって左右方向に挟み込まれて、モータハウジング部16に固定されている。具体的には、ケース61の左右の側壁61Bが、モータハウジング部16の左右の挟持部21によって左右方向に挟み込まれている。これにより、ケース61の左右方向の移動が挟持部21によって制限されている。また、ケース61の前端部が、モータハウジング部16の前側固定部17Bの内部に配置されており、ケース61の後端部が、第1後側固定部18の内部に配置されると共に、第2後側固定部19の下壁の上側に配置されている。また、モータハウジング部16の固定片20が、ケース61の底壁61Aの左端部の上側に配置されている。これにより、前側固定部17B、第1後側固定部18、第2後側固定部19、及び固定片20によってケース61の上下方向の移動が制限されている。 Then, the case 61 is sandwiched in the left-right direction by the split housing 15 of the rear housing 13 and fixed to the motor housing portion 16. Specifically, the left and right side walls 61B of the case 61 are sandwiched in the left-right direction by the left and right holding portions 21 of the motor housing portion 16. As a result, the movement of the case 61 in the left-right direction is restricted by the holding portion 21. Further, the front end portion of the case 61 is arranged inside the front side fixing portion 17B of the motor housing portion 16, and the rear end portion of the case 61 is arranged inside the first rear side fixing portion 18, and the first 2 It is arranged on the upper side of the lower wall of the rear fixing portion 19. Further, the fixing piece 20 of the motor housing portion 16 is arranged on the upper side of the left end portion of the bottom wall 61A of the case 61. As a result, the vertical movement of the case 61 is restricted by the front fixing portion 17B, the first rear fixing portion 18, the second rear fixing portion 19, and the fixing piece 20.
また、ケース61は、モータ40のステータ43の下側に離間して配置されると共に、モータハウジング部16の吸気口22よりも下側に配置されている。これにより、モータ40とケース61との間には、冷却風通路70(図7及び図9参照)が形成されている。すなわち、ケース61の底壁61Aが、冷却風通路70の壁部の一部を構成するように、モータハウジング部16の第1空間16A内に収容されている。また、ケース61の開口部61Dが、底壁61Aに対して冷却風通路70、吸気口22、及びガイド孔17Aとは反対側に開口している。さらに、冷却風通路70の後端部が吸気口22と連通しており、冷却風通路70の前端部がガイド孔17Aと連通している。 Further, the case 61 is arranged apart from the lower side of the stator 43 of the motor 40, and is arranged below the intake port 22 of the motor housing portion 16. As a result, a cooling air passage 70 (see FIGS. 7 and 9) is formed between the motor 40 and the case 61. That is, the bottom wall 61A of the case 61 is housed in the first space 16A of the motor housing portion 16 so as to form a part of the wall portion of the cooling air passage 70. Further, the opening 61D of the case 61 opens to the bottom wall 61A on the side opposite to the cooling air passage 70, the intake port 22, and the guide hole 17A. Further, the rear end portion of the cooling air passage 70 communicates with the intake port 22, and the front end portion of the cooling air passage 70 communicates with the guide hole 17A.
また、ケース61のモータハウジング部16への固定状態では、ケース61のケース傾斜部61Cの一部が、モータハウジング部16におけるファンガイド17の露出孔17Dから第2空間16B内に露出している。 Further, in the fixed state of the case 61 to the motor housing portion 16, a part of the case inclined portion 61C of the case 61 is exposed in the second space 16B from the exposed hole 17D of the fan guide 17 in the motor housing portion 16. ..
制御基板62は、上下方向を板厚方向とする略矩形板状に形成されている。制御基板62は、ケース61内に収容されて、ケース61に固定されている。制御基板62の下面には、複数(本実施の形態では、6個)のスイッチング素子(FET)63(広義には、発熱部品として把握される要素である)が設けられている。 The control board 62 is formed in a substantially rectangular plate shape with the vertical direction as the plate thickness direction. The control board 62 is housed in the case 61 and fixed to the case 61. On the lower surface of the control board 62, a plurality of (six in the present embodiment) switching elements (FETs) 63 (in a broad sense, elements grasped as heat-generating components) are provided.
(ファン72について) セーバソー10は、制御部60を冷却する冷却風ARを生成するファン72を有している。ファン72は、モータ40の駆動軸41の前端側部分に一体回転可能に固定されると共に、ファンガイド17の前側で且つモータハウジング部16の第2空間16B内に配置されている。すなわち、モータハウジング部16の吸気口22とファン72との間に、制御部60の大半が配置されており、ファン72とモータハウジング部16の排気口23との間に制御部60の一部(前端部)が配置されている。 (About the fan 72) The saver saw 10 has a fan 72 that generates a cooling air AR that cools the control unit 60. The fan 72 is integrally rotatably fixed to the front end side portion of the drive shaft 41 of the motor 40, and is arranged on the front side of the fan guide 17 and in the second space 16B of the motor housing portion 16. That is, most of the control unit 60 is arranged between the intake port 22 of the motor housing unit 16 and the fan 72, and a part of the control unit 60 is arranged between the fan 72 and the exhaust port 23 of the motor housing unit 16. (Front end) is arranged.
ファン72は、遠心ファンとして構成されて、ファン72の後側の空気をファン72の径方向外側へ流す空気流を生成するようになっている。これにより、モータハウジング部16に内部には、吸気口22からモータハウジング部16内に吸い込まれ、排気口23からモータハウジング部16の外部へ吐き出される冷却風ARが生成される。具体的には、冷却風ARは、吸気口22から第1空間16A内に吸い込まれ且つ第2空間16B内に吸い込まれてファン72に流入される上流側冷却風AR1と、第2空間16B内においてファン72から径方向外側へ流出され且つ排気口23からモータハウジング部16の外部へ排気される下流側冷却風AR2と、を含んでいる。すなわち、吸気口22からファン72に至る空気の流れ(吸い込み風)が上流側冷却風AR1であり、ファン72から排気口23に至る空気の流れ(吐き出し風)が下流側冷却風AR2である。 The fan 72 is configured as a centrifugal fan to generate an air flow that causes air on the rear side of the fan 72 to flow outward in the radial direction of the fan 72. As a result, a cooling air AR that is sucked into the motor housing portion 16 from the intake port 22 and discharged to the outside of the motor housing portion 16 from the exhaust port 23 is generated inside the motor housing portion 16. Specifically, the cooling air AR is sucked into the first space 16A from the intake port 22 and is sucked into the second space 16B and flows into the fan 72, and the upstream cooling air AR1 and the second space 16B. Includes the downstream cooling air AR2 which is discharged outward from the fan 72 in the radial direction and is exhausted to the outside of the motor housing portion 16 from the exhaust port 23. That is, the air flow from the intake port 22 to the fan 72 (suction air) is the upstream cooling air AR1, and the air flow from the fan 72 to the exhaust port 23 (exhaust air) is the downstream cooling air AR2.
そして、詳細については後述するが、吸気口22から第1空間16A内に吸い込まれた上流側冷却風AR1が、冷却風通路70を通過し、ファンガイド17の後面に沿ってガイド孔17A側へ流れるようになっている。すなわち、ファンガイド17は、第1空間16A内を流れる上流側冷却風AR1をファン72に導くガイド部をして機能するように構成されている。 Then, as will be described in detail later, the upstream cooling air AR1 sucked into the first space 16A from the intake port 22 passes through the cooling air passage 70 and goes to the guide hole 17A side along the rear surface of the fan guide 17. It is designed to flow. That is, the fan guide 17 is configured to function as a guide portion that guides the upstream cooling air AR1 flowing in the first space 16A to the fan 72.
(作用効果) 次に、本実施の形態の作用効果について説明する。 (Action and effect) Next, the action and effect of the present embodiment will be described.
上記のように構成されたセーバソー10では、トリガ30が引き操作されることで、モータ40が駆動する。モータ40が駆動すると、モータ40の駆動力が駆動機構50のプランジャ53に伝達されて、プランジャ53が前後方向に往復移動する。これにより、プランジャ53に取付けられたブレード56が、プランジャ53と共に前後方向に往復移動する。したがって、往復移動するブレード56によって、パイプ等の被加工材に対して切断加工を行うことができる。 In the saver saw 10 configured as described above, the motor 40 is driven by the pulling operation of the trigger 30. When the motor 40 is driven, the driving force of the motor 40 is transmitted to the plunger 53 of the drive mechanism 50, and the plunger 53 reciprocates in the front-rear direction. As a result, the blade 56 attached to the plunger 53 reciprocates in the front-rear direction together with the plunger 53. Therefore, the blade 56 that reciprocates can cut the work material such as a pipe.
また、モータ40の駆動時には、ファン72がモータ40の駆動軸41と共に駆動軸41の軸回りに回転して、ファン72の後側(モータ40側)の空気をファン72の径方向外側へ流す空気流が発生する。これにより、図9に示されるように、上流側冷却風AR1が、モータハウジング部16の吸気口22から第1空間16A内に吸い込まれる。また、吸気口22は、冷却風通路70の後端部と連通している。このため、第1空間16Aの上部内に吸い込まれた上流側冷却風AR1が、モータ40のモータ基板45に当たって、モータ基板45の後面に沿って下側(冷却風通路70側)に流れると共に、冷却風通路70の後端側に流入される。また、第1空間16Aの下部内に吸い込まれた上流側冷却風AR1が、冷却風通路70の後端側に直接的に流入される。 Further, when the motor 40 is driven, the fan 72 rotates around the axis of the drive shaft 41 together with the drive shaft 41 of the motor 40, and the air on the rear side (motor 40 side) of the fan 72 flows outward in the radial direction of the fan 72. An air flow is generated. As a result, as shown in FIG. 9, the upstream cooling air AR1 is sucked into the first space 16A from the intake port 22 of the motor housing portion 16. Further, the intake port 22 communicates with the rear end portion of the cooling air passage 70. Therefore, the upstream cooling air AR1 sucked into the upper part of the first space 16A hits the motor board 45 of the motor 40 and flows to the lower side (cooling air passage 70 side) along the rear surface of the motor board 45. It flows into the rear end side of the cooling air passage 70. Further, the upstream cooling air AR1 sucked into the lower part of the first space 16A directly flows into the rear end side of the cooling air passage 70.
冷却風通路70の後端部に流入された上流側冷却風AR1は、制御部60のケース61における底壁61Aの上面に沿って冷却風通路70内を前側へ流れる。すなわち、上流側冷却風AR1が、ケース61を冷却しつつ、冷却風通路70内を流れる。上流側冷却風AR1が、冷却風通路70の前端部に到達すると、ファンガイド17の下端部に当たってファンガイド17の後面に沿って上側へ流れる。ファンガイド17に沿って上側へ流れた上流側冷却風AR1は、ガイド孔17Aから第2空間16Bへ吸い込まれると共に、ファン72に流入される。 The upstream cooling air AR1 flowing into the rear end of the cooling air passage 70 flows forward in the cooling air passage 70 along the upper surface of the bottom wall 61A in the case 61 of the control unit 60. That is, the upstream cooling air AR1 flows in the cooling air passage 70 while cooling the case 61. When the upstream cooling air AR1 reaches the front end of the cooling air passage 70, it hits the lower end of the fan guide 17 and flows upward along the rear surface of the fan guide 17. The upstream cooling air AR1 flowing upward along the fan guide 17 is sucked into the second space 16B from the guide hole 17A and flows into the fan 72.
ファン72に吸い込まれた上流側冷却風AR1は、下流側冷却風AR2としてファン72から径方向外側へ流出される。そして、ファン72から流出された下流側冷却風AR2が排気口23からモータハウジング部16の外部へ排気される。このとき、ファン72から下側へ流出される下流側冷却風AR2は、ファンガイド17の前面に沿って下側へ流される。そして、ファンガイド17の下端部に到達した下流側冷却風AR2は、ファンガイド17の傾斜壁17C及び露出孔17Dから露出されたケース傾斜部61Cに沿って下斜め前側へ流れて、下側の排気口23からモータハウジング部16の外部へ排気される。すなわち、下流側冷却風AR2が、ケース61の前端部を冷却しつつ、排気口23側へ流れる。 The upstream cooling air AR1 sucked into the fan 72 flows out from the fan 72 radially outward as the downstream cooling air AR2. Then, the downstream cooling air AR2 discharged from the fan 72 is exhausted from the exhaust port 23 to the outside of the motor housing portion 16. At this time, the downstream cooling air AR2 flowing downward from the fan 72 is flowed downward along the front surface of the fan guide 17. Then, the downstream cooling air AR2 that has reached the lower end of the fan guide 17 flows downward and diagonally forward along the inclined wall 17C of the fan guide 17 and the case inclined portion 61C exposed from the exposed hole 17D, and flows downward. It is exhausted from the exhaust port 23 to the outside of the motor housing portion 16. That is, the downstream cooling air AR2 flows to the exhaust port 23 side while cooling the front end portion of the case 61.
以上説明したように、本実施の形態のセーバソー10では、モータ40、ファン72、及び制御部60が、ハウジング12のモータハウジング部16に収容されており、モータハウジング部16には、吸気口22及び排気口23が形成されている。これにより、モータハウジング部16内には、吸気口22から吸い込まれ且つ排気口23から排気される冷却風ARが発生する。詳しくは、吸気口22からモータハウジング部16内に流入され且つファン72に流入される上流側冷却風AR1と、ファン72から流出され且つ排気口23からモータハウジング部16の外部に排気される下流側冷却風AR2と、が発生する。そして、本実施の形態では、作動時に発熱するスイッチング素子63を有する制御部60が、上流側冷却風AR1及び下流側冷却風AR2によって冷却される。これにより、上流側冷却風AR1及び下流側冷却風AR2の一方によって、制御部60を冷却する構成と比べて、制御部60を効率よく冷却することができる。したがって、制御部60に対する冷却性能を向上させることができる。吸気口22からモータハウジング部16内に入ったばかりの空気は温度が低いために冷却効果が高く、制御部60の後端部分は上流側冷却風AR1の上流部分(モータ40を冷却する前の空気)で冷却されるため、冷却効果が高い。さらに、下流側冷却風AR2は空気の流れが速くなりやすく、高い風速となる吐き出し風(モータ40の冷却した後の空気)を制御部60に当てることによっても好適に制御部60を冷却可能となる。すなわち、本願発明は、比較的温度の低い吸い込み風を制御部60に当て、かつ風速の高い吐き出し風も制御部60に当てるといった、吸い込み風と吐き出し風のそれぞれが持つ優位性を利用した冷却構成が特徴となっている。また、上流側冷却風AR1又は下流側冷却風AR2の一方のみで制御部60を冷却する場合、十分な流路を形成するため必要以上にハウジングが大型化したり、構造が複雑化したりする恐れがあるが、本実施の形態のように上流側冷却風AR1及び下流側冷却風AR2の両方で冷却するようにすることで、設計的な自由度を得ることができ、ハウジングを大型化または複雑化せずとも制御部60を好適に冷却可能となる。 As described above, in the saver saw 10 of the present embodiment, the motor 40, the fan 72, and the control unit 60 are housed in the motor housing unit 16 of the housing 12, and the intake port 22 is housed in the motor housing unit 16. And the exhaust port 23 is formed. As a result, cooling air AR that is sucked in from the intake port 22 and exhausted from the exhaust port 23 is generated in the motor housing portion 16. Specifically, the upstream cooling air AR1 that flows into the motor housing portion 16 from the intake port 22 and flows into the fan 72, and the downstream side that flows out from the fan 72 and is exhausted to the outside of the motor housing portion 16 from the exhaust port 23. Side cooling air AR2 is generated. Then, in the present embodiment, the control unit 60 having the switching element 63 that generates heat during operation is cooled by the upstream cooling air AR1 and the downstream cooling air AR2. As a result, the control unit 60 can be efficiently cooled as compared with the configuration in which the control unit 60 is cooled by one of the upstream cooling air AR1 and the downstream cooling air AR2. Therefore, the cooling performance for the control unit 60 can be improved. The air that has just entered the motor housing portion 16 from the intake port 22 has a high cooling effect because the temperature is low, and the rear end portion of the control unit 60 is the upstream portion of the upstream cooling air AR1 (air before cooling the motor 40). ), So the cooling effect is high. Further, the downstream cooling air AR2 tends to have a faster air flow, and the control unit 60 can be suitably cooled by applying an exhaled air (air after cooling of the motor 40) having a high wind speed to the control unit 60. Become. That is, the present invention has a cooling configuration utilizing the advantages of each of the suction air and the discharge air, such as applying a suction air having a relatively low temperature to the control unit 60 and also applying an discharge air having a high wind speed to the control unit 60. Is a feature. Further, when the control unit 60 is cooled by only one of the upstream cooling air AR1 and the downstream cooling air AR2, the housing may become larger than necessary or the structure may be complicated because a sufficient flow path is formed. However, by cooling with both the upstream cooling air AR1 and the downstream cooling air AR2 as in the present embodiment, design freedom can be obtained, and the housing becomes larger or more complicated. The control unit 60 can be suitably cooled without this.
また、モータハウジング部16は、上流側冷却風AR1が通過する第1空間16Aと、下流側冷却風AR2が通過する第2空間16Bと、を有しており、制御部60が、第1空間16A及び第2空間16Bに露出されている。具体的には、制御部60が、吸気口22とファン72との間に配置されている。また、ファンガイド17の露出孔17Dによって、制御部60の一部(前端部)が、第2空間16Bに露出されると共に、ファン72と排気口23との間に配置されている。これにより、上流側冷却風AR1及び下流側冷却風AR2によって制御部60を冷却することができる。 Further, the motor housing unit 16 has a first space 16A through which the upstream cooling air AR1 passes and a second space 16B through which the downstream cooling air AR2 passes, and the control unit 60 has a first space. It is exposed to 16A and the second space 16B. Specifically, the control unit 60 is arranged between the intake port 22 and the fan 72. Further, a part (front end portion) of the control unit 60 is exposed to the second space 16B by the exposed hole 17D of the fan guide 17, and is arranged between the fan 72 and the exhaust port 23. As a result, the control unit 60 can be cooled by the upstream cooling air AR1 and the downstream cooling air AR2.
また、モータハウジング部16には、第1空間16Aと第2空間16Bとを区画するファンガイド17が設けられており、上流側冷却風AR1及び下流側冷却風AR2がファンガイド17によって整流される。具体的には、冷却風通路70を流れる上流側冷却風AR1の向きが、ファンガイド17によって上側に変更されて、上流側冷却風AR1が、ファンガイド17の後面に沿って上側へ流れて、ガイド孔17Aから第2空間16Bに吸い込まれる。これにより、上流側冷却風AR1を効率よく第2空間16B側に流すことができる。また、ファン72から流出された下流側冷却風AR2が、ファンガイド17の前面に沿って下側へ流れる。したがって、下流側冷却風AR2の第1空間16A側への逆流をファンガイド17によって抑制しつつ、下流側冷却風AR2によって制御部60の前端部を冷却することができる。 Further, the motor housing portion 16 is provided with a fan guide 17 for partitioning the first space 16A and the second space 16B, and the upstream cooling air AR1 and the downstream cooling air AR2 are rectified by the fan guide 17. .. Specifically, the direction of the upstream cooling air AR1 flowing through the cooling air passage 70 is changed upward by the fan guide 17, and the upstream cooling air AR1 flows upward along the rear surface of the fan guide 17. It is sucked into the second space 16B from the guide hole 17A. As a result, the upstream cooling air AR1 can be efficiently flowed to the second space 16B side. Further, the downstream cooling air AR2 flowing out from the fan 72 flows downward along the front surface of the fan guide 17. Therefore, the front end portion of the control unit 60 can be cooled by the downstream cooling air AR2 while suppressing the backflow of the downstream cooling air AR2 to the first space 16A side by the fan guide 17.
また、ファン72が、第2空間16B内において、ガイド孔17Aの前側に配置されている。これにより、ファン72によって生成される空気流によって、上流側冷却風AR1をガイド孔17Aから第2空間16B側へ効率よく吐出させて、ファン72に流入させることができる。 Further, the fan 72 is arranged in the second space 16B on the front side of the guide hole 17A. As a result, the upstream cooling air AR1 can be efficiently discharged from the guide hole 17A to the second space 16B side by the air flow generated by the fan 72, and can flow into the fan 72.
また、第1空間16Aには、モータ40及び制御部60が収容されており、制御部60がモータ40の径方向外側(下側)に離間して配置されている。これにより、モータ40と制御部60との間に上流側冷却風AR1を通過させるための冷却風通路70を形成することができると共に、冷却風通路70の壁部の一部を制御部60のケース61によって構成することができる。したがって、冷却風通路70を通過する上流側冷却風AR1によって、制御部60及びモータ40を効率よく冷却することができる。 Further, the motor 40 and the control unit 60 are housed in the first space 16A, and the control unit 60 is arranged apart from each other on the radial outer side (lower side) of the motor 40. As a result, a cooling air passage 70 for passing the upstream cooling air AR1 can be formed between the motor 40 and the control unit 60, and a part of the wall portion of the cooling air passage 70 can be formed in the control unit 60. It can be configured by the case 61. Therefore, the control unit 60 and the motor 40 can be efficiently cooled by the upstream cooling air AR1 passing through the cooling air passage 70.
また、制御部60のケース61は、下側へ開放された略箱形状に形成されており、冷却風通路70の壁部が、ケース61の底壁61Aによって構成されている。具体的には、吸気口22が、ケース61の上側(開口部61Dとは反対側)に配置されている。これにより、冷却風通路70を通過する上流側冷却風AR1が、底壁61Aの上面に沿って前側へ移動して制御部60を冷却すると共に、上流側冷却風AR1がケース61内の制御基板62や制御基板62に搭載されたスイッチング素子63又は配線等の電子素子に直接的に当たることを抑制できる。このため、例えば、セーバソー10の作業時に生じる切粉が、仮に上流側冷却風AR1と共に第1空間16A内に流入した場合でも、当該切粉が制御基板62や電子素子に当たることを抑制できる。したがって、制御基板62に対する保護性能を向上しつつ、制御部60に対する冷却性能を向上させることができる。特に、被加工材が金属である場合には、制御基板62に対する保護性能を効果的に向上させることができる。 Further, the case 61 of the control unit 60 is formed in a substantially box shape open to the lower side, and the wall portion of the cooling air passage 70 is formed by the bottom wall 61A of the case 61. Specifically, the intake port 22 is arranged on the upper side of the case 61 (the side opposite to the opening 61D). As a result, the upstream cooling air AR1 passing through the cooling air passage 70 moves forward along the upper surface of the bottom wall 61A to cool the control unit 60, and the upstream cooling air AR1 is the control board in the case 61. It is possible to suppress direct contact with the switching element 63 mounted on the 62 or the control board 62 or an electronic element such as wiring. Therefore, for example, even if the chips generated during the operation of the saver saw 10 flow into the first space 16A together with the upstream cooling air AR1, it is possible to prevent the chips from hitting the control board 62 or the electronic element. Therefore, it is possible to improve the cooling performance for the control unit 60 while improving the protection performance for the control board 62. In particular, when the material to be processed is a metal, the protection performance against the control substrate 62 can be effectively improved.
また、上流側冷却風AR1が制御部60の底壁61Aの上面に沿って前側に流れるため、冷却風通路70内において、上流側冷却風AR1をスムースに流すことができる。また、制御部60によってモータハウジング部16の内部を一部区画することで、制御部60の上方空間と下方空間とを区画し、第1空間16Aを容易に形成することができる。すなわち、制御部60を取り付けることで、上流側冷却風AR1の風路を容易に形成可能であり、モータハウジング部16に風路形成のための構造(リブ等)を必要以上に設ける必要がなくなる。また、遠心ファンであるファン72を利用した冷却風路形成の場合、通常はモータ40の軸方向に移動する吸い込み風と径方向外方に移動する吐き出し風が形成される。本実施の形態では、制御部60を、第1空間16Aを区画する壁として機能させ、また第2空間16Bを区画する壁としても機能させた。こうすることで、軸方向に向かう上流側冷却風AR1と径方向外方に向かう下流側冷却風AR2によって制御部60を冷却可能となり、冷却風をUターンさせたりせず、シンプルな構成で制御部60の好適な冷却構成を実現できる。 Further, since the upstream cooling air AR1 flows forward along the upper surface of the bottom wall 61A of the control unit 60, the upstream cooling air AR1 can be smoothly flowed in the cooling air passage 70. Further, by partially partitioning the inside of the motor housing portion 16 by the control unit 60, the upper space and the lower space of the control unit 60 can be partitioned, and the first space 16A can be easily formed. That is, by attaching the control unit 60, the air passage of the upstream cooling air AR1 can be easily formed, and it is not necessary to provide the motor housing unit 16 with a structure (rib or the like) for forming the air passage more than necessary. .. Further, in the case of forming a cooling air passage using a fan 72 which is a centrifugal fan, a suction air that normally moves in the axial direction of the motor 40 and an discharge air that moves outward in the radial direction are formed. In the present embodiment, the control unit 60 is made to function as a wall for partitioning the first space 16A and also as a wall for partitioning the second space 16B. By doing so, the control unit 60 can be cooled by the upstream cooling air AR1 heading in the axial direction and the downstream cooling air AR2 heading outward in the radial direction, and the cooling air is controlled by a simple configuration without making a U-turn. A suitable cooling configuration of the unit 60 can be realized.
また、制御部60のケース61が、モータハウジング部16の挟持部21によって左右方向外側から挟み込まれている。具体的には、左右の挟持部21が、吸気口22の左右方向外側に配置されて、ケース61を左右方向に挟み込んでいる。これにより、冷却風通路70内における上流側冷却風AR1の流れを阻害することなく、挟持部21によってケース61を固定することができる。 Further, the case 61 of the control unit 60 is sandwiched from the outside in the left-right direction by the sandwiching portion 21 of the motor housing portion 16. Specifically, the left and right holding portions 21 are arranged outside the intake port 22 in the left-right direction to sandwich the case 61 in the left-right direction. As a result, the case 61 can be fixed by the sandwiching portion 21 without obstructing the flow of the upstream cooling air AR1 in the cooling air passage 70.
(冷却構造Sの変形例1) 次に、図10を用いて、セーバソー10における冷却構造Sの変形例1について説明する。変形例1の冷却構造Sでは、以下に示す点を除いて、本実施の形態と同様に構成されている。すなわち、変形例1の冷却構造Sでは、ファンガイド17の前側固定部17Bの下側に、連通孔17Eが貫通形成されている。これにより、制御部60の下側空間と第2空間16Bとが、連通孔17Eによって連通している。すなわち、変形例1では、第2空間16Bが、制御部60の下側空間まで拡大している。そして、第2空間16Bの上流側の空間と第1空間16Aとがファンガイド17によって区画されており、第2空間16Bの下流側の空間と第1空間16Aとが制御部60によって区画されている。また、モータハウジング部16の下壁に形成された排気口23が、本実施の形態と比べて後側へ移動している。具体的には、当該排気口23が、制御部60の後端部の下側に配置されている。これにより、第2空間16Bの後端部とモータハウジング部16の外部とが排気口23によって連通されている。 (Modification 1 of the cooling structure S) Next, a modification 1 of the cooling structure S in the saver saw 10 will be described with reference to FIG. The cooling structure S of the first modification has the same configuration as that of the present embodiment except for the following points. That is, in the cooling structure S of the first modification, the communication hole 17E is formed through the lower side of the front fixing portion 17B of the fan guide 17. As a result, the lower space of the control unit 60 and the second space 16B are communicated with each other by the communication hole 17E. That is, in the first modification, the second space 16B expands to the lower space of the control unit 60. The space on the upstream side of the second space 16B and the first space 16A are partitioned by the fan guide 17, and the space on the downstream side of the second space 16B and the first space 16A are partitioned by the control unit 60. There is. Further, the exhaust port 23 formed on the lower wall of the motor housing portion 16 is moved to the rear side as compared with the present embodiment. Specifically, the exhaust port 23 is arranged below the rear end portion of the control unit 60. As a result, the rear end portion of the second space 16B and the outside of the motor housing portion 16 are communicated with each other by the exhaust port 23.
このため、冷却構造Sの変形例1では、ファン72から下側へ流出された下流側冷却風AR2が、ファンガイド17の前面に沿って下側へ流れると共に、ファンガイド17の連通孔17Eから制御部60の下側の空間に流入される。そして、制御部60の下側に流入された下流側冷却風AR2が、制御部60の下側を冷却しながら後側へ流れて、制御部60の下側の排気口23からモータハウジング部16の外部へ流出される。したがって、冷却構造Sの変形例1においても、上流側冷却風AR1及び下流側冷却風AR2によって制御部60を冷却することができる。したがって、冷却構造Sの変形例1においても、冷却性能を向上させることができる。 Therefore, in the first modification of the cooling structure S, the downstream cooling air AR2 flowing downward from the fan 72 flows downward along the front surface of the fan guide 17 and from the communication hole 17E of the fan guide 17. It flows into the space below the control unit 60. Then, the downstream cooling air AR2 that has flowed into the lower side of the control unit 60 flows to the rear side while cooling the lower side of the control unit 60, and flows from the exhaust port 23 on the lower side of the control unit 60 to the motor housing unit 16. It is leaked to the outside of. Therefore, even in the modification 1 of the cooling structure S, the control unit 60 can be cooled by the upstream cooling air AR1 and the downstream cooling air AR2. Therefore, even in the modification 1 of the cooling structure S, the cooling performance can be improved.
また、冷却構造Sの変形例1では、下流側冷却風AR2の流路を拡大させるためハウジングが若干大型化するものの、下流側冷却風AR2によって制御部60をケース61の開口部61D側から冷却することができる。すなわち、上流側冷却風AR1及び下流側冷却風AR2によって制御部60を上下方向(制御部60の厚み方向)両側から冷却することができる。したがって、制御部60に対する冷却性能を効果的に向上させることができる。 Further, in the first modification of the cooling structure S, although the housing is slightly enlarged in order to expand the flow path of the downstream cooling air AR2, the control unit 60 is cooled from the opening 61D side of the case 61 by the downstream cooling air AR2. can do. That is, the control unit 60 can be cooled from both sides in the vertical direction (thickness direction of the control unit 60) by the upstream cooling air AR1 and the downstream cooling air AR2. Therefore, the cooling performance for the control unit 60 can be effectively improved.
(冷却構造Sの変形例2) 次に、図11及び図12を用いて、冷却構造Sの変形例2について説明する。変形例2の冷却構造Sでは、以下に示す点を除いて、本実施の形態と同様に構成されている。すなわち、変形例2の冷却構造Sでは、排気口23が、モータハウジング部16の左右の側壁に形成されている。具体的には、排気口23が、側面視でモータ40のステータ43の後端部と重なるように、モータハウジング部16の上部及び下部に、それぞれ6箇所形成されている。なお、図示しているのは左側面部分のみであり、実際には同様の排気口構造が右側面にもあるため、本実施の形態において排気口23は計12箇所形成される。 (Modification 2 of the cooling structure S) Next, a modification 2 of the cooling structure S will be described with reference to FIGS. 11 and 12. The cooling structure S of the second modification has the same configuration as that of the present embodiment except for the following points. That is, in the cooling structure S of the second modification, the exhaust port 23 is formed on the left and right side walls of the motor housing portion 16. Specifically, the exhaust port 23 is formed at six locations on the upper portion and the lower portion of the motor housing portion 16 so as to overlap the rear end portion of the stator 43 of the motor 40 in a side view. It should be noted that only the left side surface portion is shown in the figure, and since the same exhaust port structure is actually provided on the right side surface, a total of 12 exhaust port 23s are formed in the present embodiment.
また、モータハウジング部16の内部には、排気口23の後側において、仕切壁25が形成されており、仕切壁25によって、モータ40の径方向外側の空間が前後に仕切られている。すなわち、変形例2では、冷却風通路70が、仕切壁25によって遮蔽されている。 Further, inside the motor housing portion 16, a partition wall 25 is formed on the rear side of the exhaust port 23, and the space outside the radial direction of the motor 40 is partitioned back and forth by the partition wall 25. That is, in the second modification, the cooling air passage 70 is shielded by the partition wall 25.
また、変形例2では、ファンガイド17の前側固定部17Bを除く部分が省略されており、モータ40とファン72との間には、流路変更部26が形成されている。流路変更部26は、側面視で、後側へ開放された断面が略U字形板状(リブ状)に形成された構成である。また、流路変更部26の略中央部には、前後方向に貫通した挿通孔26Aが形成されており、モータ40の駆動軸41が、挿通孔26A内を挿通している。すなわち、流路変更部26は底部分が開口した椀形状の部品であり、後側の縁部分がステータ43の前側端部に当接または近接するように設けられている。なお、流路変更部26は半分が一対の分割ハウジング15のうち一方に設けられ、もう半分が他方に設けられており、分割ハウジング15同士を組み付けることで形成される。 Further, in the second modification, the portion of the fan guide 17 other than the front fixing portion 17B is omitted, and the flow path changing portion 26 is formed between the motor 40 and the fan 72. The flow path changing portion 26 has a structure in which a cross section opened to the rear side is formed in a substantially U-shaped plate shape (rib shape) in a side view. Further, an insertion hole 26A penetrating in the front-rear direction is formed in the substantially central portion of the flow path changing portion 26, and the drive shaft 41 of the motor 40 inserts the inside of the insertion hole 26A. That is, the flow path changing portion 26 is a bowl-shaped component having an open bottom portion, and is provided so that the rear edge portion is in contact with or close to the front end portion of the stator 43. Half of the flow path changing portion 26 is provided on one of the pair of split housings 15, and the other half is provided on the other, and is formed by assembling the split housings 15 to each other.
そして、変形例2では、吸気口22からモータハウジング部16内に流入された上流側冷却風AR1が、モータ基板45の径方向内側及び径方向外側からモータ40の内部に流入し、モータ40の内部を前側へ流れる。具体的には、上流側冷却風AR1が、ステータ43の内部及びロータ42とステータ43との間の部分を前側へ流れる。そして、モータ40の内部を流れた上流側冷却風AR1が、流路変更部26に当たって、流路変更部26の後面に沿って駆動軸41側へ流れる。これにより、上流側冷却風AR1が挿通孔26Aからファン72に流入される。 Then, in the second modification, the upstream cooling air AR1 flowing into the motor housing portion 16 from the intake port 22 flows into the motor 40 from the radial inside and the radial outside of the motor substrate 45, and the motor 40 It flows forward inside. Specifically, the upstream cooling air AR1 flows forward through the inside of the stator 43 and the portion between the rotor 42 and the stator 43. Then, the upstream cooling air AR1 flowing inside the motor 40 hits the flow path changing portion 26 and flows to the drive shaft 41 side along the rear surface of the flow path changing portion 26. As a result, the upstream cooling air AR1 flows into the fan 72 from the insertion hole 26A.
そして、ファン72に流入された上流側冷却風AR1が、下流側冷却風AR2としてファン72の径方向外側へ流出される。このとき、下流側冷却風AR2は、排気口23側へ流れる。このため、下流側冷却風AR2は、流路変更部26の前面に沿って後側へ流れると共に、モータ40の上側及び下側を後側へ流れる。そして、モータ40の上側及び下側を後側へ流れた下流側冷却風AR2は、排気口23からモータハウジング部16の外部に排気される。以上により、変形例2では、上流側冷却風AR1及び下流側冷却風AR2によって、モータ40(ステータ43)を冷却することができる。したがって、変形例2では、モータ40が本発明の被冷却部に対応し、モータ40に対する冷却性能を向上させることができる。 Then, the upstream cooling air AR1 flowing into the fan 72 flows out as the downstream cooling air AR2 to the outside in the radial direction of the fan 72. At this time, the downstream cooling air AR2 flows to the exhaust port 23 side. Therefore, the downstream cooling air AR2 flows to the rear side along the front surface of the flow path changing portion 26, and also flows to the rear side on the upper side and the lower side of the motor 40. Then, the downstream cooling air AR2 that has flowed to the rear side on the upper side and the lower side of the motor 40 is exhausted from the exhaust port 23 to the outside of the motor housing portion 16. As described above, in the modified example 2, the motor 40 (stator 43) can be cooled by the upstream cooling air AR1 and the downstream cooling air AR2. Therefore, in the second modification, the motor 40 corresponds to the cooled portion of the present invention, and the cooling performance for the motor 40 can be improved.
また、変形例2では、モータ40の下側へ流れる下流側冷却風AR2が、モータ40と制御部60との間を流れて、排気口23からモータハウジング部16の外部に排気される。したがって、下流側冷却風AR2によって、制御部60及びモータ40を冷却することができる。 Further, in the second modification, the downstream cooling air AR2 flowing to the lower side of the motor 40 flows between the motor 40 and the control unit 60, and is exhausted from the exhaust port 23 to the outside of the motor housing unit 16. Therefore, the control unit 60 and the motor 40 can be cooled by the downstream cooling air AR2.
なお、本実施の形態では、冷却構造Sをセーバソー10に適用して、セーバソー10の制御部60やモータ40を冷却することについて説明したが、冷却構造Sを他の作業機に適用してもよい。以下、冷却構造Sを他の作業機に適用した例を、作業機のバリエーションとして説明する。 In the present embodiment, the cooling structure S is applied to the saver saw 10 to cool the control unit 60 and the motor 40 of the saver saw 10, but the cooling structure S may be applied to other working machines. good. Hereinafter, an example in which the cooling structure S is applied to another working machine will be described as a variation of the working machine.
(作業機のバリエーション1) 図13を用いて、作業機としての丸鋸100に冷却構造Sを適用した例について説明する。丸鋸100は、被加工材に切断加工を施す工具である。なお、図13は、丸鋸100を上側から見た一部破断した平面図である。そして、図13に示される矢印FR及び矢印RHは、丸鋸100の前側及び右側を示している。 (Variation 1 of the working machine) An example in which the cooling structure S is applied to the circular saw 100 as the working machine will be described with reference to FIG. The circular saw 100 is a tool for cutting a work material. Note that FIG. 13 is a partially broken plan view of the circular saw 100 as viewed from above. The arrows FR and RH shown in FIG. 13 indicate the front side and the right side of the circular saw 100.
丸鋸100は、ベース102と、丸鋸本体104と、を含んで構成されている。ベース102は、上下方向を板厚方向とした略矩形板状に形成されている。丸鋸本体104は、ベース102の上側に配置されて、ベース102に連結されている。丸鋸本体104は、丸鋸本体104の外郭を構成するハウジング110と、ハウジング110内に配置されたモータ120と、モータ120を制御する制御部140と、を含んで構成されている。また、丸鋸本体104は、図示しない丸鋸刃を有しており、丸鋸刃がソーカバー152によって上側から覆われている。そして、モータ120の回転力が丸鋸刃に伝達されて、丸鋸刃が回転することで、被加工材に切断加工を施すようになっている。 The circular saw 100 includes a base 102 and a circular saw main body 104. The base 102 is formed in a substantially rectangular plate shape with the vertical direction as the plate thickness direction. The circular saw main body 104 is arranged above the base 102 and is connected to the base 102. The circular saw main body 104 includes a housing 110 that constitutes the outer shell of the circular saw main body 104, a motor 120 arranged in the housing 110, and a control unit 140 that controls the motor 120. Further, the circular saw main body 104 has a circular saw blade (not shown), and the circular saw blade is covered from above by the saw cover 152. Then, the rotational force of the motor 120 is transmitted to the circular saw blade, and the circular saw blade rotates to cut the material to be machined.
ハウジング110は、モータ120を収容するモータハウジング部111と、モータハウジング部111の後側に配置され且つ制御部140を収容するコントローラハウジング部112と、含んで構成されている。モータハウジング部111及びコントローラハウジング部112は、右側へ開放された凹状に形成されており、モータハウジング部111の左部とコントローラハウジング部112の左部とが、仕切壁113によって仕切られている。コントローラハウジング部112の左壁の前部には、複数の吸気口114が貫通形成されており、コントローラハウジング部112の左壁の後部には、複数の排気口115が貫通形成されている。 The housing 110 includes a motor housing portion 111 that accommodates the motor 120, and a controller housing portion 112 that is arranged behind the motor housing portion 111 and accommodates the control unit 140. The motor housing portion 111 and the controller housing portion 112 are formed in a concave shape that is open to the right side, and the left portion of the motor housing portion 111 and the left portion of the controller housing portion 112 are partitioned by a partition wall 113. A plurality of intake ports 114 are formed through the front portion of the left wall of the controller housing portion 112, and a plurality of exhaust ports 115 are formed through the rear portion of the left wall of the controller housing portion 112.
モータ120は、モータハウジング部111内に収容されている。モータ120は、左右方向を軸方向とする駆動軸121と、駆動軸121の径方向外側に配置されたロータ122と、ロータ122の径方向外側に配置されたステータ123と、を含んで構成されている。また、ロータ122及びステータ123の右側には、円環板状のモータ基板125が設けられており、モータ基板125がステータ123のステータホルダ124に固定されている。 The motor 120 is housed in the motor housing portion 111. The motor 120 includes a drive shaft 121 having an axial direction in the left-right direction, a rotor 122 arranged radially outside the drive shaft 121, and a stator 123 arranged radially outside the rotor 122. ing. Further, a ring plate-shaped motor substrate 125 is provided on the right side of the rotor 122 and the stator 123, and the motor substrate 125 is fixed to the stator holder 124 of the stator 123.
駆動軸121の右端部には、モータ基板125の右側において、ファン130が一体回転可能に設けられており、ファン130は、遠心ファンとして構成されている。これにより、ファン130によって生成された下流側冷却風AR4が、後側へ流れて、コントローラハウジング部112の右端部内に流入される構成になっている。 At the right end of the drive shaft 121, a fan 130 is integrally rotatable on the right side of the motor substrate 125, and the fan 130 is configured as a centrifugal fan. As a result, the downstream cooling air AR4 generated by the fan 130 flows to the rear side and flows into the right end portion of the controller housing portion 112.
制御部140は、コントローラハウジング部112内に収容されている。制御部140は、制御部140の外郭を構成するケース142を有している。ケース142には、制御基板(図示省略)が収容されており、モータ120が、制御基板に接続されている。ケース142は、前後方向を厚み方向とし、前側へ開放された略箱形状に形成されて、コントローラハウジング部112に固定されている。具体的には、ケース142の右端部が、コントローラハウジング部112の固定リブ112Aに固定され、ケース142の底壁が、コントローラハウジング部112の固定リブ112Bに固定され、ケース142の左端部が、コントローラハウジング部112の固定リブ112C及び固定リブ112Dに固定されている。 The control unit 140 is housed in the controller housing unit 112. The control unit 140 has a case 142 that constitutes the outer shell of the control unit 140. A control board (not shown) is housed in the case 142, and the motor 120 is connected to the control board. The case 142 has a thickness direction in the front-rear direction, is formed in a substantially box shape open to the front side, and is fixed to the controller housing portion 112. Specifically, the right end portion of the case 142 is fixed to the fixing rib 112A of the controller housing portion 112, the bottom wall of the case 142 is fixed to the fixing rib 112B of the controller housing portion 112, and the left end portion of the case 142 is fixed. It is fixed to the fixed rib 112C and the fixed rib 112D of the controller housing portion 112.
ケース142は、コントローラハウジング部112内を左右方向に延在されている。具体的には、ケース142の左端部が、コントローラハウジング部112の左壁の右側に隣接配置され、ケース142の右端部は、ファン130の後側に離間して配置されている。これにより、コントローラハウジング部112の内部が、制御部140のケース142によって前後方向に区画されている。そして、コントローラハウジング部112における制御部140の前側空間が第1空間116として構成され、第1空間116とハウジング110の外部とが吸気口114によって連通されている。一方、コントローラハウジング部112における制御部140の後側空間が第2空間117として構成され、第2空間117とハウジング110の外部とが排気口115によって連通されている。また、第2空間117の右端部は、前側へ開放されて、ファン130の後側に配置されている。 The case 142 extends in the left-right direction in the controller housing portion 112. Specifically, the left end portion of the case 142 is arranged adjacent to the right side of the left wall of the controller housing portion 112, and the right end portion of the case 142 is arranged apart from the rear side of the fan 130. As a result, the inside of the controller housing unit 112 is partitioned in the front-rear direction by the case 142 of the control unit 140. The space on the front side of the control unit 140 in the controller housing unit 112 is configured as the first space 116, and the first space 116 and the outside of the housing 110 are communicated with each other by the intake port 114. On the other hand, the space behind the control unit 140 in the controller housing unit 112 is configured as the second space 117, and the second space 117 and the outside of the housing 110 are communicated with each other by the exhaust port 115. Further, the right end portion of the second space 117 is opened to the front side and is arranged on the rear side of the fan 130.
そして、丸鋸100の作動時には、ファン130が、モータ120の駆動軸121と共に駆動軸121の軸回りに回転する。これにより、上流側冷却風AR3が、吸気口114からコントローラハウジング部112の第1空間116内に流入される。第1空間116内に流入された上流側冷却風AR3は、制御部140におけるケース142の開口側を冷却しながら、右側へ流れて固定リブ112Aに当たる。固定リブ112Aに当たった上流側冷却風AR3は、前側(ファン130側)へ流れる。そして、上流側冷却風AR3が、モータ基板125の板厚方向両側を流れて、ファン130に左側から流入される。 Then, when the circular saw 100 is operated, the fan 130 rotates around the drive shaft 121 together with the drive shaft 121 of the motor 120. As a result, the upstream cooling air AR3 flows into the first space 116 of the controller housing portion 112 from the intake port 114. The upstream cooling air AR3 flowing into the first space 116 flows to the right side while cooling the opening side of the case 142 in the control unit 140 and hits the fixed rib 112A. The upstream cooling air AR3 that hits the fixed rib 112A flows to the front side (fan 130 side). Then, the upstream cooling air AR3 flows on both sides of the motor substrate 125 in the plate thickness direction and flows into the fan 130 from the left side.
ファン130に流入された上流側冷却風AR3は、下流側冷却風AR4としてファン130から後側へ流出されて、下流側冷却風AR4が、コントローラハウジング部112の第2空間117の右端部内に流れる。第2空間117の右端部内に流れた下流側冷却風AR4は、コントローラハウジング部112の後壁に当たって、排気口115側へ流れる。すなわち、下流側冷却風AR4が、制御部140のケース142の底壁を冷却しながら、第2空間117内を左側へ流れる。そして、下流側冷却風AR4が、排気口115からコントローラハウジング部112の外部に排気される。 The upstream cooling air AR3 that has flowed into the fan 130 is discharged from the fan 130 to the rear side as the downstream cooling air AR4, and the downstream cooling air AR4 flows into the right end of the second space 117 of the controller housing portion 112. .. The downstream cooling air AR4 flowing in the right end portion of the second space 117 hits the rear wall of the controller housing portion 112 and flows to the exhaust port 115 side. That is, the downstream cooling air AR4 flows to the left in the second space 117 while cooling the bottom wall of the case 142 of the control unit 140. Then, the downstream cooling air AR4 is exhausted from the exhaust port 115 to the outside of the controller housing portion 112.
以上により、丸鋸100においても、ファン130の回転によって、ファン130に流入される上流側冷却風AR3と、ファン130から流出される下流側冷却風AR4と、ハウジング110内において生成し、上流側冷却風AR3(吸い込み風)及び下流側冷却風AR4(吐き出し風)によって制御部140を冷却する。したがって、丸鋸100においても、制御部140に対する冷却性能を向上させることができる。なお、図示はしていないが、下流側冷却風AR4にモータ120を冷却した後の空気が含まれていてもよい。 As described above, also in the round saw 100, the upstream cooling air AR3 flowing into the fan 130 and the downstream cooling air AR4 flowing out from the fan 130 generated in the housing 110 by the rotation of the fan 130 are generated on the upstream side. The control unit 140 is cooled by the cooling air AR3 (suction air) and the downstream cooling air AR4 (exhaust air). Therefore, even in the circular saw 100, the cooling performance for the control unit 140 can be improved. Although not shown, the downstream cooling air AR4 may contain air after cooling the motor 120.
また、丸鋸100においても、上流側冷却風AR3及び下流側冷却風AR4によって、制御部140を厚み方向両側から冷却する。これにより、制御部140に対する冷却性能を効果的に向上させることができる。本実施の形態においては、ケース142の開口側を上流側冷却風AR3が通る空間に位置させている。これは、丸鋸100が主として木材を加工する工具であり、木材の加工片が金属に比べて電子素子等に与える影響が小さいことと、ケース142から露出した電子素子を直接上流側冷却風AR3に晒して優先的に冷却することを考慮した結果である。 Further, also in the circular saw 100, the control unit 140 is cooled from both sides in the thickness direction by the upstream cooling air AR3 and the downstream cooling air AR4. Thereby, the cooling performance for the control unit 140 can be effectively improved. In the present embodiment, the opening side of the case 142 is positioned in the space through which the upstream cooling air AR3 passes. This is because the circular saw 100 is a tool that mainly processes wood, and the effect of the processed wood pieces on the electronic elements and the like is smaller than that of metal, and the electronic elements exposed from the case 142 are directly upstream cooling air AR3. This is the result of considering the preferential cooling by exposing to.
(作業機のバリエーション2) 図14を用いて、作業機としてのハンマドリル200に冷却構造Sを適用した例について説明する。ハンマドリル200は、被加工材に穴あけ加工等を施す工具である。なお、図14は、ハンマドリル200を右側から見た断面図である。そして、図14に示される矢印UP及び矢印FRは、ハンマドリル200の上側及び前側を示している。 (Variation 2 of the working machine) An example in which the cooling structure S is applied to the hammer drill 200 as the working machine will be described with reference to FIG. The hammer drill 200 is a tool for drilling or the like in a work material. Note that FIG. 14 is a cross-sectional view of the hammer drill 200 as viewed from the right side. The arrow UP and the arrow FR shown in FIG. 14 indicate the upper side and the front side of the hammer drill 200.
ハンマドリル200は、ハンマドリル200の外郭を構成するハウジング210と、ハウジング210内に収容されたモータ220と、モータ220の駆動力によって駆動し且つ先端工具が取付けられた駆動機構250と、モータ220を制御する制御部240と、を含んで構成されている。そして、モータ220の駆動時には、モータ220から駆動機構250に伝達された駆動力によって、先端工具から被加工材に回転力や打撃力を付与するようになっている。 The hammer drill 200 controls a housing 210 that constitutes the outer shell of the hammer drill 200, a motor 220 housed in the housing 210, a drive mechanism 250 that is driven by the driving force of the motor 220 and has a tip tool attached, and the motor 220. It is configured to include a control unit 240 and the like. When the motor 220 is driven, the driving force transmitted from the motor 220 to the drive mechanism 250 applies a rotational force and a striking force to the workpiece from the tip tool.
ハウジング210は、中空状に形成されると共に、横向きの略P字形状に形成されている。ハウジング210は、ハウジング210における下部の前端部を構成するモータハウジング部211と、モータハウジング部211の後側に配置されたコントローラハウジング部212と、を含んで構成されており、仕切壁213によって、モータハウジング部211の下部とコントローラハウジング部212の下部との間が仕切られている。 The housing 210 is formed in a hollow shape and is formed in a substantially P-shape in the horizontal direction. The housing 210 includes a motor housing portion 211 constituting a lower front end portion of the housing 210 and a controller housing portion 212 arranged on the rear side of the motor housing portion 211, and is configured by a partition wall 213. A partition is provided between the lower portion of the motor housing portion 211 and the lower portion of the controller housing portion 212.
コントローラハウジング部212の下壁の前部には、複数の吸気口214が貫通形成されており、コントローラハウジング部212の下壁の後部には、複数の排気口215が形成されている。 A plurality of intake ports 214 are formed through the front portion of the lower wall of the controller housing portion 212, and a plurality of exhaust ports 215 are formed in the rear portion of the lower wall of the controller housing portion 212.
モータ220は、上下方向を軸方向とする駆動軸221と、駆動軸221の径方向外側に配置されたロータ222と、ロータ222の径方向外側に配置されたステータ223と、を含んで構成されている。また、ロータ222及びステータ223の上側には、円環板状のモータ基板225が設けられており、モータ基板225がステータ223のステータホルダ224に固定されている。 The motor 220 includes a drive shaft 221 having an axial direction in the vertical direction, a rotor 222 arranged radially outside the drive shaft 221 and a stator 223 arranged radially outside the rotor 222. ing. Further, an annular plate-shaped motor substrate 225 is provided on the upper side of the rotor 222 and the stator 223, and the motor substrate 225 is fixed to the stator holder 224 of the stator 223.
駆動軸221の上端部には、モータ基板225の上側において、ファン230が一体回転可能に設けられており、ファン230は、遠心ファンとして構成されている。これにより、ファン230によって生成された下流側冷却風AR6が、ファン230から後側へ流れてコントローラハウジング部212の上端部内に流入される構成になっている。 A fan 230 is integrally rotatable on the upper end of the drive shaft 221 on the upper side of the motor substrate 225, and the fan 230 is configured as a centrifugal fan. As a result, the downstream cooling air AR6 generated by the fan 230 flows from the fan 230 to the rear side and flows into the upper end portion of the controller housing portion 212.
制御部240は、コントローラハウジング部212内に収容されている。制御部240は、制御部240の外郭を構成するケース242を有している。ケース242には、制御基板(図示省略)が収容されており、モータ220が、当該制御基板に接続されている。ケース242は、前後方向を厚み方向とし、後側へ開放された略箱形状に形成されて、コントローラハウジング部212に固定されている。 The control unit 240 is housed in the controller housing unit 212. The control unit 240 has a case 242 that constitutes the outer shell of the control unit 240. A control board (not shown) is housed in the case 242, and the motor 220 is connected to the control board. The case 242 has a thickness direction in the front-rear direction, is formed in a substantially box shape open to the rear side, and is fixed to the controller housing portion 212.
ケース242は、コントローラハウジング部212内を上下方向に延在されている。具体的には、ケース242の下端部が、コントローラハウジング部212の下壁の上側に近接配置され、ケース242の上端部は、仕切壁213よりも上側に突出している。これにより、コントローラハウジング部212の内部が、制御部240のケース242によって前後方向に区画されている。そして、コントローラハウジング部212における制御部240の前側空間が第1空間216として構成され、第1空間216とコントローラハウジング部212の外部とが吸気口214によって連通されている。一方、コントローラハウジング部212における制御部240の後側空間が第2空間217として構成され、第2空間217とコントローラハウジング部212の外部とが排気口215によって連通されている。 The case 242 extends in the vertical direction in the controller housing portion 212. Specifically, the lower end portion of the case 242 is arranged close to the upper side of the lower wall of the controller housing portion 212, and the upper end portion of the case 242 protrudes above the partition wall 213. As a result, the inside of the controller housing portion 212 is partitioned in the front-rear direction by the case 242 of the control portion 240. The space on the front side of the control unit 240 in the controller housing unit 212 is configured as the first space 216, and the first space 216 and the outside of the controller housing unit 212 are communicated with each other by the intake port 214. On the other hand, the space behind the control unit 240 in the controller housing unit 212 is configured as the second space 217, and the second space 217 and the outside of the controller housing unit 212 are communicated with each other by the exhaust port 215.
そして、ハンマドリル200の作動時には、ファン230が、モータ220の駆動軸221と共に駆動軸221の軸回りに回転する。これにより、上流側冷却風AR5が、吸気口214からコントローラハウジング部212の第1空間216内に流入される。第1空間216内に流入された上流側冷却風AR5は、制御部240のケース242の底壁を冷却しながら上側へ流れて、仕切壁213の上側からモータハウジング部211内に流入される。モータハウジング部211内に流入された上流側冷却風AR5は、モータ基板225と駆動軸221との間を上側に流れて、ファン230に流入される。 Then, when the hammer drill 200 is operated, the fan 230 rotates around the axis of the drive shaft 221 together with the drive shaft 221 of the motor 220. As a result, the upstream cooling air AR5 flows into the first space 216 of the controller housing portion 212 from the intake port 214. The upstream cooling air AR5 that has flowed into the first space 216 flows upward while cooling the bottom wall of the case 242 of the control unit 240, and flows into the motor housing unit 211 from the upper side of the partition wall 213. The upstream cooling air AR5 that has flowed into the motor housing portion 211 flows upward between the motor substrate 225 and the drive shaft 221 and flows into the fan 230.
ファン230に流入された上流側冷却風AR5は、下流側冷却風AR6としてファン230から後側へ流出されて、下流側冷却風AR6が、コントローラハウジング部212の第2空間217の上端部内に流れる。第2空間217の上端部に流れた下流側冷却風AR6は、コントローラハウジング部212の後壁に当たって、制御部240をケース242の開口側から冷却しながら、第2空間217内を下側へ流れる。そして、下流側冷却風AR6が、排気口215からコントローラハウジング部212の外部に排気される。 The upstream cooling air AR5 that has flowed into the fan 230 is discharged from the fan 230 to the rear side as the downstream cooling air AR6, and the downstream cooling air AR6 flows into the upper end of the second space 217 of the controller housing portion 212. .. The downstream cooling air AR6 flowing to the upper end of the second space 217 hits the rear wall of the controller housing portion 212 and flows downward in the second space 217 while cooling the control unit 240 from the opening side of the case 242. .. Then, the downstream cooling air AR6 is exhausted from the exhaust port 215 to the outside of the controller housing portion 212.
以上により、ハンマドリル200においても、ファン230の回転によって、ファン230に流入される上流側冷却風AR5と、ファン230から流出される下流側冷却風AR6と、ハウジング210内において生成し、上流側冷却風AR5及び下流側冷却風AR6によって制御部240を冷却する。したがって、ハンマドリル200においても、制御部240に対する冷却性能を向上させることができる。 As described above, also in the hammer drill 200, the upstream cooling air AR5 flowing into the fan 230 and the downstream cooling air AR6 flowing out from the fan 230 generated in the housing 210 by the rotation of the fan 230 are generated in the housing 210 to cool the upstream side. The control unit 240 is cooled by the wind AR5 and the downstream cooling wind AR6. Therefore, even in the hammer drill 200, the cooling performance for the control unit 240 can be improved.
また、ハンマドリル200においても、上流側冷却風AR5及び下流側冷却風AR6によって、制御部240を厚み方向両側から冷却する。これにより、制御部240に対する冷却性能を効果的に向上させることができる。 Further, also in the hammer drill 200, the control unit 240 is cooled from both sides in the thickness direction by the upstream cooling air AR5 and the downstream cooling air AR6. Thereby, the cooling performance for the control unit 240 can be effectively improved.
10…セーバソー(作業機)、12…ハウジング、15…分割ハウジング、16A…第1空間、16B…第2空間、17…ファンガイド(整流部)、17A…ガイド孔、17D…露出孔(露出部)、21…挟持部、22…吸気口、23…排気口、40…モータ、60…制御部(被冷却部)、61…ケース、61A…底壁、61D…開口部、62…制御基板、72…ファン、100…丸鋸(作業機)、110…ハウジング、114…吸気口、115…排気口、116…第1空間、117…第2空間、120…モータ、130…ファン、140…制御部(被冷却部)、142…ケース、200…ハンマドリル(作業機)、210…ハウジング、214…吸気口、215…排気口、216…第1空間、217…第2空間、220…モータ、230…ファン、240…制御部(被冷却部)、242…ケース、AR…冷却風、AR1…上流側冷却風、AR2…下流側冷却風、AR3…上流側冷却風、AR4…下流側冷却風、AR5…上流側冷却風、AR6…下流側冷却風  10 ... Saver saw (working machine), 12 ... Housing, 15 ... Split housing, 16A ... First space, 16B ... Second space, 17 ... Fan guide (cooling part), 17A ... Guide hole, 17D ... Exposed hole (exposed part) ), 21 ... Holding part, 22 ... Intake port, 23 ... Exhaust port, 40 ... Motor, 60 ... Control unit (cooled part), 61 ... Case, 61A ... Bottom wall, 61D ... Opening, 62 ... Control board, 72 ... fan, 100 ... round saw (working machine), 110 ... housing, 114 ... intake port, 115 ... exhaust port, 116 ... first space, 117 ... second space, 120 ... motor, 130 ... fan, 140 ... control Part (cooled part), 142 ... Case, 200 ... Hammadrill (working machine), 210 ... Housing, 214 ... Intake port, 215 ... Exhaust port, 216 ... First space, 217 ... Second space, 220 ... Motor, 230 ... Fan, 240 ... Control unit (cooled unit), 242 ... Case, AR ... Cooling air, AR1 ... Upstream cooling air, AR2 ... Downstream cooling air, AR3 ... Upstream cooling air, AR4 ... Downstream cooling air, AR5 ... upstream cooling air, AR6 ... downstream cooling air

Claims (14)

  1. 吸気口及び排気口を有するハウジングと、
    前記ハウジングに収容されたモータと、
    前記ハウジングに収容され、前記モータの駆動によって回転して前記ハウジングの内部において冷却風を発生させるファンと、
    前記ハウジングに収容され、作動時に発熱すると共に、前記冷却風によって冷却される被冷却部と、
    を備え、
    前記冷却風は、前記吸気口から前記ハウジングの内部に吸い込まれ且つ前記ファンに流入される上流側冷却風と、前記ファンから流出され且つ前記排気口から前記ハウジングの外部へ排気される下流側冷却風と、を含んでおり、
    前記被冷却部が、前記上流側冷却風及び前記下流側冷却風によって冷却される作業機。
    A housing with intake and exhaust ports,
    The motor housed in the housing and
    A fan housed in the housing and rotated by the drive of the motor to generate cooling air inside the housing.
    A part to be cooled, which is housed in the housing and generates heat during operation and is cooled by the cooling air.
    Equipped with
    The cooling air is the upstream cooling air that is sucked into the housing from the intake port and flows into the fan, and the downstream cooling air that is discharged from the fan and exhausted from the exhaust port to the outside of the housing. Including the wind,
    A working machine in which the cooled portion is cooled by the upstream cooling air and the downstream cooling air.
  2. 前記ハウジングは、
    前記上流側冷却風が通過する第1空間と、前記下流側冷却風が通過する第2空間と、を有しており、
    前記被冷却部が前記第1空間及び前記第2空間に露出されている請求項1に記載の作業機。
    The housing is
    It has a first space through which the upstream cooling air passes and a second space through which the downstream cooling air passes.
    The working machine according to claim 1, wherein the cooled portion is exposed in the first space and the second space.
  3. 前記ハウジングは、複数の分割ハウジングによって構成されており、
    前記分割ハウジングには、前記被冷却部を挟持する挟持部が形成されている請求項2に記載の作業機。
    The housing is composed of a plurality of split housings.
    The working machine according to claim 2, wherein a holding portion for holding the cooled portion is formed in the divided housing.
  4. 前記ハウジングには、前記第1空間と前記第2空間とを区画し且つ前記上流側冷却風を整流して前記第2空間側へガイドする整流部が設けられ、
    前記整流部には、前記被冷却部の一部を前記第2空間に露出させるための露出部が形成されている請求項2又は請求項3に記載の作業機。
    The housing is provided with a rectifying unit that separates the first space and the second space and rectifies the upstream cooling air to guide it to the second space side.
    The working machine according to claim 2 or 3, wherein an exposed portion for exposing a part of the cooled portion to the second space is formed in the rectifying portion.
  5. 前記第2空間には、前記ファンが配置されており、
    前記整流部には、前記第1空間と前記第2空間とを連通するガイド孔が形成され、前記ファンの軸方向において前記ファン及び前記ガイド孔が対向して配置されている請求項4に記載の作業機。
    The fan is arranged in the second space, and the fan is arranged.
    The fourth aspect of the present invention, wherein a guide hole communicating the first space and the second space is formed in the rectifying unit, and the fan and the guide hole are arranged so as to face each other in the axial direction of the fan. Working machine.
  6. 前記被冷却部が、前記モータを制御する制御部である請求項2~請求項5の何れか1項に記載の作業機。 The working machine according to any one of claims 2 to 5, wherein the cooled unit is a control unit that controls the motor.
  7. 前記制御部は、
    前記モータに接続された制御基板と、
    前記制御基板を収容し、厚み方向一方側が開口された箱状のケースと、
    を含んで構成されており、
    前記冷却風によって前記ケースの底壁を冷却する請求項6に記載の作業機。
    The control unit
    The control board connected to the motor and
    A box-shaped case that houses the control board and is open on one side in the thickness direction.
    Consists of, including
    The working machine according to claim 6, wherein the bottom wall of the case is cooled by the cooling air.
  8. 前記制御部は、前記第1空間に配置されており、
    前記吸気口が、前記ケースの底壁に対して前記ケースの厚み方向他方側に配置されている請求項7に記載の作業機。
    The control unit is arranged in the first space, and the control unit is arranged in the first space.
    The working machine according to claim 7, wherein the intake port is arranged on the other side of the case in the thickness direction with respect to the bottom wall of the case.
  9. 前記制御部が、前記第1空間と前記第2空間とを区画している請求項7に記載の作業機。 The working machine according to claim 7, wherein the control unit partitions the first space and the second space.
  10. 前記ケースの底壁が、前記第1空間に露出され、前記ケースの開口部が、前記第2空間側へ開口されている請求項9に記載の作業機。 The working machine according to claim 9, wherein the bottom wall of the case is exposed to the first space, and the opening of the case is opened to the second space side.
  11. 前記被冷却部の一部が、前記ファンの径方向外側に配置されており、
    前記ファンが遠心ファンとして構成されている請求項1~請求項10の何れか1項に記載の作業機。
    A part of the cooled portion is arranged on the radial outside of the fan.
    The working machine according to any one of claims 1 to 10, wherein the fan is configured as a centrifugal fan.
  12. 前記被冷却部が、前記モータである請求項2~請求項5の何れか1項に記載の作業機。 The working machine according to any one of claims 2 to 5, wherein the cooled portion is the motor.
  13. 吸気口及び排気口を有するハウジングと、
    前記ハウジングに収容されたモータと、
    前記ハウジングに収容され、前記モータの駆動によって回転して前記ハウジングの内部において冷却風を発生させるファンと、
    前記ハウジングに収容され、作動時に発熱すると共に、前記冷却風によって冷却される被冷却部と、
    を備え、
    前記被冷却部が、前記モータを冷却する前の空気と、前記モータを冷却したあとの空気の両方で冷却される作業機。
    A housing with intake and exhaust ports,
    The motor housed in the housing and
    A fan housed in the housing and rotated by the drive of the motor to generate cooling air inside the housing.
    A part to be cooled, which is housed in the housing and generates heat during operation and is cooled by the cooling air.
    Equipped with
    A working machine in which the cooled portion is cooled by both the air before cooling the motor and the air after cooling the motor.
  14. 前記被冷却部は、前記ファンから送風された前記モータを冷却したあとの空気で冷却される請求項13に記載の作業機。  The working machine according to claim 13, wherein the cooled portion is cooled by air after cooling the motor blown from the fan. The
PCT/JP2021/032424 2020-09-30 2021-09-03 Work machine WO2022070765A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022553711A JPWO2022070765A1 (en) 2020-09-30 2021-09-03

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-164694 2020-09-30
JP2020164694 2020-09-30

Publications (1)

Publication Number Publication Date
WO2022070765A1 true WO2022070765A1 (en) 2022-04-07

Family

ID=80950185

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/032424 WO2022070765A1 (en) 2020-09-30 2021-09-03 Work machine

Country Status (2)

Country Link
JP (1) JPWO2022070765A1 (en)
WO (1) WO2022070765A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007515147A (en) * 2003-12-19 2007-06-07 テルマ Electromagnetic brake with means for venting
WO2016067810A1 (en) * 2014-10-31 2016-05-06 日立工機株式会社 Electric work machine
JP2016068205A (en) * 2014-09-30 2016-05-09 日立工機株式会社 Electric power tool
JP2016124049A (en) * 2014-12-26 2016-07-11 日立工機株式会社 Manufacturing method for electric tool and control board
JP2018103318A (en) * 2016-12-27 2018-07-05 日立工機株式会社 Electric tool

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007515147A (en) * 2003-12-19 2007-06-07 テルマ Electromagnetic brake with means for venting
JP2016068205A (en) * 2014-09-30 2016-05-09 日立工機株式会社 Electric power tool
WO2016067810A1 (en) * 2014-10-31 2016-05-06 日立工機株式会社 Electric work machine
JP2016124049A (en) * 2014-12-26 2016-07-11 日立工機株式会社 Manufacturing method for electric tool and control board
JP2018103318A (en) * 2016-12-27 2018-07-05 日立工機株式会社 Electric tool

Also Published As

Publication number Publication date
JPWO2022070765A1 (en) 2022-04-07

Similar Documents

Publication Publication Date Title
EP2371493B1 (en) Power tool
US7308950B2 (en) Drilling and/or hammering tool
JP6655958B2 (en) Hammer drill or electric hammer, power tool
US10322518B2 (en) Chainsaw
WO2006022345A1 (en) Working tool
US10086529B2 (en) Power planer configured to restrain heat generation of control portion
JP5582337B2 (en) Electric tool
JP2005193343A (en) Power tool
US7207874B2 (en) Electric hand power tool
JP2020193580A (en) Blower
WO2022070765A1 (en) Work machine
WO2018180084A1 (en) Electric tool
CN212704725U (en) Power tool
JP2005193310A (en) Electric hammer
JP7315413B2 (en) Cutting machine
JP2018103318A (en) Electric tool
JP2018062053A (en) Power tool
JP6750686B2 (en) Power tools
WO2022044771A1 (en) Work machine
WO2023189401A1 (en) Work machine
JP5850279B2 (en) Electric tool
JP2021186927A (en) Work machine
US11999045B2 (en) Work tool
EP3944928B1 (en) Power tool
US20240058879A1 (en) Handheld band saw

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21875067

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022553711

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21875067

Country of ref document: EP

Kind code of ref document: A1