WO2022070604A1 - Camera module and on-board camera device - Google Patents

Camera module and on-board camera device Download PDF

Info

Publication number
WO2022070604A1
WO2022070604A1 PCT/JP2021/028998 JP2021028998W WO2022070604A1 WO 2022070604 A1 WO2022070604 A1 WO 2022070604A1 JP 2021028998 W JP2021028998 W JP 2021028998W WO 2022070604 A1 WO2022070604 A1 WO 2022070604A1
Authority
WO
WIPO (PCT)
Prior art keywords
camera module
holding member
groove
fixing material
outer peripheral
Prior art date
Application number
PCT/JP2021/028998
Other languages
French (fr)
Japanese (ja)
Inventor
晃寛 山口
秀則 篠原
賢一 竹内
武志 芳賀
Original Assignee
日立Astemo株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立Astemo株式会社 filed Critical 日立Astemo株式会社
Priority to DE112021002908.8T priority Critical patent/DE112021002908T5/en
Publication of WO2022070604A1 publication Critical patent/WO2022070604A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/02Bodies
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B30/00Camera modules comprising integrated lens units and imaging units, specially adapted for being embedded in other devices, e.g. mobile phones or vehicles
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/52Elements optimising image sensor operation, e.g. for electromagnetic interference [EMI] protection or temperature control by heat transfer or cooling elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof

Definitions

  • the present invention relates to a camera module and an in-vehicle camera device.
  • Camera modules have come to be installed in various devices such as in-vehicle camera devices. Such a camera module needs to be accurately fixed by maintaining the positional relationship between the optical lens and the image sensor so that the shooting quality is not impaired.
  • Patent Document 1 describes a pedestal mount for holding a lens, in which a plurality of grooves are formed on the outer peripheral rib fixed to the FPC substrate in a direction perpendicular to the longitudinal direction thereof, and the pedestal mount and the FPC substrate are adhered to each other. It is described that the area is increased to increase the adhesive strength.
  • the camera module according to the present invention comprises a holding member that holds an optical lens inside, a substrate on which an image sensor is arranged, and a fixing material containing a photocuring agent that fixes the bottom surface side of the holding member and the substrate.
  • a vertically long groove is formed on the outer peripheral surface of the holding member on the bottom surface side from the bottom surface side to the tip end side of the holding member.
  • the positional relationship between the optical lens and the image sensor can be maintained and fixed with high accuracy.
  • FIG. It is a perspective view of a camera module. It is a vertical sectional view of a camera module including a housing. It is a figure which shows the manufacturing process of a camera module. It is a vertical sectional view of the camera module in the comparative example 1.
  • FIG. It is a vertical sectional view of the camera module in 1st Embodiment. It is a vertical sectional view of the camera module in 2nd Embodiment. It is a vertical sectional view of the camera module in 2nd Embodiment, and is the figure explaining the curing shrinkage force of a fixing material. It is a vertical sectional view of the camera module in the comparative example 2.
  • FIG. It is sectional drawing of the camera module in 3rd Embodiment. It is a perspective view of a camera device.
  • FIG. 1 is a perspective view of the camera module 1000.
  • the camera module 1000 includes a holding member 1120 that internally holds an optical lens 1110 (see FIG. 2 described later), a substrate 1140 on which an image pickup element 1130 (see FIG. 2 described later) is arranged, and a bottom surface side and a substrate of the holding member 1120. It is provided with a fixing material 1150 for fixing the 1140.
  • a plurality of vertically long grooves 1125 are formed from the bottom surface side of the holding member 1120 toward the tip end side.
  • the outer peripheral surface 1124 on which the groove 1125 is formed is the opposite surface of the holding member 1120.
  • the groove 1125 is formed on each of the two facing outer peripheral surfaces 1124 of the holding member 1120, but the groove 1125 is formed on each of the four outer peripheral surfaces 1124 of the holding member 1120. It may be formed.
  • the holding member 1120 has a cubic shape on the bottom surface side and a cylindrical shape on the tip end side, and forms a continuous space inside.
  • the bottom surface side of the holding member 1120 will be described with an example of a cubic shape, it may have a cylindrical shape.
  • the grooves 1125 are formed on two outer peripheral surfaces located at 180 degrees of the cylinder or four outer peripheral surfaces located at 90 degrees of the cylinder.
  • the fixing material 1150 contains a photocuring agent and a thermosetting agent, is applied between the bottom surface side of the holding member 1120 and the substrate 1140, and penetrates into the groove 1125 to position the holding member 1120 and the substrate 1140. , Cured by light irradiation treatment and heat treatment.
  • the fixing material 1150 may contain at least a photocuring agent and may be cured by a light irradiation treatment regardless of the heat treatment.
  • a housing 2000 is mounted on the camera module 1000 from the direction of arrow A to protect each member by covering each member of the camera module 1000, and the camera module 1000 is fixed to a device (not shown).
  • FIG. 2 is a vertical sectional view of the camera module 1000 including the housing 2000.
  • the holding member 1120 fixes and holds the optical lens 1110 inside the cylindrical shape.
  • the image pickup device 1130 is arranged on the substrate 1140.
  • the cubic bottom surface 1121 of the holding member 1120 is in contact with the fixing material 1150 and is fixed to the substrate 1140 by the fixing material 1150.
  • the holding member 1120 and the substrate 1140 are fixed in a state where the optical axis P of the optical lens 1110 is substantially perpendicular to the image pickup surface of the image pickup element 1130 and the focus of the optical lens 1110 is substantially aligned with the image pickup element 1130.
  • the lens is a vertical sectional view of the camera module 1000 including the housing 2000.
  • a groove 1125 is formed on the outer peripheral surface 1124 on the bottom surface side of the holding member 1120.
  • the groove 1125 is opened to the bottom surface side of the holding member 1120, and is formed vertically along the optical axis P of the optical lens 1110.
  • the fixing material 1150 is a material containing a photocuring agent that is activated by irradiation with light energy to induce a curing reaction, and is applied onto the substrate 1140 in a melted state at the time of production. At this time, the fixing material 1150 in the melted state permeates into the inside of the groove 1125 due to the capillary phenomenon, and permeates to the tip side along the groove 1125. Then, the fixing material 1150 is cured by irradiating light energy from the outside world in a state where the fixing positions of the holding member 1120 and the substrate 1140 are fixed, and the holding member 1120 and the substrate 1140 are fixed.
  • the housing 2000 is mounted on the camera module 1000 to which the holding member 1120 and the substrate 1140 are fixed.
  • the camera module 1000 forms an image of the optical information from the optical lens 1110 on the image pickup device 1130 to obtain an image.
  • FIG. 3 is a diagram showing a manufacturing process of the camera module 1000.
  • FIG. 3A shows a coating process of the fixing material 1150
  • FIG. 3B shows a curing process of the fixing material 1150.
  • the fixing material 1150 in a melted state is placed on the substrate 1140 in accordance with the position of the bottom surface 1121 of the holding member 1120 around the image pickup element 1130. Apply.
  • the holding member 1120 is fixed to the substrate 1140.
  • the positional relationship between the optical lens 110 and the image pickup element 1130 is adjusted in accordance with the optical axis P, and the fixing material 1150 in a molten state is irradiated with light at the adjusted position to solidify the fixing material 1150. That is, an active alignment process is used.
  • FIG. 4 is a vertical sectional view of the camera module 1000'in Comparative Example 1, and shows an example in the case where the present embodiment is not applied.
  • Comparative Example 1 shown in FIG. 4 no groove is formed on the outer peripheral surface 1124 on the bottom surface side of the holding member 1120. Therefore, the fixing material 1150 penetrates only in the vicinity of the bottom surface 1121 of the holding member 1120. That is, the fixing material 1150a is infiltrated around the outside of the holding member 1120, and the fixing material 1150b is infiltrated around the inside (image sensor side) of the holding member 1120 at substantially the same height.
  • the camera module 1000' is imaged with the optical lens 1110 so that the optical axis P of the optical lens 1110 is perpendicular to the image pickup surface of the image pickup element 1130 and the focal position of the optical lens 1110 coincides with the image pickup surface of the image pickup element 1130.
  • the positional relationship of the elements 1130 is ideal.
  • the positional relationship between the optical lens 1110 and the image sensor 1130 is adjusted at the time of manufacturing the camera module 1000', and the fixing material 1150 that was in a molten state at the adjusted position is solidified, so-called active.
  • the desired optical performance is obtained by using the alignment process.
  • the fixing material 1150 In this active alignment process, the fixing material 1150 must be irradiated with light from the outside world with the optical lens 1110 and the image sensor 1130 already assembled, but the light can be irradiated to the outside of the holding member 1120. Since it is only the fixing material 1150a and the fixing material 1150b inside the holding member 1120 (on the image sensor side) is shaded by light, the fixing material 1150b becomes uncured and sufficient adhesive strength cannot be obtained. There is sex.
  • FIG. 5 is a vertical sectional view of the camera module 1000 according to the present embodiment.
  • the groove 1125 is formed on the outer peripheral surface 1124 on the bottom surface side of the holding member 1120.
  • the groove 1125 is open to the bottom surface side of the holding member 1120 and is formed vertically along the optical axis P of the optical lens 1110.
  • the groove 1125 Since the bottom surface side of the holding member 1120 is open in the groove 1125, there is an effect that the fixing material 1150 in the melted state easily penetrates into the groove 1125 due to the capillary phenomenon. In the groove 1125, even if the bottom surface side of the holding member 1120 is not open, it is sufficient that the fixing material 1150 in the molten state can penetrate into the groove 1125 by the capillary phenomenon. Further, since the groove 1125 is formed vertically along the optical axis P of the optical lens 1110 toward the tip end side of the holding member 1120, the groove 1125 is formed on the optical axis P of the optical lens 1110 due to the curing shrinkage force of the fixing material 1150. It has the effect of reducing the impact. The groove 1125 does not necessarily have to be along the optical axis P of the optical lens 1110, but may be formed vertically toward the tip end side of the holding member 1120.
  • the fixing material 1150 is sucked into the groove 1125 by the capillary phenomenon and permeates to the tip side along the groove 1125.
  • the area in contact with the outer peripheral surface 1124 of the holding member 1120 is increased. Therefore, the fixing material 1150a that has penetrated into the groove 1125 exists at a position that does not become a shadow when irradiated with light from the outside world, and can be easily cured in a wide range by the light irradiation treatment, and has adhesive strength. Is improved. Further, since the fixing material 1150a has a large area in contact with the outer peripheral surface 1124 of the holding member 1120, sufficient adhesive strength can be obtained even with a short-time light irradiation treatment.
  • the fixing material 1150b applied and existing inside the holding member 1120 inevitably has a higher concentration of the photocuring agent than the fixing material 1150a applied and existing on the outside of the holding member 1120. Will be higher. Sufficient adhesive strength can be obtained by the fixing material 1150a on the outer side of the holding member 1120.
  • the fixing material 1150 contains a photocuring agent and a thermosetting agent. Although the fixing material 1150a is cured by the light irradiation treatment, the fixing material 1150b inside the holding member 1120 (on the image sensor side) may not be sufficiently exposed to light and may be in an uncured state. Therefore, the camera module 1000 is subjected to a heat treatment in the active alignment process to cure the fixing material 1150 containing a thermosetting agent and further improve the adhesive strength.
  • the grooves 1125 are provided on one of the outer peripheral surfaces 1124 facing the holding member 1120 and the other outer peripheral surface 1124 facing the holding member 1120, the curing shrinkage force of the fixing material 1150 acts evenly on both sides. Therefore, it is possible to prevent the optical axis P of the optical lens 1110 from shifting and improve the accuracy of the camera module 1000.
  • the fixing material 1150 when the camera module 1000 is manufactured by the active alignment process, the fixing material 1150 can be efficiently cured by irradiation with light from the outside, and the strength and accuracy of the camera module 1000 are increased. Can contribute to.
  • FIG. 6 is a vertical sectional view of the camera module 1001 in the present embodiment.
  • the depth of the groove 1125 is formed to be shallower on the tip end side than on the bottom surface side of the holding member 1120.
  • Other configurations are the same as those of FIGS. 1, 2, 3, and 5 described in the first embodiment, and the same parts are designated by the same reference numerals and the description thereof will be omitted.
  • the groove 1125 formed on the outer peripheral surface 1124 on the bottom surface side of the holding member 1120 has a shallower depth D2 on the tip side than the depth D1 on the bottom surface side.
  • the curing shrinkage force of the fixing material 1150 in this case will be described with reference to FIG. 7.
  • FIG. 7 is a vertical cross-sectional view of the camera module 1001 in the present embodiment, which is the same as FIG. 6, but is a diagram for explaining the curing shrinkage force of the fixing material 1150.
  • the curing shrinkage forces Q1 and Q2 of the fixing material 1150 are schematically indicated by arrows.
  • the curing shrinkage force Q1 of the fixing material 1150 is the curing shrinkage force on one facing outer peripheral surface 1124 of the holding member 1120 in which the groove 1125 is formed
  • the curing shrinkage force Q2 is the curing shrinkage force Q2 of the opposite outer peripheral surface of the holding member 1120.
  • the curing shrinkage force in 1124 is shown.
  • the fixing material 1150 permeates less to the tip side than the bottom surface side of the groove 1125, and the amount of the fixing material 1150 is The tip side is less than the bottom side of the groove 1125. Therefore, the curing shrinkage forces Q1 and Q2 of the fixing material 1150 are smaller on the tip side than on the bottom side of the groove 1125. As described below with reference to Comparative Example 2 of FIG. 8, when the amount of the fixing material 1150 of the groove 1125 on the tip side is large, the light of the optical lens 1110 is the moment due to the imbalance of the curing shrinkage force on the facing surface.
  • the amount of the fixing material 1150 in the groove 1125 on the tip side can be reduced, so that even if the coating amount of the fixing material 1150 varies, the amount of variation of the fixing material 1150 in the groove 1125 on the tip side varies. Since it becomes smaller, the deviation of the optical axis P can be suppressed.
  • FIG. 8 is a vertical sectional view of the camera module 1000 in Comparative Example 2, and corresponds to the first embodiment shown in FIG.
  • the principle of the deviation of the optical axis P will be described with reference to Comparative Example 2 shown in FIG.
  • the depth of the groove 1125 is the same on the bottom surface side and the tip end side of the holding member 1120. Even in this case, there is no variation in the coating amount of the fixing material 1150, and the amount of the fixing material 1150 in the groove 1125 formed on the one facing outer peripheral surface 1124 of the holding member 1120 and the opposite outer peripheral surface of the holding member 1120. If the amount of the fixing material 1150 in the groove 1125 formed on the surface 1124 is the same, the optical axis P does not shift.
  • the fixing material 1150 having the same height and the same thickness permeates the groove 1125 on the outer peripheral surface 1124 facing the image sensor 1130, the fixing material 1150 is cured even if it shrinks during curing. Since the moments due to the contraction force are balanced, the optical axis P does not shift between the optical lens 1110 and the image sensor 1130.
  • the amount of the fixing material 1150 penetrating into the groove 1125 on the outer peripheral surface 1124 which opposes the image pickup element 1130 is different due to the variation in the coating amount of the fixing material 1150 and the dimensional variation between the optical lens 1110 and the image pickup element 1130. A condition can occur.
  • the curing shrinkage force Q1'in one outer peripheral surface 1124 is the other outer peripheral surface. It is larger than the curing shrinkage force Q2'in 1124.
  • the optical axis P shifts to one outer peripheral surface 1124 side to become the optical axis P', and the optical axis P shifts.
  • the hardening shrinkage force Q1'on the tip side becomes larger than the hardening shrinkage force Q2'on the tip side, and the hardening shrinkage force on the facing outer peripheral surface 1124 is not sufficient.
  • the moment due to equilibrium causes the optical axis P of the optical lens 1110 to shift.
  • the amount of the fixing material 1150 in the groove 1125 on the tip side can be reduced, so that the amount of variation of the fixing material 1150 in the groove 1125 on the tip side becomes small. , The deviation of the optical axis P can be suppressed.
  • FIG. 9 is a cross-sectional view of the camera module 1000.
  • This cross-sectional view is a cross-sectional view of the bottom surface side of the holding member 1120 in which the groove 1125 is formed.
  • the groove 1125 is formed so that the width W2 on the bottom surface side of the groove 1125 is narrower than the width W1 on the opening side of the groove 1125.
  • the height of suction of the liquid due to the capillary phenomenon increases as the width of the groove 1125 becomes narrower, but the width of the groove 1125 becomes narrower in a highly viscous liquid such as the fixing material 1150 before curing. If it is too much, the flow resistance due to the shearing force is large and the capillary phenomenon does not occur. Therefore, for example, when the entire width of the groove 1125 is narrowed, the amount of permeation of the fixing material 1150 into the inside of the groove 1125 cannot be increased.
  • the fixing material 1150 can flow into the inside of the groove 1125, and the width W2 on the bottom surface side of the groove 1125 is narrowed. Therefore, suction of the fixing material 1150 due to the capillary phenomenon can be promoted. Therefore, the suction force of the fixing material 1150 allows the fixing material 1150 to penetrate high toward the tip side in the groove 1125, so that the camera module 1000 can be made stronger and more accurate.
  • this embodiment can be applied to the first embodiment and the second embodiment.
  • FIG. 10 is a perspective view of the camera device 3000.
  • the camera device 3000 is configured by arranging two camera modules 1011 and 1022 side by side.
  • the first camera module 1011 and the second camera module 1022 have the configurations described in the first to third embodiments, but when they are installed side by side as the camera device 3000, the camera modules have the same structure. Is used.
  • the first camera module 1011 and the second camera module 1022 are installed side by side at a predetermined interval R, and the optical axes P1 and P2 are installed so as to be substantially parallel to each other, and the housing 2001 is mounted.
  • the camera device 3000 measures the distance to the subject by, for example, comparing the image information acquired from the first camera module 1011 and the second camera module 1022.
  • the groove 1125 is the outer peripheral surface 1124 of the first camera module 1011.
  • the groove 1125 is formed on two outer peripheral surfaces 1124 of the outer peripheral surface 1124 of the second camera module 1022, which are outer peripheral surfaces 1124 substantially parallel to the baseline length direction and which are opposite outer peripheral surfaces 1124. It is formed.
  • the first camera module 1011 and the second camera module 1022 are fixed to the housing 2001 in a state where the optical axes of the first camera module 1011 and the second camera module 1022 are substantially parallel to each other, and the first camera module 1011 and the second camera module 1011 are fixed to the housing 2001.
  • the holding member 1120 of the camera module 1022 has an outer peripheral surface 1124 substantially parallel to the baseline length direction X along the direction in which the first camera module 1011 and the second camera module 1022 are arranged, and the groove 1125 is an outer peripheral surface. It is formed at 1124.
  • parallax matching As a method of calculating the distance to the subject based on the images obtained from the two camera modules 1011 and 1022, a method called parallax matching is generally used.
  • This is a distance measuring method based on the principle of triangulation, in which the parallax in the baseline length direction X of two images is inversely proportional to the distance to the subject.
  • a distance of several tens of meters from the subject is converted into a parallax of several micrometers and detected. Therefore, in order to improve the distance measurement accuracy, it is necessary not to cause an optical axis shift especially in the baseline long direction X. is important.
  • the optical axis shift is likely to occur due to the shrinkage of the fixing material 1150 during curing.
  • the deviation amount of the baseline length direction X comparing the optical axes P1 and P2 of the first camera module 1011 and the second camera module 1022 has a more adverse effect on the performance, so that the influence is small in the baseline length direction.
  • the groove 1125 is provided only on the outer peripheral surface 1124 substantially parallel to X.
  • the possibility of optical axis deviation is mainly the optical axis deviation in the direction perpendicular to the baseline length direction X, and the optical axis deviation in the baseline length direction X is unlikely to occur. It is possible to suppress the deterioration of the distance measurement accuracy due to the above.
  • the camera module is fixed including a photocuring agent that fixes the holding member 1120 that holds the optical lens 1110 inside, the substrate 1140 on which the image pickup element 1130 is arranged, and the bottom surface side of the holding member 1120 and the substrate 1140.
  • a vertically long groove 1125 is formed on the outer peripheral surface 1124 on the bottom surface side of the holding member 1120 with the material 1150 from the bottom surface side to the tip end side of the holding member 1120.
  • the present invention is not limited to the above-described embodiment, and other embodiments considered within the scope of the technical idea of the present invention are also included within the scope of the present invention as long as the features of the present invention are not impaired. .. Further, the configuration may be a combination of the above-described embodiments.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Lens Barrels (AREA)
  • Studio Devices (AREA)
  • Camera Bodies And Camera Details Or Accessories (AREA)

Abstract

This camera module comprises: a holding member in the interior of which an optical lens is held; a substrate on which an imaging element is disposed; and a fixing material that contains a photocuring agent and that fixes the bottom surface of the holding member and the substrate. On the outer circumferential surface of the bottom surface of the holding member, formed is a groove that is vertically long from the bottom surface of the holding member towards the distal edge thereof.

Description

カメラモジュールおよび車載カメラ装置Camera module and in-vehicle camera device
 本発明は、カメラモジュールおよび車載カメラ装置に関する。 The present invention relates to a camera module and an in-vehicle camera device.
 カメラモジュールは車載カメラ装置など様々な機器に搭載されるようになった。このようなカメラモジュールは、撮影品質が損なわれないように、光学レンズと撮像素子との位置関係を保って正確に固定する必要がある。 Camera modules have come to be installed in various devices such as in-vehicle camera devices. Such a camera module needs to be accurately fixed by maintaining the positional relationship between the optical lens and the image sensor so that the shooting quality is not impaired.
 特許文献1には、レンズを保持する台座マウントであって、FPC基板に固着される外周リブにその長手方向に対して直角な方向の溝部を複数形成し、台座マウントとFPC基板の間の接着面積を増加させて、接着強度を高めることが記載されている。 Patent Document 1 describes a pedestal mount for holding a lens, in which a plurality of grooves are formed on the outer peripheral rib fixed to the FPC substrate in a direction perpendicular to the longitudinal direction thereof, and the pedestal mount and the FPC substrate are adhered to each other. It is described that the area is increased to increase the adhesive strength.
日本国特開2007-300428号公報Japanese Patent Application Laid-Open No. 2007-300248
 特許文献1に記載された構成では、光学レンズと撮像素子との位置関係を高精度に保って固定することができない。 With the configuration described in Patent Document 1, the positional relationship between the optical lens and the image sensor cannot be maintained and fixed with high accuracy.
 本発明によるカメラモジュールは、光学レンズを内部に保持する保持部材と、撮像素子を配置した基板と、前記保持部材の底面側と前記基板とを固定する、光硬化剤を含む固定材と、を備え、前記保持部材の前記底面側の外周面に、前記保持部材の前記底面側から先端側に向かう縦長の溝を形成した。 The camera module according to the present invention comprises a holding member that holds an optical lens inside, a substrate on which an image sensor is arranged, and a fixing material containing a photocuring agent that fixes the bottom surface side of the holding member and the substrate. A vertically long groove is formed on the outer peripheral surface of the holding member on the bottom surface side from the bottom surface side to the tip end side of the holding member.
 本発明によれば、光学レンズと撮像素子との位置関係を高精度に保って固定することができる。 According to the present invention, the positional relationship between the optical lens and the image sensor can be maintained and fixed with high accuracy.
カメラモジュールの斜視図である。It is a perspective view of a camera module. 筐体を含むカメラモジュールの縦断面図である。It is a vertical sectional view of a camera module including a housing. カメラモジュールの製造工程を示す図である。It is a figure which shows the manufacturing process of a camera module. 比較例1におけるカメラモジュールの縦断面図である。It is a vertical sectional view of the camera module in the comparative example 1. FIG. 第1の実施形態におけるカメラモジュールの縦断面図である。It is a vertical sectional view of the camera module in 1st Embodiment. 第2の実施形態におけるカメラモジュールの縦断面図である。It is a vertical sectional view of the camera module in 2nd Embodiment. 第2の実施形態におけるカメラモジュールの縦断面図であり、固定材の硬化収縮力を説明する図である。It is a vertical sectional view of the camera module in 2nd Embodiment, and is the figure explaining the curing shrinkage force of a fixing material. 比較例2におけるカメラモジュールの縦断面図である。It is a vertical sectional view of the camera module in the comparative example 2. FIG. 第3の実施形態におけるカメラモジュールの横断面図である。It is sectional drawing of the camera module in 3rd Embodiment. カメラ装置の斜視図である。It is a perspective view of a camera device.
 以下、図面を参照して本発明の実施形態を説明する。以下の記載および図面は、本発明を説明するための例示であって、説明の明確化のため、適宜、省略および簡略化がなされている。本発明は、他の種々の形態でも実施する事が可能である。特に限定しない限り、各構成要素は単数でも複数でも構わない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The following description and drawings are examples for explaining the present invention, and are appropriately omitted and simplified for the sake of clarification of the description. The present invention can also be implemented in various other forms. Unless otherwise specified, each component may be singular or plural.
 図面において示す各構成要素の位置、大きさ、形状、範囲などは、発明の理解を容易にするため、実際の位置、大きさ、形状、範囲などを表していない場合がある。このため、本発明は、必ずしも、図面に開示された位置、大きさ、形状、範囲などに限定されない。 The position, size, shape, range, etc. of each component shown in the drawings may not represent the actual position, size, shape, range, etc. in order to facilitate understanding of the invention. Therefore, the present invention is not necessarily limited to the position, size, shape, range and the like disclosed in the drawings.
 同一あるいは同様な機能を有する構成要素が複数ある場合には、同一の符号に異なる添字を付して説明する場合がある。ただし、これらの複数の構成要素を区別する必要がない場合には、添字を省略して説明する場合がある。 If there are multiple components with the same or similar functions, the same code may be described with different subscripts. However, if it is not necessary to distinguish between these multiple components, the subscripts may be omitted for explanation.
[第1の実施形態]
 図1は、カメラモジュール1000の斜視図である。
 カメラモジュール1000は、光学レンズ1110(後述の図2参照)を内部に保持する保持部材1120と、撮像素子1130(後述の図2参照)を配置した基板1140と、保持部材1120の底面側と基板1140とを固定する固定材1150とを備える。
[First Embodiment]
FIG. 1 is a perspective view of the camera module 1000.
The camera module 1000 includes a holding member 1120 that internally holds an optical lens 1110 (see FIG. 2 described later), a substrate 1140 on which an image pickup element 1130 (see FIG. 2 described later) is arranged, and a bottom surface side and a substrate of the holding member 1120. It is provided with a fixing material 1150 for fixing the 1140.
 保持部材1120の底面側の外周面1124には、保持部材1120の底面側から先端側に向かう縦長の複数本の溝1125が形成されている。溝1125が形成される外周面1124は保持部材1120の対向する面である。なお、本実施形態では保持部材1120の対向する外周面1124である2面にそれぞれ溝1125を形成する例で説明するが、保持部材1120の全ての外周面1124である4面にそれぞれ溝1125を形成してもよい。保持部材1120は、底面側は立方体形状であり、先端側は円筒形状であり、内部は連続した空間を形成している。なお、保持部材1120の底面側は立方体形状の例で説明するが、円筒形状であってもよい。円筒形状の場合は、溝1125は円筒の180度に位置する2か所の外周面、もしくは円筒の90度に位置する4か所の外周面に形成する。 On the outer peripheral surface 1124 on the bottom surface side of the holding member 1120, a plurality of vertically long grooves 1125 are formed from the bottom surface side of the holding member 1120 toward the tip end side. The outer peripheral surface 1124 on which the groove 1125 is formed is the opposite surface of the holding member 1120. In this embodiment, the groove 1125 is formed on each of the two facing outer peripheral surfaces 1124 of the holding member 1120, but the groove 1125 is formed on each of the four outer peripheral surfaces 1124 of the holding member 1120. It may be formed. The holding member 1120 has a cubic shape on the bottom surface side and a cylindrical shape on the tip end side, and forms a continuous space inside. Although the bottom surface side of the holding member 1120 will be described with an example of a cubic shape, it may have a cylindrical shape. In the case of a cylindrical shape, the grooves 1125 are formed on two outer peripheral surfaces located at 180 degrees of the cylinder or four outer peripheral surfaces located at 90 degrees of the cylinder.
 固定材1150は、光硬化剤および熱硬化剤を含有し、保持部材1120の底面側と基板1140との間に塗布されると共に溝1125に浸透され、保持部材1120と基板1140とを位置決めした後に、光照射処理および加熱処理により硬化される。なお、固定材1150は、少なくとも光硬化剤を含有し、加熱処理によらず光照射処理によって硬化させてもよい。 The fixing material 1150 contains a photocuring agent and a thermosetting agent, is applied between the bottom surface side of the holding member 1120 and the substrate 1140, and penetrates into the groove 1125 to position the holding member 1120 and the substrate 1140. , Cured by light irradiation treatment and heat treatment. The fixing material 1150 may contain at least a photocuring agent and may be cured by a light irradiation treatment regardless of the heat treatment.
 カメラモジュール1000には、筐体2000が矢印A方向より装着され、カメラモジュール1000の各部材を覆うことにより各部材を保護すると共に、カメラモジュール1000を図示省略した機器に固定する。 A housing 2000 is mounted on the camera module 1000 from the direction of arrow A to protect each member by covering each member of the camera module 1000, and the camera module 1000 is fixed to a device (not shown).
 図2は、筐体2000を含むカメラモジュール1000の縦断面図である。
 保持部材1120は、円筒形状の内部に光学レンズ1110を固定し、これを保持する。基板1140上には撮像素子1130が配置される。保持部材1120の立方形状の底面1121は、固定材1150と接し、固定材1150により基板1140に固定される。保持部材1120と基板1140との固定は、光学レンズ1110の光軸Pが、撮像素子1130の撮像面に対して略垂直で、光学レンズ1110の焦点が撮像素子1130に概ね一致した状態で固定される。
FIG. 2 is a vertical sectional view of the camera module 1000 including the housing 2000.
The holding member 1120 fixes and holds the optical lens 1110 inside the cylindrical shape. The image pickup device 1130 is arranged on the substrate 1140. The cubic bottom surface 1121 of the holding member 1120 is in contact with the fixing material 1150 and is fixed to the substrate 1140 by the fixing material 1150. The holding member 1120 and the substrate 1140 are fixed in a state where the optical axis P of the optical lens 1110 is substantially perpendicular to the image pickup surface of the image pickup element 1130 and the focus of the optical lens 1110 is substantially aligned with the image pickup element 1130. The lens.
 保持部材1120の底面側の外周面1124には、溝1125が形成される。この溝1125は、保持部材1120の底面側に開放し、光学レンズ1110の光軸Pに沿って縦長に形成される。 A groove 1125 is formed on the outer peripheral surface 1124 on the bottom surface side of the holding member 1120. The groove 1125 is opened to the bottom surface side of the holding member 1120, and is formed vertically along the optical axis P of the optical lens 1110.
 固定材1150は、光エネルギーの照射によって活性化して硬化反応を誘発する光硬化剤を含む材料であり、製造時には融液状態で基板1140上に塗布される。この時、融液状態の固定材1150は、毛細管現象により溝1125の内部に浸透し、溝1125に沿って先端側へ浸透する。そして、保持部材1120と基板1140との固定位置が定まった状態で外界から光エネルギーを照射することで固定材1150を硬化し、保持部材1120と基板1140とを固定する。 The fixing material 1150 is a material containing a photocuring agent that is activated by irradiation with light energy to induce a curing reaction, and is applied onto the substrate 1140 in a melted state at the time of production. At this time, the fixing material 1150 in the melted state permeates into the inside of the groove 1125 due to the capillary phenomenon, and permeates to the tip side along the groove 1125. Then, the fixing material 1150 is cured by irradiating light energy from the outside world in a state where the fixing positions of the holding member 1120 and the substrate 1140 are fixed, and the holding member 1120 and the substrate 1140 are fixed.
 そして、保持部材1120と基板1140とを固定したカメラモジュール1000に筐体2000を装着する。これにより、カメラモジュール1000は、光学レンズ1110からの光学情報を撮像素子1130へ結像して画像を得る。 Then, the housing 2000 is mounted on the camera module 1000 to which the holding member 1120 and the substrate 1140 are fixed. As a result, the camera module 1000 forms an image of the optical information from the optical lens 1110 on the image pickup device 1130 to obtain an image.
 図3は、カメラモジュール1000の製造工程を示す図である。図3(A)は、固定材1150の塗布工程を、図3(B)は、固定材1150の硬化工程を示す。
 図3(A)に示すように、固定材1150の塗布工程では、撮像素子1130の周囲であって、保持部材1120の底面1121の位置に合わせて基板1140上に融液状態の固定材1150を塗布する。
FIG. 3 is a diagram showing a manufacturing process of the camera module 1000. FIG. 3A shows a coating process of the fixing material 1150, and FIG. 3B shows a curing process of the fixing material 1150.
As shown in FIG. 3A, in the coating process of the fixing material 1150, the fixing material 1150 in a melted state is placed on the substrate 1140 in accordance with the position of the bottom surface 1121 of the holding member 1120 around the image pickup element 1130. Apply.
 次に、図3(B)に示す、固定材1150の硬化工程では、保持部材1120を基板1140に固定する。ここで、光学レンズ110と撮像素子1130の位置関係を光軸Pに合わせて調整し、調整した位置において融液状態である固定材1150に光照射して、固定材1150を固化する。すなわちアクティブアライメントプロセスを用いる。 Next, in the curing step of the fixing material 1150 shown in FIG. 3B, the holding member 1120 is fixed to the substrate 1140. Here, the positional relationship between the optical lens 110 and the image pickup element 1130 is adjusted in accordance with the optical axis P, and the fixing material 1150 in a molten state is irradiated with light at the adjusted position to solidify the fixing material 1150. That is, an active alignment process is used.
 図4は、比較例1におけるカメラモジュール1000’の縦断面図であり、本実施形態を適用しない場合の例を示す。
 図4に示す比較例1では、保持部材1120の底面側の外周面1124には、溝は形成されていない。したがって、固定材1150は保持部材1120の底面1121近傍のみに浸透される。すなわち、保持部材1120の外側の周囲には固定材1150aが、保持部材1120の内側(撮像素子側)の周囲には固定材1150bがほぼ同じ高さに浸透される。
FIG. 4 is a vertical sectional view of the camera module 1000'in Comparative Example 1, and shows an example in the case where the present embodiment is not applied.
In Comparative Example 1 shown in FIG. 4, no groove is formed on the outer peripheral surface 1124 on the bottom surface side of the holding member 1120. Therefore, the fixing material 1150 penetrates only in the vicinity of the bottom surface 1121 of the holding member 1120. That is, the fixing material 1150a is infiltrated around the outside of the holding member 1120, and the fixing material 1150b is infiltrated around the inside (image sensor side) of the holding member 1120 at substantially the same height.
 カメラモジュール1000’は、光学レンズ1110の光軸Pが撮像素子1130の撮像面に対して垂直で、光学レンズ1110の焦点位置が撮像素子1130の撮像面と一致するような、光学レンズ1110と撮像素子1130の位置関係が理想的である。 The camera module 1000'is imaged with the optical lens 1110 so that the optical axis P of the optical lens 1110 is perpendicular to the image pickup surface of the image pickup element 1130 and the focal position of the optical lens 1110 coincides with the image pickup surface of the image pickup element 1130. The positional relationship of the elements 1130 is ideal.
 このような位置関係を達成するため、カメラモジュール1000’の製造時に、光学レンズ1110と撮像素子1130の位置関係を調整し、調整位置において融液状態であった固定材1150を固化する、所謂アクティブアライメントプロセスを用いることで、所望の光学性能を得る。 In order to achieve such a positional relationship, the positional relationship between the optical lens 1110 and the image sensor 1130 is adjusted at the time of manufacturing the camera module 1000', and the fixing material 1150 that was in a molten state at the adjusted position is solidified, so-called active. The desired optical performance is obtained by using the alignment process.
 このアクティブアライメントプロセスでは、光学レンズ1110と撮像素子1130が既に組立てられた状態で、外界から固定材1150に光を照射しなければならないが、光を照射できるのは保持部材1120の外側にはみ出した固定材1150aのみであり、保持部材1120の内側(撮像素子側)の固定材1150bには光が当たらない陰となるため、固定材1150bは未硬化状態になり十分な接着強度を得られない可能性がある。 In this active alignment process, the fixing material 1150 must be irradiated with light from the outside world with the optical lens 1110 and the image sensor 1130 already assembled, but the light can be irradiated to the outside of the holding member 1120. Since it is only the fixing material 1150a and the fixing material 1150b inside the holding member 1120 (on the image sensor side) is shaded by light, the fixing material 1150b becomes uncured and sufficient adhesive strength cannot be obtained. There is sex.
 図5は、本実施形態におけるカメラモジュール1000の縦断面図である。
 図5に示すように、本実施形態では保持部材1120の底面側の外周面1124に溝1125を形成している。この溝1125は、図1、図2を参照して既に説明したように、保持部材1120の底面側に開放し、光学レンズ1110の光軸Pに沿って縦長に形成されている。
FIG. 5 is a vertical sectional view of the camera module 1000 according to the present embodiment.
As shown in FIG. 5, in the present embodiment, the groove 1125 is formed on the outer peripheral surface 1124 on the bottom surface side of the holding member 1120. As already described with reference to FIGS. 1 and 2, the groove 1125 is open to the bottom surface side of the holding member 1120 and is formed vertically along the optical axis P of the optical lens 1110.
 溝1125は、保持部材1120の底面側が開放されているので、融液状態の固定材1150が毛細管現象により溝1125の内部に浸透しやすい効果がある。なお、溝1125は、保持部材1120の底面側が開放されていなくても、融液状態の固定材1150が毛細管現象により溝1125の内部に浸透できればよい。
 また、溝1125は、光学レンズ1110の光軸Pに沿って保持部材1120の先端側に向けて縦長に形成されているので、固定材1150の硬化収縮力による光学レンズ1110の光軸Pへの影響を軽減できる効果がある。なお、溝1125は、必ずしも光学レンズ1110の光軸Pに沿っていなくても、保持部材1120の先端側に向けて縦長に形成されていればよい。
Since the bottom surface side of the holding member 1120 is open in the groove 1125, there is an effect that the fixing material 1150 in the melted state easily penetrates into the groove 1125 due to the capillary phenomenon. In the groove 1125, even if the bottom surface side of the holding member 1120 is not open, it is sufficient that the fixing material 1150 in the molten state can penetrate into the groove 1125 by the capillary phenomenon.
Further, since the groove 1125 is formed vertically along the optical axis P of the optical lens 1110 toward the tip end side of the holding member 1120, the groove 1125 is formed on the optical axis P of the optical lens 1110 due to the curing shrinkage force of the fixing material 1150. It has the effect of reducing the impact. The groove 1125 does not necessarily have to be along the optical axis P of the optical lens 1110, but may be formed vertically toward the tip end side of the holding member 1120.
 図5に示す本実施形態では、固定材1150が毛細管現象により溝1125の内部に吸引され、溝1125に沿って先端側へ浸透する。図4の比較例1に示した溝1125がない構造に比べて保持部材1120の外周面1124に接触する面積が増加する。そのため、溝1125の内部に浸透した固定材1150aは、外界から光を照射する際に、陰にならない位置に存在しており、光照射処理によって広い範囲で容易に硬化することができ、接着強度が向上する。さらに、固定材1150aが保持部材1120の外周面1124と接触する面積が広いため、短時間の光照射処理であっても十分な接着強度を得ることができる。 In the present embodiment shown in FIG. 5, the fixing material 1150 is sucked into the groove 1125 by the capillary phenomenon and permeates to the tip side along the groove 1125. Compared with the structure without the groove 1125 shown in Comparative Example 1 of FIG. 4, the area in contact with the outer peripheral surface 1124 of the holding member 1120 is increased. Therefore, the fixing material 1150a that has penetrated into the groove 1125 exists at a position that does not become a shadow when irradiated with light from the outside world, and can be easily cured in a wide range by the light irradiation treatment, and has adhesive strength. Is improved. Further, since the fixing material 1150a has a large area in contact with the outer peripheral surface 1124 of the holding member 1120, sufficient adhesive strength can be obtained even with a short-time light irradiation treatment.
 固定材1150の硬化後においては、保持部材1120の内側に塗布されて存在する固定材1150bは、保持部材1120の外側に塗布されて存在する固定材1150aに比べて、光硬化剤の濃度が必然的に高くなる。保持部材1120の外側の固定材1150aによって、十分な接着強度を得ることができる。 After the fixing material 1150 is cured, the fixing material 1150b applied and existing inside the holding member 1120 inevitably has a higher concentration of the photocuring agent than the fixing material 1150a applied and existing on the outside of the holding member 1120. Will be higher. Sufficient adhesive strength can be obtained by the fixing material 1150a on the outer side of the holding member 1120.
 固定材1150は、光硬化剤および熱硬化剤を含有する。光照射処理によって固定材1150aを硬化するが、保持部材1120の内側(撮像素子側)の固定材1150bには光が十分に当たらず未硬化状態になる可能性がある。そこで、カメラモジュール1000に、アクティブアライメントプロセスにおいて、熱処理を施すことにより、熱硬化剤を含有する固定材1150を硬化させて接着強度をより向上させる。 The fixing material 1150 contains a photocuring agent and a thermosetting agent. Although the fixing material 1150a is cured by the light irradiation treatment, the fixing material 1150b inside the holding member 1120 (on the image sensor side) may not be sufficiently exposed to light and may be in an uncured state. Therefore, the camera module 1000 is subjected to a heat treatment in the active alignment process to cure the fixing material 1150 containing a thermosetting agent and further improve the adhesive strength.
 また、溝1125は、保持部材1120の対向する一方の外周面1124と対向する他方の外周面1124にそれぞれ設けているので、固定材1150の硬化収縮力が両面で均等に作用する。よって、光学レンズ1110の光軸Pずれを防止できカメラモジュール1000の精度を高度化できる。 Further, since the grooves 1125 are provided on one of the outer peripheral surfaces 1124 facing the holding member 1120 and the other outer peripheral surface 1124 facing the holding member 1120, the curing shrinkage force of the fixing material 1150 acts evenly on both sides. Therefore, it is possible to prevent the optical axis P of the optical lens 1110 from shifting and improve the accuracy of the camera module 1000.
 本実施形態によれば、アクティブアライメントプロセスによってカメラモジュール1000を製造する際に、外部からの光照射によって固定材1150を効率的に硬化することができ、カメラモジュール1000の高強度化および高精度化に寄与できる。 According to the present embodiment, when the camera module 1000 is manufactured by the active alignment process, the fixing material 1150 can be efficiently cured by irradiation with light from the outside, and the strength and accuracy of the camera module 1000 are increased. Can contribute to.
[第2の実施形態]
 第2の実施形態について図6から図8を参照して説明する。
 なお、第1の実施形態に記載し、本実施形態に未記載の事項は、特段の事情のない限り本実施形態にも適用される。
[Second Embodiment]
The second embodiment will be described with reference to FIGS. 6 to 8.
The matters described in the first embodiment and not described in the present embodiment are also applied to the present embodiment unless there are special circumstances.
 図6は、本実施形態におけるカメラモジュール1001の縦断面図である。本実施形態では、溝1125の深さが保持部材1120の底面側に比べて、先端側が浅く形成されている。その他の構成は第1の実施形態で説明した図1、図2、図3、図5と同様であり、同一の個所には同一の符号を付してその説明を省略する。 FIG. 6 is a vertical sectional view of the camera module 1001 in the present embodiment. In the present embodiment, the depth of the groove 1125 is formed to be shallower on the tip end side than on the bottom surface side of the holding member 1120. Other configurations are the same as those of FIGS. 1, 2, 3, and 5 described in the first embodiment, and the same parts are designated by the same reference numerals and the description thereof will be omitted.
 図6に示すように、保持部材1120の底面側の外周面1124に形成された溝1125は、底面側の深さD1に比べて、先端側の深さD2が浅くなっている。この場合の固定材1150の硬化収縮力について、図7を参照して説明する。 As shown in FIG. 6, the groove 1125 formed on the outer peripheral surface 1124 on the bottom surface side of the holding member 1120 has a shallower depth D2 on the tip side than the depth D1 on the bottom surface side. The curing shrinkage force of the fixing material 1150 in this case will be described with reference to FIG. 7.
 図7は、本実施形態におけるカメラモジュール1001の縦断面図であり、図6と同じ図であるが、固定材1150の硬化収縮力を説明するための図である。
 図7では、固定材1150の硬化収縮力Q1、Q2を模式的に矢印で示す。固定材1150の硬化収縮力Q1は、溝1125が形成されている保持部材1120の対向する一方の外周面1124における硬化収縮力を、硬化収縮力Q2は、保持部材1120の対向する他方の外周面1124における硬化収縮力を示す。
FIG. 7 is a vertical cross-sectional view of the camera module 1001 in the present embodiment, which is the same as FIG. 6, but is a diagram for explaining the curing shrinkage force of the fixing material 1150.
In FIG. 7, the curing shrinkage forces Q1 and Q2 of the fixing material 1150 are schematically indicated by arrows. The curing shrinkage force Q1 of the fixing material 1150 is the curing shrinkage force on one facing outer peripheral surface 1124 of the holding member 1120 in which the groove 1125 is formed, and the curing shrinkage force Q2 is the curing shrinkage force Q2 of the opposite outer peripheral surface of the holding member 1120. The curing shrinkage force in 1124 is shown.
 溝1125の深さが保持部材1120の底面側に比べて、先端側が浅く形成されているので、固定材1150は溝1125の底面側のよりも先端側に少なく浸透し、固定材1150の量は溝1125の底面側のよりも先端側が少ない。そのため、固定材1150の硬化収縮力Q1、Q2は、溝1125の底面側のよりも先端側が小さくなる。図8の比較例2を参照して以下に述べるように、先端側の溝1125の固定材1150の量が多い場合は、対向する面における硬化収縮力の不均衡によるモーメントで光学レンズ1110の光軸Pのずれに最も寄与すると考えられる。本実施形態では、先端側の溝1125での固定材1150の量を少なくできるため、仮に固定材1150の塗布量にばらつきがあったとしても、先端側の溝1125における固定材1150のばらつき量は小さくなるため、光軸Pのずれを抑制することができる。 Since the depth of the groove 1125 is shallower on the tip side than on the bottom surface side of the holding member 1120, the fixing material 1150 permeates less to the tip side than the bottom surface side of the groove 1125, and the amount of the fixing material 1150 is The tip side is less than the bottom side of the groove 1125. Therefore, the curing shrinkage forces Q1 and Q2 of the fixing material 1150 are smaller on the tip side than on the bottom side of the groove 1125. As described below with reference to Comparative Example 2 of FIG. 8, when the amount of the fixing material 1150 of the groove 1125 on the tip side is large, the light of the optical lens 1110 is the moment due to the imbalance of the curing shrinkage force on the facing surface. It is considered that it contributes most to the deviation of the axis P. In the present embodiment, the amount of the fixing material 1150 in the groove 1125 on the tip side can be reduced, so that even if the coating amount of the fixing material 1150 varies, the amount of variation of the fixing material 1150 in the groove 1125 on the tip side varies. Since it becomes smaller, the deviation of the optical axis P can be suppressed.
 図8は、比較例2におけるカメラモジュール1000の縦断面図であり、図5で示した第1の実施形態に相当する。図8に示す比較例2を参照して光軸Pにずれが生じる原理について説明する。
 溝1125の深さは、保持部材1120の底面側および先端側で同じ深さである。この場合でも、固定材1150の塗布量にばらつきがなく、保持部材1120の対向する一方の外周面1124に形成されている溝1125における固定材1150の量と、保持部材1120の対向する他方の外周面1124に形成されている溝1125における固定材1150の量が同じであれば光軸Pのずれは生じない。
FIG. 8 is a vertical sectional view of the camera module 1000 in Comparative Example 2, and corresponds to the first embodiment shown in FIG. The principle of the deviation of the optical axis P will be described with reference to Comparative Example 2 shown in FIG.
The depth of the groove 1125 is the same on the bottom surface side and the tip end side of the holding member 1120. Even in this case, there is no variation in the coating amount of the fixing material 1150, and the amount of the fixing material 1150 in the groove 1125 formed on the one facing outer peripheral surface 1124 of the holding member 1120 and the opposite outer peripheral surface of the holding member 1120. If the amount of the fixing material 1150 in the groove 1125 formed on the surface 1124 is the same, the optical axis P does not shift.
 換言すれば、撮像素子1130を挟んで対向する外周面1124における溝1125に同じ高さかつ同じ厚さの固定材1150が浸透している場合は、固定材1150が硬化時に収縮したとしても、硬化収縮力によるモーメントが釣り合うため、光学レンズ1110と撮像素子1130との間に光軸Pのずれは発生しない。 In other words, when the fixing material 1150 having the same height and the same thickness permeates the groove 1125 on the outer peripheral surface 1124 facing the image sensor 1130, the fixing material 1150 is cured even if it shrinks during curing. Since the moments due to the contraction force are balanced, the optical axis P does not shift between the optical lens 1110 and the image sensor 1130.
 しかしながら、量産時には固定材1150の塗布量のばらつきや、光学レンズ1110と撮像素子1130の寸法ばらつきによって、撮像素子1130を挟んで対抗する外周面1124における溝1125に浸透する固定材1150の量が異なる状態が起こり得る。 However, at the time of mass production, the amount of the fixing material 1150 penetrating into the groove 1125 on the outer peripheral surface 1124 which opposes the image pickup element 1130 is different due to the variation in the coating amount of the fixing material 1150 and the dimensional variation between the optical lens 1110 and the image pickup element 1130. A condition can occur.
 図8に示すように、溝1125における固定材1150の量が他方の外周面1124より一方の外周面1124が多くなった場合は、一方の外周面1124における硬化収縮力Q1’が他方の外周面1124における硬化収縮力Q2’より大きくなる。この結果、光軸Pが一方の外周面1124側にずれて光軸P’となり、光軸Pにずれが生じる。特に、先端側の溝1125の固定材1150の量が多い場合は、先端側の硬化収縮力Q1’が先端側の硬化収縮力Q2’より大きくなり、対向する外周面1124における硬化収縮力の不均衡によるモーメントで光学レンズ1110の光軸Pのずれが生じる。 As shown in FIG. 8, when the amount of the fixing material 1150 in the groove 1125 is larger in one outer peripheral surface 1124 than in the other outer peripheral surface 1124, the curing shrinkage force Q1'in one outer peripheral surface 1124 is the other outer peripheral surface. It is larger than the curing shrinkage force Q2'in 1124. As a result, the optical axis P shifts to one outer peripheral surface 1124 side to become the optical axis P', and the optical axis P shifts. In particular, when the amount of the fixing material 1150 of the groove 1125 on the tip side is large, the hardening shrinkage force Q1'on the tip side becomes larger than the hardening shrinkage force Q2'on the tip side, and the hardening shrinkage force on the facing outer peripheral surface 1124 is not sufficient. The moment due to equilibrium causes the optical axis P of the optical lens 1110 to shift.
 このような場合であっても、本実施形態では、上述したように、先端側の溝1125の固定材1150の量を少なくできるため、先端側の溝1125における固定材1150のばらつき量は小さくなり、光軸Pのずれを抑制できる。 Even in such a case, in the present embodiment, as described above, the amount of the fixing material 1150 in the groove 1125 on the tip side can be reduced, so that the amount of variation of the fixing material 1150 in the groove 1125 on the tip side becomes small. , The deviation of the optical axis P can be suppressed.
[第3の実施形態]
 第3の実施形態について図9を参照して説明する。
 なお、第1の実施形態および第2の実施形態に記載し、本実施形態に未記載の事項は、特段の事情のない限り本実施形態にも適用される。
[Third Embodiment]
The third embodiment will be described with reference to FIG.
The matters described in the first embodiment and the second embodiment and not described in the present embodiment are also applied to the present embodiment unless there are special circumstances.
 図9は、カメラモジュール1000の横断面図である。この横断面図は、溝1125が形成されている保持部材1120の底面側の断面図である。
 図9に示すように、溝1125は、溝1125の開口側の幅W1に比べて、溝1125の底面側の幅W2が狭く形成される。
FIG. 9 is a cross-sectional view of the camera module 1000. This cross-sectional view is a cross-sectional view of the bottom surface side of the holding member 1120 in which the groove 1125 is formed.
As shown in FIG. 9, the groove 1125 is formed so that the width W2 on the bottom surface side of the groove 1125 is narrower than the width W1 on the opening side of the groove 1125.
 毛細管現象による液体の吸引の高さは、溝1125の幅を狭くするほど高くなることが一般に知られているが、硬化前の固定材1150などの粘度の高い液体では、溝1125の幅が狭すぎる場合、せん断力による流動抵抗が大きく、毛細管現象が発生しない。そのため、例えば、溝1125の全体の幅を狭くした場合には、溝1125の内部への固定材1150の浸透量を増やすことができない。 It is generally known that the height of suction of the liquid due to the capillary phenomenon increases as the width of the groove 1125 becomes narrower, but the width of the groove 1125 becomes narrower in a highly viscous liquid such as the fixing material 1150 before curing. If it is too much, the flow resistance due to the shearing force is large and the capillary phenomenon does not occur. Therefore, for example, when the entire width of the groove 1125 is narrowed, the amount of permeation of the fixing material 1150 into the inside of the groove 1125 cannot be increased.
 一方、本実施形態によれば、溝1125の開口側の幅W1を広くすることで固定材1150を溝1125の内部に流入させることができ、なおかつ溝1125の底面側の幅W2を狭くすることで、固定材1150の毛細管現象による吸引を促進することができる。このため、固定材1150の吸引力により溝1125内において先端側へ高く固定材1150が浸透するため、カメラモジュール1000を高強度化および高精度化することができる。
 なお、本実施形態は、第1の実施形態および第2の実施形態に適用することができる。
On the other hand, according to the present embodiment, by widening the width W1 on the opening side of the groove 1125, the fixing material 1150 can flow into the inside of the groove 1125, and the width W2 on the bottom surface side of the groove 1125 is narrowed. Therefore, suction of the fixing material 1150 due to the capillary phenomenon can be promoted. Therefore, the suction force of the fixing material 1150 allows the fixing material 1150 to penetrate high toward the tip side in the groove 1125, so that the camera module 1000 can be made stronger and more accurate.
In addition, this embodiment can be applied to the first embodiment and the second embodiment.
[第4の実施形態]
 第4の実施形態について図10を参照して説明する。
 なお、第1の実施形態乃至第3の実施形態に記載し、本実施形態に未記載の事項は、特段の事情のない限り本実施形態にも適用される。
[Fourth Embodiment]
The fourth embodiment will be described with reference to FIG.
The matters described in the first to third embodiments and not described in the present embodiment are also applied to the present embodiment unless there are special circumstances.
 図10は、カメラ装置3000の斜視図である。
 カメラ装置3000は、2台のカメラモジュール1011、1022を並設して構成される。第1のカメラモジュール1011と第2のカメラモジュール1022は、第1の実施形態乃至第3の実施形態に記載した構成を備えるが、カメラ装置3000として併設する場合は、同等の構造を備えるカメラモジュールを用いる。
FIG. 10 is a perspective view of the camera device 3000.
The camera device 3000 is configured by arranging two camera modules 1011 and 1022 side by side. The first camera module 1011 and the second camera module 1022 have the configurations described in the first to third embodiments, but when they are installed side by side as the camera device 3000, the camera modules have the same structure. Is used.
 第1のカメラモジュール1011と第2のカメラモジュール1022は、所定の間隔Rで併設され、互いの光軸P1、P2が略平行となる状態に設置され、筐体2001が装着される。カメラ装置3000は、例えば、第1のカメラモジュール1011および第2のカメラモジュール1022より取得した画像情報を比較することで、被写体との距離を測定する。 The first camera module 1011 and the second camera module 1022 are installed side by side at a predetermined interval R, and the optical axes P1 and P2 are installed so as to be substantially parallel to each other, and the housing 2001 is mounted. The camera device 3000 measures the distance to the subject by, for example, comparing the image information acquired from the first camera module 1011 and the second camera module 1022.
 ここで、第1のカメラモジュール1011と第2のカメラモジュール1022が並ぶ方向を基線長方向Xとした場合に、第1のカメラモジュール1011において、溝1125は第1のカメラモジュール1011の外周面1124のうち、基線長方向に略平行な外周面1124であって、対向する外周面1124である2面に形成される。さらに、第2のカメラモジュール1022において、溝1125は第2のカメラモジュール1022の外周面1124のうち、基線長方向に略平行な外周面1124であって、対向する外周面1124である2面に形成される。 Here, when the direction in which the first camera module 1011 and the second camera module 1022 are lined up is the baseline length direction X, in the first camera module 1011 the groove 1125 is the outer peripheral surface 1124 of the first camera module 1011. Of these, two outer peripheral surfaces 1124 substantially parallel to the length of the baseline, which are opposite outer peripheral surfaces 1124, are formed. Further, in the second camera module 1022, the groove 1125 is formed on two outer peripheral surfaces 1124 of the outer peripheral surface 1124 of the second camera module 1022, which are outer peripheral surfaces 1124 substantially parallel to the baseline length direction and which are opposite outer peripheral surfaces 1124. It is formed.
 すなわち、車載カメラ装置300は、第1のカメラモジュール1011と第2のカメラモジュール1022は互いの光軸が略平行となる状態で筐体2001に固定され、第1のカメラモジュール1011と第2のカメラモジュール1022の保持部材1120は、第1のカメラモジュール1011と第2のカメラモジュール1022が並ぶ方向に沿った基線長方向Xに対して略平行な外周面1124を有し、溝1125は外周面1124に形成される。 That is, in the in-vehicle camera device 300, the first camera module 1011 and the second camera module 1022 are fixed to the housing 2001 in a state where the optical axes of the first camera module 1011 and the second camera module 1022 are substantially parallel to each other, and the first camera module 1011 and the second camera module 1011 are fixed to the housing 2001. The holding member 1120 of the camera module 1022 has an outer peripheral surface 1124 substantially parallel to the baseline length direction X along the direction in which the first camera module 1011 and the second camera module 1022 are arranged, and the groove 1125 is an outer peripheral surface. It is formed at 1124.
 2台のカメラモジュール1011、1022から得られた画像に基づき被写体との距離を算出する方法としては、一般に視差マッチングという方法が用いられる。これは、2枚の画像の基線長方向Xの視差が被写体との距離に反比例するという、三角測量の原理に基づいた測距方法である。この手法では、被写体との距離数十メートルが、数マイクロメートルの視差に変換されて検出されるため、測距精度を向上するためには、特に基線長方向Xに光軸ずれを発生させないことが重要である。溝1125に固定材1150が存在した場合に、固定材1150の硬化時の収縮により光軸ずれが生じ易くなる。車載カメラ装置300では、第1のカメラモジュール1011と第2のカメラモジュール1022の光軸P1、P2を比較した基線長方向Xのずれ量がより性能に悪影響を及ぼすため、影響が小さい基線長方向Xに略平行な外周面1124にのみ溝1125を設けた。 As a method of calculating the distance to the subject based on the images obtained from the two camera modules 1011 and 1022, a method called parallax matching is generally used. This is a distance measuring method based on the principle of triangulation, in which the parallax in the baseline length direction X of two images is inversely proportional to the distance to the subject. In this method, a distance of several tens of meters from the subject is converted into a parallax of several micrometers and detected. Therefore, in order to improve the distance measurement accuracy, it is necessary not to cause an optical axis shift especially in the baseline long direction X. is important. When the fixing material 1150 is present in the groove 1125, the optical axis shift is likely to occur due to the shrinkage of the fixing material 1150 during curing. In the in-vehicle camera device 300, the deviation amount of the baseline length direction X comparing the optical axes P1 and P2 of the first camera module 1011 and the second camera module 1022 has a more adverse effect on the performance, so that the influence is small in the baseline length direction. The groove 1125 is provided only on the outer peripheral surface 1124 substantially parallel to X.
 本実施形態によれば、光軸ずれが生じる可能性は基線長方向Xに対して垂直方向の光軸ずれが主となり、基線長方向Xの光軸ずれは発生し難くなるため、光軸ずれによる測距精度の低下を抑制することができる。 According to the present embodiment, the possibility of optical axis deviation is mainly the optical axis deviation in the direction perpendicular to the baseline length direction X, and the optical axis deviation in the baseline length direction X is unlikely to occur. It is possible to suppress the deterioration of the distance measurement accuracy due to the above.
 以上説明した実施形態によれば、次の作用効果が得られる。
(1)カメラモジュールは、光学レンズ1110を内部に保持する保持部材1120と、撮像素子1130を配置した基板1140と、保持部材1120の底面側と基板1140とを固定する、光硬化剤を含む固定材1150とを備え、保持部材1120の底面側の外周面1124に、保持部材1120の底面側から先端側に向かう縦長の溝1125を形成した。これにより、光学レンズと撮像素子との位置関係を高精度に保って固定することができる。
According to the embodiment described above, the following effects can be obtained.
(1) The camera module is fixed including a photocuring agent that fixes the holding member 1120 that holds the optical lens 1110 inside, the substrate 1140 on which the image pickup element 1130 is arranged, and the bottom surface side of the holding member 1120 and the substrate 1140. A vertically long groove 1125 is formed on the outer peripheral surface 1124 on the bottom surface side of the holding member 1120 with the material 1150 from the bottom surface side to the tip end side of the holding member 1120. As a result, the positional relationship between the optical lens and the image sensor can be maintained and fixed with high accuracy.
 本発明は、上述の実施形態に限定されるものではなく、本発明の特徴を損なわない限り、本発明の技術思想の範囲内で考えられるその他の形態についても、本発明の範囲内に含まれる。また、上述の各実施形態を組み合わせた構成としてもよい。 The present invention is not limited to the above-described embodiment, and other embodiments considered within the scope of the technical idea of the present invention are also included within the scope of the present invention as long as the features of the present invention are not impaired. .. Further, the configuration may be a combination of the above-described embodiments.
 1000、1001、1011、1022・・・カメラモジュール、1110・・・光学レンズ、1120・・・保持部材、1121・・・保持部材の底面、1130・・・撮像素子、1140・・・基板、1150・・・固定材、1124・・・外周面、1125・・・溝、1150・・・固定材、2000、2001・・・筐体、3000・・・カメラ装置、P、P1、P2・・・光軸。 1000, 1001, 1011, 1022 ... Camera module, 1110 ... Optical lens, 1120 ... Holding member, 1121 ... Bottom surface of holding member, 1130 ... Imaging element, 1140 ... Substrate, 1150 ... fixing material, 1124 ... outer peripheral surface, 1125 ... groove, 1150 ... fixing material, 2000, 2001 ... housing, 3000 ... camera device, P, P1, P2 ... optical axis.

Claims (7)

  1.  光学レンズを内部に保持する保持部材と、
     撮像素子を配置した基板と、
     前記保持部材の底面側と前記基板とを固定する、光硬化剤を含む固定材と、を備え、
     前記保持部材の前記底面側の外周面に、前記保持部材の前記底面側から先端側に向かう縦長の溝を形成したカメラモジュール。
    A holding member that holds the optical lens inside,
    The board on which the image sensor is placed and
    A fixing material containing a photocuring agent, which fixes the bottom surface side of the holding member and the substrate, is provided.
    A camera module in which a vertically long groove from the bottom surface side of the holding member to the tip end side is formed on the outer peripheral surface of the holding member on the bottom surface side.
  2.  請求項1に記載のカメラモジュールにおいて、
     前記溝は、前記保持部材の前記底面側に開放し、前記光学レンズの光軸方向に沿って縦長であるカメラモジュール。
    In the camera module according to claim 1,
    A camera module in which the groove is open to the bottom surface side of the holding member and is vertically elongated along the optical axis direction of the optical lens.
  3.  請求項1に記載のカメラモジュールにおいて、
     前記溝は、前記保持部材の前記底面側における前記溝の深さに比べて、前記先端側における前記溝の深さが浅く形成されるカメラモジュール。
    In the camera module according to claim 1,
    The groove is a camera module in which the depth of the groove on the tip end side is shallower than the depth of the groove on the bottom surface side of the holding member.
  4.  請求項3に記載のカメラモジュールにおいて、
     前記溝は、前記溝の開口側の幅に比べて、前記溝の底面側の幅が狭く形成されるカメラモジュール。
    In the camera module according to claim 3,
    The groove is a camera module in which the width on the bottom surface side of the groove is narrower than the width on the opening side of the groove.
  5.  請求項1に記載のカメラモジュールにおいて、
     前記固定材は、光硬化剤および熱硬化剤を含有するカメラモジュール。
    In the camera module according to claim 1,
    The fixing material is a camera module containing a photocuring agent and a thermosetting agent.
  6.  請求項1に記載のカメラモジュールにおいて、
     前記保持部材の内側に塗布されて存在する前記固定材は、前記保持部材の外側に塗布されて存在する前記固定材に比べて、前記光硬化剤の濃度が高いカメラモジュール。
    In the camera module according to claim 1,
    The fixing material applied to the inside of the holding member is a camera module having a higher concentration of the photocuring agent than the fixing material applied to the outside of the holding member.
  7.  請求項1から請求項6までのいずれか一項に記載のカメラモジュールを2台並設して構成される車載カメラ装置において、
     前記各カメラモジュールは互いの光軸が略平行となる状態で筐体に固定され、前記各カメラモジュールの前記保持部材は、前記各カメラモジュールが並ぶ方向に沿った基線長方向に対して略平行な前記外周面を有し、前記溝は前記外周面に形成される車載カメラ装置。
    In an in-vehicle camera device configured by arranging two camera modules according to any one of claims 1 to 6 side by side.
    The camera modules are fixed to the housing in a state where their optical axes are substantially parallel to each other, and the holding member of each camera module is substantially parallel to the baseline length direction along the direction in which the camera modules are lined up. An in-vehicle camera device having the outer peripheral surface and having the groove formed on the outer peripheral surface.
PCT/JP2021/028998 2020-09-30 2021-08-04 Camera module and on-board camera device WO2022070604A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112021002908.8T DE112021002908T5 (en) 2020-09-30 2021-08-04 CAMERA MODULE AND ON-VEHICLE CAMERA DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-165224 2020-09-30
JP2020165224A JP7457622B2 (en) 2020-09-30 2020-09-30 Camera module and in-vehicle camera device

Publications (1)

Publication Number Publication Date
WO2022070604A1 true WO2022070604A1 (en) 2022-04-07

Family

ID=80951332

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/028998 WO2022070604A1 (en) 2020-09-30 2021-08-04 Camera module and on-board camera device

Country Status (3)

Country Link
JP (1) JP7457622B2 (en)
DE (1) DE112021002908T5 (en)
WO (1) WO2022070604A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007300428A (en) * 2006-04-28 2007-11-15 Hitachi Maxell Ltd Camera module
JP2011035830A (en) * 2009-08-05 2011-02-17 Sony Corp Camera apparatus
JP2018013623A (en) * 2016-07-21 2018-01-25 日立オートモティブシステムズ株式会社 On-vehicle imaging device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007300428A (en) * 2006-04-28 2007-11-15 Hitachi Maxell Ltd Camera module
JP2011035830A (en) * 2009-08-05 2011-02-17 Sony Corp Camera apparatus
JP2018013623A (en) * 2016-07-21 2018-01-25 日立オートモティブシステムズ株式会社 On-vehicle imaging device

Also Published As

Publication number Publication date
JP7457622B2 (en) 2024-03-28
JP2022057125A (en) 2022-04-11
DE112021002908T5 (en) 2023-03-09

Similar Documents

Publication Publication Date Title
US8405737B2 (en) Lens unit
US20150301303A1 (en) Lens module, method of manufacturing the same, and camera module including the same
JP6748721B2 (en) Camera module, imaging device, and moving body
CN110275261B (en) Optical lens, camera module and assembling method thereof
US11899268B2 (en) Optical lens, camera module and assembly method therefor
US10027861B2 (en) Camera device
JP2013168918A (en) Image reading device and image formation device
JPWO2017187690A1 (en) Adhesive structure, imaging device, and in-vehicle camera
WO2022070604A1 (en) Camera module and on-board camera device
US20200192053A1 (en) Lens assembly for an image detection device for a vehicle, image detection device, and method for manufacturing an image detection device
US10623613B2 (en) Camera module and method for producing the same
JP2012147203A (en) Sensor module
CN110275264B (en) Optical lens, camera module and assembling method thereof
US8369033B2 (en) Method of manufacturing lens and lens manufactured using the same
US10871624B2 (en) Optical apparatus
JP7188316B2 (en) Camera module manufacturing method
WO2023084873A1 (en) Vehicle-mounted camera device
JP6815269B2 (en) Imaging device
DE102015225122A1 (en) Device for fixing an optical element
JP2006156931A (en) Structure for packaging and correcting in arrangement electric microoptic module simultaneously
JP2016020951A (en) Lens barrel and optical instrument
KR20130044422A (en) Camera module
JP5799135B2 (en) Image reading apparatus and image forming apparatus
WO2024009880A1 (en) Lens unit
JP2018093342A (en) Prism unit, solid-state imaging device and method for manufacturing solid-state imaging device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21874907

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21874907

Country of ref document: EP

Kind code of ref document: A1