WO2022070420A1 - Glucose amount calculation method - Google Patents

Glucose amount calculation method Download PDF

Info

Publication number
WO2022070420A1
WO2022070420A1 PCT/JP2020/037615 JP2020037615W WO2022070420A1 WO 2022070420 A1 WO2022070420 A1 WO 2022070420A1 JP 2020037615 W JP2020037615 W JP 2020037615W WO 2022070420 A1 WO2022070420 A1 WO 2022070420A1
Authority
WO
WIPO (PCT)
Prior art keywords
glucose
ray
amount
light
glucose amount
Prior art date
Application number
PCT/JP2020/037615
Other languages
French (fr)
Japanese (ja)
Inventor
徹 堀田
仁 小倉
高行 浅尾
史夫 林
Original Assignee
Look Tec株式会社
国立大学法人群馬大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Look Tec株式会社, 国立大学法人群馬大学 filed Critical Look Tec株式会社
Priority to PCT/JP2020/037615 priority Critical patent/WO2022070420A1/en
Publication of WO2022070420A1 publication Critical patent/WO2022070420A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/359Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using near infrared light

Definitions

  • the present invention relates to a glucose amount calculation method for optically measuring the glucose amount inside a measured portion such as a human body.
  • the invasive method is a method in which blood is collected from, for example, a fingertip of a human body, and the amount of glucose is measured using the blood.
  • the non-invasive method is a method of measuring the amount of glucose with a sensor placed outside the human body without collecting blood from the human body.
  • An invasive method is generally used for accurate glucose amount calculation, but a non-invasive method for calculating glucose amount is desired in order to reduce the pain and improve convenience of the user.
  • a method for measuring the amount of glucose by a non-invasive method a method for optically measuring by irradiating a human body with near-infrared light or the like is known.
  • an optical measurement method of the amount of glucose there is a method of detecting the difference in the amount of absorption of near-infrared light due to glucose. Specifically, in this method, near-infrared light is transmitted at a certain site, and the amount of glucose is measured from the transmitted light amount (for example, Patent Document 1 and Patent Document 2).
  • the present invention has been made in view of such problems, and an object of the present invention is to statistically utilize the light receiving intensity of each light beam emitted along the optical axis penetrating the human body. Therefore, it is an object of the present invention to provide a glucose amount calculation method capable of accurately estimating the glucose amount.
  • the glucose amount calculation method of the present invention is based on a measurement step of irradiating a plurality of light rays having different wavelengths on a measured portion and measuring the intensity of the plurality of rays transmitted through the measured portion with a light receiving element, and a conversion formula.
  • the plurality of light rays include an estimation step of estimating the amount of glucose from the received intensity of the plurality of light rays, and in the measurement step, the plurality of light rays have one optical axis defined to penetrate the measured portion. It is characterized by passing through.
  • the received intensity of the plurality of light rays, the temperature of the measured portion, and the amount of blood-collected glucose are used as one actual measurement data set, and a plurality of the actual measurements are made with respect to different glucose amounts.
  • a plurality of the conversion formulas are created by acquiring a data set and performing multiple regression analysis based on the plurality of actual measurement data sets, and in the estimation step, a plurality of glucoses calculated using each of the above conversion formulas. It is characterized in that the glucose amount estimation result closest to the blood collected glucose amount is selected from the amount estimation result, and the conversion formula for calculating the selected glucose amount estimation result is used for the glucose amount calculation from the next time.
  • the temperature of the measured portion is measured, and in the estimation step, the glucose is used in addition to the received light intensity of the plurality of light rays. It is characterized by calculating the amount.
  • the conversion formula is characterized in that parameters stored in a storage device in advance are used.
  • the glucose amount calculation method of the present invention is characterized in that the plurality of light rays pass through the finger web.
  • the conversion formula is a multiple regression formula calculated by a statistical method. Therefore, according to the glucose amount calculation method of the present invention, since the conversion formula is calculated based on the statistical method, the conversion formula based on the constitution of each subject can be obtained.
  • the first ray, the second ray and the third ray having different wavelengths are applied to the measured portion, and the first ray is transmitted through the measured portion.
  • the intensities of the light rays, the second light rays and the third light rays are measured by the light receiving element, and in the estimation step, the light receiving intensities of the first light rays, the second light rays and the third light rays are used based on the conversion formula.
  • the feature is to estimate the amount of glucose.
  • the glucose amount calculation method of the present invention is based on a measurement step of irradiating a plurality of light rays having different wavelengths on a measured portion and measuring the intensity of the plurality of rays transmitted through the measured portion with a light receiving element, and a conversion formula.
  • the plurality of light rays include an estimation step of estimating the amount of glucose from the received intensity of the plurality of light rays, and in the measurement step, the plurality of light rays have one optical axis defined to penetrate the measured portion. It is characterized by passing through.
  • the method for measuring the amount of glucose of the present invention when a plurality of light rays pass through one optical axis, a plurality of light rays pass through a human body portion under the same optical conditions, so that the amount of glucose can be determined. It can be measured accurately.
  • the received intensity of the plurality of light rays, the temperature of the measured portion, and the blood collected glucose amount are used as one actual measurement data set, and a plurality of the actual measurements are made with respect to different glucose amounts.
  • a plurality of the conversion formulas are created by acquiring a data set and performing multiple regression analysis based on the plurality of actual measurement data sets, and in the estimation step, a plurality of glucoses calculated using each of the above conversion formulas. It is characterized in that the glucose amount estimation result closest to the blood collected glucose amount is selected from the amount estimation result, and the conversion formula for calculating the selected glucose amount estimation result is used for the glucose amount calculation from the next time.
  • the glucose amount calculation method of the present invention in the measurement step, the temperature of the measured portion is measured, and in the estimation step, the glucose is used in addition to the received light intensity of the plurality of light rays. It is characterized by calculating the amount.
  • the amount of glucose can be estimated more accurately by estimating the amount of glucose using the body temperature of the human body in addition to the light receiving intensity of the light rays transmitted through the human body. Can be done.
  • the conversion formula is characterized in that parameters stored in a storage device in advance are used. Thereby, according to the method for measuring the amount of glucose of the present invention, the conversion formula can be obtained without collecting blood by the subject himself / herself.
  • the glucose amount calculation method of the present invention is characterized in that the plurality of light rays pass through the finger web.
  • the amount of glucose is calculated by using each light ray transmitted through the finger web, which has less fat, less variation in thickness between individuals, and a short transmission distance. The amount of glucose can be estimated accurately.
  • the conversion formula is a multiple regression formula calculated by a statistical method. Therefore, according to the glucose amount calculation method of the present invention, since the conversion formula is calculated based on the statistical method, the conversion formula based on the constitution of each subject can be obtained.
  • the first ray, the second ray and the third ray having different wavelengths are applied to the measured portion, and the first ray is transmitted through the measured portion.
  • the intensities of the light rays, the second light rays and the third light rays are measured by the light receiving element, and in the estimation step, the light receiving intensities of the first light rays, the second light rays and the third light rays are used based on the conversion formula.
  • the feature is to estimate the amount of glucose.
  • the glucose amount can be calculated more accurately by using the first ray, the second ray and the third ray having different wavelengths.
  • FIG. 1 It is a conceptual diagram which shows the basic structure of the glucose amount measuring apparatus used in the glucose amount calculation method which concerns on embodiment of this invention. It is a flowchart which shows the glucose amount calculation method which concerns on embodiment of this invention. It is a figure which shows the glucose amount calculation method which concerns on embodiment of this invention, (A), (B) and (C) are side views which show the situation which we measure while moving a light emitting point. It is a graph which shows the glucose amount calculation method which concerns on embodiment of this invention. It is a figure which shows the glucose amount calculation method which concerns on other embodiment of this invention, (A) is a flowchart, (B) is a block diagram which conceptually shows the said method.
  • FIG. 1 It is a figure which shows the glucose amount calculation method which concerns on embodiment of this invention
  • A is a schematic diagram which shows a finger web
  • B is a graph which shows the result of having measured the glucose amount with a fingertip
  • C is a graph showing the result of measuring the glucose amount with the finger web.
  • FIG. 1 is a conceptual diagram showing a basic configuration of a glucose amount calculation device 10 used in the glucose amount calculation method of the present embodiment.
  • the amount of glucose is the amount of glucose in blood or interstitium.
  • the amount of glucose may be referred to as a blood glucose level or the like.
  • the glucose amount calculation device 10 includes a light emitting unit 11 that emits a light ray used for measurement, a lens 14 that is an optical element that guides a light ray emitted from the light emitting unit 11 to a measured portion 18, and a lens 14.
  • a light receiving unit 19 that receives light rays transmitted through the measured portion 18, an arithmetic control unit 17 that calculates the amount of glucose based on the output of the light receiving unit 19, a storage unit 13, a display unit 15, and an operation input unit 12.
  • And a temperature measuring unit 21 a temperature measuring unit 21.
  • the function of the glucose amount calculation device 10 is to measure the glucose amount of the human body by a non-invasive method by transmitting light rays through the human body which is the measurement site.
  • the light emitting unit 11 emits a light beam having a predetermined wavelength in order to measure the amount of glucose.
  • the light emitting unit 11 has a first light emitting unit 111, a second light emitting unit 112, and a third light emitting unit 113 that emit light rays having different wavelengths.
  • the first light emitting unit 111, the second light emitting unit 112, and the third light emitting unit 113 are each composed of a light emitting diode.
  • the wavelength of the first light ray emitted from the first light emitting unit 111 is 1310 nm
  • the wavelength of the second light ray emitted from the second light emitting unit 112 is 1450 nm
  • the wavelength of the second light ray emitted from the third light emitting unit 113 is 1.
  • the wavelength of the three rays is 1550 nm.
  • the light emitting unit 11 is moved in the left-right direction by an actuator (not shown). By moving the light emitting unit 11, any one of the first light emitting unit 111, the second light emitting unit 112, and the third light emitting unit 113 can be arranged on the same optical axis 22.
  • the case where the second light emitting unit 112 is arranged on the axis of the optical axis 22 is shown.
  • the first ray is a ray that is not absorbed by the components in the living body
  • the second and third rays are the rays that are absorbed by glucose, protein and water in the living body.
  • the first light ray, the second light ray, and the third light ray are irradiated from the light emitting unit 11 to the light receiving unit 19 along the optical axis 22. That is, the propagation path and the propagation length of the first ray, the second ray, and the third ray inside the measured portion 18 are the same.
  • C is the amount of glucose
  • I is the emitted light power
  • I 0 is the incident light power
  • ⁇ a is the extinction coefficient of the skin
  • r is the optical path length.
  • the optical path length r is made the same, so that the unknown number to be calculated is reduced, and glucose is accurately and easily calculated.
  • the quantity C can be obtained.
  • the lens 14 measures the first light beam, the second light ray, and the third light ray emitted from the first light emitting unit 111, the second light emitting unit 112, and the third light emitting unit 113 by the refraction action and the diffraction action thereof. Lead to site 18.
  • the measurement site 18 is a site where the glucose amount is measured by the glucose amount calculation device 10 of the present embodiment.
  • a fingertip, an earlobe, a finger web, or the like can be adopted as the measurement site 18.
  • the finger web to be measured is preferably a finger web containing a small amount of fat, having a small individual difference in thickness, and having no thick blood vessels formed.
  • the light receiving portion 19 is, for example, a semiconductor element made of a photodiode, and a light receiving portion (not shown) is formed which receives the first light ray, the second light ray, and the third light ray transmitted through the measured portion 18 and detects the intensity thereof. There is.
  • the light receiving unit 19 transmits signals corresponding to the light receiving intensities of the first light ray, the second light ray, and the third light ray to the arithmetic control unit 17.
  • the storage unit 13 is a semiconductor storage device or the like including a RAM or a ROM, and executes a calculation formula, parameters, estimation results, and a glucose amount calculation method according to the present embodiment for calculating the glucose amount from the output value of the light receiving unit 19. I remember the program to do it.
  • the operation input unit 12 is a part where the subject gives an instruction to the calculation control unit 17, and is composed of a switch, a touch panel, and the like.
  • the temperature measuring unit 21 is a part that measures the body temperature of the subject by coming into contact with the body of the subject.
  • the calculation control unit 17 is composed of a CPU, performs various calculations, and controls the operation of each part constituting the glucose amount calculation device 10. Specifically, the arithmetic control unit 17 irradiates the first light ray, the second light ray, and the third light ray from the first light emitting unit 111, the second light emitting unit 112, and the third light emitting unit 113 of the light emitting unit 11. Further, the arithmetic control unit 17 estimates the amount of glucose based on the electric signals input from the light receiving unit 19, the temperature measuring unit 21, and the like, using a conversion formula which is a multiple regression formula described later. Further, the arithmetic control unit 17 may display the calculated glucose amount on the display unit 15.
  • the arithmetic control unit 17 moves the light emitting unit 11 in order to arrange the light emitting points of each light emitting unit in the axial shape of the optical axis 22.
  • a method of estimating the glucose amount of a subject using the glucose amount calculation device 10 will be described with reference to the flowchart of FIG. 2 and also with reference to FIG. 1 described above.
  • the subject collects blood and irradiates each light beam to calculate the parameters of the multiple regression equation, which is a conversion formula used for estimating the amount of glucose, and uses this conversion formula to calculate the parameters of the subject from the output value of the light receiving unit 19.
  • the amount of glucose is estimated.
  • a parameter stored in advance in the storage unit 13 of the glucose amount calculation device 10 can be used, whereby the convenience of the subject can be improved. Further, each of the following steps is executed based on the program stored in the storage unit 13.
  • step S10 first, the amount of glucose is measured from the blood collected from the subject.
  • This blood collection is for calculating the parameters of the multiple regression equation, and by collecting blood first, it is not necessary to collect blood in the next measurement.
  • step S11 next, the intensity and body temperature of the light beam passing through the finger web of the subject are measured.
  • the arithmetic control unit 17 emits a first light ray, a second light ray, and a third light ray from the first light emitting unit 111, the second light emitting unit 112, and the third light emitting unit 113 of the light emitting unit 11.
  • the wavelengths of the first ray, the second ray and the third ray are as described above. Further, as shown in FIG. 1, by moving the light emitting unit 11 along the left and right rear, the first light ray, the second light ray, and the third light ray are irradiated along the optical axis 22.
  • the emitted first ray, second ray and third ray are applied to a predetermined portion of the measured portion 18 by the lens 14.
  • the first ray, the second ray, and the third ray incident on the measured portion 18 are absorbed, attenuated, and reflected inside the human body, and then a part of them pass through the human body and reach the light receiving portion 19.
  • the light receiving unit 19 transmits an electric signal corresponding to the light receiving intensity to the arithmetic control unit 17 for each wavelength band of the first light ray, the second light ray, and the third light ray.
  • each light beam can be focused and irradiated using a pinhole.
  • FIG. 3A shows a situation in which the second light emitting unit 112 irradiates the second light beam
  • FIG. 3B shows a situation in which the first light emitting unit 111 irradiates the first light beam
  • FIG. 3C shows a situation in which the first light emitting unit is irradiated. It shows the situation where the third light beam is emitted from the third light emitting unit 113.
  • the light rays are irradiated along the optical axis 22 in the order of the second light emitting unit 112, the first light emitting unit 111, and the third light emitting unit 113, but this order can be changed.
  • the arithmetic control unit 17 when irradiating the second light beam from the second light emitting unit 112, first, the arithmetic control unit 17 causes the light emitting point of the second light emitting unit 112 to overlap with the optical axis 22. The light emitting unit 11 is moved to. When the light emitting point of the second light emitting unit 112 overlaps with the optical axis 22, the arithmetic control unit 17 emits a second light ray from the second light emitting unit 112. The emitted second light ray travels along the optical axis 22, passes through the measured portion 18, and then irradiates the light receiving portion 19. An electric signal indicating the intensity of the second light ray received by the light receiving unit 19 is transmitted to the arithmetic control unit 17.
  • the arithmetic control unit 17 then moves the light emitting unit 11 to the right by an actuator (not shown) so that the light emitting point of the first light emitting unit 111 is set to the axis of the optical axis 22. Overlay.
  • the arithmetic control unit 17 emits a first light ray from the first light emitting unit 111.
  • the emitted first light ray travels along the optical axis 22, passes through the measured portion 18, and then irradiates the light receiving portion 19.
  • An electric signal indicating the intensity of the first light ray received by the light receiving unit 19 is transmitted to the arithmetic control unit 17.
  • the arithmetic control unit 17 then moves the light emitting unit 11 to the left by an actuator (not shown) so that the light emitting point of the third light emitting unit 113 becomes the axis of the optical axis 22. Overlay.
  • the arithmetic control unit 17 emits a third light ray from the third light emitting unit 113.
  • the emitted third light ray travels along the optical axis 22, passes through the measured portion 18, and then irradiates the light receiving portion 19.
  • An electric signal indicating the intensity of the third light ray received by the light receiving unit 19 is transmitted to the arithmetic control unit 17.
  • the temperature measurement unit 21 measures the body temperature of the subject, and the electric signal indicating the body temperature is transmitted to the calculation control unit 17.
  • step S11 is performed a plurality of times with respect to a plurality of glucose amounts for the multiple regression analysis described later.
  • step S12 the parameters of the multiple regression equation are obtained based on the result of step S11.
  • the amount of blood-collected glucose measured in step S11 is shown in Table 1 below.
  • Table 1 From the left, the amount of blood glucose collected, the temperature of the part to be measured, the light receiving intensity of the first light having a wavelength of 1310 nm, the light receiving intensity of the second light having a wavelength of 1450 nm, and the light receiving intensity of the third light having a wavelength of 1550 nm. It shows the light receiving intensity and the estimated amount of glucose.
  • blood sampling, body temperature measurement, light reception of each light ray passing through the human body, and estimation of glucose amount based on the light reception intensity were performed while changing the blood sampling glucose amount of the subject by administering sugar or the like.
  • the parameters constituting the equation 2 are stored in the storage unit 13 and used for estimating the glucose amount.
  • Table 2 includes Table 2-1 and Table 2-2 and Table 2-3.
  • Table 2-1 shows regression statistics
  • Table 2-2 shows analysis of variance
  • Table 2-3 shows regression coefficients and the like by regression analysis.
  • FIG. 4 is a graph showing the relationship between the estimated glucose amount and the blood sampling glucose amount.
  • the horizontal axis of this graph shows the amount of blood-collected glucose, and the vertical axis shows the estimated amount of glucose.
  • the calibration curve is shown by a solid line, and the line with a ⁇ 5% error is shown by a dotted line.
  • step S13 and step S14 the glucose amount is estimated using the above conversion formula.
  • the arithmetic control unit 17 first receives from the first light emitting unit 111, the second light emitting unit 112, and the third light emitting unit 113 of the light emitting unit 11 along the optical axis 22.
  • the measured portion 18 is irradiated with the first ray, the second ray, and the third ray toward the measured portion 18.
  • the first ray, the second ray, and the third ray are attenuated, reflected, and absorbed inside the measured portion 18, and a part of the first ray, the second ray, and the third ray pass through the measured portion 18 and reach the light receiving portion 19.
  • the light receiving unit 19 transmits an electric signal indicating the intensities of the first light ray, the second light ray, and the third light ray that have reached the light receiving unit 19 to the arithmetic control unit 17. Further, an electric signal indicating the temperature of the measured portion 18 measured by the temperature measuring unit 21 is also transmitted to the arithmetic control unit 17.
  • the arithmetic control unit 17 uses the conversion formula shown in the above equation 2 based on the electric signal indicating the intensity of the first ray, the second ray, and the third ray, and the electric signal indicating the body temperature of the measured portion 18. Then, the amount of glucose is estimated.
  • Table 3 shows the results of estimating the glucose amount by the same subjects as in Table 1 on different days by the methods shown in steps S13 and S14. That is, here, the person who collected blood, irradiated with light, and measured the body temperature in order to derive the conversion formula and the person who estimates the glucose amount using the conversion formula are the same person. As is clear from Table 3, since the estimated glucose amount estimated by the estimation method according to the present embodiment is extremely close to the blood sampling glucose amount, it can be determined that accurate estimation is performed.
  • Table 4 shows the results of estimating the glucose amount by the methods shown in steps S13 and S14 by a subject different from Table 1 (subject for calculating the conversion formula). As is clear from Table 4, even if the subject for deriving the conversion formula and the subject for estimating the glucose amount using the conversion formula are different, the estimated glucose amount and the blood sampling glucose amount are close to each other, so even in this case. Accurate estimates have been made.
  • the blood sampling glucose amount and the estimated glucose amount used for calculating the calibration curve are shown by white circles.
  • the values in Tables 4 and 5 are shown by black circles.
  • the measurements for other subjects and for any day are located in the area sandwiched by lines with an error of approximately ⁇ 5%. Therefore, the glucose amount can be estimated accurately by the estimation method using the above conversion formula.
  • FIG. 5A is a flowchart showing a method for estimating the amount of glucose according to the present embodiment
  • FIG. 5B is a block diagram conceptually showing the calculation method in the present embodiment.
  • a plurality of conversion formulas are prepared.
  • a plurality of multiple regression equations are obtained by collecting blood and applying each light beam using the glucose amount calculation device 10 and measuring the body temperature for different subjects.
  • subject A, subject B, subject C, and subject D by performing irradiation of each ray, body temperature measurement, and multiple regression analysis, the light receiving intensities of the first ray, the second ray, and the second ray for each subject are performed.
  • an actual measurement data set consisting of body temperature. From each of these actually measured data sets, the parameters of the multiple regression equation A, the multiple regression equation B, the multiple regression equation C, and the multiple regression equation D are derived.
  • the estimated glucose amount A and the estimated glucose amount B are used by using the multiple regression equation A, the multiple regression equation B, the multiple regression equation C, and the multiple regression equation D by using the glucose amount calculation device 10.
  • Estimated glucose amount C and estimated glucose amount D are used by using the arithmetic control unit 17 first receives from the first light emitting unit 111, the second light emitting unit 112, and the third light emitting unit 113 of the light emitting unit 11 along the optical axis 22.
  • the measured portion 18 is irradiated with the first ray, the second ray, and the third ray toward the measured portion 18.
  • the light receiving unit 19 transmits an electric signal indicating the intensities of the first light ray, the second light ray, and the third light ray that have reached the light receiving unit 19 to the arithmetic control unit 17. Further, an electric signal indicating the temperature of the measured portion 18 measured by the temperature measuring unit 21 is also transmitted to the arithmetic control unit 17. Next, the arithmetic control unit 17 uses the multiple regression equation A and multiple regression based on the electric signal indicating the intensity of the first ray, the second ray, and the third ray, and the electric signal indicating the body temperature of the measured portion 18. Estimated glucose amount A, estimated glucose amount B, estimated glucose amount C, and estimated glucose amount D are estimated using the formula B, the multiple regression equation C, and the multiple regression equation D. Also, for the selection in step S23, the subject is sampled to obtain the blood glucose amount.
  • step S23 the estimated glucose amount closest to the blood-collected glucose amount is selected from the estimated glucose amount A, the estimated glucose amount B, the estimated glucose amount C, and the estimated glucose amount D.
  • This selection is made by the operation of the operation input unit 12 by the subject or by the arithmetic control unit 17. For example, if the estimated glucose amount A is the closest to the blood sampling glucose amount, the glucose amount is estimated using the multiple regression equation A from the next estimation by selecting the operation input unit 12 of the subject.
  • step S24 the glucose amount is estimated using the selected multiple regression equation A.
  • the arithmetic control unit 17 first receives the first light emitting unit 111, the second light emitting unit 112, and the third light emitting unit 113 of the light emitting unit 11 from the light emitting unit 11 to the measured portion 18 along the optical axis 22. A light ray, a second light ray, and a third light ray are emitted toward the measured portion 18. Further, an electric signal indicating the temperature of the measured portion 18 measured by the temperature measuring unit 21 is also transmitted to the arithmetic control unit 17.
  • the arithmetic control unit 17 is a multiple regression equation selected as described above based on an electric signal indicating the intensity of the first ray, the second ray, and the third ray, and an electric signal indicating the body temperature of the measured portion 18.
  • the amount of glucose is estimated using A.
  • FIG. 6 (A) is a schematic diagram showing a subject's hand
  • FIG. 6 (B) is a graph showing an error grid in which the amount of glucose is estimated using a fingertip
  • FIG. 6 (C) is a graph showing an error grid using a finger web. It is a graph which shows the error grid which estimated the amount of glucose.
  • the horizontal axis shows the blood glucose amount
  • the vertical axis shows the estimated glucose amount measured by the method according to the present embodiment.
  • the finger web is a membranous portion formed between the fingers of the human body, and in the present embodiment, the finger web formed between the index finger and the thumb of the hand.
  • the measured site for measuring the amount of glucose was adopted as the measured site for measuring the amount of glucose.
  • a finger web formed between other fingers can also be adopted as a measurement site.
  • the dots showing the measurement results are distributed away from the reference line shown by the broken line.
  • the reason for this is considered to be that the thickness of the fingertips varies greatly from person to person and the optical path length differs due to this, and that the thick blood vessels existing at the fingertips have an adverse effect.
  • dots indicating the measurement results are distributed in the vicinity of the reference line indicated by the broken line.
  • the reason for this is that the finger web has a thickness of about 2 mm to 4 mm, the difference between individuals is small, the fat content is extremely low, and there are no thick blood vessels inside, so measurement can be performed with capillaries and dermis. Because. Further, when the finger web is adopted as the measurement site, the optical path length can be shortened, and the glucose amount can be measured with low output light.
  • the fat-containing sample 1 (epidermis 0.2 mm, dermis 0.8 mm, fat 1.5 mm) and the fat-free donate 2 (epidermis 0.2 mm, dermis 0.8 mm, no fat) are listed.
  • transmission of the 1st ray, the 2nd ray and the 3rd ray is shown.
  • the sample 1 is the fingertip of the human body, and the sample 2 is the finger web.
  • the simulation conditions here are that the number of light rays is 5000, the number of scatterings is 1000 per one, the diameter of the incident light on the skin is ⁇ 1.5 mm, and the diameter of the light receiving surface is ⁇ 3 mm or ⁇ 1 mm.
  • the transmittance of the sample 2 is 3.4 times the transmittance of the sample 1. Further, in the second light beam having a wavelength of 1450 nm, the transmittance of the sample 2 is 6.2 times the transmittance of the sample 1. Further, in the third light beam having a wavelength of 1550 nm, the transmittance of the sample 2 is 3.5 times the transmittance of the sample 1.
  • the sample 1 which is a fingertip has a low transmittance of the first to third rays, so that it is not suitable as a site for measuring the amount of glucose. Furthermore, considering that the fat content varies greatly among individuals, it is clear that the amount of fat affects the transmittance, which makes it more difficult to estimate the glucose content.
  • the sample 2 which is a finger web since the sample 2 which is a finger web has an extremely low fat content, it allows the first ray, the second ray, and the third ray to pass through well, and the glucose amount is accurately determined based on the intensity of each passing ray. Can be estimated to. Moreover, even if the subject is obese, the fat contained in the finger web does not increase extremely. Therefore, if the glucose amount is estimated using each light ray transmitted through the finger web, the glucose amount can be accurately estimated without being affected by whether or not the subject is obese.
  • the glucose amount is calculated using the first ray, the second ray, and the third ray having different wavelengths, but the two rays (for example, the first ray having a wavelength of 1310 nm and the wavelength are different.
  • the amount of glucose can also be calculated using a third ray) at 1550 nm.

Abstract

Provided is a glucose amount calculation method which makes it possible to measure the amount of glucose accurately by statistically utilizing the intensity of each beam irradiated along an optical axis that penetrates through a human body. A glucose amount estimation method according to the present invention comprises: a step for irradiate a measurement site in a human body with a first beam, a second beam and a third beam that have different wavelengths from one another and receiving the first beam, the second beam and the third beam that have passed through the measurement site by a light receiving element; and a step for estimating the amount of glucose from the light intensities of the first beam, the second beam and the third beam in accordance with a conversion equation. Furthermore, in the present invention, the conversion equation performs a multi-regression analysis, in which the intensities of a first beam, a second beam and a third beam which have different wavelengths from one another and have passed through a human body and the amount of glucose in collected blood are employed as a single actual measurement data set, a plurality of actual measurement data sets are acquired with respect to different glucose amounts, and the multi-regression analysis is performed on the basis of the plurality of actual measurement data sets.

Description

グルコース量算出方法Glucose amount calculation method
 本発明は、人体等の被測定部位の内部に於けるグルコース量を光学的に計測するグルコース量算出方法に関する。 The present invention relates to a glucose amount calculation method for optically measuring the glucose amount inside a measured portion such as a human body.
 被測定部位の内部における糖分を検出する方法として、侵襲法と非侵襲法がある。侵襲法とは、例えば人体の指先等より採血を行い、その血液を用いてグルコース量を測定する方法である。非侵襲法とは、人体から血液を採取すること無く、人体の外部に配置されたセンサでグルコース量を測定する方法である。正確なグルコース量算出のためには侵襲法が一般的であるが、使用者の苦痛軽減や利便性向上のために非侵襲法によるグルコース量算出方法が望まれている。 There are invasive and non-invasive methods for detecting sugar inside the measured site. The invasive method is a method in which blood is collected from, for example, a fingertip of a human body, and the amount of glucose is measured using the blood. The non-invasive method is a method of measuring the amount of glucose with a sensor placed outside the human body without collecting blood from the human body. An invasive method is generally used for accurate glucose amount calculation, but a non-invasive method for calculating glucose amount is desired in order to reduce the pain and improve convenience of the user.
 非侵襲法でグルコース量を測定する方法の一例として、近赤外光等を人体に照射することで光学的に測定する方法が知られている。 As an example of a method for measuring the amount of glucose by a non-invasive method, a method for optically measuring by irradiating a human body with near-infrared light or the like is known.
 また、グルコース量の光学的測定方法として、近赤外光のグルコースによる吸収量の差異を検出する方法がある。具体的には、この方法では、近赤外光をある部位において透過させ、その透過光量からグルコース量を測定する(例えば特許文献1、特許文献2)。 Further, as an optical measurement method of the amount of glucose, there is a method of detecting the difference in the amount of absorption of near-infrared light due to glucose. Specifically, in this method, near-infrared light is transmitted at a certain site, and the amount of glucose is measured from the transmitted light amount (for example, Patent Document 1 and Patent Document 2).
特許第3093871号公報Japanese Patent No. 3093871 特許第3692751号公報Japanese Patent No. 3692751
 しかしながら、上記した各特許文献に記載された非侵襲法によるグルコース量の測定方法では、グルコース量を必ずしも正確に測定できるとは言えない課題があった。 However, the method for measuring the amount of glucose by the non-invasive method described in each of the above-mentioned patent documents has a problem that the amount of glucose cannot always be measured accurately.
 具体的には、特許文献1に記載された測定方法では、グルコース酸化酵素法によりグルコース量を算出しているため、グルコース量の算出が煩雑である課題があった。また、特許文献2に記載された方法では、光学的手法によりグルコース量を計測しているものの、糖尿病の可能性を判定できる程度であり、グルコース量を定量的に測定できるには至っていない。 Specifically, in the measurement method described in Patent Document 1, since the glucose amount is calculated by the glucose oxidase method, there is a problem that the calculation of the glucose amount is complicated. Further, in the method described in Patent Document 2, although the glucose amount is measured by an optical method, the possibility of diabetes can be determined, and the glucose amount cannot be quantitatively measured.
 本発明はこの様な問題点を鑑みて成されたものであり、本発明の目的は、人体を貫通する光軸に沿って照射される各光線の受光強度を、統計学的に利用することで、正確にグルコース量を推定することができるグルコース量算出方法を提供することにある。 The present invention has been made in view of such problems, and an object of the present invention is to statistically utilize the light receiving intensity of each light beam emitted along the optical axis penetrating the human body. Therefore, it is an object of the present invention to provide a glucose amount calculation method capable of accurately estimating the glucose amount.
 本発明のグルコース量算出方法は、波長が異なる複数の光線を被測定部位に照射し、前記被測定部位を透過した前記複数の光線の強度を受光素子で計測する計測ステップと、換算式に基づいて前記複数の光線の受光強度からグルコース量を推定する推定ステップと、を具備し、前記計測ステップでは、前記被測定部位を貫通するように規定された一つの光軸を、前記複数の光線が通過することを特徴とする。 The glucose amount calculation method of the present invention is based on a measurement step of irradiating a plurality of light rays having different wavelengths on a measured portion and measuring the intensity of the plurality of rays transmitted through the measured portion with a light receiving element, and a conversion formula. The plurality of light rays include an estimation step of estimating the amount of glucose from the received intensity of the plurality of light rays, and in the measurement step, the plurality of light rays have one optical axis defined to penetrate the measured portion. It is characterized by passing through.
 また、本発明のグルコース量算出方法は、前記計測ステップでは、前記複数の光線の前記受光強度、被測定部温度、並びに採血グルコース量を一つの実測データセットとして、異なるグルコース量に関して複数の前記実測データセットを取得し、前記複数の実測データセットに基づき重回帰分析を行うことで、複数の前記換算式を作成し、前記推定ステップでは、各々の前記換算式を用いて算出された複数のグルコース量推定結果から、採血グルコース量に最も近い前記グルコース量推定結果を選択し、選択された前記グルコース量推定結果を算出した前記換算式を、次回からのグルコース量算出に用いることを特徴とする。 Further, in the method for calculating the amount of glucose of the present invention, in the measurement step, the received intensity of the plurality of light rays, the temperature of the measured portion, and the amount of blood-collected glucose are used as one actual measurement data set, and a plurality of the actual measurements are made with respect to different glucose amounts. A plurality of the conversion formulas are created by acquiring a data set and performing multiple regression analysis based on the plurality of actual measurement data sets, and in the estimation step, a plurality of glucoses calculated using each of the above conversion formulas. It is characterized in that the glucose amount estimation result closest to the blood collected glucose amount is selected from the amount estimation result, and the conversion formula for calculating the selected glucose amount estimation result is used for the glucose amount calculation from the next time.
 また、本発明のグルコース量算出方法は、前記計測ステップでは、前記被測定部位の温度を計測し、前記推定ステップでは、前記複数の光線の前記受光強度に加えて、前記温度を用いて前記グルコース量を算出することを特徴とする。 Further, in the method for calculating the amount of glucose of the present invention, in the measurement step, the temperature of the measured portion is measured, and in the estimation step, the glucose is used in addition to the received light intensity of the plurality of light rays. It is characterized by calculating the amount.
 また、本発明のグルコース量算出方法では、前記換算式は、予め記憶装置に記憶されているパラメータを用いることを特徴とする。 Further, in the glucose amount calculation method of the present invention, the conversion formula is characterized in that parameters stored in a storage device in advance are used.
 また、本発明のグルコース量算出方法では、前記複数の光線は、フィンガーウェブを透過することを特徴とする。 Further, the glucose amount calculation method of the present invention is characterized in that the plurality of light rays pass through the finger web.
 また、本発明のグルコース量算出方法では、前記換算式は、統計学的手法により算出された重回帰式であることを特徴とする。これにより、本発明のグルコース量算出方法によれば、統計学的手法に基づいて換算式を算出することから、個々の被験者の体質に基づいた換算式を得ることができる。 Further, in the glucose amount calculation method of the present invention, the conversion formula is a multiple regression formula calculated by a statistical method. Thereby, according to the glucose amount calculation method of the present invention, since the conversion formula is calculated based on the statistical method, the conversion formula based on the constitution of each subject can be obtained.
 また、本発明のグルコース量算出方法では、前記計測ステップでは、波長が異なる第1光線、第2光線および第3光線を、前記被測定部位に照射し、前記被測定部位を透過した前記第1光線、前記第2光線および前記第3光線の強度を受光素子で計測し、前記推定ステップでは、前記換算式に基づいて、前記第1光線、前記第2光線および前記第3光線の受光強度から、前記グルコース量を推定することを特徴とする。 Further, in the method for calculating the amount of glucose of the present invention, in the measurement step, the first ray, the second ray and the third ray having different wavelengths are applied to the measured portion, and the first ray is transmitted through the measured portion. The intensities of the light rays, the second light rays and the third light rays are measured by the light receiving element, and in the estimation step, the light receiving intensities of the first light rays, the second light rays and the third light rays are used based on the conversion formula. , The feature is to estimate the amount of glucose.
 本発明のグルコース量算出方法は、波長が異なる複数の光線を被測定部位に照射し、前記被測定部位を透過した前記複数の光線の強度を受光素子で計測する計測ステップと、換算式に基づいて前記複数の光線の受光強度からグルコース量を推定する推定ステップと、を具備し、前記計測ステップでは、前記被測定部位を貫通するように規定された一つの光軸を、前記複数の光線が通過することを特徴とする。これにより、本発明のグルコース量の計測方法によれば、一つの光軸を、複数の光線が通過することで、同一の光学的条件の人体部分を複数の光線が通過するので、グルコース量を正確に計測することができる。 The glucose amount calculation method of the present invention is based on a measurement step of irradiating a plurality of light rays having different wavelengths on a measured portion and measuring the intensity of the plurality of rays transmitted through the measured portion with a light receiving element, and a conversion formula. The plurality of light rays include an estimation step of estimating the amount of glucose from the received intensity of the plurality of light rays, and in the measurement step, the plurality of light rays have one optical axis defined to penetrate the measured portion. It is characterized by passing through. As a result, according to the method for measuring the amount of glucose of the present invention, when a plurality of light rays pass through one optical axis, a plurality of light rays pass through a human body portion under the same optical conditions, so that the amount of glucose can be determined. It can be measured accurately.
 また、本発明のグルコース量算出方法では、前記計測ステップでは、前記複数の光線の前記受光強度、被測定部温度、並びに採血グルコース量を一つの実測データセットとして、異なるグルコース量に関して複数の前記実測データセットを取得し、前記複数の実測データセットに基づき重回帰分析を行うことで、複数の前記換算式を作成し、前記推定ステップでは、各々の前記換算式を用いて算出された複数のグルコース量推定結果から、採血グルコース量に最も近い前記グルコース量推定結果を選択し、選択された前記グルコース量推定結果を算出した前記換算式を、次回からのグルコース量算出に用いることを特徴とする。これにより、本発明のグルコース量の計測方法によれば、複数の換算式を用意することで、被験者の体質に応じて適切な換算式を採用することができ、血糖度を精度良く推定することができる。 Further, in the glucose amount calculation method of the present invention, in the measurement step, the received intensity of the plurality of light rays, the temperature of the measured portion, and the blood collected glucose amount are used as one actual measurement data set, and a plurality of the actual measurements are made with respect to different glucose amounts. A plurality of the conversion formulas are created by acquiring a data set and performing multiple regression analysis based on the plurality of actual measurement data sets, and in the estimation step, a plurality of glucoses calculated using each of the above conversion formulas. It is characterized in that the glucose amount estimation result closest to the blood collected glucose amount is selected from the amount estimation result, and the conversion formula for calculating the selected glucose amount estimation result is used for the glucose amount calculation from the next time. As a result, according to the method for measuring the amount of glucose of the present invention, by preparing a plurality of conversion formulas, an appropriate conversion formula can be adopted according to the constitution of the subject, and the blood glucose level can be estimated accurately. Can be done.
 また、本発明のグルコース量算出方法では、前記計測ステップでは、前記被測定部位の温度を計測し、前記推定ステップでは、前記複数の光線の前記受光強度に加えて、前記温度を用いて前記グルコース量を算出することを特徴とする。これにより、本発明のグルコース量の計測方法によれば、人体を透過する光線の受光強度に加えて、人体の体温を用いてグルコース量を推定することで、グルコース量をより正確に推定することができる。 Further, in the glucose amount calculation method of the present invention, in the measurement step, the temperature of the measured portion is measured, and in the estimation step, the glucose is used in addition to the received light intensity of the plurality of light rays. It is characterized by calculating the amount. Thereby, according to the method for measuring the amount of glucose of the present invention, the amount of glucose can be estimated more accurately by estimating the amount of glucose using the body temperature of the human body in addition to the light receiving intensity of the light rays transmitted through the human body. Can be done.
 また、本発明のグルコース量算出方法では、前記換算式は、予め記憶装置に記憶されているパラメータを用いることを特徴とする。これにより、本発明のグルコース量の計測方法によれば、被験者自身が採血することなく換算式を得ることができる。 Further, in the glucose amount calculation method of the present invention, the conversion formula is characterized in that parameters stored in a storage device in advance are used. Thereby, according to the method for measuring the amount of glucose of the present invention, the conversion formula can be obtained without collecting blood by the subject himself / herself.
 また、本発明のグルコース量算出方法では、前記複数の光線は、フィンガーウェブを透過することを特徴とする。これにより、本発明のグルコース量の計測方法によれば、脂肪が少なく、個人間の厚みのばらつきが小さく、透過距離が短いフィンガーウェブを透過する各光線を用いてグルコース量を算出することで、グルコース量を正確に推定できる。 Further, the glucose amount calculation method of the present invention is characterized in that the plurality of light rays pass through the finger web. As a result, according to the method for measuring the amount of glucose of the present invention, the amount of glucose is calculated by using each light ray transmitted through the finger web, which has less fat, less variation in thickness between individuals, and a short transmission distance. The amount of glucose can be estimated accurately.
 また、本発明のグルコース量算出方法では、前記換算式は、統計学的手法により算出された重回帰式であることを特徴とする。これにより、本発明のグルコース量算出方法によれば、統計学的手法に基づいて換算式を算出することから、個々の被験者の体質に基づいた換算式を得ることができる。 Further, in the glucose amount calculation method of the present invention, the conversion formula is a multiple regression formula calculated by a statistical method. Thereby, according to the glucose amount calculation method of the present invention, since the conversion formula is calculated based on the statistical method, the conversion formula based on the constitution of each subject can be obtained.
 また、本発明のグルコース量算出方法では、前記計測ステップでは、波長が異なる第1光線、第2光線および第3光線を、前記被測定部位に照射し、前記被測定部位を透過した前記第1光線、前記第2光線および前記第3光線の強度を受光素子で計測し、前記推定ステップでは、前記換算式に基づいて、前記第1光線、前記第2光線および前記第3光線の受光強度から、前記グルコース量を推定することを特徴とする。これにより、本発明のグルコース量算出方法によれば、波長が異なる第1光線、第2光線および第3光線を用いることで、より正確にグルコース量を算出することができる。 Further, in the method for calculating the amount of glucose of the present invention, in the measurement step, the first ray, the second ray and the third ray having different wavelengths are applied to the measured portion, and the first ray is transmitted through the measured portion. The intensities of the light rays, the second light rays and the third light rays are measured by the light receiving element, and in the estimation step, the light receiving intensities of the first light rays, the second light rays and the third light rays are used based on the conversion formula. , The feature is to estimate the amount of glucose. Thereby, according to the glucose amount calculation method of the present invention, the glucose amount can be calculated more accurately by using the first ray, the second ray and the third ray having different wavelengths.
本発明の実施形態に係るグルコース量算出方法で用いるグルコース量計測装置の基本構成を示す概念図である。It is a conceptual diagram which shows the basic structure of the glucose amount measuring apparatus used in the glucose amount calculation method which concerns on embodiment of this invention. 本発明の実施形態に係るグルコース量算出方法を示すフローチャートである。It is a flowchart which shows the glucose amount calculation method which concerns on embodiment of this invention. 本発明の実施形態に係るグルコース量算出方法を示す図であり、(A)、(B)および(C)は発光点を移動させながら測定する状況を示す側面図である。It is a figure which shows the glucose amount calculation method which concerns on embodiment of this invention, (A), (B) and (C) are side views which show the situation which we measure while moving a light emitting point. 本発明の実施形態に係るグルコース量算出方法を示すグラフである。It is a graph which shows the glucose amount calculation method which concerns on embodiment of this invention. 本発明の他の形態に係るグルコース量算出方法を示す図であり、(A)はフローチャートであり、(B)は当該方法を概念的に示すブロック図である。It is a figure which shows the glucose amount calculation method which concerns on other embodiment of this invention, (A) is a flowchart, (B) is a block diagram which conceptually shows the said method. 本発明の実施形態に係るグルコース量算出方法を示す図であり、(A)はフィンガーウェブを示す模式図であり、(B)は指先でグルコース量を測定した結果を示すグラフであり、(C)はフィンガーウェブでグルコース量を測定した結果を示すグラフである。It is a figure which shows the glucose amount calculation method which concerns on embodiment of this invention, (A) is a schematic diagram which shows a finger web, (B) is a graph which shows the result of having measured the glucose amount with a fingertip, (C). ) Is a graph showing the result of measuring the glucose amount with the finger web.
 図1を参照して、本形態のグルコース量算出方法を説明する。図1は、本実施形態のグルコース量算出方法で利用するグルコース量算出装置10の基本構成を示す概念図である。ここで、グルコース量とは、血中あるいは間質のグルコース量である。また、グルコース量は、血糖値等と称されることもある。 The glucose amount calculation method of this embodiment will be described with reference to FIG. FIG. 1 is a conceptual diagram showing a basic configuration of a glucose amount calculation device 10 used in the glucose amount calculation method of the present embodiment. Here, the amount of glucose is the amount of glucose in blood or interstitium. In addition, the amount of glucose may be referred to as a blood glucose level or the like.
 図1を参照して、グルコース量算出装置10は、測定に用いられる光線を射出する発光部11と、発光部11から射出される光線を被測定部位18に導く光学素子であるレンズ14と、被測定部位18を透過した光線を受光する受光部19と、受光部19の出力に基づいてグルコース量を算出する演算制御部17と、記憶部13と、表示部15と、操作入力部12と、温度計測部21と、を具備している。 With reference to FIG. 1, the glucose amount calculation device 10 includes a light emitting unit 11 that emits a light ray used for measurement, a lens 14 that is an optical element that guides a light ray emitted from the light emitting unit 11 to a measured portion 18, and a lens 14. A light receiving unit 19 that receives light rays transmitted through the measured portion 18, an arithmetic control unit 17 that calculates the amount of glucose based on the output of the light receiving unit 19, a storage unit 13, a display unit 15, and an operation input unit 12. , And a temperature measuring unit 21.
 グルコース量算出装置10の機能は、光線を被測定部位である人体に透過させることで、非侵襲法により人体のグルコース量を計測することにある。 The function of the glucose amount calculation device 10 is to measure the glucose amount of the human body by a non-invasive method by transmitting light rays through the human body which is the measurement site.
 発光部11は、グルコース量を計測するために所定の波長の光線を射出する。発光部11は、波長が異なる光線を射出する第1発光部111、第2発光部112および第3発光部113を有している。第1発光部111、第2発光部112および第3発光部113は、夫々、発光ダイオードから成る。例えば、第1発光部111から射出される第1光線の波長は1310nmであり、第2発光部112から射出される第2光線の波長は1450nmであり、第3発光部113から射出される第3光線の波長は1550nmである。 The light emitting unit 11 emits a light beam having a predetermined wavelength in order to measure the amount of glucose. The light emitting unit 11 has a first light emitting unit 111, a second light emitting unit 112, and a third light emitting unit 113 that emit light rays having different wavelengths. The first light emitting unit 111, the second light emitting unit 112, and the third light emitting unit 113 are each composed of a light emitting diode. For example, the wavelength of the first light ray emitted from the first light emitting unit 111 is 1310 nm, the wavelength of the second light ray emitted from the second light emitting unit 112 is 1450 nm, and the wavelength of the second light ray emitted from the third light emitting unit 113 is 1. The wavelength of the three rays is 1550 nm.
 また、発光部11は、図示しないアクチュエータにより、左右方向に移動される。発光部11を移動させることで、第1発光部111、第2発光部112および第3発光部113の何れかを、同一の光軸22の軸上に配置できる。ここでは、第2発光部112を光軸22の軸上に配置した場合を示している。 Further, the light emitting unit 11 is moved in the left-right direction by an actuator (not shown). By moving the light emitting unit 11, any one of the first light emitting unit 111, the second light emitting unit 112, and the third light emitting unit 113 can be arranged on the same optical axis 22. Here, the case where the second light emitting unit 112 is arranged on the axis of the optical axis 22 is shown.
 第1光線は生体中の成分に吸収されない光線であり、第2光線および第3光線は生体中のグルコース、タンパク質および水に吸収される光線である。第1光線で、光軸22の光路長を測定することで、光路長が各光線の吸収率に与える影響を測定し、光路長の影響を排除することができ、グルコース量を正確に算出することができる。 The first ray is a ray that is not absorbed by the components in the living body, and the second and third rays are the rays that are absorbed by glucose, protein and water in the living body. By measuring the optical path length of the optical axis 22 with the first ray, the influence of the optical path length on the absorption rate of each ray can be measured, the influence of the optical path length can be eliminated, and the glucose amount can be calculated accurately. be able to.
 本実施形態では、第1光線、第2光線および第3光線は、光軸22に沿って、発光部11から受光部19まで照射される。すなわち、第1光線、第2光線および第3光線の、被測定部位18の内部における伝搬径路および伝搬長が同じである。 In the present embodiment, the first light ray, the second light ray, and the third light ray are irradiated from the light emitting unit 11 to the light receiving unit 19 along the optical axis 22. That is, the propagation path and the propagation length of the first ray, the second ray, and the third ray inside the measured portion 18 are the same.
 上記のように各光線で光軸22を共有することで、グルコース量を正確に計測することができる。具体的には、Lambert-Beerの法則により、グルコース量は以下の式1で算出される。
式1:C=-log10(I/I)/(0.434×μa×r)
By sharing the optical axis 22 with each light ray as described above, the amount of glucose can be accurately measured. Specifically, according to the Lambert-Beer law, the amount of glucose is calculated by the following formula 1.
Equation 1: C = -log 10 (I / I 0 ) / (0.434 × μ a × r)
 上記した式1に於いて、Cはグルコース量であり、Iは出射光パワーであり、Iは入射光パワーであり、μaは皮膚の吸光係数であり、rは光路長である。 In the above equation 1, C is the amount of glucose, I is the emitted light power, I 0 is the incident light power, μ a is the extinction coefficient of the skin, and r is the optical path length.
 本実施形態では、第1光線、第2光線および第3光線で、光軸22を共有することにより、光路長rを同一にすることで、算出するべき未知数を減少させ、正確且つ簡易にグルコース量Cを求めることができる。 In the present embodiment, by sharing the optical axis 22 between the first ray, the second ray, and the third ray, the optical path length r is made the same, so that the unknown number to be calculated is reduced, and glucose is accurately and easily calculated. The quantity C can be obtained.
 レンズ14は、上記した第1発光部111、第2発光部112および第3発光部113から射出された第1光線、第2光線および第3光線を、その屈折作用や回折作用により、被測定部位18に導く。 The lens 14 measures the first light beam, the second light ray, and the third light ray emitted from the first light emitting unit 111, the second light emitting unit 112, and the third light emitting unit 113 by the refraction action and the diffraction action thereof. Lead to site 18.
 被測定部位18は、本形態のグルコース量算出装置10でグルコース量が計測される部位である。具体的には、被測定部位18としては、指先、耳たぶ、フィンガーウェブ等を採用できる。後述するように、被測定部位18としては、含有される脂肪分が少なく、厚みの個人差が小さく、且つ、太い血管が形成されていないフィンガーウェブが好適である。 The measurement site 18 is a site where the glucose amount is measured by the glucose amount calculation device 10 of the present embodiment. Specifically, as the measurement site 18, a fingertip, an earlobe, a finger web, or the like can be adopted. As will be described later, the finger web to be measured is preferably a finger web containing a small amount of fat, having a small individual difference in thickness, and having no thick blood vessels formed.
 受光部19は、例えばフォトダイオードから成る半導体素子であり、被測定部位18を透過した第1光線、第2光線および第3光線を受光し、その強度を検出する図示しない受光部位が形成されている。受光部19は、第1光線、第2光線および第3光線の受光強度に応じた信号を演算制御部17に伝送する。 The light receiving portion 19 is, for example, a semiconductor element made of a photodiode, and a light receiving portion (not shown) is formed which receives the first light ray, the second light ray, and the third light ray transmitted through the measured portion 18 and detects the intensity thereof. There is. The light receiving unit 19 transmits signals corresponding to the light receiving intensities of the first light ray, the second light ray, and the third light ray to the arithmetic control unit 17.
 記憶部13は、RAMやROMから成る半導体記憶装置等であり、受光部19の出力値からグルコース量を算出するための計算式、パラメータ、推定結果、本実施形態に係るグルコース量算出方法を実行するためのプログラム等を記憶している。 The storage unit 13 is a semiconductor storage device or the like including a RAM or a ROM, and executes a calculation formula, parameters, estimation results, and a glucose amount calculation method according to the present embodiment for calculating the glucose amount from the output value of the light receiving unit 19. I remember the program to do it.
 操作入力部12は、被験者が演算制御部17に対して指示を与える部位であり、スイッチ、タッチパネル等から構成される。 The operation input unit 12 is a part where the subject gives an instruction to the calculation control unit 17, and is composed of a switch, a touch panel, and the like.
 温度計測部21は、被験者の体に接触することで、被験者の体温を計測する部位である。 The temperature measuring unit 21 is a part that measures the body temperature of the subject by coming into contact with the body of the subject.
 演算制御部17は、CPUから構成され、各種演算を行うと共にグルコース量算出装置10を構成する各部位の動作を制御している。詳しくは、演算制御部17は、発光部11の第1発光部111、第2発光部112および第3発光部113から、第1光線、第2光線および第3光線を照射する。また、演算制御部17は、受光部19および温度計測部21等から入力される電気信号に基づいて、後述する重回帰式である換算式を用いて、グルコース量を推定する。また、演算制御部17は、算出したグルコース量を表示部15に表示するようにしても良い。例えば液晶モニタである表示部15にグルコース量を表示することで、グルコース量算出装置10を使用する使用者は、自身のグルコース量の変化をリアルタイムに知ることができる。また、後述する計測を行うステップに於いて、各発光部の発光点を光軸22の軸状に配置するために、演算制御部17は、発光部11を移動させる。 The calculation control unit 17 is composed of a CPU, performs various calculations, and controls the operation of each part constituting the glucose amount calculation device 10. Specifically, the arithmetic control unit 17 irradiates the first light ray, the second light ray, and the third light ray from the first light emitting unit 111, the second light emitting unit 112, and the third light emitting unit 113 of the light emitting unit 11. Further, the arithmetic control unit 17 estimates the amount of glucose based on the electric signals input from the light receiving unit 19, the temperature measuring unit 21, and the like, using a conversion formula which is a multiple regression formula described later. Further, the arithmetic control unit 17 may display the calculated glucose amount on the display unit 15. For example, by displaying the glucose amount on the display unit 15 which is a liquid crystal monitor, the user who uses the glucose amount calculation device 10 can know the change of his / her own glucose amount in real time. Further, in the step of performing the measurement described later, the arithmetic control unit 17 moves the light emitting unit 11 in order to arrange the light emitting points of each light emitting unit in the axial shape of the optical axis 22.
 図2のフローチャートを参照して、上記した図1も参照しつつ、グルコース量算出装置10を用いて被験者のグルコース量を推定する方法を説明する。ここでは、被験者が採血および各光線の照射を行うことで、グルコース量の推定に用いる換算式である重回帰式のパラメータを算出し、この換算式を用いて受光部19の出力値から被験者のグルコース量を推定している。ここで、重回帰式のパラメータは、予めグルコース量算出装置10の記憶部13に記憶されたものを用いることもでき、これにより被験者の利便性を向上することができる。また、以下の各ステップは、記憶部13に格納されたプログラムに基づいて、実行されている。 A method of estimating the glucose amount of a subject using the glucose amount calculation device 10 will be described with reference to the flowchart of FIG. 2 and also with reference to FIG. 1 described above. Here, the subject collects blood and irradiates each light beam to calculate the parameters of the multiple regression equation, which is a conversion formula used for estimating the amount of glucose, and uses this conversion formula to calculate the parameters of the subject from the output value of the light receiving unit 19. The amount of glucose is estimated. Here, as the parameter of the multiple regression equation, a parameter stored in advance in the storage unit 13 of the glucose amount calculation device 10 can be used, whereby the convenience of the subject can be improved. Further, each of the following steps is executed based on the program stored in the storage unit 13.
 ステップS10では、先ず、被験者から採血した血液からグルコース量を計測する。この採血は、重回帰式のパラメータを算出するためのものであり、最初に採血を行うことで、次回からの測定では採血を行うことは不要である。 In step S10, first, the amount of glucose is measured from the blood collected from the subject. This blood collection is for calculating the parameters of the multiple regression equation, and by collecting blood first, it is not necessary to collect blood in the next measurement.
 ステップS11では、次に、被験者のフィンガーウェブを通過した光線の強度および体温を測定する。具体的には、演算制御部17は、発光部11の第1発光部111、第2発光部112および第3発光部113から、第1光線、第2光線および第3光線を放射させる。第1光線、第2光線および第3光線の波長は上記したとおりである。また、図1に示したように、発光部11を左右後方に沿って移動することで、第1光線、第2光線および第3光線を、光軸22に沿って照射している。 In step S11, next, the intensity and body temperature of the light beam passing through the finger web of the subject are measured. Specifically, the arithmetic control unit 17 emits a first light ray, a second light ray, and a third light ray from the first light emitting unit 111, the second light emitting unit 112, and the third light emitting unit 113 of the light emitting unit 11. The wavelengths of the first ray, the second ray and the third ray are as described above. Further, as shown in FIG. 1, by moving the light emitting unit 11 along the left and right rear, the first light ray, the second light ray, and the third light ray are irradiated along the optical axis 22.
 放射された第1光線、第2光線および第3光線は、レンズ14で被測定部位18の所定部位に照射される。被測定部位18に入射した第1光線、第2光線および第3光線は、人体の内部で吸収、減衰、反射された後に、その一部が人体を透過して受光部19に到達する。受光部19は、第1光線、第2光線および第3光線の各波長帯につき、受光強度に応じた電気信号を演算制御部17に伝送する。ここで、レンズ14に替えて、ピンホールを用いて各光線を絞って照射することもできる。 The emitted first ray, second ray and third ray are applied to a predetermined portion of the measured portion 18 by the lens 14. The first ray, the second ray, and the third ray incident on the measured portion 18 are absorbed, attenuated, and reflected inside the human body, and then a part of them pass through the human body and reach the light receiving portion 19. The light receiving unit 19 transmits an electric signal corresponding to the light receiving intensity to the arithmetic control unit 17 for each wavelength band of the first light ray, the second light ray, and the third light ray. Here, instead of the lens 14, each light beam can be focused and irradiated using a pinhole.
 図3を参照して、ステップS11において発光部11を変位させながら各光線を照射する事項を説明する。図3(A)は第2発光部112から第2光線を照射する状況を示し、図3(B)では第1発光部111から第1光線を照射する状況を示し、図3(C)は第3発光部113から第3光線を照射する状況を示している。ここでは、第2発光部112、第1発光部111および第3発光部113の順番で、光軸22に沿って光線を照射するが、この順番は変更することができる。 With reference to FIG. 3, the matter of irradiating each light beam while displacing the light emitting unit 11 in step S11 will be described. FIG. 3A shows a situation in which the second light emitting unit 112 irradiates the second light beam, FIG. 3B shows a situation in which the first light emitting unit 111 irradiates the first light beam, and FIG. 3C shows a situation in which the first light emitting unit is irradiated. It shows the situation where the third light beam is emitted from the third light emitting unit 113. Here, the light rays are irradiated along the optical axis 22 in the order of the second light emitting unit 112, the first light emitting unit 111, and the third light emitting unit 113, but this order can be changed.
 図3(A)を参照して、第2発光部112から第2光線を照射する際には、先ず、演算制御部17は、第2発光部112の発光点が光軸22と重畳するように、発光部11を移動させる。第2発光部112の発光点が光軸22と重畳したら、演算制御部17は、第2発光部112から第2光線を発光する。発光された第2光線は光軸22に沿って進行し、被測定部位18を透過した後に、受光部19に照射される。受光部19が受光した第2光線の強度を示す電気信号は、演算制御部17に伝送される。 With reference to FIG. 3A, when irradiating the second light beam from the second light emitting unit 112, first, the arithmetic control unit 17 causes the light emitting point of the second light emitting unit 112 to overlap with the optical axis 22. The light emitting unit 11 is moved to. When the light emitting point of the second light emitting unit 112 overlaps with the optical axis 22, the arithmetic control unit 17 emits a second light ray from the second light emitting unit 112. The emitted second light ray travels along the optical axis 22, passes through the measured portion 18, and then irradiates the light receiving portion 19. An electric signal indicating the intensity of the second light ray received by the light receiving unit 19 is transmitted to the arithmetic control unit 17.
 図3(B)を参照して、次に、演算制御部17は、図示しないアクチュエータにより発光部11を右方に移動させることで、第1発光部111の発光点を光軸22の軸と重畳させる。第1発光部111の発光点が光軸22と重畳したら、演算制御部17は、第1発光部111から第1光線を発光する。発光された第1光線は光軸22に沿って進行し、被測定部位18を透過した後に、受光部19に照射される。受光部19が受光した第1光線の強度を示す電気信号は、演算制御部17に伝送される。 With reference to FIG. 3B, the arithmetic control unit 17 then moves the light emitting unit 11 to the right by an actuator (not shown) so that the light emitting point of the first light emitting unit 111 is set to the axis of the optical axis 22. Overlay. When the light emitting point of the first light emitting unit 111 overlaps with the optical axis 22, the arithmetic control unit 17 emits a first light ray from the first light emitting unit 111. The emitted first light ray travels along the optical axis 22, passes through the measured portion 18, and then irradiates the light receiving portion 19. An electric signal indicating the intensity of the first light ray received by the light receiving unit 19 is transmitted to the arithmetic control unit 17.
 図3(C)を参照して、次に、演算制御部17は、図示しないアクチュエータにより発光部11を左方に移動させることで、第3発光部113の発光点を光軸22の軸と重畳させる。第3発光部113の発光点が光軸22と重畳したら、演算制御部17は、第3発光部113から第3光線を発光する。発光された第3光線は光軸22に沿って進行し、被測定部位18を透過した後に、受光部19に照射される。受光部19が受光した第3光線の強度を示す電気信号は、演算制御部17に伝送される。 With reference to FIG. 3C, the arithmetic control unit 17 then moves the light emitting unit 11 to the left by an actuator (not shown) so that the light emitting point of the third light emitting unit 113 becomes the axis of the optical axis 22. Overlay. When the light emitting point of the third light emitting unit 113 overlaps with the optical axis 22, the arithmetic control unit 17 emits a third light ray from the third light emitting unit 113. The emitted third light ray travels along the optical axis 22, passes through the measured portion 18, and then irradiates the light receiving portion 19. An electric signal indicating the intensity of the third light ray received by the light receiving unit 19 is transmitted to the arithmetic control unit 17.
 また、演算制御部17の指示に基づいて、温度計測部21は被験者の体温を計測し、当該体温を示す電気信号は演算制御部17に伝送される。 Further, based on the instruction of the calculation control unit 17, the temperature measurement unit 21 measures the body temperature of the subject, and the electric signal indicating the body temperature is transmitted to the calculation control unit 17.
 上記したステップS11は、後述する重回帰分析のために、複数のグルコース量に関して、複数回行われる。 The above-mentioned step S11 is performed a plurality of times with respect to a plurality of glucose amounts for the multiple regression analysis described later.
 ステップS12では、ステップS11の結果に基づいて、重回帰式のパラメータを求める。 In step S12, the parameters of the multiple regression equation are obtained based on the result of step S11.
 ステップS11で計測した、採血グルコース量等を、以下の表1に示す。 The amount of blood-collected glucose measured in step S11 is shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1では、左方から、採血グルコース量、被測定部温度、波長が1310nmである第1光線の受光強度、波長が1450nmである第2光線の受光強度、波長が1550nmである第3光線の受光強度、および、推定されたグルコース量を示している。ここでは、糖分を投与するなどして、被験者の採血グルコース量を変化させながら、採血、体温測定、人体を通過した各光線の受光、当該受光強度に基づくグルコース量の推定を行った。 In Table 1, from the left, the amount of blood glucose collected, the temperature of the part to be measured, the light receiving intensity of the first light having a wavelength of 1310 nm, the light receiving intensity of the second light having a wavelength of 1450 nm, and the light receiving intensity of the third light having a wavelength of 1550 nm. It shows the light receiving intensity and the estimated amount of glucose. Here, blood sampling, body temperature measurement, light reception of each light ray passing through the human body, and estimation of glucose amount based on the light reception intensity were performed while changing the blood sampling glucose amount of the subject by administering sugar or the like.
 本実施形態では、表1の結果に基づいて重回帰分析を行い、換算式である重回帰式の各パラメータを算出する。本実施形態では、以下の式2に示す重回帰式を、グルコース量を推定する換算式として採用している。
式2:推定グルコース量=切片+β1×被測定部温度+β2×第1光線出力電圧+β3×第2光線出力電圧+β4×第3光線出力電圧
In this embodiment, multiple regression analysis is performed based on the results in Table 1, and each parameter of the multiple regression equation, which is a conversion equation, is calculated. In this embodiment, the multiple regression equation shown in Equation 2 below is adopted as a conversion equation for estimating the amount of glucose.
Equation 2: Estimated glucose amount = section + β1 × temperature of the part to be measured + β2 × first ray output voltage + β3 × second ray output voltage + β4 × third ray output voltage
 式2を構成するパラメータは、記憶部13に格納され、グルコース量の推定に用いられる。 The parameters constituting the equation 2 are stored in the storage unit 13 and used for estimating the glucose amount.
 上記した重回帰分析による分析結果を以下の表2に示す。表2は、表2-1、表2-2および表2-3を含む。表2-1は回帰統計を示し、表2-2は分散分析を示し、表2-3は回帰分析による回帰係数等を示している。 The analysis results by the above multiple regression analysis are shown in Table 2 below. Table 2 includes Table 2-1 and Table 2-2 and Table 2-3. Table 2-1 shows regression statistics, Table 2-2 shows analysis of variance, and Table 2-3 shows regression coefficients and the like by regression analysis.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2から明らかなように、P-値が全て0.05以下であるので、回帰係数は有意であると判断でき、上記した式2に示した重回帰式により、グルコース量を正確に推定することができる。 As is clear from Table 2, since all P-values are 0.05 or less, it can be judged that the regression coefficient is significant, and the glucose amount is accurately estimated by the multiple regression equation shown in Equation 2 above. be able to.
 図4は、推定グルコース量と採血グルコース量との関係を示すグラフである。このグラフの横軸は採血グルコース量を示し、縦軸は推定グルコース量を示している。このグラフでは、検量線を実線で示し、±5%誤差のラインを点線で示している。 FIG. 4 is a graph showing the relationship between the estimated glucose amount and the blood sampling glucose amount. The horizontal axis of this graph shows the amount of blood-collected glucose, and the vertical axis shows the estimated amount of glucose. In this graph, the calibration curve is shown by a solid line, and the line with a ± 5% error is shown by a dotted line.
 ステップS13およびステップS14では、上記した換算式を用いてグルコース量を推定する。具体的には、図1を参照して、演算制御部17は、先ず、光軸22に沿って、発光部11の第1発光部111、第2発光部112および第3発光部113から、被測定部位18に第1光線、第2光線および第3光線を被測定部位18に向けて照射する。第1光線、第2光線および第3光線は、被測定部位18の内部で、減衰、反射および吸収が行われ、その一部が被測定部位18を透過して受光部19に到達する。受光部19は、受光部19に到達した第1光線、第2光線および第3光線の強度を示す電気信号を、演算制御部17に伝送する。また、温度計測部21が計測した、被測定部位18の温度を示す電気信号も演算制御部17に伝送される。演算制御部17は、第1光線、第2光線および第3光線の強度を示す電気信号、および、被測定部位18の体温を示す電気信号に基づいて、上記した式2に示す換算式を利用して、グルコース量を推定する。 In step S13 and step S14, the glucose amount is estimated using the above conversion formula. Specifically, referring to FIG. 1, the arithmetic control unit 17 first receives from the first light emitting unit 111, the second light emitting unit 112, and the third light emitting unit 113 of the light emitting unit 11 along the optical axis 22. The measured portion 18 is irradiated with the first ray, the second ray, and the third ray toward the measured portion 18. The first ray, the second ray, and the third ray are attenuated, reflected, and absorbed inside the measured portion 18, and a part of the first ray, the second ray, and the third ray pass through the measured portion 18 and reach the light receiving portion 19. The light receiving unit 19 transmits an electric signal indicating the intensities of the first light ray, the second light ray, and the third light ray that have reached the light receiving unit 19 to the arithmetic control unit 17. Further, an electric signal indicating the temperature of the measured portion 18 measured by the temperature measuring unit 21 is also transmitted to the arithmetic control unit 17. The arithmetic control unit 17 uses the conversion formula shown in the above equation 2 based on the electric signal indicating the intensity of the first ray, the second ray, and the third ray, and the electric signal indicating the body temperature of the measured portion 18. Then, the amount of glucose is estimated.
 表3に、表1と同様の被験者が、別の日にステップS13およびステップS14に示した方法でグルコース量を推定した結果を示す。即ち、ここでは換算式を導出する為に採血、光線照射および体温計測を行った人と、当該換算式を用いてグルコース量を推定する人とが、同一人物である。表3から明らかなように、本実施形態に係る推定方法により推定される推定グルコース量は、採血グルコース量に極めて近いので、正確な推定が行われていると判断できる。 Table 3 shows the results of estimating the glucose amount by the same subjects as in Table 1 on different days by the methods shown in steps S13 and S14. That is, here, the person who collected blood, irradiated with light, and measured the body temperature in order to derive the conversion formula and the person who estimates the glucose amount using the conversion formula are the same person. As is clear from Table 3, since the estimated glucose amount estimated by the estimation method according to the present embodiment is extremely close to the blood sampling glucose amount, it can be determined that accurate estimation is performed.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表4に、表1(換算式を算出するための被験者)とは別の被験者がステップS13およびステップS14に示した方法でグルコース量を推定した結果に示す。表4から明らかなように、換算式を導出するための被験者と、その換算式を用いてグルコース量を推定する被験者が異なる場合でも、推定グルコース量と採血グルコース量とは近いので、この場合でも正確な推定が行われている。 Table 4 shows the results of estimating the glucose amount by the methods shown in steps S13 and S14 by a subject different from Table 1 (subject for calculating the conversion formula). As is clear from Table 4, even if the subject for deriving the conversion formula and the subject for estimating the glucose amount using the conversion formula are different, the estimated glucose amount and the blood sampling glucose amount are close to each other, so even in this case. Accurate estimates have been made.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 また図4のグラフでは、検量線の算出に用いた採血グルコース量および推定グルコース量を白抜きの円で示している。また、表4および表5の値を黒塗りの円で示している。このグラフから明らかなように、他の被験者の場合および任意の日の測定値は、略±5%誤差のラインで挟まれる領域に配置されている。よって、上記した換算式を用いた推定方法により、グルコース量を精度良く推定することができる。 Further, in the graph of FIG. 4, the blood sampling glucose amount and the estimated glucose amount used for calculating the calibration curve are shown by white circles. The values in Tables 4 and 5 are shown by black circles. As is clear from this graph, the measurements for other subjects and for any day are located in the area sandwiched by lines with an error of approximately ± 5%. Therefore, the glucose amount can be estimated accurately by the estimation method using the above conversion formula.
 図5を参照して、他の形態に係るグルコース量の推定方法を説明する。ここで説明するグルコース量の推定方法の概要は上記と同様であるが、複数の換算式を用意し、被験者に適した換算式を選択することで推定精度を向上する事項が上記した方法とは異なる。図5(A)は、本実施形態に係るグルコース量の推定方法を示すフローチャートであり、図5(B)は本実施形態における算出方法を概念的に示すブロック図である。 A method for estimating the amount of glucose according to another form will be described with reference to FIG. The outline of the method for estimating the amount of glucose described here is the same as above, but the above-mentioned method is to improve the estimation accuracy by preparing a plurality of conversion formulas and selecting a conversion formula suitable for the subject. different. FIG. 5A is a flowchart showing a method for estimating the amount of glucose according to the present embodiment, and FIG. 5B is a block diagram conceptually showing the calculation method in the present embodiment.
 図5(A)を参照して、ステップS20では、複数の換算式を用意する。具体的には、図5(B)に示すように、異なる被験者に関して採血およびグルコース量算出装置10を用いた各光線の適用および体温測定を行うことで、複数の重回帰式を得る。ここでは、被験者A、被験者B、被験者Cおよび被験者Dに関して、各光線の照射および体温測定、重回帰分析を行うことで、各被験者に関する、第1光線、第2光線および第2光線の受光強度、並びに、体温からなる実測データセットを得る。この各々の実測データセットから、重回帰式A、重回帰式B、重回帰式Cおよび重回帰式Dのパラメータを導出している。 With reference to FIG. 5A, in step S20, a plurality of conversion formulas are prepared. Specifically, as shown in FIG. 5B, a plurality of multiple regression equations are obtained by collecting blood and applying each light beam using the glucose amount calculation device 10 and measuring the body temperature for different subjects. Here, for subject A, subject B, subject C, and subject D, by performing irradiation of each ray, body temperature measurement, and multiple regression analysis, the light receiving intensities of the first ray, the second ray, and the second ray for each subject are performed. , And obtain an actual measurement data set consisting of body temperature. From each of these actually measured data sets, the parameters of the multiple regression equation A, the multiple regression equation B, the multiple regression equation C, and the multiple regression equation D are derived.
 ステップS21およびステップS22では、グルコース量算出装置10を用いて、重回帰式A、重回帰式B、重回帰式Cおよび重回帰式Dを利用することで、推定グルコース量A、推定グルコース量B、推定グルコース量Cおよび推定グルコース量Dを推定する。具体的には、図1を参照して、演算制御部17は、先ず、発光部11の第1発光部111、第2発光部112および第3発光部113から、光軸22に沿って、被測定部位18に第1光線、第2光線および第3光線を被測定部位18に向けて照射する。受光部19は、受光部19に到達した第1光線、第2光線および第3光線の強度を示す電気信号を、演算制御部17に伝送する。また、温度計測部21が計測した、被測定部位18の温度を示す電気信号も演算制御部17に伝送される。次に、演算制御部17は、第1光線、第2光線および第3光線の強度を示す電気信号、および、被測定部位18の体温を示す電気信号に基づいて、重回帰式A、重回帰式B、重回帰式Cおよび重回帰式Dを利用して、推定グルコース量A、推定グルコース量B、推定グルコース量Cおよび推定グルコース量Dを推定する。また、ステップS23に於ける選択のために、被験者を採血して採血グルコース量を得る。 In steps S21 and S22, the estimated glucose amount A and the estimated glucose amount B are used by using the multiple regression equation A, the multiple regression equation B, the multiple regression equation C, and the multiple regression equation D by using the glucose amount calculation device 10. , Estimated glucose amount C and estimated glucose amount D. Specifically, referring to FIG. 1, the arithmetic control unit 17 first receives from the first light emitting unit 111, the second light emitting unit 112, and the third light emitting unit 113 of the light emitting unit 11 along the optical axis 22. The measured portion 18 is irradiated with the first ray, the second ray, and the third ray toward the measured portion 18. The light receiving unit 19 transmits an electric signal indicating the intensities of the first light ray, the second light ray, and the third light ray that have reached the light receiving unit 19 to the arithmetic control unit 17. Further, an electric signal indicating the temperature of the measured portion 18 measured by the temperature measuring unit 21 is also transmitted to the arithmetic control unit 17. Next, the arithmetic control unit 17 uses the multiple regression equation A and multiple regression based on the electric signal indicating the intensity of the first ray, the second ray, and the third ray, and the electric signal indicating the body temperature of the measured portion 18. Estimated glucose amount A, estimated glucose amount B, estimated glucose amount C, and estimated glucose amount D are estimated using the formula B, the multiple regression equation C, and the multiple regression equation D. Also, for the selection in step S23, the subject is sampled to obtain the blood glucose amount.
 ステップS23では、推定グルコース量A、推定グルコース量B、推定グルコース量Cおよび推定グルコース量Dのうち、採血グルコース量に最も近い推定グルコース量を選択する。この選択は、被験者による操作入力部12の操作または演算制御部17により行われる。例えば、推定グルコース量Aが採血グルコース量に最も近ければ、被験者の操作入力部12の選択により、次回の推定からは重回帰式Aを用いてグルコース量を推定する。 In step S23, the estimated glucose amount closest to the blood-collected glucose amount is selected from the estimated glucose amount A, the estimated glucose amount B, the estimated glucose amount C, and the estimated glucose amount D. This selection is made by the operation of the operation input unit 12 by the subject or by the arithmetic control unit 17. For example, if the estimated glucose amount A is the closest to the blood sampling glucose amount, the glucose amount is estimated using the multiple regression equation A from the next estimation by selecting the operation input unit 12 of the subject.
 ステップS24では、選択された重回帰式Aを用いて、グルコース量を推定する。具体的には、演算制御部17は、先ず、発光部11の第1発光部111、第2発光部112および第3発光部113から、光軸22に沿って、被測定部位18に第1光線、第2光線および第3光線を被測定部位18に向けて照射する。また、温度計測部21が計測した、被測定部位18の温度を示す電気信号も演算制御部17に伝送される。演算制御部17は、第1光線、第2光線および第3光線の強度を示す電気信号、および、被測定部位18の体温を示す電気信号に基づいて、上記のように選択された重回帰式Aを利用して、グルコース量を推定する。 In step S24, the glucose amount is estimated using the selected multiple regression equation A. Specifically, the arithmetic control unit 17 first receives the first light emitting unit 111, the second light emitting unit 112, and the third light emitting unit 113 of the light emitting unit 11 from the light emitting unit 11 to the measured portion 18 along the optical axis 22. A light ray, a second light ray, and a third light ray are emitted toward the measured portion 18. Further, an electric signal indicating the temperature of the measured portion 18 measured by the temperature measuring unit 21 is also transmitted to the arithmetic control unit 17. The arithmetic control unit 17 is a multiple regression equation selected as described above based on an electric signal indicating the intensity of the first ray, the second ray, and the third ray, and an electric signal indicating the body temperature of the measured portion 18. The amount of glucose is estimated using A.
 図6を参照して、グルコース量を推定するために各光線を照射する被測定部位としてフィンガーウェブが適している事項を説明する。図6(A)は被験者の手を示す模式図であり、図6(B)は指先を用いてグルコース量を推定したエラーグリッドを示すグラフであり、図6(C)はフィンガーウェブを用いてグルコース量を推定したエラーグリッドを示すグラフである。図6(B)および図6(C)では、横軸は採血グルコース量を示し、縦軸は本実施形態に係る方法により計測した推定グルコース量を示している。 With reference to FIG. 6, the matter that the finger web is suitable as the measured site to be irradiated with each light beam for estimating the glucose amount will be described. 6 (A) is a schematic diagram showing a subject's hand, FIG. 6 (B) is a graph showing an error grid in which the amount of glucose is estimated using a fingertip, and FIG. 6 (C) is a graph showing an error grid using a finger web. It is a graph which shows the error grid which estimated the amount of glucose. In FIGS. 6 (B) and 6 (C), the horizontal axis shows the blood glucose amount, and the vertical axis shows the estimated glucose amount measured by the method according to the present embodiment.
 図6(A)を参照して、フィンガーウェブとは、人体の指どうしの間に形成される膜状の部位であり、本実施形態では手の人差指と親指との間に形成されるフィンガーウェブを、グルコース量を測定するための被測定部位として採用した。ここで、他の指どうしの間に形成されるフィンガーウェブを、被測定部位として採用することもできる。 With reference to FIG. 6A, the finger web is a membranous portion formed between the fingers of the human body, and in the present embodiment, the finger web formed between the index finger and the thumb of the hand. Was adopted as the measured site for measuring the amount of glucose. Here, a finger web formed between other fingers can also be adopted as a measurement site.
 図6(B)を参照すると、測定結果を示すドットが、破線で示す基準ラインから離れて分布している。このようなる理由は、指先の太さは個人差が大きくこれにより光路長が異なること、および、指先に存在する太い血管が悪影響を及ぼしていることが考えられる。 With reference to FIG. 6B, the dots showing the measurement results are distributed away from the reference line shown by the broken line. The reason for this is considered to be that the thickness of the fingertips varies greatly from person to person and the optical path length differs due to this, and that the thick blood vessels existing at the fingertips have an adverse effect.
 一方、図6(C)を参照すると、測定結果を示すドットが、破線で示す基準ラインの近傍に分布している。このようなる理由は、フィンガーウェブは、厚さが2mmから4mm程度で、個人間による差が小さく、脂肪の含有量が極めて少なく、その内部に太い血管が無いため毛細血管および真皮で測定を行えるからである。更に、被測定部位としてフィンガーウェブを採用した場合は、光路長を短くすることができ、低出力の光でグルコース量を測定することが出来る。 On the other hand, referring to FIG. 6C, dots indicating the measurement results are distributed in the vicinity of the reference line indicated by the broken line. The reason for this is that the finger web has a thickness of about 2 mm to 4 mm, the difference between individuals is small, the fat content is extremely low, and there are no thick blood vessels inside, so measurement can be performed with capillaries and dermis. Because. Further, when the finger web is adopted as the measurement site, the optical path length can be shortened, and the glucose amount can be measured with low output light.
 表5を参照して、脂肪の含有量の観点から、被測定部位としてフィンガーウェブが適している事項を説明する。 With reference to Table 5, the matters that the finger web is suitable as the measurement site will be described from the viewpoint of the fat content.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表5では、脂肪を含む検体1(表皮0.2mm、真皮0.8mm、脂肪1.5mm)と、脂肪を含まない献体2(表皮0.2mm、真皮0.8mm、脂肪はなし)に関して、第1光線、第2光線および第3光線の透過率を測定した結果を示している。一例を示すと、検体1は人体の指先であり、検体2はフィンガーウェブである。 In Table 5, the fat-containing sample 1 (epidermis 0.2 mm, dermis 0.8 mm, fat 1.5 mm) and the fat-free donate 2 (epidermis 0.2 mm, dermis 0.8 mm, no fat) are listed. The result of measuring the transmission | transmission of the 1st ray, the 2nd ray and the 3rd ray is shown. As an example, the sample 1 is the fingertip of the human body, and the sample 2 is the finger web.
 ここでのシミュレーション条件は、光線本数が5000本であり、散乱回数が一本につき1000回であり、皮膚入射光径はφ1.5mmであり、受光面径はφ3mmまたはφ1mmである。 The simulation conditions here are that the number of light rays is 5000, the number of scatterings is 1000 per one, the diameter of the incident light on the skin is φ1.5 mm, and the diameter of the light receiving surface is φ3 mm or φ1 mm.
 表5に示すように、波長が1310nmである第1光線に於いては、検体2の透過率は検体1の透過率の3.4倍となっている。また、波長が1450nmである第2光線に於いては、検体2の透過率は検体1の透過率の6.2倍となっている。更に、波長が1550nmである第3光線に於いては、検体2の透過率は検体1の透過率の3.5倍となっている。 As shown in Table 5, in the first light beam having a wavelength of 1310 nm, the transmittance of the sample 2 is 3.4 times the transmittance of the sample 1. Further, in the second light beam having a wavelength of 1450 nm, the transmittance of the sample 2 is 6.2 times the transmittance of the sample 1. Further, in the third light beam having a wavelength of 1550 nm, the transmittance of the sample 2 is 3.5 times the transmittance of the sample 1.
 上記のことから、例えば指先である検体1は、第1光線ないし第3光線の透過率が低いため、グルコース量を計測するための部位としては好適でない。更に、脂肪の含有量は個人差が大きいことを考慮すると、脂肪の多寡が透過率に影響を与え、これよりグルコース量の推定が困難になることは明らかである。 From the above, for example, the sample 1 which is a fingertip has a low transmittance of the first to third rays, so that it is not suitable as a site for measuring the amount of glucose. Furthermore, considering that the fat content varies greatly among individuals, it is clear that the amount of fat affects the transmittance, which makes it more difficult to estimate the glucose content.
 一方、フィンガーウェブである検体2は、脂肪の含有量が極めて少ないことから、第1光線、第2光線および第3光線を良好に透過させ、透過する各光線の強度に基づいてグルコース量を正確に推定し得る。また、被験者が肥満体であったとしても、フィンガーウェブに含まれる脂肪が極端に増加することはない。よって、フィンガーウェブを透過する各光線を用いてグルコース量を推定すれば、被験者が肥満体であるか否かの影響を受けずに、グルコース量を正確に推定することができる。 On the other hand, since the sample 2 which is a finger web has an extremely low fat content, it allows the first ray, the second ray, and the third ray to pass through well, and the glucose amount is accurately determined based on the intensity of each passing ray. Can be estimated to. Moreover, even if the subject is obese, the fat contained in the finger web does not increase extremely. Therefore, if the glucose amount is estimated using each light ray transmitted through the finger web, the glucose amount can be accurately estimated without being affected by whether or not the subject is obese.
 以上、本発明の実施形態を示したが、本発明は、上記実施形態に限定されるものではない。 Although the embodiments of the present invention have been shown above, the present invention is not limited to the above embodiments.
 例えば、上記した本実施形態では、波長が異なる第1光線、第2光線および第3光線を用いてグルコース量を算出したが、2つの光線(例えば、波長が1310nmである第1光線、波長が1550nmである第3光線)を用いてグルコース量を算出することもできる。 For example, in the above-described embodiment, the glucose amount is calculated using the first ray, the second ray, and the third ray having different wavelengths, but the two rays (for example, the first ray having a wavelength of 1310 nm and the wavelength are different. The amount of glucose can also be calculated using a third ray) at 1550 nm.
10 グルコース量算出装置
11 発光部
111 第1発光部
112 第2発光部
113 第3発光部
12 操作入力部
13 記憶部
14 レンズ
15 表示部
17 演算制御部
18 被測定部位
19 受光部
21 温度計測部
22 光軸
10 Glucose amount calculation device 11 Light emitting unit 111 First light emitting unit 112 Second light emitting unit 113 Third light emitting unit 12 Operation input unit 13 Storage unit 14 Lens 15 Display unit 17 Calculation control unit 18 Measured part 19 Light receiving unit 21 Temperature measuring unit 22 Optical axis

Claims (7)

  1.  波長が異なる複数の光線を被測定部位に照射し、前記被測定部位を透過した前記複数の光線の強度を受光素子で計測する計測ステップと、
     換算式に基づいて前記複数の光線の受光強度からグルコース量を推定する推定ステップと、を具備し、
     前記計測ステップでは、前記被測定部位を貫通するように規定された一つの光軸を、前記複数の光線が通過することを特徴とするグルコース量算出方法。
    A measurement step in which a plurality of light rays having different wavelengths are irradiated to a measured portion and the intensity of the plurality of rays transmitted through the measured portion is measured by a light receiving element.
    It comprises an estimation step of estimating the amount of glucose from the light receiving intensities of the plurality of light rays based on the conversion formula.
    In the measurement step, the glucose amount calculation method is characterized in that the plurality of light rays pass through one optical axis defined so as to penetrate the measured portion.
  2.  前記計測ステップでは、前記複数の光線の前記受光強度、被測定部温度、並びに採血グルコース量を一つの実測データセットとして、異なるグルコース量に関して複数の前記実測データセットを取得し、前記複数の実測データセットに基づき重回帰分析を行うことで、複数の前記換算式を作成し、
     前記推定ステップでは、各々の前記換算式を用いて算出された複数のグルコース量推定結果から、採血グルコース量に最も近い前記グルコース量推定結果を選択し、選択された前記グルコース量推定結果を算出した前記換算式を、次回からのグルコース量推定に用いることを特徴とする請求項1に記載のグルコース量算出方法。
    In the measurement step, the light receiving intensity of the plurality of light rays, the temperature of the measured portion, and the blood sampling glucose amount are used as one actual measurement data set, and a plurality of the actual measurement data sets are acquired for different glucose amounts, and the plurality of actual measurement data are obtained. By performing multiple regression analysis based on the set, multiple of the above conversion formulas can be created.
    In the estimation step, the glucose amount estimation result closest to the blood-collected glucose amount was selected from the plurality of glucose amount estimation results calculated using each of the conversion formulas, and the selected glucose amount estimation result was calculated. The method for calculating a glucose amount according to claim 1, wherein the conversion formula is used for estimating the amount of glucose from the next time.
  3.  前記計測ステップでは、前記被測定部位の温度を計測し、
     前記推定ステップでは、前記複数の光線の前記受光強度に加えて、前記温度を用いて前記グルコース量を算出することを特徴とする請求項1または請求項2に記載のグルコース量算出方法。
    In the measurement step, the temperature of the measured portion is measured, and the temperature is measured.
    The glucose amount calculation method according to claim 1 or 2, wherein in the estimation step, the glucose amount is calculated using the temperature in addition to the light receiving intensity of the plurality of light rays.
  4.  前記換算式は、予め記憶装置に記憶されているパラメータを用いることを特徴とする請求項1に記載のグルコース量算出方法。 The glucose amount calculation method according to claim 1, wherein the conversion formula uses a parameter stored in a storage device in advance.
  5.  前記複数の光線は、フィンガーウェブを透過することを特徴とする請求項1から請求項4の何れかに記載のグルコース量算出方法。 The glucose amount calculation method according to any one of claims 1 to 4, wherein the plurality of light rays pass through the finger web.
  6.  前記換算式は、統計学的手法により算出された重回帰式であることを特徴とする請求項1から請求項5の何れかに記載のグルコース量算出方法。 The glucose amount calculation method according to any one of claims 1 to 5, wherein the conversion formula is a multiple regression formula calculated by a statistical method.
  7.  前記計測ステップでは、波長が異なる第1光線、第2光線および第3光線を、前記被測定部位に照射し、前記被測定部位を透過した前記第1光線、前記第2光線および前記第3光線の強度を受光素子で計測し、
     前記推定ステップでは、前記換算式に基づいて、前記第1光線、前記第2光線および前記第3光線の受光強度から、前記グルコース量を推定することを特徴とする請求項1から請求項6の何れかに記載のグルコース量算出方法。
    In the measurement step, the first ray, the second ray, and the third ray having different wavelengths are applied to the measured portion, and the first ray, the second ray, and the third ray transmitted through the measured portion. The intensity of is measured with a light receiving element,
    Claims 1 to 6, wherein in the estimation step, the amount of glucose is estimated from the light receiving intensities of the first ray, the second ray, and the third ray based on the conversion formula. The glucose amount calculation method according to any one.
PCT/JP2020/037615 2020-10-02 2020-10-02 Glucose amount calculation method WO2022070420A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/037615 WO2022070420A1 (en) 2020-10-02 2020-10-02 Glucose amount calculation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/037615 WO2022070420A1 (en) 2020-10-02 2020-10-02 Glucose amount calculation method

Publications (1)

Publication Number Publication Date
WO2022070420A1 true WO2022070420A1 (en) 2022-04-07

Family

ID=80950408

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/037615 WO2022070420A1 (en) 2020-10-02 2020-10-02 Glucose amount calculation method

Country Status (1)

Country Link
WO (1) WO2022070420A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09308623A (en) * 1996-05-24 1997-12-02 Hitachi Ltd Non-invasive biochemical measuring instrument
JP2002136506A (en) * 2000-10-30 2002-05-14 Shibuya Kogyo Co Ltd Blood sugar value detecting device
WO2007029652A1 (en) * 2005-09-06 2007-03-15 National University Corporation Gunma University Blood-sugar measuring apparatus and method
WO2011074217A1 (en) * 2009-12-18 2011-06-23 パナソニック株式会社 Component concentration meter, component concentration measurement method, shipping inspection system, and health management system
JP2019501688A (en) * 2015-11-20 2019-01-24 ニルラス・エンジニアリング・アクチエンゲゼルシャフト Method and apparatus for noninvasive optical measurement of glucose concentration in flowing blood in vivo

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09308623A (en) * 1996-05-24 1997-12-02 Hitachi Ltd Non-invasive biochemical measuring instrument
JP2002136506A (en) * 2000-10-30 2002-05-14 Shibuya Kogyo Co Ltd Blood sugar value detecting device
WO2007029652A1 (en) * 2005-09-06 2007-03-15 National University Corporation Gunma University Blood-sugar measuring apparatus and method
WO2011074217A1 (en) * 2009-12-18 2011-06-23 パナソニック株式会社 Component concentration meter, component concentration measurement method, shipping inspection system, and health management system
JP2019501688A (en) * 2015-11-20 2019-01-24 ニルラス・エンジニアリング・アクチエンゲゼルシャフト Method and apparatus for noninvasive optical measurement of glucose concentration in flowing blood in vivo

Similar Documents

Publication Publication Date Title
JP3566277B1 (en) Blood glucose meter
US5361758A (en) Method and device for measuring concentration levels of blood constituents non-invasively
RU2489689C2 (en) Method for noninvasive optical determination of ambient temperature
JP5674093B2 (en) Concentration determination apparatus, concentration determination method, and program
WO2003079900A1 (en) Noninvasive blood component value measuring instrument and method
JPH07503863A (en) Non-invasive device and method for determining the concentration of various components of blood or tissue
JP2008509728A (en) Method and apparatus for monitoring blood glucose level in living tissue
JP5536337B2 (en) System and method for estimating the concentration of a substance in a body fluid
JP2014018478A (en) Method and device for blood sugar level measurement
JP5662700B2 (en) Biological light measurement device and biological light measurement method
JP2016010717A (en) Concentration quantification apparatus
JP5521199B2 (en) Concentration determination apparatus, concentration determination method, and program
JP5626879B2 (en) Concentration determination apparatus, concentration determination method, and program
JP5652599B2 (en) Concentration determination apparatus, concentration determination method and program
JP7253733B2 (en) How to calculate the amount of glucose
WO2022070420A1 (en) Glucose amount calculation method
JP5674094B2 (en) Concentration determination apparatus, concentration determination method, and program
JP5626880B2 (en) Concentration determination apparatus, concentration determination method, and program
TW202215027A (en) Glucose quantity calculation method
JP7395135B2 (en) blood measuring device
JP5761708B2 (en) Concentration determination method and concentration determination apparatus
WO2022070421A1 (en) Blood measurement device
JP2013140126A (en) Concentration assaying device, concentration assaying method and program
JP6521307B2 (en) Method and apparatus for measuring biological property values using near infrared spectroscopy
JP2010029399A (en) Noninvasive blood glucose level measuring method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20956348

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20956348

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP