WO2022070266A1 - Pressure vessel - Google Patents

Pressure vessel Download PDF

Info

Publication number
WO2022070266A1
WO2022070266A1 PCT/JP2020/036952 JP2020036952W WO2022070266A1 WO 2022070266 A1 WO2022070266 A1 WO 2022070266A1 JP 2020036952 W JP2020036952 W JP 2020036952W WO 2022070266 A1 WO2022070266 A1 WO 2022070266A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure vessel
outer peripheral
container body
contact portion
peripheral portion
Prior art date
Application number
PCT/JP2020/036952
Other languages
French (fr)
Japanese (ja)
Inventor
雄誠 小野
赳弘 古谷野
尚弘 市川
勝也 谷口
Original Assignee
三菱電機株式会社
三菱電機ビルテクノサービス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社, 三菱電機ビルテクノサービス株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2020/036952 priority Critical patent/WO2022070266A1/en
Priority to CN202080105073.0A priority patent/CN116097078B/en
Priority to JP2022553268A priority patent/JP7374337B2/en
Publication of WO2022070266A1 publication Critical patent/WO2022070266A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/26Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Definitions

  • This disclosure relates to a pressure vessel, and particularly to a pressure vessel used for an airtightness test using a differential pressure gauge.
  • the refrigerating cycle device When the refrigerating cycle device is filled with refrigerant during installation and repair, it is necessary to check the airtightness of the refrigerating cycle device before filling in order to avoid leakage of the refrigerant.
  • the airtightness of the refrigeration cycle device is confirmed by an airtight test such as a nitrogen pressure leakage test.
  • nitrogen pressure leakage test nitrogen gas is filled in a refrigerating cycle device and pressurized before filling with the refrigerant, and the airtightness is evaluated by whether or not there is a pressure drop within a certain period of time.
  • the pressure of the refrigeration cycle device is detected by the pressure gauge, and the presence or absence of pressure drop is determined.
  • the measurement range of the pressure gauge depends on the pressurized pressure, so that the measurement range becomes large and the responsiveness to the pressure change becomes poor. Therefore, it took a long time, for example, one day, to evaluate the airtightness after enclosing nitrogen gas in the refrigeration cycle device and pressurizing it.
  • the differential pressure gauge method is a method in which an object to be inspected such as a refrigeration cycle device and a reference object called a master are simultaneously pressurized, and a pressure change due to leakage in the inspected object is detected as a difference from the pressure of the master.
  • the measurement range of the differential pressure gauge does not depend on the pressurizing pressure, so the measurement range can be reduced. Therefore, the responsiveness can be improved as compared with the case of using a pressure gauge.
  • Patent Document 1 proposes to suppress the influence of temperature change by insulating the pressure vessel used as the master of the differential pressure gauge method with a material having low thermal conductivity. ..
  • the present disclosure is for solving the above-mentioned problems, and an object of the present disclosure is to provide a pressure vessel capable of suppressing the influence of temperature changes due to installation conditions.
  • the pressure vessel according to the present disclosure includes a container body capable of enclosing a fluid inside and a heat insulating portion covering the container main body, and the heat insulating portion includes a contact portion in contact with an installation target and an outer peripheral portion other than the contact portion. , And the thermal resistance of the contact portion is larger than the thermal resistance of the outer peripheral portion.
  • the thermal resistance of the contact portion in contact with the installation target larger than the thermal resistance of the outer peripheral portion, the heat conduction from the installation target can be reduced, and the temperature changes depending on the installation condition. The influence of can be suppressed.
  • FIG. It is sectional drawing of the pressure vessel which concerns on Embodiment 1.
  • FIG. It is a schematic block diagram of the airtightness test system which concerns on Embodiment 1.
  • FIG. It is a flowchart which shows the flow of the airtightness test which concerns on Embodiment 1.
  • FIG. It is sectional drawing of the pressure vessel which concerns on modification 2.
  • FIG. It is sectional drawing of the pressure vessel which concerns on modification 3.
  • FIG. It is sectional drawing of the pressure vessel which concerns on the modification 4.
  • FIG. It is a schematic block diagram of the airtightness test system which concerns on Embodiment 3.
  • FIG. 1 is a schematic cross-sectional view of the pressure vessel 100 according to the first embodiment.
  • the pressure vessel 100 is a vessel used as a master in an airtightness test using a differential pressure gauge method. As shown in FIG. 1, the pressure vessel 100 includes a container main body 1, a heat insulating portion 2 that covers the container main body 1, a connection port 3, and a pressure gauge 4.
  • the container body 1 is a spherical container in which a fluid such as nitrogen gas is sealed. By making the shape of the container body 1 spherical, the heat dissipation area can be reduced with respect to the volume, and the heat insulating performance is improved.
  • the shape of the container body 1 is not limited to a spherical shape, and may be, for example, a cylindrical shape.
  • the inside of the container body 1 is pressurized by the enclosed fluid, resulting in a high pressure. Therefore, the container body 1 is made of a metal such as iron, copper, steel or stainless steel.
  • the volume of the container body 1 is, for example, 1000 mL to 3000 mL. The volume of the container body 1 is not limited to this, and is appropriately selected depending on the intended use.
  • the heat insulating portion 2 is made of a material having a lower thermal conductivity than that of the container body 1. By increasing the difference in thermal conductivity between the material of the heat insulating portion 2 and the material of the container body 1, the heat insulating performance of the heat insulating portion 2 can be improved.
  • the heat insulating portion 2 two types of heat insulating materials, which are roughly classified as fiber-based or foamed plastic-based, are used. Fiber-based heat insulating materials include glass wool and rock wool. They have excellent fire resistance and soundproofing, are relatively inexpensive and lightweight.
  • examples of the foamed plastic-based heat insulating material include polystyrene foam and polyurethane foam. Foamed plastic-based insulation has higher insulation performance and is more expensive than fiber-based insulation.
  • the heat insulating portion 2 is fixed to the outer surface of the container body 1 so as to cover the entire container body 1.
  • the heat insulating portion 2 may be attached to the container body 1 with an adhesive tape or the like, or may be bound and fixed to the container body 1 with a binding band or a string.
  • the method for fixing the heat insulating portion 2 is appropriately selected according to the size or material of the container body 1. Further, it is desirable that the heat insulating portion 2 can be adjusted according to the size of the container main body 1 in consideration of the adhesion with the container main body 1.
  • the heat insulating portion 2 has an outer peripheral portion 21 and a contact portion 22.
  • the contact portion 22 is a portion of the heat insulating portion 2 including a contact surface in contact with an installation target in which the pressure vessel 100 is installed. In the case of this embodiment, the pressure vessel 100 is placed on the ground outdoors and installed. Therefore, the portion of the heat insulating portion 2 that covers the bottom of the container body 1 becomes the contact portion 22.
  • the outer peripheral portion 21 is a portion of the heat insulating portion 2 other than the contact portion 22. More specifically, the outer peripheral portion 21 is a portion of the heat insulating portion 2 that does not come into contact with the installation target and covers the side portion and the upper portion of the container main body 1.
  • the outer peripheral portion 21 and the contact portion 22 may be integrally formed of the same material, or may be individually formed of the same material and then integrally joined.
  • the outer peripheral portion 21 has a spherical shape that follows the shape of the container body 1.
  • the contact portion 22 has a rectangular parallelepiped shape and has a flat bottom surface.
  • the pressure vessel 100 can be stably installed on the ground.
  • the thickness L2 of the contact portion 22 is larger than the thickness L1 of the outer peripheral portion 21.
  • the thickness L2 of the contact portion 22 is the thickness from the contact surface in contact with the installation target of the contact portion 22 to the end portion of the bottom portion of the container body 1.
  • the thermal resistance of the contact portion 22 is larger than the thermal resistance of the outer peripheral portion 21.
  • the thickness L1 of the outer peripheral portion 21 and the thickness L2 of the contact portion 22 are appropriately selected according to environmental conditions such as the temperature of the place where the pressure vessel 100 is installed.
  • connection port 3 One end of the connection port 3 is arranged so as to project outside the heat insulating portion 2, and the other end is arranged inside the container body 1.
  • a screw thread is formed at one end of the connection port 3, and is connected to a differential pressure gauge 300 (FIG. 2) described later via a charging hose.
  • the pressure gauge 4 detects the pressure inside the container body 1.
  • the pressure gauge 4 is connected to the container body 1 by, for example, a screw.
  • the pressure receiving portion of the pressure gauge 4 is arranged inside the container body 1, and the dial is arranged so as to project to the outside of the heat insulating portion 2 so that the measurement result can be easily seen.
  • pressurization of about 2 Mpa is performed, so the maximum range of the pressure gauge 4 is set to 2 Mpa or more. Since the pressure inside the container body 1 can be confirmed by the pressure gauge 4, when the fluid is sealed inside the container body 1 during the test, it becomes easy to determine whether the filling is completed.
  • the recovery time can be shortened because the fluid can be recovered while confirming the process in which the inside of the container body 1 is depressurized. Further, even if a fluid leak occurs in the pressure vessel 100 due to a poor connection of the pressure vessel 100 or the like, it is possible to determine the leak from the pressure of the pressure gauge 4.
  • the pressure gauge 4 is not an essential configuration for the pressure vessel 100 and may be omitted.
  • FIG. 2 is a schematic configuration diagram of the airtightness test system according to the first embodiment.
  • a nitrogen pressure leakage test is performed as an airtightness test on the air conditioner to be inspected.
  • the airtightness test system includes a pressure vessel 100 which is a master, an outdoor unit 200 of an air conditioner, a differential pressure gauge 300, and a cylinder 400.
  • the outdoor unit 200 is arranged outdoors.
  • the outdoor unit 200 includes a housing 210 and a connection port 220 in which a fluid for an airtightness test is sealed. Further, inside the housing 210 of the outdoor unit 200, a compressor (not shown), an outdoor heat exchanger, and an outdoor fan are provided.
  • the compressor and outdoor heat exchanger of the outdoor unit 200, and the indoor heat exchanger and pressure reducing valve of the indoor unit provided in the room are connected by a refrigerant pipe to form a refrigerant circuit.
  • the connection port 220 is arranged inside the housing 210 and is connected to the refrigerant pipes constituting the refrigerant circuit.
  • the pressure vessel 100 is installed on the outdoor ground. At this time, the pressure vessel 100 is placed on the ground so that the contact portion 22 comes into contact with the ground.
  • the differential pressure gauge 300 detects the differential pressure between the pressure vessel 100 and the outdoor unit 200.
  • the differential pressure gauge 300 includes a hook 310.
  • the differential pressure gauge 300 is attached so as to be hung on the outdoor unit 200 by hooking a hook 310 on a convex portion or a concave portion provided on the outside of the housing 210 of the outdoor unit 200.
  • the connection port 3 of the pressure vessel 100 and the connection port 220 of the outdoor unit 200 are connected to the measurement port of the differential pressure gauge 300, and the cylinder 400 is connected to the filling port.
  • the cylinder 400 is connected to the differential pressure gauge 300, and the fluid is sealed in the pressure vessel 100 and the outdoor unit 200.
  • the cylinder 400 is, for example, a nitrogen gas cylinder that encloses nitrogen gas.
  • the fluid used in the airtightness test is not limited to nitrogen gas, but may be air or the like.
  • the pressure vessel 100 and the outdoor unit 200 may be pressurized by using a pressurizing device other than the cylinder 400.
  • FIG. 3 is a flowchart showing the flow of the airtightness test according to the first embodiment.
  • the airtightness test of the present embodiment is carried out by a serviceman at the time of installation or repair of the outdoor unit 200.
  • the pressure vessel 100 is installed on the ground near the outdoor unit 200 (S1).
  • the differential pressure gauge 300 is attached to the housing 210 of the outdoor unit 200, and the differential pressure gauge 300 and the pressure vessel 100 are connected by a charging hose (S2).
  • the differential pressure gauge 300 and the outdoor unit 200 are connected (S3). Specifically, a part of the housing 210 of the outdoor unit 200 is opened, and the connection port 220 of the outdoor unit 200 arranged inside the housing 210 and the differential pressure gauge 300 are connected by a charging hose. Then, the differential pressure gauge 300 and the cylinder 400 are connected (S4).
  • the airtightness test is conducted throughout the day.
  • the temperature around the pressure vessel 100 rises due to the radiant heat generated by the sunlight, and when the sun tilts, the outside air temperature drops and the temperature around the pressure vessel 100 drops. Therefore, in order to prevent the influence of the ambient temperature on the pressure vessel 100, it is necessary to take measures against the rise and fall of the ambient temperature, and it is effective to take measures from both heat insulation and heat insulation.
  • the airtightness test of this embodiment is carried out outdoors, and the pressure vessel 100 is placed on the outdoor ground.
  • the pressure vessel 100 is strongly affected not only by the rise and fall of the radiant heat and the outside air temperature, but also by the temperature rise and fall due to the heat conduction from the ground.
  • the thickness of the contact portion 22 in the heat insulating portion 2 that comes into contact with the ground to be installed is made larger than the thickness of the outer peripheral portion 21 that does not come into contact with the ground, and the heat of the contact portion 22 is increased.
  • the resistance is made larger than the thermal resistance of the outer peripheral portion 21.
  • the heat resistance to heat conduction from the ground can be improved, and the influence of the temperature change due to the installation condition in the pressure vessel 100 can be suppressed.
  • the influence of the temperature change on the differential pressure detected by the differential pressure gauge 300 can be reduced, and the evaluation accuracy of the airtightness of the outdoor unit 200 can be improved.
  • FIG. 4 is a schematic cross-sectional view of the pressure vessel 100A according to the first modification.
  • the heat insulating portion 2A of this modification has an outer peripheral portion 21 and a contact portion 23 made of a material having a lower thermal conductivity than the material of the outer peripheral portion 21.
  • the outer peripheral portion 21 is made of glass wool and the contact portion 23 is made of polystyrene foam.
  • the thermal resistance of the contact portion 23 of the heat insulating portion 2A is larger than the thermal resistance of the outer peripheral portion 21.
  • the thickness L2 of the contact portion 23 may be larger than the thickness L1 of the outer peripheral portion 21, or may be the same as the thickness L1 of the outer peripheral portion 21.
  • FIG. 5 is a schematic cross-sectional view of the pressure vessel 100B according to the modified example 2.
  • the heat insulating portion 2B of this modification comprises an outer peripheral portion 21A that covers the entire container body 1 including the bottom portion, and a contact portion 24 provided at the bottom portion of the outer peripheral portion 21A.
  • the contact portion 24 is made of a material having a lower thermal conductivity than the material of the outer peripheral portion 21A.
  • the outer peripheral portion 21 is made of glass wool and the contact portion 23 is made of polystyrene foam.
  • the contact portion 24 is attached to the bottom of the outer peripheral portion 21A with an adhesive tape or an adhesive.
  • the thermal resistance of the contact portion 24 of the heat insulating portion 2B is larger than the thermal resistance of the outer peripheral portion 21A.
  • the material of the contact portion 24 and the outer peripheral portion 21A may be the same.
  • the thickness of the heat insulating portion 2B at the bottom of the container body 1 is the sum of the thickness of the contact portion 24 and the thickness of the outer peripheral portion 21A, and the influence of heat conduction from the ground can be suppressed.
  • FIG. 6 is a schematic cross-sectional view of the pressure vessel 100C according to the modified example 3.
  • the heat insulating portion 2C of this modification comprises an outer peripheral portion 21A that covers the entire container body 1 including the bottom portion, and a contact portion 25 provided at the bottom portion of the outer peripheral portion 21A.
  • the contact portion 25 of this modification is composed of two or more legs, and is composed of a material having a lower thermal conductivity than the material of the outer peripheral portion 21A. By forming the contact portion 25 with a plurality of legs, the contact area with the ground to be installed can be reduced and the thermal resistance of the contact portion 25 can be made larger than the thermal resistance of the outer peripheral portion 21A.
  • the reflective material 26 is provided at the bottom of the outer peripheral portion 21A, that is, the portion of the outer peripheral portion 21A facing the installation target.
  • the reflective material 26 is made of a material having a higher reflectance than the heat insulating portion 2C.
  • a general heat insulating material has a reflectance of about 10%.
  • a yellow reflective tape having a reflectance of about 60 to 80% or an aluminum tape having a reflectance of about 70 to 85% is used.
  • the reflective material 26 is attached to the bottom of the outer peripheral portion 21A with an adhesive or an adhesive tape.
  • the method of fixing the reflective material 26 is not limited to these, and is appropriately selected in consideration of the material of the outer peripheral portion 21A.
  • the color of the bottom of the outer peripheral portion 21A may be white or the like having a high reflectance. As a result, it is possible to reduce the labor of attaching the reflective material 26 and the cost of the material.
  • Examples of the method for making the color of the bottom of the outer peripheral portion 21A white include adopting an originally white heat insulating material or coloring the outer peripheral portion 21A into white with paint. The reflectance of white paint is 70-85%.
  • the reflectance of the portion of the outer peripheral portion 21A facing the installation target higher than the reflectance of the contact portion 25, it is possible to reduce the intrusion of radiant heat from the ground when the pressure vessel 100C is installed on the ground. It is possible to suppress an increase in the temperature of the bottom of the pressure vessel 100C.
  • the thermal resistance of the contact portion 25 of the heat insulating portion 2C is larger than the thermal resistance of the outer peripheral portion 21A.
  • FIG. 7 is a schematic cross-sectional view of the pressure vessel 100D according to the modified example 4.
  • the outer peripheral portion 21B of the heat insulating portion 2D may have a rectangular parallelepiped shape.
  • the configuration of the contact portion 22 is the same as that of the first embodiment. Further, the thickness L2 of the contact portion 22 is larger than the thickness L1 of the outer peripheral portion 21B.
  • the thermal resistance of the contact portion 22 of the heat insulating portion 2D is larger than the thermal resistance of the outer peripheral portion 21B.
  • FIG. 8 is a schematic cross-sectional view of the pressure vessel 100E according to the second embodiment.
  • the pressure vessel 100E of the second embodiment is different from the first embodiment in that the pressure vessel 100E is provided with the temperature sensor 5.
  • Other configurations of the pressure vessel 100E are the same as those in the first embodiment.
  • the temperature sensor 5 is arranged between the container body 1 and the heat insulating portion 2 and detects the temperature of the container body 1.
  • the temperature sensor 5 is, for example, a thermocouple.
  • the temperature sensor 5 is attached to the outer surface of the container body 1 with an adhesive tape, or is tied and fixed with a binding band.
  • a display device 50 that displays the measurement result by the temperature sensor 5 is connected to the temperature sensor 5.
  • the length of the wiring connecting the temperature sensor 5 and the display device 50 is 0.5 m to 2.0 m.
  • the display device 50 can be arranged outside the pressure vessel 100E, and the measurement result of the temperature of the pressure vessel 100E can be monitored from the outside.
  • the pressure vessel 100E of the present embodiment is provided with the temperature sensor 5 so that the temperature change of the vessel body 1 during the airtightness test can be detected. This makes it possible to determine whether the change in the differential pressure detected by the differential pressure gauge 300 is due to a leak in the outdoor unit 200 or a temperature change. Further, the temperature of the container body 1 detected by the temperature sensor 5 can be used to correct the differential pressure detected by the differential pressure gauge 300. As a result, the evaluation accuracy of the airtightness of the outdoor unit 200 can be further improved.
  • FIG. 9 is a schematic configuration diagram of the airtightness test system according to the third embodiment.
  • the installation status of the pressure vessel 100 is different from that of the first embodiment.
  • the configuration of the pressure vessel 100 and the configuration of the other airtightness test system are the same as those of the first embodiment.
  • the pressure vessel 100 which is the master, is arranged in the housing 210 of the outdoor unit 200. That is, in the present embodiment, the installation target of the pressure vessel 100 is the housing 210 of the outdoor unit 200, and the contact portion 22 of the pressure vessel 100 comes into contact with the inner surface of the housing 210.
  • the pressure vessel 100 By arranging the pressure vessel 100 inside the outdoor unit 200, the influence of radiant heat due to solar radiation is suppressed. However, the pressure vessel 100 is affected by heat conduction from the inner surface of the housing 210 of the outdoor unit 200.
  • the thickness of the contact portion 22 of the heat insulating portion 2 that contacts the inner surface of the housing 210 to be installed is larger than the thickness of the outer peripheral portion 21 that does not contact, and the heat of the contact portion 22 is increased.
  • the resistance is larger than the thermal resistance of the outer peripheral portion 21.
  • the influence of the temperature change due to the heat conduction from the inner surface of the housing 210 of the outdoor unit 200 can be suppressed, and as a result, the evaluation accuracy of the airtightness of the outdoor unit 200 can be improved. can.
  • the temperature of the pressure vessel 100 can be adjusted to the temperature inside the outdoor unit 200.
  • the temperature difference between the pressure vessel 100 and the outdoor unit 200 can be reduced. Therefore, the heat insulating performance of the heat insulating portion 2 of the pressure vessel 100 may be lower than that of the first embodiment.
  • the thickness of the outer peripheral portion 21 and the contact portion 22 of the heat insulating portion 2 may be made smaller than that of the first embodiment, or the material of the heat insulating portion 2 may be a material having a higher thermal conductivity than that of the first embodiment. good. As a result, it is possible to reduce the material of the heat insulating portion 2 or reduce the cost as compared with the first embodiment.
  • FIG. 10 is a schematic configuration diagram of the airtightness test system according to the fourth embodiment.
  • the airtightness test system of the present embodiment differs from that of the first embodiment in the configuration and installation status of the pressure vessel 100F.
  • the configuration of the other airtightness test system is the same as that of the first embodiment.
  • the master pressure vessel 100F is attached to the housing 210 of the outdoor unit 200. That is, in the present embodiment, the installation target of the pressure vessel 100F is the housing 210 of the outdoor unit 200.
  • the heat insulating portion 2F of the pressure vessel 100F includes a contact portion 22A provided so as to cover one side portion of the container main body 1 and an outer peripheral portion 21C provided so as to cover the other side portion and the bottom portion of the container main body 1. Have.
  • the thickness of the contact portion 22A is larger than the thickness of the outer peripheral portion 21C, and the thermal resistance of the contact portion 22A is larger than the thermal resistance of the outer peripheral portion 21C. Then, the contact portion 22A of the pressure vessel 100F comes into contact with the side surface of the housing 210.
  • the pressure vessel 100F is provided with a hook 6 for being attached to the housing 210 of the outdoor unit 200.
  • the hook 6 of the pressure vessel 100F is hooked on the convex portion or the concave portion provided on the side surface of the housing 210 of the outdoor unit 200, and the pressure vessel 100F is attached to the outdoor unit 200.
  • Subsequent test methods are the same as steps S2 to S10 in FIG. 3 of the first embodiment.
  • the pressure vessel 100F is affected by heat conduction from the side surface of the housing 210.
  • the thickness of the contact portion 22A in the heat insulating portion 2F that contacts the side surface of the housing 210 to be installed is larger than the thickness of the outer peripheral portion 21C that does not contact, and the heat of the contact portion 22A.
  • the resistance is larger than the thermal resistance of the outer peripheral portion 21C. Therefore, also in the present embodiment, the influence of the temperature change due to the heat conduction from the side surface of the housing 210 of the outdoor unit 200 can be suppressed, and the evaluation accuracy of the airtightness of the outdoor unit 200 can be improved.
  • the present disclosure is not limited to the above-described embodiment, and can be variously modified and combined without departing from the gist of the present disclosure. ..
  • the pressure vessel 100 is not limited to the one used as the master of the airtightness test of the outdoor unit 200 of the air conditioner, and may be used as the master of the airtightness test of the object to be inspected other than the air conditioner.
  • the reflective material 26 may be provided on a part or the whole of the outer surface of the outer peripheral portion 21.
  • a heat shield sheet may be provided on the outer surface of the outer peripheral portion 21. In the case of only the outer peripheral portion 21, about 5% to 10% of radiant heat can be blocked, whereas by providing a heat shield sheet, 98% of radiant heat can be blocked. However, since the heat shield sheet receives heat conduction when it comes into direct contact with a solid or liquid, it is preferable not to provide the heat shield sheet on the contact portion 22.
  • the size and position of the contact portion 22 of the heat insulating portion 2 are not limited to the above-described embodiment and modification, and can be appropriately deformed according to the installation target. Further, the configuration in which the thermal resistance of the contact portion 22 of the heat insulating portion 2 is larger than the thermal resistance of the outer peripheral portion 21 is not limited to the above-described embodiment and modification. For example, the thermal resistance may be increased by providing a plurality of recesses on the bottom surface of the contact portion 22 to reduce the contact area with the installation target.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Fluid Pressure (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

This pressure vessel comprises a vessel body inside which a fluid can be enclosed, and a heat insulating part that covers the vessel body, the heat insulating part having a contacting part that contacts an installation object, and an outer peripheral part other than the contacting part, and the thermal resistance of the contacting part being greater than the thermal resistance of the outer peripheral part.

Description

圧力容器Pressure vessel
 本開示は、圧力容器に関するものであり、特に差圧計を利用した気密試験に用いられる圧力容器に関する。 This disclosure relates to a pressure vessel, and particularly to a pressure vessel used for an airtightness test using a differential pressure gauge.
 冷凍サイクル装置の据付け時および補修時に、冷凍サイクル装置に冷媒を封入する場合、冷媒の漏洩を避けるため、封入前に冷凍サイクル装置の気密性を確認する必要がある。冷凍サイクル装置の気密性は、例えば窒素加圧漏洩試験等の気密試験により確認される。窒素加圧漏洩試験では、冷媒の封入前に冷凍サイクル装置に窒素ガスを封入して加圧し、一定時間の間に圧力降下があるかどうかで気密性が評価される。 When the refrigerating cycle device is filled with refrigerant during installation and repair, it is necessary to check the airtightness of the refrigerating cycle device before filling in order to avoid leakage of the refrigerant. The airtightness of the refrigeration cycle device is confirmed by an airtight test such as a nitrogen pressure leakage test. In the nitrogen pressure leakage test, nitrogen gas is filled in a refrigerating cycle device and pressurized before filling with the refrigerant, and the airtightness is evaluated by whether or not there is a pressure drop within a certain period of time.
 従来の加圧漏洩試験では、圧力計によって冷凍サイクル装置の圧力が検出され、圧力降下の有無が判断される。圧力計を用いる場合、圧力計の計測レンジは加圧圧力に依存するため、計測レンジが大きくなり、圧力変化への応答性が悪くなってしまう。そのため、冷凍サイクル装置に窒素ガスを封入して加圧した後に、気密性を評価するまでに、例えば1日などの長い時間が必要であった。 In the conventional pressure leakage test, the pressure of the refrigeration cycle device is detected by the pressure gauge, and the presence or absence of pressure drop is determined. When a pressure gauge is used, the measurement range of the pressure gauge depends on the pressurized pressure, so that the measurement range becomes large and the responsiveness to the pressure change becomes poor. Therefore, it took a long time, for example, one day, to evaluate the airtightness after enclosing nitrogen gas in the refrigeration cycle device and pressurizing it.
 気密性の評価方法として、差圧計を用いた差圧計法も知られている。差圧計法は冷凍サイクル装置などの被検査物と、マスターと呼ばれる基準物とを同時に加圧し、被検査物における漏れによる圧力変化をマスターの圧力との差として検知する方法である。差圧計を用いる場合、差圧計の計測レンジは加圧圧力に依存しないため、計測レンジを小さくできる。そのため、圧力計を用いる場合と比較して、応答性を改善することができる。 As a method for evaluating airtightness, a differential pressure gauge method using a differential pressure gauge is also known. The differential pressure gauge method is a method in which an object to be inspected such as a refrigeration cycle device and a reference object called a master are simultaneously pressurized, and a pressure change due to leakage in the inspected object is detected as a difference from the pressure of the master. When a differential pressure gauge is used, the measurement range of the differential pressure gauge does not depend on the pressurizing pressure, so the measurement range can be reduced. Therefore, the responsiveness can be improved as compared with the case of using a pressure gauge.
 ただし、圧力は温度の変化により変動するため、差圧計法を用いて気密試験を行う場合、温度変化による影響を受けるという課題がある。例えば、温度変化のある場所で試験を行う場合、差圧計のメモリの振れが温度変化によるものなのか、あるいは被検査物の漏れによるものなのかの判定が困難になってしまう。この課題を解決するために、特許文献1では、差圧計法のマスターとして用いられる圧力容器を、熱伝導率が低い材料で断熱することで、温度変化による影響を抑制することが提案されている。 However, since the pressure fluctuates due to changes in temperature, there is a problem that the airtightness test using the differential pressure gauge method is affected by changes in temperature. For example, when the test is performed in a place where the temperature changes, it becomes difficult to determine whether the fluctuation of the memory of the differential pressure gauge is due to the temperature change or the leakage of the inspected object. In order to solve this problem, Patent Document 1 proposes to suppress the influence of temperature change by insulating the pressure vessel used as the master of the differential pressure gauge method with a material having low thermal conductivity. ..
特開2017-75842号公報Japanese Unexamined Patent Publication No. 2017-75842
 冷凍サイクル装置の一例として、空気調和機の気密試験を行う場合、屋外に設置された室外機に対して、加圧のための窒素ガスを封入することが多い。この場合、差圧計法のマスターとして用いられる圧力容器も屋外に設置される。このとき、圧力容器は、日射による輻射熱に加え、設置対象と接触する部分においては、設置対象からの熱伝導による温度変化の影響を受ける。特許文献1の圧力容器では、日射による輻射熱と設置対象からの熱伝導との両方による影響は考慮されていない。そのため、特許文献1の圧力容器では、圧力容器の設置状況によっては断熱が不十分となり、温度変化による圧力変化への影響を抑制できず、気密性の評価精度が低下してしまう。 As an example of a refrigeration cycle device, when conducting an airtightness test of an air conditioner, nitrogen gas for pressurization is often filled in an outdoor unit installed outdoors. In this case, the pressure vessel used as the master of the differential pressure gauge method is also installed outdoors. At this time, in addition to the radiant heat generated by the solar radiation, the pressure vessel is affected by the temperature change due to heat conduction from the installation target in the portion in contact with the installation target. In the pressure vessel of Patent Document 1, the influence of both the radiant heat due to solar radiation and the heat conduction from the installation target is not taken into consideration. Therefore, in the pressure vessel of Patent Document 1, heat insulation is insufficient depending on the installation condition of the pressure vessel, the influence of the temperature change on the pressure change cannot be suppressed, and the evaluation accuracy of the airtightness is lowered.
 本開示は、上記のような課題を解決するためのものであり、設置状況による温度変化の影響を抑制することができる圧力容器を提供することを目的とする。 The present disclosure is for solving the above-mentioned problems, and an object of the present disclosure is to provide a pressure vessel capable of suppressing the influence of temperature changes due to installation conditions.
 本開示に係る圧力容器は、内部に流体を封入可能な容器本体と、容器本体を覆う断熱部と、を備え、断熱部は、設置対象に接触する接触部と、接触部以外の外周部と、を有し、接触部の熱抵抗は、外周部の熱抵抗よりも大きい。 The pressure vessel according to the present disclosure includes a container body capable of enclosing a fluid inside and a heat insulating portion covering the container main body, and the heat insulating portion includes a contact portion in contact with an installation target and an outer peripheral portion other than the contact portion. , And the thermal resistance of the contact portion is larger than the thermal resistance of the outer peripheral portion.
 本開示の圧力容器によれば、設置対象に接触する接触部の熱抵抗を外周部の熱抵抗よりも大きくすることで、設置対象からの熱伝導を小さくすることができ、設置状況による温度変化の影響を抑制することができる。 According to the pressure vessel of the present disclosure, by making the thermal resistance of the contact portion in contact with the installation target larger than the thermal resistance of the outer peripheral portion, the heat conduction from the installation target can be reduced, and the temperature changes depending on the installation condition. The influence of can be suppressed.
実施の形態1に係る圧力容器の断面模式図である。It is sectional drawing of the pressure vessel which concerns on Embodiment 1. FIG. 実施の形態1に係る気密試験システムの概略構成図である。It is a schematic block diagram of the airtightness test system which concerns on Embodiment 1. FIG. 実施の形態1に係る気密試験の流れを示すフローチャートである。It is a flowchart which shows the flow of the airtightness test which concerns on Embodiment 1. 変形例1に係る圧力容器の断面模式図である。It is sectional drawing of the pressure vessel which concerns on modification 1. FIG. 変形例2に係る圧力容器の断面模式図である。It is sectional drawing of the pressure vessel which concerns on modification 2. FIG. 変形例3に係る圧力容器の断面模式図である。It is sectional drawing of the pressure vessel which concerns on modification 3. FIG. 変形例4に係る圧力容器の断面模式図である。It is sectional drawing of the pressure vessel which concerns on the modification 4. 実施の形態2に係る圧力容器の断面模式図である。It is sectional drawing of the pressure vessel which concerns on Embodiment 2. FIG. 実施の形態3に係る気密試験システムの概略構成図である。It is a schematic block diagram of the airtightness test system which concerns on Embodiment 3. 実施の形態4に係る気密試験システムの概略構成図である。It is a schematic block diagram of the airtightness test system which concerns on Embodiment 4. FIG.
 以下、図面を参照して、本開示の実施の形態について説明する。なお、各図中、同一または相当する部分には、同一符号を付して、その説明を適宜省略または簡略化する。また、各図面では、各構成部材の相対的な寸法関係または形状等が実際のものとは異なる場合がある。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. In each figure, the same or corresponding parts are designated by the same reference numerals, and the description thereof will be omitted or simplified as appropriate. Further, in each drawing, the relative dimensional relationship or shape of each constituent member may differ from the actual one.
 実施の形態1.
(圧力容器の構成)
 図1は、実施の形態1に係る圧力容器100の断面模式図である。圧力容器100は、差圧計法を用いた気密試験において、マスターとして用いられる容器である。図1に示すように、圧力容器100は、容器本体1と、容器本体1を覆う断熱部2と、接続口3と、圧力計4とを備える。
Embodiment 1.
(Composition of pressure vessel)
FIG. 1 is a schematic cross-sectional view of the pressure vessel 100 according to the first embodiment. The pressure vessel 100 is a vessel used as a master in an airtightness test using a differential pressure gauge method. As shown in FIG. 1, the pressure vessel 100 includes a container main body 1, a heat insulating portion 2 that covers the container main body 1, a connection port 3, and a pressure gauge 4.
 容器本体1は、内部に窒素ガスなどの流体が封入される球形の容器である。容器本体1の形状を球形とすることで、体積に対して放熱面積を小さくすることができ、断熱性能が向上する。なお、容器本体1の形状は、球形に限定されるものではなく、例えば円柱形であってもよい。 The container body 1 is a spherical container in which a fluid such as nitrogen gas is sealed. By making the shape of the container body 1 spherical, the heat dissipation area can be reduced with respect to the volume, and the heat insulating performance is improved. The shape of the container body 1 is not limited to a spherical shape, and may be, for example, a cylindrical shape.
 容器本体1の内部は、封入される流体により加圧され、高い圧力になる。そのため、容器本体1は、例えば鉄、銅、鋼またはステンレスなどの金属により構成される。また、容器本体1の容積は、例えば1000mLから3000mLである。なお、容器本体1の容積は、これに限定されるものではなく、用途に応じて適宜選択される。 The inside of the container body 1 is pressurized by the enclosed fluid, resulting in a high pressure. Therefore, the container body 1 is made of a metal such as iron, copper, steel or stainless steel. The volume of the container body 1 is, for example, 1000 mL to 3000 mL. The volume of the container body 1 is not limited to this, and is appropriately selected depending on the intended use.
 断熱部2は、容器本体1よりも熱伝導率が低い材料により構成される。断熱部2の材料と、容器本体1の材料との熱伝導率の差を大きくすることで、断熱部2の断熱性能を上げることができる。断熱部2としては、大きく分けて繊維系または発砲プラスチック系の2種類の断熱材が用いられる。繊維系の断熱材としては、グラスウールまたはロックウールがある。これらは耐火性および防音性に優れており、比較的安価で軽量である。一方で、発砲プラスチック系の断熱材としては、ポリスチレンフォームまたはポリウレタンフォームなどがある。発砲プラスチック系の断熱材は、繊維系の断熱材よりも断熱性能が高く、かつ高価である。 The heat insulating portion 2 is made of a material having a lower thermal conductivity than that of the container body 1. By increasing the difference in thermal conductivity between the material of the heat insulating portion 2 and the material of the container body 1, the heat insulating performance of the heat insulating portion 2 can be improved. As the heat insulating portion 2, two types of heat insulating materials, which are roughly classified as fiber-based or foamed plastic-based, are used. Fiber-based heat insulating materials include glass wool and rock wool. They have excellent fire resistance and soundproofing, are relatively inexpensive and lightweight. On the other hand, examples of the foamed plastic-based heat insulating material include polystyrene foam and polyurethane foam. Foamed plastic-based insulation has higher insulation performance and is more expensive than fiber-based insulation.
 断熱部2は、容器本体1の全体を覆うように、容器本体1の外表面に固定される。断熱部2は、粘着テープ等により容器本体1に貼りつけられてもよいし、結束バンドまたは紐などにより、容器本体1に縛られて固定されてもよい。断熱部2の固定方法は、容器本体1の大きさまたは材質等に応じて適宜選択される。また、断熱部2は、容器本体1との密着性を考慮し、容器本体1の大きさに合わせて調整できることが望ましい。 The heat insulating portion 2 is fixed to the outer surface of the container body 1 so as to cover the entire container body 1. The heat insulating portion 2 may be attached to the container body 1 with an adhesive tape or the like, or may be bound and fixed to the container body 1 with a binding band or a string. The method for fixing the heat insulating portion 2 is appropriately selected according to the size or material of the container body 1. Further, it is desirable that the heat insulating portion 2 can be adjusted according to the size of the container main body 1 in consideration of the adhesion with the container main body 1.
 断熱部2は、外周部21と接触部22とを有する。接触部22は、断熱部2のうち、圧力容器100が設置される設置対象と接触する接触面を含む部分である。本実施の形態の場合、圧力容器100は屋外の地面に置かれて設置される。そのため、断熱部2のうち、容器本体1の底部を覆う部分が接触部22となる。外周部21は、断熱部2のうち、接触部22以外の部分である。より詳しくは、外周部21は、断熱部2のうち、設置対象と接触しまない部分であり、容器本体1の側部と上部とを覆う部分である。外周部21と接触部22とは、同じ材料により一体に形成されてもよいし、同じ材料で個別に形成された後、一体に接合されてもよい。 The heat insulating portion 2 has an outer peripheral portion 21 and a contact portion 22. The contact portion 22 is a portion of the heat insulating portion 2 including a contact surface in contact with an installation target in which the pressure vessel 100 is installed. In the case of this embodiment, the pressure vessel 100 is placed on the ground outdoors and installed. Therefore, the portion of the heat insulating portion 2 that covers the bottom of the container body 1 becomes the contact portion 22. The outer peripheral portion 21 is a portion of the heat insulating portion 2 other than the contact portion 22. More specifically, the outer peripheral portion 21 is a portion of the heat insulating portion 2 that does not come into contact with the installation target and covers the side portion and the upper portion of the container main body 1. The outer peripheral portion 21 and the contact portion 22 may be integrally formed of the same material, or may be individually formed of the same material and then integrally joined.
 図1に示すように、外周部21は、容器本体1の形状に沿った球形を有する。一方、接触部22は、直方体形状を有し、底面が平面となっている。これにより、圧力容器100を地面に安定して設置することができる。また、接触部22の厚みL2は、外周部21の厚みL1よりも大きくなっている。なお、接触部22の厚みL2は、接触部22の設置対象と接触する接触面から容器本体1の底部の端部までの厚みである。一般的に断熱材の厚みを大きくすることで、断熱性能が向上し、熱抵抗が大きくなる。そのため、接触部22の熱抵抗は、外周部21の熱抵抗よりも大きくなっている。外周部21の厚みL1および接触部22の厚みL2は、圧力容器100が設置される場所の温度などの環境条件に応じて適宜選択される。 As shown in FIG. 1, the outer peripheral portion 21 has a spherical shape that follows the shape of the container body 1. On the other hand, the contact portion 22 has a rectangular parallelepiped shape and has a flat bottom surface. As a result, the pressure vessel 100 can be stably installed on the ground. Further, the thickness L2 of the contact portion 22 is larger than the thickness L1 of the outer peripheral portion 21. The thickness L2 of the contact portion 22 is the thickness from the contact surface in contact with the installation target of the contact portion 22 to the end portion of the bottom portion of the container body 1. Generally, by increasing the thickness of the heat insulating material, the heat insulating performance is improved and the thermal resistance is increased. Therefore, the thermal resistance of the contact portion 22 is larger than the thermal resistance of the outer peripheral portion 21. The thickness L1 of the outer peripheral portion 21 and the thickness L2 of the contact portion 22 are appropriately selected according to environmental conditions such as the temperature of the place where the pressure vessel 100 is installed.
 接続口3は、一端が断熱部2の外側に突出して配置され、他端が容器本体1の内部に配置される。接続口3の一端にはネジ山が形成され、後述する差圧計300(図2)とチャージングホースを介して接続される。接続口3と差圧計300とを接続することにより、圧力容器100をマスターとした気密試験が実施される。気密試験では、接続口3から容器本体1の内部に窒素ガスなどの流体が封入され、容器本体1の内部が加圧される。また、試験の終了後は、接続口3から容器本体1内部の流体が回収される。 One end of the connection port 3 is arranged so as to project outside the heat insulating portion 2, and the other end is arranged inside the container body 1. A screw thread is formed at one end of the connection port 3, and is connected to a differential pressure gauge 300 (FIG. 2) described later via a charging hose. By connecting the connection port 3 and the differential pressure gauge 300, an airtightness test using the pressure vessel 100 as a master is performed. In the airtightness test, a fluid such as nitrogen gas is sealed inside the container body 1 from the connection port 3, and the inside of the container body 1 is pressurized. Further, after the test is completed, the fluid inside the container body 1 is recovered from the connection port 3.
 圧力計4は、容器本体1の内部の圧力を検出する。圧力計4は、容器本体1に例えばネジなどにより接続される。圧力計4の受圧部は、容器本体1の内部に配置され、文字盤は、測定結果が見えやすいように断熱部2の外側に突出して配置される。気密試験では、2Mpa程度の加圧を行うため、圧力計4の最大レンジは2Mpa以上とする。圧力計4により、容器本体1内部の圧力を確認できるため、試験中に容器本体1の内部に流体を封入する際に、封入が完了したかどうかの判定が容易になる。また、封入された流体の回収時においても、容器本体1の内部が減圧されていく過程を確認しながら流体の回収を行えるため、回収時間を短縮することができる。さらに、圧力容器100の接続不良などにより圧力容器100での流体の漏れが発生した場合でも、圧力計4の圧力から漏れの判定を行うことが可能となる。なお、圧力計4は、圧力容器100に必須の構成ではなく、省略してもよい。 The pressure gauge 4 detects the pressure inside the container body 1. The pressure gauge 4 is connected to the container body 1 by, for example, a screw. The pressure receiving portion of the pressure gauge 4 is arranged inside the container body 1, and the dial is arranged so as to project to the outside of the heat insulating portion 2 so that the measurement result can be easily seen. In the airtightness test, pressurization of about 2 Mpa is performed, so the maximum range of the pressure gauge 4 is set to 2 Mpa or more. Since the pressure inside the container body 1 can be confirmed by the pressure gauge 4, when the fluid is sealed inside the container body 1 during the test, it becomes easy to determine whether the filling is completed. Further, even when the enclosed fluid is recovered, the recovery time can be shortened because the fluid can be recovered while confirming the process in which the inside of the container body 1 is depressurized. Further, even if a fluid leak occurs in the pressure vessel 100 due to a poor connection of the pressure vessel 100 or the like, it is possible to determine the leak from the pressure of the pressure gauge 4. The pressure gauge 4 is not an essential configuration for the pressure vessel 100 and may be omitted.
(気密試験システムの構成)
 図2は、実施の形態1に係る気密試験システムの概略構成図である。本実施の形態の気密試験システムは、被検査物である空気調和装置に対して、気密試験として窒素加圧漏洩試験を行うものである。図2に示すように、気密試験システムは、マスターである圧力容器100と、空気調和装置の室外機200と、差圧計300と、ボンベ400と、からなる。
(Configuration of airtightness test system)
FIG. 2 is a schematic configuration diagram of the airtightness test system according to the first embodiment. In the airtightness test system of the present embodiment, a nitrogen pressure leakage test is performed as an airtightness test on the air conditioner to be inspected. As shown in FIG. 2, the airtightness test system includes a pressure vessel 100 which is a master, an outdoor unit 200 of an air conditioner, a differential pressure gauge 300, and a cylinder 400.
 室外機200は、屋外に配置されている。室外機200は、筐体210と、気密試験用の流体が封入される接続口220とを備える。また、室外機200の筐体210の内部には、図示しない圧縮機と、室外熱交換器と、室外ファンとが設けられる。室外機200の圧縮機および室外熱交換器、ならびに室内に設けられた室内機の室内熱交換器および減圧弁は、冷媒配管で接続され、冷媒回路を構成する。接続口220は、筐体210の内部に配置され、冷媒回路を構成する冷媒配管に接続される。 The outdoor unit 200 is arranged outdoors. The outdoor unit 200 includes a housing 210 and a connection port 220 in which a fluid for an airtightness test is sealed. Further, inside the housing 210 of the outdoor unit 200, a compressor (not shown), an outdoor heat exchanger, and an outdoor fan are provided. The compressor and outdoor heat exchanger of the outdoor unit 200, and the indoor heat exchanger and pressure reducing valve of the indoor unit provided in the room are connected by a refrigerant pipe to form a refrigerant circuit. The connection port 220 is arranged inside the housing 210 and is connected to the refrigerant pipes constituting the refrigerant circuit.
 圧力容器100は、屋外の地面の上に設置される。このとき、圧力容器100は、接触部22が地面と接触するように地面の上に置かれる。 The pressure vessel 100 is installed on the outdoor ground. At this time, the pressure vessel 100 is placed on the ground so that the contact portion 22 comes into contact with the ground.
 差圧計300は、圧力容器100と室外機200との差圧を検出する。差圧計300はフック310を備える。差圧計300は、室外機200の筐体210の外側に設けられた凸部または凹部にフック310がひっかけられて、室外機200につるすように取り付けられる。差圧計300の測定ポートには、圧力容器100の接続口3と、室外機200の接続口220とが接続され、充填ポートにはボンベ400が接続される。 The differential pressure gauge 300 detects the differential pressure between the pressure vessel 100 and the outdoor unit 200. The differential pressure gauge 300 includes a hook 310. The differential pressure gauge 300 is attached so as to be hung on the outdoor unit 200 by hooking a hook 310 on a convex portion or a concave portion provided on the outside of the housing 210 of the outdoor unit 200. The connection port 3 of the pressure vessel 100 and the connection port 220 of the outdoor unit 200 are connected to the measurement port of the differential pressure gauge 300, and the cylinder 400 is connected to the filling port.
 ボンベ400は、差圧計300に接続され、圧力容器100および室外機200に流体を封入する。ボンベ400は、例えば窒素ガスを封入する窒素ガスボンベである。なお、気密試験に用いられる流体は、窒素ガスに限定されるものではなく、空気などであってもよい。また、ボンベ400以外の加圧装置を用いて、圧力容器100および室外機200を加圧してもよい。 The cylinder 400 is connected to the differential pressure gauge 300, and the fluid is sealed in the pressure vessel 100 and the outdoor unit 200. The cylinder 400 is, for example, a nitrogen gas cylinder that encloses nitrogen gas. The fluid used in the airtightness test is not limited to nitrogen gas, but may be air or the like. Further, the pressure vessel 100 and the outdoor unit 200 may be pressurized by using a pressurizing device other than the cylinder 400.
(気密試験方法)
 図3は、実施の形態1に係る気密試験の流れを示すフローチャートである。本実施の形態の気密試験は、室外機200の据付け時または補修時に、サービスマンにより実施される。まず、圧力容器100が室外機200の近傍の地面に設置される(S1)。そして、差圧計300が室外機200の筐体210に取り付けられ、差圧計300と圧力容器100とがチャージングホースで接続される(S2)。
(Airtightness test method)
FIG. 3 is a flowchart showing the flow of the airtightness test according to the first embodiment. The airtightness test of the present embodiment is carried out by a serviceman at the time of installation or repair of the outdoor unit 200. First, the pressure vessel 100 is installed on the ground near the outdoor unit 200 (S1). Then, the differential pressure gauge 300 is attached to the housing 210 of the outdoor unit 200, and the differential pressure gauge 300 and the pressure vessel 100 are connected by a charging hose (S2).
 そして、差圧計300と、室外機200とが接続される(S3)。具体的には、室外機200の筐体210の一部が開放され、筐体210の内部に配置される室外機200の接続口220と、差圧計300とがチャージングホースにより接続される。そして、差圧計300と、ボンベ400とが接続される(S4)。 Then, the differential pressure gauge 300 and the outdoor unit 200 are connected (S3). Specifically, a part of the housing 210 of the outdoor unit 200 is opened, and the connection port 220 of the outdoor unit 200 arranged inside the housing 210 and the differential pressure gauge 300 are connected by a charging hose. Then, the differential pressure gauge 300 and the cylinder 400 are connected (S4).
 続いて、ボンベ400から圧力容器100および室外機200に窒素ガスが封入される(S5)。これにより、圧力容器100および室外機200が加圧される。そして、窒素ガスの封入が終了すると、一時間待機する(S6)。 Subsequently, nitrogen gas is filled from the cylinder 400 into the pressure vessel 100 and the outdoor unit 200 (S5). As a result, the pressure vessel 100 and the outdoor unit 200 are pressurized. Then, when the filling of the nitrogen gas is completed, the patient waits for one hour (S6).
 そして、差圧計300で検出される圧力容器100と室外機200との圧力差ΔPが、予め設定された閾値Pth以上であるか否かが判断される(S7)。ここで、圧力差ΔPが閾値Pth以上である場合(S7:YES)、室外機200に漏洩があると判断され(S8)、試験を終了する。 Then, it is determined whether or not the pressure difference ΔP between the pressure vessel 100 and the outdoor unit 200 detected by the differential pressure gauge 300 is equal to or higher than the preset threshold value Pth (S7). Here, when the pressure difference ΔP is equal to or greater than the threshold value Pth (S7: YES), it is determined that there is a leak in the outdoor unit 200 (S8), and the test is terminated.
 一方、圧力差ΔPが閾値Pth未満である場合(S7:NO)、窒素ガスの封入が完了してから3時間以上経過したか否かが判断される(S9)。3時間以上経過していない場合(S9:NO)は、ステップS7に戻って、圧力差ΔPと閾値Pthとの比較が行われる。3時間以上経過した場合(S9:YES)、室外機200の漏洩はないと判断され(S10)、試験を終了する。 On the other hand, when the pressure difference ΔP is less than the threshold value Pth (S7: NO), it is determined whether or not 3 hours or more have passed since the filling of the nitrogen gas was completed (S9). If 3 hours or more have not passed (S9: NO), the process returns to step S7, and the pressure difference ΔP and the threshold value Pth are compared. If 3 hours or more have passed (S9: YES), it is determined that there is no leakage of the outdoor unit 200 (S10), and the test is terminated.
 一般に、気密試験は一日を通して実施される。この場合、日中は日射による輻射熱により圧力容器100の周辺の温度が上昇し、日が傾くと、外気温度が低下して圧力容器100の周辺の温度が低下する。従って、圧力容器100に対する周辺温度の影響を防止するためには、周辺温度の上昇と低下への対策が必要となり、断熱と遮熱両方から対策することが効果的である。 Generally, the airtightness test is conducted throughout the day. In this case, during the daytime, the temperature around the pressure vessel 100 rises due to the radiant heat generated by the sunlight, and when the sun tilts, the outside air temperature drops and the temperature around the pressure vessel 100 drops. Therefore, in order to prevent the influence of the ambient temperature on the pressure vessel 100, it is necessary to take measures against the rise and fall of the ambient temperature, and it is effective to take measures from both heat insulation and heat insulation.
 また、本実施の形態の気密試験は屋外で実施され、圧力容器100は屋外の地面の上に置かれる。この場合、圧力容器100は、輻射熱および外気温度の上昇および低下だけでなく、地面からの熱伝導による温度上昇および低下の影響を強く受ける。本実施の形態の圧力容器100は、断熱部2のうち、設置対象である地面と接触する接触部22の厚さを地面と接触しない外周部21の厚さよりも大きくし、接触部22の熱抵抗を外周部21の熱抵抗よりも大きくしている。これにより、地面からの熱伝導に対する耐熱性を向上させることができ、圧力容器100への設置状況による温度変化の影響を抑制することができる。その結果、差圧計300で検出される差圧における温度変化の影響を減少させることができ、室外機200の気密性の評価精度を向上させることができる。 Further, the airtightness test of this embodiment is carried out outdoors, and the pressure vessel 100 is placed on the outdoor ground. In this case, the pressure vessel 100 is strongly affected not only by the rise and fall of the radiant heat and the outside air temperature, but also by the temperature rise and fall due to the heat conduction from the ground. In the pressure vessel 100 of the present embodiment, the thickness of the contact portion 22 in the heat insulating portion 2 that comes into contact with the ground to be installed is made larger than the thickness of the outer peripheral portion 21 that does not come into contact with the ground, and the heat of the contact portion 22 is increased. The resistance is made larger than the thermal resistance of the outer peripheral portion 21. As a result, the heat resistance to heat conduction from the ground can be improved, and the influence of the temperature change due to the installation condition in the pressure vessel 100 can be suppressed. As a result, the influence of the temperature change on the differential pressure detected by the differential pressure gauge 300 can be reduced, and the evaluation accuracy of the airtightness of the outdoor unit 200 can be improved.
 (変形例1)
 なお、断熱部2の接触部22の熱抵抗を外周部21の熱抵抗よりも大きくする構成は、実施の形態1のように接触部22の厚みを大きくすることに限定されるものではない。図4は、変形例1に係る圧力容器100Aの断面模式図である。図4に示すように、本変形例の断熱部2Aは、外周部21と、外周部21の材料よりも熱伝導率の低い材料で構成される接触部23を有する。一例として、外周部21をグラスウールで構成し、接触部23をポリスチレンフォームで構成することが挙げられる。
(Modification 1)
The configuration in which the thermal resistance of the contact portion 22 of the heat insulating portion 2 is made larger than the thermal resistance of the outer peripheral portion 21 is not limited to increasing the thickness of the contact portion 22 as in the first embodiment. FIG. 4 is a schematic cross-sectional view of the pressure vessel 100A according to the first modification. As shown in FIG. 4, the heat insulating portion 2A of this modification has an outer peripheral portion 21 and a contact portion 23 made of a material having a lower thermal conductivity than the material of the outer peripheral portion 21. As an example, the outer peripheral portion 21 is made of glass wool and the contact portion 23 is made of polystyrene foam.
 本変形例においても、断熱部2Aの接触部23の熱抵抗が外周部21の熱抵抗よりも大きくなる。これにより、圧力容器100Aが地面に設置されて気密試験が行われた場合も、地面からの熱伝導による温度変化の影響を抑制することができる。なお、本変形例の場合は、接触部23の厚みL2は、外周部21の厚みL1よりも大きくてもよいし、外周部21の厚みL1と同じであってもよい。 Also in this modification, the thermal resistance of the contact portion 23 of the heat insulating portion 2A is larger than the thermal resistance of the outer peripheral portion 21. As a result, even when the pressure vessel 100A is installed on the ground and an airtightness test is performed, the influence of the temperature change due to heat conduction from the ground can be suppressed. In the case of this modification, the thickness L2 of the contact portion 23 may be larger than the thickness L1 of the outer peripheral portion 21, or may be the same as the thickness L1 of the outer peripheral portion 21.
 (変形例2)
 図5は、変形例2に係る圧力容器100Bの断面模式図である。本変形例の断熱部2Bは、容器本体1の底部を含む全体を覆う外周部21Aと、外周部21Aの底部に設けられた接触部24とからなる。接触部24は、外周部21Aの材料よりも熱伝導率の低い材料で構成される。一例として、変形例1と同様に、外周部21をグラスウールで構成し、接触部23をポリスチレンフォームで構成することが挙げられる。接触部24は、外周部21Aの底部に粘着テープまたは接着剤により貼り付けられる。
(Modification 2)
FIG. 5 is a schematic cross-sectional view of the pressure vessel 100B according to the modified example 2. The heat insulating portion 2B of this modification comprises an outer peripheral portion 21A that covers the entire container body 1 including the bottom portion, and a contact portion 24 provided at the bottom portion of the outer peripheral portion 21A. The contact portion 24 is made of a material having a lower thermal conductivity than the material of the outer peripheral portion 21A. As an example, as in the modified example 1, the outer peripheral portion 21 is made of glass wool and the contact portion 23 is made of polystyrene foam. The contact portion 24 is attached to the bottom of the outer peripheral portion 21A with an adhesive tape or an adhesive.
 本変形例においても、断熱部2Bの接触部24の熱抵抗が外周部21Aの熱抵抗よりも大きくなる。これにより、圧力容器100Bが地面に設置されて気密試験が行われた場合も、地面からの熱伝導による温度変化の影響を抑制することができる。なお、本変形例においては、接触部24と外周部21Aの材質を同じとしてもよい。この場合も、容器本体1の底部における断熱部2Bの厚みは、接触部24の厚みと外周部21Aの厚みを足したものとなり、地面からの熱伝導の影響を抑制することができる。 Also in this modification, the thermal resistance of the contact portion 24 of the heat insulating portion 2B is larger than the thermal resistance of the outer peripheral portion 21A. As a result, even when the pressure vessel 100B is installed on the ground and an airtightness test is performed, the influence of the temperature change due to heat conduction from the ground can be suppressed. In this modification, the material of the contact portion 24 and the outer peripheral portion 21A may be the same. Also in this case, the thickness of the heat insulating portion 2B at the bottom of the container body 1 is the sum of the thickness of the contact portion 24 and the thickness of the outer peripheral portion 21A, and the influence of heat conduction from the ground can be suppressed.
 (変形例3)
 図6は、変形例3に係る圧力容器100Cの断面模式図である。本変形例の断熱部2Cは、容器本体1の底部を含む全体を覆う外周部21Aと、外周部21Aの底部に設けられた接触部25とからなる。本変形例の接触部25は、2本以上の脚からなり、外周部21Aの材料よりも熱伝導率の低い材料で構成される。接触部25を複数の脚で構成することで、設置対象である地面との接触面積が減少し接触部25の熱抵抗を外周部21Aの熱抵抗よりも大きくすることができる。
(Modification 3)
FIG. 6 is a schematic cross-sectional view of the pressure vessel 100C according to the modified example 3. The heat insulating portion 2C of this modification comprises an outer peripheral portion 21A that covers the entire container body 1 including the bottom portion, and a contact portion 25 provided at the bottom portion of the outer peripheral portion 21A. The contact portion 25 of this modification is composed of two or more legs, and is composed of a material having a lower thermal conductivity than the material of the outer peripheral portion 21A. By forming the contact portion 25 with a plurality of legs, the contact area with the ground to be installed can be reduced and the thermal resistance of the contact portion 25 can be made larger than the thermal resistance of the outer peripheral portion 21A.
 また、外周部21Aの底部、すなわち外周部21Aの設置対象と対向する部分には、反射材26が設けられる。反射材26は、断熱部2Cよりも反射率が高い材料で構成される。一般的な断熱材は反射率が10%程度である。反射材26としては、例えば反射率が60~80%程度の黄色の反射テープ、または反射率が70~85%程度のアルミテープが用いられる。反射材26は、外周部21Aの底部に、接着剤または粘着テープにより貼り付けられる。なお、反射材26の固定方法は、これらに限定されるものではなく、外周部21Aの材質を考慮し、適宜選択される。 Further, the reflective material 26 is provided at the bottom of the outer peripheral portion 21A, that is, the portion of the outer peripheral portion 21A facing the installation target. The reflective material 26 is made of a material having a higher reflectance than the heat insulating portion 2C. A general heat insulating material has a reflectance of about 10%. As the reflective material 26, for example, a yellow reflective tape having a reflectance of about 60 to 80% or an aluminum tape having a reflectance of about 70 to 85% is used. The reflective material 26 is attached to the bottom of the outer peripheral portion 21A with an adhesive or an adhesive tape. The method of fixing the reflective material 26 is not limited to these, and is appropriately selected in consideration of the material of the outer peripheral portion 21A.
 また、反射材26として、テープを貼り付けることに替え、外周部21Aの底部の色を反射率の高い白色などにしてもよい。これにより反射材26を貼る手間と、材料のコストとを削減することができる。外周部21Aの底部の色を白色にする方法としては、元々白色の断熱材を採用する、またはペンキで白色に着色する等が挙げられる。白色ペイントの反射率は70~85%である。 Further, as the reflective material 26, instead of attaching a tape, the color of the bottom of the outer peripheral portion 21A may be white or the like having a high reflectance. As a result, it is possible to reduce the labor of attaching the reflective material 26 and the cost of the material. Examples of the method for making the color of the bottom of the outer peripheral portion 21A white include adopting an originally white heat insulating material or coloring the outer peripheral portion 21A into white with paint. The reflectance of white paint is 70-85%.
 外周部21Aの設置対象と対向する部分の反射率を接触部25の反射率よりも高くすることで、圧力容器100Cが地面に設置された場合に、地面からの輻射熱の侵入を低減することができ、圧力容器100Cの底部の温度の上昇を抑制することができる。 By making the reflectance of the portion of the outer peripheral portion 21A facing the installation target higher than the reflectance of the contact portion 25, it is possible to reduce the intrusion of radiant heat from the ground when the pressure vessel 100C is installed on the ground. It is possible to suppress an increase in the temperature of the bottom of the pressure vessel 100C.
 本変形例においても、断熱部2Cの接触部25の熱抵抗が外周部21Aの熱抵抗よりも大きくなる。これにより、圧力容器100Cが地面に設置されて気密試験が行われた場合も、地面からの熱伝導による温度変化の影響を抑制することができる。また、接触部25を複数の脚として構成することで、凹凸がある地面においても圧力容器100Cを設置しやすくなる。 Also in this modification, the thermal resistance of the contact portion 25 of the heat insulating portion 2C is larger than the thermal resistance of the outer peripheral portion 21A. As a result, even when the pressure vessel 100C is installed on the ground and an airtightness test is performed, the influence of the temperature change due to heat conduction from the ground can be suppressed. Further, by configuring the contact portion 25 as a plurality of legs, it becomes easy to install the pressure vessel 100C even on uneven ground.
 (変形例4)
 図7は、変形例4に係る圧力容器100Dの断面模式図である。本変形例のように、断熱部2Dの外周部21Bを直方体形状としてもよい。接触部22の構成は、実施の形態1と同じである。また、接触部22の厚みL2は、外周部21Bの厚みL1よりも大きくなっている。
(Modification example 4)
FIG. 7 is a schematic cross-sectional view of the pressure vessel 100D according to the modified example 4. As in this modification, the outer peripheral portion 21B of the heat insulating portion 2D may have a rectangular parallelepiped shape. The configuration of the contact portion 22 is the same as that of the first embodiment. Further, the thickness L2 of the contact portion 22 is larger than the thickness L1 of the outer peripheral portion 21B.
 本変形例においても断熱部2Dの接触部22の熱抵抗が外周部21Bの熱抵抗よりも大きくなる。これにより、圧力容器100Dが地面に設置されて気密試験が行われた場合も、地面からの熱伝導による温度変化の影響を抑制することができる。 Also in this modification, the thermal resistance of the contact portion 22 of the heat insulating portion 2D is larger than the thermal resistance of the outer peripheral portion 21B. As a result, even when the pressure vessel 100D is installed on the ground and an airtightness test is performed, the influence of the temperature change due to heat conduction from the ground can be suppressed.
 実施の形態2.
 図8は、実施の形態2に係る圧力容器100Eの断面模式図である。実施の形態2の圧力容器100Eは、温度センサ5を備える点において、実施の形態1と相違する。圧力容器100Eのその他の構成は、実施の形態1と同じである。
Embodiment 2.
FIG. 8 is a schematic cross-sectional view of the pressure vessel 100E according to the second embodiment. The pressure vessel 100E of the second embodiment is different from the first embodiment in that the pressure vessel 100E is provided with the temperature sensor 5. Other configurations of the pressure vessel 100E are the same as those in the first embodiment.
 温度センサ5は、容器本体1と断熱部2との間に配置され、容器本体1の温度を検出する。温度センサ5は、例えば熱電対である。温度センサ5は、容器本体1の外表面に粘着テープで貼り付けられるか、または結束バンドで縛って固定される。 The temperature sensor 5 is arranged between the container body 1 and the heat insulating portion 2 and detects the temperature of the container body 1. The temperature sensor 5 is, for example, a thermocouple. The temperature sensor 5 is attached to the outer surface of the container body 1 with an adhesive tape, or is tied and fixed with a binding band.
 温度センサ5には、温度センサ5による測定結果を表示する表示装置50が接続されている。温度センサ5と表示装置50とを接続する配線の長さは0.5m~2.0mとする。これにより、表示装置50を圧力容器100Eの外部に配置でき、外部から圧力容器100Eの温度の測定結果をモニタリングすることができる。 A display device 50 that displays the measurement result by the temperature sensor 5 is connected to the temperature sensor 5. The length of the wiring connecting the temperature sensor 5 and the display device 50 is 0.5 m to 2.0 m. As a result, the display device 50 can be arranged outside the pressure vessel 100E, and the measurement result of the temperature of the pressure vessel 100E can be monitored from the outside.
 本実施の形態の圧力容器100Eは、温度センサ5を備えることにより気密試験中の容器本体1の温度変化を検出することができる。これにより、差圧計300により検出される差圧の変化が、室外機200の漏れによるものであるか、温度変化によるものであるかを判断することが可能となる。また、温度センサ5により検出された容器本体1の温度を用いて、差圧計300により検出される差圧を補正することもできる。その結果、室外機200の気密性の評価精度をさらに向上させることができる。 The pressure vessel 100E of the present embodiment is provided with the temperature sensor 5 so that the temperature change of the vessel body 1 during the airtightness test can be detected. This makes it possible to determine whether the change in the differential pressure detected by the differential pressure gauge 300 is due to a leak in the outdoor unit 200 or a temperature change. Further, the temperature of the container body 1 detected by the temperature sensor 5 can be used to correct the differential pressure detected by the differential pressure gauge 300. As a result, the evaluation accuracy of the airtightness of the outdoor unit 200 can be further improved.
 実施の形態3.
 図9は、実施の形態3に係る気密試験システムの概略構成図である。本実施の形態の気密試験システムは、圧力容器100の設置状況が実施の形態1と相違する。圧力容器100の構成、およびその他の気密試験システムの構成は、実施の形態1と同じである。
Embodiment 3.
FIG. 9 is a schematic configuration diagram of the airtightness test system according to the third embodiment. In the airtightness test system of the present embodiment, the installation status of the pressure vessel 100 is different from that of the first embodiment. The configuration of the pressure vessel 100 and the configuration of the other airtightness test system are the same as those of the first embodiment.
 図9に示すように、本実施の形態では、マスターである圧力容器100は、室外機200の筐体210内に配置される。すなわち、本実施の形態では、圧力容器100の設置対象は、室外機200の筐体210であり、圧力容器100の接触部22は、筐体210の内面と接触する。 As shown in FIG. 9, in the present embodiment, the pressure vessel 100, which is the master, is arranged in the housing 210 of the outdoor unit 200. That is, in the present embodiment, the installation target of the pressure vessel 100 is the housing 210 of the outdoor unit 200, and the contact portion 22 of the pressure vessel 100 comes into contact with the inner surface of the housing 210.
 本実施の形態の気密試験では、まず室外機200の筐体210の一部が開放され、圧力容器100が筐体210の内部に置かれる。以降の試験方法は、実施の形態1の図3のステップS2~S10と同じである。 In the airtightness test of the present embodiment, first, a part of the housing 210 of the outdoor unit 200 is opened, and the pressure vessel 100 is placed inside the housing 210. Subsequent test methods are the same as steps S2 to S10 in FIG. 3 of the first embodiment.
 圧力容器100を室外機200の内部に配置することで、日射による輻射熱の影響が抑制される。ただし、圧力容器100は、室外機200の筐体210の内面からの熱伝導の影響を受ける。ここで、圧力容器100は、断熱部2のうち、設置対象である筐体210の内面と接触する接触部22の厚さが、接触しない外周部21の厚さよりも大きく、接触部22の熱抵抗が外周部21の熱抵抗よりも大きくなっている。そのため、本実施の形態においても、室外機200の筐体210の内面からの熱伝導による温度変化の影響を抑制することができ、結果として室外機200の気密性の評価精度を向上させることができる。 By arranging the pressure vessel 100 inside the outdoor unit 200, the influence of radiant heat due to solar radiation is suppressed. However, the pressure vessel 100 is affected by heat conduction from the inner surface of the housing 210 of the outdoor unit 200. Here, in the pressure vessel 100, the thickness of the contact portion 22 of the heat insulating portion 2 that contacts the inner surface of the housing 210 to be installed is larger than the thickness of the outer peripheral portion 21 that does not contact, and the heat of the contact portion 22 is increased. The resistance is larger than the thermal resistance of the outer peripheral portion 21. Therefore, also in the present embodiment, the influence of the temperature change due to the heat conduction from the inner surface of the housing 210 of the outdoor unit 200 can be suppressed, and as a result, the evaluation accuracy of the airtightness of the outdoor unit 200 can be improved. can.
 なお、圧力容器100を室外機200の内部に配置することにより、圧力容器100の温度を室外機200内部の温度に馴染ませることができる。これにより、圧力容器100と室外機200の温度差を小さくすることができる。そのため、圧力容器100の断熱部2の断熱性能を、実施の形態1に比べて低くしてもよい。具体的には、断熱部2の外周部21および接触部22の厚みを実施の形態1よりも小さくするか、または断熱部2の材料を実施の形態1よりも熱伝導率の高い材料としてもよい。これにより、実施の形態1と比較して、断熱部2の材料の削減またはコストの削減を実現できる。 By arranging the pressure vessel 100 inside the outdoor unit 200, the temperature of the pressure vessel 100 can be adjusted to the temperature inside the outdoor unit 200. As a result, the temperature difference between the pressure vessel 100 and the outdoor unit 200 can be reduced. Therefore, the heat insulating performance of the heat insulating portion 2 of the pressure vessel 100 may be lower than that of the first embodiment. Specifically, the thickness of the outer peripheral portion 21 and the contact portion 22 of the heat insulating portion 2 may be made smaller than that of the first embodiment, or the material of the heat insulating portion 2 may be a material having a higher thermal conductivity than that of the first embodiment. good. As a result, it is possible to reduce the material of the heat insulating portion 2 or reduce the cost as compared with the first embodiment.
 実施の形態4.
 図10は、実施の形態4に係る気密試験システムの概略構成図である。本実施の形態の気密試験システムは、圧力容器100Fの構成および設置状況が実施の形態1と相違する。その他の気密試験システムの構成は、実施の形態1と同じである。
Embodiment 4.
FIG. 10 is a schematic configuration diagram of the airtightness test system according to the fourth embodiment. The airtightness test system of the present embodiment differs from that of the first embodiment in the configuration and installation status of the pressure vessel 100F. The configuration of the other airtightness test system is the same as that of the first embodiment.
 図10に示すように、本実施の形態では、マスターである圧力容器100Fは、室外機200の筐体210に取り付けられる。すなわち、本実施の形態では、圧力容器100Fの設置対象は、室外機200の筐体210である。圧力容器100Fの断熱部2Fは、容器本体1の一側部を覆うように設けられた接触部22Aと、容器本体1の他側部と底部とを覆うように設けられた外周部21Cとを有する。接触部22Aの厚さは外周部21Cの厚さよりも大きく、接触部22Aの熱抵抗は外周部21Cの熱抵抗よりも大きくなっている。そして、圧力容器100Fの接触部22Aは、筐体210の側面と接触する。 As shown in FIG. 10, in the present embodiment, the master pressure vessel 100F is attached to the housing 210 of the outdoor unit 200. That is, in the present embodiment, the installation target of the pressure vessel 100F is the housing 210 of the outdoor unit 200. The heat insulating portion 2F of the pressure vessel 100F includes a contact portion 22A provided so as to cover one side portion of the container main body 1 and an outer peripheral portion 21C provided so as to cover the other side portion and the bottom portion of the container main body 1. Have. The thickness of the contact portion 22A is larger than the thickness of the outer peripheral portion 21C, and the thermal resistance of the contact portion 22A is larger than the thermal resistance of the outer peripheral portion 21C. Then, the contact portion 22A of the pressure vessel 100F comes into contact with the side surface of the housing 210.
 また、圧力容器100Fは、室外機200の筐体210に取り付けられるためのフック6を備える。本実施の形態の気密試験では、まず室外機200の筐体210の側面に設けられた凸部または凹部に、圧力容器100Fのフック6がひっかけられ、圧力容器100Fが室外機200に取り付けられる。以降の試験方法は、実施の形態1の図3のステップS2~S10と同じである。 Further, the pressure vessel 100F is provided with a hook 6 for being attached to the housing 210 of the outdoor unit 200. In the airtightness test of the present embodiment, first, the hook 6 of the pressure vessel 100F is hooked on the convex portion or the concave portion provided on the side surface of the housing 210 of the outdoor unit 200, and the pressure vessel 100F is attached to the outdoor unit 200. Subsequent test methods are the same as steps S2 to S10 in FIG. 3 of the first embodiment.
 圧力容器100Fが室外機200の筐体210の側部に配置されることにより、圧力容器100Fは、筐体210の側面からの熱伝導の影響を受ける。ここで、圧力容器100は、断熱部2Fのうち、設置対象である筐体210の側面と接触する接触部22Aの厚さが、接触しない外周部21Cの厚さよりも大きく、接触部22Aの熱抵抗が外周部21Cの熱抵抗よりも大きくなっている。そのため、本実施の形態においても、室外機200の筐体210の側面からの熱伝導による温度変化の影響を抑制することができ、室外機200の気密性の評価精度を向上させることができる。 By arranging the pressure vessel 100F on the side of the housing 210 of the outdoor unit 200, the pressure vessel 100F is affected by heat conduction from the side surface of the housing 210. Here, in the pressure vessel 100, the thickness of the contact portion 22A in the heat insulating portion 2F that contacts the side surface of the housing 210 to be installed is larger than the thickness of the outer peripheral portion 21C that does not contact, and the heat of the contact portion 22A. The resistance is larger than the thermal resistance of the outer peripheral portion 21C. Therefore, also in the present embodiment, the influence of the temperature change due to the heat conduction from the side surface of the housing 210 of the outdoor unit 200 can be suppressed, and the evaluation accuracy of the airtightness of the outdoor unit 200 can be improved.
 以上が実施の形態の説明であるが、本開示は、上記の実施の形態に限定されるものではなく、本開示の主旨を逸脱しない範囲で種々に変形すること、および組み合わせることが可能である。例えば、圧力容器100は、空気調和装置の室外機200の気密試験のマスターとして用いられるものに限定されるものではなく、空気調和装置以外の被検査物の気密試験のマスターとして用いてもよい。 Although the above is the description of the embodiment, the present disclosure is not limited to the above-described embodiment, and can be variously modified and combined without departing from the gist of the present disclosure. .. For example, the pressure vessel 100 is not limited to the one used as the master of the airtightness test of the outdoor unit 200 of the air conditioner, and may be used as the master of the airtightness test of the object to be inspected other than the air conditioner.
 また、実施の形態1、2および4のように、気密試験において圧力容器100が屋外に設置される場合は、日射による輻射熱の影響を受ける。そのため、外周部21の外表面の一部または全体に、反射材26を設けてもよい。または、外周部21の外表面に遮熱シートを設けてもよい。外周部21のみの場合は、約5%~10%の輻射熱を遮ることができるのに対し、遮熱シートを設けることで98%の輻射熱を遮ることができる。ただし、遮熱シートは、固体または液体に直接触れると熱伝導を受けるため、接触部22には遮熱シートを設けないようにするとよい。 Further, when the pressure vessel 100 is installed outdoors in the airtightness test as in the first, second and fourth embodiments, it is affected by the radiant heat due to the solar radiation. Therefore, the reflective material 26 may be provided on a part or the whole of the outer surface of the outer peripheral portion 21. Alternatively, a heat shield sheet may be provided on the outer surface of the outer peripheral portion 21. In the case of only the outer peripheral portion 21, about 5% to 10% of radiant heat can be blocked, whereas by providing a heat shield sheet, 98% of radiant heat can be blocked. However, since the heat shield sheet receives heat conduction when it comes into direct contact with a solid or liquid, it is preferable not to provide the heat shield sheet on the contact portion 22.
 また、断熱部2の接触部22の大きさおよび位置は、上記実施の形態および変形例に限定されるものではなく、設置対象に応じて適宜変形可能である。さらに、断熱部2の接触部22の熱抵抗を外周部21の熱抵抗よりも大きくする構成は、上記実施の形態および変形例に限定されるものではない。例えば、接触部22の底面に複数の凹部を設け、設置対象との接触面積を減らすことで、熱抵抗を大きくしてもよい。 Further, the size and position of the contact portion 22 of the heat insulating portion 2 are not limited to the above-described embodiment and modification, and can be appropriately deformed according to the installation target. Further, the configuration in which the thermal resistance of the contact portion 22 of the heat insulating portion 2 is larger than the thermal resistance of the outer peripheral portion 21 is not limited to the above-described embodiment and modification. For example, the thermal resistance may be increased by providing a plurality of recesses on the bottom surface of the contact portion 22 to reduce the contact area with the installation target.
 1 容器本体、2、2A、2B、2C、2D、2F 断熱部、3 接続口、4 圧力計、5 温度センサ、6 フック、21、21A、21B、21C 外周部、22、22A、23、24、25 接触部、26 反射材、50 表示装置、100、100A、100B、100C、100D、100E、100F 圧力容器、200 室外機、210 筐体、220 接続口、300 差圧計、310 フック、400 ボンベ。 1 Container body 2, 2A, 2B, 2C, 2D, 2F Insulation part, 3 Connection port, 4 Pressure gauge, 5 Temperature sensor, 6 Hook, 21, 21A, 21B, 21C Outer circumference, 22, 22A, 23, 24 , 25 contact part, 26 reflector, 50 display device, 100, 100A, 100B, 100C, 100D, 100E, 100F pressure vessel, 200 outdoor unit, 210 housing, 220 connection port, 300 differential pressure gauge, 310 hook, 400 cylinder ..

Claims (10)

  1.  内部に流体を封入可能な容器本体と、
     前記容器本体を覆う断熱部と、を備え、
     前記断熱部は、
     設置対象に接触する接触部と、
     前記接触部以外の外周部と、を有し、
     前記接触部の熱抵抗は、前記外周部の熱抵抗よりも大きい圧力容器。
    A container body that can contain fluid inside,
    A heat insulating portion that covers the container body is provided.
    The heat insulating part is
    The contact part that comes into contact with the installation target,
    It has an outer peripheral portion other than the contact portion, and has
    A pressure vessel in which the thermal resistance of the contact portion is larger than the thermal resistance of the outer peripheral portion.
  2.  前記接触部の厚みは、前記外周部の厚みよりも大きい請求項1に記載の圧力容器。 The pressure vessel according to claim 1, wherein the thickness of the contact portion is larger than the thickness of the outer peripheral portion.
  3.  前記接触部は、前記外周部よりも熱伝導率が低い材料で構成される請求項1または2に記載の圧力容器。 The pressure vessel according to claim 1 or 2, wherein the contact portion is made of a material having a lower thermal conductivity than the outer peripheral portion.
  4.  前記接触部は、複数の脚部からなる請求項1~3の何れか一項に記載の圧力容器。 The pressure vessel according to any one of claims 1 to 3, wherein the contact portion is composed of a plurality of legs.
  5.  前記外周部の前記設置対象と対向する部分の反射率は、前記接触部の反射率よりも高い請求項4に記載の圧力容器。 The pressure vessel according to claim 4, wherein the reflectance of the outer peripheral portion facing the installation target is higher than the reflectance of the contact portion.
  6.  前記接触部は、前記容器本体の底部を覆っている請求項1~5の何れか一項に記載の圧力容器。 The pressure vessel according to any one of claims 1 to 5, wherein the contact portion covers the bottom of the container body.
  7.  前記流体を前記容器本体内に封入し、前記流体を前記容器本体内から回収するための接続口をさらに備える請求項1~6の何れか一項に記載の圧力容器。 The pressure vessel according to any one of claims 1 to 6, wherein the fluid is sealed in the container body and further provided with a connection port for recovering the fluid from the container body.
  8.  前記容器本体内の圧力を検出する圧力計をさらに備える請求項1~7の何れか一項に記載の圧力容器。 The pressure vessel according to any one of claims 1 to 7, further comprising a pressure gauge for detecting the pressure inside the container body.
  9.  前記容器本体の外部に配置され、前記容器本体の温度を検出する温度センサをさらに備える請求項1~8の何れか一項に記載の圧力容器。 The pressure vessel according to any one of claims 1 to 8, further comprising a temperature sensor that is arranged outside the container body and detects the temperature of the container body.
  10.  前記容器本体の形状は球形である請求項1~9の何れか一項に記載の圧力容器。 The pressure vessel according to any one of claims 1 to 9, wherein the shape of the container body is spherical.
PCT/JP2020/036952 2020-09-29 2020-09-29 Pressure vessel WO2022070266A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2020/036952 WO2022070266A1 (en) 2020-09-29 2020-09-29 Pressure vessel
CN202080105073.0A CN116097078B (en) 2020-09-29 2020-09-29 Pressure vessel
JP2022553268A JP7374337B2 (en) 2020-09-29 2020-09-29 pressure vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/036952 WO2022070266A1 (en) 2020-09-29 2020-09-29 Pressure vessel

Publications (1)

Publication Number Publication Date
WO2022070266A1 true WO2022070266A1 (en) 2022-04-07

Family

ID=80951556

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/036952 WO2022070266A1 (en) 2020-09-29 2020-09-29 Pressure vessel

Country Status (3)

Country Link
JP (1) JP7374337B2 (en)
CN (1) CN116097078B (en)
WO (1) WO2022070266A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58163897A (en) * 1982-03-19 1983-09-28 Ishikawajima Harima Heavy Ind Co Ltd Supporting construction for low-temp tank
JP2004526101A (en) * 2000-12-20 2004-08-26 エナージー コンバーション デバイセス インコーポレイテッド Hydrogen storage bed unit with integrated thermal management unit
JP2017026559A (en) * 2015-07-28 2017-02-02 株式会社日立製作所 Gas leak detection device and gas leak detection method
JP2017075842A (en) * 2015-10-14 2017-04-20 株式会社カネカ Reference container for air leak tester and leak testing method
JP2020132246A (en) * 2019-02-22 2020-08-31 株式会社Ihiプラント Tank and construction method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5852082A (en) * 1981-09-14 1983-03-28 株式会社日立製作所 Supporting structure of tank
JP4920468B2 (en) * 2007-03-26 2012-04-18 ニチアス株式会社 Insulated container and manufacturing method thereof
KR20100102885A (en) * 2009-03-12 2010-09-27 주식회사 디섹 Pressure and temperature control-monitoring system for tightness test for lng tank
JP4924745B2 (en) * 2010-08-12 2012-04-25 東洋製罐株式会社 Sealed container sealing inspection method and inspection apparatus
JP2013172692A (en) * 2012-02-27 2013-09-05 Samson Co Ltd Heat sterilization device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58163897A (en) * 1982-03-19 1983-09-28 Ishikawajima Harima Heavy Ind Co Ltd Supporting construction for low-temp tank
JP2004526101A (en) * 2000-12-20 2004-08-26 エナージー コンバーション デバイセス インコーポレイテッド Hydrogen storage bed unit with integrated thermal management unit
JP2017026559A (en) * 2015-07-28 2017-02-02 株式会社日立製作所 Gas leak detection device and gas leak detection method
JP2017075842A (en) * 2015-10-14 2017-04-20 株式会社カネカ Reference container for air leak tester and leak testing method
JP2020132246A (en) * 2019-02-22 2020-08-31 株式会社Ihiプラント Tank and construction method thereof

Also Published As

Publication number Publication date
JP7374337B2 (en) 2023-11-06
JPWO2022070266A1 (en) 2022-04-07
CN116097078B (en) 2024-07-09
CN116097078A (en) 2023-05-09

Similar Documents

Publication Publication Date Title
AU2018207266B2 (en) Device and method for determining the heat insulation quality of dual-wall, vacuum-insulated containers
EP2510508A1 (en) Multi -sheet glazing unit with internal sensor
KR200462979Y1 (en) Bladder type expansion tank having a water leakage detecting function
US20180128708A1 (en) System and method for detecting failures in insulating glass units
US20200132228A1 (en) Conduit seal assembly
JP6087269B2 (en) Corrosion diagnosis method for air conditioner and heat exchanger for air conditioner
CN101529170A (en) Detection of refrigerant release in CO2 refrigerant systems
KR20130031039A (en) Door apparatus for cold storage warehouse
WO2022070266A1 (en) Pressure vessel
CN105222507B (en) Refrigerator and its control method
CN110529974B (en) Refrigerant leakage detection method and device for air conditioner and air conditioner
KR101746083B1 (en) Heating insulation cover for pipe
CN110542512A (en) Pipeline flange leakage online monitoring device and installation method
CN110987241B (en) Fault detection method and device for outer machine temperature sensing bulb and air conditioning unit
CN206787620U (en) Temperature-humidity monitoring tape deck under pipe insulating layer
CN210487175U (en) Pipeline flange leakage on-line monitoring equipment
JP7433508B2 (en) Leakage determination device and leakage determination system
JP3093940B2 (en) Electric refrigerator
JPH06117736A (en) Detecting device for sealed refrigerant quantity
JPH07324988A (en) Closed type compressor
KR200281814Y1 (en) water meter to prevent being frozen to burst from winter-sowing
CN210285439U (en) Movable tank with balance valve
CN104110530B (en) Heat insulation sealing device and air conditioner
CN218724809U (en) Temperature detection assembly and air conditioner
CN206609072U (en) The mounting structure of air-conditioner outdoor unit and its temperature sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20956196

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022553268

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20956196

Country of ref document: EP

Kind code of ref document: A1