WO2022069347A1 - Turbine für einen abgasturbolader in einer verbrennungskraftmaschine sowie verbrennungskraftmaschine für ein kraftfahrzeug - Google Patents

Turbine für einen abgasturbolader in einer verbrennungskraftmaschine sowie verbrennungskraftmaschine für ein kraftfahrzeug Download PDF

Info

Publication number
WO2022069347A1
WO2022069347A1 PCT/EP2021/076274 EP2021076274W WO2022069347A1 WO 2022069347 A1 WO2022069347 A1 WO 2022069347A1 EP 2021076274 W EP2021076274 W EP 2021076274W WO 2022069347 A1 WO2022069347 A1 WO 2022069347A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
turbine
flow
combustion engine
internal combustion
Prior art date
Application number
PCT/EP2021/076274
Other languages
English (en)
French (fr)
Inventor
Stefan Kuenzel
Original Assignee
Daimler Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daimler Ag filed Critical Daimler Ag
Publication of WO2022069347A1 publication Critical patent/WO2022069347A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/18Control of the pumps by bypassing exhaust from the inlet to the outlet of turbine or to the atmosphere
    • F02B37/183Arrangements of bypass valves or actuators therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/02Gas passages between engine outlet and pump drive, e.g. reservoirs
    • F02B37/025Multiple scrolls or multiple gas passages guiding the gas to the pump drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/09Constructional details, e.g. structural combinations of EGR systems and supercharger systems; Arrangement of the EGR and supercharger systems with respect to the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/14Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the exhaust system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/65Constructional details of EGR valves
    • F02M26/70Flap valves; Rotary valves; Sliding valves; Resilient valves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the invention relates to a turbine for an exhaust gas turbocharger of an internal combustion engine according to the preamble of patent claim 1.
  • the invention also relates to an internal combustion engine for a motor vehicle.
  • Such a turbine for an exhaust gas turbocharger of an internal combustion engine, in particular of a motor vehicle, is already known, for example
  • the object of the present invention is to improve a turbine and an internal combustion engine of the type mentioned at the outset. This object is achieved by a turbine having the features of patent claim 1 and by an internal combustion engine having the features of patent claim 3 .
  • Advantageous configurations of expedient developments of the invention are specified in the remaining claims.
  • a flap is provided according to the invention which can be moved, in particular pivoted, relative to the turbine housing between a closed position and at least one open position.
  • the flap blocks the branch opening, in particular completely, while at the same time the flap releases at least a major part, i.e. at least more than half, of a flow cross section of the turbine flow which is arranged upstream of the branch opening in the flow direction of the exhaust gas and through which the exhaust gas flowing through can flow.
  • the flap releases the entire flow cross-section in the closed position.
  • the flap In the open position, the flap releases the branch opening, in particular completely, while at the same time the flap covers at least the majority of the flow cross section, in particular the entire flow cross section, and thereby blocks it.
  • the flap thus functions both as a so-called wastegate flap or bypass flap and as an exhaust flap.
  • the flap can be used to adjust both the quantity of exhaust gas flowing through the branch opening and the quantity of exhaust gas flowing out of the turbine flow via the branch opening and flowing into the bypass duct and subsequently flowing through the bypass duct, as well as the flow cross section.
  • exhaust gas By adjusting, in particular blocking, the flow cross section, exhaust gas can be backed up as required, so that, for example, a particularly high temperature of the exhaust gas can be achieved.
  • By adjusting the amount of exhaust gas flowing through the bypass duct for example, a power output of the turbine and thus a boost pressure of the exhaust gas turbocharger can be adjusted.
  • the invention is based in particular on the following findings. Sufficiently high exhaust gas temperatures are advantageous for the regeneration of particle filters and for realizing a particularly high exhaust gas temperature in exhaust gas aftertreatment systems, in particular in order to be able to keep nitrogen oxide emissions (NOx emissions) low. At the same time, however, nitrogen oxide emissions should be kept low by means of exhaust gas recirculation (EGR), while at the same time excessive fuel consumption by the internal combustion engine is avoided should.
  • EGR exhaust gas recirculation
  • the invention enables a sufficiently high exhaust gas temperature to be achieved effectively without significantly influencing exhaust gas recirculation, ie transport of exhaust gas to be recirculated.
  • the turbine housing has at least one second turbine passage through which the exhaust gas of the internal combustion engine can flow and which is at least partially separated from the turbine passage. It is therefore preferably provided that the turbine housing has at least or exactly two turbine ducts and thus, for example, the first turbine duct and the second turbine duct. It has been shown to be particularly advantageous if the aforementioned exhaust gas recirculation in relation to the turbine ducts takes place exclusively on the second turbine duct or on an exhaust gas duct of the internal combustion engine which is fluidically connected to the second turbine duct, so that preferably the first turbine duct and one which is fluidically connected to the first turbine duct Exhaust flow of the internal combustion engine are completely free of recirculation points for recirculating exhaust gas.
  • the turbine flows are at least partially separated from one another, with the exhaust gas flows preferably also being at least partially separated from one another.
  • the flap in the open position relative to the turbine ducts is arranged exclusively in the first turbine duct, so that the accumulation of exhaust gas that can be effected by means of the flap is limited to the first turbine duct in relation to the turbine ducts.
  • the exhaust gas recirculation is limited to the second turbine flow relative to the turbine flows, as a result of which the fuel consumption of the internal combustion engine can be kept particularly low.
  • the first turbine duct is also referred to as a non-EGR turbine duct, since neither the first turbine duct nor the exhaust gas duct fluidically intertwined with the first turbine duct is used for recirculating exhaust gas.
  • the flap is thus arranged, for example, in the non-EGR turbine flow and positioned in such a way that the flap can both adjust the flow cross section and block the branch opening.
  • the invention also includes an internal combustion engine for a motor vehicle, the internal combustion engine having at least one exhaust gas turbocharger with a turbine according to the invention.
  • Advantages and advantageous configurations of the turbine according to the invention are to be regarded as advantages and advantageous configurations of the internal combustion engine according to the invention, and vice versa.
  • the wastegate functionality means that the amount of exhaust gas flowing through the surrounding duct can be adjusted by means of the flap, or that the branch opening can be released and blocked as required by means of the flap.
  • the exhaust gas flap functionality means that exhaust gas can be backed up as needed by means of the flap and in particular by blocking the flow cross section caused by the flap.
  • the boost pressure can initially be adjusted, in particular regulated.
  • the flow cross-section and thus the turbine flow can be blocked, causing exhaust gas to accumulate. This increases the temperature of the exhaust gas.
  • the second turbine flow or the exhaust gas flow fluidically connected to the second turbine flow is also referred to as the EGR flow, since the second turbine flow or the exhaust gas flow fluidly connected to the second turbine flow is used for exhaust gas recirculation.
  • the EGR flow is not influenced by the flap, ie not by the wastegate functionality and also not by the exhaust gas flap functionality.
  • the combination with variable asymmetry and asymmetric injection allows at least almost full flexibility for thermal management, in particular with regard to temperature increase and nitrogen oxide reduction.
  • Exhaust gas is usually backed up downstream of the turbine wheel by means of an exhaust gas flap.
  • the EGR flow is also backed up to such an extent, or as a result, the exhaust gas is also backed up to such an extent in the EGR flow, that an extreme and usually no longer controllable pressure drop occurs for the exhaust gas recirculation. This can now be avoided by the invention.
  • the only figure shows a detail of a schematic sectional view of an exhaust system 10 of an internal combustion engine, in particular for a motor vehicle.
  • the motor vehicle which is preferably designed as a motor vehicle, in particular a passenger car, has the internal combustion engine and thus the exhaust system 10 in its fully manufactured state and can be driven by means of the internal combustion engine.
  • An exhaust gas manifold 12 through which exhaust gas from the internal combustion engine can flow is arranged in the exhaust gas tract 10 and has or delimits a first exhaust gas flow 14 and a second exhaust gas flow 16 .
  • the exhaust gas flows 14 and 16 can be flowed through by the exhaust gas from the internal combustion engine.
  • An arrow 18 illustrates that exhaust gas flowing through exhaust gas flow 14
  • an arrow 20 illustrates that exhaust gas flowing through exhaust gas flow 16
  • the internal combustion engine has multiple cylinders. At least one or more first cylinders are assigned to a first bank, for example, or form a first bank. At least a second of the cylinders or several second of the cylinders are assigned to a second bank or form a second bank, the respective bank also being referred to as a cylinder bank.
  • provision is made for the cylinder(s) of the first bank to be fluidically connected to the exhaust gas flow 16 so that the exhaust gas from the cylinder(s) of the first bank can flow through the exhaust gas flow 16 .
  • the cylinder or cylinders of the second bank are, for example, fluidly connected to the exhaust gas flow 14 so that the exhaust gas from the cylinder or cylinders of the second bank can flow through the exhaust gas flow 14 .
  • the internal combustion engine also has an intake tract through which air can flow and is also referred to as an intake tract, by means of which air flowing through this intake tract can be guided to and into the cylinder.
  • the internal combustion engine also includes an exhaust gas turbocharger, which includes a compressor arranged in the intake tract for compressing the air flowing through the intake tract and a turbine arranged in the exhaust tract 10 .
  • the turbine has a turbine housing 22 which is formed separately from the exhaust manifold 12, for example.
  • the turbine housing 22 has exactly two turbine ducts 24 and 26 through which the exhaust gas of the internal combustion engine can flow. It can be seen from the figure that the exhaust gas flows 14 and 16 are at least partially separated from one another, and the turbine flows 24, 26 are at least partially separated from one another.
  • turbine passage 24 is fluidly connected to the exhaust gas passage 14 and the turbine passage 26 is fluidly connected to the exhaust gas passage 16 .
  • the exhaust gas flow 14 and the turbine flow 24 form a first flow, which is also referred to as non-EGR flow, since the entire non-EGR flow is free of a recirculation point via which the exhaust gas can be recirculated into the intake tract.
  • turbine flow 26 and exhaust gas flow 16 form what is known as an EGR flow, since the EGR flow has at least one return point RS, via which at least part of the exhaust gas flowing through the EGR flow can be branched off from the EGR flow and fed into a return line 28 of the Internal combustion engine can be initiated.
  • the exhaust gas branched off from the EGR flow at the recirculation point RS and thus introduced into the recirculation line 28 and subsequently flowing through the recirculation line 28 is illustrated in the figure by an arrow 30 and is routed for the recirculation line 28 to and into the intake tract .
  • This is also known as exhaust gas recirculation (EGR).
  • EGR exhaust gas recirculation
  • the recirculation point RS is assigned an EGR valve 32 embodied, for example, as a flap, by means of which a quantity of the exhaust gas flowing through the recirculation line 28 and thereby to be recirculated can be adjusted.
  • a turbine wheel, not shown in the figure, of the turbine is rotatably accommodated in the turbine housing 22 .
  • the exhaust gas flowing through the turbine ducts 24, 26 is guided to the turbine wheel by means of the turbine ducts 24, 26, so that the turbine wheel can be driven by the exhaust gas flowing through the turbine ducts 24, 26 and can be rotated about an axis of rotation relative to the turbine housing 22.
  • the turbine, in particular turbine housing 22 has a bypass duct 34, via which at least part of the exhaust gas flowing through turbine flow 24 can be branched off from turbine flow 24 at a branch point A located upstream of the turbine wheel in the direction of flow of the exhaust gas flowing through turbine flow 24 and into the Bypass channel 34 can be initiated.
  • the bypass duct 34 has a branch opening 38 , via which at least the aforementioned part of the exhaust gas flowing through the turbine duct 24 can be branched off from the turbine duct 24 and introduced into the bypass duct 34 .
  • the branch opening 38 is arranged at the branch point A. FIG.
  • the turbine has a flap 40 which can be moved relative to the turbine housing 22 between a closed position S and open positions 01 and 02, in particular pivotable about a pivot axis SA.
  • the flap 40 blocks the branch opening 38, in particular completely, while the flap 40 releases at least a major part of a flow cross section Q that is arranged upstream of the branch opening 38 in the flow direction of the exhaust gas flowing through the turbine flow 24 and through which the exhaust gas flowing through the turbine flow 24 can flow.
  • the flap 40 releases the branch opening 38, in particular completely, while the flap 40 simultaneously blocks at least the majority of the flow cross section Q, that is to say covers it and thus closes it.
  • the flap 40 uncovers the branch opening 38 and covers the flow cross section Q only slightly, in particular less than half and in particular less than a third of the flow cross section Q.
  • the branch opening 38 is released without blocking the flow cross section Q excessively.
  • at least part of the exhaust gas flowing through the turbine flow 24 can flow into the bypass channel 34 .
  • the flow cross section Q is at least predominantly covered by the flap 40 and thus closed, so that the exhaust gas can be backed up in a particularly advantageous manner.
  • a particularly high exhaust gas temperature can be achieved.
  • a particle filter arranged in the exhaust tract 10, in particular downstream of the turbine can advantageously be regenerated. Influencing the EGR flood through the flap 40 in their functionalities can be avoided, so that an excessive Influencing the exhaust gas recirculation can be avoided.
  • nitrogen oxide emissions can be kept particularly low.

Abstract

Die Erfindung betrifft eine Turbine für einen Abgasturbolader, mit einem Turbinengehäuse (22), welches eine von Abgas der Verbrennungskraftmaschine durchströmbare Turbinenflut (24) aufweist, mit einem in dem Turbinengehäuse (22) angeordneten und von dem die Turbinenflut (24) durchströmenden Abgas antreibbaren Turbinenrad, mit einem Umgehungskanal (34), in welchen über eine stromauf des Turbinenrads angeordnete Abzweigöffnung (38) des Umgehungskanals (34) zumindest ein Teil des Abgases einleitbar ist, wodurch das Turbinenrad von dem in den Umgehungskanal (34) eingeleiteten Abgas zu umgehen ist. Es ist eine Klappe (40) vorgesehen, welche relativ zu dem Turbinengehäuse (22) zwischen einer Schließstellung (S), in welcher die Klappe (40) die Abzweigöffnung (38) versperrt und gleichzeitig einen zumindest überwiegenden Teil eines stromauf der Abzweigöffnung (38) angeordneten und von dem Abgas durchströmbaren Strömungsquerschnitts (Q) der Turbinenflut freigibt, und einer Offenstellung (O1) bewegbar ist, in welcher die Klappe (40) die Abzweigöffnung (38) freigibt und gleichzeitig zumindest den überwiegenden Teil versperrt.

Description

Turbine für einen Abgasturbolader in einer Verbrennungskraftmaschine sowie Verbrennungskraftmaschine für ein Kraftfahrzeug
Die Erfindung betrifft Turbine für ein Abgasturbolader eine Verbrennungskraftmaschine gemäß dem Oberbegriff vom Patentanspruch 1. Des Weiteren betrifft die Erfindung eine Verbrennungskraftmaschine für ein Kraftfahrzeug.
Eine solche Turbine für einen Abgasturbolader einer Verbrennungskraftmaschine, insbesondere eines Kraftfahrzeugs, ist beispielsweise bereits der
DE 10 2015 212 381 A1 als bekannt zu entnehmen. Die Turbine umfasst ein Turbinengehäuse, welches wenigstens eine von Abgas der Verbrennungskraftmaschine durchströmbare Turbinenflut aufweist. Die Turbine umfasst außerdem ein in dem Turbinengehäuse, insbesondere drehbar, angeordnetes und von dem die Turbinenflut durchströmenden Abgas antreibbares und dadurch relativ zu dem Turbinengehäuse drehbares Turbinenrad. Des Weiteren weist die Turbine wenigstens einen Umgehungskanal auf, in welchen über eine stromauf des Turbinenrads angeordnete Abzweigöffnung des Umgehungskanals zumindest ein Teil des die Turbinenflut durchströmenden Abgases einleitbar ist. Hierdurch kann das Turbinenrad von dem in den Umgehungskanal eingeleiteten und daraufhin in den Umgehungskanal durchströmenden Teil des Abgases umgangen werden. Hierunter ist zu verstehen, dass der über die Abzweigöffnung in den Umgehungskanal eingeleitete und in der Folge den Umgehungskanal durchströmende Teil des Abgases, mithin das in den Umgehungskanal durchströmende Abgas das Turbinenrad umgeht und somit das Turbinenrad nicht antreibt. Insbesondere wird der Umgehungskanal auch als Wastegate, Bypass, Wastegate-Kanal oder Bypass-Kanal bezeichnet.
Aufgabe der vorliegenden Erfindung ist es, eine T urbine und eine Verbrennungskraftmaschine der eingangs genannten Art zu verbessern. Diese Aufgabe wird durch eine Turbine mit den Merkmalen des Patentanspruchs 1 sowie durch eine Verbrennungskraftmaschine mit den Merkmalen des Patentanspruchs 3 gelöst. Vorteilhaft Ausgestaltungen zweckmäßigen Weiterbildungen der Erfindung sind in den übrigen Ansprüchen angegeben.
Um eine Turbine der im Oberbegriff des Patentanspruchs 1 angegebenen Art zu verbessern, ist erfindungsgemäß eine Klappe vorgesehen, welche relativ zu dem Turbinengehäuse zwischen einer Schließstellung und wenigstens einer Offenstellung bewegbar, insbesondere verschwenkbar, ist. In der Schließstellung versperrt die Klappe die Abzweigöffnung, insbesondere vollständig, während gleichzeitig die Klappe einen zumindest überwiegenden Teil, das heißt zumindest mehr als die Hälfte eines in Strömungsrichtung des Abgases stromauf der Abzweigöffnung angeordneten und von den Turbinenflut durchströmenden Abgas durchströmbaren Strömungsquerschnitts der Turbinenflut freigibt. Insbesondere gibt die Klappe in der Schließstellung den gesamten Strömungsquerschnitt frei. In der Offenstellung gibt die Klappe die Abzweigöffnung, insbesondere vollständig, frei, während die Klappe gleichzeitig zumindest den überwiegenden Teil des Strömungsquerschnitts, insbesondere den gesamten Strömungsquerschnitt, überdeckt und dadurch versperrt. Die Klappe funktioniert somit gleichzeitig sowohl als sogenannte Wastegate-Klappe oder Bypass-Klappe als auch als Abgasklappe. Hierunter ist insbesondere zu verstehen, dass mittels der Klappe sowohl eine die Abzweigöffnung durchströmende sowie die über die Abzweigöffnung aus der Turbinenflut ausströmende und in den Umgehungskanal einströmende und in der Folge den Umgehungskanal durchströmende Menge des Abgases als auch der Strömungsquerschnitt einstellbar sind. Durch Einstellen, insbesondere Versperren, des Strömungsquerschnitts kann Abgas bedarfsgerecht aufgestaut werden, sodass beispielsweise eine besonders hohe Temperatur des Abgases realisiert werden kann. Durch Einstellen der den Umgehungskanal durchströmende Menge des Abgases können beispielsweise eine Leistung der Turbine und somit ein Ladedruck des Abgasturboladers eingestellt werden.
Der Erfindung liegen insbesondere die folgenden Erkenntnisse zugrunde. Zur Regeneration von Partikelfiltern sowie zur Realisierung einer besonders hohen Abgastemperatur in Abgasnachbehandlungssystemen, insbesondere um Stickoxid- Emissionen (NOx-Emissionen) gering halten zu können, sind hinreichend hohe Abgastemperaturen vorteilhaft. Gleichzeitig sollten die Stickoxid-Emissionen jedoch mittels einer Abgasrückführung (AGR) geringgehalten werden, wobei gleichzeitig ein übermäßiger Kraftstoffverbrauch der Verbrennungskraftmaschine vermieden werden sollte. Die Erfindung ermöglicht eine effektive Realisierung einer hinreichend hohen Abgastemperatur, ohne eine Abgasrückführung, das heißt einen Transport von rückzuführendem Abgas signifikant zu beeinflussen.
In vorteilhafter Ausgestaltung der Erfindung ist es vorgesehen, dass das Turbinengehäuse wenigstens eine von dem Abgas der Verbrennungskraftmaschine durchströmbare und zumindest teilweise von der Turbinenflut getrennte, zweite Turbinenflut aufweist. Somit ist es vorzugsweise vorgesehen, dass das Turbinengehäuse wenigstens oder genau zwei Turbinenfluten und somit beispielweise die erste Turbinenflut und die zweite Turbinenflut aufweist. Dabei hat es sich als besonders vorteilhaft gezeigt, wenn die zuvor genannte Abgasrückführung bezogen auf die Turbinenfluten ausschließlich an der zweiten Turbinenflut beziehungsweise an einer fluidisch mit der zweiten Turbinenflut verbundenen Abgasflut der Verbrennungskraftmaschine stattfindet, sodass vorzugsweise die erste Turbinenflut sowie eine fluidisch mit der ersten Turbinenflut verbundene Abgasflut der Verbrennungskraftmaschine vollständig frei von Rückführstellen zum rückführen von Abgas sind. Dabei ist es vorzugsweise vorgesehen, dass die Turbinenfluten zumindest teilweise voneinander getrennt sind, wobei vorzugsweise auch die Abgasfluten zumindest teilweise voneinander getrennt sind. Somit ist beispielsweise die Klappe in der Offenstellung bezogen auf die Turbinenfluten ausschließlich in der ersten Turbinenflut angeordnet, sodass das mittels der Klappe bewirkbare Aufstauen von Abgas bezogen auf die Turbinenfluten auf die erste Turbinenflut beschränkt wird. Dadurch wird die Abgasrückführung bezogen auf die Turbinenfluten auf die zweite Turbinenflut beschränkt, wodurch der Kraftstoffverbrauch der Verbrennungskraftmaschine besonders gering gehalten werden kann.
Die erste Turbinenflut wird auch als nicht-AGR Turbinenflut bezeichnet, da weder die erste Turbinenflut noch die fluidisch mit der ersten Turbinenflut verwundene Abgasflut zum Rückführen von Abgas verwendet wird. Die Klappe ist somit beispielsweise in der nicht-AGR-Turbinenflut angeordnet und so positioniert, dass die Klappe sowohl den Strömungsquerschnitt einstellen als auch die Abzweigöffnung versperren kann.
Zur Erfindung gehört auch eine Verbrennungskraftmaschine für ein Kraftfahrzeug, wobei die Verbrennungskraftmaschine wenigstens einen Abgasturbolader mit einer erfindungsgemäßen Turbine aufweist. Vorteile und vorteilshafte Ausgestaltungen der erfindungsgemäßen Turbine sind als Vorteile und vorteilshafte Ausgestaltungen der erfindungsgemäßen Verbrennungskraftmaschine anzusehen und umgekehrt. Durch die vorgeschlagene Einbauposition der Klappe in der nicht-AGR-Turbinenflut kann die Klappe gleichzeitig sowohl eine sogenannte Wastegate-Funktionalität als auch eine sogenannte Abgasklappen-Funktionalität übernehmen. Unter der Wastegate- Funktionalität ist zu verstehen, dass mittels der Klappe die den Umgebungskanal durchströmende Menge des Abgases eingestellt werden kann beziehungsweise dass mittels der Klappe die Abzweigöffnung bedarfsgerecht freigegeben und versperrt werden kann. Unter der Abgasklappen-Funktionalität ist zu verstehen, dass mittels der Klappe und dabei insbesondere durch mittels der Klappe bewirktes Versperren des Strömungsquerschnitts Abgas bedarfsgerecht aufgestaut werden kann. Durch leichtes Öffnen der Klappe kann zunächst beispielsweise der Ladedruck eingestellt, insbesondere geregelt werden. Durch weiteres Öffnen der Klappe können der Strömungsquerschnitt und somit die Turbinenflut versperrt werden, wodurch Abgas aufgestaut wird. Hierdurch wird die Temperatur des Abgases erhöht.
Die zweite Turbinenflut beziehungsweise die fluidisch mit der zweiten Turbinenflut verbundene Abgasflut wird auch als AGR-Flut bezeichnet, da die zweite Turbinenflut beziehungsweise die fluidisch mit der zweiten Turbinenflut verbundene Abgasflut zur Abgasrückführung genutzt. Die AGR-Flut wird dabei nicht durch die Klappe, das heißt nicht durch die Wastegate-Funktionalität und auch nicht durch die Abgasklappen- Funktionalität beeinflusst. Durch die Kombination mit einer variablen Asymmetrie und einer asymmetrischen Einspritzung kann eine zumindest nahezu volle Flexibilität für ein Thermomanagement insbesondere bezüglich Temperaturerhöhung und Stickoxid- Absenkung dargestellt werden. Üblicherweise wird mittels einer Abgasklappe Abgas stromab des Turbinenrads aufgestaut. Hierdurch wird auch die AGR-Flut so stark aufgestaut beziehungsweise hierdurch wird das Abgas auch in der AGR-Flut so stark aufgestaut, dass ein extremes und üblicherweise nicht mehr regelbares Druckgefälle für die Abgasrückführung entsteht. Dies kann nun durch die Erfindung vermieden werden.
Weitere Vorteile, Merkmale und Einzelheiten der Erfindung ergeben sich aus der nachfolgenden Beschreibung eines bevorzugten Ausführungsbeispiels sowie anhand der Zeichnung. Die vorstehend in der Beschreibung genannten Merkmale und Merkmalskombinationen sowie die nachfolgend in der Figurenbeschreibung genannten und/oder in der einzigen Figur alleine gezeigten Merkmale und Merkmalskombinationen sind nicht nur in der jeweils angegebenen Kombination, sondern auch in anderen Kombinationen oder in Alleinstellung verwendbar, ohne den Rahmen der Erfindung zu verlassen. Die Zeichnungen zeigt in der einzigen Fig. ausschnittsweise eine schematische Schnittansicht eines Abgastrakts einer Verbrennungskraftmaschine.
Die einzige Fig. zeigt ausschnittsweise eine schematische Schnittansicht eines Abgastrakts 10 einer Verbrennungskraftmaschine, insbesondere für ein Kraftfahrzeug. Dies bedeutet dass das vorzugsweise als Kraftwagen, insbesondere Personenkraftwagen, ausgebildete Kraftfahrzeug in seinem vollständig hergestellten Zustand die Verbrennungskraftmaschine und somit den Abgastrakt 10 aufweist und mittels der Verbrennungskraftmaschine antreibbar ist. In dem Abgastrakt 10 ist ein von Abgas der Verbrennungskraftmaschine durchströmbare Abgaskrümmer 12 angeordnet, welcher eine erste Abgasflut 14 und eine zweite Abgasflut 16 aufweist beziehungsweise begrenzt. Die Abgasfluten 14 und 16 sind von dem Abgas der Verbrennungskraftmaschine durchströmbar. Dabei veranschaulicht ein Pfeil 18 dass die Abgasflut 14 durchströmende Abgas, und ein Pfeil 20 veranschaulicht dass die Abgasflut 16 durchströmende Abgas. Beispielsweise weist die Verbrennungskraftmaschine mehrere Zylinder auf. Wenigstens ein erster oder mehrere, erste der Zylinder sind beispielsweise einer ersten Bank zugeordnet oder bilden eine erste Bank. Wenigstens ein zweiter der Zylinder oder mehre, zweite der Zylinder sind einer zweiten Bank zugeordnet oder bilden eine zweite Bank, wobei die jeweilige Bank auch als Zylinderbank bezeichnet wird. Beispielsweise ist es vorgesehen, dass der beziehungsweise die Zylinder der ersten Bank fluidisch mit der Abgasflut 16 verbunden sind, sodass das Abgas aus dem beziehungsweise die Zylinder der ersten Bank durch die Abgasflut 16 hindurchströmen kann. Der beziehungsweise die Zylinder der zweiten Bank sind beispielsweise fluidisch mit der Abgasflut 14 verbunden, sodass das Abgas aus den beziehungsweise dem Zylinder der zweiten Bank durch die Abgasflut 14 hindurchströmen kann.
Die Verbrennungskraftmaschine weist außerdem einen von Luft durchströmbaren und auch als Einlasstrakt bezeichneten Ansaugtrakt auf, mittels welchem diesen Ansaugtrakt durchströmende Luft zu dem und in die Zylinder geführt werden kann. Außerdem umfasst die Verbrennungskraftmaschine auch einen Abgasturbolader, welcher eine in dem Ansaugtrakt angeordneten Verdichter zum Verdichten der den Ansaugtrakt durchströmenden Luft und eine in dem Abgastrakt 10 angeordnete Turbine umfasst. Die Turbine weist ein Turbinengehäuse 22 auf, welches beispielsweise separat von dem Abgaskrümmer 12 ausgebildet ist. Das Turbinengehäuse 22 weist genau zwei von dem Abgas der Verbrennungskraftmaschine durchströmbare Turbinenfluten 24 und 26 auf. Aus der Fig. ist erkennbar, dass die Abgasfluten 14 und 16 zumindest teilweise voneinander getrennt sind, und die Turbinenfluten 24, 26 sind zumindest teilweise voneinander getrennt. Ferner ist erkennbar, dass die Turbinenflut 24 fluidisch mit der Abgasflut 14 verbunden ist, und die Turbinenflut 26 ist fluidisch mit der Abgasflut 16 verbunden. Die Abgasflut 14 und die Turbinenflut 24 bilden eine erste Flut, welche auch als nicht-AGR-Flut bezeichnet wird, da die gesamte nicht-AGR-Flut frei von einer Rückführstelle ist, über welche das Abgas in den Ansaugtrakt rückführbar ist. Die Turbinenflut 26 und die Abgasflut 16 bilden jedoch eine sogenannte AGR-Flut, da die AGR-Flut wenigstens eine Rückführstelle RS aufweist, über welche zumindest ein Teil des die AGR-Flut durchströmenden Abgases aus der AGR-Flut abzweigbar und in eine Rückführleitung 28 der Verbrennungskraftmaschine einleitbar ist. Das an der Rückführstelle RS aus der AGR-Flut abgezweigte und dadurch in die Rückführleitung 28 eingeleitete und in der Folge durch die Rückführleitung 28 durchströmende Abgas ist in der Fig. durch einen Pfeil 30 veranschaulicht und wird für Rückführleitung 28 zu dem und in den Ansaugtrakt geführt. Dies wird auch als Abgasrückführung (AGR) bezeichnet. Es ist erkennbar, dass die Rückführstelle RS in der Abgasflut 16 und dabei in Strömungsrichtung des die AGR-Flut durchströmende Abgases stromauf der Turbinenflut 26 angeordnet ist. Der Rückführstelle RS ist ein beispielsweise als Klappe ausgebildetes AGR-Ventil 32 zugeordnet, mittels welchem eine Menge des die Rückführleitung 28 durchströmenden und dadurch rückzuführenden Abgases einstellbar ist.
In dem Turbinengehäuse 22 ist ein in der Fig. nicht dargestelltes Turbinenrad der Turbine drehbar aufgenommen. Dass die Turbinenflut 24, 26 durchströmende Abgas wird mittels der Turbinenfluten 24, 26 zu dem Turbinenrad geführt, sodass das Turbinenrad von dem die Turbinenfluten 24, 26 durchströmenden Abgas antreibbar und um eine Drehachse relativ zu dem Turbinengehäuse 22 drehbar ist. Außerdem weist die Turbine, insbesondere das Turbinengehäuse 22, einen Umgehungskanal 34 auf, über welchen zumindest ein Teil des die Turbinenflut 24 durchströmenden Abgases an einer in Strömungsrichtung des die Turbinenflut 24 durchströmenden Abgases stromauf des Turbinenrads angeordneten Abzweigstelle A aus der Turbinenflut 24 abzweigbar und in den Umgehungskanal 34 einleitbar ist. Das an der Abzweigstelle A aus der Turbinenflut 24 abgezweigte und in den Umgehungskanal 34 eingeleitete Abgas und insbesondere dessen Strömung durch den Umgehungskanal 34 sind in der Fig. durch einen Pfeil 36 veranschaulicht. Das den Umgehungskanal 34 durchströmende Abgas umgeht das Turbinenrad und treibt somit das Turbinenrad nicht an. Das den Umgehungskanal 34 durchströmende Abgas wird beispielsweise an einer Einleitstelle wieder in den Abgastrakt 10 eingeleitet, wobei die Einleitstelle in Strömungsrichtung des den Abgastrakt 10 durchströmenden Abgases stromab des Turbinenrads angeordnet ist.
Der Umgehungskanal 34 weist eine Abzweigöffnung 38 auf, über welche zumindest der zuvor genannte Teil des die Turbinenflut 24 durchströmenden Abgases aus der Turbinenflut 24 abzweigbar und in den Umgehungskanal 34 einleitbar ist. Die Abzweigöffnung 38 ist an der Abzweigstelle A angeordnet. Durch Einleiten von Abgas in den Umgehungskanal 34 ist das Turbinenrad von dem in den Umgehungskanal 34 eingeleiteten Abgas zu umgehen.
Um nun eine besonders Emissions- und Kraftstoffverbrauchsarmen Betrieb der Verbrennungskraftmaschine realisieren zu können, weist die Turbine eine Klappe 40 auf, welche relativ zu dem Turbinengehäuse 22 zwischen einer Schließstellung S und Offenstellungen 01 und 02 bewegbar, insbesondere um eine Schwenkachse SA verschwenkbar, ist. In der Schließstellung S versperrt die Klappe 40 die Abzweigöffnung 38, insbesondere vollständig, während die Klappe 40 einen zumindest überwiegenden Teil eines in Strömungsrichtung des die Turbinenflut 24 durchströmenden Abgases stromauf der Abzweigöffnung 38 angeordneten und von dem die Turbinenflut 24 durchströmenden Abgas durchströmbaren Strömungsquerschnitts Q freigibt. In der Offenstellung 01 gibt die Klappe 40 die Abzweigöffnung 38, insbesondere vollständig, frei, während die Klappe 40 gleichzeitig zumindest den überwiegenden Teil des Strömungsquerschnitts Q versperrt, das heißt überdeckt und somit verschließt. In der Offenstellung 02 gibt die Klappe 40 die Abzweigöffnung 38 frei und überdeckt den Strömungsquerschnitt Q nur geringfügig, insbesondere weniger als die Hälfte und ganz insbesondere weniger als ein Drittel des Strömungsquerschnitts Q.
Durch leichtes, von der Schließstellung S ausgehendes Öffnen der Klappe 40 wird somit die Abzweigöffnung 38 freigegeben, ohne den Strömungsquerschnitt Q übermäßig zu versperren. Dadurch kann zumindest ein Teil des die Turbinenflut 24 durchströmenden Abgases in den Umgehungskanal 34 einströmen. Durch weiteres Öffnen der Klappe 40, insbesondere in die Offenstellung 01, wird der Strömungsquerschnitt Q durch die Klappe 40 zumindest überwiegen überdeckt und somit verschlossen, sodass das Abgas besonders vorteilhaft aufgestaut werden kann. Dadurch kann eine besonders hohe Abgastemperatur realisiert werden. Mittels der hohen Temperatur des Abgases kann beispielsweise ein im Abgastrakt 10, insbesondere stromab der Turbine, angeordneter Partikelfilter vorteilhaft regeneriert werden. Eine Beeinflussung der AGR-Flut durch die Klappe 40 in deren Funktionalitäten kann vermieden werden, sodass eine übermäßige Beeinflussung der Abgasrückführung vermieden werden kann. Dadurch können Stickoxid-Emissionen besonders gering gehalten werden.
Bezugszeichenliste
10 Abgastrakt
12 Abgaskrümmer
14 Abgasflut
16 Abgasflut
18 Pfeil
20 Pfeil
22 Turbinengehäuse
24 Turbinenflut
26 Turbinenflut
28 Rückführleitung
30 Pfeil
32 AGR-Ventil
34 Umgehungskanal
36 Pfeil
38 Abzweigöffnung
40 Klappe
A Abzweigstelle
01 Offenstellung
02 Offenstellung
Q Strömungsquerschnitt
RS Rückführstelle
S Schließstellung
SA Schwenkachse

Claims

Patentansprüche T urbine für einen Abgasturbolader einer Verbrennungskraftmaschine, mit einem Turbinengehäuse (22), welches wenigstens eine von Abgas der Verbrennungskraftmaschine durchströmbare Turbinenflut (24) aufweist, mit einem in dem Turbinengehäuse (22) angeordneten und von dem die Turbinenflut (24) durchströmenden Abgas antreibbaren Turbinenrad, und mit wenigstens einem Umgehungskanal (34), in welchen über eine stromauf des Turbinenrads angeordnete Abzweigöffnung (38) des Umgehungskanals (34) zumindest ein Teil des die Turbinenflut (24) durchströmenden Abgases einleitbar ist, wodurch ein Umgehen des Turbinenrads von dem in den Umgehungskanal (34) eingeleiteten und daraufhin den Umgehungskanal (34) durchströmenden Teil des Abgases bewirkbar ist, gekennzeichnet durch eine Klappe (40), welche relativ zu dem Turbinengehäuse (22) zwischen einer Schließstellung (S), in welcher die Klappe (40) die Abzweigöffnung (38) versperrt und gleichzeitig einen zumindest überwiegenden Teil eines stromauf der Abzweigöffnung (38) angeordneten und von dem die Turbinenflut (24) durchströmenden Abgas durchströmbaren Strömungsquerschnitts (Q) der Turbinenflut freigibt, und wenigstens einer Offenstellung (01) bewegbar ist, in welcher die Klappe (40) die Abzweigöffnung (38) freigibt und gleichzeitig zumindest den überwiegenden Teil des Strömungsquerschnitts (Q) überdeckt und dadurch versperrt. Turbine nach Anspruch 1 , dadurch gekennzeichnet, dass das Turbinengehäuse (22) wenigstes eine von dem Abgas der Verbrennungskraftmaschine durchströmbare und zumindest teilweise von der Turbinenflut (24) getrennte, zweite Turbinenflut (26) aufweist. Verbrennungskraftmaschine für ein Kraftfahrzeug, mit wenigstens einem Abgasturbolader, welcher eine Turbine nach Anspruch 1 oder 2 aufweist. Verbrennungskraftmaschine nach Anspruch 3, dadurch gekennzeichnet, dass das Turbinengehäuse (22) wenigstes eine von dem Abgas der Verbrennungskraftmaschine durchströmbare und zumindest teilweise von der Turbinenflut (24) getrennte, zweite Turbinenflut (26) aufweist. Verbrennungskraftmaschine nach Anspruch 4, dadurch gekennzeichnet, dass die erste Turbinenflut (24) und eine von dem Abgas durchströmbare und fluidisch mit der ersten Turbinenflut (24) verbundene Abgasflut (14) der vollständig frei von einer Rückführstelle sind, über welche das Abgas in einen Ansaugtrakt der Verbrennungskraftmaschine rückführbar ist, wobei die zweite Turbinenflut (26) mit einer von dem Abgas durch ström baren zweiten Abgasflut (16) verbunden ist, welche wenigstens eine Rückführstelle (RS) aufweist, über welche zumindest ein Teil des die zweite Abgasflut (16) durchströmenden Abgases in den Ansaugtrakt rückführbar ist.
PCT/EP2021/076274 2020-10-02 2021-09-23 Turbine für einen abgasturbolader in einer verbrennungskraftmaschine sowie verbrennungskraftmaschine für ein kraftfahrzeug WO2022069347A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102020006027.7 2020-10-02
DE102020006027.7A DE102020006027A1 (de) 2020-10-02 2020-10-02 Turbine für einen Abgasturbolader in einer Verbrennungskraftmaschine sowie Verbrennungskraftmaschine für ein Kraftfahrzeug

Publications (1)

Publication Number Publication Date
WO2022069347A1 true WO2022069347A1 (de) 2022-04-07

Family

ID=78073892

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2021/076274 WO2022069347A1 (de) 2020-10-02 2021-09-23 Turbine für einen abgasturbolader in einer verbrennungskraftmaschine sowie verbrennungskraftmaschine für ein kraftfahrzeug

Country Status (2)

Country Link
DE (1) DE102020006027A1 (de)
WO (1) WO2022069347A1 (de)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1152133A2 (de) * 2000-05-03 2001-11-07 Audi Ag Vorrichtung zur Abgasreinigung
EP2372122A1 (de) * 2008-12-26 2011-10-05 Toyota Jidosha Kabushiki Kaisha Abgasreinigungsvorrichtung für einen verbrennungsmotor mit auflader
DE102010029109A1 (de) * 2010-05-19 2011-11-24 Robert Bosch Gmbh Vorrichtung und Verfahren zum Betreiben einer Antriebsvorrichtung
DE102011077205A1 (de) * 2010-06-14 2011-12-15 Ford Global Technologies, Llc Doppelschnecken-Abgasturbolader mit AGR-Entnahmevorrichtungen
US20140223904A1 (en) * 2011-08-26 2014-08-14 International Engine Intellectual Property Company, Llc Pulse turbine turbocharger and egr system
DE102015212381A1 (de) 2015-07-02 2017-01-05 Continental Automotive Gmbh Abgasturbolader mit einer Wastegate-Einrichtung
DE102018121044A1 (de) * 2017-09-06 2019-03-07 Superturbo Technologies, Inc. Turbinenbypass für motor mit angetriebenem turbolader

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1152133A2 (de) * 2000-05-03 2001-11-07 Audi Ag Vorrichtung zur Abgasreinigung
EP2372122A1 (de) * 2008-12-26 2011-10-05 Toyota Jidosha Kabushiki Kaisha Abgasreinigungsvorrichtung für einen verbrennungsmotor mit auflader
DE102010029109A1 (de) * 2010-05-19 2011-11-24 Robert Bosch Gmbh Vorrichtung und Verfahren zum Betreiben einer Antriebsvorrichtung
DE102011077205A1 (de) * 2010-06-14 2011-12-15 Ford Global Technologies, Llc Doppelschnecken-Abgasturbolader mit AGR-Entnahmevorrichtungen
US20140223904A1 (en) * 2011-08-26 2014-08-14 International Engine Intellectual Property Company, Llc Pulse turbine turbocharger and egr system
DE102015212381A1 (de) 2015-07-02 2017-01-05 Continental Automotive Gmbh Abgasturbolader mit einer Wastegate-Einrichtung
DE102018121044A1 (de) * 2017-09-06 2019-03-07 Superturbo Technologies, Inc. Turbinenbypass für motor mit angetriebenem turbolader

Also Published As

Publication number Publication date
DE102020006027A1 (de) 2022-04-07

Similar Documents

Publication Publication Date Title
DE102010053951B4 (de) Turbine für einen Abgasturbolader
WO2008028666A1 (de) Verfahren und vorrichtung zum betreiben einer brennkraftmaschine
DE102008064264B4 (de) Abgastrakt und Verfahren zum Betreiben eines Abgastrakts
EP1763627A1 (de) Brennkraftmaschine mit abgasnachbehandlung und verfahren zu deren betrieb
DE102009004417A1 (de) Verfahren zur Nachbehandlung eines Abgasstroms einer mehrzylindrigen Brennkraftmaschine eines Fahrzeuges sowie Abgasnachbehandlungsvorrichtung
EP2880288B1 (de) Verfahren zum behandeln von abgas und anordnung einer abgasanlage an einer verbrennungskraftmaschine
DE102009004418A1 (de) Verfahren zur Nachbehandlung eines Abgasstroms einer mehrzylindrigen Brennkraftmaschine eines Fahrzeuges sowie Abgasnachbehandlungsvorrichtung
DE102014109577A1 (de) Aufladeeinrichtung für eine Verbrennungskraftmaschine, Verbrennungskraftmaschine sowie Verfahren zum Betreiben einer Verbrennungskraftmaschine
EP2305991B1 (de) Brennkraftmaschine mit einem Abgasturbolader und einem Abgasrückführsystem
EP2151570B1 (de) Abgasrückführsystem für eine Verbrennungskraftmaschine
EP3019734A1 (de) Verbrennungskraftmaschine für einen kraftwagen sowie verfahren zum betreiben einer solchen verbrennungskraftmaschine
WO2009037120A2 (de) Brennkraftmaschine mit mehrflutigen abgasturbolader
DE102013201710B4 (de) Brennkraftmaschine mit Spenderzylinderkonzept
DE10049314A1 (de) Ladeluftkühlung für eine mehrzylindrige Brennkraftmaschine mit einem Turbolader
EP2959152B1 (de) Abgastrakt für eine brennkraftmaschine
EP1633967A2 (de) Brennkraftmaschine mit abgasrückführeinrichtung und verfahren hierzu
DE102007025437A1 (de) Verfahren für eine Brennkraftmaschine mit einem Abgasturbolader
WO2022069347A1 (de) Turbine für einen abgasturbolader in einer verbrennungskraftmaschine sowie verbrennungskraftmaschine für ein kraftfahrzeug
WO2019072521A1 (de) Verbrennungskraftmaschine für ein kraftfahrzeug und kraftfahrzeug mit einer solchen verbrennungskraftmaschine
DE19739054A1 (de) Verbrennungsmotor mit Abgasturbolader, vorzugsweise Ottomotor und Verfahren zu seinem Betreiben
DE102018005460B3 (de) Verbrennungskraftmaschine für ein Kraftfahrzeug, insbesondere für einen Kraftwagen, Verfahren zum Betreiben einer solchen Verbrennungskraftmaschine sowie Kraftfahrzeug mit einer solchen Verbrennungskraftmaschine
EP2737195B1 (de) Aufgeladene brennkraftmaschine
DE102016015357A1 (de) Drosseleinrichtung für einen Abgastrakt einer Verbrennungskraftmaschine
DE102016011838A1 (de) Turbine für einen Abgasturbolader einer Verbrennungskraftmaschine
DE102018006413A1 (de) Verbrennungskraftmaschine für einen Kraftwagen mit einem Abgaskrümmer und mit einem Abgasrückführventil

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21786108

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21786108

Country of ref document: EP

Kind code of ref document: A1