WO2022068732A1 - 空调器的自清洁控制方法及空调器 - Google Patents

空调器的自清洁控制方法及空调器 Download PDF

Info

Publication number
WO2022068732A1
WO2022068732A1 PCT/CN2021/120692 CN2021120692W WO2022068732A1 WO 2022068732 A1 WO2022068732 A1 WO 2022068732A1 CN 2021120692 W CN2021120692 W CN 2021120692W WO 2022068732 A1 WO2022068732 A1 WO 2022068732A1
Authority
WO
WIPO (PCT)
Prior art keywords
amount
heat exchanger
oil
temperature
control method
Prior art date
Application number
PCT/CN2021/120692
Other languages
English (en)
French (fr)
Inventor
汪亚东
王若峰
Original Assignee
青岛海尔空调器有限总公司
青岛海尔空调电子有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调器有限总公司, 青岛海尔空调电子有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调器有限总公司
Publication of WO2022068732A1 publication Critical patent/WO2022068732A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/61Control or safety arrangements characterised by user interfaces or communication using timers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28GCLEANING OF INTERNAL OR EXTERNAL SURFACES OF HEAT-EXCHANGE OR HEAT-TRANSFER CONDUITS, e.g. WATER TUBES OR BOILERS
    • F28G15/00Details
    • F28G15/003Control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28GCLEANING OF INTERNAL OR EXTERNAL SURFACES OF HEAT-EXCHANGE OR HEAT-TRANSFER CONDUITS, e.g. WATER TUBES OR BOILERS
    • F28G9/00Cleaning by flushing or washing, e.g. with chemical solvents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2221/00Details or features not otherwise provided for
    • F24F2221/22Cleaning ducts or apparatus
    • F24F2221/225Cleaning ducts or apparatus using a liquid

Definitions

  • the invention belongs to the technical field of air conditioners, and specifically provides a self-cleaning control method of an air conditioner and an air conditioner.
  • the present invention provides a self-cleaning control method of the air conditioners, including:
  • the air conditioner is controlled to execute the oil removal mode alone, or the dust removal mode is executed first and then the oil removal mode is executed.
  • the air conditioner is controlled to execute the oil removal mode alone, or first execute the dust removal mode and then execute the oil removal mode.
  • Mode steps include:
  • the air conditioner is controlled to execute a degreasing mode alone.
  • control method after the step of "detecting whether there is oil pollution on the surface of the heat exchanger", the control method further includes:
  • the de-ash deposition mode is executed independently;
  • the step of "executing the dedusting mode first and then executing the degreasing mode" specifically includes:
  • the temperature rise of the heat exchanger is controlled to re-dry the surface.
  • the step of "spraying cleaning agent to the surface of the heat exchanger when the degree of defrosting has just reached complete melting" specifically includes:
  • the temperature of the heat exchanger is controlled to be equal to or less than the first dew point temperature, so that the surface condenses;
  • the first dew point temperature ⁇ the second dew point temperature.
  • control method after the step of "judging the size of the oil pollution amount and the preset oil pollution amount", the control method further includes:
  • the cleaning agent is directly sprayed on the surface of the heat exchanger.
  • control method after the step of "spraying cleaning agent on the surface of the heat exchanger", the control method further includes:
  • the temperature of the heat exchanger is controlled to increase to the optimum working temperature of the cleaning agent and maintained for a set time.
  • the frost point temperature the conventional frost point temperature- ⁇ T1, wherein the ⁇ T1>0, and the value of the ⁇ T1 varies with the amount of the oil stains different, and/or,
  • the second dew point temperature conventional dew point temperature ⁇ T2, wherein the ⁇ T2>0, and the value of the ⁇ T2 varies with the amount of the cleaning agent.
  • the step of "executing the oil removal mode alone” specifically includes:
  • the second dew point temperature ⁇ the first dew point temperature
  • the present invention also provides an air conditioner, the air conditioner includes a processor, and the processor is configured to be able to execute the control method described in any one of the above technical solutions.
  • the degreasing mode in the prior art is usually ignored when there is less oil pollution, or the conventional dust removal mode is used for cleaning, so as to keep the air conditioner in a clean state.
  • this scheme has major drawbacks. When there is less oil pollution, ignoring the process will greatly increase the speed of oil pollution and dust accumulation, which will bring a heavier burden to the air conditioner and make it more difficult to clean in the later stage. Clean completely, waste of energy will be more serious.
  • cleaning is carried out in the dedusting mode. Because condensation cannot wash away the oil pollution, it can only reduce the amount of oil pollution, which will result in a small amount of oil pollution still remaining. These oil pollution can still be accumulated quickly and more A large amount of oil and dust, which is not expected by those skilled in the art.
  • the self-cleaning control method of the air conditioner specifically includes: detecting whether there is oil pollution on the surface of the heat exchanger; when there is oil pollution on the surface of the heat exchanger, detecting the heat exchanger according to the size of the dust accumulation and the first preset dust accumulation, control the air conditioner to execute the oil removal mode alone, or perform the degreasing mode first. After the dust accumulation mode, execute the oil removal mode.
  • the existing scheme of selectively controlling the air conditioner to perform the degreasing mode or the dedusting mode according to the amount of oil pollution is abandoned.
  • There is a degreasing mode so that the oil cannot be left again, ensuring that the amount of oil and dust cannot be accumulated quickly, and reducing the self-cleaning times of the air conditioner.
  • the present invention selectively executes the mode of removing dust and then removing oil, or a separate mode of removing oil, so as to avoid the oil-removing mode caused by too much dust. The situation cannot be carried out smoothly or the cleaning is not thorough.
  • Fig. 1 is the flow chart of selecting different operation modes according to oil pollution and ash accumulation of the present invention
  • Fig. 2 is the flow chart of the combined operation of the dedusting mode and the degreasing mode of the present invention
  • FIG. 3 is a flow chart of the independent operation of the degreasing mode of the present invention.
  • step S423 of the degreasing mode in the description is described as an example of maintaining the heat exchanger to the optimum working temperature of the cleaning agent, it is obvious that the present invention does not produce any essential change even if this step is not performed.
  • the cleaning agent can still work normally, or with the advancement of technology, the cleaning agent may be developed that can directly exert the best cleaning effect at low temperature.
  • the heating step of step S423 is obviously unnecessary. Therefore, , the following specific embodiments are only used to explain the technical principle of the present invention, and are not intended to limit the protection scope of the present invention.
  • the self-cleaning control method of the air conditioner of the present invention includes:
  • oil stain detection such as image judgment method, using regular photography photos, and analyze the photos to determine whether there is oil pollution. Or use the smoothness judgment method, using the principle of reflection, to measure the refractive index of the surface of the heat exchanger. Oil and dust have different effects on the refractive index. In this way, it can also be judged whether there is oil on the surface of the heat exchanger.
  • image judgment method using regular photography photos, and analyze the photos to determine whether there is oil pollution.
  • smoothness judgment method using the principle of reflection
  • Oil and dust have different effects on the refractive index. In this way, it can also be judged whether there is oil on the surface of the heat exchanger.
  • the two methods listed above are both physical methods. Since the chemical composition of oil and dust is very different, it can also be detected by related methods of chemical substance analysis, such as detecting the fins of heat exchangers in a non-working state. Inter-chip air oil concentration measurement and other methods.
  • step S400 specifically includes:
  • the scheme of detecting the amount of accumulated ash is well documented in the prior art, for example, it is judged by the power of the fan, the current of the fan, the heating capacity of the air conditioner, etc., which is different from the oil pollution detection and belongs to the conventional technology scheme, so it will not be expanded in detail.
  • the second preset ash accumulation amount can be set according to the conventional scheme.
  • the ash accumulation will be more difficult to remove due to the oil pollution.
  • the ash removal operation is performed.
  • the second preset ash accumulation amount is not reached, there will still be too much oil pollution covering the ash accumulation, so that the oil pollution cannot be completely cleaned.
  • the setting of the ash accumulation amount is smaller than the conventional second preset ash accumulation amount.
  • the present application has described the overall flow of the air conditioner self-cleaning control method, and for the “execute the dust removal mode first and then the oil removal mode” mentioned in step S410, and the steps mentioned in step S420
  • the applicant has also adjusted and improved the "separately execute the oil removal mode", so that the oil removal effect is better, or the energy saving is more energy-saving.
  • Fig. 2 and Fig. 3 the self-cleaning of the above-mentioned two air conditioners of the present invention is further described below. The control method is described in detail.
  • the improvement of the self-cleaning control method of “execute the dedusting mode first and then execute the degreasing mode” is introduced.
  • frost point temperature conventional frost point temperature- ⁇ T1, ⁇ T1>0, and the value of ⁇ T1 varies with the amount of oil stains Different and different.
  • the dedusting mode of the air conditioner belongs to a conventional mode. Usually, the heat exchanger is first frosted and then defrosted, and then the dust deposited on the surface of the heat exchanger is taken away. accomplish.
  • the fan can also be turned on and run at the first rotational speed to speed up condensation.
  • the degreasing mode itself requires spraying the cleaning agent when there is water on the surface of the air conditioner. Compared with spraying the cleaning agent directly in an anhydrous state, the cleaning effect is better.
  • the present application proposes to remove the dust accumulation first, then remove the oil stain, and spray the cleaning agent when the defrost that has just completely melted during the dust removal process is removed. There is still snow water left in the heat exchanger, which saves the step of condensation in the degreasing mode. Compared with the direct superposition of the two overall modes, it saves time and energy required for condensation, allowing users to Experience improvement.
  • frost point temperature conventional frost point temperature - ⁇ T1, ⁇ T1>0
  • the value of ⁇ T1 varies with the amount of oil pollution
  • the selection of this ⁇ T1 can be selected through an empirical table, or calculated through the real-time heat exchange efficiency of the heat exchanger, which can avoid the situation that frost cannot be formed.
  • Step S413 is further described with reference to FIG. 2 .
  • step S413 further includes:
  • the judgment of the amount of oil pollution is added, and the cleaning agent is not directly sprayed on the surface of the heat exchanger.
  • the amount of water is not enough to dissolve the amount of cleaning agent required when the amount of oil stains is large.
  • spraying the cleaning agent directly may cause insufficient dissolution of the cleaning agent, resulting in residual oil. Therefore, a new one-step condensation process is added, but even if a new one-step process is added, since it is carried out when the degree of defrosting has just reached complete melting, there is still a part of the snow water, which will shorten the condensation time. , the energy consumption is reduced.
  • the present invention also sets different heat exchanger temperatures based on different contamination states of the surface of the heat exchanger, that is, the first dew point temperature is limited to be lower than the second dew point temperature, because the During the first condensation process when the temperature of the heat exchanger is less than or equal to the first dew point temperature, the surface of the heat exchanger is more oily. Similar to a range hood, the increase of oil pollution will make heat transfer more difficult, which is not conducive to condensation. At this time, the first dew point temperature The temperature should be lower than the conventional dew point temperature, the first dew point temperature ⁇ conventional dew point temperature, and smooth condensation can be achieved.
  • the first dew point temperature was less than the second dew point temperature, but still could not reach The standard of conventional condensation, the second dew point temperature ⁇ conventional dew point temperature. Therefore, making the first dew point temperature ⁇ the second dew point temperature ⁇ the conventional dew point temperature is more conducive to condensation. It can be obtained by looking up the table or by calculating the heat exchange efficiency under the heat exchanger.
  • the oil By increasing the temperature of the heat exchanger to the optimum working temperature of the cleaning agent and maintaining the set time, the oil can be dissolved more thoroughly.
  • the amount of oil pollution is less than the preset amount of oil pollution, it means that the residual snow water in the dedusting mode is clean enough to be used, and the first condensation process can be removed, and the operation steps of spraying the cleaning agent can be directly carried out.
  • the scheme of "executing the degreasing mode alone” specifically includes:
  • the present invention provides a method for controlling double condensation. Before spraying the cleaning agent, condensation is performed, and after the oil stains are dissolved, condensation washing is performed again, thereby achieving better cleaning effect.
  • the first dew point temperature is less than the second dew point temperature, the advantages of which have been described in the above solution regarding the combination of dust removal and oil removal, and will not be repeated here.
  • the principle and effect are the same as those in the combination of dust removal and oil removal.
  • the fan is controlled to run at the first speed to increase the condensation speed.
  • the device When the device is activated, it runs at the second speed.
  • the second dew point temperature conventional dew point temperature- ⁇ T2, wherein, ⁇ T2>0, and the value of ⁇ T2 varies with the amount of the cleaning agent, and the acquisition of ⁇ T2
  • the present invention selects different control methods according to the amount of oil pollution when the heat exchanger has oil pollution, but no matter what control method includes the treatment of oil pollution, the self-cleaning control method of the air conditioner is more reasonable. Moreover, based on different control methods, the present invention also proposes a control method combining dust removal and oil removal, which can save time and energy required for the condensation process. In addition, the present invention also proposes a new control method for the degreasing mode, that is, the control method for double condensation.
  • the re-drying of the heat exchanger surface is achieved by controlling the temperature increase of the heat exchanger, but the heat exchanger itself can also be slowly dried as long as it is left for a long time. , therefore, the scheme of raising the temperature of the heat exchanger is not necessary, as long as the surface of the heat exchanger can be dried, this scheme is a simple change on the basis of the present invention, and these do not deviate from the principle of the present invention, so All will fall within the protection scope of the present invention.
  • the present invention also provides an air conditioner, comprising a processor, and the processor is configured to be able to execute the self-cleaning control method of the air conditioner according to any one of the above technical solutions.
  • the above-mentioned air conditioner also includes some other well-known structures, such as processors, controllers, memories, etc., wherein the memories include but are not limited to random access memory, flash memory, read-only memory, programmable read-only memory, Volatile memory, non-volatile memory, serial memory, parallel memory or registers, etc., processors include but are not limited to CPLD/FPGA, DSP, ARM processor, MIPS processor, etc. These well-known structures are not shown in the drawings in order to unnecessarily obscure the embodiments of the present disclosure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Human Computer Interaction (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

一种空调器的自清洁控制方法及空调器,旨在解决现有的空调器无法对油污进行深度清洁的问题。为此目的,该自清洁控制方法具体包括:检测换热器的表面是否有油污;当换热器的表面存在油污时,检测换热器的表面的积灰量;比较积灰量与第一预设积灰量的大小;根据积灰量与第一预设积灰量的大小,控制空调器单独执行去油污模式,或者先执行去积灰模式再执行去油污模式。该方法摒弃了现有的根据油污量选择性地控制空调器进行去油污模式还是进行去积灰模式的方案,而是一旦发现已经存在油污后,清洁模式必然带有去油污模式,使油污无法再次残留,确保了油污和尘量不能快速积累,降低了自清洁次数。

Description

空调器的自清洁控制方法及空调器 技术领域
本发明属于空调器技术领域,具体提供一种空调器的自清洁控制方法及空调器。
背景技术
空调器在使用过程中,由于环境的不同,沾染的脏物也有所不同。以厨房或者饭店的空调器为例,由于环境中存在着油烟,长时间使用后,室内机或室外机都会不可避免地沾染油污,同时也沾染有灰尘,然而,沾染油污的空调器相较于单独沾染灰尘的空调器的清洁难度更大,常规的除尘模式无法对其进行根除。
相应的,本领域需要一种新的空调器的自清洁控制方法及空调器来解决现有的空调器无法对油污进行深度清洁的问题。
发明内容
为了解决现有技术中的上述问题,即为了解决现有的空调器无法对油污进行深度清洁的的问题,本发明提供了一种空调器的自清洁控制方法,包括:
检测换热器的表面是否有油污;
当所述换热器的表面存在油污时,检测所述换热器的表面的积灰量;
比较所述积灰量与第一预设积灰量的大小;
根据所述积灰量与第一预设积灰量的大小,控制所述空调器单独执行去油污模式,或者先执行去积灰模式再执行去油污模式。
在上述控制方法的优选技术方案中,“根据所述积灰量与第一预设积灰量的大小,控制所述空调器单独执行去油污模式,或者先执行去积灰模式再执行去油污模式”的步骤具体包括:
当所述积灰量≥第一预设积灰量时,控制所述空调器先执行去积灰模式再执行去油污模式;
当所述积灰量<第一预设积灰量时,控制所述空调器单独 执行去油污模式。
在上述控制方法的优选技术方案中,“检测换热器的表面是否有油污”的步骤之后,所述控制方法还包括:
当所述换热器的表面不存在油污时,检测所述换热器的表面的积灰量;
比较所述积灰量与第二预设积灰量的大小;
当所述积灰量≥第二预设积灰量时,单独执行去积灰模式;
当所述积灰量<第二预设积灰量时,不执行自清洁;
其中,第二预设积灰量>第一预设积灰量。
在上述控制方法的优选技术方案中,“先执行去积灰模式再执行去油污模式”的步骤具体包括:
控制所述换热器的温度≤霜点温度,使其表面结霜;
当结霜厚度达到设定值后,控制所述换热器的温度提升,使其表面化霜;
当化霜程度刚刚达到完全融化时,向所述换热器的表面喷洒清洗剂;
控制所述换热器的温度≤第二露点温度,使其表面凝露;
控制所述换热器的温度升高,使其表面重新干燥。
在上述控制方法的优选技术方案中,“当化霜程度刚刚达到完全融化时,向所述换热器的表面喷洒清洗剂”的步骤具体包括:
当化霜程度刚刚达到完全融化时,重新检测油污量;
判断油污量与预设油污量的大小;
当油污量≥预设油污量时,控制所述换热器的温度≤第一露点温度,使其表面凝露;
向所述换热器的表面喷洒清洗剂;
其中,所述第一露点温度<第二露点温度。
在上述控制方法的优选技术方案中,“判断油污量与预设油污量的大小”的步骤之后,所述控制方法还包括:
当油污量<预设油污量时,直接向所述换热器的表面喷洒清洗剂。
在上述控制方法的优选技术方案中,“向所述换热器的表面喷洒清洗剂”的步骤之后,所述控制方法还包括:
控制所述换热器的温度升高至清洗剂最佳工作温度,并维持设定时间。
在上述控制方法的优选技术方案中,所述霜点温度=常规霜点温度-△T1,其中,所述△T1>0,并且所述△T1的取值随着所述油污的量的不同而不同,并且/或者,
所述第二露点温度=常规露点温度-△T2,其中,所述△T2>0,并且所述△T2的取值随着所述清洗剂的量的不同而不同。
在上述控制方法的优选技术方案中,“单独执行去油污模式”的步骤具体包括:
控制所述换热器的温度≤第一露点温度,使其表面凝露;
向所述换热器的表面喷洒清洗剂;
控制所述换热器的温度升高至清洗剂最佳工作温度,并维持设定时间;
控制所述换热器的温度≤第二露点温度,使其表面凝露;
控制所述换热器的温度升高,使其表面重新干燥;
其中,所述第二露点温度<所述第一露点温度。
本发明还提供了一种空调器,所述空调器包括处理器,所述处理器设置成能够执行上述技术方案中任一项所述的控制方法。
现有技术当中也开始有技术人员尝试去油污模式,现有技术当中的去油污模式通常是通过油污的量来判断是否去油污,然而,通过发明人长时间的研究与实验,发现这种方式有着较大的弊端,就是一旦存在油污之后,积灰的速度相较于不存在油污的积灰的速度将大大提升,并且,一旦存在油污之后,再次积累相同数量的油污的速度也相较于不存在油污时的速度大大提升,究其原因在于,油污本身具有极强的粘附性,一旦沾染上,再次增加油污量的速度就呈现出了大幅度提升,积灰同理,由于油污本身的粘性较高,便更加容易积灰,也使得积灰速度大大增加。
而现有技术当中的去油污模式,通常是在油污较少时不予理会,或者使用常规的除尘模式进行清洁,以使空调器保持清洁状态。但是,这个方案存在着较大的弊端,油污较少时,不予理会过程将会使得油污积累速度以及积灰速度大幅增加,这会给空调器带来更加沉重的负担,后期清洗也更加难以清洁完全,浪费能源也会更加严重。 而油污较少时,通过去积灰模式进行清洁,由于凝露并没有办法冲干净油污,而只能减少油污的量,这样就会导致仍然存留有少量的油污,这些油污依然能够快速积累更多的油污和尘量,这是本领域技术人员不希望看到的。
本领域人员能够理解的是,在本发明的技术方案中,空调器的自清洁控制方法具体包括:检测换热器的表面是否有油污;当换热器的表面存在油污时,检测换热器的表面的积灰量;比较积灰量与第一预设积灰量的大小;根据积灰量与第一预设积灰量的大小,控制空调器单独执行去油污模式,或者先执行去积灰模式再执行去油污模式。
通过本发明的控制方法,摒弃了现有的根据油污量选择性地控制空调器进行去油污模式还是进行去积灰模式的方案,而是一旦发现已经存在油污后,进入的清洁模式是必然带有去油污模式的,从而使油污无法再次残留,确保了油污和尘量不能够再快速积累,降低了空调器的自清洁次数。除此之外,本发明还根据油污量的不同,选择性的执行去积灰后再去油污的模式,或者是单独的去油污模式,从而避免了积灰过多情况下会使得去油污模式无法顺利进行或者清洁不彻底的情况。
附图说明
下面参照附图来描述本发明的空调器的自清洁控制方法及空调器。附图中:
图1为本发明的根据油污和积灰量选择不同运行模式的流程图;
图2为本发明的去积灰模式与去油污模式结合运行的流程图;
图3为本发明的去油污模式独立运行的流程图。
具体实施方式
下面参照附图来描述本发明的优选实施方式。本领域技术人员应当理解的是,这些实施方式仅仅用于解释本发明的技术原理,并非旨在限制本发明的保护范围。本领域技术人员可以根据需要对其 作出调整,以便适应具体的应用场合。例如,尽管说明书中的去油污模式的步骤S423是以维持换热器至清洗剂最佳工作温度为例进行描述的,但是,本发明去掉此步骤显然也没有产生本质上的变化,即使不进行升温,清洗剂仍然能够正常工作,或者随着技术的进步,清洗剂可能还会研发出能在低温下直接发挥出最佳清洗效果的,这时候步骤S423的升温步骤显然也是不需要的,因此,以下几种具体实施方式仅仅用于解释本发明的技术原理,并非旨在限制本发明的保护范围。
首先参照图1,对本发明的空调器的自清洁控制方法进行描述。
如图1所示,为解决现有的空调器无法对油污进行深度清洁的问题,本发明的空调器的自清洁控制方法包括:
S100、检测换热器的表面是否有油污。
由于油污与灰尘略有不同,油污粘附性更高,因此常规的灰尘检测方式并不完全适用,因此,发明人在此列举几种方法用于油污的检测,例如图像判断法,利用定期拍摄的照片,对照片进行分析判断油污是否存在。又或者使用光洁度判断法,利用反光原理,对换热器的表面进行折射率的测量,油污与灰尘对于折射率影响不同,通过这种方式也能判断换热器的表面是否有油污。当然上述列举的两种方法都是物理式的方法,由于油污与尘土的化学成分差距很大,还可以通过化学物质分析的相关方法进行检测,例如检测在不工作状态下的换热器的翅片间空气的油污浓度测量等方式。
S200、当换热器的表面存在油污时,检测换热器的表面的积灰量。
S300、比较积灰量与第一预设积灰量的大小。
S400、根据积灰量与第一预设积灰量的大小,控制空调器单独执行去油污模式,或者先执行去积灰模式再执行去油污模式。
其中,步骤S400具体包括:
S410、当积灰量≥第一预设积灰量时,控制空调器先执行去积灰模式再执行去油污模式;
S420、当积灰量<第一预设积灰量时,控制空调器单独执行去油污模式。
当判断换热器的表面存在油污时,还需要根据积灰量的多少来进一步判断是先执行去积灰模式再执行去油污模式,抑或是单独执行去油污模式,但是,无论选择何种,其均会进行去油污模式,进而对油污进行彻底清洁,确保后续油污与积灰量的积累速度可控,区别点在于,积灰量过多反过来还会影响到去油污模式的效果,因此针对积灰量再次进行判断。
其中,检测积灰量的方案在现有技术当中的记载较多,例如通过风机的功率大小、风机电流大小、空调器制热能力等方式来进行判断,其有别于油污检测,属于常规技术方案,因此不再进行详细展开。
上面的步骤S200至S420描述了当换热器表面存在油污时的控制方法,下面继续参照图1,对换热器表面不存在油污时的控制方法进行描述。
S500、当换热器的表面不存在油污时,检测换热器的表面的积灰量。
S600、比较积灰量与第二预设积灰量的大小。
S610、当积灰量≥第二预设积灰量时,单独执行去积灰模式。
S620、当积灰量<第二预设积灰量时,不执行自清洁。
其中,第二预设积灰量>第一预设积灰量。
需要说明的是,当没有油污存在时,第二预设积灰量可以按照常规方案进行设置,但是,当油污存在时,由于油污会使积灰更加难以去除,如果还设置成达到第二预设积灰量时进行去积灰操作,在未达到第二预设积灰量时,仍然会出现油污覆盖积灰过多,而使得油污清洁无法彻底的情况,因此,本发明将第一预设积灰量设置的较常规的第二预设积灰量更小,在油污上面积累一定的积灰量时,能够更及时的去除,以使去油污模式的效果更佳。
结合图1,本申请已经描述了空调器自清洁控制方法的整体的流程,而对于其中的步骤S410中提及的“先执行去积灰模式再执行去油污模式”,以及步骤S420中提及的“单独执行去油污模式”,申请人也同样进行了调整与改进,使去油污效果更好,或者更加节能, 下面进一步分别参照图2和图3,对本发明的上述两种空调器自清洁控制方法进行详细描述。
如图2所示,首先介绍“先执行去积灰模式再执行去油污模式”的自清洁控制方法的改进,在一种可能的实施方式中,“先执行去积灰模式再执行去油污模式”的步骤具体包括:
S411、控制换热器的温度≤霜点温度,使其表面结霜;其中,霜点温度=常规霜点温度-△T1,△T1>0,并且△T1的取值随着油污的量的不同而不同。
S412、当结霜厚度达到设定值后,控制换热器的温度提升,使其表面化霜;
空调器的去积灰模式属于一种常规的模式,通常为通过换热器先结霜后化霜,然后带走换热器表面的积灰,结霜化霜可以通过四通阀的换向来实现。
S413、当化霜程度刚刚达到完全融化时,向换热器的表面喷洒清洗剂;
S414、控制换热器的温度≤第二露点温度,使其表面凝露。其中,还可以开启风机并以第一转速运行,加快凝露。
S415、控制换热器的温度升高,使其表面重新干燥。在此过程中还可以开启风机并以第二转速运行,加速干燥过程,其中,第二转速>第一转速。
去油污模式本身是需要空调器表面有水时进行喷洒清洗剂,此种方案相较于直接无水状态下喷洒清洗剂,清洗效果是更好的。而本申请在去积灰模式和去油污模式组合的基础上,提出了先去积灰,然后去油污,并且在去积灰过程中刚刚完全融化的化霜的时候喷洒清洗剂,由于此时换热器还残留有雪水,这样便节省了去油污模式当中的凝露的步骤,相较于整体两种模式的直接叠加,节约了时间,也节约了凝露所需的能源,使用户体验提升。
除此之外,对于霜点温度的选择,本申请也并非直接选择的,由于油污量的增加,会导致热量传递困难,此时再直接简单地以外部环境作为霜点温度的判断,将可能会造成换热器表面无法结霜,因此,本申请提出了补偿机制,霜点温度=常规霜点温度-△T1,△T1>0,并且△T1的取值随着油污的量的不同而不同,这个△T1的选取可 以是通过经验表格选择,或者是通过换热器的实时换热效率进行计算获得,能够避免无法结霜的情况。
进一步结合图2,对步骤S413进行进一步展开描述。
在一种可能的实施方式中,步骤S413进一步包括:
S4131、当化霜程度刚刚达到完全融化时,重新检测油污量;
S4132、判断油污量与预设油污量的大小;
S4133、当油污量≥预设油污量时,控制换热器的温度≤第一露点温度,使其表面凝露。其中,还可以开启风机并以第一转速运行,加快凝露。
S4134、向换热器的表面喷洒清洗剂;其中,第一露点温度<第二露点温度,第二露点温度=常规露点温度-△T2,△T2>0,并且△T2的取值随着所述清洗剂的量的不同而不同。在喷洒清洗剂的过程中,还可以控制风机关闭,避免清洗剂被吹走。
此种实施方式当中,新增了对于油污量的判断,不直接向换热器表面喷洒清洗剂,原因在于,如果油污量≥预设油污量时,化霜程度刚刚达到完全融化时所剩下的水量并不足以溶解油污量较大时所需的清洗剂的量,这时候直接喷洒清洗剂可能造成清洗剂溶解不充分,进而使得油污有残留。因此,还是新增了一步凝露的过程,但即使是新增了一步过程,由于是在化霜程度刚刚达到完全融化时进行的,本身还是存留有一部分雪水,这将使得凝露时间缩短,能源消耗降低。
除此之外,本发明还基于不同的换热器表面脏污状态,还设置了不同的换热器温度,也即限制了第一露点温度小于第二露点温度,原因在于,在通过换热器温度≤第一露点温度的第一次进行凝露过程中,换热器的表面油污比较多,类似油烟机,油污增多会使热量传递更加困难,不利于凝露,此时第一露点温度温度应当相对于常规露点温度较低,第一露点温度<常规露点温度,能够实现顺利的凝露。而第二次凝露过程中,由于喷洒了清洗剂,油污被溶解,裸露出大片的光洁面,此时凝露变得较为容易,第一露点温度<第二露点温度,但仍然达不到常规凝露的标准,第二露点温度<常规露点温度。因此使第一露点温度<第二露点温度<常规露点温度,更利于凝露,第二露点温度=常规露点温度-△T2,△T2>0,△T2的选择与△T1的选择同 理,可以是通过查表,或者通过换热器下换热效率计算获得。
S4135、控制所述换热器的温度升高至清洗剂最佳工作温度,并维持设定时间;
S4136、当油污量<预设油污量时,直接向所述换热器的表面喷洒清洗剂,并进入步骤S4135。
通过增加换热器温度至清洗剂最佳工作温度,并维持设定时间,能够使油污溶解更加彻底。当油污量<预设油污量时,此时说明去积灰模式下的残留的雪水足够清洁使用,便可以去掉第一次凝露过程,直接进行喷洒清洗剂的操作步骤。
上面已经对“先执行去积灰模式再执行去油污模式”的自清洁控制方法的改进进行了介绍,同样地,对于“单独执行去油污模式”也进行了改进,下面参照图3进一步进行介绍。
如图3所示,“单独执行去油污模式”的方案具体包括:
S421、控制换热器的温度≤第一露点温度,使其表面凝露;
S422、向所述换热器的表面喷洒清洗剂;
S423、控制所述换热器的温度≤第二露点温度,使其表面凝露;
S424、控制所述换热器的温度升高,使其表面重新干燥;
S425、控制换热器的温度升高至清洗剂最佳工作温度,并维持设定时间。
在前述部分描述“先执行去积灰模式再执行去油污模式”的过程当中,是包含有许多对于去油污模式的方案的介绍的,而单独执行去油污模式的最凸出的发明点便在于,现有技术当中对于油污是只有第一次凝露过程的,凝露完成后直接喷洒清洗剂,然后进行干燥处理,这将会存在较多的清洗剂以及油污残留,效果不够好,在此背景基础上,本发明提供了一种双凝露的控制方法,喷洒清洗剂前进行了凝露,油污被溶解后又进行了一次凝露冲洗,进而实现更好地清洁效果。
在另一种更优选地实施方式中,第一露点温度<第二露点温度,其优势已经在上述关于去积灰和去油污结合的方案当中进行过阐述,此处便不再赘述。对于风机的控制,与去积灰和去油污结合的方案当中的原理以及效果相同,在凝露过程中控制风机以第一转速运 行,增加凝露速度,喷洒清洗剂时关闭风机,干燥换热器时,以第二转速运行。
在另一种实施方式中,第二露点温度=常规露点温度-△T2,其中,△T2>0,并且△T2的取值随着所述清洗剂的量的不同而不同,△T2的获取方式以及此种设置的有益效果在前述也已经提及,便不再赘述。
综上所述,本发明在换热器具有油污时,根据油污量不同选择不同的控制方法,但无论何种控制方法,均包含了油污的处理,使得空调器的自清洁控制方法更加合理。并且,基于不同的控制方法,本发明还提出了去积灰与去油污结合的控制方法,能够节省凝露过程所需的时间以及能源。另外,本发明还提出了一种新的去油污模式的控制方法,也即双凝露的控制方法。
需要说明的是,上述实施方式仅仅用来阐述本发明的原理,并非旨在与限制本发明的保护范围,在不偏离本发明原理的条件下,本领域技术人员能够对上述结构进行调整,以便本发明能够应用于更加具体的应用场景。
例如,在一种可替换的实施方式中,使换热器表面重新干燥是控制换热器的温度升高来实现的,但是,只要放置时间较长,换热器本身也能慢慢实现干燥,因此,提升换热器的温度的方案并不是必须的,只要能实现换热器表面干燥即可,这种方案属于本发明的基础上的简单变化,这些都不偏离本发明的原理,因此都将落入本发明的保护范围之内。
此外,本发明还提供了一种空调器,包括处理器,所述处理器设置成能够执行上述技术方案中任一项所述的空调器的自清洁控制方法。
本领域技术人员可以理解,上述空调器还包括一些其他公知结构,例如处理器、控制器、存储器等,其中,存储器包括但不限于随机存储器、闪存、只读存储器、可编程只读存储器、易失性存储器、非易失性存储器、串行存储器、并行存储器或寄存器等,处理器包括但不限于CPLD/FPGA、DSP、ARM处理器、MIPS处理器等。为了不必要地模糊本公开的实施例,这些公知的结构未在附图中示出。
上述实施例中虽然将各个步骤按照上述先后次序的方式进行了描述,但是本领域技术人员可以理解,为了实现本实施例的效果,不同的步骤之间不必按照这样的次序执行,其可以同时(并行)执行或以颠倒的次序执行,这些简单的变化都在本发明的保护范围之内。
至此,已经结合附图所示的优选实施方式描述了本发明的技术方案,但是,本领域技术人员容易理解的是,本发明的保护范围显然不局限于这些具体实施方式。在不偏离本发明的原理的前提下,本领域技术人员可以对相关技术特征作出等同的更改或替换,这些更改或替换之后的技术方案都将落入本发明的保护范围之内。

Claims (10)

  1. 一种空调器的自清洁控制方法,其特征在于,包括:
    检测换热器的表面是否有油污;
    当所述换热器的表面存在油污时,检测所述换热器的表面的积灰量;
    比较所述积灰量与第一预设积灰量的大小;
    根据所述积灰量与第一预设积灰量的大小,控制所述空调器单独执行去油污模式,或者先执行去积灰模式再执行去油污模式。
  2. 根据权利要求1所述的控制方法,其特征在于,“根据所述积灰量与第一预设积灰量的大小,控制所述空调器单独执行去油污模式,或者先执行去积灰模式再执行去油污模式”的步骤具体包括:
    当所述积灰量≥第一预设积灰量时,控制所述空调器先执行去积灰模式再执行去油污模式;
    当所述积灰量<第一预设积灰量时,控制所述空调器单独执行去油污模式。
  3. 根据权利要求1所述的控制方法,其特征在于,“检测换热器的表面是否有油污”的步骤之后,所述控制方法还包括:
    当所述换热器的表面不存在油污时,检测所述换热器的表面的积灰量;
    比较所述积灰量与第二预设积灰量的大小;
    当所述积灰量≥第二预设积灰量时,单独执行去积灰模式;
    当所述积灰量<第二预设积灰量时,不执行自清洁;
    其中,第二预设积灰量>第一预设积灰量。
  4. 根据权利要求1所述的控制方法,其特征在于,“先执行去积灰模式再执行去油污模式”的步骤具体包括:
    控制所述换热器的温度≤霜点温度,使其表面结霜;
    当结霜厚度达到设定值后,控制所述换热器的温度提升,使其表面化霜;
    当化霜程度刚刚达到完全融化时,向所述换热器的表面喷洒清洗剂;
    控制所述换热器的温度≤第二露点温度,使其表面凝露;
    控制所述换热器的温度升高,使其表面重新干燥。
  5. 根据权利要求4所述的控制方法,其特征在于,“当化霜程度刚刚达到完全融化时,向所述换热器的表面喷洒清洗剂”的步骤具体包括:
    当化霜程度刚刚达到完全融化时,重新检测油污量;
    判断油污量与预设油污量的大小;
    当油污量≥预设油污量时,控制所述换热器的温度≤第一露点温度,使其表面凝露;
    向所述换热器的表面喷洒清洗剂;
    其中,所述第一露点温度<第二露点温度。
  6. 根据权利要求5所述的控制方法,其特征在于,“判断油污量与预设油污量的大小”的步骤之后,所述控制方法还包括:
    当油污量<预设油污量时,直接向所述换热器的表面喷洒清洗剂。
  7. 根据权利要求5或6所述的控制方法,其特征在于,“向所述换热器的表面喷洒清洗剂”的步骤之后,所述控制方法还包括:
    控制所述换热器的温度升高至清洗剂最佳工作温度,并维持设定时间。
  8. 根据权利要求4所述的控制方法,其特征在于,所述霜点温度=常规霜点温度-△T1,其中,所述△T1>0,并且所述△T1的取值随着所述油污的量的不同而不同,并且/或者,
    所述第二露点温度=常规露点温度-△T2,其中,所述△T2>0,并且所述△T2的取值随着所述清洗剂的量的不同而不同。
  9. 根据权利要求1所述的控制方法,其特征在于,“单独执行去油污模式”的步骤具体包括:
    控制所述换热器的温度≤第一露点温度,使其表面凝露;
    向所述换热器的表面喷洒清洗剂;
    控制所述换热器的温度升高至清洗剂最佳工作温度,并维持设定时间;
    控制所述换热器的温度≤第二露点温度,使其表面凝露;
    控制所述换热器的温度升高,使其表面重新干燥;
    其中,所述第二露点温度<所述第一露点温度。
  10. 一种空调器,其特征在于,所述空调器包括处理器,所述处理器设置成能够执行权利要求1至9中任一项所述的空调器的自清洁控制方法。
PCT/CN2021/120692 2021-01-18 2021-09-26 空调器的自清洁控制方法及空调器 WO2022068732A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110064078.XA CN112710063B (zh) 2021-01-18 2021-01-18 空调器的自清洁控制方法及空调器
CN202110064078.X 2021-01-18

Publications (1)

Publication Number Publication Date
WO2022068732A1 true WO2022068732A1 (zh) 2022-04-07

Family

ID=75549253

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/120692 WO2022068732A1 (zh) 2021-01-18 2021-09-26 空调器的自清洁控制方法及空调器

Country Status (2)

Country Link
CN (1) CN112710063B (zh)
WO (1) WO2022068732A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112710063B (zh) * 2021-01-18 2022-10-28 青岛海尔空调器有限总公司 空调器的自清洁控制方法及空调器
CN114608135A (zh) * 2022-02-25 2022-06-10 青岛海尔空调器有限总公司 用于空调器的自清洁控制方法及装置、空调器、存储介质

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5509972A (en) * 1994-06-27 1996-04-23 Akazawa; Yasumasa Air-conditioner cleaning method
CN109282367A (zh) * 2018-11-08 2019-01-29 珠海格力电器股份有限公司 一种自动清洁油污的系统、控制方法及空调器
CN110736194A (zh) * 2019-09-30 2020-01-31 青岛海尔空调器有限总公司 用于空调自清洁的方法和空调
CN110736193A (zh) * 2019-09-30 2020-01-31 青岛海尔空调器有限总公司 用于空调自清洁的方法、装置和空调
CN110873388A (zh) * 2018-08-31 2020-03-10 青岛海尔空调器有限总公司 一种空调及其自清洁的控制方法
CN110873400A (zh) * 2018-08-31 2020-03-10 青岛海尔空调器有限总公司 一种空调及其自清洁的控制方法
CN111306693A (zh) * 2019-11-12 2020-06-19 珠海格力电器股份有限公司 一种自清洁控制方法、装置及设备
CN111811106A (zh) * 2020-06-24 2020-10-23 珠海格力电器股份有限公司 一种清洁控制方法、装置、空调、存储介质及处理器
CN112665114A (zh) * 2021-01-18 2021-04-16 青岛海尔空调器有限总公司 空调器的自清洁控制方法及空调器
CN112665103A (zh) * 2021-01-18 2021-04-16 青岛海尔空调器有限总公司 空调器的自清洁控制方法及空调器
CN112710063A (zh) * 2021-01-18 2021-04-27 青岛海尔空调器有限总公司 空调器的自清洁控制方法及空调器

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5509972A (en) * 1994-06-27 1996-04-23 Akazawa; Yasumasa Air-conditioner cleaning method
CN110873388A (zh) * 2018-08-31 2020-03-10 青岛海尔空调器有限总公司 一种空调及其自清洁的控制方法
CN110873400A (zh) * 2018-08-31 2020-03-10 青岛海尔空调器有限总公司 一种空调及其自清洁的控制方法
CN109282367A (zh) * 2018-11-08 2019-01-29 珠海格力电器股份有限公司 一种自动清洁油污的系统、控制方法及空调器
CN110736194A (zh) * 2019-09-30 2020-01-31 青岛海尔空调器有限总公司 用于空调自清洁的方法和空调
CN110736193A (zh) * 2019-09-30 2020-01-31 青岛海尔空调器有限总公司 用于空调自清洁的方法、装置和空调
CN111306693A (zh) * 2019-11-12 2020-06-19 珠海格力电器股份有限公司 一种自清洁控制方法、装置及设备
CN111811106A (zh) * 2020-06-24 2020-10-23 珠海格力电器股份有限公司 一种清洁控制方法、装置、空调、存储介质及处理器
CN112665114A (zh) * 2021-01-18 2021-04-16 青岛海尔空调器有限总公司 空调器的自清洁控制方法及空调器
CN112665103A (zh) * 2021-01-18 2021-04-16 青岛海尔空调器有限总公司 空调器的自清洁控制方法及空调器
CN112710063A (zh) * 2021-01-18 2021-04-27 青岛海尔空调器有限总公司 空调器的自清洁控制方法及空调器

Also Published As

Publication number Publication date
CN112710063A (zh) 2021-04-27
CN112710063B (zh) 2022-10-28

Similar Documents

Publication Publication Date Title
WO2022068731A1 (zh) 空调器的自清洁控制方法及空调器
WO2022068732A1 (zh) 空调器的自清洁控制方法及空调器
WO2022151762A1 (zh) 空调器的自清洁控制方法及空调器
US10775062B2 (en) Method for cleaning air conditioner indoor unit and outdoor unit
CN109489189B (zh) 一种空调器的清洗方法
CN109469965B (zh) 一种空调器的清洗方法
JP4931566B2 (ja) 空気調和機
CN109916002B (zh) 空调器自清洁加湿控制方法
CN106679111A (zh) 一种空调器换热器的自动清洁处理方法及系统
WO2019042043A1 (zh) 一种空调自清洁的控制方法及装置
EP0816549A3 (en) Domestic washing machine having a closed drying circuit, air condensation of vapour and self cleaning filter
CN110873388B (zh) 一种空调及其自清洁的控制方法
CN111306693A (zh) 一种自清洁控制方法、装置及设备
WO2020187242A1 (zh) 空调器自清洁控制方法
CN112665097B (zh) 一种空调自清洁控制方法
CN110873395A (zh) 一种空调及其自清洁的控制方法
CN110873414A (zh) 一种空调及其自清洁的控制方法
CN109916058B (zh) 空调器自清洁控制方法
CN110873367A (zh) 一种空调
CN109237733A (zh) 空调外机自动防堵方法
CN111043702B (zh) 空调器风道自清洁控制方法
CN110873392A (zh) 一种空调及其自清洁的控制方法
CN110873410A (zh) 一种空调及其自清洁的控制方法
CN110873406A (zh) 一种空调及其自清洁的控制方法
CN110749096B (zh) 一种自清洁方法及热泵热水器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21874392

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21874392

Country of ref document: EP

Kind code of ref document: A1