WO2022068315A1 - 一种光学系统及显示设备 - Google Patents

一种光学系统及显示设备 Download PDF

Info

Publication number
WO2022068315A1
WO2022068315A1 PCT/CN2021/106152 CN2021106152W WO2022068315A1 WO 2022068315 A1 WO2022068315 A1 WO 2022068315A1 CN 2021106152 W CN2021106152 W CN 2021106152W WO 2022068315 A1 WO2022068315 A1 WO 2022068315A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
wavelength conversion
conversion material
optical element
optical system
Prior art date
Application number
PCT/CN2021/106152
Other languages
English (en)
French (fr)
Inventor
陈怡学
尹蕾
和建航
Original Assignee
成都极米科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 成都极米科技股份有限公司 filed Critical 成都极米科技股份有限公司
Publication of WO2022068315A1 publication Critical patent/WO2022068315A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings

Definitions

  • the present invention relates to the technical field of optical systems, in particular to an optical system.
  • the invention also relates to a display device.
  • An object of the present invention is to provide an optical system capable of improving output light brightness and enabling desired excitation of a wavelength conversion material.
  • the present invention also provides a display device.
  • the present invention provides the following technical solutions:
  • An optical system comprising a wavelength conversion material, a shaping component and a first optical element, the wavelength conversion material is used to at least generate the received laser light emitted toward both sides of the wavelength conversion material under the irradiation of excitation light;
  • the shaping component is used to adjust the excitation light, so that the light spot irradiated on the wavelength conversion material meets the preset requirements
  • the shaping component is specifically used for converging excitation light into the wavelength conversion material, and making the light intensity of the light spot irradiated to the wavelength conversion material uniform.
  • the shaping component includes any one or a combination of any of a positive lens, a negative lens, a convex lens, a concave lens or a plano-convex lens.
  • a first light combining part is also included, and the excitation light is a combined light formed by at least two paths of light by means of the first light combining part.
  • the excitation light is incident from the side of the first optical element, transmitted through the first optical element and then irradiated to the wavelength conversion material, or the excitation light is separated from the wavelength conversion material from the first optical element One side is incident on the wavelength converting material.
  • the first excitation light is incident from the side of the first optical element, transmitted through the first optical element and then irradiated to the wavelength conversion material, and the second excitation light is away from the wavelength conversion material from the first excitation light
  • the side of the optical element is incident on the wavelength converting material.
  • the excitation light is incident on the wavelength conversion material from a side of the wavelength conversion material away from the first optical element, and further includes a second optical device disposed on a side of the wavelength conversion material away from the first optical element
  • the second optical element is used for separating and emitting the laser light and the excitation light generated by the wavelength conversion material, which are emitted toward this side.
  • a second light combining part is further included, and the second light combining part is used for combining the emitted light of the wavelength conversion material with at least one other light.
  • it also includes a third optical element, the outgoing light, the second path light and the third path light of the wavelength conversion material respectively enter the third optical element from different directions, and the third optical element is used for The outgoing light of the wavelength conversion material, the second light and the third light are combined.
  • the third optical element is in the shape of "X", which divides the space into four areas, and the outgoing light, the second path light, and the third path light of the wavelength conversion material are respectively transmitted from the first area and the second area. , the third area is incident on the third optical element, and the combined light is emitted from the fourth area.
  • the third optical element includes a first filter element, a second filter element and a third filter element, and the first filter element and the second filter element are respectively arranged on the third filter element.
  • the two sides of the filter element are arranged in an "X" shape;
  • the first filter element is used to transmit the outgoing light and the second path light of the wavelength conversion material and reflect the third path light
  • the second filter element is used to filter the wavelength conversion material.
  • the outgoing light transmits and reflects the third light
  • the third filter element is used for reflecting the second light and transmitting the outgoing light and the third light of the wavelength conversion material.
  • a display device including the optical system described above.
  • the wavelength conversion material can at least generate received laser light emitted toward both sides of the wavelength conversion material under the irradiation of the excitation light, and the shaping component is used to adjust the excitation light so that the excitation light is adjusted.
  • the light spot irradiated on the wavelength converting material satisfies preset requirements, thereby enabling the desired excitation of the wavelength converting material.
  • the first optical element is arranged on one side of the wavelength conversion material and can transmit the excitation light and reflect the received laser light generated by the wavelength conversion material and emitted toward this side, so that this part of the light transmits through the wavelength conversion material and propagates toward the other side. In this way, the light generated by the wavelength conversion material and exiting toward both sides can be utilized, and both parts of the light can be guided and emitted into the output light, which improves the light utilization rate and thus improves the output light brightness.
  • a display device provided by the present invention can achieve the above beneficial effects.
  • FIG. 1 is a schematic diagram of an optical system according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of an optical system according to another embodiment of the present invention.
  • FIG. 3 is a schematic diagram of an optical system according to another embodiment of the present invention.
  • FIG. 4 is a schematic diagram of an optical system according to another embodiment of the present invention.
  • FIG. 5 is a schematic diagram of an optical system according to another embodiment of the present invention.
  • FIG. 6 is a schematic diagram of an optical system according to another embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a system for forming excitation light in an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of an optical system according to another embodiment of the present invention.
  • FIG. 9 is a schematic diagram of an optical system according to another embodiment of the present invention.
  • An embodiment of the present invention provides an optical system, including a wavelength conversion material, a shaping component and a first optical element, the wavelength conversion material is used to at least generate a receiving light emitted toward both sides of the wavelength conversion material under the irradiation of excitation light. laser;
  • the shaping component is used to adjust the excitation light, so that the light spot irradiated on the wavelength conversion material meets the preset requirements
  • the first optical element is arranged on one side of the wavelength conversion material, and is used for transmitting the excitation light and reflecting the received light generated by the wavelength conversion material and exiting toward this side.
  • the wavelength conversion material refers to a material that emits light of a preset wavelength under the irradiation of excitation light.
  • the wavelength conversion material is preferably distributed in layers. On the one hand, it can reduce the situation that the light generated by the excited material propagates laterally in its interior, resulting in a decrease in the luminous power density, and on the other hand, it helps to make the light transmit through the wavelength conversion material more easily. .
  • the first optical element can reflect the received laser light generated by the wavelength conversion material, and can reflect the received laser light generated by the wavelength conversion material and emitted toward this side, so that this part of the light transmits through the wavelength conversion material and propagates toward the other side, so that the wavelength
  • the light generated by the conversion material under the irradiation of excitation light and propagating to the two sides of the conversion material finally propagates to the same side, so that the light emitted by the wavelength conversion material and propagating to the two sides can be used, and the two parts of the light can be used. All guide the emitted light to become output light, which improves the utilization rate of light, thereby improving the brightness of the output light.
  • FIG. 1 is a schematic diagram of an optical system according to an embodiment.
  • the optical system includes a wavelength conversion material 100 , a shaping component 102 and a first optical element 101 .
  • the excitation light 1 is incident from the side of the first optical element 101 and is transmitted through the first optical element 101 and then irradiated to the wavelength conversion material 100 . of lasers 2 and 3.
  • the excitation light 1 is irradiated to the wavelength conversion material 100 through the shaping component 102, and the shaping component 102 adjusts the excitation light 1 so that the light spot irradiated to the wavelength conversion material 100 meets the preset requirements.
  • a shaping component can be set according to the actual excitation requirements of the wavelength conversion material 100.
  • the shaping component 102 can be used to adjust the spot shape, spot size or excitation light divergence angle of the excitation light, or it can also be used as required. Optimize the brightness uniformity of the excitation light spot.
  • the shaping component 102 may be specifically configured to condense the excitation light to the wavelength conversion material 100 and make the light intensity of the light spot irradiated to the wavelength conversion material 100 uniform. In this way, the shaping component 102 can condense the light emitted by the light source to effectively utilize as much light as possible, and prevent the wavelength conversion material from being damaged due to the presence of energy spikes in the light spot irradiated to the wavelength conversion material, thereby increasing the excitation efficiency and extending the wavelength at the same time. Lifetime of the conversion material.
  • the shaping component 102 can adjust the excitation light through transmission, and the shaping component 102 may include any one or a combination of any one of a positive lens, a negative lens, a convex lens, a concave lens, or a plano-convex lens, but is not limited to this. 102 may also take other structures.
  • the shaping member may adjust the excitation light by reflection, and the shaping member may include a curved reflecting surface.
  • the first optical element 101 is arranged on the side of the wavelength conversion material 100 , and reflects the received laser light 2 generated by the wavelength conversion material 100 and emitted toward this side back to the wavelength conversion material 100 , so that this part of the light is transmitted through the wavelength conversion material 100 .
  • the conversion material 100 propagates toward the other side of the wavelength conversion material 100 .
  • the first optical element 101 may be set in a shape favorable for collecting the light generated by the wavelength conversion material 100 , so that as much excited light propagating toward this side as possible is reflected back to the wavelength conversion material 100 .
  • FIG. 2 is a schematic diagram of an optical system according to another embodiment, wherein the reflective surface of the first optical element 101 is in the shape of a curved surface, so that the received laser light 2 generated by the wavelength conversion material 100 is emitted and propagated toward this side. After being reflected by the first optical element 101 , it converges to the wavelength conversion material 100 . In this way, the excited light propagating and exiting toward this side is effectively collected and converged, the light loss is reduced, and the brightness of the output light is improved.
  • the excitation light 1 is irradiated to the wavelength conversion material 100 by transmitting through the first optical element 101 . It is also within the protection scope of the present invention to irradiate the wavelength conversion material 100 from the side where the first optical element 101 is located by means or other forms of optical paths.
  • FIG. 3 is a schematic diagram of an optical system according to another embodiment, wherein the first optical element 101 is disposed on the side of the wavelength conversion material 100 , and the excitation light 1 is away from the wavelength conversion material 100 from the first optical element
  • the wavelength conversion material 100 is incident on the side 101 .
  • the wavelength conversion material 100 generates lights 2 and 3 which are respectively emitted toward both sides of the wavelength conversion material 100 under the irradiation of the excitation light 1 .
  • the first optical element 101 reflects the received laser light 2 generated by the wavelength conversion material 100 and exiting toward the wavelength conversion material 100 back to the wavelength conversion material 100 , so that this part of the light transmits through the wavelength conversion material 100 and propagates toward the other side of the wavelength conversion material 100 .
  • the shaping component 102 adjusts the excitation light 1 so that the light spot irradiated on the wavelength conversion material 100 meets the preset requirements.
  • FIG. 4 is a schematic diagram of an optical system according to another embodiment, wherein the first optical element 101 and the second optical element 103 are respectively disposed on both sides of the wavelength conversion material 100, and the excitation light 1 is emitted from the first optical element 101.
  • the second optical element 103 is incident on one side, passes through the second optical element 103 and then irradiates the wavelength conversion material 100, and the received laser light 3 and 2 generated by the wavelength conversion material 100 are reflected by the second optical element 103, so that the received laser light 3 and 2 are reflected by the second optical element 103. Separated from excitation light 1 to form exit light.
  • the second optical element reflects the excitation light and transmits the received laser light generated by the wavelength conversion material, and the excitation light 1 is reflected by the second optical element and irradiated to the wavelength conversion.
  • the received laser light 3 and 2 generated by the wavelength conversion material 100 propagating toward this side are emitted through the second optical element, so as to realize the separation of the received laser light 3 and 2 from the excitation light 1 to form outgoing light.
  • the second optical element may achieve the separation of the received laser light and the excitation light propagating toward the side by other means, which are also within the protection scope of the present invention.
  • FIG. 5 is a schematic diagram of an optical system according to another embodiment. It can be seen from the figure that the first excitation light 1 is irradiated to the wavelength conversion material 100 from the side of the wavelength conversion material 100 , and the first excitation light 1 illuminates the wavelength conversion material 100 .
  • the second excitation light 4 is irradiated to the wavelength conversion material 100 from the other side of the wavelength conversion material 100 .
  • the optical system shown in FIG. 5 is a schematic diagram of an optical system according to another embodiment.
  • the first excitation light 1 is incident from the side of the first optical element 101 , transmitted through the first optical element 101 and then irradiated to the wavelength conversion material 100 , and the second excitation light 4 is emitted from the wavelength conversion material 100 .
  • 100 is irradiated to the wavelength conversion material 100 on the side away from the first optical element 101 .
  • the shaping component 102 is used to adjust the first excitation light 1 so that the spot where the first excitation light 1 irradiates the wavelength conversion material 100 meets the requirements
  • the shaping component 104 is used to adjust the second excitation light 4 to irradiate the second excitation light 4 to the wavelength
  • the light spot of the conversion material 100 meets the requirements.
  • the first excitation light can also be irradiated to the wavelength conversion material from the side where the first optical element is located by other methods or other forms of optical paths. It is also within the protection scope of the present invention to irradiate the second excitation light to the wavelength conversion material from the other side.
  • the optical system of this embodiment can simultaneously irradiate the wavelength conversion material with multiple excitation lights incident from different directions, and excite the wavelength conversion material to generate excited light, which can further improve the light conversion efficiency of the wavelength conversion material and make the wavelength conversion material.
  • the conversion material produces more light, increasing the brightness of the output light.
  • the wavelength conversion material 100 may be, but not limited to, phosphors.
  • the optical system may further include a first light combining part, and the excitation light is a combined light formed by at least two paths of light by means of the first light combining part.
  • FIG. 6 is a schematic diagram of an optical system according to another embodiment, wherein the optical system further includes a first light combining part 105, and the first light 10 and the second light 11 are respectively incident on the first light A light combining part 105 , after passing through the first light combining part 105 , the two parts of light are combined to form the excitation light 1 .
  • the optical system shown in FIG. 6 is described by taking the excitation light 1 formed by the combination of two paths of light as an example.
  • the optical system adopts the method of combining light to form the excitation light, which can improve the brightness of the excitation light, so that the wavelength conversion material can be excited to generate more light, and the output light brightness of the optical system can be improved.
  • the multiplexed light used for synthesizing the excitation light may be multiplexed light with the same wavelength band, or may be multiplexed light with different wavelength bands.
  • the wavelength range of excitation light is narrow, which can effectively excite the wavelength conversion material.
  • FIG. 7 is a schematic diagram of a system for forming excitation light in an embodiment.
  • the first light source 201 and the second light source 202 respectively emit a first path of light and a second path of light, and the first optical component 203 is used to
  • the outgoing light of the first light emitting source 201 is subjected to collimation processing, and the second optical component 204 is used for collimating the outgoing light of the second light emitting source 202 .
  • the processed two paths of light are combined by the first light combining part 105, and the combined output light is combined by the shaping component 102 to form excitation light 1, which can be irradiated to the wavelength conversion material.
  • the optical system may further include a second light combining part, and the second light combining part is used for combining the outgoing light of the wavelength conversion material with at least one other light.
  • a display device it is usually necessary to combine three primary color lights into illumination light for display.
  • FIG. 8 is a schematic diagram of an optical system according to another embodiment, wherein the optical system further includes a second light combining part 106 and a third light combining part 107 , and the second light combining part 107 .
  • the part 106 is used to combine the outgoing light and the incident light 5 of the wavelength conversion material 100 to form a combined light output; the third light combining part 107 is used to combine the outgoing light and the incident light 6 of the second light combining part 106 to form a combined light output,
  • the light generated by the wavelength conversion material 100, the incident light 5 and the incident light 6 are combined.
  • the light generated by the wavelength conversion material 100 , the incident light 5 and the incident light 6 may respectively correspond to three primary colors of light.
  • the optical system of this embodiment is applied to photosynthetic light of three primary colors, in which one primary color light is generated by exciting the wavelength conversion material, and the light emitted by the wavelength conversion material to be emitted toward both sides is used to guide both parts of the light.
  • the primary color light is emitted and formed, the utilization rate of light is improved, and the output light brightness after combining light can be improved.
  • the optical system may further include a third optical element, the outgoing light, the second path light and the third path light of the wavelength conversion material respectively enter the third optical element from different directions, and the third optical element uses It is used to combine the outgoing light of the wavelength conversion material, the second light and the third light.
  • the third optical element can adopt the following structure.
  • the third optical element is in the shape of "X", which divides the space into four regions, and the outgoing light, the second light and the third light of the wavelength conversion material are respectively The third optical element is incident from the first area, the second area, and the third area, and the combined light is emitted from the fourth area.
  • FIG. 9 is a schematic diagram of an optical system provided by another embodiment, wherein the optical system further includes a third optical element, the outgoing light of the wavelength conversion material 100, the second path light 5, The third path light 6 is respectively incident on the third optical element from different directions.
  • the third optical element includes a first filter element 108 , a second filter element 109 and a third filter element 110 , and the first filter element 108 and the second filter element 109 are respectively disposed on the third filter element 110 , arranged in an "X" shape.
  • the second path light 5 is incident on the third filter element 110 and the first filter element 108 from the space between the third filter element 110 and the first filter element 108 , that is, the first region, and the outgoing light of the wavelength conversion material 100 is emitted from the A space between the third filter element 110 and the second filter element 109 , that is, the second area, is incident on the second filter element 109 and the third filter element 110 , and the third light 6 passes through the third filter element 110
  • Another space between the second filter element 109 and the second filter element 109, namely the third region, is incident on the third filter element 110 and the second filter element 109.
  • the other space in between, the fourth area, is emitted.
  • the first filter element 108 is used to transmit the outgoing light of the wavelength conversion material 100 and the second path light 5 and reflect the third path light 6
  • the second filter element 109 is used to filter the wavelength conversion material 100 .
  • the outgoing light transmits and reflects the third light 6
  • the third filter element 110 is used to reflect the second light 5 and transmit the outgoing light of the wavelength conversion material 100 and the third light 6 .
  • the first filter element 108 and the third filter element 110 may be perpendicular to each other, the second filter element 109 and the third filter element 110 may be perpendicular to each other, and each path of light is incident at 45 degrees. horn.
  • the outgoing light, the second light 5 and the third light 6 of the wavelength conversion material 100 may respectively correspond to three primary color lights.
  • the optical system of this embodiment is applied to photosynthetic light of three primary colors, in which one primary color light is generated by exciting the wavelength conversion material, wherein the light emitted by the wavelength conversion material and exiting toward both sides is used, and both parts of the light are used.
  • the outgoing light that forms the primary color light is guided and emitted, the light utilization rate is improved, and the output light brightness after the combined light can be improved.
  • an embodiment of the present invention further provides a display device including the above-mentioned optical system.
  • the display device of this embodiment adopts the above-mentioned optical system.
  • the wavelength conversion material in the optical system can at least generate received laser light that is emitted toward both sides of the wavelength conversion material under the irradiation of the excitation light, and the shaping component is used to adjust the excitation light, so that the The light spot irradiated on the wavelength converting material satisfies preset requirements, thereby enabling the desired excitation of the wavelength converting material.
  • the first optical element is arranged on one side of the wavelength conversion material and can transmit the excitation light and reflect the received laser light generated by the wavelength conversion material and emitted toward this side, so that this part of the light transmits through the wavelength conversion material and propagates toward the other side. In this way, the light generated by the wavelength conversion material and exiting toward both sides can be utilized, and both parts of the light can be guided and emitted into the output light, which improves the light utilization rate and thus improves the output light brightness.
  • three primary color lights are used to realize display, and an optical system can be used to emit any one of the three primary color lights.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

一种光学系统,其中波长转换材料(100)能够在激发光(1)的照射下至少产生分别向着波长转换材料(100)两侧出射的受激光(2、3),整形部件(102)用于调整激发光(1),使得照射到波长转换材料(100)的光斑满足预设要求,从而能够符合要求地激发波长转换材料(100)。第一光学元件(101)设置在波长转换材料(100)一侧,能够透射激发光(1),以及反射波长转换材料(100)产生的、向着本侧出射的受激光(2),使这部分光透射过波长转换材料(100)后向着另一侧传播。这样能够将波长转换材料(100)产生的分别向着两侧出射的光都利用,将这两部分光都引导发射出成为输出光,提高了光利用率,从而能够提高输出光亮度。还公开一种显示设备。

Description

一种光学系统及显示设备 技术领域
本发明涉及光学系统技术领域,特别是涉及一种光学系统。本发明还涉及一种显示设备。
背景技术
显示设备在各个领域的应用越来越广泛,其中亮度指标是显示设备的重要指标之一,为使得显示设备具有更优的显示性能,提高显示设备的亮度,是本领域技术人员一直探索和不断改进的技术课题。
发明内容
本发明的目的是提供一种光学系统,能够提高输出光亮度,并且能够使符合要求地激发波长转换材料。本发明还提供一种显示设备。
为实现上述目的,本发明提供如下技术方案:
一种光学系统,包括波长转换材料、整形部件和第一光学元件,所述波长转换材料用于在激发光的照射下至少产生分别向着所述波长转换材料两侧出射的受激光;
所述整形部件用于调整激发光,使得照射到所述波长转换材料的光斑满足预设要求;
所述第一光学元件设置在所述波长转换材料一侧,用于透射激发光,以及反射所述波长转换材料产生的、向着本侧出射的受激光。
优选的,所述整形部件具体用于将激发光汇聚入射到所述波长转换材料,并使得照射到所述波长转换材料的光斑光强度均匀。
优选的,所述整形部件包括正透镜、负透镜、凸透镜、凹透镜或者平凸透镜中的任意一个或者任意多个的组合。
优选的,还包括第一合光部,激发光为由至少两路光借助于所述第一合光部形成的合光。
优选的,激发光从所述第一光学元件一侧入射,透射过所述第一 光学元件后照射到所述波长转换材料,或者,激发光从所述波长转换材料远离所述第一光学元件一侧入射到所述波长转换材料。
优选的,第一激发光从所述第一光学元件一侧入射,透射过所述第一光学元件后照射到所述波长转换材料,第二激发光从所述波长转换材料远离所述第一光学元件一侧入射到所述波长转换材料。
优选的,激发光从所述波长转换材料远离所述第一光学元件一侧入射到所述波长转换材料,还包括设置在所述波长转换材料远离所述第一光学元件一侧的第二光学元件,所述第二光学元件用于将向着本侧出射的、由所述波长转换材料产生的受激光与激发光分离而发射出。
优选的,还包括第二合光部,所述第二合光部用于将所述波长转换材料的出射光与其它至少一路光汇合。
优选的,还包括第三光学元件,所述波长转换材料的出射光、第二路光和第三路光分别从不同的方向入射到所述第三光学元件,所述第三光学元件用于将所述波长转换材料的出射光、第二路光、第三路光汇合。
优选的,所述第三光学元件为“X”形状,将空间分割出四个区域,所述波长转换材料的出射光、第二路光、第三路光分别从第一区域、第二区域、第三区域入射到所述第三光学元件,汇合光从第四区域发射出。
优选的,所述第三光学元件包括第一滤光元件、第二滤光元件和第三滤光元件,所述第一滤光元件和所述第二滤光元件分别设置在所述第三滤光元件的两侧,以“X”形状布置;
所述第一滤光元件用于将所述波长转换材料的出射光和第二路光透射出以及将第三路光反射出,所述第二滤光元件用于将所述波长转换材料的出射光透射出以及将第三路光反射出,所述第三滤光元件用于将第二路光反射出以及将所述波长转换材料的出射光和第三路光透射出。
一种显示设备,包括以上所述的光学系统。
由上述技术方案可知,本发明所提供的一种光学系统,其中波长 转换材料能够在激发光的照射下至少产生分别向着波长转换材料两侧出射的受激光,整形部件用于调整激发光,使得照射到波长转换材料的光斑满足预设要求,从而使能够符合要求地激发波长转换材料。第一光学元件设置在波长转换材料一侧,能够透射激发光,以及反射波长转换材料产生的、向着本侧出射的受激光,使这部分光透射过波长转换材料后向着另一侧传播。这样能够将波长转换材料产生的分别向着两侧出射的光都利用,将这两部分光都引导发射出成为输出光,提高了光利用率,从而能够提高输出光亮度。
本发明提供的一种显示设备,能够达到上述有益效果。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明一实施例提供的一种光学系统的示意图;
图2为本发明又一实施例提供的一种光学系统的示意图;
图3为本发明又一实施例提供的一种光学系统的示意图;
图4为本发明又一实施例提供的一种光学系统的示意图;
图5为本发明又一实施例提供的一种光学系统的示意图;
图6为本发明又一实施例提供的一种光学系统的示意图;
图7为本发明一实施例中形成激发光的系统示意图;
图8为本发明又一实施例提供的一种光学系统的示意图;
图9为本发明又一实施例提供的一种光学系统的示意图。
具体实施方式
为了使本技术领域的人员更好地理解本发明中的技术方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清 楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
本发明实施例提供一种光学系统,包括波长转换材料、整形部件和第一光学元件,所述波长转换材料用于在激发光的照射下至少产生分别向着所述波长转换材料两侧出射的受激光;
所述整形部件用于调整激发光,使得照射到所述波长转换材料的光斑满足预设要求;
所述第一光学元件设置在所述波长转换材料一侧,用于透射激发光,以及反射所述波长转换材料产生的、向着本侧出射的受激光。
波长转换材料是指在激发光照射下会发射出预设波长光的材料。其中,波长转换材料优选以层状分布,一方面可以降低材料被激发产生的光在其内部横向传播而导致发光功率密度下降的情况,另一方面有助于使光更容易透射过波长转换材料。
第一光学元件能够反射波长转换材料产生的受激光,能够将波长转换材料产生的、向着本侧出射的受激光反射,使这部分光透射过波长转换材料后向着另一侧传播,这样使波长转换材料在激发光照射下产生的、分别向着其两侧出射传播的光最终向同一侧传播,这样能够将波长转换材料发射出的分别向着两侧出射传播的光都利用,将这两部分光都引导发射出成为输出光,提高了光利用率,从而能够提高输出光亮度。
请参考图1,图1为一实施例提供的一种光学系统的示意图,由图可知,所述光学系统包括波长转换材料100、整形部件102和第一光学元件101。激发光1从第一光学元件101一侧入射,透射过第一光学元件101后照射到波长转换材料100,波长转换材料100在激发光1的照射下产生了分别向着波长转换材料100两侧出射的受激光2和3。
其中,激发光1通过整形部件102而照射到波长转换材料100, 整形部件102调整激发光1,使得照射到波长转换材料100的光斑满足预设要求。在实际应用中,可以根据实际对波长转换材料100的激发要求设置整形部件,可选的,整形部件102可以是调整激发光的光斑形状、光斑大小或者激发光发散角,或者也可以是根据需要优化激发光光斑的亮度均匀性。
可选的,整形部件102可具体用于将激发光汇聚入射到波长转换材料100,并使得照射到波长转换材料100的光斑光强度均匀。这样通过整形部件102能够将光源发出光汇聚而将尽量多的光有效利用,并且避免了照射到波长转换材料的光斑存在能量尖峰会导致损伤波长转换材料,从而可以在提高激发效率的同时延长波长转换材料的寿命。
可选的,整形部件102可以通过透射方式调整激发光,整形部件102可包括正透镜、负透镜、凸透镜、凹透镜或者平凸透镜中的任意一个或者任意多个的组合,但不限于此,整形部件102也可采用其它结构。另外,整形部件也可以通过反射方式调整激发光,整形部件可包括曲面形状的反射面。
如图1所示,第一光学元件101设置在波长转换材料100一侧,将波长转换材料100产生的、向着本侧出射的受激光2反射回波长转换材料100,使这部分光透射过波长转换材料100,向着波长转换材料100另一侧传播。
优选的,第一光学元件101可以设置为有利于将波长转换材料100产生的光收集的形状,使得将尽可能多的向着本侧出射传播的被受激发光反射回波长转换材料100。请参考图2,图2为又一实施例提供的一种光学系统的示意图,其中第一光学元件101的反射面为曲面形状,使得波长转换材料100产生的向着本侧出射传播的受激光2经过第一光学元件101反射后,汇聚到波长转换材料100。从而将向着本侧传播出射的受被激发光有效地收集和汇聚,减少光损失,有助于提高输出光亮度。
在图1或者图2所示的光学系统中,激发光1是通过透射过第一光学元件101的方式照射到波长转换材料100的,在其它实施例中, 不限于此,也可以是通过其它方式或者其它形式光路从第一光学元件101所在这一侧照射到波长转换材料100,也都在本发明保护范围内。
请参考图3,图3为又一实施例提供的一种光学系统的示意图,其中,第一光学元件101设置在波长转换材料100一侧,激发光1从波长转换材料100远离第一光学元件101一侧入射到波长转换材料100。波长转换材料100在激发光1的照射下产生了分别向着波长转换材料100两侧出射的光2和3。第一光学元件101将波长转换材料100产生的、向本侧出射的受激光2反射回波长转换材料100,使这部分光透射过波长转换材料100,向着波长转换材料100另一侧传播。整形部件102调整激发光1,使得照射到波长转换材料100的光斑满足预设要求。
在图3所示的光学系统中,波长转换材料100产生的受激光3和2最后都向着激发光1所处一侧传播,为了将受激光与激发光分离,本光学系统可包括第二光学元件,通过第二光学元件将受激光与激发光分离,将受激光引导发射出。请参考图4,图4为又一实施例提供的一种光学系统的示意图,其中,第一光学元件101和第二光学元件103分别设置在波长转换材料100的两侧,激发光1从第二光学元件103一侧入射,透射过第二光学元件103后照射到波长转换材料100,波长转换材料100产生的受激光3和2被第二光学元件103反射出,从而将受激光3和2与激发光1分离以形成出射光。
可选的,也可以设置激发光1从第二光学元件一侧入射,第二光学元件反射激发光以及透射波长转换材料产生的受激光,激发光1经过第二光学元件反射而照射到波长转换材料100,向着本侧传播的波长转换材料100产生的受激光3和2通过透射过第二光学元件而发射出,实现将受激光3和2与激发光1分离而形成出射光。在其它实施例中,第二光学元件可通过其它方式实现将向着本侧传播的受激光与激发光分离,也都在本发明保护范围内。
进一步优选的,所述光学系统中可由从不同方向入射的多路激发 光一同照射到波长转换材料,使波长转换材料产生受激光。示例性的请参考图5,图5为又一实施例提供的一种光学系统的示意图,由图可看出,第一激发光1从波长转换材料100一侧照射到波长转换材料100,第二激发光4从波长转换材料100另一侧照射到波长转换材料100。具体在图5所示的光学系统中,第一激发光1从第一光学元件101一侧入射,透射过第一光学元件101后照射到波长转换材料100,第二激发光4从波长转换材料100远离第一光学元件101一侧照射到波长转换材料100。其中,通过整形部件102调整第一激发光1,使第一激发光1照射到波长转换材料100的光斑满足要求,通过整形部件104调整第二激发光4,使第二激发光4照射到波长转换材料100的光斑满足要求。
在其它实施例中不限于以上所述的实施方式,也可以通过其它方式或者其它形式光路将第一激发光从第一光学元件所处一侧照射到波长转换材料,通过其它方式或者其它形式光路使第二激发光从另一侧照射到波长转换材料,也都在本发明保护范围内。
因此,本实施例光学系统可由从不同方向入射的多路激发光一同照射到波长转换材料,对波长转换材料进行激发使其产生被激发光,能够进一步提高波长转换材料的光转换效率,使波长转换材料产生更多光,提高输出光亮度。
在以上各实施例中,波长转换材料100可以采用但不限于荧光粉。
可选的,本光学系统还可包括第一合光部,激发光为由至少两路光借助于第一合光部形成的合光。请参考图6,图6为又一实施例提供的一种光学系统的示意图,其中所述光学系统还包括第一合光部105,第一路光10和第二路光11分别入射到第一合光部105,通过第一合光部105后两部分光汇合形成激发光1。图6所示的光学系统是以由两路光汇合形成激发光1为例进行说明的,在实际应用中,并不限于仅由两路光合成激发光,可以采用合适的合光方式,使用相应数量的多路光汇合形成激发光,都在本发明保护范围内。本光学系统采 用合光的方式形成激发光,能够提高激发光亮度,使得能够激发波长转换材料产生更多光,提高光学系统的输出光亮度。
在实际应用中,用于合成激发光的多路光可以是波段相同的多路光,或者也可以是波段不同的多路光,若各路光的波段不同则优选采用窄带光,这样保证合成的激发光波段范围较窄,能够有效地激发波长转换材料。
若采用的发光源的出射光发射角较大,可以采用光学组件将发光源的出射光先进行准直处理而后进行合光。请参考图7,图7为一实施例中形成激发光的系统示意图,第一发光源201、第二发光源202分别发出第一路光和第二路光,第一光学组件203用于将第一发光源201的出射光进行准直处理,第二光学组件204用于将第二发光源202的出射光进行准直处理。经过处理的两路光通过第一合光部105合光,汇合输出的光通过整形部件102汇聚形成激发光1,激发光1可以照射到波长转换材料。
进一步的,本光学系统还可包括第二合光部,所述第二合光部用于将波长转换材料的出射光与其它至少一路光汇合。在显示设备中,通常需要将三基色光汇合成为照明光,以供显示所用。示例性的,请参考图8,图8为又一实施例提供的一种光学系统的示意图,其中所述光学系统还包括第二合光部106和第三合光部107,第二合光部106用于将波长转换材料100的出射光和入射光5汇合形成合光输出,第三合光部107用于将第二合光部106的出射光和入射光6汇合形成合光输出,实现了将波长转换材料100产生光、入射光5和入射光6合光。在实际应用中,波长转换材料100产生光、入射光5和入射光6可分别对应为三基色光。
本实施例光学系统应用于将三基色光合光,其中通过激发波长转换材料来产生一种基色光,将波长转换材料发射出的分别向着两侧出射的光都利用,将这两部分光都引导发射出形成该基色光,提高了光利用率,能够提高合光后的输出光亮度。
进一步的,所述光学系统还可包括第三光学元件,所述波长转换材料的出射光、第二路光和第三路光分别从不同的方向入射到第三光学元件,第三光学元件用于将波长转换材料的出射光、第二路光、第三路光汇合。可选的,第三光学元件可采用以下结构,第三光学元件为“X”形状,将空间分割出四个区域,所述波长转换材料的出射光、第二路光、第三路光分别从第一区域、第二区域、第三区域入射到所述第三光学元件,汇合光从第四区域发射出。
示例性的请参考图9,图9为又一实施例提供的一种光学系统的示意图,其中所述光学系统还包括第三光学元件,波长转换材料100的出射光、第二路光5、第三路光6分别从不同的方向入射到第三光学元件。具体,第三光学元件包括第一滤光元件108、第二滤光元件109和第三滤光元件110,第一滤光元件108和第二滤光元件109分别设置在第三滤光元件110的两侧,以“X”形状布置。
第二路光5从第三滤光元件110和第一滤光元件108之间空间即第一区域入射到第三滤光元件110和第一滤光元件108,波长转换材料100的出射光从第三滤光元件110和第二滤光元件109之间的一空间即第二区域入射到第二滤光元件109和第三滤光元件110,第三路光6从第三滤光元件110和第二滤光元件109之间的另一空间即第三区域入射到第三滤光元件110和第二滤光元件109,汇合光从第一滤光元件108和第三滤光元件110之间的另一空间即第四区域发射出。
其中,第一滤光元件108用于将波长转换材料100的出射光和第二路光5透射出以及将第三路光6反射出,第二滤光元件109用于将波长转换材料100的出射光透射出以及将第三路光6反射出,第三滤光元件110用于将第二路光5反射出以及将波长转换材料100的出射光和第三路光6透射出。
优选的,本实施方式中可将第一滤光元件108和第三滤光元件110相互垂直,将第二滤光元件109和第三滤光元件110相互垂直,各路光分别以45度入射角。
在实际应用中,波长转换材料100的出射光、第二路光5和第三路光6可分别对应为三基色光。
本实施例光学系统应用于将三基色光合光,其中通过激发波长转换材料来产生一种基色光,其中将波长转换材料发射出的分别向着两侧出射的光都利用,将这两部分光都引导发射出形成该基色光的出射光,提高了光利用率,能够提高合光后的输出光亮度。
相应的,本发明实施例还提供一种显示设备,包括以上所述的光学系统。
本实施例的显示设备采用以上所述的光学系统,光学系统中波长转换材料能够在激发光的照射下至少产生分别向着波长转换材料两侧出射的受激光,整形部件用于调整激发光,使得照射到波长转换材料的光斑满足预设要求,从而使能够符合要求地激发波长转换材料。第一光学元件设置在波长转换材料一侧,能够透射激发光,以及反射波长转换材料产生的、向着本侧出射的受激光,使这部分光透射过波长转换材料后向着另一侧传播。这样能够将波长转换材料产生的分别向着两侧出射的光都利用,将这两部分光都引导发射出成为输出光,提高了光利用率,从而能够提高输出光亮度。
本实施例显示设备中,采用三基色光实现显示,可使用光学系统发射出三基色光中任一种基色光。
以上对本发明所提供的一种光学系统及显示设备进行了详细介绍。本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。

Claims (12)

  1. 一种光学系统,其特征在于,包括波长转换材料、整形部件和第一光学元件,所述波长转换材料用于在激发光的照射下至少产生分别向着所述波长转换材料两侧出射的受激光;
    所述整形部件用于调整激发光,使得照射到所述波长转换材料的光斑满足预设要求;
    所述第一光学元件设置在所述波长转换材料一侧,用于透射激发光,以及反射所述波长转换材料产生的、向着本侧出射的受激光。
  2. 根据权利要求1所述的光学系统,其特征在于,所述整形部件具体用于将激发光汇聚入射到所述波长转换材料,并使得照射到所述波长转换材料的光斑光强度均匀。
  3. 根据权利要求1所述的光学系统,其特征在于,所述整形部件包括正透镜、负透镜、凸透镜、凹透镜或者平凸透镜中的任意一个或者任意多个的组合。
  4. 根据权利要求1所述的光学系统,其特征在于,还包括第一合光部,激发光为由至少两路光借助于所述第一合光部形成的合光。
  5. 根据权利要求1所述的光学系统,其特征在于,激发光从所述第一光学元件一侧入射,透射过所述第一光学元件后照射到所述波长转换材料,或者,激发光从所述波长转换材料远离所述第一光学元件一侧入射到所述波长转换材料。
  6. 根据权利要求1所述的光学系统,其特征在于,第一激发光从所述第一光学元件一侧入射,透射过所述第一光学元件后照射到所述波长转换材料,第二激发光从所述波长转换材料远离所述第一光学元件一侧入射到所述波长转换材料。
  7. 根据权利要求1所述的光学系统,其特征在于,激发光从所述波长转换材料远离所述第一光学元件一侧入射到所述波长转换材料,还包括设置在所述波长转换材料远离所述第一光学元件一侧的第二光学元件,所述第二光学元件用于将向着本侧出射的、由所述波长转换材料产生的受激光与激发光分离而发射出。
  8. 根据权利要求1-7任一项所述的光学系统,其特征在于,还包 括第二合光部,所述第二合光部用于将所述波长转换材料的出射光与其它至少一路光汇合。
  9. 根据权利要求1-7任一项所述的光学系统,其特征在于,还包括第三光学元件,所述波长转换材料的出射光、第二路光和第三路光分别从不同的方向入射到所述第三光学元件,所述第三光学元件用于将所述波长转换材料的出射光、第二路光、第三路光汇合。
  10. 根据权利要求9所述的光学系统,其特征在于,所述第三光学元件为“X”形状,将空间分割出四个区域,所述波长转换材料的出射光、第二路光、第三路光分别从第一区域、第二区域、第三区域入射到所述第三光学元件,汇合光从第四区域发射出。
  11. 根据权利要求10所述的合光光源装置,其特征在于,所述第三光学元件包括第一滤光元件、第二滤光元件和第三滤光元件,所述第一滤光元件和所述第二滤光元件分别设置在所述第三滤光元件的两侧,以“X”形状布置;
    所述第一滤光元件用于将所述波长转换材料的出射光和第二路光透射出以及将第三路光反射出,所述第二滤光元件用于将所述波长转换材料的出射光透射出以及将第三路光反射出,所述第三滤光元件用于将第二路光反射出以及将所述波长转换材料的出射光和第三路光透射出。
  12. 一种显示设备,其特征在于,包括权利要求1-11任一项所述的光学系统。
PCT/CN2021/106152 2020-09-29 2021-07-14 一种光学系统及显示设备 WO2022068315A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011049175.3 2020-09-29
CN202011049175.3A CN114326133A (zh) 2020-09-29 2020-09-29 一种光学系统及显示设备

Publications (1)

Publication Number Publication Date
WO2022068315A1 true WO2022068315A1 (zh) 2022-04-07

Family

ID=80949157

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/106152 WO2022068315A1 (zh) 2020-09-29 2021-07-14 一种光学系统及显示设备

Country Status (2)

Country Link
CN (1) CN114326133A (zh)
WO (1) WO2022068315A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011128521A (ja) * 2009-12-21 2011-06-30 Casio Computer Co Ltd 光源装置及びプロジェクタ
CN102830582A (zh) * 2012-06-04 2012-12-19 深圳市绎立锐光科技开发有限公司 发光装置及其相关投影系统
CN105431776A (zh) * 2013-07-31 2016-03-23 欧司朗有限公司 具有发光材料轮和激发辐射源的照明装置
US20160274446A1 (en) * 2015-03-19 2016-09-22 Panasonic Intellectual Property Management Co., Ltd. Light source apparatus and projection display apparatus
CN106444253A (zh) * 2016-12-05 2017-02-22 明基电通有限公司 激光投影机的光源系统
CN109375463A (zh) * 2018-11-30 2019-02-22 四川长虹电器股份有限公司 一种荧光轮装置、光源装置及投影机
CN209388102U (zh) * 2019-01-23 2019-09-13 无锡视美乐激光显示科技有限公司 一种波长转换装置、激光光源系统及投影机
CN110673328A (zh) * 2019-10-10 2020-01-10 成都极米科技股份有限公司 一种荧光轮、光源模组和投影机
CN212276205U (zh) * 2020-06-24 2021-01-01 宜宾市极米光电有限公司 一种波长转换器件以及投影显示设备

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6311219B2 (ja) * 2012-07-26 2018-04-18 株式会社リコー 照明光形成装置、照明光源装置および画像表示装置
JP2014160178A (ja) * 2013-02-20 2014-09-04 Zero Rabo Kk 照明光学系およびこれを用いた電子装置
CN104539828B (zh) * 2014-12-03 2017-11-17 侯昌禾 基于智能眼镜设备的荧光照相、摄像系统及其控制方法
CN108020927A (zh) * 2016-11-01 2018-05-11 深圳市绎立锐光科技开发有限公司 一种光源系统及其调节方法
CN108535943B (zh) * 2017-03-03 2021-07-06 深圳光峰科技股份有限公司 一种光源装置及其投影显示系统
CN108572497B (zh) * 2017-03-14 2019-12-17 深圳光峰科技股份有限公司 光源装置及投影系统
CN108565676B (zh) * 2018-06-15 2023-09-22 江苏镭创高科光电科技有限公司 一种激光光源及显示装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011128521A (ja) * 2009-12-21 2011-06-30 Casio Computer Co Ltd 光源装置及びプロジェクタ
CN102830582A (zh) * 2012-06-04 2012-12-19 深圳市绎立锐光科技开发有限公司 发光装置及其相关投影系统
CN105431776A (zh) * 2013-07-31 2016-03-23 欧司朗有限公司 具有发光材料轮和激发辐射源的照明装置
US20160274446A1 (en) * 2015-03-19 2016-09-22 Panasonic Intellectual Property Management Co., Ltd. Light source apparatus and projection display apparatus
CN106444253A (zh) * 2016-12-05 2017-02-22 明基电通有限公司 激光投影机的光源系统
CN109375463A (zh) * 2018-11-30 2019-02-22 四川长虹电器股份有限公司 一种荧光轮装置、光源装置及投影机
CN209388102U (zh) * 2019-01-23 2019-09-13 无锡视美乐激光显示科技有限公司 一种波长转换装置、激光光源系统及投影机
CN110673328A (zh) * 2019-10-10 2020-01-10 成都极米科技股份有限公司 一种荧光轮、光源模组和投影机
CN212276205U (zh) * 2020-06-24 2021-01-01 宜宾市极米光电有限公司 一种波长转换器件以及投影显示设备

Also Published As

Publication number Publication date
CN114326133A (zh) 2022-04-12

Similar Documents

Publication Publication Date Title
KR101978376B1 (ko) 발광 장치 및 프로젝션 시스템
US11073751B2 (en) Wavelength conversion apparatus, light source system and projection device
JP2014527699A (ja) 光源、光合成装置、および光源付投影装置
TWM552112U (zh) 光源裝置及投影系統
CN103797297A (zh) 机动车用的照明装置
US7726861B2 (en) Brightness enhancement with directional wavelength conversion
EP3279556B1 (en) Fiber optic light source
WO2022068315A1 (zh) 一种光学系统及显示设备
CN114019617A (zh) 光信号传输系统
CN217639916U (zh) 一种激光光源装置及投影系统
US10824066B2 (en) Light source and projection system
WO2021027212A1 (zh) 一种激光照明光源
CN217639785U (zh) 一种多光源激光光源装置及投影系统
WO2014010478A1 (ja) 光源装置
CN210165215U (zh) 一种激光照明光源
WO2020135304A1 (zh) 光源系统及投影装置
CN114613253B (zh) 一种光学系统及显示设备
CN114613252B (zh) 一种光学系统及显示设备
CN219995166U (zh) 光源
CN214335376U (zh) 一种激光照明装置的光学系统
JP2016146284A (ja) 照明装置
CN220154785U (zh) 波长转换装置、光源装置以及投影设备
CN218567738U (zh) 一种光源装置及内窥镜系统
CN217482552U (zh) 激光光源及照明装置
JP2017188328A (ja) 蛍光装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21873977

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21873977

Country of ref document: EP

Kind code of ref document: A1