WO2022068133A1 - 一种便携式车辆电池快速启动装置 - Google Patents

一种便携式车辆电池快速启动装置 Download PDF

Info

Publication number
WO2022068133A1
WO2022068133A1 PCT/CN2021/074745 CN2021074745W WO2022068133A1 WO 2022068133 A1 WO2022068133 A1 WO 2022068133A1 CN 2021074745 W CN2021074745 W CN 2021074745W WO 2022068133 A1 WO2022068133 A1 WO 2022068133A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle battery
polarity
switch
terminal connectors
battery terminal
Prior art date
Application number
PCT/CN2021/074745
Other languages
English (en)
French (fr)
Inventor
熊博
董炜
李春鹏
梁焕焕
Original Assignee
广东省宏博伟智技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东省宏博伟智技术有限公司 filed Critical 广东省宏博伟智技术有限公司
Publication of WO2022068133A1 publication Critical patent/WO2022068133A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/0036Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using connection detecting circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/0034Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using reverse polarity correcting or protecting circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0042Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction
    • H02J7/0045Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction concerning the insertion or the connection of the batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the invention belongs to the technical field of power supply, and in particular relates to a portable vehicle battery quick start device.
  • Patent No. US5793185 issued August 11, 1998, discloses a hand-held jump starter with control components and circuitry to prevent overcharging and incorrect connection to the battery.
  • the patent number is US10604024B2, and the US patent with the authorization date of March 31, 2020 discloses a portable vehicle battery quick start device with safety protection function, which can detect whether the battery connection terminal is connected to the battery to be started through a battery detection sensor.
  • the battery of the vehicle, and whether the battery connection terminals are correctly connected to the positive and negative poles of the battery of the vehicle to be started through the polarity detection sensor if the battery detection sensor returns a signal that has been connected to the battery of the vehicle to be started, and the polarity detection sensor returns correct Signals connected to the positive and negative terminals of the battery of the vehicle to be started, the device outputs a signal to turn on the power switch; if the battery detection sensor returns a signal not connected to the battery of the vehicle to be started and/or the polarity detection sensor returns to the vehicle to be started The positive and negative terminals of the battery are wrong signals, the device outputs a signal to turn off the power switch.
  • the purpose of the present invention is to overcome the above-mentioned deficiencies of the prior art, and provide a portable vehicle battery quick start device, which can realize any connection between the two vehicle battery terminal connectors and the positive and negative electrodes of the vehicle battery to be started, and the device automatically recognizes the to-be-started vehicle battery.
  • the positive and negative poles of the vehicle battery and correspondingly adjust the polarity of the output power of the device, which is very convenient to use.
  • the present invention provides a portable vehicle battery quick start device, comprising:
  • a first polarity detection circuit electrically connected to the two vehicle battery terminal connectors for detecting that the two vehicle battery terminal connectors are connected to polarity of the vehicle battery poles, and outputting a signal indicating the polarity of the vehicle battery to which the two vehicle battery terminal connectors are connected;
  • the power supply output polarity switch circuit is electrically connected to the power supply and the two vehicle battery terminal connectors, the power supply output polarity switch circuit is used to switch the power output polarities to the two vehicle battery terminal connectors and placing the power source in electrical communication with the vehicle battery;
  • a microcontroller for receiving detected polarity signals of vehicle batteries connected to the two vehicle battery terminal connectors from the first polarity detection circuit, and controlling the power output according to the polarity signals of the vehicle batteries
  • a polarity switch circuit switches the polarity of the power output to the two vehicle battery terminal connectors so that the polarity of the power output to the two vehicle battery terminal connectors is the same as the polarity of the two vehicle battery terminals
  • the polarity of the vehicle battery to which the connector is connected is matched, and the power supply energizes the vehicle battery.
  • the portable vehicle battery quick start device further includes a second polarity detection circuit, the second polarity detection circuit is electrically connected to the two vehicle battery terminal connectors, and the second polarity detection circuit is used for for detecting the polarities of the two vehicle battery terminal connectors connected to the two poles of the vehicle battery, and outputting a polarity signal indicating the vehicle battery to which the two vehicle battery terminal connectors are connected.
  • the power output polarity switch circuit includes a first power output polarity switch circuit and a second power output polarity switch circuit, the first power output polarity switch circuit and the second power output polarity switch circuit.
  • the power output polarity switch circuits are respectively electrically connected to the two vehicle battery terminal connectors.
  • the first power output polarity switch circuit includes a first switch and a second switch
  • the second power output polarity switch circuit includes a third switch and a fourth switch.
  • the first switch, the second switch, the third switch and the fourth switch respectively comprise a plurality of MOSFETs connected in parallel.
  • the first switch, the second switch, the third switch and the fourth switch respectively comprise relay switches.
  • the power source includes a plurality of lithium-ion battery packs.
  • the first polarity detection circuit includes an optocoupler sensor.
  • the portable vehicle battery quick start device further includes a USB discharge circuit, and the USB discharge circuit is used for the power supply to charge an external device.
  • the portable vehicle battery quick start device further includes a USB charging circuit, and the USB charging circuit is used for charging the power source from an external power source.
  • the portable vehicle battery quick start device is used to detect the polarities of the two vehicle battery terminal connectors connected to the two poles of the vehicle battery through the first polarity detection circuit, and output an indication indicating the two vehicle battery terminal connectors.
  • the polarity signal of the connected vehicle battery the microcontroller controls the power output polarity switch circuit to switch the polarity of the power output to the two vehicle battery terminal connectors according to the polarity signal, so that the power supply
  • the polarities output to the two vehicle battery terminal connectors match the polarities of the vehicle batteries to which the two vehicle battery terminal connectors are connected, and the power supply energizes the vehicle batteries, enabling automatic identification of the two vehicle batteries
  • the polarity of the vehicle battery connected to the terminal connector, and the polarity of the power output is switched and matched accordingly.
  • FIG. 1 is a functional block diagram of a portable vehicle battery quick start device provided by an embodiment of the present invention.
  • FIG. 2 is a circuit schematic diagram of a first polarity detection circuit and a power supply output polarity switch circuit provided by an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a circuit of a power supply part provided by an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a USB discharge circuit provided by an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a USB charging circuit provided by an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a circuit of a power indicator light provided by an embodiment of the present invention.
  • azimuth terms such as left, right, upper and lower in the embodiments of the present invention are only relative concepts to each other or refer to the normal use state of the product, and should not be regarded as limiting. .
  • FIG. 1 is a functional schematic block diagram of a portable vehicle battery quick start device provided by an embodiment of the present invention.
  • the portable vehicle battery quick start device includes a power source 10 , two vehicle battery terminal connectors 20 , a first polarity detection circuit 30 , a power output polarity switch circuit 40 and a microcontroller 50 ;
  • the power supply 10 includes a plurality of lithium-ion battery packs 101, a battery pack management circuit 102 and a power supply control circuit 103.
  • the lithium-ion battery pack 101 stores enough energy and can output a large current to quickly start the vehicle.
  • the battery pack composed of the lithium-ion batteries 101 instantly The discharge current is large, and it can be repeatedly charged and discharged.
  • the battery pack specifically includes the number of lithium-ion batteries, which is determined according to the set maximum output current, and only needs to be able to start the vehicle.
  • the power source 10 may be an internal power source provided in a portable vehicle battery quick start device.
  • the power supply 10 can be independent from the portable vehicle battery quick start device, and can be electrically connected in a detachable manner, or can be integrated in a housing.
  • the battery pack management circuit 102 is used to manage the charging and discharging safety and overheating protection of the lithium-ion battery pack 101
  • the power control circuit 103 is used to control the charging or discharging of the lithium-ion battery pack 101.
  • the battery pack management circuit 102 and the power supply control circuit 103 are in the art The conventional circuit will not be described in detail here.
  • the two vehicle battery terminal connectors 20 are used to be electrically connected to the two poles of the vehicle battery, respectively, the two vehicle battery terminal connectors 20 can be electrically connected to the two poles of the vehicle battery at will, and the two vehicle battery terminal connectors 20 can be free for cables
  • the terminal can also be a clip connected to the cable, and the specific forms are various, which are not specifically limited here.
  • the two vehicle battery terminal connectors 20 can be identical, and the positive and negative electrodes are not distinguished.
  • the first polarity detection circuit 30 is electrically connected to the two vehicle battery terminal connectors 20, the first polarity detection circuit 30 is connected between the two vehicle battery terminal connectors 20, and the first polarity detection circuit 30 is used for detecting
  • the two vehicle battery terminal connectors 20 are connected to the polarities of the two poles of the vehicle battery, and output a signal indicating the polarity of the vehicle battery to which the two vehicle battery terminal connectors 20 are connected, that is, the first polarity detection circuit 30 can detect the two Which of the vehicle battery terminal connectors 20 is connected to the positive pole of the vehicle battery and which vehicle battery terminal connector 20 is connected to the negative pole of the vehicle battery, the polarity of the vehicle battery is automatically recognized, and the first polarity detection circuit After identifying the positive and negative poles of the vehicle battery, 30 outputs an instruction signal to the microcontroller 50 .
  • the two vehicle battery terminal connectors 20 include a first vehicle battery terminal connector and a second vehicle battery terminal connector, the first vehicle battery terminal connector and the second vehicle battery terminal connector being connected to the two poles of the vehicle battery, respectively,
  • the first polarity detection circuit 30 automatically detects that the first vehicle battery terminal connector is connected to the positive or negative pole of the vehicle battery, and the second vehicle battery terminal connector is connected to the negative or positive pole of the vehicle battery.
  • the power output polarity switch circuit 40 is electrically connected to the power source 10 and the two vehicle battery terminal connectors 20, and the power output polarity switch circuit 40 is used to switch the polarity of the power source 10 output to the two vehicle battery terminal connectors 20, And the power supply 10 is electrically connected to the vehicle battery, for example, when the first polarity detection circuit 30 detects that the first vehicle battery terminal connector is connected to the negative terminal of the vehicle battery, the second vehicle battery terminal connector is connected to the positive terminal of the vehicle battery, and the current The output of the power supply 10 to the first vehicle battery terminal connector is positive, and the output to the second vehicle battery terminal connector is negative, then the power supply output polarity switch circuit 40 is switched and electrically connected, so that the power supply 10 is output to the first vehicle battery.
  • the terminal connector is negative and the output to the second vehicle battery terminal connector is positive, thereby energizing the positive and negative terminals of the vehicle battery to start the car.
  • the microcontroller 50 is configured to receive the detected polarity signals of the vehicle batteries connected to the two vehicle battery terminal connectors 20 from the first polarity detection circuit 30, and control the power output polarity switch circuit according to the polarity signals of the vehicle batteries 40 Switch the polarity of the power output to the two vehicle battery terminal connectors 20 so that the polarity of the power supply 10 output to the two vehicle battery terminal connectors 20 matches the polarity of the vehicle battery to which the two vehicle battery terminal connectors 20 are connected. Matched, the power supply 10 energizes the vehicle battery.
  • a supplier and a model can be selected according to specific needs, which will not be described in detail here, and those skilled in the art can select an appropriate model according to actual needs.
  • the portable vehicle battery quick start device detects the polarities of the two vehicle battery terminal connectors 20 connected to the two poles of the vehicle battery through the first polarity detection circuit 30, and outputs a signal indicating that the two vehicle battery terminal connectors 20 are connected.
  • the polarity signal of the vehicle battery the microcontroller 50 controls the power output polarity switch circuit 40 to switch the polarity of the power output to the two vehicle battery terminal connectors 20 according to the polarity signal of the vehicle battery, so that the power supply 10 outputs to the two terminals.
  • each vehicle battery terminal connector 20 matches the polarity of the vehicle battery to which the two vehicle battery terminal connectors 20 are connected, the power supply 10 energizes the vehicle battery, and the user does not need to distinguish the positive polarity of the two vehicle battery terminal connectors 20 Negative, you can connect the two vehicle battery terminal connectors 20 to the positive and negative poles of the vehicle battery at will, automatically detect the polarity of the vehicle battery connected to the two vehicle battery terminal connectors 20, and automatically switch the power supply polarity to the two
  • the matching state of the vehicle battery terminal connector 20 enables the vehicle to be powered on to start the vehicle, which is more convenient for users to use, and there is no danger of explosion caused by sparks caused by reverse connection of positive and negative electrodes, thereby improving safety.
  • the portable vehicle battery quick start device further includes a second polarity detection circuit 60, the second polarity detection circuit 60 is electrically connected to the two vehicle battery terminal connectors 20, and the second polarity detection circuit 60 is used for The polarity of the two vehicle battery terminal connectors 20 connected to the vehicle battery poles is checked, and a signal indicating the polarity of the vehicle battery to which the two vehicle battery terminal connectors 20 are connected is output.
  • the second polarity detection circuit 60 can detect which of the two vehicle battery terminal connectors 20 is connected to the positive pole of the vehicle battery and which vehicle battery terminal connector 20 is connected to the negative pole of the vehicle battery, and automatically identify The polarity of the vehicle battery, after the second polarity detection circuit 60 identifies the positive and negative poles of the vehicle battery, it outputs an indication signal to the microcontroller 50 .
  • the two vehicle battery terminal connectors 20 include a first vehicle battery terminal connector and a second vehicle battery terminal connector, the first vehicle battery terminal connector and the second vehicle battery terminal connector being connected to the two poles of the vehicle battery, respectively,
  • the second polarity detection circuit 60 automatically detects that the first vehicle battery terminal connector is connected to the positive or negative pole of the vehicle battery, and the second vehicle battery terminal connector is connected to the negative or positive pole of the vehicle battery.
  • the first polarity detection circuit 30 and the second polarity detection circuit 60 respectively perform polarity detection and output indication signals respectively.
  • the microcontroller 50 determines whether it is necessary to switch the output to the two vehicle battery terminal connectors according to the two signals. 20 The polarity of the power supply, the detection result is more accurate, avoiding the accident caused by the detection error.
  • any one of the first polarity detection circuit 30 and the second polarity detection circuit 60 fails, the other one can still work normally, which improves safety.
  • multiple polarity detection circuits can also be provided, which are all within the protection scope of this patent.
  • the power output polarity switch circuit 40 includes a first power output polarity switch circuit 41 and a second power output polarity switch circuit 42, the first power output polarity switch circuit 41 and the second power output polarity switch circuit 41
  • the power output polarity switching switch circuits 42 are electrically connected to the two vehicle battery terminal connectors 20 , respectively.
  • the first power output polarity switch circuit 41 includes a first switch 410 and a second switch 411
  • the second power output polarity switch circuit 42 includes a third switch 420 and a fourth switch 421 .
  • the first switch 410 , the second switch 411 , the third switch 420 and the fourth switch 421 respectively include two MOSFETs connected in parallel.
  • three MOSFETs may also be connected in parallel, which is only an example here, and is not intended to limit the technical solution.
  • the first switch 410 includes two parallel MOSFETs (Q15 and Q16)
  • the second switch 411 includes two parallel MOSFETs (Q19 and Q20)
  • the third switch 420 includes two parallel MOSFETs (Q21 and Q22)
  • the fourth switch 421 includes two parallel MOSFETs (Q17 and Q18).
  • the parallel connection of the two MOSFETs can disperse the power output by the power supply 10.
  • the power supply 10 is in electrical communication with the vehicle battery to quickly start the vehicle engine.
  • the first polarity detection circuit 30 includes an optocoupler sensor D10 and an optocoupler sensor D11.
  • the optocoupler sensor D11 When the first vehicle battery terminal connector is connected to the positive pole of the vehicle battery, and the second vehicle battery terminal connector is connected to the negative pole of the vehicle battery, The optocoupler sensor D11 is turned on, and sends a "0" or low-level signal to the microcontroller 50; the optocoupler sensor D10 is not turned on, and sends a "1" or high-level signal to the microcontroller 50; when the first vehicle battery When the terminal connector is connected to the negative pole of the vehicle battery, and the second vehicle battery terminal connector is connected to the positive pole of the vehicle battery, the optocoupler sensor D10 is turned on and sends a "0" or low level signal to the microcontroller 50, and the optocoupler sensor D11 does not.
  • a "1" or high level signal is sent to the microcontroller 50.
  • the microcontroller 50 can determine the polarities of the vehicle batteries respectively connected to the two vehicle battery terminal connectors 20 according to the conduction states of the optocoupler sensor D10 and the optocoupler sensor D11, so as to control the switching and switching of the power output polarity switch circuit 40.
  • the switches are such that the polarity of the power output from the power supply 10 to the two vehicle battery terminal connectors 20 corresponds to the polarity of the vehicle battery to which it is connected.
  • the second polarity detection circuit 60 includes a comparator D13, two input ends of the comparator D13 are electrically connected to the two vehicle battery terminal connectors 20 respectively, and the two vehicle battery terminal connectors 20 are respectively connected to the vehicle battery
  • the polarity of the vehicle battery connected to the two vehicle battery terminal connectors 20 is determined according to the signal output by the comparator D13. The situation where only the first polarity detection circuit 30 is used to detect the inaccurate polarities of the vehicle batteries connected to the two vehicle battery terminal connectors 20 is avoided, and the double detection increases the detection accuracy and improves the safety.
  • the first polarity detection circuit and the second polarity detection circuit may be any one of the above two.
  • the portable vehicle battery quick start device further includes a USB discharge circuit 70, the USB discharge circuit is used for the power supply 10 to charge the external device, the portable vehicle battery quick start device can charge the mobile terminal, and has the power of a common power bank.
  • the function of the portable vehicle battery quick start device makes the application range of the portable vehicle battery quick start device wider, increases the product usage rate, and solves the user's emergency needs.
  • the power bank technology is already a very mature technology and will not be described in detail here.
  • the portable vehicle battery quick start device further includes a USB charging circuit 80 , and the USB charging circuit is used for charging the power source 10 from an external power source.
  • USB charging devices are now widely used, and can share a USB charging plug with other devices, making charging more convenient. When the charging cable is lost, you can also use the USB charging cable of other smart terminals to charge, with good compatibility.
  • the first switch 410 , the second switch 411 , the third switch 420 and the fourth switch 421 respectively comprise relay switches. Relays are commonly used devices in the field of switches, and will not be repeated here. Of course, in some other embodiments, other manners may also be used.
  • the microcontroller 50 may be one or more control chips to cooperatively process different tasks, and is not limited to one control chip.
  • the portable vehicle battery quick start device further includes a button assembly 90 and a power indicator 00.
  • the button assembly 90 includes a start button. When using the portable vehicle battery quick start device, press the start button, and the power indicator 00 lights up. The portable vehicle battery quick start device is ready for use.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

本发明提供一种便携式车辆电池快速启动装置,包括:电源、两个车辆电池端子连接器、第一极性检测电路、电源输出极性切换开关电路和微控制器,微控制器从所述第一极性检测电路接收检测的所述两个车辆电池端子连接器连接的车辆电池的极性信号,根据所述车辆电池的极性信号控制所述电源输出极性切换开关电路切换所述电源输出至所述两个车辆电池端子连接器的极性,使得所述电源输出至所述两个车辆电池端子连接器的极性与所述两个车辆电池端子连接器连接的车辆电池的极性相匹配,所述电源向车辆电池通电。本发明自动识别待启动车辆电池的正极和负极,并对应调整该装置输出电源的极性,提高了安全性,使用十分便利。

Description

一种便携式车辆电池快速启动装置 技术领域
本发明属于电源技术领域,尤其涉及一种便携式车辆电池快速启动装置。
背景技术
随着人们生活水平的逐渐提高,车辆已经成为主要的代步工具。但是,当车辆电池电量不足时,车辆则发动不了。
有些用户通过将电量不足的电池的正极和负极通过电缆分别与电量充足的电池的正极和负极连接以启动车辆,但是,当电缆的正极和负极直接连接时会导致接触短路,或者正极和负极接反时,则会引起火花,都可能损坏电池,或者造成人身伤害,而且使用起来非常不方便。
在现有技术中已经进行了各种尝试来解决这些技术问题。专利号为US5793185,授权日为1998年8月11日的美国专利,公开了一种手持式跳跃起动器,其具有控制部件和电路以防止过度充电和与电池的错误连接。
专利号为US10604024B2,授权日为2020年3月31日的美国专利公开了一种具有安全保护功能的便携式车辆电池快速启动装置,该装置可以通过电池检测传感器检测电池连接端端子是否连接到待启动车辆的电池,以及通过极性检测传感器检测电池连接端端子是否正确连接到待启动车辆电池的正极和负极,如果电池检测传感器返回已经连接到待启动车辆的电池的信号和极性检测传感器返回正确连接到待启动车辆电池的正极和负极的信号,该装置输出信号以接通电源开关;如果电池检测传感器返回未连接到待启动车辆的电池的信号和/或极性检测传感器返回连接待启动车辆电池的正极和负极错误的信号,该装置输出信号以关闭电源开关。
如上所述,尽管现有技术试图解决上述问题,但是每种现有技术解决方案都具有其他缺点,无论是复杂性、成本、潜在的故障还是使用的便利性。因此,在本领域中存在对车辆快速启动装置的进一步改进的需求。
发明内容
本发明的目的在于克服上述现有技术的不足,提供了一种便携式车辆电池快速启动装置,实现两个车辆电池端子连接器与待启动车辆电池正极和负极的任意连接,该装置自动识别待启动车辆电池的正极和负极,并对应调整该装置输出电源的极性,使用十分便利。
为了解决上述技术问题,本发明提供一种便携式车辆电池快速启动装置,包括:
电源;
两个车辆电池端子连接器,所述两个车辆电池端子连接器用于分别电连接至车辆电池的两极;
第一极性检测电路,所述第一极性检测电路与所述两个车辆电池端子连接器电连接,所述第一极性检测电路用于检测所述两个车辆电池端子连接器连接至车辆电池两极的极性,并输出指示所述两个车辆电池端子连接器连接的车辆电池的极性信号;
电源输出极性切换开关电路,所述电源输出极性切换开关电路与所述电源和所述两个车辆电池端子连接器电连接,所述电源输出极性切换开关电路用于切换所述电源输出至所述两个车辆电池端子连接器的极性,且使得所述电源与车辆电池电连通;
微控制器,用于从所述第一极性检测电路接收检测的所述两个车辆电池端子连接器连接的车辆电池的极性信号,根据所述车辆电池的极性信号控制所述电源输出极性切换开关电路切换所述电源输出至所述两个车辆电池端子连接器的极性,使得所述电源输出至所述两个车辆电池端子连接器的极性与所述两个车辆电池端子连接器连接的车辆电池的极性相匹配,所述电源向车辆电池通电。
进一步的,所述便携式车辆电池快速启动装置还包括第二极性检测电路,所述第二极性检测电路与所述两个车辆电池端子连接器电连接,所述第二极性检测电路用于检测所述两个车辆电池端子连接器连接至车辆电池两极的极性,并输出指示所述两个车辆电池端子连接器连接的车辆电池的极性信号。
示例性的,所述电源输出极性切换开关电路包括第一电源输出极性切换开关电路和第二电源输出极性切换开关电路,所述第一电源输出极性切换开关电路和所述第二电源输出极性切换开关电路分别与所述两个车辆电池端子连接器电连接。
示例性的,所述第一电源输出极性切换开关电路包括第一开关和第二开关,所述第二电源输出极性切换开关电路包括第三开关和第四开关。
示例性的,所述第一开关、第二开关、第三开关和第四开关分别包括多个并联的MOSFET。
示例性的,所述第一开关、第二开关、第三开关和第四开关分别包括继电器开关。
示例性的,所述电源包括多个锂离子电池组。
示例性的,所述第一极性检测电路包括光耦传感器。
进一步的,所述便携式车辆电池快速启动装置还包括USB放电电路,所述USB放电电路用于所述电源向外部设备充电。
进一步的,所述便携式车辆电池快速启动装置还包括USB充电电路,所述USB充电电路用于外部电源向所述电源充电。
本发明提供的便携式车辆电池快速启动装置通过第一极性检测电路用于检测所述两个车辆电池端子连接器连接至车辆电池两极的极性,并输出指示所述两个车辆电池端子连接器连接的车辆电池的极性信号,微控制器根据该极性信号控制所述电源输出极性切换开关电路切换所述电源输出至所述两个车辆电池端子连接器的极性,使得所述电源输出至所述两个车辆电池端子连接器的极性与所述两个车辆电池端子连接器连接的车辆电池的极性相匹配,所述电源向车 辆电池通电,实现了自动识别两个车辆电池端子连接器连接的车辆电池的极性,并对电源输出的极性进行相应的切换匹配,用户使用该启动装置时将两个车辆电池端子连接器分别任意连接至车辆电池的两极,不用担心正负极连反,使用更加便利,用户体验好。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例提供的便携式车辆电池快速启动装置的功能方框示意图。
图2是本发明实施例提供的第一极性检测电路及电源输出极性切换开关电路的电路原理图。
图3是本发明实施例提供的电源部分电路原理图。
图4是本发明实施例提供的USB放电电路原理图。
图5是本发明实施例提供的USB充电电路原理图。
图6是本发明实施例提供的电源指示灯电路原理图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
需要说明的是,当元件被称为“固定于”或“设置于”另一个元件,它可以直接在另一个元件上或者间接在该另一个元件上。当一个元件被称为是“连接于”另一个元件,它可以是直接连接到另一个元件或间接连接至该另一个元 件上。
还需要说明的是,本发明实施例中的左、右、上和下等方位用语,仅是互为相对概念或是以产品的正常使用状态为参考的,而不应该认为是具有限制性的。
图1是本发明实施例提供的便携式车辆电池快速启动装置的功能示意框图。参考图1所示,该便携式车辆电池快速启动装置包括电源10、两个车辆电池端子连接器20、第一极性检测电路30、电源输出极性切换开关电路40和微控制器50;
电源10包括多个锂离子电池组101、电池组管理电路102和电源控制电路103,该锂离子电池组101存储足够的能量,能够输出大电流快速启动车辆,锂离子电池101组成的电池组瞬间放电电流大,能够反复充放电使用。电池组具体包括锂离子电池的个数,根据设定的输出最大电流来确定,能够启动车辆即可。电源10可以是设置于便携式车辆电池快速启动装置内的内部电源。在产品具体结构形态上,电源10可以与便携式车辆电池快速启动装置独立开,采用可拆卸的方式电连接,也可以是集成在一个壳体内。电池组管理电路102用于管理锂离子电池组101充放电安全及过热保护等,电源控制电路103用于控制锂离子电池组101充电或者放电,电池组管理电路102和电源控制电路103为本领域常规电路,这里不再详述。
两个车辆电池端子连接器20用于分别电连接至车辆电池的两极,两个车辆电池端子连接器20可以随意与车辆电池的两极电连接,两个车辆电池端子连接器20可以是电缆的自由端,也可以是与电缆连接的夹子,具体形式多种多样,这里不做具体限定,两个车辆电池端子连接器20可以完全相同,不区分正极和负极。
第一极性检测电路30与两个车辆电池端子连接器20电连接,第一极性检测电路30跨接于两个车辆电池端子连接器20之间,第一极性检测电路30用于检测两个车辆电池端子连接器20连接至车辆电池两极的极性,并输出指示两个 车辆电池端子连接器20连接的车辆电池的极性信号,即第一极性检测电路30可以检测出两个车辆电池端子连接器20中哪个车辆电池端子连接器20连接的车辆电池的正极,哪个车辆电池端子连接器20连接的车辆电池的负极,自动识别出车辆电池的极性,第一极性检测电路30识别出车辆电池的正极和负极后,向微控制器50输出指示信号。例如,两个车辆电池端子连接器20包括第一车辆电池端子连接器和第二车辆电池端子连接器,第一车辆电池端子连接器和第二车辆电池端子连接器分别连接至车辆电池的两极,第一极性检测电路30则自动检测出第一车辆电池端子连接器连接的是车辆电池的正极或者负极,第二车辆电池端子连接器连接的是车辆电池的负极或者正极。
电源输出极性切换开关电路40与电源10和两个车辆电池端子连接器20电连接,电源输出极性切换开关电路40用于切换电源10输出至两个车辆电池端子连接器20的极性,且使得电源10与车辆电池电连通,例如,当第一极性检测电路30检测到第一车辆电池端子连接器连接车辆电池的负极,第二车辆电池端子连接器连接车辆电池的正极,而当前电源10输出至第一车辆电池端子连接器为正,输出至第二车辆电池端子连接器为负,那么电源输出极性切换开关电路40进行切换并电连通,使得电源10输出至第一车辆电池端子连接器为负,输出至第二车辆电池端子连接器为正,从而向车辆电池的正极和负极通电使得汽车启动。
微控制器50用于从第一极性检测电路30接收检测的两个车辆电池端子连接器20连接的车辆电池的极性信号,根据该车辆电池的极性信号控制电源输出极性切换开关电路40切换电源输出至两个车辆电池端子连接器20的极性,使得电源10输出至两个车辆电池端子连接器20的极性与两个车辆电池端子连接器20连接的车辆电池的极性相匹配,该电源10向车辆电池通电。微控制器50可以根据具体需要选择供应商和型号,这里不再详述,本领域技术人员可以根据实际需求进行合适的选型。
本实施例提供的便携式车辆电池快速启动装置通过第一极性检测电路30 检测两个车辆电池端子连接器20连接至车辆电池两极的极性,并输出指示两个车辆电池端子连接器20连接的车辆电池的极性信号,微控制器50根据该车辆电池的极性信号控制电源输出极性切换开关电路40切换电源输出至两个车辆电池端子连接器20的极性,使得电源10输出至两个车辆电池端子连接器20的极性与两个车辆电池端子连接器20连接的车辆电池的极性相匹配,该电源10向车辆电池通电,用户不用区分两个车辆电池端子连接器20的正负极,可以随意将两个车辆电池端子连接器20与车辆电池正负极连接,自动检测两个车辆电池端子连接器20连接的车辆电池的极性并自动进行电源极性切换至与两个车辆电池端子连接器20相匹配的状态进而实现通电启动车辆,用户使用更加方便,不会出现正负极接反导致火花引起爆炸的危险情况,提高了安全性。
本实施例中,便携式车辆电池快速启动装置还包括第二极性检测电路60,该第二极性检测电路60与两个车辆电池端子连接器20电连接,第二极性检测电路60用于检两个车辆电池端子连接器20连接至车辆电池两极的极性,并输出指示两个车辆电池端子连接器20连接的车辆电池的极性信号。即第二极性检测电路60可以检测出两个车辆电池端子连接器20哪个车辆电池端子连接器20连接的车辆电池的正极,哪个车辆电池端子连接器20连接的车辆电池的负极,自动识别出车辆电池的极性,第二极性检测电路60识别出车辆电池的正极和负极后,向微控制器50输出指示信号。例如,两个车辆电池端子连接器20包括第一车辆电池端子连接器和第二车辆电池端子连接器,第一车辆电池端子连接器和第二车辆电池端子连接器分别连接至车辆电池的两极,第二极性检测电路60则自动检测出第一车辆电池端子连接器连接的是车辆电池的正极或者负极,第二车辆电池端子连接器连接的是车辆电池的负极或者正极。通过第一极性检测电路30和第二极性检测电路60分别进行极性检测,并分别输出指示信号,微控制器50根据两个只是信号确定是否需要切换输出至两个车辆电池端子连接器20电源的极性,检测结果更加准确,避免检测错误导致意外事故。而且,当第一极性检测电路30和第二极性检测电路60中的任何一个发生故障后,另 外一个还可以正常工作,提高了安全性。类似地,还可以设置多个极性检测电路,均在本专利的保护范围内。
本实施例中,电源输出极性切换开关电路40包括第一电源输出极性切换开关电路41和第二电源输出极性切换开关电路42,该第一电源输出极性切换开关电路41和第二电源输出极性切换开关电路42分别与两个车辆电池端子连接器20电连接。第一电源输出极性切换开关电路41包括第一开关410和第二开关411,第二电源输出极性切换开关电路42包括第三开关420和第四开关421。
本实施例中,第一开关410、第二开关411、第三开关420和第四开关421分别包括两个并联的MOSFET。当然,在其他实施例中,也可以是三个MOSFET并联,这里仅是举例说明,不做为对本技术方案的限制。具体的,第一开关410包括两个并联的MOSFET(Q15和Q16),第二开关411包括两个并联的MOSFET(Q19和Q20),第三开关420包括两个并联的MOSFET(Q21和Q22),第四开关421包括两个并联的MOSFET(Q17和Q18),两个MOSFET并联可以分散电源10输出的功率,当微控制器50输出至第一开关410、第二开关411、第三开关420和第四开关421的信号为高电平时,MOSFET Q15、Q16、Q19、Q20、Q21、Q22、Q17和Q18均处于高电阻状态,所有MOSFET关断,因此,电源10与车辆电池断开。第一开关410与第二开关411同时只能有一个导通,第三开关420与第四开关421同时只能有一个导通,通过在第一开关410与第二开关411及第三开关420与第四开关421之间的切换实现输出电源极性的切换。当微控制器50输出至第一开关410或第二开关411,第三开关420或第四开关421的信号为低电平时,对应的MOSFET处于低电阻状态,对应的MOSFET导通,因此,电源10与车辆电池电连通,以快速启动车辆发动机。
本实施例中,第一极性检测电路30包括光耦传感器D10和光耦传感器D11,当第一车辆电池端子连接器连接车辆电池的正极,第二车辆电池端子连接器连接车辆电池的负极时,光耦传感器D11导通,向微控制器50发送“0”或低电平信号,光耦传感器D10不导通,向微控制器50发送“1”或高电平信 号;当第一车辆电池端子连接器连接车辆电池的负极,第二车辆电池端子连接器连接车辆电池的正极时,光耦传感器D10导通,向微控制器50发送“0”或低电平信号,光耦传感器D11不导通,向微控制器50发送“1”或高电平信号。微控制器50根据光耦传感器D10和光耦传感器D11的导通状态可以判断出两个车辆电池端子连接器20分别连接的车辆电池的极性,从而控制电源输出极性切换开关电路40的切换和开关,使得电源10输出至两个车辆电池端子连接器20的电源的极性与其连接的车辆电池的极性相对应。
本实施例中,第二极性检测电路60包括比较器D13,比较器D13的两个输入端分别与两个车辆电池端子连接器20电连接,两个车辆电池端子连接器20分别连接车辆电池的正极和负极,根据比较器D13输出的信号判断两个车辆电池端子连接器20连接的车辆电池的极性。避免只用第一极性检测电路30检测两个车辆电池端子连接器20连接的车辆电池的极性不准确的情况,双重检测,增加检测的准确性,提高了安全性。
第一极性检测电路、第二极性检测电路可以上述两者中任意一者。
本实施例中,便携式车辆电池快速启动装置还包括USB放电电路70,该USB放电电路用于电源10向外部设备充电,该便携式车辆电池快速启动装置能够向移动终端进行充电,具有普通充电宝的功能,使得便携式车辆电池快速启动装置应用范围更广,增加产品使用率,解决用户的不时之需。充电宝技术已经是非常成熟的技术,这里不再详述。
本实施例中,便携式车辆电池快速启动装置还包括USB充电电路80,该USB充电电路用于外部电源向电源10充电。USB接口的充电设备现在应用非常广泛,可以与其他设备共用一个USB充电插头,充电更加方便,在充电线遗失时,也可以使用其他智能终端的USB充电线进行充电,兼容性好。
在其他一些实施例中,第一开关410、第二开关411、第三开关420和第四开关421分别包括继电器开关。继电器为开关领域常用器件,这里不再赘述。当然,在其他一些实施例中,也可采用其他方式实现。
本实施例中,微控制器50可以是一个或者多个控制芯片协同处理不同的任务,并不局限于一个控制芯片。
本实施例中,便携式车辆电池快速启动装置还包括按键组件90和电源指示灯00,按键组件90包括开启按键,使用便携式车辆电池快速启动装置时,按压开启按键,电源指示灯00点亮,说明便携式车辆电池快速启动装置已经上电可以使用。
需要说明的是,本发明公开的只是部分电路原理图,其他常规功能本领域技术人员可以不用付出创造性劳动就可以实现,这里列举的部分电路原理图仅是举例说明,并不作为对本技术方案的限制。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换或改进等,均应包含在本发明的保护范围之内。

Claims (11)

  1. 一种便携式车辆电池快速启动装置,其特征在于,包括:
    电源;
    两个车辆电池端子连接器,所述两个车辆电池端子连接器用于分别电连接至车辆电池的两极;
    第一极性检测电路,所述第一极性检测电路与所述两个车辆电池端子连接器电连接,所述第一极性检测电路用于检测所述两个车辆电池端子连接器连接至车辆电池两极的极性,并输出指示所述两个车辆电池端子连接器连接的车辆电池的极性信号;
    电源输出极性切换开关电路,所述电源输出极性切换开关电路与所述电源和所述两个车辆电池端子连接器电连接,所述电源输出极性切换开关电路用于切换所述电源输出至所述两个车辆电池端子连接器的极性,且使得所述电源与车辆电池电连通;
    微控制器,用于从所述第一极性检测电路接收检测的所述两个车辆电池端子连接器连接的车辆电池的极性信号,根据所述车辆电池的极性信号控制所述电源输出极性切换开关电路切换所述电源输出至所述两个车辆电池端子连接器的极性,使得所述电源输出至所述两个车辆电池端子连接器的极性与所述两个车辆电池端子连接器连接的车辆电池的极性相匹配,所述电源向车辆电池通电。
  2. 如权利要求1所述的便携式车辆电池快速启动装置,其特征在于,所述便携式车辆电池快速启动装置还包括第二极性检测电路,所述第二极性检测电路与所述两个车辆电池端子连接器电连接,所述第二极性检测电路用于检测所述两个车辆电池端子连接器连接至车辆电池两极的极性,并输出指示所述两个车辆电池端子连接器连接的车辆电池的极性信号。
  3. 如权利要求1所述的便携式车辆电池快速启动装置,其特征在于,所述电源输出极性切换开关电路包括第一电源输出极性切换开关电路和第二电源输出极性切换开关电路,所述第一电源输出极性切换开关电路和所述第二电源输 出极性切换开关电路分别与所述两个车辆电池端子连接器电连接。
  4. 如权利要求3所述的便携式车辆电池快速启动装置,其特征在于,所述第一电源输出极性切换开关电路包括第一开关和第二开关,所述第二电源输出极性切换开关电路包括第三开关和第四开关。
  5. 如权利要求4所述的便携式车辆电池快速启动装置,其特征在于,所述第一开关、第二开关、第三开关和第四开关分别包括多个并联的MOSFET。
  6. 如权利要求4所述的便携式车辆电池快速启动装置,其特征在于,所述第一开关、第二开关、第三开关和第四开关分别包括继电器开关。
  7. 如权利要求1所述的便携式车辆电池快速启动装置,其特征在于,所述电源包括多个锂离子电池组。
  8. 如权利要求1所述的便携式车辆电池快速启动装置,其特征在于,所述第一极性检测电路包括光耦传感器。
  9. 如权利要求1所述的便携式车辆电池快速启动装置,其特征在于,所述便携式车辆电池快速启动装置还包括USB放电电路,所述USB放电电路用于所述电源向外部设备充电。
  10. 如权利要求1所述的便携式车辆电池快速启动装置,其特征在于,所述便携式车辆电池快速启动装置还包括USB充电电路,所述USB充电电路用于外部电源向所述电源充电。
  11. 一种便携式车辆电池快速启动装置,其特征在于,包括:
    两个车辆电池端子连接器,所述两个车辆电池端子连接器用于分别电连接至车辆电池的两极;
    第一极性检测电路,所述第一极性检测电路与所述两个车辆电池端子连接器电连接,所述第一极性检测电路用于检测所述两个车辆电池端子连接器连接至车辆电池两极的极性,并输出指示所述两个车辆电池端子连接器连接的车辆电池的极性信号;
    电源输出极性切换开关电路,所述电源输出极性切换开关电路与所述电源 和所述两个车辆电池端子连接器电连接,所述电源输出极性切换开关电路用于切换所述电源输出至所述两个车辆电池端子连接器的极性,且使得所述电源与车辆电池电连通;
    微控制器,用于从所述第一极性检测电路接收检测的所述两个车辆电池端子连接器连接的车辆电池的极性信号,根据所述车辆电池的极性信号控制所述电源输出极性切换开关电路切换所述电源输出至所述两个车辆电池端子连接器的极性,使得所述电源输出至所述两个车辆电池端子连接器的极性与所述两个车辆电池端子连接器连接的车辆电池的极性相匹配,所述电源向车辆电池通电。
PCT/CN2021/074745 2020-09-29 2021-02-02 一种便携式车辆电池快速启动装置 WO2022068133A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011050906.6A CN112134330A (zh) 2020-09-29 2020-09-29 一种便携式车辆电池快速启动装置
CN202011050906.6 2020-09-29

Publications (1)

Publication Number Publication Date
WO2022068133A1 true WO2022068133A1 (zh) 2022-04-07

Family

ID=73844731

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/074745 WO2022068133A1 (zh) 2020-09-29 2021-02-02 一种便携式车辆电池快速启动装置

Country Status (2)

Country Link
CN (1) CN112134330A (zh)
WO (1) WO2022068133A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117269798A (zh) * 2023-11-22 2023-12-22 禹创半导体(深圳)有限公司 应用于判断外部电晶体类型的输出级侦察电路及方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112134330A (zh) * 2020-09-29 2020-12-25 广东省宏博伟智技术有限公司 一种便携式车辆电池快速启动装置
CN112865245A (zh) * 2021-02-03 2021-05-28 广东省宏博伟智技术有限公司 一种汽车电瓶充电器
US11303122B1 (en) * 2021-07-06 2022-04-12 Shenzhen Caross Co., Ltd Jumper cable device and jump start system
CN113503218A (zh) * 2021-07-06 2021-10-15 深圳市天成实业科技有限公司 智能点火夹及启动装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102447279A (zh) * 2010-09-29 2012-05-09 富晶电子股份有限公司 用于充电器的极性切换电路
CN102904312A (zh) * 2012-10-24 2013-01-30 南通纺织职业技术学院 一种自动判别电动车充电电极极性的充电器及判别方法
CN104118374A (zh) * 2013-04-26 2014-10-29 惠州市华易通科技有限公司 一种汽车应急启动装置
CN108767931A (zh) * 2018-07-13 2018-11-06 深圳市南霸科技有限公司 应急电源启动夹控制系统
CN112134330A (zh) * 2020-09-29 2020-12-25 广东省宏博伟智技术有限公司 一种便携式车辆电池快速启动装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102447279A (zh) * 2010-09-29 2012-05-09 富晶电子股份有限公司 用于充电器的极性切换电路
CN102904312A (zh) * 2012-10-24 2013-01-30 南通纺织职业技术学院 一种自动判别电动车充电电极极性的充电器及判别方法
CN104118374A (zh) * 2013-04-26 2014-10-29 惠州市华易通科技有限公司 一种汽车应急启动装置
CN108767931A (zh) * 2018-07-13 2018-11-06 深圳市南霸科技有限公司 应急电源启动夹控制系统
CN112134330A (zh) * 2020-09-29 2020-12-25 广东省宏博伟智技术有限公司 一种便携式车辆电池快速启动装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117269798A (zh) * 2023-11-22 2023-12-22 禹创半导体(深圳)有限公司 应用于判断外部电晶体类型的输出级侦察电路及方法
CN117269798B (zh) * 2023-11-22 2024-03-15 禹创半导体(深圳)有限公司 应用于判断外部电晶体类型的输出级侦察电路及方法

Also Published As

Publication number Publication date
CN112134330A (zh) 2020-12-25

Similar Documents

Publication Publication Date Title
WO2022068133A1 (zh) 一种便携式车辆电池快速启动装置
US11674490B2 (en) Multifunctional battery booster
US11584243B2 (en) Jump starting device with USB
US11787297B2 (en) Battery charging device for charging a deeply discharged battery, and battery charging system and method
AU2023203464B2 (en) Portable vehicle battery jump start apparatus with safety protection
US20230294519A1 (en) Portable or hand held vehicle battery jump starting apparatus with battery cell equalization circuit
US8552686B2 (en) Battery control apparatus and method
US9643506B2 (en) Portable backup charger
JPS60241736A (ja) 電池充電器
KR102458525B1 (ko) 체결 인식 기능을 갖춘 배터리 팩
CN109891704B (zh) 用于搭电启动车辆的设备
CN108448344A (zh) 用于连接汽车应急启动电源和汽车电瓶的智能搭火线
US20230344261A1 (en) Battery charging device for charging a deeply discharged battery, and battery charging system and method
CN212435406U (zh) 一种便携式车辆电池快速启动装置
CN204681146U (zh) 智能usb适配器
CN112531848B (zh) 一种电池包及其控制方法
US20220407341A1 (en) Battery charging device having a temperature sensor for providing temperature compensation during charging, and method of measuring depleted or discharged battery temperature for compensating charging of a battery charging device
JP2012130174A (ja) 充電システム
CN104967196A (zh) 智能usb适配器
CN112865245A (zh) 一种汽车电瓶充电器
CN214099687U (zh) 多重保护电池组
CN212659585U (zh) 平台通用电池包
US11325499B2 (en) Multi-battery system for an electric vehicle
JPH09259934A (ja) 二次電池パックおよび二次電池の充電電圧検出方法
KR910006687Y1 (ko) 건전지 보호회로

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21873800

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21873800

Country of ref document: EP

Kind code of ref document: A1