WO2022067744A1 - 时延补偿方法、装置、设备及介质 - Google Patents

时延补偿方法、装置、设备及介质 Download PDF

Info

Publication number
WO2022067744A1
WO2022067744A1 PCT/CN2020/119618 CN2020119618W WO2022067744A1 WO 2022067744 A1 WO2022067744 A1 WO 2022067744A1 CN 2020119618 W CN2020119618 W CN 2020119618W WO 2022067744 A1 WO2022067744 A1 WO 2022067744A1
Authority
WO
WIPO (PCT)
Prior art keywords
delay compensation
information
layer signaling
reporting mode
reference signal
Prior art date
Application number
PCT/CN2020/119618
Other languages
English (en)
French (fr)
Inventor
梁彬
徐婧
付喆
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2020/119618 priority Critical patent/WO2022067744A1/zh
Priority to EP20955767.7A priority patent/EP4221032A4/en
Priority to CN202080102416.8A priority patent/CN115836499A/zh
Publication of WO2022067744A1 publication Critical patent/WO2022067744A1/zh
Priority to US18/188,470 priority patent/US20230224753A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0096Indication of changes in allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/24Traffic characterised by specific attributes, e.g. priority or QoS
    • H04L47/2416Real-time traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/28Flow control; Congestion control in relation to timing considerations
    • H04L47/283Flow control; Congestion control in relation to timing considerations in response to processing delays, e.g. caused by jitter or round trip time [RTT]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/32Flow control; Congestion control by discarding or delaying data units, e.g. packets or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • H04W56/0045Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by altering transmission time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal

Definitions

  • the present application relates to the field of mobile communications, and in particular, to a time delay compensation method, apparatus, device and medium.
  • IIoT The Industrial Internet of Things
  • IIoT needs to support the transmission of industrial automation (Factory automation), transmission automation (Transport Industry), and smart power (Electrical Power Distribution) in the 5G system.
  • IIoT Based on its transmission requirements of delay and reliability, IIoT introduces the concept of Time Sensitive Networking (TSN) or Time Sensitive Communication (TSC).
  • TSN Time Sensitive Networking
  • TSC Time Sensitive Communication
  • the synchronization error must not be less than 900ns.
  • the embodiments of the present application provide a time delay compensation method, apparatus, device and medium, which can obtain higher clock synchronization accuracy through the time delay compensation method.
  • a time delay compensation method is provided, applied in a terminal, and the method includes:
  • the first information includes: time information; or, a delay compensation amount; or, the time information and the delay compensation amount.
  • a time delay compensation method which is applied to a network device, and the method includes:
  • the first information includes: time information; or, a delay compensation amount; or, the time information and the delay compensation amount.
  • a time delay compensation apparatus comprising:
  • a sending module configured to report first information to a network device, where the first information is used to assist the device or the network device to perform delay compensation;
  • the first information includes: time information; or, a delay compensation amount; or, the time information and the delay compensation amount.
  • a time delay compensation apparatus comprising:
  • a receiving module configured to receive first information reported by the terminal, where the first information is used to assist the terminal or the device to perform delay compensation;
  • the first information includes: time information; or, a delay compensation amount; or, the time information and the delay compensation amount.
  • a terminal comprising: a processor; a transceiver connected to the processor; a memory for storing executable instructions of the processor; wherein the processing The processor is configured to load and execute the executable instructions to implement the delay compensation method as described in the above aspects.
  • a network device comprising: a processor; a transceiver connected to the processor; a memory for storing executable instructions of the processor; wherein the The processor is configured to load and execute the executable instructions to implement the delay compensation method as described in the above aspects.
  • a computer-readable storage medium where executable instructions are stored, and the executable instructions are loaded and executed by the processor to achieve the above-mentioned aspects.
  • the described time delay compensation method is provided.
  • a computer program product or computer program comprising computer instructions, the computer instructions being stored in a computer-readable storage medium, the processor of the computer device being readable from the computer
  • the storage medium reads the computer instructions, and the processor executes the computer instructions, so that the computer device executes the delay compensation method described in the above aspects.
  • a chip is provided, the chip includes a programmable logic circuit or a program, and the chip is configured to implement the time delay compensation method described in the above aspects.
  • the terminal reports the first information to the network device, the first information is used to assist the terminal or the network device to perform delay compensation, and a higher clock synchronization accuracy can be obtained through the delay compensation method, so as to meet more precise time synchronization requirements.
  • FIG. 1 is a block diagram of a communication system provided by an exemplary embodiment of the present application.
  • FIG. 2 is a clock synchronization relationship between a terminal and a network device shown in an exemplary embodiment of the present application
  • FIG. 3 is a flowchart of a time delay compensation method shown in an exemplary embodiment of the present application
  • Fig. 5 is another information format diagram of the first information shown in an exemplary embodiment of the present application.
  • FIG. 6 is a flowchart of a time delay compensation method shown in an exemplary embodiment of the present application.
  • FIG. 7 is a flowchart of a time delay compensation method shown in an exemplary embodiment of the present application.
  • FIG. 8 is a flowchart of a time delay compensation method shown in an exemplary embodiment of the present application.
  • FIG. 9 is a flowchart of a time delay compensation method shown in an exemplary embodiment of the present application.
  • FIG. 10 is a time-domain schematic diagram of a time delay compensation method according to an exemplary embodiment of the present application.
  • FIG. 11 is a flowchart of a time delay compensation method shown in an exemplary embodiment of the present application.
  • FIG. 12 is a block diagram of a time delay compensation apparatus according to an exemplary embodiment of the present application.
  • FIG. 13 is a block diagram of a time delay compensation apparatus according to an exemplary embodiment of the present application.
  • FIG. 14 is a block diagram of a communication device shown in an exemplary embodiment of the present application.
  • FIG. 1 is a network architecture diagram of a TSN network acting as a TSN bridge through a 5G network.
  • the network architecture includes: a TSN system 110 , a network side bridge 120 , a 5G system 130 , a device side bridge 140 and a TSN bridge/end device 150 . in:
  • the TSN system 110 includes: a centralized user configuration (Centralized User Configuration, CUC), a centralized network configuration (Centralized Network Configuration, CNC) and at least one TSN bridge or end device.
  • the TSN system 110 is connected to the network side bridge 120 .
  • the network side bridge 120 includes: a control plane TSN translator and a user plane TSN translator.
  • the control plane TSN translator is acted by an Application Function (AF), which is in communication connection with the centralized network configuration in the TSN system 110.
  • AF Application Function
  • the user plane TSN translator has a communication connection with a TSN bridge or end device in the TSN system 110 .
  • the 5G system 130 includes: a core network, an access network (Radio Access Network, RAN), and a terminal.
  • the user plane of the core network includes User Plane Function (UPF);
  • the control plane of the core network includes: Unified Data Management (UDM), Network Exposure Function (NEF), access and mobility Access and Mobility Management Function (AMF) entity, (Session Management Function, SMF), and Policy Control Function (PCF).
  • UPF User Plane Function
  • UMF Unified Data Management
  • NEF Network Exposure Function
  • AMF Access and Mobility Management Function
  • SMF Session Management Function
  • PCF Policy Control Function
  • the N1 interface is the reference point between the terminal and the AMF;
  • the N2 interface is the reference point between the RAN and the AMF, which is used for sending NAS messages, etc.;
  • the N3 interface is the reference point between the RAN and the UPF, which is used to transmit the user plane Data, etc.;
  • N4 interface is the reference point between SMF and UPF, used to transmit information such as tunnel identification information of N3 connection, data buffer indication information, and downlink data notification messages;
  • N6 interface is between UPF and user plane TSN translator The reference point between them is used to transmit user plane data, etc.
  • N8 is the reference point between UDM and AMF,
  • N10 is the reference point between UDM and SMF, and
  • N11 is the reference point between AMF and SMF.
  • the device-side bridge 140 has a communication connection with the terminal in the 5G system 130 .
  • Device-side bridge 140 includes a device-side TSN translator.
  • Device side bridge 140 also has a communication connection with TSN bridge/end device 150 .
  • the 5G system 130 is a path for transmitting TSN services, so that the 5G system needs to support the transmission of TSN services and the time synchronization requirements of the TSN network, and the services are transmitted within the required time.
  • the 5G system 130 needs to provide a lower delay guarantee and higher clock synchronization accuracy, so that when industrial automation services are transmitted in the 5G network, the operation and connection of each point of the mechanical operation are accurate and consistent with the time. Require.
  • the TSN time is obtained through the reference time information (referenceTimeInfo-r16) field in the system information block (System Information Block, SIB) signaling.
  • the reference time information field includes: System Frame Number (System Frame Number) information, absolute Time information, etc., its indication accuracy is 10ns.
  • the TSN service when the TSN service is transmitted in 5G, it needs to meet the time synchronization accuracy requirement of 1us. Whether the time accuracy of 1us can be achieved, as shown in Figure 2, from the air interface, it is related to the time synchronization accuracy (accuracy) notified by the network and the time synchronization accuracy error (delta ⁇ ) on the UE side.
  • the synchronization error on the terminal side is determined by RAN1 , the error is related to many factors, such as propagation loss, equipment limitations, etc.
  • This embodiment of the present application provides a delay compensation solution, and reference is made to the following embodiments.
  • FIG. 3 shows a flowchart of a time delay compensation method provided by an exemplary embodiment of the present application.
  • the time delay compensation method is applied to the terminal as an example for illustration.
  • the terminal is a terminal supporting TSN network or TSN service transmission.
  • the method includes:
  • Step 302 The terminal reports first information to the network device, where the first information is used to assist the terminal or the network device to perform delay compensation.
  • the first information may also be called other names such as delay compensation information, delay reference information, delay compensation reference information, and delay information, which are not limited in this embodiment.
  • the first information includes: time information; or, delay compensation amount; or, time information and delay compensation amount.
  • the information content included in the first information is configured by high-level signaling or stipulated by a communication protocol.
  • the first information includes: a delay compensation amount.
  • the first information includes: delay compensation amount and time information.
  • the time information includes: at least one of absolute time information of the reference time point and a time slot index of the time slot where the reference time point is located.
  • the absolute time information includes: year, month, day, hour, minute, second, millisecond, microsecond, and the like.
  • the reference time point may be the start time of a delay compensation period, or the time when the terminal reports the first information, or the start time of the latest time slot. The specific position of the reference time point is not limited in this embodiment of the present application.
  • the delay compensation amount is the deviation value of the delay compensation measured by the terminal, and the measurement unit of the deviation value includes: any one of milliseconds, microseconds, nanoseconds, and reference time length.
  • the reference time length may be a time unit Tc or an integer multiple of Tc.
  • the amount of time delay compensation is determined according to reference signals, which include but are not limited to: Sounding Reference Signal (SRS), Positioning Reference Signal (PRS), Demodulation Reference Signal (Demodulation Reference Signal) Reference Signal, DM-RS).
  • the delay compensation amount is determined according to the time difference between sending and receiving of the uplink reference signal and the downlink reference signal.
  • the delay compensation amount measured by the terminal may be referred to as the first delay compensation amount, and the delay compensation amount measured by the network device may be referred to as the second delay compensation amount.
  • the terminal first sends the uplink reference signal to the network device, and then receives the downlink reference signal sent by the network device, and the delay compensation amount is the difference between the moment when the terminal receives the downlink reference signal minus the moment when the terminal sends the uplink reference signal.
  • the network device first sends the downlink reference signal to the terminal, and then the terminal sends the uplink reference signal to the network device, and the delay compensation amount is the time when the terminal sends the uplink reference signal minus the time when the terminal receives the downlink reference signal.
  • the specific calculation method of the delay compensation amount is not limited in this embodiment of the present application.
  • the delay compensation amount is n milliseconds. If the time unit is microseconds and the delay compensation amount is n, it means that the delay compensation amount is n microseconds. If the time unit is nanoseconds and the delay compensation amount is n, it means that the delay compensation amount is n nanoseconds. If the time unit is the agreed time unit Tc and the delay compensation amount is n, it means that the delay compensation amount is n*Tc.
  • the reporting mode of the first information includes: a periodic reporting mode; or, a semi-static periodic reporting mode; or, a signaling-triggered reporting mode.
  • the terminal reports the first information to the network device, the first information is used to assist the terminal or the network device to perform delay compensation, and a higher clock synchronization accuracy is obtained through the delay compensation method, This can meet the needs of more precise time synchronization.
  • step 302 For the periodic reporting mode, before step 302, the following steps 401 to 402 are further included, as shown in FIG. 6 :
  • Step 401 The network device sends first high layer signaling, and the first high layer signaling is used to configure the first reporting period of the periodic reporting mode;
  • the network device sends the first higher layer signaling to the terminal.
  • the first higher layer signaling is radio resource control (Radio Resource Control, RRC) signaling.
  • RRC Radio Resource Control
  • the first high layer signaling carries: the first reporting period, or, the first reporting period and the starting reporting position.
  • the first reporting period is the period of the periodic reporting mode.
  • Step 402 The terminal receives the first higher layer signaling.
  • the terminal receives the first high-layer signaling sent by the network device.
  • the terminal acquires the first reporting period, or the first reporting period and the starting reporting position, from the first higher layer signaling.
  • the terminal starts from the initial reporting position and continues to periodically report according to the first reporting period.
  • the delay compensation information is reported in a periodic reporting manner, so that the terminal and the network device can always maintain a high clock synchronization accuracy.
  • step 302 For the semi-static periodic reporting mode, before step 302, the following steps 501 to 503 are further included, as shown in FIG. 7 :
  • Step 501 The network device sends the second high layer signaling, and the second high layer signaling is used to configure the second reporting period of the semi-static period reporting mode;
  • the network device sends the second higher layer signaling to the terminal.
  • the second higher layer signaling is RRC signaling.
  • the second high layer signaling carries: a second reporting period.
  • the second reporting period is the period of the semi-static period reporting mode.
  • Step 502 the terminal receives the second higher layer signaling
  • the terminal receives the second-layer signaling sent by the network device.
  • the terminal obtains the second reporting period from the second higher layer signaling.
  • Step 503 the network device sends the third layer signaling or the first physical layer signaling, and the third high layer signaling or the first physical layer signaling is used to activate the semi-static periodic reporting mode;
  • the network device sends the third layer signaling or the first physical layer signaling to the terminal.
  • the third layer signaling is RRC signaling
  • the first physical layer signaling is downlink control information (Downlink Control Information, DCI) signaling.
  • DCI Downlink Control Information
  • Step 504 The terminal receives the third layer signaling or the first physical layer signaling.
  • the terminal receives the third layer signaling or the first physical layer signaling sent by the network device. After receiving the activation indication of the third layer signaling or the first physical layer signaling, the terminal continues to periodically report the first information according to the second reporting period.
  • the network device further sends the third layer signaling or the first physical layer signaling to the terminal, and the third high layer signaling or the first physical layer signaling is used for deactivation Semi-static periodic reporting mode.
  • the terminal stops reporting the first information after receiving the deactivation indication in the third layer signaling or the first physical layer signaling.
  • the delay compensation information is reported in a semi-static periodic reporting manner, so that the terminal and the network device can always maintain a high clock synchronization accuracy for at least a period of time.
  • step 302 For the signaling trigger reporting mode, before step 302, the following steps 601 to 602 are further included, as shown in FIG. 8 :
  • Step 601 the network device sends the fourth high layer signaling or the second physical layer signaling, and the fourth high layer signaling or the second physical layer signaling carries a trigger indication;
  • the network device sends the fourth higher layer signaling or the second physical layer signaling to the terminal.
  • the fourth higher layer signaling is RRC signaling
  • the second physical layer signaling is DCI signaling.
  • the trigger indication is an indication for triggering reporting of the first information.
  • the trigger indication is used to trigger the terminal to report the first information once, or the trigger indication is used to trigger the terminal to continuously report the first information n times, where n is an integer greater than 1.
  • the reporting location of the first information can be configured by the fourth high layer signaling or the second physical layer signaling, and can also be configured by other high layer signaling; the number of reporting times n can be configured by the fourth high layer signaling or the second physical layer signaling
  • the configuration can also be configured by other high-level signaling.
  • Step 602 The terminal receives the fourth higher layer signaling or the second physical layer signaling.
  • the terminal receives the fourth layer signaling or the second physical layer signaling sent by the network device.
  • the terminal acquires the trigger indication from the fourth-layer high-layer signaling or the second physical layer signaling, and reports the first information after receiving the trigger indication.
  • the delay compensation information is reported in a signaling-triggered reporting manner, which can reduce the number of reporting times between the terminal and the network device and save air interface resources.
  • FIG. 9 shows a flowchart of a time delay compensation method provided by another exemplary embodiment of the present application. This embodiment is described by taking the time delay compensation method applied between the terminal and the network device as an example.
  • the terminal and the network device support TSN network or TSN service transmission.
  • the method includes:
  • Step 302 the terminal reports the first information to the network device
  • the reporting mode of the first information may be a periodic reporting mode, referring to the embodiment shown in FIG. 6; it may also be a semi-static periodic reporting mode, referring to the embodiment shown in FIG. 7; it may also be a signaling-triggered reporting mode, Referring to the embodiment shown in FIG. 8 .
  • Step 304-1 the network device receives the first information reported by the terminal
  • Step 306-1 The network device performs delay compensation according to the first information.
  • the network device obtains at least one of time information and delay compensation amount from the first information.
  • the network device determines a delay compensation offset for actual delay compensation according to the received time information and the receiving time of the first information.
  • the network device performs delay compensation according to the delay compensation offset.
  • the time information reported by the terminal is the sending time of the first information
  • the network device subtracts the sending time of the first information from the receiving time of the first information to obtain the delay compensation offset.
  • the time information reported by the terminal is the start time of the delay compensation period
  • the interval between the sending time of the second information and the start position of the delay compensation period is a predetermined time length
  • the network device records the start time of the delay compensation period. The start time and the predetermined duration are added to obtain the reception time of the first information, and then the reception time of the first information is subtracted from the transmission time of the first information to obtain the delay compensation offset.
  • the delay compensation is performed according to the delay compensation amount.
  • the first delay compensation amount in the first information is the first delay compensation amount T1
  • the delay compensation amount measured by the network device itself is the second delay compensation amount T2
  • the network device according to the first delay compensation amount T2.
  • the first delay compensation amount T1 the moment when the terminal receives the downlink reference signal - the moment when the terminal sends the uplink reference signal
  • the second delay compensation amount T2 the network equipment receives The time of the uplink reference signal—the time when the network device sends the downlink reference signal.
  • the first delay compensation amount T1 the moment when the terminal sends the uplink reference signal - the moment when the terminal receives the downlink reference signal.
  • the second delay compensation amount T2 the moment when the network device sends the downlink reference signal - the moment when the network device receives the uplink reference signal.
  • the first delay compensation amount is the delay compensation amount reported by the terminal
  • the second delay compensation amount is the delay compensation amount measured by the network device.
  • the delay compensation is performed according to the time information and the delay compensation amount.
  • the network device determines the delay compensation offset 1 according to the received time information and the reception time of the first information; Delay compensation offset 2 for delay compensation.
  • the average or weighted value of the delay compensation offset 1 and the delay compensation offset 2 is used as the delay compensation offset 3, and the network device performs delay compensation according to the delay compensation offset 3.
  • the network device performs delay compensation according to the first information, which can reduce the number of signaling interactions between the terminal and the network device and save air interface resources.
  • FIG. 11 shows a flowchart of a time delay compensation method provided by another exemplary embodiment of the present application. This embodiment is described by taking the time delay compensation method applied between the terminal and the network device as an example.
  • the method includes:
  • Step 302 the terminal reports the first information to the network device
  • the reporting mode of the first information may be a periodic reporting mode, referring to the embodiment shown in FIG. 6; it may also be a semi-static periodic reporting mode, referring to the embodiment shown in FIG. 7; it may also be a signaling-triggered reporting mode, Referring to the embodiment shown in FIG. 8 .
  • Step 304-2 the network device receives the first information reported by the terminal
  • Step 306-2 the network device sends the second information to the terminal according to the first information
  • the second information may also be referred to as: delay compensation indication, delay reference indication, delay compensation reference indication, delay indication and other names, which are not limited in this embodiment.
  • the second information is determined according to the first information.
  • the second information carries: an indication of whether to perform delay compensation, and at least one of a delay compensation offset.
  • the second information carries an instruction not to perform delay compensation; for another example, the second information carries a delay compensation offset; for another example, the second information carries an instruction to perform delay compensation, and the delay compensation offset quantity.
  • the delay compensation offset is determined according to the first information.
  • the delay compensation offset For the way of determining the delay compensation offset, reference may be made to the description of step 306-1.
  • Step 308 The terminal performs delay compensation according to the second information.
  • the terminal performs delay compensation according to the delay compensation offset in the second information.
  • the terminal performs delay compensation according to the second information, which can save the computing resources of the network device.
  • FIG. 12 shows a block diagram of an apparatus for delay compensation provided by an exemplary embodiment of the present application.
  • the time delay compensation device can be implemented as all or a part of the terminal. Or, the delay compensation device can be applied in a terminal.
  • the device includes:
  • the sending module 1220 is configured to report first information to the network device, where the first information is used to assist the apparatus or the network device to perform delay compensation.
  • the first information includes: time information; or, a delay compensation amount; or, the time information and the delay compensation amount.
  • the time information includes at least one of the following:
  • the slot index of the slot in which the reference time point is located is located.
  • the delay compensation amount is determined according to a reference signal; the reference signal includes: at least one of SRS, PRS, and DMRS.
  • the delay compensation amount is a deviation value of the delay compensation
  • the measurement unit of the deviation value includes one of the following:
  • the reporting mode of the first information includes:
  • the device further includes:
  • the receiving module 1240 is configured to receive first high-layer signaling, where the first high-layer signaling is used to configure a first reporting period of the periodic reporting mode.
  • the device further includes:
  • a receiving module 1240 configured to receive second-layer signaling, where the second-layer signaling is used to configure a second reporting period of the semi-static period reporting mode;
  • the receiving module 1240 is configured to receive the third layer signaling or the first physical layer signaling, and the third high layer signaling or the first physical layer signaling is used to activate or deactivate the semi-static periodic reporting model.
  • the device further includes:
  • the receiving module 1240 is configured to receive the fourth higher layer signaling or the second physical layer signaling, where the fourth higher layer signaling or the second physical layer signaling carries trigger signaling.
  • the device further includes:
  • a receiving module 1240 configured to receive the second information
  • the processing module 1260 is configured to perform delay compensation according to the second information.
  • FIG. 13 shows a block diagram of an apparatus for delay compensation provided by an exemplary embodiment of the present application.
  • the delay compensation device can be implemented as all or a part of the network equipment. Or, the delay compensation apparatus may be applied in network equipment.
  • the device includes:
  • the receiving module 1320 is configured to receive first information reported by the terminal, where the first information is used to assist the terminal or the network device to perform delay compensation.
  • the first information includes: time information; or, a delay compensation amount; or, the time information and the delay compensation amount.
  • the time information includes at least one of the following: absolute time information; time slot index.
  • the delay compensation amount is determined according to a reference signal; the reference signal includes: at least one of SRS, PRS, and DMRS.
  • the delay compensation amount is a deviation value of the delay compensation
  • the measurement unit of the deviation value includes one of the following: milliseconds, microseconds, nanoseconds, and reference time length.
  • the reporting mode of the first information includes:
  • Periodic reporting mode or, semi-static periodic reporting mode; or, signaling-triggered reporting mode.
  • the device further includes:
  • the sending module 1340 is configured to send first high-layer signaling, where the first high-layer signaling is used to configure a first reporting period of the periodic reporting mode.
  • the device further includes:
  • a sending module 1340 configured to send second-layer signaling, where the second-layer signaling is used to configure a second reporting period of the semi-static period reporting mode;
  • the sending module 1340 is configured to send the third layer signaling or the first physical layer signaling, and the third high layer signaling or the first physical layer signaling is used to activate or deactivate the semi-static periodic reporting model.
  • the device further includes:
  • the sending module 1340 is configured to send the fourth higher layer signaling or the second physical layer signaling, where the fourth higher layer signaling or the second physical layer signaling carries trigger signaling.
  • the device further includes:
  • the processing module 1360 is configured to perform delay compensation according to the first information.
  • the device further includes:
  • the sending module 1340 is configured to send second information according to the first information, where the second information is used to instruct the terminal to perform delay compensation.
  • the second information carries at least one of the following: whether to perform delay compensation; and an amount of delay compensation.
  • FIG. 14 shows a schematic structural diagram of a communication device (terminal or network device) provided by an exemplary embodiment of the present application.
  • the communication device includes: a processor 101 , a receiver 102 , a transmitter 103 , a memory 104 and a bus 105 .
  • the processor 101 includes one or more processing cores, and the processor 101 executes various functional applications and information processing by running software programs and modules.
  • the receiver 102 and the transmitter 103 may be implemented as a communication component, which may be a communication chip.
  • the memory 104 is connected to the processor 101 through the bus 105 .
  • the memory 104 may be configured to store at least one instruction, and the processor 101 is configured to execute the at least one instruction, so as to implement each step of the delay compensation method mentioned in the foregoing method embodiments.
  • memory 104 may be implemented by any type or combination of volatile or non-volatile storage devices including, but not limited to, magnetic or optical disks, electrically erasable programmable Read Only Memory (Electrically-Erasable Programmable Read Only Memory, EEPROM), Erasable Programmable Read Only Memory (EPROM), Static Random Access Memory (SRAM), Read Only Memory (Read-Only Memory, ROM), magnetic memory, flash memory, programmable read-only memory (Programmable Read-Only Memory, PROM).
  • volatile or non-volatile storage devices including, but not limited to, magnetic or optical disks, electrically erasable programmable Read Only Memory (Electrically-Erasable Programmable Read Only Memory, EEPROM), Erasable Programmable Read Only Memory (EPROM), Static Random Access Memory (SRAM), Read Only Memory (Read-Only Memory, ROM), magnetic memory, flash memory, programmable read-only memory (Programmable Read-Only Memory, PROM).
  • a computer-readable storage medium stores at least one instruction, at least one piece of program, code set or instruction set, the at least one instruction, the At least one piece of program, the code set or the instruction set is loaded and executed by the processor to implement the delay compensation method executed by the terminal or the network device provided by the above method embodiments.
  • a computer program product or computer program comprising computer instructions stored in a computer readable storage medium from which a processor of a communication device is readable by a computer
  • the computer instruction is read by reading the storage medium, and the processor executes the computer instruction, so that the communication device executes the delay compensation method described in the above aspects.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种时延补偿方法、装置、设备及存储介质,涉及通信领域,所述方法包括:终端向网络设备上报第一信息,第一信息用于辅助终端或网络设备进行时延补偿,从而使得终端和网络设备之间保持较高的时钟同步精度。

Description

时延补偿方法、装置、设备及介质 技术领域
本申请涉及移动通信领域,特别涉及一种时延补偿方法、装置、设备及介质。
背景技术
工业物联网(Industrial Internet of Things,IIoT)中需要支持工业自动化(Factory automation),传输自动化(Transport Industry),智能电力(Electrical Power Distribution)等业务在5G系统的传输。基于其时延和可靠性的传输需求,IIoT引入了时间敏感网络(Time Sensitive Networking,TSN)或时间敏感通信(Time Sensitive communication,TSC)的概念。
在TSN网络中,需要提供更低的时延保证,和更高的时钟同步精度。比如,同步误差不得小于900ns。
发明内容
本申请实施例提供了一种时延补偿方法、装置、设备及介质,通过时延补偿方式获得更高的时钟同步精度。
根据本申请的一个方面,提供了一种时延补偿方法,应用于终端中,所述方法包括:
向网络设备上报第一信息,所述第一信息用于辅助所述终端或所述网络设备进行时延补偿;
其中,所述第一信息包括:时间信息;或,时延补偿量;或,所述时间信息和所述时延补偿量。
根据本申请的一个方面,提供了一种时延补偿方法,应用于网络设备中,所述方法包括:
接收终端上报的第一信息,所述第一信息用于辅助所述终端或所述网络设备进行时延补偿;
其中,所述第一信息包括:时间信息;或,时延补偿量;或,所述时间信息和所述时延补偿量。
根据本申请的一个方面,提供了一种时延补偿装置,所述装置包括:
发送模块,用于向网络设备上报第一信息,所述第一信息用于辅助所述装置或所述网络设备进行时延补偿;
其中,所述第一信息包括:时间信息;或,时延补偿量;或,所述时间信息和所述时延补偿量。
根据本申请的一个方面,提供了一种时延补偿装置,所述装置包括:
接收模块,用于接收终端上报的第一信息,所述第一信息用于辅助所述终端或所述装置进行时延补偿;
其中,所述第一信息包括:时间信息;或,时延补偿量;或,所述时间信 息和所述时延补偿量。
根据本申请的一个方面,提供了一种终端,所述终端包括:处理器;与所述处理器相连的收发器;用于存储所述处理器的可执行指令的存储器;其中,所述处理器被配置为加载并执行所述可执行指令以实现如上述方面所述的时延补偿方法。
根据本申请的一个方面,提供了一种网络设备,所述网络设备包括:处理器;与所述处理器相连的收发器;用于存储所述处理器的可执行指令的存储器;其中,所述处理器被配置为加载并执行所述可执行指令以实现如上述方面所述的时延补偿方法。
根据本申请的一个方面,提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有可执行指令,所述可执行指令由所述处理器加载并执行以实现如上述方面所述的时延补偿方法。
根据本申请的一个方面,提供了一种计算机程序产品或计算机程序,该计算机程序产品或计算机程序包括计算机指令,该计算机指令存储在计算机可读存储介质中,计算机设备的处理器从计算机可读存储介质读取该计算机指令,处理器执行该计算机指令,使得该计算机设备执行上述方面所述的时延补偿方法。
根据本申请的一个方面,提供了一种芯片,所述芯片包括可编程逻辑电路或程序,所述芯片用于实现如上述方面所述的时延补偿方法。
本申请实施例提供的技术方案至少包括如下有益效果:
通过终端向网络设备上报第一信息,第一信息用于辅助终端或网络设备进行时延补偿,通过时延补偿方式获得更高的时钟同步精度,从而能够满足更精准的时间同步需求。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请一个示例性实施例提供的通信系统的框图;
图2是本申请一个示例性实施例示出的终端和网络设备之间的时钟同步关系;
图3是本申请一个示例性实施例示出的时延补偿方法的流程图;
图4是本申请一个示例性实施例示出的第一信息的信息格式图;
图5是本申请一个示例性实施例示出的第一信息的另一信息格式图;
图6是本申请一个示例性实施例示出的时延补偿方法的流程图;
图7是本申请一个示例性实施例示出的时延补偿方法的流程图;
图8是本申请一个示例性实施例示出的时延补偿方法的流程图;
图9是本申请一个示例性实施例示出的时延补偿方法的流程图;
图10是本申请一个示例性实施例示出的时延补偿方法的时域示意图;
图11是本申请一个示例性实施例示出的时延补偿方法的流程图;
图12是本申请一个示例性实施例示出的时延补偿装置的框图;
图13是本申请一个示例性实施例示出的时延补偿装置的框图;
图14是本申请一个示例性实施例示出的通信设备的框图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
图1是TSN网络通过5G网络作为TSN桥的网络架构图。该网络架构包括:TSN系统110、网络侧桥120、5G系统130、设备侧桥140和TSN桥/末端设备150。其中:
TSN系统110包括:1个集中用户配置(Centralized User Configuration,CUC)、1个集中网络配置(Centralized Network Configuration,CNC)和至少一个TSN桥或末端设备。TSN系统110与网络侧桥120相连。
网络侧桥120包括:控制面TSN翻译器和用户面TSN翻译器。控制面TSN翻译器由应用功能(Application Function,AF)充当,与TSN系统110中的集中网络配置存在通信连接。用户面TSN翻译器与TSN系统110中的TSN桥或末端设备存在通信连接。
5G系统130包括:核心网、接入网(Radio Access Network,RAN)和终端。核心网的用户面包括用户面功能(User Plane Function,UPF);核心网的控制面包括:统一数据管理(Unified Data Management,UDM),网络开放功能(Network Exposure Function,NEF),接入和移动性管理功能(Access and Mobility Management Function,AMF)实体、(会话管理功能Session Management Function,SMF),,策略控制功能(Policy Control Function,PCF)。
其中,N1接口为终端与AMF之间的参考点;N2接口为RAN和AMF的参考点,用于NAS消息的发送等;N3接口为RAN和UPF之间的参考点,用于传输用户面的数据等;N4接口为SMF和UPF之间的参考点,用于传输例如N3连接的隧道标识信息、数据缓存指示信息,以及下行数据通知消息等信息;N6接口为UPF和用户面TSN翻译器之间的参考点,用于传输用户面的数据等。N8是UDM和AMF之间的参考点,N10是UDM和SMF之间的参考点,N11是AMF和SMF之间的参考点。
设备侧桥140与5G系统130中的终端存在通信连接。设备侧桥140包括设备侧TSN翻译器。设备侧桥140还与TSN桥/末端设备150存在通信连接。
根据图1可知,在TSN网络中,5G系统130是传输TSN业务的一个路径,使得5G系统需要支持TSN业务传输,并支持TSN网络的时间同步需求,在需求的时间内将业务进行传输。针对这一点,5G系统130需要提供更低的时延保证和更高的时钟同步精度,以便工业自动化业务在5G网络中传输的时候,机械操作的每一个点的操作和接续精准,均符合时间要求。
在5G系统中,TSN时间是通过系统信息块(System Information Block,SIB)信令中参考时间信息(referenceTimeInfo-r16)字段,该参考时间信息字段包括: 系统帧号(System Frame Number)信息,绝对时间信息等,其指示精度为10ns。
基于TSN业务传输的需求,TSN业务在5G内传输时,需要满足1us的时间同步精度需求。是否能达到1us的时间精度,如图2所示,从空口看,跟网络通知的时间同步精度(accuracy)和UE侧的时间同步精度误差(delta△)相关,终端侧的同步误差由RAN1确定,其误差与很多因素相关,如传播损耗,设备限制等。
本申请实施例提供了一种时延补偿方案,参考如下实施例。
图3示出了本申请一个示例性实施例提供的时延补偿方法的流程图。本实施例以该时延补偿方法应用于终端中来举例说明。可选地,终端是支持TSN网络或TSN业务传输的终端。该方法包括:
步骤302:终端向网络设备上报第一信息,第一信息用于辅助终端或网络设备进行时延补偿。
第一信息也可称为:时延补偿信息、时延参考信息、时延补偿参考信息、时延信息等其它名称,本实施例对此不加以限定。
第一信息包括:时间信息;或,时延补偿量;或,时间信息和时延补偿量。可选地,第一信息包括的信息内容由高层信令配置或通信协议约定。
示例性的参考图4,第一信息包括:时延补偿量。
示意性的参考图5,第一信息包括:时延补偿量和时间信息。
时间信息包括:参考时间点的绝对时间信息和参考时间点所在时隙的时隙索引中的至少一种。示意性的,绝对时间信息包括:年、月、日、时、分、秒、毫秒、微秒等。示意性的,参考时间点可以是一个时延补偿周期的起始时刻,或者,终端上报第一信息的时刻,或者,最近一个时隙的起始时刻。本申请实施例对参考时间点的具体位置不加以限定。
时延补偿量是由终端测量的时延补偿的偏差值,该偏差值的计量单位包括:毫秒、微秒、纳秒、参考时间长度中的任意一种。参考时间长度可以是时间单位Tc或Tc的整数倍。示意性的,时延补偿量是根据参考信号确定的,参考信号包括但不限于:探测参考信号(Sounding Reference Signal,SRS)、定位参考信号(Positioning Reference Signal,PRS)、解调参考信号(Demodulation Reference Signal,DM-RS)。可选地,时延补偿量是根据上行参考信号和下行参考信号的收发时间差来确定的。由终端测量的时延补偿量可称为第一时延补偿量,由网络设备测量的时延补偿量可称为第二时延补偿量。在一个示例中,终端先向网络设备发送上行参考信号,再接收网络设备发送的下行参考信号,时延补偿量是终端接收下行参考信号的时刻减去终端发送上行参考信号的时刻的差值。在另一个示例中,网络设备先向终端发送下行参考信号,终端再向网络设备发送上行参考信号,时延补偿量是终端发送上行参考信号的时刻减去终端接收下行参考信号的时刻。本申请实施例对时延补偿量的具体计算方式不限定。
具体的,如果时间单位是毫秒,时延补偿量为n,则表示时延补偿量为n毫秒。如果时间单位是微秒,时延补偿量为n,则表示时延补偿量为n微秒。如果时间单位是纳秒,时延补偿量为n,则表示时延补偿量为n纳秒。如果时间单位是约定的时间单位Tc,时延补偿量为n,则表示时延补偿量为n*Tc。
可选地,第一信息的上报模式包括:周期上报模式;或,半静态周期上报模式;或,信令触发上报模式。
综上所述,本实施例提供的方法,通过终端向网络设备上报第一信息,第一信息用于辅助终端或网络设备进行时延补偿,通过时延补偿方式获得更高的时钟同步精度,从而能够满足更精准的时间同步需求。
针对周期上报模式,步骤302之前还包括如下步骤401至步骤402,如图6所示:
步骤401:网络设备发送第一高层信令,第一高层信令用于配置周期上报模式的第一上报周期;
网络设备向终端发送第一高层信令。可选地,第一高层信令是无线资源控制(Radio Resource Control,RRC)信令。第一高层信令携带有:第一上报周期,或,第一上报周期和起始上报位置。
第一上报周期是周期上报模式的周期。
步骤402:终端接收第一高层信令。
终端接收网络设备发送的第一高层信令。可选地,终端从第一高层信令中获取第一上报周期,或,第一上报周期和起始上报位置。示例性的,终端从起始上报位置开始,持续按照第一上报周期进行周期性上报。
综上所述,本实施例提供的方法,通过周期性上报方式上报时延补偿信息,能够使得终端和网络设备总是保持较高的时钟同步精度。
针对半静态周期上报模式,步骤302之前还包括如下步骤501至503,如图7所示:
步骤501:网络设备发送第二高层信令,第二高层信令用于配置半静态周期上报模式的第二上报周期;
网络设备向终端发送第二高层信令。可选地,第二高层信令是RRC信令。第二高层信令携带有:第二上报周期。第二上报周期是半静态周期上报模式的周期。
步骤502:终端接收第二高层信令;
终端接收网络设备发送的第二高层信令。终端从第二高层信令中获取第二上报周期。
步骤503:网络设备发送第三高层信令或第一物理层信令,第三高层信令或第一物理层信令用于激活半静态周期上报模式;
网络设备向终端发送第三高层信令或第一物理层信令。可选地,第三高层信令是RRC信令,第一物理层信令是下行控制信息(Downlink Controllnformation,DCI)信令。
步骤504:终端接收第三高层信令或第一物理层信令。
终端接收网络设备发送的第三高层信令或第一物理层信令。在接收到第三高层信令或第一物理层信令的激活指示后,终端持续按照第二上报周期对第一信息进行周期性上报。
在终端持续上报一定时长后,可选还包括如下步骤:网络设备还向终端发送第三高层信令或第一物理层信令,第三高层信令或第一物理层信令用于去激活半静态周期上报模式。终端在接收第三高层信令或第一物理层信令中的去激活指示后,停止上报第一信息。
综上所述,本实施例提供的方法,通过半静态周期性上报方式上报时延补偿信息,能够使得终端和网络设备至少在一段时间内总是保持较高的时钟同步精度。
针对信令触发上报模式,步骤302之前还包括如下步骤601至步骤602,如图8所示:
步骤601:网络设备发送第四高层信令或第二物理层信令,第四高层信令或第二物理层信令携带有触发指示;
网络设备向终端发送第四高层信令或第二物理层信令,可选地,第四高层信令是RRC信令,第二物理层信令是DCI信令。
触发指示是用于触发上报第一信息的指示。示例性的,触发指示用于触发终端对第一信息进行一次上报,或者,触发指示用于触发终端对第一信息进行连续n次上报,n为大于1的整数。
其中,第一信息的上报位置可以由第四高层信令或第二物理层信令配置,也可以由其它高层信令配置;上报次数n可以由第四高层信令或第二物理层信令配置,也可以由其它高层信令配置。
步骤602:终端接收第四高层信令或第二物理层信令。
终端接收网络设备发送的第四高层信令或第二物理层信令。终端从第四高层信令或第二物理层信令中获取触发指示,在接收到触发指示后,上报第一信息。
综上所述,本实施例提供的方法,通过信令触发上报方式上报时延补偿信息,能够减少终端和网络设备之间的上报次数,节省空口资源。
图9示出了本申请另一个示例性实施例提供的时延补偿方法的流程图。本实施例以该时延补偿方法应用于终端和网络设备之间来举例说明。可选地,终端和网络设备支持TSN网络或TSN业务传输。该方法包括:
步骤302:终端向网络设备上报第一信息;
第一信息的信息内容可以参考图3所示实施例。
可选地,第一信息的上报方式可以是周期上报方式,参考图6所示实施例;也可以是半静态周期上报方式,参考图7所示实施例;还可以是信令触发上报模式,参考图8所示实施例。
步骤304-1:网络设备接收终端上报的第一信息;
步骤306-1:网络设备根据第一信息进行时延补偿。
网络设备从第一信息中获取时间信息和时延补偿量中的至少一种。
·在获取到时间信息的情况下,根据时间信息进行时延补偿。
网络设备根据接收到的时间信息和第一信息的接收时间,确定用于实际时 延补偿的时延补偿偏移量。网络设备根据时延补偿偏移量进行时延补偿。
比如,终端上报的时间信息是第一信息的发送时间,网络设备将第一信息的接收时间减去第一信息的发送时间,得到时延补偿偏移量。又比如,终端上报的时间信息是时延补偿周期的起始时刻,第二信息的发送时间与时延补偿周期的起始位置之间的间隔为预定时长,网络设备将时延补偿周期的起始时刻和预定时长相加得到第一信息的接收时间,然后将第一信息的接收时间减去第一信息的发送时间,得到时延补偿偏移量。
·在获取到时延补偿量的情况下,根据时延补偿量进行时延补偿。
示意性的参考图10,假设第一信息中的第一时延补偿量为第一时延补偿量T1,网络设备自行测量的时延补偿量为第二时延补偿量T2,网络设备根据第一时延补偿量T1和第二时延补偿量T2,计算用于实际时延补偿的时延补偿偏移量△=T1-T2=T3+T4,或者,计算时延补偿偏移量△=(T1-T2)/2=(T3+T4)/2。
在先发送上行参考信号再发送下行参考信号的情况下,第一时延补偿量T1=终端接收下行参考信号的时刻-终端发送上行参考信号的时刻;第二时延补偿量T2=网络设备接收上行参考信号的时刻-网络设备发送下行参考信号的时刻。
在先发送下行参考信号再发送上行参考信号的情况下,第一时延补偿量T1=终端发送上行参考信号的时刻-终端接收下行参考信号的时刻。第二时延补偿量T2=网络设备发送下行参考信号的时刻-网络设备接收上行参考信号的时刻。
其中,第一时延补偿量是终端上报的时延补偿量,第二时延补偿量是网络设备测量的时延补偿量。
·在获取到时间信息和时延补偿量的情况下,根据时间信息和时延补偿量进行时延补偿。
网络设备根据接收到的时间信息和第一信息的接收时间,确定时延补偿偏移量1;根据接收到的第一时延补偿量T1和第二时延补偿量T2,计算用于实际时延补偿的时延补偿偏移量2。将时延补偿量偏移量1和时延补偿偏移量2的平均值或加权值作为时延补偿偏移量3,网络设备根据时延补偿偏移量3进行时延补偿。
综上所述,本实施例提供的方法,通过网络设备根据第一信息进行时延补偿,能够减少终端和网络设备之间的信令交互次数,节省空口资源。
图11示出了本申请另一个示例性实施例提供的时延补偿方法的流程图。本实施例以该时延补偿方法应用于终端和网络设备之间来举例说明。该方法包括:
步骤302:终端向网络设备上报第一信息;
第一信息的信息内容可以参考图3所示实施例。
可选地,第一信息的上报方式可以是周期上报方式,参考图6所示实施例;也可以是半静态周期上报方式,参考图7所示实施例;还可以是信令触发上报模式,参考图8所示实施例。
步骤304-2:网络设备接收终端上报的第一信息;
步骤306-2:网络设备根据第一信息向终端发送第二信息;
第二信息也可称为:时延补偿指示、时延参考指示、时延补偿参考指示、 时延指示等其它名称,本实施例对此不加以限定。
第二信息是根据第一信息确定的。可选地,第二信息携带有:是否进行时延补偿的指示,和时延补偿偏移量中的至少一种。比如,第二信息携带有不进行时延补偿的指示;又比如,第二信息携带有时延补偿偏移量;又比如,第二信息携带有进行时延补偿的指示,以及时延补偿偏移量。
可选地,时延补偿偏移量是根据第一信息确定的。时延补偿偏移量的确定方式可以参考步骤306-1的描述。
步骤308:终端根据第二信息进行时延补偿。
在第二信息用于指示进行时延补偿的情况下,终端根据第二信息中的时延补偿偏移量进行时延补偿。
综上所述,本实施例提供的方法,通过终端根据第二信息进行时延补偿,能够节省网络设备的计算资源。
图12示出了本申请一个示例性实施例提供的时延补偿装置的框图。该时延补偿装置可以实现成为终端的全部或一部分。或,该时延补偿装置可以应用在终端中。所述装置包括:
发送模块1220,用于向网络设备上报第一信息,所述第一信息用于辅助所述装置或所述网络设备进行时延补偿。
在本申请的一个可选设计中,所述第一信息包括:时间信息;或,时延补偿量;或,所述时间信息和所述时延补偿量。
在本申请的一个可选设计中,所述时间信息包括如下至少之一:
参考时间点的绝对时间信息;
参考时间点所在时隙的时隙索引。
在本申请的一个可选设计中,所述时延补偿量是根据参考信号确定的;所述参考信号包括:SRS、PRS和DMRS中的至少一种。
在本申请的一个可选设计中,所述时延补偿量是时延补偿的偏差值,所述偏差值的计量单位包括如下之一:
毫秒、微秒、纳秒、参考时间长度。
在本申请的一个可选设计中,所述第一信息的上报模式包括:
周期上报模式;
或,
半静态周期上报模式;
或,
信令触发上报模式。
在本申请的一个可选设计中,所述装置还包括:
接收模块1240,用于接收第一高层信令,所述第一高层信令用于配置所述周期上报模式的第一上报周期。
在本申请的一个可选设计中,所述装置还包括:
接收模块1240,用于接收第二高层信令,所述第二高层信令用于配置所述半静态周期上报模式的第二上报周期;
所述接收模块1240,用于接收第三高层信令或第一物理层信令,所述第三高层信令或所述第一物理层信令用于激活或去激活所述半静态周期上报模式。
在本申请的一个可选设计中,所述装置还包括:
接收模块1240,用于接收第四高层信令或第二物理层信令,所述第四高层信令或所述第二物理层信令携带有触发信令。
在本申请的一个可选设计中,所述装置还包括:
接收模块1240,用于接收第二信息;
处理模块1260,用于根据所述第二信息进行时延补偿。
图13示出了本申请一个示例性实施例提供的时延补偿装置的框图。该时延补偿装置可以实现成为网络设备的全部或一部分。或,该时延补偿装置可以应用在网络设备中。所述装置包括:
接收模块1320,用于接收终端上报的第一信息,所述第一信息用于辅助所述终端或所述网络设备进行时延补偿。
在本申请的一个可选设计中,所述第一信息包括:时间信息;或,时延补偿量;或,所述时间信息和所述时延补偿量。
在本申请的一个可选设计中,所述时间信息包括如下至少之一:绝对时间信息;时隙索引。
在本申请的一个可选设计中,所述时延补偿量是根据参考信号确定的;所述参考信号包括:SRS、PRS和DMRS中的至少一种。
在本申请的一个可选设计中,所述时延补偿量是时延补偿的偏差值,所述偏差值的计量单位包括如下之一:毫秒、微秒、纳秒、参考时间长度。
在本申请的一个可选设计中,所述第一信息的上报模式包括:
周期上报模式;或,半静态周期上报模式;或,信令触发上报模式。
在本申请的一个可选设计中,所述装置还包括:
发送模块1340,用于发送第一高层信令,所述第一高层信令用于配置所述周期上报模式的第一上报周期。
在本申请的一个可选设计中,所述装置还包括:
发送模块1340,用于发送第二高层信令,所述第二高层信令用于配置所述半静态周期上报模式的第二上报周期;
所述发送模块1340,用于发送第三高层信令或第一物理层信令,所述第三高层信令或所述第一物理层信令用于激活或去激活所述半静态周期上报模式。
在本申请的一个可选设计中,所述装置还包括:
发送模块1340,用于发送第四高层信令或第二物理层信令,所述第四高层信令或所述第二物理层信令携带有触发信令。
在本申请的一个可选设计中,所述装置还包括:
处理模块1360,用于根据所述第一信息进行时延补偿。
在本申请的一个可选设计中,所述装置还包括:
发送模块1340,用于根据所述第一信息发送第二信息,所述第二信息用于指示所述终端进行时延补偿。
在本申请的一个可选设计中,所述第二信息携带有如下至少之一:是否进行时延补偿;时延补偿量。
图14示出了本申请一个示例性实施例提供的通信设备(终端或网络设备)的结构示意图,该通信设备包括:处理器101、接收器102、发射器103、存储器104和总线105。
处理器101包括一个或者一个以上处理核心,处理器101通过运行软件程序以及模块,从而执行各种功能应用以及信息处理。
接收器102和发射器103可以实现为一个通信组件,该通信组件可以是一块通信芯片。
存储器104通过总线105与处理器101相连。
存储器104可用于存储至少一个指令,处理器101用于执行该至少一个指令,以实现上述方法实施例中提到的时延补偿方法的各个步骤。
此外,存储器104可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,易失性或非易失性存储设备包括但不限于:磁盘或光盘,电可擦除可编程只读存储器(Electrically-Erasable Programmable Read Only Memory,EEPROM),可擦除可编程只读存储器(Erasable Programmable Read Only Memory,EPROM),静态随时存取存储器(Static Random Access Memory,SRAM),只读存储器(Read-Only Memory,ROM),磁存储器,快闪存储器,可编程只读存储器(Programmable Read-Only Memory,PROM)。
在示例性实施例中,还提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有至少一条指令、至少一段程序、代码集或指令集,所述至少一条指令、所述至少一段程序、所述代码集或指令集由所述处理器加载并执行以实现上述各个方法实施例提供的由终端或网络设备执行的时延补偿方法。
在示例性实施例中,还提供了一种计算机程序产品或计算机程序,该计算机程序产品或计算机程序包括计算机指令,该计算机指令存储在计算机可读存储介质中,通信设备的处理器从计算机可读存储介质读取该计算机指令,处理器执行该计算机指令,使得该通信设备执行上述方面所述的时延补偿方法。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
以上所述仅为本申请的可选实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (45)

  1. 一种时延补偿方法,其特征在于,应用于终端中,所述方法包括:
    向网络设备上报第一信息,所述第一信息用于辅助所述终端或所述网络设备进行时延补偿;
    其中,所述第一信息包括:时间信息;或,时延补偿量;或,所述时间信息和所述时延补偿量。
  2. 根据权利要求1所述的方法,其特征在于,所述时间信息包括如下至少之一:
    参考时间点的绝对时间信息;
    所述参考时间点所在时隙的时隙索引。
  3. 根据权利要求1所述的方法,其特征在于,所述时延补偿量是根据参考信号确定的;
    所述参考信号包括:探测参考信号SRS、定位参考信号PRS和解调参考信号DMRS中的至少一种。
  4. 根据权利要求1所述的方法,其特征在于,所述时延补偿量为时延补偿的偏差值,所述偏差值的计量单位包括如下之一:
    毫秒、微秒、纳秒、参考时间长度。
  5. 根据权利要求1至4任一所述的方法,其特征在于,所述第一信息的上报模式包括:
    周期上报模式;
    或,
    半静态周期上报模式;
    或,
    信令触发上报模式。
  6. 根据权利要求5所述的方法,其特征在于,所述上报模式为所述周期上报模式,所述方法还包括:
    接收第一高层信令,所述第一高层信令用于配置所述周期上报模式的第一上报周期。
  7. 根据权利要求5所述的方法,其特征在于,所述上报模式为所述半静态周期上报模式,所述方法还包括:
    接收第二高层信令,所述第二高层信令用于配置所述半静态周期上报模式的第二上报周期;
    接收第三高层信令或第一物理层信令,所述第三高层信令或所述第一物理层信令用于激活或去激活所述半静态周期上报模式。
  8. 根据权利要求5所述的方法,其特征在于,所述上报模式为所述信令触发上报模式,所述方法还包括:
    接收第四高层信令或第二物理层信令,所述第四高层信令或所述第二物理层信令携带有触发信令。
  9. 根据权利要求1至4任一所述的方法,其特征在于,所述方法还包括:
    接收第二信息,所述第二信息是根据所述第一信息确定的;
    根据所述第二信息进行时延补偿。
  10. 根据权利要求8所述的方法,其特征在于,所述第二信息携带有如下至少之一:
    是否进行时延补偿的指示;
    时延补偿偏移量,所述时延补偿偏移量是根据所述第一信息确定的。
  11. 一种时延补偿方法,其特征在于,应用于网络设备中,所述方法包括:
    接收终端上报的第一信息,所述第一信息用于辅助所述终端或所述网络设备进行时延补偿;
    其中,所述第一信息包括:时间信息;或,时延补偿量;或,所述时间信息和所述时延补偿量。
  12. 根据权利要求11所述的方法,其特征在于,所述时间信息包括如下至少之一:
    参考时间点的绝对时间信息;
    所述参考时间点所在时隙的时隙索引。
  13. 根据权利要求11所述的方法,其特征在于,所述时延补偿量是根据参考信号确定的;
    所述参考信号包括:探测参考信号SRS、定位参考信号PRS和解调参考信号DMRS中的至少一种。
  14. 根据权利要求11所述的方法,其特征在于,所述时延补偿量是需进行时延补偿的偏差值,所述偏差值的计量单位包括如下之一:
    毫秒、微秒、纳秒、参考时间长度。
  15. 根据权利要求11至14任一所述的方法,其特征在于,所述第一信息的上报模式包括:
    周期上报模式;
    或,
    半静态周期上报模式;
    或,
    信令触发上报模式。
  16. 根据权利要求15所述的方法,其特征在于,所述方法还包括:
    发送第一高层信令,所述第一高层信令用于配置所述周期上报模式的第一上报周期。
  17. 根据权利要求15所述的方法,其特征在于,所述方法还包括:
    发送第二高层信令,所述第二高层信令用于配置所述半静态周期上报模式的第二上报周期;
    发送第三高层信令或第一物理层信令,所述第三高层信令或所述第一物理层信令用于激活或去激活所述半静态周期上报模式。
  18. 根据权利要求15所述的方法,其特征在于,所述方法还包括:
    发送第四高层信令或第二物理层信令,所述第四高层信令或所述第二物理层信令携带有触发信令。
  19. 根据权利要求11至14任一所述的方法,其特征在于,所述方法还包括:
    根据所述第一信息进行时延补偿。
  20. 根据权利要求11至14任一所述的方法,其特征在于,所述方法还包括:
    根据所述第一信息发送第二信息,所述第二信息用于指示所述终端进行时延补偿。
  21. 根据权利要求20所述的方法,其特征在于,所述第二信息携带有如下至少之一:
    是否进行时延补偿的指示;
    时延补偿偏移量,所述时延补偿偏移量是根据所述第一信息确定的。
  22. 一种时延补偿装置,其特征在于,所述装置包括:
    发送模块,用于向网络设备上报第一信息,所述第一信息用于辅助所述装置或所述网络设备进行时延补偿;
    其中,所述第一信息包括:时间信息;或,时延补偿量;或,所述时间信息和所述时延补偿量。
  23. 根据权利要求22所述的装置,其特征在于,所述时间信息包括如下至少之一:
    参考时间点的绝对时间信息;
    所述参考时间点所在时隙的时隙索引。
  24. 根据权利要求22所述的装置,其特征在于,所述时延补偿量是根据参考信号确定的;
    所述参考信号包括:探测参考信号SRS、定位参考信号PRS和解调参考信号DMRS中的至少一种。
  25. 根据权利要求22所述的装置,其特征在于,所述时延补偿量为时延补偿的偏差值,所述偏差值的计量单位包括如下之一:
    毫秒、微秒、纳秒、参考时间长度。
  26. 根据权利要求22至25任一所述的装置,其特征在于,所述第一信息的上报模式包括:
    周期上报模式;
    或,
    半静态周期上报模式;
    或,
    信令触发上报模式。
  27. 根据权利要求26所述的装置,其特征在于,所述上报模式为所述周期上报模式,所述装置还包括:
    接收模块,用于接收第一高层信令,所述第一高层信令用于配置所述周期上报模式的第一上报周期。
  28. 根据权利要求26所述的装置,其特征在于,所述上报模式为所述半静态周期上报模式,所述装置还包括:
    接收模块,用于接收第二高层信令,所述第二高层信令用于配置所述半静态周期上报模式的第二上报周期;
    所述接收模块,用于接收第三高层信令或第一物理层信令,所述第三高层信令或所述第一物理层信令用于激活或去激活所述半静态周期上报模式。
  29. 根据权利要求26所述的装置,其特征在于,所述上报模式为所述信令触发上报模式,所述装置还包括:
    接收模块,用于接收第四高层信令或第二物理层信令,所述第四高层信令或所述第二物理层信令携带有触发信令。
  30. 根据权利要求22至25任一所述的装置,其特征在于,所述装置还包括:
    接收模块,用于接收第二信息,所述第二信息是根据所述第一信息确定的;
    处理模块,用于根据所述第二信息进行时延补偿。
  31. 根据权利要求30所述的装置,其特征在于,所述第二信息携带有如下至少之一:
    是否进行时延补偿的指示;
    时延补偿偏移量,所述时延补偿偏移量是根据所述第一信息确定的。
  32. 一种时延补偿装置,其特征在于,所述装置包括:
    接收模块,用于接收终端上报的第一信息,所述第一信息用于辅助所述终端或所述装置进行时延补偿;
    其中,所述第一信息包括:时间信息;或,时延补偿量;或,所述时间信息和所述时延补偿量。
  33. 根据权利要求32所述的装置,其特征在于,所述时间信息包括如下至少之一:
    参考时间点的绝对时间信息;
    所述参考时间点所在时隙的时隙索引。
  34. 根据权利要求32所述的装置,其特征在于,所述时延补偿量是根据参考信号确定的;
    所述参考信号包括:探测参考信号SRS、定位参考信号PRS和解调参考信号DMRS中的至少一种。
  35. 根据权利要求32所述的装置,其特征在于,所述时延补偿量是需进行时延补偿的偏差值,所述偏差值的计量单位包括如下之一:
    毫秒、微秒、纳秒、参考时间长度。
  36. 根据权利要求32至35任一所述的装置,其特征在于,所述第一信息的上报模式包括:
    周期上报模式;
    或,
    半静态周期上报模式;
    或,
    信令触发上报模式。
  37. 根据权利要求36所述的装置,其特征在于,所述装置还包括:
    发送模块,用于发送第一高层信令,所述第一高层信令用于配置所述周期上报模式的第一上报周期。
  38. 根据权利要求36所述的装置,其特征在于,所述装置还包括:
    发送模块,用于发送第二高层信令,所述第二高层信令用于配置所述半静态周期上报模式的第二上报周期;
    所述发送模块,用于发送第三高层信令或第一物理层信令,所述第三高层信令或所述第一物理层信令用于激活或去激活所述半静态周期上报模式。
  39. 根据权利要求36所述的装置,其特征在于,所述装置还包括:
    发送模块,用于发送第四高层信令或第二物理层信令,所述第四高层信令或所述第二物理层信令携带有触发信令。
  40. 根据权利要求32至35任一所述的装置,其特征在于,所述装置还包括:
    处理模块,用于根据所述第一信息进行时延补偿。
  41. 根据权利要求32至35任一所述的装置,其特征在于,所述装置还包括:
    发送模块,用于根据所述第一信息发送第二信息,所述第二信息用于指示所述终端进行时延补偿。
  42. 根据权利要求41所述的装置,其特征在于,所述第二信息携带有如下至少之一:
    是否进行时延补偿的指示;
    时延补偿偏移量,所述时延补偿偏移量是根据所述第一信息确定的。
  43. 一种终端,其特征在于,所述终端包括:
    处理器;
    与所述处理器相连的收发器;
    用于存储所述处理器的可执行指令的存储器;
    其中,所述处理器被配置为加载并执行所述可执行指令以实现如权利要求1至10中任一所述的时延补偿方法。
  44. 一种网络设备,其特征在于,所述网络设备包括:
    处理器;
    与所述处理器相连的收发器;
    用于存储所述处理器的可执行指令的存储器;
    其中,所述处理器被配置为加载并执行所述可执行指令以实现如权利要求11至21中任一所述的时延补偿方法。
  45. 一种计算机可读存储介质,其特征在于,所述可读存储介质中存储有可执行指令,所述可执行指令由所述处理器加载并执行以实现如权利要求1至21中任一所述的时延补偿方法。
PCT/CN2020/119618 2020-09-30 2020-09-30 时延补偿方法、装置、设备及介质 WO2022067744A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2020/119618 WO2022067744A1 (zh) 2020-09-30 2020-09-30 时延补偿方法、装置、设备及介质
EP20955767.7A EP4221032A4 (en) 2020-09-30 2020-09-30 DELAY COMPENSATION METHOD AND APPARATUS, APPARATUS AND MEDIUM
CN202080102416.8A CN115836499A (zh) 2020-09-30 2020-09-30 时延补偿方法、装置、设备及介质
US18/188,470 US20230224753A1 (en) 2020-09-30 2023-03-23 Delay compensation method and apparatus, device, and medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/119618 WO2022067744A1 (zh) 2020-09-30 2020-09-30 时延补偿方法、装置、设备及介质

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/188,470 Continuation US20230224753A1 (en) 2020-09-30 2023-03-23 Delay compensation method and apparatus, device, and medium

Publications (1)

Publication Number Publication Date
WO2022067744A1 true WO2022067744A1 (zh) 2022-04-07

Family

ID=80951148

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/119618 WO2022067744A1 (zh) 2020-09-30 2020-09-30 时延补偿方法、装置、设备及介质

Country Status (4)

Country Link
US (1) US20230224753A1 (zh)
EP (1) EP4221032A4 (zh)
CN (1) CN115836499A (zh)
WO (1) WO2022067744A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103906222A (zh) * 2012-12-27 2014-07-02 中兴通讯股份有限公司 一种上行链路数据同步方法、系统及设备
CN106454726A (zh) * 2016-09-29 2017-02-22 京信通信技术(广州)有限公司 一种用于定位过程中减少链路时延误差的方法和装置
CN106685623A (zh) * 2016-11-28 2017-05-17 上海华为技术有限公司 一种时延补偿方法、用户设备及基站
US20180083694A1 (en) * 2016-09-21 2018-03-22 Qualcomm Incorporated Dynamic reverse link retransmission timelines in satellite communication systems
US20180167236A1 (en) * 2015-08-12 2018-06-14 Huawei Technologies Co., Ltd. Channel estimation method, base station, user equipment, and system
CN111294131A (zh) * 2018-12-07 2020-06-16 华为技术有限公司 通信方法及装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009157823A1 (en) * 2008-06-24 2009-12-30 Telefonaktiebolaget L M Ericsson (Publ) Method and arrangement in a communication system
US11595970B2 (en) * 2017-03-24 2023-02-28 Qualcomm Incorporated UE-specific slot structure configuration

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103906222A (zh) * 2012-12-27 2014-07-02 中兴通讯股份有限公司 一种上行链路数据同步方法、系统及设备
US20180167236A1 (en) * 2015-08-12 2018-06-14 Huawei Technologies Co., Ltd. Channel estimation method, base station, user equipment, and system
US20180083694A1 (en) * 2016-09-21 2018-03-22 Qualcomm Incorporated Dynamic reverse link retransmission timelines in satellite communication systems
CN106454726A (zh) * 2016-09-29 2017-02-22 京信通信技术(广州)有限公司 一种用于定位过程中减少链路时延误差的方法和装置
CN106685623A (zh) * 2016-11-28 2017-05-17 上海华为技术有限公司 一种时延补偿方法、用户设备及基站
CN111294131A (zh) * 2018-12-07 2020-06-16 华为技术有限公司 通信方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4221032A4 *

Also Published As

Publication number Publication date
CN115836499A (zh) 2023-03-21
US20230224753A1 (en) 2023-07-13
EP4221032A4 (en) 2023-11-22
EP4221032A1 (en) 2023-08-02

Similar Documents

Publication Publication Date Title
JP4706840B2 (ja) 送信時刻差測定方法およびそのシステム
WO2021249410A1 (zh) 定位方法、中继设备、物联网设备和网络设备
EP3622638A1 (en) Methods and devices for synchronization in communication networks
CN112311628B (zh) 网络测速方法、系统、网络设备和存储介质
CN111163513B (zh) 基站间同步误差测量、上报、计算方法及网络节点
WO2021056295A1 (zh) 时间同步方法及相关设备
WO2022067744A1 (zh) 时延补偿方法、装置、设备及介质
CN116055023A (zh) 一种数据传输方法及装置
CN114270913A (zh) 一种时间敏感网络时间同步方法及装置
US20230209387A1 (en) Transmission delay compensation method and apparatus, device, and storage medium
WO2018119792A1 (zh) 天线校准方法、装置及基站
CN113556669A (zh) 处理定位信息的方法、终端设备和网络设备
AU2021272413B2 (en) Channel quality indicator reporting method and integrated access backhaul node
CN113439397A (zh) 一种时间同步方法、装置及系统
KR20230048055A (ko) 정보 전송 방법 및 관련 디바이스
EP3952494B1 (en) Method and device for determining positioning measurement value
WO2022252231A1 (zh) 用于时间同步的方法、终端设备和网络设备
WO2019205925A1 (zh) 通信方法及通信装置
CN111867087A (zh) 调整时域资源边界的方法和通信装置
WO2024082266A1 (zh) 定位完整性的传输方法、装置、设备及介质
US20240057006A1 (en) Method for performing pdc and computer device
EP4412126A1 (en) Information configuration method and apparatus, device and storage medium
CN114125921B (zh) 时延测量方法和系统、锚点upf实体
WO2024031366A1 (zh) 定位完整性的确定方法、装置、设备及介质
US20230309035A1 (en) Synchronization method and apparatus for time sensitive networking in a mobile communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20955767

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020955767

Country of ref document: EP

Effective date: 20230427