WO2022067740A1 - 信道传输方法及装置、存储介质 - Google Patents

信道传输方法及装置、存储介质 Download PDF

Info

Publication number
WO2022067740A1
WO2022067740A1 PCT/CN2020/119602 CN2020119602W WO2022067740A1 WO 2022067740 A1 WO2022067740 A1 WO 2022067740A1 CN 2020119602 W CN2020119602 W CN 2020119602W WO 2022067740 A1 WO2022067740 A1 WO 2022067740A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
sequence
actual
occasions
transmission occasions
Prior art date
Application number
PCT/CN2020/119602
Other languages
English (en)
French (fr)
Inventor
刘洋
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to CN202080002518.2A priority Critical patent/CN115606277A/zh
Priority to BR112023005609A priority patent/BR112023005609A2/pt
Priority to US18/044,490 priority patent/US20230345469A1/en
Priority to EP20955763.6A priority patent/EP4224958A4/en
Priority to JP2023518879A priority patent/JP7496475B2/ja
Priority to PCT/CN2020/119602 priority patent/WO2022067740A1/zh
Priority to KR1020237011891A priority patent/KR20230062639A/ko
Publication of WO2022067740A1 publication Critical patent/WO2022067740A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/232Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the physical layer, e.g. DCI signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • H04B7/06952Selecting one or more beams from a plurality of beams, e.g. beam training, management or sweeping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • H04L1/1819Hybrid protocols; Hybrid automatic repeat request [HARQ] with retransmission of additional or different redundancy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1864ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1896ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • H04L5/0035Resource allocation in a cooperative multipoint environment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/231Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the layers above the physical layer, e.g. RRC or MAC-CE signalling

Definitions

  • the present disclosure relates to the field of communications, and in particular, to a channel transmission method and device, and a storage medium.
  • each TRP Transmission and Receiving Points, sending and receiving points
  • the antenna array of each TRP can be divided into several relatively independent antenna panels, so the shape and number of ports of the entire array can be flexibly adjusted according to deployment scenarios and business needs.
  • the antenna panels or TRPs can also be connected by optical fibers for more flexible distributed deployment.
  • the cooperation between multiple TRPs or PANELs (panels) can also be used to transmit/receive multiple beams from multiple angles, thereby reducing the blocking effect. adverse effects.
  • the transmission enhancement is performed on PDSCH (PhysicalDownlinkSharedChannel, physical downlink data channel). Since data transmission includes scheduling feedback of uplink and downlink channels, in the research of URLLC (Ultra-relaible and Low Latency Communication), only the enhancement of downlink data channels cannot guarantee service performance.
  • PDSCH PhysicalDownlinkSharedChannel, physical downlink data channel
  • the downlink control channel PDCCH PhysicalDownlinkControl Channel, Physical Downlink Control Channel
  • the uplink control channel PUCCH PhysicalUplinkControl Channel, Physical Uplink Control Channel
  • data channel PUSCH PhysicalUplinkSharedChannel
  • the enhancement can be performed by repeatedly transmitting the PUSCH.
  • the current PUSCH enhancement methods are all for a single TRP and cannot be applied in a multi-TRP scenario.
  • embodiments of the present disclosure provide a channel transmission method and device, and a storage medium.
  • a channel transmission method including:
  • the data blocks of the PUSCH are repeatedly sent based on the actual RV sequences corresponding to the corresponding target transmission occasions, respectively.
  • the determining of the mapping relationship between at least one basic RV sequence and multiple alternative transmission occasions for sending the physical uplink data channel PUSCH includes:
  • the mapping relationship is determined according to predefined settings.
  • the determining of the mapping relationship between at least one basic RV sequence and multiple alternative transmission occasions for sending the physical uplink data channel PUSCH includes:
  • the beam indication information is a beam used for uplink data channel PUSCH transmission Related Information
  • the mapping relationship is determined according to the basic RV sequence corresponding to the different beam indication information and the first corresponding relationship.
  • the determining, according to the at least one basic RV sequence, an actual RV sequence corresponding to each of the multiple candidate transmission occasions includes:
  • each group of candidate transmission occasions corresponds to the same beam indication information
  • a plurality of actual RV sequences corresponding to each group of candidate transmission opportunities are determined.
  • the determining a basic RV sequence corresponding to each group of candidate transmission occasions includes:
  • a basic RV sequence corresponding to each group of candidate transmission occasions is determined.
  • the determining an initial value or a sequence offset value of the actual RV sequence corresponding to each group of candidate transmission occasions includes:
  • the initial value or the sequence offset value of the actual RV sequence corresponding to each group of candidate transmission occasions is determined according to the specified information field included in the downlink control instruction DCI sent by the base station.
  • the specified information field is used to independently indicate the initial value of the actual RV sequence corresponding to each group of candidate transmission occasions
  • the specified information field is used to indicate the initial value of the actual RV sequence corresponding to each group of candidate transmission occasions or the corresponding codepoint RV codepoint of the associated information associated with the sequence offset value;
  • the designated information field is used to indicate the initial value of the first RV sequence in the actual RV sequence relative to the first beam indication information in each group of candidate transmission occasions; wherein, the first beam indication information corresponds to The RV sequence is the first RV sequence.
  • the specified information field is used to indicate a corresponding codepoint RV codepoint of associated information associated with the initial values of the plurality of actual RV sequences or the sequence offset values;
  • the determining the initial value of the actual RV sequence or the sequence offset value corresponding to each group of candidate transmission occasions includes:
  • the initial value of the actual RV sequence corresponding to the each group of candidate transmission occasions corresponding to the association information indicated by the specified information field;
  • the predetermined third correspondence between the RV codepoint and the sequence offset value determine all the actual RV sequences corresponding to the each group of candidate transmission occasions corresponding to the association information indicated by the specified information field. the sequence offset value.
  • the method also includes any of the following:
  • the second correspondence and/or the third correspondence is determined according to predefined settings.
  • the specified information field is used to indicate the initial value of the first RV sequence in the actual RV sequence relative to the first beam indication information in the each group of candidate transmission occasions;
  • the determining the initial value of the actual RV sequence corresponding to each group of candidate transmission occasions includes:
  • the initial values of the other RV sequences are respectively determined.
  • the method further includes:
  • the offset value is determined according to predefined settings.
  • the multiple candidate transmission opportunities include K1 nominal transmission opportunities; wherein, the K1 nominal transmission opportunities are respectively located in different time slots, and the K1 nominal transmission opportunities start in each time slot.
  • the starting symbol position is the same, and the number of continuous symbols in each time slot is the same;
  • the multiple target transmission opportunities include multiple second transmission opportunities; wherein, the first transmission opportunity is a transmission opportunity that cannot perform uplink PUSCH transmission, and the The plurality of second transmission occasions are transmission occasions in which uplink PUSCH transmission can be performed among the K1 nominal transmission occasions.
  • the multiple candidate transmission opportunities include K1 ' actual transmission opportunities; wherein, the K1 ' actual transmission opportunities are transmission opportunities that can perform uplink PUSCH transmission among the K1 nominal transmission opportunities, and the K1 The nominal transmission opportunities are respectively located in different time slots, the K1 nominal transmission opportunities have the same starting symbol position in each time slot, and the same number of continuous symbols in each time slot;
  • the plurality of target transmission occasions include the K1' actual transmission occasions.
  • the multiple candidate transmission opportunities include K2' actual transmission opportunities; wherein the K2' actual transmission opportunities are multiple actual transmission opportunities obtained by dividing the K2 nominal transmission opportunities, and the K2' actual transmission opportunities are multiple actual transmission opportunities obtained by dividing the K2 nominal transmission opportunities.
  • the K2 nominal transmission opportunities are the transmission opportunities that are continuously allocated back-to-back;
  • the multiple target transmission opportunities include the multiple second actual transmission opportunities; wherein, the multiple second actual transmission opportunities are multiple transmission opportunities that can perform uplink PUSCH transmission among the K2' actual transmission opportunities.
  • the multiple candidate transmission occasions include K2" actual transmission occasions; wherein, the K2" actual transmission occasions are among the K2' actual transmission occasions, transmission occasions that can perform uplink PUSCH transmission; the K2' actual transmission opportunities are actual transmission opportunities obtained by dividing K2 nominal transmission opportunities; the K2 nominal transmission opportunities are continuous transmission opportunities allocated back-to-back;
  • the plurality of target transmission occasions include the K2" actual transmission occasions.
  • the determining of the mapping relationship between at least one basic RV sequence and multiple alternative transmission occasions for sending the physical uplink data channel PUSCH includes:
  • the mapping relationship between the at least one base RV sequence and all candidate transmission occasions for sending the PUSCH is determined.
  • all the candidate transmission occasions include all nominal transmission occasions; and the multiple target transmission occasions include all actual transmission occasions that can perform uplink PUSCH transmission among all the nominal transmission occasions.
  • all the alternative transmission occasions include all actual transmission occasions that can perform uplink PUSCH transmission;
  • the plurality of target transmission occasions include all of the actual transmission occasions.
  • a channel transmission apparatus including:
  • a first determining module configured to determine a mapping relationship between at least one basic RV sequence and multiple candidate transmission occasions for sending the physical uplink data channel PUSCH;
  • a second determining module configured to determine, according to the at least one basic RV sequence, an actual RV sequence corresponding to each of the multiple candidate transmission occasions;
  • the transmission module is configured to repeatedly transmit the data blocks of the PUSCH on multiple target transmission occasions based on the actual RV sequences corresponding to the corresponding target transmission occasions.
  • a computer-readable storage medium where the storage medium stores a computer program, and the computer program is configured to execute the channel transmission method according to any one of the above-mentioned first aspect.
  • a channel transmission apparatus including:
  • memory for storing processor-executable instructions
  • the processor is configured to execute the channel transmission method described in any one of the first aspect above.
  • the terminal may determine a mapping relationship between at least one basic RV sequence and multiple transmission opportunities for transmission candidates for sending the PUSCH.
  • the actual RV sequence corresponding to each candidate transmission opportunity is determined according to at least one base station RV sequence, so that the PUSCH is repeatedly sent on multiple target transmission opportunities based on the actual RV sequence corresponding to the corresponding target transmission opportunity. data block.
  • the present disclosure achieves the purpose of supporting multi-TRP transmission by applying the allocation of RV parameters while repeatedly transmitting the PUSCH, thereby improving the reliability of data transmission.
  • FIGS. 1A to 1D are schematic diagrams illustrating a manner of repeated PUSCH transmission according to an exemplary embodiment.
  • Fig. 2 is a flow chart of a channel transmission method according to an exemplary embodiment.
  • Fig. 3 is a flowchart showing another channel transmission method according to an exemplary embodiment.
  • Fig. 4 is a flowchart showing another channel transmission method according to an exemplary embodiment.
  • Fig. 5 is a block diagram of a channel transmission apparatus according to an exemplary embodiment.
  • FIG. 6 is a schematic structural diagram of a channel transmission apparatus according to an exemplary embodiment of the present disclosure.
  • first, second, third, etc. may be used in this disclosure to describe various pieces of information, such information should not be limited by these terms. These terms are only used to distinguish the same type of information from each other.
  • first information may also be referred to as the second information, and similarly, the second information may also be referred to as the first information, without departing from the scope of the present disclosure.
  • word "if” as used herein can be interpreted as "at the time of” or "when” or "in response to determining.”
  • the first enhancement method is the repetition type A transmission method adopted in R15.
  • the repetition type A transmission mode is for the slot level, Slot Aggregation (slot aggregation) PUSCH transmission mode.
  • a PUSCH is repeatedly transmitted on consecutive K transmission occasions (nominal repetitions), and the value of K in FIG. 1A is 2. Transmission starts from the S-th symbol of the initial time slot, and each transmission opportunity lasts for L symbols, and the value of L in FIG. 1A is 4.
  • (S+L) does not exceed the slot boundary, eg a slot includes 14 time symbols, then (S+L) does not exceed 14.
  • the repetition type A transmission mode is not suitable for services with low delay requirements and high reliability requirements.
  • the second enhancement method is the repetition type B transmission method adopted in R16.
  • R16 proposes a PUSCH repeated transmission mode with mini-slot (mini timeslot) as the unit, that is, the repeated type B transmission mode, which allows the repeated transmission of PUSCH across time slots to further reduce the delay.
  • mini-slot mini timeslot
  • a PUSCH starts transmission on the S-th symbol of the initial time slot, and continuously sends K transmission opportunities, each of which occupies L symbols continuously, as shown in FIG. 1B .
  • (S+L) can cross the time slot boundary.
  • the transmission opportunity crosses the time slot boundary, the transmission opportunity is re-divided, corresponding to the actual transmission opportunity (actural repetition) K' .
  • Figure 1C and Figure 1D For example, as shown in Figure 1C and Figure 1D.
  • the third transmission opportunity is divided into two actual transmission opportunities by the time slot boundary because it crosses the time slot boundary. That is, in FIG. 1C , the transmission opportunity K of the PUSCH is 4, but the actual transmission opportunity K' is 5.
  • FIG. 1D there is only one transmission opportunity. Since this transmission opportunity crosses the time slot boundary, it is divided into two actual transmission opportunities by the time slot boundary. That is, in FIG. 1D , the transmission opportunity K of PUSCH is 1, but the actual The transmission opportunity K' is 2.
  • the base station can use SFI (Slot Format Indicator, slot format indicator) to indicate that the semi-static Flexible time symbol is a dynamic uplink symbol or a dynamic downlink symbol, so the semi-static Flexible time symbol may be an available symbol for PUSCH (ie Flexible The time symbol is an uplink signal and can be used for PUSCH transmission), or it may be an unavailable symbol (that is, the Flexible time symbol is a downlink signal and cannot be used for PUSCH transmission). When there are unavailable time symbols, the unavailable time symbols need to be dropped (discarded), and the PUSCH is transmitted on the remaining available symbols. That is, for the entire transmission, the time slot L ⁇ K can represent the time window size of PUSCH transmission. If a certain time symbol cannot be used for uplink transmission in this time window, then the time symbol cannot transmit PUSCH, and it is necessary to The transmission opportunity is dropped, and the PUSCH is transmitted on other transmission opportunities.
  • SFI Slot Format Indicator, slot format indicator
  • repetition type A transmission mode and repetition type B transmission mode are applicable to a single RTP scenario, and do not support the terminal to repeatedly transmit PUSCH using the multi-TRP technology to improve data transmission reliability.
  • RV Redundancy Version, redundancy version
  • the RV sequence is directly mapped on all transmission occasions
  • the base station sends DCI (Downlink Control Information, downlink control information), and indicates the initial value of the RV sequence through the RV information field of the DCI.
  • DCI Downlink Control Information
  • the RV information field in the DCI is 2 bits, and the bit value is 10, which corresponds to the RV sequences 2, 3, 1, and 0 whose initial value is 2 in Table 2.
  • the RV sequence is directly mapped on all actual transmission opportunities, and the base station also sends DCI (Downlink Control Information, downlink control information), and indicates the initial value of the RV sequence through the RV information field of the DCI.
  • DCI Downlink Control Information, downlink control information
  • the present disclosure provides a channel transmission scheme, which can support multi-TRP transmission by applying RV parameter allocation when PUSCH is repeatedly transmitted.
  • FIG. 2 is a flowchart of a channel transmission method according to an embodiment, and the method may include the following steps:
  • step 201 a mapping relationship between at least one basic RV sequence and multiple candidate transmission occasions for transmitting the physical uplink data channel PUSCH is determined.
  • step 202 according to the at least one basic RV sequence, an actual RV sequence corresponding to each of the multiple candidate transmission occasions is determined.
  • the actual RV sequence refers to an RV sequence used for transmitting PUSCH obtained by performing cyclic mapping according to the basic RV sequence corresponding to the corresponding candidate transmission opportunity.
  • the basic RV sequence is 0, 2, 3, and 1, and the actual RV sequence may be the RV sequence obtained by cyclic mapping of any sequence in Table 2.
  • the corresponding RV sequence value may be 2, 3, 1, 0 or 1, 0, 2, 3.
  • step 203 on multiple target transmission occasions, the data blocks of the PUSCH are repeatedly sent based on the actual RV sequences corresponding to the corresponding target transmission occasions.
  • the terminal may determine the mapping relationship between at least one basic RV sequence and multiple candidate transmission occasions for sending the PUSCH.
  • the actual RV sequence corresponding to each candidate transmission opportunity is determined according to at least one base station RV sequence, so that the PUSCH is repeatedly sent on multiple target transmission opportunities based on the actual RV sequence corresponding to the corresponding target transmission opportunity. data block.
  • the present disclosure achieves the purpose of supporting multi-TRP transmission by applying the allocation of RV parameters while repeatedly transmitting the PUSCH, thereby improving the reliability of data transmission.
  • the mapping relationship when the mapping relationship is determined, can be determined according to the first signaling sent by the base station, or the mapping relationship can be determined according to the settings predefined in the protocol.
  • the first signaling may be high-level RRC (Radio Resource Control, radio resource control) signaling, or MAC (Media Access Control Address, media range control address) signaling, which is not limited in the present disclosure.
  • the mapping relationship can be configured by the base station, or the mapping relationship can be pre-defined in the protocol, which is easy to implement and has high availability.
  • mapping relationship may be determined in any one of the following manners.
  • the mapping relationship is determined according to the first correspondence between different beam indication information received by different transmission and reception points TRP of the corresponding base station and the plurality of candidate transmission occasions.
  • FIG. 3 is a flowchart of another channel transmission method according to the embodiment shown in FIG. 2.
  • Step 201 may include:
  • step 201-11 a first correspondence between the different beam indication information received by the different transmission and reception points TRP of the corresponding base station and the multiple candidate transmission occasions is determined.
  • the beam indication information is beam-related information used to transmit the uplink data channel PUSCH.
  • the beam indication information may include spatial Relation Info (spatial relationship information), or include UL (Up Link, uplink) TCI (Transmission Configuration Indicator, transmission configuration indicator) state (state) information.
  • step 201-12 the mapping relationship is determined according to the basic RV sequence corresponding to the different beam indication information and the first corresponding relationship.
  • different beam indication information may correspond to the same basic RV sequence or different basic RV sequences
  • the terminal may determine at least one basic RV according to the basic RV sequence corresponding to different beam indication information and the above-mentioned first correspondence A mapping relationship between sequences and multiple alternative transmission occasions for sending the physical uplink data channel PUSCH.
  • the mapping relationship can be determined according to the first correspondence between the above-mentioned different beam indication information and multiple candidate transmission occasions, which is simple to implement and has high usability.
  • FIG. 4 is a flowchart of another channel transmission method according to the embodiment shown in FIG. 3 , and step 202 may include:
  • step 202-1 the multiple candidate transmission occasions are divided into multiple groups.
  • each group of candidate transmission occasions corresponds to the same beam indication information.
  • the multiple candidate transmission occasions include two groups of candidate transmission occasions, the first group of candidate transmission occasions corresponds to the beam indication information TCI-1, and the second group of candidate transmission occasions corresponds to the beam indication information TCI-2.
  • step 202-2 a basic RV sequence corresponding to each group of candidate transmission occasions is determined.
  • each group of candidate transmission occasions may correspond to one basic RV sequence, and multiple groups of candidate transmission occasions may correspond to the same or different basic RV sequences.
  • the base station may notify the terminal of the basic RV sequence corresponding to each group of candidate transmission occasions through second signaling, or the basic RV sequence corresponding to each group of candidate transmission occasions may be predefined in the protocol.
  • the above two sets of candidate transmission occasions may correspond to the same set of basic RV sequences, where the sequence is ⁇ 0, 2, 3, 1 ⁇ .
  • the above-mentioned two groups of candidate transmission opportunities may correspond to different two groups of basic RV sequences, for example, the first group of candidate transmission opportunities corresponds to basic RV sequences 0, 2, 3, and 1, and the second group of candidate transmission opportunities corresponds to basic RV sequence 0 , 3, 0, 3, the two base RV sequences are different.
  • step 202-3 an initial value or a sequence offset value of the actual RV sequence corresponding to each group of candidate transmission occasions is determined.
  • the initial value of the actual RV sequence corresponding to each group of candidate transmission occasions may be directly determined, and the initial value may be a value in the basic RV sequence, indicating that the actual RV sequence changes from the basic sequence The value at which to start the loop.
  • the basic RV sequence is ⁇ 0, 2, 1, 3 ⁇
  • the initial value is 2, indicating that the first actual RV sequence is 2, and subsequent actual RV sequences are cyclically mapped according to the basic RV sequence to obtain 2, 1, 3, 0, 2, ....
  • the terminal may determine the sequence offset value of the actual RV sequence corresponding to each group of candidate transmission occasions.
  • the sequence offset value is the starting position of the RV sequence at which each group of candidate transmission opportunities is cyclically mapped with respect to the basic RV sequence. For example, if the base RV sequence is 0, 2, 1, and 3, the sequence offset value is 3, and the default offset reference point is a value of the RV sequence, it means that the actual RV sequence is the first RV sequence value of the base RV sequence.
  • the initial value is 3, and the subsequent actual RV sequences are cyclically mapped according to the basic sequence to obtain 3, 0, 2, 1, 3, . . . .
  • step 202-4 according to the basic RV sequence corresponding to each group of candidate transmission occasions, and the initial value of the actual RV sequence or the sequence offset value, it is determined that each group of candidate transmission occasions corresponds to of multiple actual RV sequences.
  • the basic RV sequence is 0, 2, 1, 3
  • the actual RV sequence is the initial value of the first RV sequence value of the basic RV sequence
  • the initial value of the first RV sequence value of the basic RV sequence is 1, then the subsequent actual RV sequences are cyclically mapped according to the basic sequence to obtain 1 , 3, 0, 2, 1, ....
  • the basic RV sequence is 0, 2, 1, 3, the sequence offset value is 2, and the default offset reference point is a value of the RV sequence, then the actual RV sequence is the first RV of the basic RV sequence The starting value of the sequence value is 1, then the subsequent actual RV sequence is cyclically mapped according to the basic sequence to obtain 1, 3, 0, 2, 1, . . .
  • the actual RV sequence corresponding to each candidate transmission opportunity may be determined according to the above-mentioned mapping relationship and at least one basic RV sequence, so that the PUSCH can be repeatedly transmitted on multiple target transmission opportunities subsequently.
  • the purpose of applying the allocation of RV parameters to support multi-TRP transmission while repeating the transmission of PUSCH is realized, and the reliability of data transmission is improved.
  • step 202-3 may be implemented in the following manner:
  • the initial value or the sequence offset value of the actual RV sequence corresponding to each group of candidate transmission occasions is determined according to the specified information field included in the downlink control instruction DCI sent by the base station.
  • the initial value or the sequence of the actual RV sequence corresponding to each group of candidate transmission occasions may be set through a specified information field included in a DCI (Downlink Control Information, downlink control instruction).
  • the offset value informs the terminal.
  • the specified information field may adopt the RV field in the DCI.
  • the RV field included in the existing DCI includes 2 bits, which can only be used for the initial value of the actual RV sequence corresponding to one beam indication information.
  • the RV field of the DCI may be extended, and the RV field independently indicates the initial value of the actual RV sequence corresponding to each group of candidate transmission occasions.
  • the RV field can be extended to 4 bits, the first 2 bits are used to indicate the initial value of the actual RV sequence corresponding to the first group of alternative transmission occasions, and the last 2 bits are used to indicate the second group The initial value of the actual RV sequence corresponding to the candidate transmission opportunity.
  • the bit value of the RV field is 1001, indicating that the initial value of the actual RV sequence corresponding to the first group of candidate transmission opportunities is 2, and the first The initial value of the actual RV sequence corresponding to the two groups of alternative transmission opportunities is 1.
  • the RV field may not be extended, and the RV field is used to indicate the corresponding initial value of the actual RV sequence corresponding to each group of candidate transmission occasions or the associated information associated with the sequence offset value Codepoint RV codepoint.
  • the second correspondence between the RV codepoint and the initial value of the RV sequence may be predetermined, as shown in Table 3, for example.
  • RV codepoint Initial value of RV1 sequence
  • RV2 sequence 0 0 2 1 1 3 2 2 0 3 3 1
  • the base station can send a 2-bit value through the RV field of the DCI, assuming it is 10, and the terminal can determine according to Table 3 that the value 2 corresponds to the initial value of the actual RV sequence corresponding to the first group of candidate transmission opportunities, and the second group of The initial value of the actual RV sequence corresponding to the selected transmission opportunity is 0.
  • the terminal may pre-determine the third correspondence between the RV codepoint and the sequence offset value, as shown in Table 4, for example.
  • the base station can still send a 2-bit value through the RV field of the DCI, assuming that it is also 10, and the terminal determines according to Table 4 that the value 2 corresponds to the sequence offset of the actual RV sequence corresponding to the first group of candidate transmission opportunities is 2, and the second value is 2.
  • the sequence offset of the actual RV sequence corresponding to the group candidate transmission opportunity is 0.
  • the basic sequences are all 0, 2, 3, and 1, then the first actual RV sequence corresponding to the first group of candidate transmission opportunities is 3, 1, 0, and 2, and the RV sequences of subsequent opportunities are cycled in turn, and the second group
  • the first actual RV sequence corresponding to the candidate transmission opportunities is 0, 2, 3, and 1, and the RV sequences of subsequent opportunities are cycled in turn.
  • the second correspondence and the third correspondence in Table 3 and Table 4 may be configured by the base station through third signaling, or predefined in a protocol.
  • the third signaling may be RRC signaling or MAC signaling.
  • the RV field may also be used for the initial value of the first RV sequence in each set of alternative transmission occasions relative to the actual RV sequence of the first beam indication information.
  • the RV sequence corresponding to the first beam indication information is the first RV sequence.
  • the actual value corresponding to each group of candidate transmission opportunities can be determined.
  • the base station may determine the initial values of the other RV sequences according to the initial value of the first RV sequence and the offset value, respectively.
  • the offset value refers to the offset value of the initial value of other RV sequences relative to the initial value of the first RV sequence, and the offset value can be configured by the base station through the fourth signaling, or predefined in the protocol , where the fourth signaling may be RRC signaling or MAC signaling.
  • the initial value of the first RV sequence is RV1
  • the above-mentioned offset value offset can be determined according to the fourth signaling or protocol pre-configuration
  • multiple groups of candidate transmission opportunities correspond to the same basic RV sequence. If multiple groups of candidate transmission opportunities correspond to different basic RV sequences, the method may be as follows:
  • the basic RV sequences are [RV1, RV2].
  • the bit value of the RV field is 0010
  • the first group of candidate transmission opportunities corresponds to the initial value 0 in RV1
  • the second group of candidate transmission opportunities corresponds to the initial value 2 in RV2.
  • Table 3 or Table 4 may be determined in a pre-defined manner through third signaling or a protocol.
  • the terminal can look up Table 3 or Table 4 according to the value of the RV field, and can determine the initial value or sequence offset value of the actual RV sequence corresponding to different groups of candidate transmission occasions respectively. Assuming that RV1 is ⁇ 0, 2, 3, 1], RV2 is ⁇ 0, 3, 0, 3 ⁇ , and the value of the RV field of DCI is 01, according to Table 3, the actual corresponding transmission timing of the first group of alternative transmission opportunities can be obtained.
  • the initial value of the RV sequence is 1, that is, the first actual RV sequence is 1, 0, 2, 3.
  • the initial value of the actual RV sequence corresponding to the second group of candidate transmission opportunities is 3, that is, the first actual RV sequence is 3, 0, 3, and 0.
  • the multiple candidate transmission occasions may include K1 nominal transmission occasions.
  • the K1 nominal transmission opportunities are respectively located in different time slots, the starting symbols of the K1 nominal transmission opportunities in each time slot are the same, and the number of continuous symbols in each time slot is the same.
  • the multiple target transmission opportunities include multiple second transmission opportunities, where the first transmission opportunity is a transmission opportunity where uplink PUSCH transmission cannot be performed, and the multiple target transmission opportunities include multiple second transmission opportunities.
  • the second transmission opportunity is a transmission opportunity in which uplink PUSCH transmission can be performed among the K1 nominal transmission opportunities.
  • the multiple candidate transmission occasions may directly include K1' actual transmission occasions; wherein, the K1' actual transmission occasions are transmissions that can perform uplink PUSCH transmission among the K1 nominal transmission occasions
  • the K1 nominal transmission opportunities are located in different time slots, the starting symbols of the K1 nominal transmission opportunities are the same in each time slot, and the number of continuous symbols in each time slot is the same.
  • the multiple target transmission occasions include the K1' actual transmission occasions.
  • the multiple candidate transmission opportunities may include K2' actual transmission opportunities; wherein, the K2' actual transmission opportunities are multiple obtained by dividing the K2 nominal transmission opportunities.
  • the actual transmission occasions, the K2 nominal transmission occasions are the transmission occasions that are continuously allocated back-to-back.
  • the multiple target transmission occasions include the multiple second actual transmission occasions; wherein.
  • the plurality of second actual transmission occasions are transmission occasions in which uplink PUSCH transmission can be performed among the K2' actual transmission occasions.
  • the multiple candidate transmission occasions may include K2" actual transmission occasions; wherein, the K2" actual transmission occasions are among the K2' actual transmission occasions, and uplink PUSCH can be performed.
  • Transmission timings for transmission; the K2' actual transmission timings are actual transmission timings obtained by dividing the K2 nominal transmission timings; the K2 nominal transmission timings are continuous transmission timings allocated back-to-back.
  • the multiple target transmission occasions include the K2" actual transmission occasions.
  • the terminal may determine the mapping relationship between at least one basic RV sequence and multiple alternative transmission occasions according to the correspondence between different beam indication information and multiple alternative transmission occasions, so as to determine the multiple alternative transmission occasions.
  • the terminal may repeatedly transmit the data block of the PUSCH on multiple target transmission occasions based on the actual RV sequences corresponding to the corresponding target transmission occasions.
  • mapping relationship may also be determined in the following manner.
  • the second way is to directly determine the mapping between the at least one basic RV sequence and all the candidate transmission occasions for sending the PUSCH without distinguishing the first correspondence between different beam indication information and multiple alternative transmission occasions relation.
  • the multiple candidate transmission occasions may include all nominal transmission occasions, and accordingly, the multiple target transmission occasions include all actual transmission occasions in which uplink PUSCH transmission can be performed among all the nominal transmission occasions.
  • the multiple candidate transmission occasions include all actual transmission occasions that can perform uplink PUSCH transmission, and the multiple target transmission occasions also include all occasional transmission occasions.
  • the first correspondence between the beam indication information and the alternative transmission occasions may be ignored, and the mapping of the basic RV sequence and the multiple alternative transmission occasions may be performed directly. It also achieves the purpose of supporting multi-TRP transmission by applying the allocation of RV parameters while repeatedly transmitting the PUSCH, and improving the reliability of data transmission.
  • the present disclosure further provides an application function implementation device embodiment.
  • FIG. 5 is a block diagram of a channel transmission apparatus according to an exemplary embodiment, including:
  • the first determining module 310 is configured to determine a mapping relationship between at least one basic RV sequence and multiple candidate transmission occasions for sending the physical uplink data channel PUSCH;
  • the second determination module 320 is configured to determine, according to the at least one basic RV sequence, an actual RV sequence corresponding to each of the multiple candidate transmission occasions;
  • the transmission module 330 is configured to repeatedly transmit the data blocks of the PUSCH on multiple target transmission occasions based on the actual RV sequences corresponding to the corresponding target transmission occasions.
  • the present disclosure also provides a computer-readable storage medium, where a computer program is stored in the storage medium, and the computer program is used to execute any one of the channel transmission methods described above.
  • a channel transmission device comprising:
  • memory for storing processor-executable instructions
  • the processor is configured to execute any one of the channel transmission methods described above.
  • FIG. 6 is a block diagram of an electronic device 600 according to an exemplary embodiment.
  • the electronic device 600 may be a terminal such as a mobile phone, a tablet computer, an e-book reader, a multimedia playback device, a wearable device, a vehicle terminal, an ipad, and a smart TV.
  • an electronic device 600 may include one or more of the following components: a processing component 602, a memory 604, a power supply component 606, a multimedia component 608, an audio component 610, an input/output (I/O) interface 612, a sensor component 616, and communication component 618 .
  • the processing component 602 generally controls the overall operation of the electronic device 600, such as operations associated with display, phone calls, data communications, camera operations, and recording operations.
  • the processing component 602 may include one or more processors 620 to execute instructions to perform all or part of the steps of the channel transmission method described above.
  • processing component 602 may include one or more modules that facilitate interaction between processing component 602 and other components.
  • processing component 602 may include a multimedia module to facilitate interaction between multimedia component 608 and processing component 602.
  • the processing component 602 may read executable instructions from the memory to implement the steps of a channel transmission method provided by the foregoing embodiments.
  • Memory 604 is configured to store various types of data to support operation at electronic device 600 . Examples of such data include instructions for any application or method operating on electronic device 600, contact data, phonebook data, messages, pictures, videos, and the like. Memory 604 may be implemented by any type of volatile or nonvolatile storage device or combination thereof, such as static random access memory (SRAM), electrically erasable programmable read only memory (EEPROM), erasable Programmable Read Only Memory (EPROM), Programmable Read Only Memory (PROM), Read Only Memory (ROM), Magnetic Memory, Flash Memory, Magnetic or Optical Disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read only memory
  • EPROM erasable Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Magnetic or Optical Disk Magnetic Disk
  • Power supply assembly 606 provides power to various components of electronic device 600 .
  • Power supply components 606 may include a power management system, one or more power supplies, and other components associated with generating, managing, and distributing power to electronic device 600 .
  • Multimedia component 608 includes a display screen that provides an output interface between the electronic device 600 and the user.
  • the multimedia component 608 includes a front-facing camera and/or a rear-facing camera.
  • the front camera and/or the rear camera may receive external multimedia data.
  • Each of the front and rear cameras can be a fixed optical lens system or have focal length and optical zoom capability.
  • Audio component 610 is configured to output and/or input audio signals.
  • audio component 610 includes a microphone (MIC) that is configured to receive external audio signals when electronic device 600 is in operating modes, such as call mode, recording mode, and voice recognition mode. The received audio signal may be further stored in memory 604 or transmitted via communication component 618 .
  • audio component 610 also includes a speaker for outputting audio signals.
  • the I/O interface 612 provides an interface between the processing component 602 and a peripheral interface module, which may be a keyboard, a click wheel, a button, or the like. These buttons may include, but are not limited to: home button, volume buttons, start button, and lock button.
  • Sensor assembly 616 includes one or more sensors for providing status assessment of various aspects of electronic device 600 .
  • the sensor assembly 616 can detect the open/closed state of the electronic device 600, the relative positioning of the components, such as the display and the keypad of the electronic device 600, and the sensor assembly 616 can also detect the electronic device 600 or one of the electronic devices 600. Changes in the positions of components, presence or absence of user contact with the electronic device 600 , orientation or acceleration/deceleration of the electronic device 600 and changes in the temperature of the electronic device 600 .
  • Sensor assembly 616 may include a proximity sensor configured to detect the presence of nearby objects in the absence of any physical contact.
  • Sensor assembly 616 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor assembly 616 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • Communication component 618 is configured to facilitate wired or wireless communications between electronic device 600 and other devices.
  • the electronic device 600 may access a wireless network based on a communication standard, such as Wi-Fi, 2G, 3G, 4G, 6G or 6G, or a combination thereof.
  • the communication component 618 receives broadcast signals or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communication component 618 also includes a near field communication (NFC) module to facilitate short-range communication.
  • the NFC module may be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • electronic device 600 may be implemented by one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable A programmed gate array (FPGA), a controller, a microcontroller, a microprocessor or other electronic components are implemented for performing the above channel transmission method.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGA field programmable A programmed gate array
  • controller a controller
  • microcontroller a microcontroller
  • microprocessor or other electronic components are implemented for performing the above channel transmission method.
  • a non-transitory machine-readable storage medium including instructions such as a memory 604 including instructions, is also provided, and the instructions are executable by the processor 620 of the electronic device 600 to complete the wireless charging method described above.
  • the non-transitory computer-readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供一种信道传输方法及装置、存储介质,其中,所述信道传输方法包括:确定至少一个基础RV序列与用于发送物理上行数据信道PUSCH的多个备选传输时机之间的映射关系;根据所述至少一个基础RV序列,确定所述多个备选传输时机中的每个备选传输时机对应的实际RV序列;在多个目标传输时机上,分别基于相应的目标传输时机对应的所述实际RV序列,重复发送所述PUSCH的数据块。本公开实现了重复传输PUSCH的同时,应用RV参数的分配来支持多TRP传输的目的,提高了数据传输的可靠性。

Description

信道传输方法及装置、存储介质 技术领域
本公开涉及通信领域,尤其涉及信道传输方法及装置、存储介质。
背景技术
为了改善小区边缘的覆盖,在服务小区内提供更为均衡的服务质量,多点协作在NR(New Radio,新空口)系统中仍然是一种重要的技术手段。
从网络形态角度考虑,以大量的分布式接入点结合基带集中处理的方式来进行的网络部署,将更加有利于提供均衡的用户体验速率,并且显著的降低越区切换带来的时延和信令开销。随着频段的升高,从保证网络覆盖的角度出发,也需要相对密集的接入点部署。而在高频段,随着有源天线设备集成度的提高,将更加倾向于采用模块化的有源天线阵列。每个TRP(Transmission and Receiving Points,发送和接收点)的天线阵可以被分为若干相对独立的天线面板,因此整个阵面的形态和端口数都可以随部署场景与业务需求进行灵活的调整。而天线面板或TRP之间也可以由光纤连接,进行更为灵活的分布式部署。在毫米波波段,随着波长的减小,人体或车辆等障碍物所产生的阻挡效应将更为显著。这种情况下,从保障链路连接鲁棒性的角度出发,也可以利用多个TRP或PANEL(面板)之间的协作,从多个角度的多个波束进行传输/接收,从而降低阻挡效应带来的不利影响。
在R16研究阶段,基于下行多TRP或PANEL间的多点协作传输技术的应用,对PDSCH(PhysicalDownlinkSharedChannel,物理下行数据信道)进行了传输增强。由于数据传输包括上下行信道的调度反馈,因此在URLLC(Ultra-relaible and Low Latency Communication,极可靠低时延通信)的研究中,只对下行数据信道增强不能保证业务性能。因此在R17(Release 17,版本17)的研究中,继续对下行控制信道PDCCH(PhysicalDownlinkControl Channel,物理下行控制信道)以及上行的控制 信道PUCCH(PhysicalUplinkControl Channel,物理上行控制信道)和数据信道PUSCH(PhysicalUplinkSharedChannel,物理下行数据信道)进行增强。
以PUSCH为例,可以采用重复传输PUSCH的方式来进行增强,目前的PUSCH增强方式都是针对单一的TRP而言的,在多TRP场景下无法适用。
发明内容
为克服相关技术中存在的问题,本公开实施例提供一种信道传输方法及装置、存储介质。
根据本公开实施例的第一方面,提供一种信道传输方法,包括:
确定至少一个基础RV序列与用于发送物理上行数据信道PUSCH的多个备选传输时机之间的映射关系;
根据所述至少一个基础RV序列,确定所述多个备选传输时机中的每个备选传输时机对应的实际RV序列;
在多个目标传输时机上,分别基于相应的目标传输时机对应的所述实际RV序列,重复发送所述PUSCH的数据块。
可选地,所述确定至少一个基础RV序列与用于发送物理上行数据信道PUSCH的多个备选传输时机之间的映射关系,包括:
根据基站发送的第一信令确定所述映射关系;或
根据预定义的设置,确定所述映射关系。
可选地,所述确定至少一个基础RV序列与用于发送物理上行数据信道PUSCH的多个备选传输时机之间的映射关系,包括:
确定对应基站不同发送和接收点TRP接收的不同波束指示信息与所述多个备选传输时机之间的第一对应关系;其中,所述波束指示信息是用于进行上行数据信道PUSCH发送的波束相关信息;
根据所述不同波束指示信息对应的基础RV序列和所述第一对应关系, 确定所述映射关系。
可选地,所述根据所述至少一个基础RV序列,确定所述多个备选传输时机中的每个备选传输时机对应的实际RV序列,包括:
将所述多个备选传输时机划分为多组;其中,每组备选传输时机对应相同的波束指示信息;
确定所述每组备选传输时机所对应的一个基础RV序列;
确定所述每组备选传输时机所对应的所述实际RV序列的初始值或序列偏移值;其中,所述序列偏移值是所述每组备选传输时机相对于所述基础RV序列进行循环映射的RV序列起始位置;
根据所述每组备选传输时机所对应的基础RV序列、以及所述实际RV序列的初始值或所述序列偏移值,确定所述每组备选传输时机对应的多个实际RV序列。
可选地,所述确定所述每组备选传输时机所对应的一个基础RV序列,包括:
根据基站发送的第二信令,确定所述每组备选传输时机所对应的一个基础RV序列;或
根据预定义的设置,确定所述每组备选传输时机所对应的一个基础RV序列。
可选地,所述确定每组备选传输时机所对应的所述实际RV序列的初始值或序列偏移值,包括:
根据基站发送的下行控制指令DCI所包括的指定信息域,确定所述每组备选传输时机所对应的实际RV序列的所述初始值或所述序列偏移值。
可选地,所述指定信息域用于分别独立指示所述每组备选传输时机所对应的所述实际RV序列的初始值;
或,所述指定信息域用于指示所述每组备选传输时机所对应的所述实际RV序列的初始值或所述序列偏移值关联的关联信息的对应码点RV codepoint;
或,所述指定信息域用于指示所述每组备选传输时机中相对于第一波束指示信息的实际RV序列中第一RV序列的初始值;其中,所述第一波束指示信息对应的RV序列为所述第一RV序列。
可选地,所述指定信息域用于指示与所述多个实际RV序列的初始值或所述序列偏移值关联的关联信息的对应码点RV codepoint;
所述确定每组备选传输时机所对应的实际RV序列的初始值或所述序列偏移值,包括:
根据预先确定的RV codepoint与RV序列的初始值之间的第二对应关系,确定所述指定信息域指示的关联信息对应的所述每组备选传输时机所对应的实际RV序列的初始值;或
根据预先确定的RV codepoint与所述序列偏移值之间的第三对应关系,确定所述指定信息域指示的关联信息相对应的所述每组备选传输时机所对应的实际RV序列的所述序列偏移值。
可选地,所述方法还包括以下任一项:
获取基站通过第三信令配置的所述第二对应关系和/或所述第三对应关系;
根据预定义的设置,确定所述第二对应关系和/或所述第三对应关系。
可选地,所述指定信息域用于指示所述每组备选传输时机中相对于第一波束指示信息的实际RV序列中第一RV序列的初始值;
所述确定每组备选传输时机所对应的实际RV序列的初始值,包括:
确定所述每组备选传输时机所对应的实际RV序列中其他RV序列的初始值相对于所述第一RV序列的初始值的偏移值;
根据所述第一RV序列的初始值和所述偏移值,分别确定所述其他RV序列的初始值。
可选地,所述方法还包括:
获取基站通过第四信令配置的所述偏移值;或
根据预定义的设置,确定所述偏移值。
可选地,所述多个备选传输时机包括K1个名义传输时机;其中,所述K1个名义传输时机分别位于不同的时隙内,所述K1个名义传输时机在各时隙内的起始符号位置相同,且在各时隙内的持续符号数目相同;
所述K1个名义传输时机中存在第一传输时机,则所述多个目标传输时机包括多个第二传输时机;其中,所述第一传输时机是无法进行上行PUSCH发送的传输时机,所述多个第二传输时机是所述K1个名义传输时机中可以进行上行PUSCH发送的传输时机。
可选地,所述多个备选传输时机包括K1’个实际传输时机;其中,所述K1’个实际传输时机是K1个名义传输时机中可以进行上行PUSCH传输的传输时机,所述K1个名义传输时机分别位于不同的时隙内,所述K1个名义传输时机在各时隙内的起始符号位置相同,且在各时隙内的持续符号数目相同;
所述多个目标传输时机包括所述K1’个实际传输时机。
可选地,所述多个备选传输时机包括K2’个实际传输时机上;其中,所述K2’个实际传输时机是对K2个名义传输时机进行划分得到的多个实际传输时机,所述K2个名义传输时机是背对背连续分配的传输时机;
所述多个目标传输时机包括所述多个第二实际传输时机;其中,所述多个第二实际传输时机是所述K2’个实际传输时机中可以进行上行PUSCH传输的多个传输时机。
可选地,所述多个备选传输时机包括K2”个实际传输时机;其中,所述K2”个实际传输时机是K2’个实际传输时机中,可以进行上行PUSCH传输的传输时机;所述K2’个实际传输时机是对K2个名义传输时机进行划分得到的实际传输时机;所述K2个名义传输时机是背对背分配的连续传输时机;
所述多个目标传输时机包括所述K2”个实际传输时机。
可选地,所述确定至少一个基础RV序列与用于发送物理上行数据信道PUSCH的多个备选传输时机之间的映射关系,包括:
确定所述至少一个基础RV序列与用于发送PUSCH的所有备选传输时机之间的所述映射关系。
可选地,所述所有备选传输时机包括所有名义传输时机;所述多个目标传输时机包括所述所有名义传输时机中可以进行上行PUSCH传输的所有实际传输时机。
可选地,所述所有备选传输时机包括可以进行上行PUSCH传输的所有实际传输时机;
所述多个目标传输时机包括所述所有实际传输时机。
根据本公开实施例的第二方面,提供一种信道传输装置,包括:
第一确定模块,被配置为确定至少一个基础RV序列与用于发送物理上行数据信道PUSCH的多个备选传输时机之间的映射关系;
第二确定模块,被配置为根据所述至少一个基础RV序列,确定所述多个备选传输时机中的每个备选传输时机对应的实际RV序列;
传输模块,被配置为在多个目标传输时机上,分别基于相应的目标传输时机对应的所述实际RV序列,重复发送所述PUSCH的数据块。
根据本公开实施例的第三方面,提供一种计算机可读存储介质,所述存储介质存储有计算机程序,所述计算机程序用于执行上述第一方面任一项所述的信道传输方法。
根据本公开实施例的第四方面,提供一种信道传输装置,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为用于执行上述第一方面任一项所述的信道传输方法。
本公开的实施例提供的技术方案可以包括以下有益效果:
本公开实施例中,终端可以确定至少一个基础RV序列与用于发送PUSCH的多个备选传输时机之间的映射关系。根据至少一个基站RV序列,来确定每个备选传输时机对应的实际RV序列,从而在多个目标传输时机 上,分别基于相应的目标传输时机对应的所述实际RV序列,重复发送所述PUSCH的数据块。本公开实现了重复传输PUSCH的同时,应用RV参数的分配来支持多TRP传输的目的,提高了数据传输的可靠性。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本发明的实施例,并与说明书一起用于解释本发明的原理。
图1A至1D是根据一示例性实施例示出的PUSCH重复传输方式示意图。
图2是根据一示例性实施例示出的一种信道传输方法流程图。
图3是根据一示例性实施例示出的另一种信道传输方法流程图。
图4是根据一示例性实施例示出的另一种信道传输方法流程图。
图5是根据一示例性实施例示出的一种信道传输装置框图。
图6是本公开根据一示例性实施例示出的一种信道传输装置的一结构示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本发明相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本发明的一些方面相一致的装置和方法的例子。
在本公开使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开。在本公开和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还 应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
在介绍本公开提供的信道传输方案之前,先介绍一下R15和R16中的两种PUSCH增强方式。
第一种增强方式,R15中所采用的重复类型A传输方式。
该重复类型A传输方式是针对时隙级别而言的,Slot Aggregation(时隙聚合)PUSCH传输方式。例如图1A所示,一个PUSCH在连续的K个传输时机(nominal repetition)上重复传输,图1A中K的取值为2。从起始时隙的第S个符号上开始传输,每个传输时机会持续L个符号,图1A中L的取值为4。
需要主要的是(S+L)不超过时隙边界,例如一个时隙包括14个时间符号,那么(S+L)不超过14。
该重复类型A传输方式不适用于时延要求低且可靠性要求高的业务。
第二种增强方式,R16中所采用的重复类型B传输方式。
为了适用于时延要求低且可靠性要求高的业务,R16提出了以mini-slot(迷你时隙)为单位的PUSCH重复传输方式,即重复类型B传输方式,允许PUSCH的重复传输跨时隙进行,从而进一步降低时延。
在时域上,一个PUSCH在起始时隙的第S个符号上开始传输,连续不间断的发送K个传输时机,每个传输时机都连续占用L个符号,例如图1B所示。
同时,在重复类型B传输方式中,(S+L)可以跨越时隙边界,在传输 时机出现跨时隙边界的情况下,传输时机被重新分割,对应得到实际传输时机(actural repetition)K’。例如图1C和图1D所示。
在图1C中,第3个传输时机由于跨越了时隙边界,被时隙边界再次划分为2个实际传输时机,即在图1C中,PUSCH的传输时机K为4,但实际传输时机K’为5。
在图1D中,只有1个传输时机,该传输时机由于跨越了时隙边界,被时隙边界再次划分为2个实际传输时机,即在图1D中,PUSCH的传输时机K为1,但实际传输时机K’为2。
基站可以通过SFI(Slot Format Indicator,时隙格式指示符)指示半静态的Flexible(灵活)时间符号为动态的上行符号或动态下行符号,因此半静态Flexible时间符号对PUSCH可能是可用符号(即Flexible时间符号为上行信号,可以用于进行PUSCH传输),也可能是不可用符号(即Flexible时间符号为下行信号,不可以用于进行PUSCH传输)。其中有不可用的时间符号时,需要drop(丢弃)不可用的时间符号,在剩余的可用符号上传输PUSCH。即对于整个传输而言,时隙L×K可以表示PUSCH传输的时间窗口大小,如果在该时间窗口中出现某个时间符号无法进行上行传输,那么该时间符号是不能够传输PUSCH的,需要将该传输时机drop(丢弃)掉,在其他的传输时机上传输PUSCH。
上述的重复类型A传输方式和重复类型B传输方式对应的取值如表1所示:
表1
Figure PCTCN2020119602-appb-000001
Figure PCTCN2020119602-appb-000002
在上述的重复类型A传输方式和重复类型B传输方式中,其适用于单个RTP场景,不支持终端利用多TRP技术重复传输PUSCH来提高数据传输可靠性。
另外,目前在重复传输PUSCH时,需要确定对应的RV(Redundancy Version,冗余版本)序列。对RV序列的确定方式例如表2所示:
表2
Figure PCTCN2020119602-appb-000003
对应上述的重复类型A传输方式,RV序列直接映射在所有传输时机上,基站发送DCI(Downlink Control Information,下行控制信息),并通过DCI的RV信息域来指示RV序列的初始值。例如,DCI中的RV信息域为2比特,比特值为10,则对应表2中初始值为2的RV序列2、3、1、0。
对应上述的重复类型B传输方式,RV序列直接映射在所有实际传输时机上,基站同样发送DCI(Downlink Control Information,下行控制信 息),并通过DCI的RV信息域来指示RV序列的初始值。
为了在重复传输PUSCH时支持多TPR场景,需要考虑不同的RV传输参数和不同的传输时机之间的映射,但是目前的方案中并未涉及。
为了解决上述问题,本公开提供了一种信道传输方案,可以在重复传输PUSCH时,应用RV参数的分配来支持多TRP传输。
本公开实施例提供了一种信道传输方法,可以用于终端,参照图2所示,图2是根据一实施例示出的一种信道传输方法流程图,该方法可以包括以下步骤:
在步骤201中,确定至少一个基础RV序列与用于发送物理上行数据信道PUSCH的多个备选传输时机之间的映射关系。
在步骤202中,根据所述至少一个基础RV序列,确定所述多个备选传输时机中的每个备选传输时机对应的实际RV序列。
在本公开实施例中,实际RV序列是指根据相应的备选传输时机对应的基础RV序列进行循环映射得到的用于发送PUSCH的RV序列。例如,基础RV序列为0、2、3、1,实际RV序列可以是表2中的任意一个序列循环映射得到的RV序列,例如对应的RV序列值对应4次传输配置的情况可以为2、3、1、0或1、0、2、3。
在步骤203中,在多个目标传输时机上,分别基于相应的目标传输时机对应的所述实际RV序列,重复发送所述PUSCH的数据块。
上述实施例中,终端可以确定至少一个基础RV序列与用于发送PUSCH的多个备选传输时机之间的映射关系。根据至少一个基站RV序列,来确定每个备选传输时机对应的实际RV序列,从而在多个目标传输时机上,分别基于相应的目标传输时机对应的所述实际RV序列,重复发送所述PUSCH的数据块。本公开实现了重复传输PUSCH的同时,应用RV参数的分配来支持多TRP传输的目的,提高了数据传输的可靠性。
在一可选实施例中,针对上述步骤201,在确定映射关系时,可以根据基站发送的第一信令来确定,或者可以根据协议中预定义的设置,来确 定该映射关系。其中,第一信令可以是高层RRC(Radio Resource Control,无线资源控制)信令,或者MAC(Media Access Control Address,媒体范围控制地址)信令,本公开对此不作限定。
上述实施例中,可以由基站配置该映射关系,或者在协议中预定义该映射关系,实现简便,可用性高。
在一可选实施例中,可以采用以下方式中的任意一种确定该映射关系。
第一种方式,根据对应基站不同发送和接收点TRP接收的不同波束指示信息与所述多个备选传输时机之间的第一对应关系,确定该映射关系。
参照图3所示,图3是根据图2所示实施例示出的另一种信道传输方法流程图,步骤201可以包括:
在步骤201-11中,确定对应基站不同发送和接收点TRP接收的不同波束指示信息与所述多个备选传输时机之间的第一对应关系。
其中,波束指示信息是用于进行上行数据信道PUSCH发送的波束相关信息。在本公开实施例中,波束指示信息可以包括spatial Relation Info(空间关系信息),或者包括UL(Up Link,上行)TCI(Transmission Configuration Indicator,传输配置指示)state(状态)信息。
在步骤201-12中,根据所述不同波束指示信息对应的基础RV序列和所述第一对应关系,确定所述映射关系。
在本公开实施例中,不同波束指示信息可以对应相同的基础RV序列或不同的基础RV序列,终端根据不同波束指示信息对应的基础RV序列和上述的第一对应关系,可以确定至少一个基础RV序列与用于发送物理上行数据信道PUSCH的多个备选传输时机之间的映射关系。
上述实施例中,可以根据上述不同波束指示信息与多个备选传输时机之间的第一对应关系来确定该映射关系,实现简便,可用性高。
在一可选实施例中,参照图4所示,图4是根据图3所示实施例示出的另一种信道传输方法流程图,步骤202可以包括:
在步骤202-1中,将所述多个备选传输时机划分为多组。
其中,每组备选传输时机对应相同的波束指示信息。例如,多个备选传输时机包括两组备选传输时机,第一组备选传输时机对应波束指示信息TCI-1,第二组备选传输时机对应波束指示信息TCI-2。
在步骤202-2中,确定所述每组备选传输时机所对应的一个基础RV序列。
在本公开实施例中,每组备选传输时机可以对应一个基础RV序列,而多组备选传输时机可以对应相同或不同的基础RV序列。在本公开实施例中,可以由基站通过第二信令将每组备选传输时机对应的基础RV序列告知终端,或者在协议中预定义每组备选传输时机对应的基础RV序列。
例如,上述两组备选传输时机可以对应相同的一组基础RV序列,该序列为{0、2、3、1}。或者上述两组备选传输时机可以对应不同的两组基础RV序列,例如第一组备选传输时机对应基础RV序列0、2、3、1,第二组备选传输时机对应基础RV序列0、3、0、3,两个基础RV序列不同。
在步骤202-3中,确定所述每组备选传输时机所对应的所述实际RV序列的初始值或序列偏移值。
在本公开实施例中,可以直接确定所述每组备选传输时机所对应的所述实际RV序列的初始值,该初始值可以是基础RV序列中的一个值,表示实际RV序列从基础序列中开始循环的值。例如,基础RV序列为{0、2、1、3},初始值为2,说明首个实际RV序列值为2,后续实际RV序列依次按照基础RV序列进行循环映射得到2,1,3,0,2,…。
或者终端可以确定每组备选传输时机所对应的所述实际RV序列的序列偏移值。其中,所述序列偏移值是所述每组备选传输时机相对于所述基础RV序列进行循环映射的RV序列起始位置。例如,基础RV序列为0、2、1、3,序列偏移值为3,默认偏移参考点为RV序列的一个值,则说明实际RV序列为基础RV序列的第一个RV序列值的起始值为3,后续实际RV序列依次按照基础序列进行循环映射得到3,0,2,1,3,…。。
在步骤202-4中,根据所述每组备选传输时机所对应的基础RV序列、 以及所述实际RV序列的初始值或所述序列偏移值,确定所述每组备选传输时机对应的多个实际RV序列。
例如,所述基础RV序列为0、2、1、3,实际RV序列为基础RV序列的第一个RV序列值的初始值为1,则后续实际RV序列依次按照基础序列进行循环映射得到1,3,0,2,1,…。
再例如,所述基础RV序列为0、2、1、3,序列偏移值为2,默认偏移参考点为RV序列的一个值,则说明实际RV序列为基础RV序列的第一个RV序列值的起始值为1,则后续实际RV序列依次按照基础序列进行循环映射得到1,3,0,2,1,…。上述实施例中,可以根据上述映射关系和至少一个基础RV序列,确定每个备选传输时机对应的实际RV序列,以便后续在多个目标传输时机上重复传输PUSCH。实现了重复传输PUSCH的同时,应用RV参数的分配来支持多TRP传输的目的,提高了数据传输的可靠性。
在一可选实施例中,针对上述步骤202-3可以采用以下方式实现:
根据基站发送的下行控制指令DCI所包括的指定信息域,确定所述每组备选传输时机所对应的实际RV序列的所述初始值或所述序列偏移值。
在本公开实施例中,可以通过DCI(Downlink Control Information,下行控制指令)中所包括的指定信息域将所述每组备选传输时机所对应的实际RV序列的所述初始值或所述序列偏移值告知终端。其中,指定信息域可以采用DCI中的RV域。
现有的DCI所包括的RV域包括2比特,只能针对一个波束指示信息对应的实际RV序列的初始值。
在一个示例中,可以扩展DCI的RV域,通过该RV域分别独立指示所述每组备选传输时机所对应的所述实际RV序列的初始值。
例如,有两组备选传输时机,则RV域可以扩展到4比特,前2比特用于指示第一组备选传输时机对应的实际RV序列的初始值,后2比特用于指示第二组备选传输时机对应的实际RV序列的初始值。
以两组备选传输时机对应相同的基础序列0、2、3、1为例,RV域的比特值为1001,说明第一组备选传输时机对应的实际RV序列的初始值为2,第二组备选传输时机对应的实际RV序列的初始值为1。
在另一个示例中,也可以不扩展RV域,RV域用于指示所述每组备选传输时机所对应的所述实际RV序列的初始值或所述序列偏移值关联的关联信息的对应码点RV codepoint。
可选地,可以预先确定RV codepoint与RV序列的初始值之间的第二对应关系,例如表3所示。
表3
RV codepoint RV1序列的初始值 RV2序列的初始值
0 0 2
1 1 3
2 2 0
3 3 1
基站可以通过DCI的RV域发送2比特的值,假设为10,终端根据表3可以确定数值2对应的是第一组备选传输时机对应的实际RV序列的初始值为2,第二组备选传输时机对应的实际RV序列的初始值为0。
或者,终端可以预先确定RV codepoint与序列偏移值之间的第三对应关系,例如表4所示。
表4
Figure PCTCN2020119602-appb-000004
Figure PCTCN2020119602-appb-000005
基站仍然可以通过DCI的RV域发送2比特的值,假设也为10,终端根据表4确定数值2对应的是第一组备选传输时机对应的实际RV序列的序列偏移为2,第二组备选传输时机对应的实际RV序列的序列偏移为0。相应地,基础序列如果都是0、2、3、1,那么第一组备选传输时机对应的首个实际RV序列为3、1、0、2,后续时机RV序列依次循环,第二组备选传输时机对应的首个实际RV序列为0、2、3、1,后续时机RV序列依次循环。
在本公开实施例中,表3、表4中的第二对应关系和第三对应关系可以由基站通过第三信令配置,或者在协议中预定义。其中,第三信令可以是RRC信令或MAC信令。
在另一个示例中,RV域还可以用于每组备选传输时机中相对于第一波束指示信息的实际RV序列中第一RV序列的初始值。其中,所述第一波束指示信息对应的RV序列为所述第一RV序列。
指定信息域用于指示所述每组备选传输时机中相对于第一波束指示信息的实际RV序列中第一RV序列的初始值的情况下,可以确定每组备选传输时机所对应的实际RV序列中其他RV序列的初始值相对于所述第一RV序列的初始值的偏移值。进一步地,基站可以根据所述第一RV序列的初始值和所述偏移值,分别确定所述其他RV序列的初始值。其中,所述偏移值是指其他RV序列的初始值相对于第一RV序列的初始值的偏移值,该偏移值可以由基站通过第四信令进行配置,或者在协议中预定义,其中第四信令可以是RRC信令或MAC信令。
例如,第一RV序列的初始值为RV1,根据第四信令或协议预配置的方式可以确定上述偏移值offset,例如根据公式RV2=mod(RV1+offset,4)得到其他RV序列的初始值。
在一可选实施例中,上述方案中多组备选传输时机对应的是相同的一个基础RV序列,如果多组备选传输时机对应不同的基础RV序列,其方式可以为:
预先通过第二信令将多个基础RV序列告知终端,例如,基础RV序列为[RV1、RV2],通过扩展DCI的RV域的方式,可以分别指示两组备选传输时机分别对应不同基础序列的初始值,例如RV域的比特值为0010,则第一组备选传输时机对应的是RV1中的初始值0,第二组备选传输时机对应的是RV2中的初始值2。
如果不扩展DCI的RV域,那么可以通过第三信令或协议预定义的方式确定表3或表4。终端根据RV域的值,查询表3或表4,可以确定不同组的备选传输时机分别对应的实际RV序列的初始值或序列偏移值。假设RV1为{0,2,3,1],RV2是{0,3,0,3},DCI的RV域的值为01,则根据表3可以得到第一组备选传输时机对应的实际RV序列的初始值为1,即首个实际RV序列为1、0、2、3。而第二组备选传输时机对应的实际RV序列的初始值为3,即首个实际RV序列为3、0、3、0。
根据表4确定序列偏移值的方式与上述方式雷同,在此不再赘述。
在一可选实施例中,对应上述的重复类型A传输方式,多个备选传输时机可以包括K1个名义传输时机。
其中,所述K1个名义传输时机分别位于不同的时隙内,所述K1个名义传输时机在各时隙内的起始符号位置相同,且在各时隙内的持续符号数目相同。
如果K1个名义传输时机中存在第一传输时机,则所述多个目标传输时机包括多个第二传输时机,其中,第一传输时机是无法进行上行PUSCH发送的传输时机,所述多个第二传输时机是所述K1个名义传输时机中可以进行上行PUSCH发送的传输时机。
同样针对上述的重复类型A传输方式,多个备选传输时机可以直接包括K1’个实际传输时机;其中,所述K1’个实际传输时机是K1个名义传输 时机中可以进行上行PUSCH传输的传输时机,所述K1个名义传输时机分别位于不同的时隙内,所述K1个名义传输时机在各时隙内的起始符号位置相同,且在各时隙内的持续符号数目相同。
进一步地,多个目标传输时机包括所述K1’个实际传输时机。
对应上述的重复类型B传输方式,所述多个备选传输时机可以包括K2’个实际传输时机上;其中,所述K2’个实际传输时机是对K2个名义传输时机进行划分得到的多个实际传输时机,所述K2个名义传输时机是背对背连续分配的传输时机。
相应的,多个目标传输时机包括所述多个第二实际传输时机;其中。所述多个第二实际传输时机是所述K2’个实际传输时机中可以进行上行PUSCH传输的传输时机。
同样对应上述的重复类型B传输方式,所述多个备选传输时机可以包括K2”个实际传输时机;其中,所述K2”个实际传输时机是K2’个实际传输时机中,可以进行上行PUSCH传输的传输时机;所述K2’个实际传输时机是对K2个名义传输时机进行划分得到的实际传输时机;所述K2个名义传输时机是背对背分配的连续传输时机。
进一步地,多个目标传输时机包括所述K2”个实际传输时机。
上述实施例中,终端可以根据不同波束指示信息和多个备选传输时机之间的对应关系,来确定至少一个基础RV序列与多个备选传输时机的映射关系,从而确定所述多个备选传输时机中的每个备选传输时机对应的实际RV序列。进一步地,终端可以在多个目标传输时机上,分别基于相应的目标传输时机对应的所述实际RV序列,重复发送所述PUSCH的数据块。实现了重复传输PUSCH的同时,应用RV参数的分配来支持多TRP传输的目的,提高了数据传输的可靠性。
在一可选实施例中,还可以采用以下方式来确定上述映射关系。
第二种方式,不区分不同波束指示信息与多个备选传输时机之间的第一对应关系,直接确定至少一个基础RV序列与用于发送PUSCH的所有备 选传输时机之间的所述映射关系。
相应地,多个备选传输时机可以包括所有名义传输时机,应地,多个目标传输时机则包括所有名义传输时机中可以进行上行PUSCH传输的所有实际传输时机。
或者,多个备选传输时机包括可以进行上行PUSCH传输的所有实际传输时机,多个目标传输时机也包括所有时机传输时机。
上述实施例中,可以不考虑波束指示信息与备选传输时机之间的第一对应关系,直接进行基础RV序列与多个备选传传输时机的映射。同样实现了重复传输PUSCH的同时,应用RV参数的分配来支持多TRP传输的目的,提高了数据传输的可靠性。
与前述应用功能实现方法实施例相对应,本公开还提供了应用功能实现装置的实施例。
参照图5,图5是根据一示例性实施例示出的一种信道传输装置框图,包括:
第一确定模块310,被配置为确定至少一个基础RV序列与用于发送物理上行数据信道PUSCH的多个备选传输时机之间的映射关系;
第二确定模块320,被配置为根据所述至少一个基础RV序列,确定所述多个备选传输时机中的每个备选传输时机对应的实际RV序列;
传输模块330,被配置为在多个目标传输时机上,分别基于相应的目标传输时机对应的所述实际RV序列,重复发送所述PUSCH的数据块。
对于装置实施例而言,由于其基本对应于方法实施例,所以相关之处参见方法实施例的部分说明即可。以上所描述的装置实施例仅仅是示意性的,其中上述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本公开方案的目的。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
相应地,本公开还提供了一种计算机可读存储介质,所述存储介质存储有计算机程序,所述计算机程序用于执行上述任一所述的信道传输方法。
相应地,本公开还提供了一种信道传输装置,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为用于执行上述任一所述的信道传输方法。
图6是根据一示例性实施例示出的一种电子设备600的框图。例如电子设备600可以是手机、平板电脑、电子书阅读器、多媒体播放设备、可穿戴设备、车载终端、ipad、智能电视等终端。
参照图6,电子设备600可以包括以下一个或多个组件:处理组件602,存储器604,电源组件606,多媒体组件608,音频组件610,输入/输出(I/O)接口612,传感器组件616,以及通信组件618。
处理组件602通常控制电子设备600的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件602可以包括一个或多个处理器620来执行指令,以完成上述的信道传输方法的全部或部分步骤。此外,处理组件602可以包括一个或多个模块,便于处理组件602和其他组件之间的交互。例如,处理组件602可以包括多媒体模块,以方便多媒体组件608和处理组件602之间的交互。又如,处理组件602可以从存储器读取可执行指令,以实现上述各实施例提供的一种信道传输方法的步骤。
存储器604被配置为存储各种类型的数据以支持在电子设备600的操作。这些数据的示例包括用于在电子设备600上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器604可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件606为电子设备600的各种组件提供电力。电源组件606可以包括电源管理系统,一个或多个电源,及其他与为电子设备600生成、管理和分配电力相关联的组件。
多媒体组件608包括在所述电子设备600和用户之间的提供一个输出接口的显示屏。在一些实施例中,多媒体组件608包括一个前置摄像头和/或后置摄像头。当电子设备600处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件610被配置为输出和/或输入音频信号。例如,音频组件610包括一个麦克风(MIC),当电子设备600处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器604或经由通信组件618发送。在一些实施例中,音频组件610还包括一个扬声器,用于输出音频信号。
I/O接口612为处理组件602和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件616包括一个或多个传感器,用于为电子设备600提供各个方面的状态评估。例如,传感器组件616可以检测到电子设备600的打开/关闭状态,组件的相对定位,例如所述组件为电子设备600的显示器和小键盘,传感器组件616还可以检测电子设备600或电子设备600一个组件的位置改变,用户与电子设备600接触的存在或不存在,电子设备600方位或加速/减速和电子设备600的温度变化。传感器组件616可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件616还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件616还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件618被配置为便于电子设备600和其他设备之间有线或无线 方式的通信。电子设备600可以接入基于通信标准的无线网络,如Wi-Fi,2G,3G,4G,6G或6G,或它们的组合。在一个示例性实施例中,通信组件618经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件618还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,电子设备600可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述信道传输方法。
在示例性实施例中,还提供了一种包括指令的非临时性机器可读存储介质,例如包括指令的存储器604,上述指令可由电子设备600的处理器620执行以完成上述无线充电方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本公开旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或者惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (21)

  1. 一种信道传输方法,其特征在于,包括:
    确定至少一个基础RV序列与用于发送物理上行数据信道PUSCH的多个备选传输时机之间的映射关系;
    根据所述至少一个基础RV序列,确定所述多个备选传输时机中的每个备选传输时机对应的实际RV序列;
    在多个目标传输时机上,分别基于相应的目标传输时机对应的所述实际RV序列,重复发送所述PUSCH的数据块。
  2. 根据权利要求1所述的方法,其特征在于,所述确定至少一个基础RV序列与用于发送物理上行数据信道PUSCH的多个备选传输时机之间的映射关系,包括:
    根据基站发送的第一信令确定所述映射关系;或
    根据预定义的设置,确定所述映射关系。
  3. 根据权利要求1所述的方法,其特征在于,所述确定至少一个基础RV序列与用于发送物理上行数据信道PUSCH的多个备选传输时机之间的映射关系,包括:
    确定对应基站不同发送和接收点TRP接收的不同波束指示信息与所述多个备选传输时机之间的第一对应关系;其中,所述波束指示信息是用于进行上行数据信道PUSCH发送的波束相关信息;
    根据所述不同波束指示信息对应的基础RV序列和所述第一对应关系,确定所述映射关系。
  4. 根据权利要求3所述的方法,其特征在于,所述根据所述至少一个基础RV序列,确定所述多个备选传输时机中的每个备选传输时机对应的实际RV序列,包括:
    将所述多个备选传输时机划分为多组;其中,每组备选传输时机对应相同的波束指示信息;
    确定所述每组备选传输时机所对应的一个基础RV序列;
    确定所述每组备选传输时机所对应的所述实际RV序列的初始值或序列偏移值;其中,所述序列偏移值是所述每组备选传输时机相对于所述基础RV序列进行循环映射的RV序列起始位置;
    根据所述每组备选传输时机所对应的基础RV序列、以及所述实际RV序列的初始值或所述序列偏移值,确定所述每组备选传输时机对应的多个实际RV序列。
  5. 根据权利要求4所述的方法,其特征在于,所述确定所述每组备选传输时机所对应的一个基础RV序列,包括:
    根据基站发送的第二信令,确定所述每组备选传输时机所对应的一个基础RV序列;或
    根据预定义的设置,确定所述每组备选传输时机所对应的一个基础RV序列。
  6. 根据权利要求4所述的方法,其特征在于,所述确定每组备选传输时机所对应的所述实际RV序列的初始值或序列偏移值,包括:
    根据基站发送的下行控制指令DCI所包括的指定信息域,确定所述每组备选传输时机所对应的实际RV序列的所述初始值或所述序列偏移值。
  7. 根据权利要求6所述的方法,其特征在于,所述指定信息域用于分别独立指示所述每组备选传输时机所对应的所述实际RV序列的初始值;
    或,所述指定信息域用于指示所述每组备选传输时机所对应的所述实际RV序列的初始值或所述序列偏移值关联的关联信息的对应码点RV codepoint;
    或,所述指定信息域用于指示所述每组备选传输时机中相对于第一波束指示信息的实际RV序列中第一RV序列的初始值;其中,所述第一波束指示信息对应的RV序列为所述第一RV序列。
  8. 根据权利要求7所述的方法,其特征在于,所述指定信息域用于指示与所述多个实际RV序列的初始值或所述序列偏移值关联的关联信息的 对应码点RV codepoint;
    所述确定每组备选传输时机所对应的实际RV序列的初始值或所述序列偏移值,包括:
    根据预先确定的RV codepoint与RV序列的初始值之间的第二对应关系,确定所述指定信息域指示的关联信息对应的所述每组备选传输时机所对应的实际RV序列的初始值;或
    根据预先确定的RV codepoint与所述序列偏移值之间的第三对应关系,确定所述指定信息域指示的关联信息相对应的所述每组备选传输时机所对应的实际RV序列的所述序列偏移值。
  9. 根据权利要求8所述的方法,其特征在于,所述方法还包括以下任一项:
    获取基站通过第三信令配置的所述第二对应关系和/或所述第三对应关系;
    根据预定义的设置,确定所述第二对应关系和/或所述第三对应关系。
  10. 根据权利要求6所述的方法,其特征在于,所述指定信息域用于指示所述每组备选传输时机中相对于第一波束指示信息的实际RV序列中第一RV序列的初始值;
    所述确定每组备选传输时机所对应的实际RV序列的初始值,包括:
    确定所述每组备选传输时机所对应的实际RV序列中其他RV序列的初始值相对于所述第一RV序列的初始值的偏移值;
    根据所述第一RV序列的初始值和所述偏移值,分别确定所述其他RV序列的初始值。
  11. 根据权利要求10所述的方法,其特征在于,所述方法还包括:
    获取基站通过第四信令配置的所述偏移值;或
    根据预定义的设置,确定所述偏移值。
  12. 根据权利要求1-11任一项所述的方法,其特征在于,所述多个备选传输时机包括K1个名义传输时机;其中,所述K1个名义传输时机分别 位于不同的时隙内,所述K1个名义传输时机在各时隙内的起始符号位置相同,且在各时隙内的持续符号数目相同;
    所述K1个名义传输时机中存在第一传输时机,则所述多个目标传输时机包括多个第二传输时机;其中,所述第一传输时机是无法进行上行PUSCH发送的传输时机,所述多个第二传输时机是所述K1个名义传输时机中可以进行上行PUSCH发送的传输时机。
  13. 根据权利要求1-11任一项所述的方法,其特征在于,所述多个备选传输时机包括K1’个实际传输时机;其中,所述K1’个实际传输时机是K1个名义传输时机中可以进行上行PUSCH传输的传输时机,所述K1个名义传输时机分别位于不同的时隙内,所述K1个名义传输时机在各时隙内的起始符号位置相同,且在各时隙内的持续符号数目相同;
    所述多个目标传输时机包括所述K1’个实际传输时机。
  14. 根据权利要求1-11任一项所述的方法,其特征在于,所述多个备选传输时机包括K2’个实际传输时机上;其中,所述K2’个实际传输时机是对K2个名义传输时机进行划分得到的多个实际传输时机,所述K2个名义传输时机是背对背连续分配的传输时机;
    所述多个目标传输时机包括所述多个第二实际传输时机;其中,所述多个第二实际传输时机是所述K2’个实际传输时机中可以进行上行PUSCH传输的多个传输时机。
  15. 根据权利要求1-11任一项所述的方法,其特征在于,所述多个备选传输时机包括K2”个实际传输时机;其中,所述K2”个实际传输时机是K2’个实际传输时机中,可以进行上行PUSCH传输的传输时机;所述K2’个实际传输时机是对K2个名义传输时机进行划分得到的实际传输时机;所述K2个名义传输时机是背对背分配的连续传输时机;
    所述多个目标传输时机包括所述K2”个实际传输时机。
  16. 根据权利要求1或2所述的方法,其特征在于,所述确定至少一个基础RV序列与用于发送物理上行数据信道PUSCH的多个备选传输时机 之间的映射关系,包括:
    确定所述至少一个基础RV序列与用于发送PUSCH的所有备选传输时机之间的所述映射关系。
  17. 根据权利要求16所述的方法,其特征在于,所述所有备选传输时机包括所有名义传输时机;所述多个目标传输时机包括所述所有名义传输时机中可以进行上行PUSCH传输的所有实际传输时机。
  18. 根据权利要求16所述的方法,其特征在于,所述所有备选传输时机包括可以进行上行PUSCH传输的所有实际传输时机;
    所述多个目标传输时机包括所述所有实际传输时机。
  19. 一种信道传输装置,其特征在于,包括:第一确定模块,被配置为确定至少一个基础RV序列与用于发送物理上行数据信道PUSCH的多个备选传输时机之间的映射关系;
    第二确定模块,被配置为根据所述至少一个基础RV序列,确定所述多个备选传输时机中的每个备选传输时机对应的实际RV序列;
    传输模块,被配置为在多个目标传输时机上,分别基于相应的目标传输时机对应的所述实际RV序列,重复发送所述PUSCH的数据块。
  20. 一种计算机可读存储介质,其特征在于,所述存储介质存储有计算机程序,所述计算机程序用于执行上述权利要求1-18任一项所述的信道传输方法。
  21. 一种信道传输装置,其特征在于,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为用于执行上述权利要求1-18任一项所述的信道传输方法。
PCT/CN2020/119602 2020-09-30 2020-09-30 信道传输方法及装置、存储介质 WO2022067740A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN202080002518.2A CN115606277A (zh) 2020-09-30 2020-09-30 信道传输方法及装置、存储介质
BR112023005609A BR112023005609A2 (pt) 2020-09-30 2020-09-30 Método e aparelho de transmissão de canal, e, meio de armazenamento legível por computador
US18/044,490 US20230345469A1 (en) 2020-09-30 2020-09-30 Channel transmission method and apparatus, and storage medium
EP20955763.6A EP4224958A4 (en) 2020-09-30 2020-09-30 CHANNEL TRANSMISSION METHOD AND APPARATUS, AND STORAGE MEDIUM
JP2023518879A JP7496475B2 (ja) 2020-09-30 2020-09-30 チャネル伝送方法及び装置、記憶媒体
PCT/CN2020/119602 WO2022067740A1 (zh) 2020-09-30 2020-09-30 信道传输方法及装置、存储介质
KR1020237011891A KR20230062639A (ko) 2020-09-30 2020-09-30 채널 전송 방법 및 장치, 저장 매체(channel transmission method and apparatus, and storage medium)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/119602 WO2022067740A1 (zh) 2020-09-30 2020-09-30 信道传输方法及装置、存储介质

Publications (1)

Publication Number Publication Date
WO2022067740A1 true WO2022067740A1 (zh) 2022-04-07

Family

ID=80951121

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/119602 WO2022067740A1 (zh) 2020-09-30 2020-09-30 信道传输方法及装置、存储介质

Country Status (7)

Country Link
US (1) US20230345469A1 (zh)
EP (1) EP4224958A4 (zh)
JP (1) JP7496475B2 (zh)
KR (1) KR20230062639A (zh)
CN (1) CN115606277A (zh)
BR (1) BR112023005609A2 (zh)
WO (1) WO2022067740A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023206227A1 (zh) * 2022-04-28 2023-11-02 北京小米移动软件有限公司 冗余版本rv的指示方法、装置、通信设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110022615A (zh) * 2018-01-08 2019-07-16 电信科学技术研究院 一种数据传输方法、装置、设备及计算机可读存储介质
WO2019183827A1 (en) * 2018-03-28 2019-10-03 Zte Corporation Channel state information feedback methods and systems
CN111490858A (zh) * 2019-01-29 2020-08-04 华为技术有限公司 一种卫星通信的自适应传输方法、装置及系统
CN111656840A (zh) * 2018-01-23 2020-09-11 华为技术有限公司 用于时域免授权pusch资源分配的系统和方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240071415A (ko) * 2019-01-04 2024-05-22 텔레폰악티에볼라겟엘엠에릭슨(펍) 초-신뢰 저-레이턴시 통신을 위한 반복
CN111246582B (zh) * 2020-01-20 2023-04-07 展讯半导体(南京)有限公司 信息发送方法及装置、信息接收方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110022615A (zh) * 2018-01-08 2019-07-16 电信科学技术研究院 一种数据传输方法、装置、设备及计算机可读存储介质
CN111656840A (zh) * 2018-01-23 2020-09-11 华为技术有限公司 用于时域免授权pusch资源分配的系统和方法
WO2019183827A1 (en) * 2018-03-28 2019-10-03 Zte Corporation Channel state information feedback methods and systems
CN111490858A (zh) * 2019-01-29 2020-08-04 华为技术有限公司 一种卫星通信的自适应传输方法、装置及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4224958A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023206227A1 (zh) * 2022-04-28 2023-11-02 北京小米移动软件有限公司 冗余版本rv的指示方法、装置、通信设备及存储介质

Also Published As

Publication number Publication date
JP7496475B2 (ja) 2024-06-06
EP4224958A1 (en) 2023-08-09
BR112023005609A2 (pt) 2023-05-09
EP4224958A4 (en) 2023-10-11
US20230345469A1 (en) 2023-10-26
CN115606277A (zh) 2023-01-13
JP2023542400A (ja) 2023-10-06
KR20230062639A (ko) 2023-05-09

Similar Documents

Publication Publication Date Title
WO2020019351A1 (zh) 传输配置指示的配置方法及装置
CN108401501B (zh) 数据传输方法、装置及无人机
WO2022141074A1 (zh) 波束指示方法、波束指示装置及存储介质
WO2022205233A1 (zh) 用于pusch的通信方法、用于pusch的通信装置及存储介质
WO2022193149A1 (zh) 波束确定方法、波束确定装置及存储介质
WO2021087786A1 (zh) 波束失败请求资源分配方法、装置及存储介质
WO2024000541A1 (zh) 资源确定、多载波调度方法及装置、存储介质
WO2022205229A1 (zh) 用于pusch的通信方法、装置及存储介质
WO2022120535A1 (zh) 资源确定方法、资源确定装置及存储介质
WO2022067740A1 (zh) 信道传输方法及装置、存储介质
WO2019090723A1 (zh) 数据传输方法及装置
WO2024016234A1 (zh) 直连链路sl同步方法及装置、存储介质
WO2023010465A1 (zh) 上行pusch的开环功率控制方法、装置及存储介质
WO2022067741A1 (zh) 信道传输方法及装置、存储介质
WO2022178787A1 (zh) 信道传输方法及装置、存储介质
WO2022006758A1 (zh) 确定harq反馈时延的方法及装置、存储介质
WO2024065219A1 (zh) 跳频处理方法及装置
WO2024065220A1 (zh) 跳频处理方法及装置
WO2022134118A1 (zh) 信息传输方法及装置、存储介质
WO2023226032A1 (zh) 资源确定、多载波调度方法及装置、存储介质
RU2806449C1 (ru) Способ и устройство для передачи канала и носитель данных
WO2022077340A1 (zh) 跨载波调度方法及装置、存储介质
WO2024168557A1 (zh) 传输配置指示状态确定方法、配置方法、装置及存储介质
WO2023115429A1 (zh) 重复传输方法及装置、存储介质
WO2024168898A1 (zh) 一种物理上行共享信道pusch通信方法、装置及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20955763

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023518879

Country of ref document: JP

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023005609

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 202347025802

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20237011891

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2023108783

Country of ref document: RU

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112023005609

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20230327

ENP Entry into the national phase

Ref document number: 2020955763

Country of ref document: EP

Effective date: 20230502