WO2022067549A1 - 无线通信的方法和设备 - Google Patents

无线通信的方法和设备 Download PDF

Info

Publication number
WO2022067549A1
WO2022067549A1 PCT/CN2020/118989 CN2020118989W WO2022067549A1 WO 2022067549 A1 WO2022067549 A1 WO 2022067549A1 CN 2020118989 W CN2020118989 W CN 2020118989W WO 2022067549 A1 WO2022067549 A1 WO 2022067549A1
Authority
WO
WIPO (PCT)
Prior art keywords
harq
rtt
duration
feedback
time interval
Prior art date
Application number
PCT/CN2020/118989
Other languages
English (en)
French (fr)
Inventor
胡奕
李海涛
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to EP20955574.7A priority Critical patent/EP4221310A4/en
Priority to CN202311388758.2A priority patent/CN117320173A/zh
Priority to PCT/CN2020/118989 priority patent/WO2022067549A1/zh
Priority to CN202080102117.4A priority patent/CN115702584A/zh
Publication of WO2022067549A1 publication Critical patent/WO2022067549A1/zh
Priority to US18/187,666 priority patent/US20230224091A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1822Automatic repetition systems, e.g. Van Duuren systems involving configuration of automatic repeat request [ARQ] with parallel processes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1858Transmission or retransmission of more than one copy of acknowledgement message
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1864ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/188Time-out mechanisms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the embodiments of the present application relate to the field of communications, and in particular, to a method and device for wireless communication.
  • the terminal device can start the Hybrid Automatic Repeat Request (HARQ) after completing the uplink transmission or the downlink reception.
  • Round Trip Time (RTT) A timer, after the timer expires, the network device can perform data scheduling.
  • the design of the duration of the HARQ RTT timer usually mainly considers the processing delay after the terminal equipment completes data transmission.
  • Non-Terrestrial Networks NTN
  • the signal transmission delay between the terminal and the network is very large.
  • how to design the duration of the HARQ RTT timer to take into account the power saving of the terminal and the network performance. Scheduling is an urgent problem.
  • the embodiments of the present application provide a method and device for wireless communication, which can design the duration of the HARQ RTT timer according to the RTT between the terminal device and the network device, which is conducive to reducing the power consumption of the terminal.
  • a first aspect provides a method for wireless communication, comprising: a first device determining, according to a first round-trip time RTT, the duration of a HARQ RTT timer corresponding to a first hybrid automatic request retransmission HARQ process, or the first device Determine that the duration of the HARQ RTT timer corresponding to the first HARQ process is a preset value, where the first HARQ process is the HARQ process used by the first data channel, and the first data channel is used to carry the physical downlink
  • the first TB in at least one transport block TB scheduled by the control channel PDCCH, the first RTT is determined according to the signal transmission delay between the terminal device and the network device, the first device is a terminal device or a network device, the The first device is the sending end or the receiving end of the first data channel.
  • a wireless communication device which is used to execute the method in the first aspect or any possible implementation manner of the first aspect.
  • the device includes a unit for performing the method in the above-mentioned first aspect or any possible implementation manner of the first aspect.
  • a wireless communication device comprising: a processor and a memory.
  • the memory is used for storing a computer program
  • the processor is used for calling and running the computer program stored in the memory to execute the method in the above-mentioned first aspect or each implementation manner thereof.
  • a chip is provided, which is used to implement the method in the above-mentioned first aspect or each of its implementation manners.
  • the chip includes: a processor for invoking and running a computer program from a memory, so that a device installed with the chip executes the method in the first aspect or each of its implementations.
  • a computer-readable storage medium for storing a computer program, and the computer program causes a computer to execute the method in the above-mentioned first aspect or each implementation manner thereof.
  • a computer program product comprising computer program instructions, the computer program instructions causing a computer to execute the method in the above-mentioned first aspect or each of its implementations.
  • a computer program which, when run on a computer, causes the computer to execute the method of the above-mentioned first aspect or each of its implementations.
  • the terminal device or the network device can determine the duration of the HARQ RTT timer corresponding to the HARQ process used by the data channel according to the round-trip time RTT or determine the duration to be a preset value, which is conducive to taking into account the power saving of the terminal and the scheduling of the network .
  • FIG. 1 is a schematic diagram of an application scenario provided by an embodiment of the present application.
  • FIG. 2 is a schematic block diagram of a DRX according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a wireless communication method provided by an embodiment of the present application.
  • FIG. 4 is a schematic block diagram of a wireless communication device provided by an embodiment of the present application.
  • FIG. 5 is a schematic block diagram of a communication device provided by another embodiment of the present application.
  • FIG. 6 is a schematic block diagram of a chip provided by an embodiment of the present application.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • CDMA Wideband Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Advanced Long Term Evolution
  • NR New Radio
  • NTN Non-Terrestrial Networks
  • UMTS Universal Mobile Telecommunication System
  • WLAN Wireless Local Area Networks
  • Wireless Fidelity Wireless Fidelity
  • WiFi fifth-generation communication
  • D2D Device to Device
  • M2M Machine to Machine
  • MTC Machine Type Communication
  • V2V Vehicle to Vehicle
  • V2X Vehicle to everything
  • the communication system in this embodiment of the present application may be applied to a carrier aggregation (Carrier Aggregation, CA) scenario, a dual connectivity (Dual Connectivity, DC) scenario, or a standalone (Standalone, SA) distribution. web scene.
  • Carrier Aggregation, CA Carrier Aggregation, CA
  • DC Dual Connectivity
  • SA standalone
  • the communication system in the embodiment of the present application may be applied to an unlicensed spectrum, where the unlicensed spectrum may also be considered as a shared spectrum; or, the communication system in the embodiment of the present application may also be applied to a licensed spectrum, where, Licensed spectrum can also be considered unshared spectrum.
  • the embodiments of the present application describe various embodiments in conjunction with network equipment and terminal equipment, where the terminal equipment may also be referred to as user equipment (User Equipment, UE), access terminal, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device, etc.
  • user equipment User Equipment, UE
  • access terminal subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device, etc.
  • the terminal device can be a station (STATION, ST) in the WLAN, can be a cellular phone, a cordless phone, a Session Initiation Protocol (Session Initiation Protocol, SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, personal digital processing (Personal Digital Assistant, PDA) devices, handheld devices with wireless communication capabilities, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, next-generation communication systems such as end devices in NR networks, or future Terminal equipment in the evolved public land mobile network (Public Land Mobile Network, PLMN) network, etc.
  • PLMN Public Land Mobile Network
  • the terminal device can be deployed on land, including indoor or outdoor, handheld, wearable, or vehicle-mounted; it can also be deployed on water (such as ships, etc.); it can also be deployed in the air (such as airplanes, balloons, and satellites) superior).
  • the terminal device may be a mobile phone (Mobile Phone), a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (Virtual Reality, VR) terminal device, and an augmented reality (Augmented Reality, AR) terminal Equipment, wireless terminal equipment in industrial control, wireless terminal equipment in self driving, wireless terminal equipment in remote medical, wireless terminal equipment in smart grid , wireless terminal equipment in transportation safety, wireless terminal equipment in smart city or wireless terminal equipment in smart home, etc.
  • a mobile phone Mobile Phone
  • a tablet computer Pad
  • a computer with a wireless transceiver function a virtual reality (Virtual Reality, VR) terminal device
  • augmented reality (Augmented Reality, AR) terminal Equipment wireless terminal equipment in industrial control, wireless terminal equipment in self driving, wireless terminal equipment in remote medical, wireless terminal equipment in smart grid , wireless terminal equipment in transportation safety, wireless terminal equipment in smart city or wireless terminal equipment in smart home, etc.
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices, which are the general term for the intelligent design of daily wear and the development of wearable devices using wearable technology, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable device is not only a hardware device, but also realizes powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-scale, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, which needs to cooperate with other devices such as smart phones.
  • the network device may be a device for communicating with a mobile device, and the network device may be an access point (Access Point, AP) in WLAN, or a base station (Base Transceiver Station, BTS) in GSM or CDMA , it can also be a base station (NodeB, NB) in WCDMA, it can also be an evolved base station (Evolutional Node B, eNB or eNodeB) in LTE, or a relay station or access point, or in-vehicle equipment, wearable devices and NR networks
  • the network device may have a mobile feature, for example, the network device may be a mobile device.
  • the network device may be a satellite or a balloon station.
  • the satellite may be a low earth orbit (LEO) satellite, a medium earth orbit (MEO) satellite, a geostationary earth orbit (GEO) satellite, a High Elliptical Orbit (HEO) ) satellite etc.
  • the network device may also be a base station located on land, water, or the like.
  • a network device may provide services for a cell, and a terminal device communicates with the network device through transmission resources (for example, frequency domain resources, or spectrum resources) used by the cell, and the cell may be a network device (
  • the cell can belong to the macro base station, or it can belong to the base station corresponding to the small cell (Small cell).
  • Pico cell Femto cell (Femto cell), etc.
  • These small cells have the characteristics of small coverage and low transmission power, and are suitable for providing high-speed data transmission services.
  • the communication system 100 may include a network device 110, and the network device 110 may be a device that communicates with a terminal device 120 (or referred to as a communication terminal, a terminal).
  • the network device 110 may provide communication coverage for a particular geographic area, and may communicate with terminal devices located within the coverage area.
  • FIG. 1 exemplarily shows one network device and two terminal devices.
  • the communication system 100 may include multiple network devices and the coverage of each network device may include other numbers of terminal devices. This application The embodiment does not limit this.
  • the communication system 100 may further include other network entities such as a network controller and a mobility management entity, which are not limited in this embodiment of the present application.
  • network entities such as a network controller and a mobility management entity, which are not limited in this embodiment of the present application.
  • a device having a communication function in the network/system may be referred to as a communication device.
  • the communication device may include a network device 110 and a terminal device 120 with a communication function, and the network device 110 and the terminal device 120 may be the specific devices described above, which will not be repeated here.
  • the communication device may also include other devices in the communication system 100, such as other network entities such as a network controller, a mobility management entity, etc., which are not limited in this embodiment of the present application.
  • the "instruction" mentioned in the embodiments of the present application may be a direct instruction, an indirect instruction, or an associated relationship.
  • a indicates B it can indicate that A directly indicates B, for example, B can be obtained through A; it can also indicate that A indicates B indirectly, such as A indicates C, and B can be obtained through C; it can also indicate that there is an association between A and B relation.
  • corresponding may indicate that there is a direct or indirect corresponding relationship between the two, or may indicate that there is an associated relationship between the two, or indicate and be instructed, configure and be instructed configuration, etc.
  • the concept of DRX is proposed for the purpose of terminal power saving.
  • the network device can configure the terminal device to wake up at the time predicted by the network (DRX ON) and monitor the PDSCH, and the network can also configure the terminal device to sleep at the time predicted by the network (DRX OFF), that is, the terminal device does not need to monitor the PDCCH. Therefore, if the network device 120 has data to transmit to the terminal device 110, the network device 120 can schedule the terminal device 110 during the time when the terminal device 110 is in DRX ON, and during the DRC OFF time, due to the radio frequency being turned off, it can reduce the Terminal power consumption.
  • the DRX cycle configured by the network device for the terminal device consists of an activation period (On Duration) and a sleep period (Opportunity for DRX).
  • On Duration an activation period
  • Opportunity for DRX the terminal device monitors and receives the PDCCH; the terminal device does not monitor the PDCCH during the sleep period to reduce power consumption.
  • the terminal device in the dormant period in this embodiment of the present application does not receive the PDCCH, but can receive data from other physical channels.
  • the embodiments of the present invention are not specifically limited.
  • the terminal device may receive a physical downlink shared channel (Physical Downlink Shared Channel, PDSCH), acknowledgment/non-acknowledgment (ACK/NACK), and the like.
  • PDSCH Physical Downlink Shared Channel
  • ACK/NACK acknowledgment/non-acknowledgment
  • SPS semi-persistent scheduling
  • the terminal device may receive periodically configured PDSCH data.
  • a DRX function may be configured for a media access control (Media Access Control, MAC) entity (entity) through a radio resource control (Radio Resource Control, RRC) to control the behavior of the terminal device to monitor the PDCCH.
  • MAC Media Access Control
  • RRC Radio Resource Control
  • each MAC entity may correspond to a DRX configuration.
  • the DRX configuration may include at least one of the following:
  • DRX Duration Timer (drx-onDurationTimer): The duration that the terminal device wakes up at the beginning of a DRX Cycle.
  • DRX slot offset (drx-SlotOffset): the delay for the terminal device to start drx-onDurationTimer.
  • DRX inactivity timer (drx-InactivityTimer): After the terminal device receives a PDCCH indicating uplink initial transmission or downlink initial transmission, the terminal device continues to monitor the duration of the PDCCH.
  • DRX downlink retransmission timer (drx-RetransmissionTimerDL): the longest duration for which the terminal device monitors the PDCCH indicating the downlink retransmission scheduling.
  • drx-RetransmissionTimerDL the longest duration for which the terminal device monitors the PDCCH indicating the downlink retransmission scheduling.
  • Each downlink HARQ process except the broadcast HARQ process corresponds to one drx-RetransmissionTimerDL.
  • DRX uplink retransmission timer (drx-RetransmissionTimerUL): the longest duration for which the terminal device monitors the PDCCH indicating uplink retransmission scheduling.
  • drx-RetransmissionTimerUL the longest duration for which the terminal device monitors the PDCCH indicating uplink retransmission scheduling.
  • Each uplink HARQ process corresponds to one drx-RetransmissionTimerUL.
  • Long DRX cycle start offset (longDRX-CycleStartOffset): used to configure the long DRX cycle and the subframe offsets for the start of the long DRX cycle and the short DRX cycle.
  • Short DRX cycle (drx-ShortCycle): Short DRX cycle, optional configuration.
  • Short cycle timer (drx-ShortCycleTimer): the duration of the terminal device in the short DRX cycle (and not receiving any PDCCH), which is optional.
  • HARQ RTT Timer The minimum waiting time that the terminal device expects to receive the PDCCH indicating downlink scheduling.
  • HARQ RTT Timer The minimum waiting time that the terminal device expects to receive the PDCCH indicating downlink scheduling.
  • Each downlink HARQ process except the broadcast HARQ process corresponds to one HARQ RTT Timer.
  • Short TTI DRX retransmission timer (drx-RetransmissionTimerShortTTI): When short TTI is configured, the duration of the downlink retransmission timer.
  • Short TTI DRX uplink retransmission timer (drx-ULRetransmissionTimerShortTTI): When short TTI is configured, the duration of the uplink retransmission timer.
  • Uplink Hybrid Automatic Repeat Request (HARQ) Round Trip Time (RTT) Timer (UL HARQ RTT Timer): The minimum waiting time that the terminal device expects to receive the PDCCH indicating the uplink scheduling, each time Each uplink HARQ process corresponds to one UL HARQ RTT Timer.
  • RTT Round Trip Time
  • DRX Active Time includes the following situations:
  • drx-onDurationTimer Any one of drx-onDurationTimer, drx-InactivityTimer, drx-RetransmissionTimerDL, drx-RetransmissionTimerShortTTI, drx-RetransmissionTimerUL, drx-ULRetransmissionTimerShortTTI and random access contention resolution timer (ra-ContentionResolutionTimer) is running;
  • the terminal device sends a Scheduling Request (SR) on the PUCCH/Short PUCCH (Short PUCCH, SPUCCH) and is in a pending (pending) state;
  • SR Scheduling Request
  • the terminal device has not received an initial transmission of the PDCCH indication scrambled by the cell radio network temporary identity (Cell RNTI, C-RNTI) after successfully receiving the random access response;
  • Cell RNTI cell radio network temporary identity
  • the UL grant can be received, and there is data in the HARQ buffer (buffer) of the asynchronous HARQ process;
  • a machine type of communication (MTC) PDCCH uplink HARQ-ACK feedback configuration (mpdcch-UL-HARQ-ACK-FeedbackConfig) is configured and repeat transmission within a bundle is currently in progress.
  • the terminal device uses the long DRX cycle if the drx-InactivityTimer times out and/or the terminal device receives a DRX command Media Access Control Control Element (DRX Media Access Control Command Control Element, DRX Command MAC CE).
  • DRX Media Access Control Control Element DRX Media Access Control Command Control Element, DRX Command MAC CE
  • the terminal device uses the short DRX cycle.
  • the terminal device may decide the time to start drx-onDurationTimer according to whether it is currently in a long DRX cycle or a short DRX cycle.
  • modulo represents the modulo operation.
  • the terminal device may start the drx-onDurationTimer at a time after drx-SlotOffset slots from the beginning of the current subframe.
  • the conditions for starting or restarting the drx-InactivityTimer include, but are not limited to:
  • the terminal device If the terminal device receives a PDCCH indicating downlink or uplink initial transmission, the terminal device starts or restarts the drx-InactivityTimer.
  • the conditions for starting and stopping drx-RetransmissionTimerDL include, but are not limited to:
  • the terminal device When the terminal device receives a PDCCH indicating downlink transmission, or when the terminal device receives a MAC PDU on the configured downlink grant resource, the terminal device stops the drx-RetransmissionTimerDL corresponding to the HARQ process.
  • the timer used to control the minimum waiting time required by the terminal device to expect to receive the PDCCH indicating downlink scheduling may be expressed by different names.
  • the timer may be It is called HARQ RTT timer, and can be called drx-HARQ-RTT-TimerDL in the NR system.
  • this timer can also be updated to other names.
  • the embodiment of this application is for the name of the timer and the applicable
  • the communication system is not specifically limited, and it can be applied to various systems or networks that are provided with the timer.
  • HARQ RTT timer For the timer used to control the minimum waiting time required by the terminal equipment to expect to receive the PDCCH indicating uplink scheduling
  • the following behavior is HARQ RTT timer
  • the uplink behavior is UL HARQ RTT timer as an example to illustrate, but the application is not limited to this.
  • the conditions for starting and stopping the HARQ RTT Timer include, but are not limited to:
  • the terminal equipment When the terminal equipment receives a PDCCH indicating downlink transmission, or if the terminal equipment has a configured downlink grant in the subframe receiving the Physical Uplink Shared Channel (PUSCH), then:
  • the terminal device is a Narrow Band Internet of Things (NB-IoT) terminal or an enhanced machine type of communication (enhanced machine type of communication, eMTC) terminal, then;
  • NB-IoT Narrow Band Internet of Things
  • eMTC enhanced machine type of communication
  • the terminal device starts each of the multiple TBs in the subframe where the last repeated transmission of the PDSCH of the last TB of the multiple TBs is received.
  • HARQ RTT Timer corresponding to the downlink HARQ process used by the PDSCH of the TB.
  • the terminal device starts the HARQ RTT Timer corresponding to the downlink HARQ process used by the PDSCH in the subframe where the last repeated transmission of the PDSCH is received.
  • the UE If the UE is not one of the two aforementioned terminals, start the HARQ RTT Timer corresponding to the downlink HARQ process used by the PDSCH.
  • the terminal device If the HARQ RTT Timer times out, and if the data decoding of the HARQ process fails, the terminal device starts the drx-RetransmissionTimer corresponding to the downlink HARQ process.
  • the physical layer indicates that multiple TBs are associated with the HARQ RTT Timer, start or restart the drx-InactivityTimer when the HARQ RTT Timers corresponding to all these HARQ processes have timed out, otherwise, start or restart the drx- InactivityTimer.
  • the conditions for the terminal device to start or restart the UL HARQ RTT Timer are:
  • the terminal device receives a PDCCH indicating an uplink transmission using an asynchronous HARQ process, or if the terminal device has a configured uplink grant for an asynchronous HARQ process in this subframe, or if the terminal device receives a PDCCH indicating an uplink transmission using an automatic HARQ process ,but:
  • Case 1 If the physical layer indicates that multiple TB transmissions are scheduled, the terminal device starts the PUSCH of each of the multiple TBs in the subframe where the last repeated transmission of the PUSCH of the last TB of the multiple TBs is completed.
  • the UL HARQ RTT Timer corresponding to the used uplink HARQ process.
  • the terminal device starts the UL HARQ RTT Timer corresponding to the uplink HARQ process used by the PUSCH in the subframe where the last repeated transmission of the PUSCH is completed.
  • the terminal device starts the drx-ULRetransmissionTimer corresponding to the uplink HARQ process.
  • the terminal device starts the drx-ULRetransmissionTimer corresponding to the uplink HARQ process.
  • the terminal device starts the drx-InactivityTimer after the UL HARQ RTT Timers corresponding to all these HARQ processes have timed out; otherwise, start or restart drx - InactivityTimer.
  • the terminal device will start a HARQ RTT timer (UL HARQ RTT Timer for uplink transmission and HARQ RTT Timer for downlink transmission) after completing uplink transmission or downlink reception.
  • HARQ RTT timer UL HARQ RTT Timer for uplink transmission and HARQ RTT Timer for downlink transmission
  • the value of the HARQ RTT Timer mainly considers the feedback delay of the terminal equipment and the terminal processing delay after completing the HARQ feedback.
  • the processing delay after the terminal equipment completes the PUSCH transmission is mainly considered.
  • the processing delay of the terminal device is usually a few milliseconds.
  • the processing delay is greater than the round trip transmission time (Round Trip Time, RTT) of the signal transmission between the terminal and the network, that is, the network can
  • RTT Round Trip Time
  • the signal transmission delay between the UE and the network is greatly increased. Therefore, how to design the duration of the HARQ RTT timer is a problem that continues to be solved.
  • FIG. 3 is a schematic interaction diagram of a method 200 for wireless communication provided by an embodiment of the present application.
  • the method 200 may be executed by a terminal device or a network device in the communication system shown in FIG. 1 , and as shown in FIG. 3 , the method 200 may include at least some of the following contents:
  • the first device determines the duration of the HARQ RTT timer corresponding to the first HARQ process according to the first round-trip time RTT, or the first device determines the HARQ RTT timer corresponding to the first HARQ process
  • the duration is a preset value, wherein the first HARQ process is the HARQ process used by the first data channel, and the first data channel is used to carry the first data channel in at least one transport block TB scheduled by the physical downlink control channel PDCCH.
  • One TB, the first RTT is determined according to the signal transmission delay between the terminal device and the network device.
  • the first device may be a terminal device, or may also be a network device, and various specific implementations of the terminal device and the network device refer to the description of the embodiment shown in FIG. 1 , here No longer.
  • the first device is a sending end of the first data channel, or is a receiving end of the first data channel.
  • the terminal device may receive the DRX configuration of the network device, and the DRX configuration may include, for example, any DRX parameter described in the foregoing embodiment, which is not repeated here for brevity.
  • the first RTT may be determined according to a time advance (Time Advance, TA) of the terminal device.
  • the first RTT may be the TA.
  • both the terminal device side and the network device side can know, therefore, the duration of the HARQ RTT timer corresponding to the HARQ process can be determined according to the first RTT.
  • the terminal device may receive a PDCCH sent by a network device, where the PDCCH is used to schedule uplink or downlink transmission.
  • the scheduling situation of the PDCCH may include at least one of the following:
  • Scheduling case 1 PDCCH is used to schedule the reception of one downlink TB.
  • Scheduling case 2 PDCCH is used to schedule the reception of multiple downlink TBs.
  • Scheduling case 3 PDCCH is used to schedule the transmission of one uplink TB.
  • Scheduling case 4 PDCCH is used to schedule the transmission of multiple downlink TBs.
  • the first data channel may be used to carry the scheduled TB, or in other words, the first data channel is a data channel corresponding to the scheduled TB.
  • the first data channel may be a physical uplink shared channel (Physical Uplink Shared Channel, PUSCH).
  • PUSCH Physical Uplink Shared Channel
  • the first data channel may be a physical downlink shared channel (Physical Downlink Shared Channel, PDSCH).
  • the first HARQ process used by the first data channel is the uplink HARQ process.
  • the first HARQ process used by the first data channel is the downlink HARQ process.
  • the terminal device After the terminal device receives the PDCCH, it can start the HARQ RTT timer corresponding to the HARQ process used to carry the data channel corresponding to the scheduled TB at a specific time. During the running period of the HARQ RTT timer, it does not monitor the PDCCH. After the timer expires, the network device can schedule data.
  • the network device can also start the HARQ RTT timer corresponding to the HARQ process used by the data channel corresponding to the scheduled TB at a specific time. During the operation of the HARQ RTT timer, no Data transmission using this HARQ process is rescheduled.
  • the scheduled uplink transmission or downlink transmission may be transmitted only once, or may be transmitted multiple times, and the first transmission (ie, initial transmission) of a certain downlink transmission may also be referred to as the downlink transmission For the first repeated transmission of the transmission, the last transmission of the downlink transmission may also be referred to as the last repeated transmission of the downlink transmission. Similarly, the same is true for the uplink transmission, which is not repeated here.
  • the terminal device may start the HARQ RTT timer corresponding to the first HARQ process used by the first data channel at the first time, where the first data channel is used to carry the one downlink TB.
  • the first time may be, for example, a first subframe, and the first subframe is a subframe where the last repeated transmission of the first data channel is received.
  • the terminal device may start the HARQ RTT timer corresponding to the first HARQ process used by the first data channel at the second time, where the first data channel is used to carry the multiple downlink TBs.
  • the first downstream TB may be started.
  • the second time may be, for example, a second subframe, where the second subframe is a subframe where the last repeated transmission of the last TB of the multiple downlink TBs is received.
  • the terminal device may start a UL HARQ RTT timer corresponding to the first HARQ process used by the first data channel at a third time, where the first data channel is used to carry the one uplink TB.
  • the third time may be, for example, a third subframe, and the third subframe is the subframe where the last repeated transmission of the first data channel is completed.
  • the terminal device may start the HARQ RTT timer corresponding to the first HARQ process used by the first data channel at the fourth time, where the first data channel is used to carry the multiple uplink TBs.
  • the first upstream TB may be started by the terminal device.
  • the fourth time may be, for example, a fourth subframe, where the fourth subframe is the subframe where the last repeated transmission of the last TB of the multiple downlink TBs is completed.
  • the embodiments of the present application may be applicable to scenarios with relatively large RTTs, such as NTN scenarios, or other scenarios in which the duration of the HARQ RTT timer needs to be redesigned or defined, and the present application is not limited thereto.
  • the HARQ feedback of a part or all of the HARQ processes of the terminal device may be The function is configured to be in the off state, so that the network device can continue to schedule the terminal device without waiting for the uplink transmission of the terminal device (for uplink HARQ, it is uplink data transmission, and for downlink HARQ, it is the HARQ feedback of the terminal device for the downlink data transmission of the HARQ).
  • the HARQ process performs data transmission.
  • the state of the HARQ feedback function of the HARQ process may be considered when designing the duration of the HARQ RTT timer.
  • the duration of the HARQ RTT timer corresponding to the first HARQ process is determined according to the first RTT.
  • the duration of the HARQ RTT timer corresponding to the first HARQ process is a preset value.
  • the preset value may be a non-negative constant, such as 0 or 3.
  • the unit can be milliseconds or subframes, etc.
  • the HARQ-ACK feedback delay of the terminal device the time it may take for the terminal device to perform HARQ-ACK feedback, and the RTT may be considered. at least one of.
  • HARQ-ACK feedback may take a lot of time, which is not specifically limited in this application, and is introduced below Detailed description will be given in conjunction with specific embodiments.
  • the time it may take for the terminal device to perform HARQ-ACK feedback may include, for example, the time occupied by performing a single HARQ-ACK feedback on the one TB, or performing multiple HARQ-ACK feedbacks. Time occupied by ACK feedback, etc.
  • the time it may take for the terminal device to perform HARQ-ACK feedback may include, for example, the time taken to perform a single HARQ-ACK feedback for each of the multiple TBs, Or the time required for performing multiple HARQ-ACK feedbacks on each of the multiple TBs, or the time occupied by performing HARQ bundling feedback (HARQ-ACK bundling) on the multiple TBs, or the The time it takes for some TBs in the multiple TBs to perform a single HARQ-ACK feedback, and the time it takes for other TBs to perform multiple HARQ-ACK feedbacks, etc.
  • HARQ-ACK bundling HARQ-ACK bundling
  • the duration of the HARQ RTT timer can be designed so that the end time (or the stop time) of the HARQ RTT timer is later than the RTT time or the RTT time, and the terminal device completes the HARQ-
  • the time of ACK feedback is recorded as the feedback end time, and the RTT time is after the feedback end time and separated by the first RTT, because before the RTT time, the network device will not schedule the terminal device to use the same HARQ process for uplink or downlink transmission. , therefore, the terminal device may not monitor the PDCCH, thereby reducing the power consumption of the terminal.
  • the end moment of the HARQ RTT timer may be, for example, the first PDCCH occasion (PDCCH occasion, PO) after the RTT moment, or the subframe where the first PDCCH occasion after the RTT moment is located.
  • Data scheduling is not performed on the non-PO, therefore, the monitoring of the PDCCH is started at the first PO or the subframe where the first PO is located after the RTT time, which is beneficial to reduce the power consumption of the terminal.
  • the S210 may specifically include:
  • the first information includes at least one of the following:
  • the terminal device is configured for HARQ bundling feedback
  • HARQ feedback duration indicating the total time occupied by sending one HARQ feedback information multiple times
  • the first PDCCH interval representing the time interval from the first moment to the first PDCCH opportunity after the first moment, where the first moment is after the terminal device performs HARQ feedback and is separated by the first RTT;
  • the second PDCCH interval representing the time interval from the second time to the first PDCCH opportunity after the second time, the second time after the terminal equipment performs HARQ feedback, and the interval of the terminal equipment processing delay.
  • the HARQ-ACK feedback delay may be the delay between the terminal equipment completing downlink transmission and starting to perform HARQ-ACK feedback on the downlink transmission.
  • the processing delay after the terminal device completes the HARQ-ACK feedback may include, for example, the delay for the terminal to switch from uplink transmission to downlink reception, or from completion of HARQ-ACK feedback to performing HARQ-ACK feedback. Delay between next data transmissions.
  • the HARQ-ACK information feedback repetition transmission times parameter may be used to indicate that the HARQ-ACK information needs to be fed back several times, for example, once or multiple times.
  • whether the terminal device is configured as HARQ-ACK bundling may be used to determine the number of HARQ-ACK information to be transmitted for the at least one TB.
  • the HARQ-ACK information of each TB needs to be fed back separately, and the number of HARQ-ACK information is the same as the number of scheduled TBs.
  • the HARQ-ACK information of multiple TBs can be bundling feedback, and the number k of HARQ-ACK information can be determined according to the number of scheduled TBs and the number of TBs fed back by bundling M.
  • NTB the number of TBs scheduled by the PDCCH
  • M the bundling size of the HARQ-ACK of multiple TBs indicated in the PDCCH, that is, the feedback of how many TBs a bundling includes, and ceiling indicates Rounded up.
  • the state of the HARQ feedback function corresponding to the first HARQ process may be, for example, an on state or an off state, and when the state of the HARQ feedback function corresponding to the first HARQ process is the on state,
  • the duration of the HARQ RTT timer corresponding to the first HARQ process can be determined according to the first RTT in combination with the above-mentioned other information, and when the state of the HARQ feedback function corresponding to the first HARQ process is in the off state, the HARQ RTT timing corresponding to the first HARQ process is determined.
  • the duration of the timer is the preset value.
  • the first PDCCH interval may be the time interval between the aforementioned RTT moment and the first PDCCH occasion after the RTT moment. More specifically, the time interval between the RTT time and the subframe where the first PDCCH opportunity after the RTT time is located. Time interval between subframes.
  • the second PDCCH interval may be a time interval between the time when the processing delay is experienced after the aforementioned feedback end time and the first PDCCH opportunity thereafter. More specifically, the time interval from this moment to the subframe where the first PDCCH opportunity is located. As an example, the time interval between the third subframe after the last subframe used by the terminal device to complete the HARQ feedback and the first subframe of the next PDCCH occasion.
  • the method for determining the duration of the HARQ RTT timer corresponding to the downlink HARQ process will be described from the perspective of the terminal equipment.
  • the above-mentioned information can also be known by the network equipment. Therefore, the network equipment can also determine in a similar manner to the terminal equipment.
  • the duration of the HARQ RTT timer corresponding to the downlink HARQ process is not performed.
  • data scheduling is performed. For brevity, here No longer.
  • determining the duration of the HARQ RTT timer corresponding to the first HARQ process according to the first RTT and the first information includes:
  • the terminal device may determine the first duration according to the first RTT and the first information
  • the duration of the HARQ RTT timer corresponding to the first HARQ process is determined.
  • the terminal device may determine the first duration as the duration of the HARQ RTT timer corresponding to the first HARQ process.
  • the terminal device may determine the larger value of the first duration and the first preset duration as the duration of the HARQ RTT timer corresponding to the first HARQ process, wherein the first HARQ process
  • the preset duration is determined according to the feedback delay of the at least one TB and the processing delay.
  • the following describes a method for determining the duration of the HARQ RTT timer corresponding to the downlink HARQ process with reference to specific embodiments.
  • Case 1 The at least one TB includes only the first TB.
  • the feedback delay of the at least one TB includes a first time interval, and the first time interval represents the last transmission of the first TB to the first time of the HARQ feedback information corresponding to the first TB.
  • the feedback repetition transmission times parameter of the HARQ-ACK information corresponding to the at least one TB includes a first parameter and/or a second parameter, where the first parameter is used to indicate the first transmission of the physical uplink control channel PUCCH.
  • the second parameter is used to indicate the PUCCH repetition factor. That is, the number of times of repeated feedback transmission of the first TB is multiple, and the PUCCH is used to carry the HARQ feedback information corresponding to the first TB.
  • the terminal device may determine the first duration according to the first RTT, the first time interval, and the parameter of the number of times of repeated transmission of feedback.
  • the first duration is equal to the sum of the first time interval, the first parameter, and the first RTT.
  • the first duration is equal to the sum of the first time interval, the second parameter, and the first RTT.
  • the first preset duration is equal to the feedback delay of the first TB and the processing delay.
  • the duration of the HARQ RTT timer corresponding to the first HARQ process may be set to the first duration, or the maximum value of the first duration and the first preset duration.
  • the at least one TB includes multiple TBs, the multiple TBs include the first TB, and the terminal device is not configured with HARQ bundling feedback, that is, the multiple TBs need to be fed back separately.
  • the feedback delay of the at least one TB includes a second time interval, and the second time interval represents the last transmission of the last TB of the plurality of TBs to the corresponding TBs of the plurality of TBs. Time interval between the first transmission of HARQ feedback information.
  • the parameter of the number of times of repeated transmissions for feedback of the HARQ-ACK information corresponding to the at least one TB includes a first parameter N1 and/or a second parameter N, where the first parameter N1 is used to indicate the first transmission of the PUCCH, and the The PUCCH is used to carry HARQ feedback information corresponding to the last TB of the multiple TBs.
  • the number of feedback repetition transmissions of the last TB may be 1, that is, N1 is 1.
  • the second parameter N is used to indicate the PUCCH repetition factor.
  • the terminal device may determine the first duration according to the first RTT, the number of the multiple TBs, the second time interval, and the feedback repeated transmission times parameter.
  • the time taken to perform HARQ-ACK feedback includes the time taken for the HARQ feedback information corresponding to the multiple TBs to be repeatedly transmitted N times (the worst case). , or the time taken for transmitting the HARQ feedback information corresponding to the last TB of the multiple TBs only once, and repeating the transmission N times for the HARQ feedback information corresponding to other TBs can also be considered.
  • the time spent for HARQ-ACK feedback can be, for example, N TB *N or ( NTB -1)*N+N1, where N represents the time occupied by N times of repeated transmission of one HARQ feedback information N1 is the time taken for the first repeated transmission of the HARQ feedback information corresponding to the transmission of the last TB, and the unit of N can be the time required to transmit a single HARQ information, or it can be considered that a single transmission of one HARQ information requires One subframe, that is, the unit of N may be a subframe.
  • the unit of the duration of the HARQ RTT timer determined in the embodiment of the present application may be a subframe, or a millisecond, etc., which is not limited in the present application.
  • the first duration is equal to T2+ NTB *N+RTT or T2+( NTB -1)*N+N1+RTT.
  • the first preset duration is equal to 7+N TB *N.
  • RTT represents the first RTT
  • T2 represents the second time interval
  • N1 represents the first parameter
  • N represents the second parameter
  • N TB represents the number of the multiple TBs.
  • Case 3 The at least one TB includes multiple TBs, the multiple TBs include the first TB, and the terminal device is configured with HARQ bundling feedback, that is, the multiple TBs can perform bundling feedback.
  • the feedback delay of the at least one TB includes a third time interval
  • the third time interval represents the last transmission of the last TB of the plurality of TBs to the corresponding TBs of the plurality of TBs. Time interval between the first transmission of HARQ feedback information.
  • the feedback repetition transmission times parameter of the HARQ-ACK information corresponding to the at least one TB includes a first parameter and/or a second parameter, where the first parameter is used to indicate the first transmission of the PUCCH, and the PUCCH is used for Bearing the HARQ feedback information of the last bundled feedback in the multiple TBs.
  • the second parameter is used to indicate the PUCCH repetition factor.
  • the terminal device may determine the said terminal device according to the first RTT, the third time interval, the feedback repetition transmission times parameter, and the number of groups for performing HARQ bundling feedback on the multiple TBs.
  • the first duration is equal to T3+k*N+RTT, or T3+(k-1)*N+N1+RTT.
  • the first preset duration is equal to 7+k*N;
  • RTT represents the first RTT
  • T3 represents the third time interval
  • N1 represents the first parameter
  • N represents the second parameter
  • k represents the number of bundling that the multiple TBs perform HARQ bundling feedback .
  • the implementation manners in Case 1 to Case 3 may be applicable to reduced capability (Reduced Capbility, RedCap) terminals, and such terminals have an impact on latency, reliability, bandwidth, coverage, and throughput. Other performance requirements are lower, such as enhanced mechanical communication eMTC terminals.
  • reduced capability Reduced Capbility, RedCap
  • Case 4 The at least one TB includes only the first TB.
  • the feedback delay of the at least one TB includes a fourth time interval, and the fourth time interval represents the last transmission of the first TB to the first time of the HARQ feedback information corresponding to the first TB.
  • the time interval between one transmission in other words, the time interval from the last subframe of the PDSCH of the first TB to the first subframe of the HARQ feedback corresponding to the first TB.
  • the first information includes the fourth time interval, the HARQ feedback duration, and the first PDCCH interval, where the HARQ feedback duration is the time occupied by transmitting the HARQ feedback information corresponding to the first TB.
  • Total time may be a single transmission, or multiple transmissions
  • the first PDCCH interval is the time from the first RTT to the next time after completing the transmission of the HARQ feedback information corresponding to the first TB Time interval between POs.
  • the terminal device may determine the first duration according to the first RTT, the fourth time interval, the HARQ feedback duration and the first PDCCH interval.
  • the first duration is equal to T4+TCK+RTT+ ⁇ PDCCH1 , which corresponds to the case where the HARQ feedback information of the first TB is transmitted once, and TCK represents the time taken for sending one feedback information at a time,
  • the T CK may be 1 ms or other length of time.
  • the first duration is equal to T4+N+RTT+ ⁇ PDCCH1, which corresponds to the case where the HARQ feedback information of the first TB is transmitted N times, and N represents the time taken to transmit one feedback information N times.
  • the first preset duration is equal to T4+3+N+ ⁇ PDCCH2.
  • RTT represents the first RTT
  • T4 represents the fourth time interval
  • N represents the HARQ feedback duration
  • ⁇ PDCCH1 represents the first PDCCH interval
  • ⁇ PDCCH2 represents the second PDCCH interval.
  • the unit of N may be the time required to transmit one HARQ information at a time, or it may be considered that one subframe is required to transmit one HARQ information at a time, that is, the unit of N may be a subframe.
  • the implementation in Case 4 may be applicable to RedCap terminals, such as NB-Iot terminals.
  • the at least one TB includes multiple TBs, the multiple TBs include the first TB, and the terminal device is configured with HARQ bundling feedback, that is, the multiple TBs can perform bundling feedback.
  • the feedback delay of the at least one TB includes a fifth time interval
  • the fifth time interval represents the last transmission of the multiple TBs to the first time of the HARQ feedback information corresponding to the multiple TBs
  • the fifth time interval represents a time interval between the last subframe of the PDSCH of the last TB among the multiple TBs and the first subframe corresponding to the first HARQ feedback information.
  • the first information includes the fifth time interval, the HARQ feedback duration, and the first PDCCH interval, where the HARQ feedback duration is the time occupied by transmitting the HARQ feedback information corresponding to the multiple TBs.
  • Total time may be a single transmission or multiple transmissions
  • the first PDCCH interval is the time between the time when the first RTT is experienced after the transmission of the last HARQ feedback information is completed to the next PO time interval.
  • Scenario 5 for a specific way of determining the time taken for transmitting the HARQ feedback information corresponding to the multiple TBs, reference may be made to the relevant description in Scenario 3.
  • the multiple TBs include two TBs, and the HARQ feedback information corresponding to the two TBs can be fed back together, and the time required to transmit the HARQ feedback information corresponding to the two TBs N times is N,
  • the unit may be the time occupied by a single transmission of one HARQ feedback information, or the unit may be one subframe. That is, the HARQ feedback duration may be N.
  • the terminal device may determine the first duration according to the first RTT, the fifth time interval, the HARQ feedback duration, and the first PDCCH interval.
  • the first duration is equal to T5+N+RTT+ ⁇ PDCCH1, wherein the HARQ feedback information of the multiple TBs is transmitted N times.
  • the first preset duration is equal to T5+3+N+ ⁇ PDCCH2.
  • RTT represents the first RTT
  • T5 represents the fifth time interval
  • N represents the HARQ feedback duration
  • ⁇ PDCCH1 represents the first PDCCH interval
  • ⁇ PDCCH2 represents the second PDCCH interval.
  • the implementation in Case 5 may be applicable to RedCap terminals, such as NB-Iot terminals. Specifically, it is applicable to the case where the terminal device is configured with HARQ-ACK bundling in an interleaving scenario.
  • the at least one TB includes multiple TBs, the multiple TBs include the first TB, and the terminal device is not configured with HARQ bundling feedback, that is, the multiple TBs can be fed back individually.
  • the feedback delay of the at least one TB includes a sixth time interval
  • the sixth time interval represents the last transmission of the multiple TBs to the first time of the HARQ feedback information corresponding to the multiple TBs
  • the time interval between transmissions More specifically, the sixth time interval represents a time interval between the last subframe of the PDSCH of the last TB among the plurality of TBs to the first subframe corresponding to the HARQ feedback information of the first TB.
  • the first information includes the sixth time interval, the HARQ feedback duration, and the first PDCCH interval, where the HARQ feedback duration is the time occupied by transmitting the HARQ feedback information corresponding to the multiple TBs.
  • Total time may be a single transmission or multiple transmissions
  • the first PDCCH interval is the time between the time when the first RTT is experienced after the HARQ feedback information of the last TB is transmitted to the next PO time interval.
  • the multiple TBs include two TBs, and in one case, the HARQ feedback duration includes the time required to transmit N times the HARQ feedback information corresponding to the two TBs respectively, that is, 2 *N, the unit may be the time occupied by a single transmission of one HARQ feedback information, or the unit may be one subframe.
  • the multiple TBs include two TBs
  • the HARQ feedback duration includes the time required to transmit the HARQ feedback information corresponding to the first TB N times and the time required to transmit the N1 times the HARQ feedback information corresponding to the first TB.
  • the time required for HARQ feedback information corresponding to two TBs, ie, N+N1 may be the time occupied by a single transmission of one HARQ feedback information, or the unit may be one subframe.
  • N1 is 1.
  • the terminal device may determine the first duration according to the first RTT, the sixth time interval, the HARQ feedback duration and the first PDCCH interval.
  • the first duration is equal to T6+2*N+RTT+ ⁇ PDCCH1.
  • the first duration is equal to T6+N+N1+RTT+ ⁇ PDCCH1.
  • the first preset duration is equal to T6+2N+1+ ⁇ PDCCH2.
  • RTT represents the first RTT
  • T5 represents the sixth time interval
  • N represents the HARQ feedback duration
  • ⁇ PDCCH1 represents the first PDCCH interval
  • ⁇ PDCCH2 represents the second PDCCH interval.
  • the implementation in Case 6 may be applicable to RedCap terminals, such as NB-Iot terminals. Specifically, it is applicable to the non-interleaving scenario, or the case where the terminal device is not configured with HARQ-ACK bundling in the interleaving scenario.
  • the duration of the HARQ RTT timer corresponding to the first HARQ process may be determined as the first RTT, or the longer value of the first RTT and the second preset duration.
  • the second preset duration may be 4, or may be determined according to a higher layer parameter K ULHARQRTT , and the unit is subframes, or milliseconds.
  • the S210 may specifically include:
  • the second information includes at least one of the following:
  • the third PDCCH interval representing the time interval from the third time to the first PDCCH opportunity after the third time, where the third time is the time when the terminal device finishes transmitting the data channel corresponding to the at least one TB Afterwards, and interval the first RTT;
  • the fourth PDCCH interval represents the time interval from the fourth moment to the first PDCCH opportunity after the fourth moment, where the fourth moment is after the transmission of the data channel corresponding to the at least one TB is completed, and the interval is processing delay.
  • the duration of the HARQ RTT timer corresponding to the first HARQ process may be determined according to the first RTT;
  • the state of the feedback function is the off state, it is determined that the duration of the HARQ RTT timer corresponding to the first HARQ process is a preset value.
  • the time when the terminal device completes the data channel corresponding to the at least one TB is recorded as the transmission completion time, the first RTT time after the transmission completion time is the RTT time, and the third PDCCH interval may be The time interval between the RTT moment and the first PDCCH opportunity after the RTT moment, more specifically, the third PDCCH interval may be between the RTT moment and the subframe where the first PDCCH opportunity after the RTT moment is located.
  • the time interval between that is, the time interval between the moment when the terminal device experiences the first RTT after completing the uplink transmission to the first subframe of the next PDCCH opportunity.
  • the fourth PDCCH interval may be a time interval between the moment when the processing delay is experienced after the transmission completion moment and the first PDCCH opportunity thereafter. As an example, after the terminal device completes the last subframe corresponding to the PUSCH transmission, the time interval from 3ms to the first subframe of the next PDCCH occasion is passed.
  • the method for determining the duration of the HARQ RTT timer corresponding to the uplink HARQ process is described from the perspective of the terminal equipment.
  • the above-mentioned information can also be known by the network equipment. Therefore, the network equipment can also be determined in a similar manner to the terminal equipment.
  • the duration of the HARQ RTT timer corresponding to the uplink HARQ process is performed. For the sake of brevity, the details are not repeated here.
  • determining the duration of the HARQ RTT timer corresponding to the first HARQ process according to the first RTT and the second information includes:
  • the terminal device may determine the second duration according to the first RTT and the second information
  • the duration of the HARQ RTT timer corresponding to the first HARQ process is determined.
  • the terminal device may determine the second duration as the duration of the HARQ RTT timer corresponding to the first HARQ process.
  • the terminal device may determine the larger value of the second duration and the second preset duration as the duration of the HARQ RTT timer corresponding to the first HARQ process.
  • the following describes a method for determining the duration of the HARQ RTT timer corresponding to the first HARQ process with reference to specific embodiments.
  • the terminal device may determine the first RTT as the duration of the HARQ RTT timer corresponding to the first HARQ process.
  • the terminal device may determine the duration of the HARQ RTT timer corresponding to the first HARQ process according to the first RTT and the second preset duration.
  • the maximum value of the first RTT and the second preset duration may be determined as the duration of the HARQ RTT timer corresponding to the first HARQ process.
  • Case 8 The at least one TB includes one TB, and the plurality of TBs includes the first TB.
  • RedCap terminals eg, NB-IoT terminals.
  • the terminal device may determine the second duration according to the first RTT and the third PDCCH interval.
  • the third PDCCH interval ⁇ PDCCH3 represents the time interval between the time when the first RTT is experienced after the last subframe corresponding to the PUSCH transmission of the first TB and the next PO, or, the time interval corresponding to the PUSCH transmission of the first TB The time interval between the moment when the first RTT is experienced after the last subframe and the first subframe of the next PO.
  • the second duration is equal to RTT+ ⁇ PDCCH3.
  • the second preset duration is equal to 4+ ⁇ PDCCH4.
  • RTT represents the first RTT
  • ⁇ PDCCH3 represents the third PDCCH interval
  • ⁇ PDCCH4 represents the fourth PDCCH interval.
  • the at least one TB includes a plurality of TBs, and the plurality of TBs include the first TB.
  • RedCap terminals eg, NB-IoT terminals.
  • the terminal device may determine the second duration according to the first RTT and the third PDCCH interval.
  • the third PDCCH interval ⁇ PDCCH3 represents the time interval from the moment of the first RTT to the next PO after the last subframe corresponding to the PUSCH transmission of the first TB, or in other words, the PUSCH transmission of the first TB corresponds to The time interval between the moment when the first RTT is experienced after the last subframe of the PO and the first subframe of the next PO.
  • the second duration is equal to RTT+ ⁇ PDCCH3.
  • the second preset duration is equal to 1+ ⁇ PDCCH4.
  • RTT represents the first RTT
  • ⁇ PDCCH3 represents the third PDCCH interval
  • ⁇ PDCCH4 represents the fourth PDCCH interval.
  • the embodiment of the present application only takes 1 ms or one subframe as an example for feeding back one HARQ feedback information as an example. For other time lengths, it is only necessary to multiply the occupied time by the other time lengths, which is not limited in this application.
  • Embodiment 1 corresponds to the aforementioned situation 1:
  • the first embodiment may be applicable to eMTC terminals.
  • Step 1 The UE receives the DRX configuration of the network.
  • Step 2 The UE receives the PDCCH, and the PDCCH indicates to schedule a downlink TB, then the UE starts the HARQ RTT Timer corresponding to the downlink HARQ process i used by the PDSCH in the subframe where the PDSCH of the downlink TB is received for the last repeated transmission.
  • Step 3 The UE determines the duration of the HARQ RTT Timer corresponding to the downlink HARQ process i in Step 2.
  • the downlink HARQ process i is a HARQ process with the HARQ feedback function enabled, then:
  • the duration of the HARQ RTT Timer can be determined according to one of the following methods:
  • Mode 1 The duration of the HARQ RTT Timer is max ⁇ T1+N1+RTT, 7+N ⁇ ;
  • Mode 2 The duration of the HARQ RTT Timer is max ⁇ T1+N+RTT, 7+N ⁇ ;
  • Mode 3 The duration of the HARQ RTT Timer is T1+N+RTT.
  • T1 represents the time interval between the last repeated transmission of the PDSCH and the first repeated transmission of the corresponding HARQ feedback, which corresponds to the first time interval in Case 1.
  • N1 represents the first repeated transmission of the PUCCH, and the PUCCH is used to carry the HARQ feedback information corresponding to the TB, which corresponds to the first parameter in the foregoing.
  • N1 only valid uplink subframes determined by a higher layer configuration parameter (fdd-UplinkSubframeBitmapBR) are counted into N1.
  • fdd-UplinkSubframeBitmapBR higher layer configuration parameter
  • RTT represents the signal transmission delay between the UE and the network, that is, the first RTT
  • N represents the used PUCCH repetition factor, which corresponds to the second parameter in the foregoing.
  • the duration of the HARQ RTT Timer can be determined according to one of the following methods:
  • Mode 1 The duration of the HARQ RTT Timer is max ⁇ T1+N1+RTT, 3+k+N ⁇ ;
  • Mode 2 The duration of the HARQ RTT Timer is max ⁇ T1+N+RTT, 3+k+N ⁇ ;
  • Mode 3 The duration of the HARQ RTT Timer is T1+N+RTT.
  • T1, N1, RTT and N are the same as those of the corresponding parameters in FDD.
  • the HARQ RTT Timer is a predefined non-negative constant, for example, the value of the HARQ RTT Timer is fixed to 0.
  • the second embodiment corresponds to the aforementioned situation 2:
  • the second embodiment may be applicable to eMTC terminals.
  • Step 1 The UE receives the DRX configuration of the network.
  • Step 2 When the UE receives the PDCCH instruction to schedule multiple downlink TBs, the UE starts each of the multiple downlink TBs in the subframe where the last repeated transmission of the PDSCH of the last downlink TB of the multiple downlink TBs is received.
  • HARQ RTT Timer corresponding to the downlink HARQ process used by the PDSCH of the downlink TB.
  • Step 3 If the UE is not configured with HARQ-ACK bundling, for the downlink HARQ process used by the PDSCH of each downlink TB in the multiple downlink TBs, the UE can determine the duration of its corresponding HARQ RTT Timer.
  • the duration of the HARQ RTT Timer can be determined according to one of the following methods:
  • Mode 1 The duration of the HARQ RTT Timer is T2+N TB *N+RTT;
  • Mode 2 The duration of the HARQ RTT Timer is max ⁇ T2+N TB *N+RTT,7+N TB *N ⁇ ;
  • Mode 3 The duration of the HARQ RTT Timer is max ⁇ T2+( NTB -1)*N+N1+RTT,7+ NTB *N ⁇ .
  • T2 represents the time interval between the last repeated transmission of the PDSCH of the last TB of the N TB TBs to the first repeated transmission of the HARQ feedback for the N TB TBs.
  • N1 represents the first repeated transmission of the PUCCH fed back for the last TB of the multiple TBs, and only valid uplink subframes are counted into N1.
  • N1 takes the value 1.
  • RTT represents the signal transmission delay between the UE and the network.
  • N the PUCCH repetition factor used.
  • N TB is the number of TBs scheduled by the PDCCH.
  • the HARQ RTT Timer is a predefined non-negative constant, for example, the value of the HARQ RTT Timer is fixed to 0.
  • the third embodiment corresponds to the aforementioned situation 3:
  • the third embodiment may be applicable to eMTC terminals.
  • Step 1 The UE receives the DRX configuration of the network.
  • Step 2 When the UE receives the PDCCH instruction to schedule multiple downlink TBs, the UE starts each of the multiple downlink TBs in the subframe where the last repeated transmission of the PDSCH of the last downlink TB of the multiple downlink TBs is received.
  • HARQ RTT Timer corresponding to the downlink HARQ process used by the PDSCH of the downlink TB, where the PDSCH is used to carry the downlink TB.
  • Step 3 If the UE is configured with HARQ-ACK bundling, for the downlink HARQ process used by the PDSCH of each downlink TB in the multiple downlink TBs, the UE can determine the duration of its corresponding HARQ RTT Timer.
  • the duration of the HARQ RTT Timer can be determined according to one of the following methods:
  • Mode 1 The duration of the HARQ RTT Timer is T3+k*N+RTT;
  • Method 2 The duration of the HARQ RTT Timer is max ⁇ T3+k*N+RTT,7+k*N ⁇ ;
  • Mode 3 The duration of the HARQ RTT Timer is max ⁇ T3+(k-1)*N+N1+RTT,7+k*N ⁇ .
  • T3 represents the time interval between the last repeated transmission of the PDSCH of the last TB of the N TB TBs and the first repeated transmission of the HARQ feedback for the N TB TBs.
  • N1 represents the first repeated transmission of the PUCCH fed back for the last TB of the multiple TBs, and only valid uplink subframes are counted into N1.
  • N1 takes the value 1.
  • RTT represents the signal transmission delay between the UE and the network.
  • N the PUCCH repetition factor used.
  • k is the number of HARQ feedback groups (bundles).
  • k ceiling(NTB/M), where NTB is the number of TBs scheduled by the PDCCH, M is the size of a single bundling, that is, the feedback of how many TBs a bundling includes, and ceiling means rounded up.
  • the HARQ RTT Timer is a predefined non-negative constant, for example, the value of the HARQ RTT Timer is fixed to 0.
  • Embodiment 4 corresponding to the aforementioned situation 4:
  • the fourth embodiment may be applicable to NB-IoT terminals.
  • Step 1 The UE receives the DRX configuration of the network.
  • Step 2 When the UE receives the PDCCH instruction to schedule a downlink TB, the UE starts the HARQ RTT Timer corresponding to the downlink HARQ process i used by the PDSCH in the subframe where the last repeated transmission of the PDSCH of the one downlink TB is received.
  • Step 3 The UE determines the duration of the HARQ RTT Timer corresponding to the downlink HARQ process i in step 2.
  • the duration of the HARQ RTT Timer can be determined according to one of the following methods:
  • Mode 1 The duration of the HARQ RTT Timer is max ⁇ T4+T CK +RTT+ ⁇ PDCCH1, T4+3+N+ ⁇ PDCCH2 ⁇ , where T CK represents the time it takes to send one feedback message at a time;
  • Mode 2 The duration of the HARQ RTT Timer is max ⁇ T4+N+RTT+ ⁇ PDCCH1, T4+3+N+ ⁇ PDCCH2 ⁇ , where N represents the time it takes to send one feedback message N times;
  • Mode 3 The duration of the HARQ RTT Timer is T4+N+RTT+ ⁇ PDCCH1.
  • T4 represents the time interval between the last subframe of PDSCH transmission and the first subframe of the corresponding HARQ feedback.
  • RTT represents the signal transmission delay between the UE and the network.
  • N represents the HARQ feedback duration
  • ⁇ PDCCH1 represents the time interval between the moment when the UE experiences the first RTT after completing the HARQ feedback and the first subframe of the next PDCCH opportunity.
  • ⁇ PDCCH2 represents the time interval from the third subframe after the last subframe used for HARQ feedback to the first subframe of the next PDCCH occasion.
  • the HARQ RTT Timer is a predefined non-negative constant, for example, the value of the HARQ RTT Timer is fixed to 0.
  • Embodiment 5 corresponding to the aforementioned situation 5:
  • the fifth embodiment may be applicable to NB-IoT terminals.
  • this embodiment may be applicable to the case where the terminal device is configured with HARQ-ACK bundling in the interleaving scenario.
  • Step 1 The UE receives the DRX configuration of the network.
  • Step 2 When the UE receives the PDCCH instruction to schedule multiple downlink TBs, the UE starts each of the multiple downlink TBs in the subframe where the last repeated transmission of the PDSCH of the last downlink TB of the multiple downlink TBs is received.
  • HARQ RTT Timer corresponding to the downlink HARQ process used by the PDSCH of the downlink TB.
  • Step 3 If the UE is configured with HARQ-ACK bundling, for the downlink HARQ process used by the PDSCH of each downlink TB in the multiple downlink TBs, the UE can determine the duration of its corresponding HARQ RTT Timer.
  • the duration of the HARQ RTT Timer may be determined according to one of the following methods:
  • Mode 1 The duration of the HARQ RTT Timer is T5+N+RTT+ ⁇ PDCCH1;
  • Mode 2 The duration of the HARQ RTT Timer is max ⁇ T5+N+RTT+ ⁇ PDCCH1, T5+3+N+ ⁇ PDCCH2 ⁇ .
  • T5 represents the time interval between the last subframe of PDSCH transmission and the first subframe of the corresponding HARQ feedback.
  • RTT represents the signal transmission delay between the UE and the network.
  • N represents the HARQ feedback duration
  • ⁇ PDCCH1 indicating the time interval between the moment when the UE experiences the first RTT after completing the HARQ feedback to the first subframe of the next PDCCH opportunity
  • ⁇ PDCCH2 represents the time interval from the third subframe after the last subframe used for HARQ feedback to the first subframe of the next PDCCH occasion.
  • the HARQ RTT Timer is a predefined non-negative constant, for example, the value of the HARQ RTT Timer is fixed to 0.
  • Embodiment 6 corresponding to the aforementioned situation 6:
  • the sixth embodiment may be applicable to NB-IoT terminals.
  • this embodiment may be applicable to a non-interleaving scenario, or a situation where the terminal device is not configured with HARQ-ACK bundling in an interleaving scenario.
  • Step 1 The UE receives the DRX configuration of the network.
  • Step 2 When the UE receives the PDCCH instruction to schedule multiple downlink TBs, the UE starts each of the multiple downlink TBs in the subframe where the last repeated transmission of the PDSCH of the last downlink TB of the multiple downlink TBs is received.
  • HARQ RTT Timer corresponding to the downlink HARQ process used by the PDSCH of the downlink TB, where the PDSCH is used to carry the downlink TB.
  • Step 3 If the UE is not configured with HARQ-ACK bundling, for the downlink HARQ process used by the PDSCH of each downlink TB in the multiple downlink TBs, the UE can determine the duration of its corresponding HARQ RTT Timer.
  • the duration of the HARQ RTT Timer can be determined according to one of the following methods:
  • Mode 1 The duration of the HARQ RTT Timer is T6+2*N+RTT+ ⁇ PDCCH1;
  • Mode 2 The duration of the HARQ RTT Timer is max ⁇ T6+2*N+RTT+ ⁇ PDCCH1, T6+2*N+1+ ⁇ PDCCH2 ⁇ ;
  • Mode 3 The duration of the HARQ RTT Timer is max ⁇ T6+N+N1+RTT+ ⁇ PDCCH1, T6+2*N+1+ ⁇ PDCCH2 ⁇ .
  • T6 represents the time interval between the last subframe of PDSCH transmission and the first subframe of the corresponding HARQ feedback.
  • RTT represents the signal transmission delay between the UE and the network.
  • N represents the HARQ feedback duration
  • ⁇ PDCCH1 indicating the time interval between the moment when the UE experiences the first RTT after completing the HARQ feedback to the first subframe of the next PDCCH opportunity
  • ⁇ PDCCH2 represents the time interval from the first subframe after the UE completes the HARQ feedback to the first subframe of the next PDCCH occasion.
  • the HARQ RTT Timer is a predefined non-negative constant, for example, the value of the HARQ RTT Timer is fixed to 0.
  • Embodiment 7 corresponding to the aforementioned situation 7:
  • the seventh embodiment may be applicable to eMTC terminals.
  • Step 1 The UE receives the DRX configuration of the network.
  • Step 2 The UE receives the PDCCH instruction to schedule the uplink TB or the UE is configuring the licenser to send the uplink TB, then the UE starts the uplink used by the PDSCH of the uplink TB in the subframe where the last repeated transmission of the PDSCH of the uplink TB is completed.
  • the UL HARQ RTT Timer corresponding to the HARQ process.
  • Step 3 The UE may determine the duration of the UL HARQ RTT Timer corresponding to the uplink HARQ process in Step 2.
  • the uplink HARQ process is a HARQ process with the HARQ function enabled
  • the duration of the UL HARQ RTT Timer can be determined according to one of the following methods:
  • Mode 1 The duration of the UL HARQ RTT Timer is RTT;
  • the duration of the UL HARQ RTT Timer can be determined according to one of the following methods:
  • Method 1 The duration of the UL HARQ RTT Timer is RTT;
  • Method 2 The duration of the UL HARQ RTT Timer is max ⁇ RTT,k ULHARQRTT ⁇
  • RTT represents the signal transmission delay between the UE and the network.
  • the UL HARQ RTT Timer is a predefined non-negative constant, for example, the value of the UL HARQ RTT Timer is fixed to 3.
  • the eighth embodiment corresponds to the aforementioned situation 8:
  • the eighth embodiment may be applicable to NB-IoT terminals.
  • Step 1 The UE receives the DRX configuration of the network.
  • Step 2 The UE receives the PDCCH instruction to schedule an uplink TB, then the UE starts the UL HARQ RTT Timer corresponding to the uplink HARQ process used by the PDSCH of the uplink TB in the subframe where the last repeated transmission of the PDSCH of the uplink TB is completed. .
  • Step 3 The UE may determine the duration of the HARQ RTT Timer corresponding to the uplink HARQ process in Step 2.
  • the duration of the UL HARQ RTT Timer may be determined according to one of the following methods:
  • the duration of the HARQ RTT Timer can be RTT+ ⁇ PDCCH3;
  • the duration of the HARQ RTT Timer may be max ⁇ RTT+ ⁇ PDCCH3,4+ ⁇ PDCCH4 ⁇ .
  • RTT represents the signal transmission delay between the UE and the network.
  • ⁇ PDCCH3 represents the time interval between the time after the first RTT after the last subframe corresponding to the PUSCH transmission and the first subframe of the next PDCCH opportunity.
  • ⁇ PDCCH4 represents the time interval from the time 3 ms after the next subframe of the last subframe corresponding to the PUSCH transmission to the first subframe of the next PDCCH occasion.
  • the ULHARQ RTT Timer is a predefined non-negative constant, for example, the value of the HARQ RTT Timer is fixed to 0.
  • Embodiment 9 corresponding to the aforementioned situation 9:
  • the ninth embodiment may be applicable to NB-IoT terminals.
  • Step 1 The UE receives the DRX configuration of the network.
  • Step 2 When the UE receives the PDCCH instruction to schedule multiple uplink TBs, the UE starts each of the multiple uplink TBs in the subframe where the last repeated transmission of the PUSCH of the last uplink TB of the multiple uplink TBs is sent.
  • the UL HARQ RTT Timer corresponding to the uplink HARQ process used by the PUSCH of the uplink TB.
  • Step 3 The UE can determine the duration of the UL HARQ RTT Timer corresponding to each uplink HARQ process in Step 2.
  • the duration of the UL HARQ RTT Timer can be determined according to one of the following methods:
  • the duration of the HARQ RTT Timer can be RTT+ ⁇ PDCCH3;
  • the duration of the HARQ RTT Timer may be max ⁇ RTT+ ⁇ PDCCH3,1+ ⁇ PDCCH4 ⁇ .
  • RTT represents the signal transmission delay between the UE and the network.
  • ⁇ PDCCH3 represents the time interval between the time after the first RTT after the last subframe corresponding to the PUSCH transmission and the first subframe of the next PDCCH opportunity.
  • ⁇ PDCCH4 represents the time interval from the time 3 ms after the next subframe of the last subframe corresponding to the PUSCH transmission to the first subframe of the next PDCCH occasion.
  • the ULHARQ RTT Timer is a predefined non-negative constant, for example, the value of the HARQ RTT Timer is fixed to 0.
  • the terminal device or the network device can determine the duration or determination of the HARQ RTT timer corresponding to the HARQ process used by the data channel according to the round-trip time RTT respectively.
  • the duration is a preset value, which is conducive to taking into account the power saving of the terminal and the scheduling of the network.
  • FIG. 4 shows a schematic block diagram of a device 400 according to an embodiment of the present application. As shown in Figure 4, the device 400 includes:
  • the processing unit 410 determines the duration of the HARQ RTT timer corresponding to the first hybrid automatic request retransmission HARQ process, or determines that the duration of the HARQ RTT timer corresponding to the first HARQ process is a preset value , wherein the first HARQ process is the HARQ process used by the first data channel, the first data channel is used to carry the first TB in at least one transport block TB scheduled by the physical downlink control channel PDCCH, and the first TB An RTT is determined according to a signal transmission delay between a terminal device and a network device, where the device is a terminal device or a network device, and the device is a sender or a receiver of the first data channel.
  • the at least one TB is a downlink TB
  • the first HARQ process is a downlink HARQ process
  • the processing unit 410 is specifically configured to:
  • the first information includes at least one of the following:
  • the terminal device is configured for HARQ bundling feedback
  • HARQ feedback duration indicating the total time occupied by sending one HARQ feedback information multiple times
  • the first PDCCH interval representing the time interval from the first moment to the first PDCCH opportunity after the first moment, where the first moment is after the terminal device completes the HARQ feedback and is separated by the first RTT;
  • the second PDCCH interval representing the time interval from the second time to the first PDCCH opportunity after the second time, the second time after the terminal device completes the HARQ feedback, and the processing delay interval .
  • the processing unit 410 is further configured to:
  • the duration of the HARQ RTT timer corresponding to the first HARQ process is determined.
  • the processing unit 410 is further configured to:
  • the first duration as the duration of the HARQ RTT timer corresponding to the first HARQ process
  • the first preset duration is determined according to the feedback delay of the at least one TB and the processing delay.
  • the at least one TB includes only the first TB, wherein,
  • the feedback delay of the at least one TB includes a first time interval, where the first time interval represents the time interval between the last transmission of the first TB and the first transmission of the HARQ feedback information corresponding to the first TB. time interval;
  • the feedback repetition transmission times parameter of the HARQ-ACK information corresponding to the at least one TB includes a first parameter and/or a second parameter, wherein the first parameter is used to indicate the first transmission of the physical uplink control channel PUCCH, so The PUCCH is used to carry HARQ feedback information corresponding to the first TB, and the second parameter is used to indicate a PUCCH repetition factor.
  • the processing unit 410 is further configured to:
  • the first duration is determined according to the parameters of the first RTT, the first time interval and the number of times of repeated transmission of feedback.
  • the first duration is equal to the sum of the first time interval, the first parameter and the first RTT, or the first duration is equal to the first the sum of the time interval, the second parameter and the first RTT;
  • the first preset duration is equal to the feedback delay of the first TB and the processing delay.
  • the at least one TB includes a plurality of TBs, the plurality of TBs include the first TB, and the terminal device is not configured with HARQ bundling feedback, wherein the at least one The feedback delay of the TB includes a second time interval, where the second time interval represents the period between the last transmission of the last TB in the multiple TBs and the first transmission of the HARQ feedback information corresponding to the multiple TBs time interval;
  • the feedback repetition transmission times parameter of the HARQ-ACK information corresponding to the at least one TB includes a first parameter and/or a second parameter, where the first parameter is used to indicate the first transmission of the PUCCH, and the PUCCH is used for The HARQ feedback information corresponding to the last TB in the multiple TBs is carried, and the second parameter is used to indicate the PUCCH repetition factor.
  • the processing unit 410 is further configured to: according to the first RTT, the number of the multiple TBs, the second time interval, and the feedback repeated transmission times parameter, The first duration is determined.
  • the first duration is equal to T2+ NTB *N+RTT or T2+( NTB -1)*N+N1+RTT, and the first preset duration is equal to 7+N TB *N; wherein, RTT represents the first RTT, T2 represents the second time interval, N1 represents the first parameter, N represents the second parameter, and N TB represents the number of the multiple TBs .
  • the at least one TB includes multiple TBs, the multiple TBs include the first TB, and the terminal device is configured with HARQ bundling feedback, wherein,
  • the feedback delay of the at least one TB includes a third time interval, where the third time interval represents the last transmission of the last TB of the multiple TBs to the first HARQ feedback information corresponding to the multiple TBs. the time interval between transmissions;
  • the feedback repetition transmission times parameter of the HARQ-ACK information corresponding to the at least one TB includes a first parameter and/or a second parameter, where the first parameter is used to indicate the first transmission of the PUCCH, and the PUCCH is used for Bearing the HARQ feedback information of the last bundled feedback among the multiple TBs, the second parameter is used to indicate the PUCCH repetition factor.
  • the processing unit 410 is further configured to:
  • the HARQ RTT timer corresponding to the first HARQ process is determined according to the first RTT, the third time interval, the parameter of the number of times of repeated transmission of feedback, and the number of groups for performing HARQ bundling feedback on the multiple TBs. duration.
  • the first duration is equal to T3+k*N+RTT, or T3+(k-1)*N+N1+RTT, and the first preset duration is equal to 7+k* N; wherein, RTT represents the first RTT, T3 represents the third time interval, N1 represents the first parameter, N represents the second parameter, and k represents the HARQ bundling feedback of the multiple TBs. Number of groups.
  • the terminal device is an enhanced mechanical communication eMTC terminal.
  • the at least one TB only includes the first TB, and the processing unit 410 is further configured to:
  • the first duration is determined from the first RTT, a fourth time interval, the HARQ feedback duration, and the first PDCCH interval, wherein the fourth time interval represents the last transmission of the first TB The time interval between the first transmission of the HARQ feedback information corresponding to the first TB.
  • the first duration is equal to T4+1+RTT+ ⁇ PDCCH1, or T4+N+RTT+ ⁇ PDCCH1, and the first preset duration is equal to k+3+N+ ⁇ PDCCH2;
  • RTT represents the first RTT
  • T4 represents the fourth time interval
  • N represents the HARQ feedback duration
  • ⁇ PDCCH1 represents the first PDCCH interval
  • ⁇ PDCCH2 represents the second PDCCH interval.
  • the at least one TB includes multiple TBs, the multiple TBs include the first TB, the terminal device is configured with HARQ bundling feedback, and the processing unit 410 further uses At:
  • the first duration is determined based on the first RTT, a fifth time interval, the HARQ feedback duration, and the first PDCCH interval, wherein the sixth time interval represents the last transmission of the plurality of TBs The time interval between the first transmission of HARQ feedback information corresponding to the multiple TBs.
  • the first duration is equal to T5+N+RTT+ ⁇ PDCCH1
  • the first preset duration is equal to T5+3+N+ ⁇ PDCCH2; wherein, RTT represents the first RTT, T5 represents the fifth time interval, N represents the HARQ feedback duration, ⁇ PDCCH1 represents the first PDCCH interval, and ⁇ PDCCH2 represents the second PDCCH interval.
  • the at least one TB includes multiple TBs, the multiple TBs include the first TB, the terminal device is not configured with HARQ bundling feedback, and the processing unit 410 further Used for:
  • the first duration is determined according to the first RTT, the sixth time interval, the HARQ feedback duration, the time occupied by a single transmission of HARQ feedback information, and the first PDCCH interval; or
  • the first duration is determined according to the first RTT, a sixth time interval, the HARQ feedback duration and the first PDCCH interval; wherein the sixth time interval represents the last transmission of the plurality of TBs The time interval between the first transmission of HARQ feedback information corresponding to the multiple TBs.
  • the first duration is equal to T6+2N+RTT+ ⁇ PDCCH1, or T6+N+N1+RTT+ ⁇ PDCCH1, and the first preset duration is equal to k+2N+1+ ⁇ PDCCH2; wherein, RTT represents the The first RTT, T6 represents the sixth time interval, N represents the HARQ feedback duration, ⁇ PDCCH1 represents the first PDCCH interval, ⁇ PDCCH2 represents the second PDCCH interval, and N1 represents the first HARQ feedback from the completion of The time taken from the transmission of the information to the completion of the first transmission of the second HARQ feedback information.
  • the terminal device is a narrowband Internet of Things NB-IoT terminal.
  • the at least one TB is an uplink TB
  • the first HARQ process is an uplink HARQ process
  • the duration of the HARQ RTT timer corresponding to the first HARQ process is the first RTT; or, the larger value of the first RTT and the second preset duration.
  • the terminal device is an eMTC terminal.
  • the processing unit 410 is further configured to:
  • the second information includes at least one of the following: a third PDCCH interval, indicating a time interval from a third moment to a first PDCCH opportunity after a third moment, and the third moment is at the After the terminal device finishes transmitting the data channel corresponding to the at least one TB, and the first RTT is spaced;
  • the fourth PDCCH interval represents the time interval from the fourth moment to the first PDCCH opportunity after the fourth moment, where the fourth moment is after the transmission of the data channel corresponding to the at least one TB is completed, and the interval is processing delay.
  • the processing unit 410 is further configured to:
  • the duration of the HARQ RTT timer corresponding to the first HARQ process is determined according to the second duration.
  • the determining the duration of the HARQ RTT timer corresponding to the first HARQ process according to the second duration includes:
  • the larger value of the second duration and the second preset duration is determined as the duration of the HARQ RTT timer corresponding to the first HARQ process; wherein, the second preset duration is determined according to the processing delay .
  • the at least one TB includes only the first TB, the second duration is equal to the sum of the first RTT and the third PDCCH interval; the second preset duration Equal to the sum of 4 and the fourth PDCCH interval.
  • the at least one TB includes a plurality of TBs, and the second duration is equal to the sum of the first RTT and the third PDCCH interval;
  • the second preset duration is equal to the sum of 1 and the fourth PDCCH interval.
  • the terminal device is an NB-IoT terminal.
  • the processing unit 410 is further configured to:
  • the duration of the HARQ RTT timer corresponding to the first HARQ process is determined according to the first RTT.
  • the processing unit 410 is further configured to:
  • the first device determines that the duration of the HARQ RTT timer corresponding to the first HARQ process is a preset value.
  • the first RTT is determined according to a timing advance TA of the terminal device.
  • terminal device 400 may correspond to the terminal device in the method embodiment of the present application, and the above-mentioned and other operations and/or functions of each unit in the terminal device 400 are respectively for realizing the method shown in FIG. 3 .
  • the corresponding process of the terminal device or the network device in 200 is not repeated here for brevity.
  • FIG. 5 is a schematic structural diagram of a communication device 600 provided by an embodiment of the present application.
  • the communication device 600 shown in FIG. 5 includes a processor 610, and the processor 610 can call and run a computer program from a memory, so as to implement the method in the embodiment of the present application.
  • the communication device 600 may further include a memory 620 .
  • the processor 610 may call and run a computer program from the memory 620 to implement the methods in the embodiments of the present application.
  • the memory 620 may be a separate device independent of the processor 610 , or may be integrated in the processor 610 .
  • the communication device 600 may further include a transceiver 630, and the processor 610 may control the transceiver 630 to communicate with other devices, specifically, may send information or data to other devices, or receive other Information or data sent by a device.
  • the transceiver 630 may include a transmitter and a receiver.
  • the transceiver 630 may further include antennas, and the number of the antennas may be one or more.
  • the communication device 600 may specifically be the network device in this embodiment of the present application, and the communication device 600 may implement the corresponding processes implemented by the network device in each method in the embodiment of the present application. For the sake of brevity, details are not repeated here. .
  • the communication device 600 may specifically be the mobile terminal/terminal device of the embodiments of the present application, and the communication device 600 may implement the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiments of the present application, for the sake of brevity. , and will not be repeated here.
  • FIG. 6 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • the chip 700 shown in FIG. 6 includes a processor 710, and the processor 710 can call and run a computer program from a memory, so as to implement the method in the embodiment of the present application.
  • the chip 700 may further include a memory 720 .
  • the processor 710 may call and run a computer program from the memory 720 to implement the methods in the embodiments of the present application.
  • the memory 720 may be a separate device independent of the processor 710 , or may be integrated in the processor 710 .
  • the chip 700 may further include an input interface 730 .
  • the processor 710 may control the input interface 730 to communicate with other devices or chips, and specifically, may acquire information or data sent by other devices or chips.
  • the chip 700 may further include an output interface 740 .
  • the processor 710 can control the output interface 740 to communicate with other devices or chips, and specifically, can output information or data to other devices or chips.
  • the chip can be applied to the network device in the embodiment of the present application, and the chip can implement the corresponding processes implemented by the network device in each method of the embodiment of the present application, which is not repeated here for brevity.
  • the chip can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the chip can implement the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiments of the present application.
  • the chip can implement the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiments of the present application.
  • the chip can implement the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiments of the present application.
  • the chip mentioned in the embodiments of the present application may also be referred to as a system-on-chip, a system-on-chip, a system-on-chip, or a system-on-a-chip, or the like.
  • the processor in this embodiment of the present application may be an integrated circuit chip, which has a signal processing capability.
  • each step of the above method embodiments may be completed by a hardware integrated logic circuit in a processor or an instruction in the form of software.
  • the above-mentioned processor can be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), an off-the-shelf programmable gate array (Field Programmable Gate Array, FPGA) or other available Programming logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the steps of the method disclosed in conjunction with the embodiments of the present application may be directly embodied as executed by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software modules may be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other storage media mature in the art.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
  • the memory in this embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (Read-Only Memory, ROM), a programmable read-only memory (Programmable ROM, PROM), an erasable programmable read-only memory (Erasable PROM, EPROM), an electrically programmable read-only memory (Erasable PROM, EPROM). Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • Volatile memory may be Random Access Memory (RAM), which acts as an external cache.
  • RAM Static RAM
  • DRAM Dynamic RAM
  • SDRAM Synchronous DRAM
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM DDR SDRAM
  • enhanced SDRAM ESDRAM
  • synchronous link dynamic random access memory Synchlink DRAM, SLDRAM
  • Direct Rambus RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be a static random access memory (static RAM, SRAM), a dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM) and so on. That is, the memory in the embodiments of the present application is intended to include but not limited to these and any other suitable types of memory.
  • Embodiments of the present application further provide a computer-readable storage medium for storing a computer program.
  • the computer-readable storage medium can be applied to the network device in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the network device in the various methods of the embodiments of the present application.
  • the computer program enables the computer to execute the corresponding processes implemented by the network device in the various methods of the embodiments of the present application.
  • the computer-readable storage medium can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiments of the present application. , and are not repeated here for brevity.
  • Embodiments of the present application also provide a computer program product, including computer program instructions.
  • the computer program product can be applied to the network device in the embodiments of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the network device in each method of the embodiments of the present application. Repeat.
  • the computer program product can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiments of the present application, For brevity, details are not repeated here.
  • the embodiments of the present application also provide a computer program.
  • the computer program can be applied to the network device in the embodiments of the present application.
  • the computer program When the computer program is run on the computer, it causes the computer to execute the corresponding processes implemented by the network device in each method of the embodiments of the present application. For the sake of brevity. , and will not be repeated here.
  • the computer program may be applied to the mobile terminal/terminal device in the embodiments of the present application, and when the computer program is run on the computer, the mobile terminal/terminal device implements the various methods of the computer program in the embodiments of the present application.
  • the corresponding process for the sake of brevity, will not be repeated here.
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as independent products, may be stored in a computer-readable storage medium.
  • the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art or the part of the technical solution.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (Read-Only Memory,) ROM, random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种无线通信的方法和设备,该方法包括:第一设备根据第一往返时间RTT,确定第一混合自动请求重传HARQ进程对应的HARQ RTT定时器的时长,或所述第一设备确定所述第一HARQ进程对应的HARQ RTT定时器的时长为预设值,其中,所述第一HARQ进程为第一数据信道所使用的HARQ进程,所述第一数据信道用于承载物理下行控制信道PDCCH调度的至少一个传输块TB中的第一TB,所述第一RTT根据终端设备和网络设备之间的信号传输时延确定,所述第一设备为终端设备或网络设备,所述第一设备为所述第一数据信道的发送端或接收端。

Description

无线通信的方法和设备 技术领域
本申请实施例涉及通信领域,具体涉及一种无线通信的方法和设备。
背景技术
在非连续接收(Discontinuous Reception,DRX)场景中,终端设备在完成上行发送或完成下行接收之后,可以启动混合自动重传请求(Hybrid Automatic Repeat Request,HARQ)往返传输时间(Round Trip Time,RTT)定时器,在该定时器超时之后,网络设备可以进行数据调度。该HARQ RTT定时器的时长的设计通常主要考虑终端设备完成数据传输后的处理时延。
在非地面通信网络(Non-Terrestrial Networks,NTN)系统中,终端与网络之间的信号传输时延非常大,此情况下,如何设计HARQ RTT定时器的时长以兼顾终端的省电和网络的调度是一项急需解决的问题。
发明内容
本申请实施例提供一种无线通信的方法和设备,能够根据终端设备和网络设备之间的RTT设计HARQ RTT定时器的时长,有利于降低终端的功耗。
第一方面,提供了一种无线通信的方法,包括:第一设备根据第一往返时间RTT,确定第一混合自动请求重传HARQ进程对应的HARQ RTT定时器的时长,或所述第一设备确定所述第一HARQ进程对应的HARQ RTT定时器的时长为预设值,其中,所述第一HARQ进程为第一数据信道所使用的HARQ进程,所述第一数据信道用于承载物理下行控制信道PDCCH调度的至少一个传输块TB中的第一TB,所述第一RTT根据终端设备和网络设备之间的信号传输时延确定,所述第一设备为终端设备或网络设备,所述第一设备为所述第一数据信道的发送端或接收端。
第二方面,提供了一种无线通信的设备,用于执行上述第一方面或第一方面的任意可能的实现方式中的方法。具体地,该设备包括用于执行上述第一方面或第一方面的任一可能的实现方式中的方法的单元。
第三方面,提供了一种无线通信的设备,该设备包括:包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第一方面或其各实现方式中的方法。
第四方面,提供了一种芯片,用于实现上述第一方面或其各实现方式中的方法。
具体地,该芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片的设备执行如上述第一方面或其各实现方式中的方法。
第五方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述第一方面或其各实现方式中的方法。
第六方面,提供了一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述第一方面或其各实现方式中的方法。
第七方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面或其各实现方式中的方法。
基于上述技术方案,终端设备或网络设备可以根据往返时间RTT确定数据信道所使用的HARQ进程对应的HARQ RTT定时器的时长或确定时长为预设值,有利于兼顾终端的省电和网络的调度。
附图说明
图1是本申请实施例提供的一种应用场景的示意性图。
图2是本申请实施例的DRX的示意性框图。
图3是本申请实施例提供的一种无线通信的方法的示意性图。
图4是本申请实施例提供的一种无线通信的设备的示意性框图。
图5是本申请另一实施例提供的一种通信设备的示意性框图。
图6是本申请实施例提供的一种芯片的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。针对本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、新无线(New Radio,NR)系统、NR系统的演进系统、非授权频谱上的LTE(LTE-based access to unlicensed spectrum,LTE-U)系统、非授权频谱上的NR(NR-based access to unlicensed spectrum,NR-U)系统、非地面通信网络(Non-Terrestrial Networks,NTN)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)、第五代通信(5th-Generation,5G)系统或其他通信系统等。
通常来说,传统的通信系统支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信系统将不仅支持传统的通信,还将支持例如,设备到设备(Device to Device,D2D)通信,机器到机器(Machine to Machine,M2M)通信,机器类型通信(Machine Type Communication,MTC),车辆间(Vehicle to Vehicle,V2V)通信,或车联网(Vehicle to everything,V2X)通信等,本申请实施例也可以应用于这些通信系统。
可选地,本申请实施例中的通信系统可以应用于载波聚合(Carrier Aggregation,CA)场景,也可以应用于双连接(Dual Connectivity,DC)场景,还可以应用于独立(Standalone,SA)布网场景。
可选地,本申请实施例中的通信系统可以应用于非授权频谱,其中,非授权频谱也可以认为是共享频谱;或者,本申请实施例中的通信系统也可以应用于授权频谱,其中,授权频谱也可以认为是非共享频谱。
本申请实施例结合网络设备和终端设备描述了各个实施例,其中,终端设备也可以称为用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置等。
终端设备可以是WLAN中的站点(STATION,ST),可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、下一代通信系统例如NR网络中的终端设备,或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的终端设备等。
在本申请实施例中,终端设备可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。
在本申请实施例中,终端设备可以是手机(Mobile Phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self driving)中的无线终端设备、远程医疗(remote medical)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备或智慧家庭(smart home)中的无线终端设备等。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
在本申请实施例中,网络设备可以是用于与移动设备通信的设备,网络设备可以是WLAN中的接入点(Access Point,AP),GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB,NB),还可以是LTE中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者车载设备、可穿戴设备以及NR网络中的网络设备(gNB)或者未来演进的PLMN网络中的网络设备或者NTN网络中的网络设备等。
作为示例而非限定,在本申请实施例中,网络设备可以具有移动特性,例如网络设备可以为移动的设备。可选地,网络设备可以为卫星、气球站。例如,卫星可以为低地球轨道(low earth orbit,LEO)卫星、中地球轨道(medium earth orbit,MEO)卫星、地球同步轨道(geostationary earth orbit,GEO)卫星、高椭圆轨道(High Elliptical Orbit,HEO)卫星等。可选地,网络设备还可以为设置在陆地、 水域等位置的基站。
在本申请实施例中,网络设备可以为小区提供服务,终端设备通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与网络设备进行通信,该小区可以是网络设备(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(Small cell)对应的基站,这里的小小区可以包括:城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
示例性的,本申请实施例应用的通信系统100如图1所示。该通信系统100可以包括网络设备110,网络设备110可以是与终端设备120(或称为通信终端、终端)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备进行通信。
图1示例性地示出了一个网络设备和两个终端设备,可选地,该通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
可选地,该通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例中网络/系统中具有通信功能的设备可称为通信设备。以图1示出的通信系统100为例,通信设备可包括具有通信功能的网络设备110和终端设备120,网络设备110和终端设备120可以为上文所述的具体设备,此处不再赘述;通信设备还可包括通信系统100中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请的实施例中提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。
在本申请实施例的描述中,术语“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。
在一些场景中,为了终端省电的目的,提出了DRX的概念。具体的,网络设备可以配置终端设备在网络预知的时间醒来(DRX ON),监听PDSCH,同时网络也可以配置终端设备在网络预知的时间睡眠(DRX OFF),即,终端设备不用监听PDCCH。由此,如果网络设备120有数据要传给终端设备110,网路设备120可以在终端设备110处于DRX ON的时间内调度所述终端设备110,而DRC OFF时间内,由于射频关闭,可以减少终端耗电。
如图2所述,网络设备为终端设备配置的DRX cycle由激活期(On Duration)和休眠期(Opportunity for DRX)组成,在RRC连接态(RRC CONNECTED)模式下,如果终端设备配置了DRX功能,在On Duration时间内,终端设备监听并接收PDCCH;终端设备在休眠期内不监听PDCCH以减少功耗。
应理解,本申请实施例中的处于休眠期的终端设备不接收PDCCH,但是可以接收来自其它物理信道的数据。本发明实施例不作具体限定。例如,该终端设备可以接收物理下行共享信道(Physical Downlink Shared Channel,PDSCH)、确认/非确认(ACK/NACK)等。又例如,在半永久性调度(Semi-Persistent Scheduling,SPS)中,该终端设备可以接收周期性配置的PDSCH数据。
在一些实施例中,可以通过无线资源控制(Radio Resource Control,RRC)为媒体介入控制(Media Access Control,MAC)实体(entity)配置DRX功能,用于控制终端设备监听PDCCH的行为。即每个MAC实体可以对应一个DRX配置,可选的,DRX配置可以包括如下中的至少一种:
DRX持续定时器(drx-onDurationTimer):在一个DRX Cycle的开始终端设备醒来的持续时间。
DRX时隙偏移(drx-SlotOffset):终端设备启动drx-onDurationTimer的时延。
DRX非激活定时器(drx-InactivityTimer):当终端设备收到一个指示上行初传或者下行初传的PDCCH后,终端设备继续监听PDCCH的持续时间。
DRX下行重传定时器(drx-RetransmissionTimerDL):终端设备监听指示下行重传调度的PDCCH的最长持续时间。除广播HARQ进程之外的每个下行HARQ进程对应一个drx-RetransmissionTimerDL。
DRX上行重传定时器(drx-RetransmissionTimerUL):终端设备监听指示上行重传调度的PDCCH的最长持续时间。每个上行HARQ进程对应一个drx-RetransmissionTimerUL。
长DRX周期开始偏移(longDRX-CycleStartOffset):用于配置长DRX周期,以及长DRX周期和短DRX周期开始的子帧偏移。
短DRX周期(drx-ShortCycle):短DRX周期,为可选配置。
短周期定时器(drx-ShortCycleTimer):终端设备处于短DRX周期(并且没有接收到任何PDCCH)的持续时间,为可选配置。
下行混合自动重传请求(Hybrid Automatic Repeat Request,HARQ)往返传输时间(Round Trip Time,RTT)定时器(HARQ RTT Timer):终端设备期望接收到指示下行调度的PDCCH需要的最少等待时间。除广播HARQ进程之外的每个下行HARQ进程对应一个HARQ RTT Timer。
短TTI DRX重传定时器(drx-RetransmissionTimerShortTTI):当配置了短TTI时,下行重传定时器的时长。
短TTI DRX上行重传定时器(drx-ULRetransmissionTimerShortTTI):当配置了短TTI时,上行重传定时器的时长。
上行混合自动重传请求(Hybrid Automatic Repeat Request,HARQ)往返传输时间(Round Trip Time,RTT)定时器(UL HARQ RTT Timer):终端设备期望接收到指示上行调度的PDCCH需要的最少等待时间,每个上行HARQ进程对应一个UL HARQ RTT Timer。
如果终端设备配置了DRX,则终端设备需要在DRX激活时间(Active Time)监听PDCCH。DRX Active Time包括如下几种情况:
drx-onDurationTimer,drx-InactivityTimer,drx-RetransmissionTimerDL,drx-RetransmissionTimerShortTTI,drx-RetransmissionTimerUL,drx-ULRetransmissionTimerShortTTI以及随机接入竞争决议定时器(ra-ContentionResolutionTimer)中的任何一个定时器正在运行;
终端设备在PUCCH/短PUCCH(Short PUCCH,SPUCCH)上发送了调度请求(Scheduling Request,SR)并处于等待(pending)状态;
在基于竞争的随机接入过程中,终端设备在成功接收到随机接入响应后还没有接收到小区无线网络临时标识(Cell RNTI,C-RNTI)加扰的PDCCH指示的一次初始传输;
对于一个pending的HARQ重传可以接收UL grant,并且该异步HARQ进程的HARQ缓存(buffer)里有数据;
配置了机器类通信(machine type of communication,MTC)PDCCH上行HARQ-ACK反馈配置(mpdcch-UL-HARQ-ACK-FeedbackConfig)并且当前正在进行一个绑定组(bundle)内的重复传输。
在一些实施例中,若drx-InactivityTimer超时和/或终端设备收到一个DRX命令媒体接入控制控制元素(DRX Media Access Control Command Control Element,DRX Command MAC CE),所述终端设备使用长DRX周期。
在一些实施例中,若drx-ShortCycleTimer超时和/或终端设备收到一个long DRX command MAC CE,所述终端设备使用短DRX周期。
在一些实施例中,所述终端设备可以根据当前是处于长DRX周期还是短DRX周期,来决定启动drx-onDurationTimer的时间。
例如,如果使用的是短DRX周期,并且当前子帧满足[(SFN×10)+子帧号]modulo(drx-ShortCycle)=(drx-StartOffset)modulo(drx-ShortCycle)。
又例如,如果使用的是长DRX周期,并且当前子帧满足[(SFN×10)+子帧号]modulo(drx-LongCycle)=drx-StartOffset。
其中,modulo表示取模运算。
在一些实施例中,所述终端设备可以在当前子帧开始的drx-SlotOffset个slot之后的时刻启动drx-onDurationTimer。
在一些实施例中,启动或重启drx-InactivityTimer的条件包括但不限于:
如果终端设备接收到一个指示下行或者上行初始传输的PDCCH,则终端设备启动或者重启drx-InactivityTimer。
在一些实施例中,启动和停止drx-RetransmissionTimerDL的条件包括但不限于:
当所述终端设备接收到一个指示下行传输的PDCCH,或者当终端设备在配置的下行授权资源上接收到一个MAC PDU,则终端设备停止该HARQ进程对应的drx-RetransmissionTimerDL。
应理解,在本申请实施例中,用于控制终端设备期望接收到指示下行调度的PDCCH需要的最少等待时间的定时器可以表述为不同的名称,例如,在LTE系统中,该定时器可以被称作HARQ RTT timer,在NR系统中可以称为drx-HARQ-RTT-TimerDL,随着标准的演进,该定时器也可以更新为其他名称,本申请实施例对于该定时器的名称以及所适用的通信系统不作具体限定,其可以适用于各种设置有该定时器的系统或网络,类似地,对于用于控制终端设备期望接收到指示上行调度的PDCCH需要的最少等待时间的定时器亦是如此,以下,以下行为HARQ RTT timer,上行为UL HARQ RTT  timer为例进行说明,但本申请并不限于此。
在一些实施例中,启动和停止HARQ RTT Timer的条件包括但不限于:
当所述终端设备接收到一个指示下行传输的PDCCH,或者如果终端设备在接收该物理上行共享信道(Physical Uplink Shared Channel,PUSCH)的子帧有配置的下行授权,则:
如果该终端设备为窄带物联网(Narrow Band Internet of Things,NB-IoT)终端或者增强机器类通信(enhanced machine type of communication,eMTC)终端,则;
如果物理层指示调度了多个传输块(Transport Block,TB)传输,则终端设备在接收该多个TB的最后一个TB的PDSCH的最后一次重复传输所在子帧启动该多个TB中的每个TB的PDSCH所使用的下行HARQ进程对应的HARQ RTT Timer。
否则,即物理层指示调度了一个TB传输,终端设备在接收该PDSCH的最后一次重复传输所在子帧启动该PDSCH所使用的下行HARQ进程对应的HARQ RTT Timer。
如果该UE不为前述两种终端,启动该PDSCH所使用的下行HARQ进程对应的HARQ RTT Timer。
如果HARQ RTT Timer超时,并且如果该HARQ进程的数据解码失败,则终端设备启动该下行HARQ进程对应的drx-RetransmissionTimer。
对于NB-IoT终端,如果物理层指示对于该HARQ RTT Timer关联的是多个TB,则当所有这些HARQ进程对应的HARQ RTT Timer都超时之后启动或重启drx-InactivityTimer,否则,启动或重启drx-InactivityTimer。
对于UL HARQ RTT Timer,即UL HARQ RTT Timer,终端设备启动或重启UL HARQ RTT Timer的条件为:
如果终端设备接收到PDCCH指示一个使用异步HARQ进程的上行传输,或者如果终端设备在该子帧对于某个异步HARQ进程有配置的上行授权,或者终端接收到PDCCH指示使用一个自动HARQ进程的上行传输,则:
如果没有配置高层参数(mpdcch-UL-HARQ-ACK-FeedbackConfig)
情况1:如果物理层指示调度了多个TB传输,则终端设备在完成该多个TB的最后一个TB的PUSCH的最后一次重复传输所在子帧启动该多个TB中的每个TB的PUSCH所使用的上行HARQ进程对应的UL HARQ RTT Timer。
情况2,如果物理层指示调度了一个TB传输,终端设备在完成该PUSCH的最后一次重复传输所在子帧启动该PUSCH所使用的上行HARQ进程对应的UL HARQ RTT Timer。
如果某个上行HARQ进程对应的UL HARQ RTT Timer超时,则终端设备启动该上行HARQ进程对应的drx-ULRetransmissionTimer。对于NB-IoT终端,如果物理层指示对于该UL HARQ RTT Timer关联的是多个TB,则当所有这些HARQ进程对应的UL HARQ RTT Timer都超时之后启动或重启drx-InactivityTimer;否则,启动或重启drx-InactivityTimer。
从上述DRX过程可以看出,终端设备在完成上行发送或者完成下行接收之后都会先启动一个HARQ RTT定时器(对于上行发送是UL HARQ RTT Timer,对于下行传输是HARQ RTT Timer),
对于HARQ RTT Timer的取值主要考虑终端设备的反馈时延以及在完成HARQ反馈之后的终端处理时延,对于UL HARQ RTT Timer主要考虑终端设备完成PUSCH传输之后的处理时延。
终端设备的处理时延通常是几毫秒,在地面网络中,该处理时延大于终端与网络之间的信号传输的往返传输时间(Round Trip Time,RTT),即网络可以在该处理时间内根据上行接收情况响应终端后续的调度。在NTN中,UE与网络之间的信号传输时延大幅增加,因此,如何设计HARQ RTT定时器的时长是一项继续解决的问题。
图3为本申请实施例提供的一种无线通信的方法200的示意性交互图。该方法200可以由图1所示的通信系统中的终端设备或网络设备执行,如图3所示,该方法200可以包括如下至少部分内容:
S210,第一设备根据第一往返时间RTT,确定第一混合自动请求重传HARQ进程对应的HARQ RTT定时器的时长,或所述第一设备确定所述第一HARQ进程对应的HARQ RTT定时器的时长为预设值,其中,所述第一HARQ进程为第一数据信道所使用的HARQ进程,所述第一数据信道用于承载物理下行控制信道PDCCH调度的至少一个传输块TB中的第一TB,所述第一RTT根据所述终端设备和网络设备之间的信号传输时延确定。
可选地,在本申请实施例中,所述第一设备可以为终端设备,或者也可以为网络设备,该终端设备和网络设备的各种具体实现参考图1所示实施例的说明,这里不再赘述。
在本申请实施例中,所述第一设备为所述第一数据信道的发送端,或者为所述第一数据信道的接收端。
可选地,在本申请实施例中,所述终端设备可以接收网络设备的DRX配置,该DRX配置例如可以包括前文实施例所述的任一DRX参数,为了简洁,这里不再赘述。
可选地,在一些实施例中,所述第一RTT可以根据终端设备的时间提前量(Time Advance,TA)确定。例如,所述第一RTT可以为所述TA。对于该第一RTT,终端设备侧和网络设备侧都可以获知,因此,都可以根据该第一RTT确定HARQ进程对应的HARQ RTT定时器的时长。
在一些实施例中,所述终端设备可以接收网络设备发送的PDCCH,所述PDCCH用于调度上行或下行传输。该PDCCH的调度情况可以包括以下至少之一:
调度情况1:PDCCH用于调度一个下行TB的接收。
调度情况2:PDCCH用于调度多个下行TB的接收。
调度情况3:PDCCH用于调度一个上行TB的发送。
调度情况4:PDCCH用于调度多个下行TB的发送。
在本申请实施例中,所述第一数据信道可以用于承载被调度的TB,或者说,该第一数据信道为被调度的TB对应的数据信道。
例如,若PDCCH用于调度上行TB的发送,所述第一数据信道可以为物理上行共享信道(Physical Uplink Shared Channel,PUSCH)。又例如,若PDCCH用于调度下行TB的接收,所述第一数据信道可以为物理下行共享信道(Physical Downlink Shared Channel,PDSCH)。
应理解,在本申请实施例中,当PDCCH调度的是上行TB的发送时,所述第一数据信道使用的第一HARQ进程是上行HARQ进程。当PDCCH调度的是下行TB的接收时,所述第一数据信道使用的第一HARQ进程是下行HARQ进程。
在终端设备接收到该PDCCH之后,可以在特定时间启动承载被调度的TB对应的数据信道所使用的HARQ进程对应的HARQ RTT定时器,在HARQ RTT定时器运行期间,不监听PDCCH,在HARQ RTT定时器超时之后,网络设备可以进行数据的调度。
对应地,在网络设备发送该PDCCH之后,网络设备也可以在特定时间启动承载被调度的TB对应的数据信道所使用的HARQ进程所对应的HARQ RTT定时器,在HARQ RTT定时器运行期间,不再次调度使用该HARQ进程的数据传输。
应理解,在本申请实施例中,被调度的上行传输或下行传输可以只传输一次,或者也可以传输多次,某个下行传输的第一次传输(即初传)也可以称为该下行传输的第一次重复传输,该下行传输的最后一次传输也可以称为下行传输的最后一次重复传输,类似地,对于上行传输亦是如此,这里不再赘述。
对于调度情况1,所述终端设备可以在第一时间启动第一数据信道所使用的第一HARQ进程对应的HARQ RTT定时器,其中,第一数据信道用于承载所述一个下行TB。
在一些实施例中,所述第一时间例如可以为第一子帧,所述第一子帧为接收该第一数据信道的最后一次重复传输所在的子帧。
对于调度情况2,所述终端设备可以在第二时间启动第一数据信道所使用的第一HARQ进程对应的HARQ RTT定时器,其中,第一数据信道用于承载所述多个下行TB中的第一下行TB。
在一些实施例中,所述第二时间例如可以为第二子帧,所述第二子帧为接收该多个下行TB的最后一个TB的最后一次重复传输所在的子帧。
对于调度情况3,所述终端设备可以在第三时间启动第一数据信道所使用的第一HARQ进程对应的UL HARQ RTT定时器,其中,第一数据信道用于承载所述一个上行TB。
在一些实施例中,所述第三时间例如可以为第三子帧,所述第三子帧为完成所述第一数据信道的最后一次重复传输所在子帧。
对于调度情况4,所述终端设备可以在第四时间启动第一数据信道所使用的第一HARQ进程对应的HARQ RTT定时器,其中,第一数据信道用于承载所述多个上行TB中的第一上行TB。
在一些实施例中,所述第四时间例如可以为第四子帧,所述第四子帧为完成多个下行TB的最后一个TB的最后一重复传输所在子帧。
应理解,本申请实施例可以适用于RTT较大的场景,例如NTN场景,或者其他需要对HARQ RTT定时器的时长进行重新设计或定义的场景,本申请并不限于此。
对于终端设备与网络设备之间的RTT较大的情况,在一些场景中,为了在不增加HARQ进程数的情况下实现数据的连续传输,可以将终端设备的其中一部分或者所有HARQ进程的HARQ反馈功能配置为关闭状态,这样,网络设备可以不等待接收终端设备的上行传输(对于上行HARQ为上行数据传输,对于下行HARQ为终端设备针对该HARQ的下行数据传输的HARQ反馈),而继续调度该HARQ进程进行数据传输。
因此,在一些实施例中,在设计HARQ RTT定时器的时长时可以考虑HARQ进程的HARQ反馈功能的状态。
作为一个实施例,在第一HARQ进程的HARQ反馈功能的状态为开启状态时,根据第一RTT,确定所述第一HARQ进程对应的HARQ RTT定时器的时长。
作为另一实施例,在第一HARQ进程的HARQ反馈功能的状态为关闭状态时,确定所述第一HARQ进程对应的HARQ RTT定时器的时长为预设值。
可选地,所述预设值可以为非负常量,例如0或3等。单位可以为毫秒或子帧等。
可选地,在本申请实施例中,对于下行HARQ进程对应的HARQ RTT定时器的时长设计可以考虑终端设备的HARQ-ACK反馈时延、终端设备进行HARQ-ACK反馈可能花费的时间和RTT中的至少一个。
应理解,在本申请实施例中,由于终端设备进行HARQ-ACK反馈的情形比较多,因此,HARQ-ACK反馈可能花费的时间的情况也比较多,本申请对此不作具体限定,在下文介绍结合具体实施例进行详细说明。
作为一个示例,若对一个TB进行HARQ-ACK反馈,终端设备进行HARQ-ACK反馈可能花费的时间例如可以包括对该一个TB进行单次HARQ-ACK反馈所占用的时间,或者进行多次HARQ-ACK反馈所占用的时间等。
作为另一示例,若需要对多个TB进行反馈,终端设备进行HARQ-ACK反馈可能花费的时间例如可以包括对该多个TB中的每个TB进行单次HARQ-ACK反馈所占用的时间,或者对该多个TB中的每个TB进行多次HARQ-ACK反馈所需的时间,或者,对该多个TB进行HARQ绑定反馈(HARQ-ACK bundling)所占用的时间,或者,对该多个TB中的部分TB进行单次HARQ-ACK反馈花费的时间,以及对其他TB进行多次HARQ-ACK反馈花费的时间等。
在一种实现方式中,可以将所述HARQ RTT定时器的时长设计为使得该HARQ RTT定时器的结束时刻(或者说,停止时刻)晚于RTT时刻或者为RTT时刻,将终端设备完成HARQ-ACK反馈的时刻记为反馈结束时刻,该RTT时刻在反馈结束时刻之后并且间隔所述第一RTT,这是由于在RTT时刻之前,网络设备不会调度终端设备使用同一HARQ进程进行上行或下行传输,因此,终端设备可以不监听PDCCH,从而能够降低终端的功耗。
作为一个实施例,该HARQ RTT定时器的结束时刻例如可以为RTT时刻之后的第一个PDCCH时机(PDCCH occasion,PO),或者RTT时刻之后的第一个PDCCH时机所在子帧,由于网络设备在非PO上不进行数据调度,因此,在RTT时刻之后的第一PO或第一个PO所在子帧再开始监听PDCCH,有利于降低终端的功耗。
以下,说明当PDCCH调度的是下行传输时,下行HARQ进程对应的HARQ RTT定时器的时长的确定方式。
可选地,在本申请一些实施例中,所述S210可以具体包括:
根据所述第一RTT和第一信息,确定所述第一HARQ进程对应的HARQ RTT定时器的时长;
其中,所述第一信息包括如下中的至少一项:
所述至少一个TB的HARQ-ACK反馈时延;
所述终端设备完成HARQ-ACK反馈后的处理时延;
所述至少一个TB对应的HARQ-ACK信息的反馈重复传输次数参数;
所述至少一个TB的个数;
终端设备是否被配置为HARQ绑定反馈;
进行HARQ绑定反馈的TB个数;
所述第一HARQ进程对应的HARQ反馈功能的状态;
HARQ反馈持续时间,表示多次发送一个HARQ反馈信息所占用的总时间;
单次发送一个HARQ反馈信息所占用的时间;
第一PDCCH间隔,表示从第一时刻到第一时刻之后的第一个PDCCH时机之间的时间间隔,所述第一时刻在所述终端设备进行HARQ反馈之后,并且间隔所述第一RTT;
第二PDCCH间隔,表示从第二时刻到所述第二时刻之后的第一PDCCH时机之间的时间间隔,所述第二时刻在所述终端设备进行HARQ反馈之后,并且间隔所述终端设备的处理时延。
可选地,在本申请实施例中,HARQ-ACK反馈时延可以为终端设备在完成下行传输到开始对该下行传输进行HARQ-ACK反馈之间的时延。
可选地,在本申请实施例中,所述终端设备完成HARQ-ACK反馈后的处理时延,例如可以包括终端从上行发送切换为下行接收的时延,或者从完成HARQ-ACK反馈到进行下次数据传输之间的时 延。
可选地,在本申请实施例中,所述HARQ-ACK信息的反馈重复传输次数参数可以用于指示HARQ-ACK信息需要反馈几次,例如一次,或者多次等。
可选地,在本申请实施例中,所述终端设备是否被配置为HARQ-ACK bundling可以用于确定针对所述至少一个TB需要传输的HARQ-ACK信息的个数。
例如,当没有被配置HARQ-ACK bundling时,每个TB的HARQ-ACK信息需要单独反馈,则HARQ-ACK信息的个数和被调度的TB个数相同。当被配置HARQ-ACK bundling时,多个TB的HARQ-ACK信息可以进行bundling反馈,则HARQ-ACK信息的个数k可以根据被调度的TB个数和绑定反馈的TB个数M确定。例如k=ceiling(N TB/M),其中N TB为PDCCH调度的TB个数,M为PDCCH中指示的多个TB HARQ-ACK的bundling大小,即一个bundling包括多少个TB的反馈,ceiling表示向上取整。
可选地,在本申请实施例中,所述第一HARQ进程对应的HARQ反馈功能的状态例如可以为开启状态或关闭状态,在第一HARQ进程对应的HARQ反馈功能的状态为开启状态时,可以根据第一RTT结合上述其他信息确定第一HARQ进程对应的HARQ RTT定时器的时长,在第一HARQ进程对应的HARQ反馈功能的状态为关闭状态时,确定第一HARQ进程对应的HARQ RTT定时器的时长为预设值。
在一些实施例中,所述第一PDCCH间隔可以为前文所述的RTT时刻到该RTT时刻之后的第一个PDCCH时机之间的时间间隔。更具体的,RTT时刻到该RTT时刻之后的第一个PDCCH时机所在子帧之间的时间间隔,换言之,终端设备完成HARQ反馈之后再经历第一RTT的时刻到下一个PDCCH时机的第一个子帧之间的时间间隔。
在一些实施例中,所述第二PDCCH间隔可以为前文所述的反馈结束时刻之后再经历所述处理时延的时刻到其后的第一个PDCCH时机之间的时间间隔。更具体地,该时刻到其后的第一个PDCCH时机所在子帧之间的时间间隔。作为一个示例,终端设备完成HARQ反馈所使用的最后一个子帧之后的第3个子帧到下一个PDCCH时机的第一个子帧之间的时间间隔。
以下,从终端设备的角度描述下行HARQ进程对应的HARQ RTT定时器的时长的确定方式,对于网络设备而言,上述信息网络设备也可以获知,因此,网络设备也可以按照终端设备类似的方式确定下行HARQ进程对应的HARQ RTT定时器的时长,进一步地,在下行HARQ进程对应的HARQ RTT定时器未超时时,不进行数据的调度,在定时器超时时,进行数据的调度,为了简洁,这里不再赘述。
在一些实施例中,所述根据所述第一RTT和第一信息,确定所述第一HARQ进程对应的HARQ RTT定时器的时长,包括:
终端设备可以根据所述第一RTT和所述第一信息,确定第一时长;
进一步根据所述第一时长,确定所述第一HARQ进程对应的HARQ RTT定时器的时长。
作为一个实施例,所述终端设备可以将所述第一时长确定为所述第一HARQ进程对应的HARQ RTT定时器的时长。
作为一个实施例,所述终端设备可以将所述第一时长和第一预设时长中的较大值确定为所述第一HARQ进程对应的HARQ RTT定时器的时长,其中,所述第一预设时长根据所述至少一个TB的反馈时延和所述处理时延确定。
以下结合具体实施例,说明该下行HARQ进程对应的HARQ RTT定时器的时长的确定方式。
情况1:所述至少一个TB只包括第一TB。
在该情况1中,所述至少一个TB的反馈时延包括第一时间间隔,所述第一时间间隔表示所述第一TB的最后一次传输到所述第一TB对应的HARQ反馈信息的第一次传输之间的时间间隔。
所述至少一个TB对应的HARQ-ACK信息的反馈重复传输次数参数包括第一参数和/或第二参数,其中,所述第一参数用于指示物理上行控制信道PUCCH的第一次传输。所述第二参数用于指示PUCCH重复因子。即第一TB的反馈重复传输次数为多次,其中,所述PUCCH用于承载所述第一TB对应的HARQ反馈信息。
在该情况1中,所述终端设备可以根据所述第一RTT、所述第一时间间隔和所述反馈重复传输次数参数确定所述第一时长。
作为一个示例,所述第一时长等于所述第一时间间隔、所述第一参数和所述第一RTT的和值。
作为另一示例,所述第一时长等于所述第一时间间隔、所述第二参数和所述第一RTT的和值。
可选地,所述第一预设时长等于所述第一TB的反馈时延和所述处理时延。
则在一些实施例中,所述第一HARQ进程对应的HARQ RTT定时器的时长可以设置为所述第一时长,或者所述第一时长和所述第一预设时长中的最大值。
情况2:所述至少一个TB包括多个TB,所述多个TB包括所述第一TB,所述终端设备没有被配置HARQ绑定反馈,即所述多个TB需要单独反馈。
在该情况2中,所述至少一个TB的反馈时延包括第二时间间隔,所述第二时间间隔表示所述多个TB中的最后一个TB的最后一次传输到所述多个TB对应的HARQ反馈信息的第一次传输之间的时间间隔。
所述至少一个TB对应的HARQ-ACK信息的反馈重复传输次数参数包括第一参数N1和/或第二参数N,其中,所述第一参数N1用于指示PUCCH的第一次传输,所述PUCCH用于承载所述多个TB中的最后一个TB对应的HARQ反馈信息。换言之,最后一个TB的反馈重复传输次数可以为1,即N1为1。所述第二参数N用于指示PUCCH重复因子。
在该情况2中,所述终端设备可以根据所述第一RTT、所述多个TB的个数、所述第二时间间隔和所述反馈重复传输次数参数,确定所述第一时长。
在一些实施例中,在确定HARQ RTT定时器的时长时考虑进行HARQ-ACK反馈所花费的时间包括该多个TB对应的HARQ反馈信息都重复传输N次所占用的时间(最差的情况),或者也可以考虑对该多个TB中的最后一个TB对应的HARQ反馈信息只传输一次,对其他TB对应的HARQ反馈信息都重复传输N次所所占的时间。
假设有N TB个TB,则进行HARQ-ACK反馈所花费的时间例如可以为N TB*N或(N TB-1)*N+N1,其中,N表示N次重复传输一个HARQ反馈信息所占用的时间,N1为传输最后一个TB对应的HARQ反馈信息第一次重复传输所占用的时间,N的单位可以是单次传输一个HARQ信息所需要的时间,或者可以认为单次传输一个HARQ信息需要1个子帧,即N的单位可以为子帧。
应理解,本申请实施例所确定的HARQ RTT定时器的时长的单位可以为子帧,或毫秒等,本申请对此不作限定。
作为一个示例,所述第一时长等于T2+N TB*N+RTT或T2+(N TB-1)*N+N1+RTT。
作为一个示例,所述第一预设时长等于7+N TB*N。
其中,RTT表示所述第一RTT,T2表示所述第二时间间隔,N1表示所述第一参数,N表示所述第二参数,N TB表示所述多个TB的个数。情况3:所述至少一个TB包括多个TB,所述多个TB包括所述第一TB,所述终端设备被配置HARQ绑定反馈,即所述多个TB可以进行绑定反馈。
在该情况3中,所述至少一个TB的反馈时延包括第三时间间隔,所述第三时间间隔表示所述多个TB中的最后一个TB的最后一次传输到所述多个TB对应的HARQ反馈信息的第一次传输之间的时间间隔。
所述至少一个TB对应的HARQ-ACK信息的反馈重复传输次数参数包括第一参数和/或第二参数,其中,所述第一参数用于指示PUCCH的第一次传输,所述PUCCH用于承载所述多个TB中的最后一个绑定反馈的HARQ反馈信息。所述第二参数用于指示PUCCH重复因子。
在该情况3中,所述终端设备可以根据所述第一RTT、所述第三时间间隔、所述反馈重复传输次数参数和对所述多个TB进行HARQ绑定反馈的组数确定所述第一HARQ进程对应的HARQ RTT定时器的时长。
该情况3跟情况2类似,区别在于情况2中N TB个TB需要单独反馈,所以HARQ反馈信息的个数为N TB,而在情况3中可以进行绑定反馈,因此HARQ反馈信息的个数变更为k,例如k=ceiling(N TB/M)。进一步确定时长时只需将情况2中的N TB替换为k即可。
作为一个示例,所述第一时长等于T3+k*N+RTT,或T3+(k-1)*N+N1+RTT。
对应地,所述第一预设时长等于7+k*N;
其中,RTT表示所述第一RTT,T3表示所述第三时间间隔,N1表示所述第一参数,N表示所述第二参数,k表示所述多个TB进行HARQ绑定反馈的bundling数。
可选地,在一些实施例中,所述情况1-情况3中的实现方式可以适用于降低能力(Reduced Capbility,RedCap)终端,此类终端对时延、可靠性、带宽、覆盖、吞吐量等性能要求较低,例如增强机械类通信eMTC终端。
情况4:所述至少一个TB只包括第一TB。
在该情况4中,所述至少一个TB的反馈时延包括第四时间间隔,所述第四时间间隔表示所述第一TB的最后一次传输到所述第一TB对应的HARQ反馈信息的第一次传输之间的时间间隔,换言之,第一TB的PDSCH的最后一个子帧到对应第一TB的HARQ反馈的第一个子帧之间的时间间隔。
所述第一信息包括所述第四时间间隔、所述HARQ反馈持续时间和所述第一PDCCH间隔,其中,所述HARQ反馈持续时间为传输所述第一TB对应的HARQ反馈信息所占用的总时间(可以是单次传输,或者也可以是多次传输),所述第一PDCCH间隔为完成传输所述第一TB对应的HARQ反馈 信息之后再经历所述第一RTT的时刻到下一个PO之间的时间间隔。
在该情况4中,所述终端设备可以根据所述第一RTT、所述第四时间间隔、所述HARQ反馈持续时间和所述第一PDCCH间隔确定所述第一时长。
作为一个示例,所述第一时长等于T4+T CK+RTT+ΔPDCCH1,对应于所述第一TB的HARQ反馈信息是传输一次的情况,T CK表示单次发送一个反馈信息所占用的时间,该T CK可以为1ms或其他时间长度。
作为另一示例,所述第一时长等于T4+N+RTT+ΔPDCCH1,对应于所述第一TB的HARQ反馈信息是传输N次的情况,N表示N次发送一个反馈信息所占用的时间。
可选地,所述第一预设时长等于T4+3+N+ΔPDCCH2。
其中,RTT表示所述第一RTT,T4表示所述第四时间间隔,N表示所述HARQ反馈持续时间,ΔPDCCH1表示所述第一PDCCH间隔,ΔPDCCH2表示所述第二PDCCH间隔。
应理解,在本申请实施例中,N的单位可以是单次传输一个HARQ信息所需要的时间,或者可以认为单次传输一个HARQ信息需要1个子帧,即N的单位可以为子帧。
可选地,在一些实施例中,所述情况4中的实现方式可以适用于RedCap终端,例如NB-Iot终端。
情况5:所述至少一个TB包括多个TB,所述多个TB包括所述第一TB,所述终端设备被配置HARQ绑定反馈,即所述多个TB可以进行绑定反馈。
在该情况5中,所述至少一个TB的反馈时延包括第五时间间隔,所述第五时间间隔表示所述多个TB的最后一次传输到所述多个TB对应的HARQ反馈信息的第一次传输之间的时间间隔。更具体地,所述第五时间间隔表示多个TB中的最后一个TB的PDSCH的最后一个子帧到对应第一个HARQ反馈信息的第一个子帧之间的时间间隔。
所述第一信息包括所述第五时间间隔、所述HARQ反馈持续时间和所述第一PDCCH间隔,其中,所述HARQ反馈持续时间为传输所述多个TB对应的HARQ反馈信息所占用的总时间(可以是单次传输,或者也可以是多次传输),所述第一PDCCH间隔为完成传输所述最后一个HARQ反馈信息之后再经历所述第一RTT的时刻到下一个PO之间的时间间隔。
在该情况5中,传输所述多个TB对应的HARQ反馈信息所占用的时间的具体确定方式可以参考场景3中的相关描述。
在一个具体示例中,所述多个TB包括两个TB,该两个TB对应的HARQ反馈信息可以绑定反馈,则传输N次该两个TB对应的HARQ反馈信息所需要的时间为N,单位可以为单次传输一个HARQ反馈信息所占用的时间,或者单位为一个子帧。即所述HARQ反馈持续时间可以为N。
在该情况5中,所述终端设备可以根据所述第一RTT、所述第五时间间隔、所述HARQ反馈持续时间和所述第一PDCCH间隔确定所述第一时长。
作为一个示例,所述第一时长等于T5+N+RTT+ΔPDCCH1,其中,所述多个TB的HARQ反馈信息传输N次。
可选地,所述第一预设时长等于T5+3+N+ΔPDCCH2。
其中,RTT表示所述第一RTT,T5表示所述第五时间间隔,N表示所述HARQ反馈持续时间,ΔPDCCH1表示所述第一PDCCH间隔,ΔPDCCH2表示所述第二PDCCH间隔。
可选地,在一些实施例中,所述情况5中的实现方式可以适用于RedCap终端,例如NB-Iot终端。具体地,适用于交织场景中并且终端设备被配置HARQ-ACK bundling的情况。
情况6:所述至少一个TB包括多个TB,所述多个TB包括所述第一TB,所述终端设备没有被配置HARQ绑定反馈,即所述多个TB可以进行单独反馈。
在该情况6中,所述至少一个TB的反馈时延包括第六时间间隔,所述第六时间间隔表示所述多个TB的最后一次传输到所述多个TB对应的HARQ反馈信息的第一次传输之间的时间间隔。更具体地,所述第六时间间隔表示多个TB中的最后一个TB的PDSCH的最后一个子帧到对应第一个TB的HARQ反馈信息的第一个子帧之间的时间间隔。
所述第一信息包括所述第六时间间隔、所述HARQ反馈持续时间和所述第一PDCCH间隔,其中,所述HARQ反馈持续时间为传输所述多个TB对应的HARQ反馈信息所占用的总时间(可以是单次传输,或者也可以是多次传输),所述第一PDCCH间隔为完成传输最后一个TB的HARQ反馈信息之后再经历所述第一RTT的时刻到下一个PO之间的时间间隔。
在该情况6中,传输所述多个TB对应的HARQ反馈信息所占用的时间的具体确定方式可以参考场景2中的相关描述。
在一个具体示例中,所述多个TB包括两个TB,则在一种情况下,所述HARQ反馈持续时间包括传输N次该两个TB分别对应的HARQ反馈信息所需要的时间,即2*N,单位可以为单次传输一 个HARQ反馈信息所占用的时间,或者单位为一个子帧。
在另一个具体示例中,所述多个TB包括两个TB,在另一种情况中,所述HARQ反馈持续时间包括传输N次第一个TB对应的HARQ反馈信息所需要的时间和传输N1次第二个TB对应的HARQ反馈信息所需要的时间,即N+N1,单位可以为单次传输一个HARQ反馈信息所占用的时间,或者单位为一个子帧。可选地,在一些实施例中,N1为1。
进一步地,所述终端设备可以根据所述第一RTT、所述第六时间间隔、所述HARQ反馈持续时间和所述第一PDCCH间隔确定所述第一时长。
作为一个示例,所述第一时长等于T6+2*N+RTT+ΔPDCCH1。
作为另一个示例,所述第一时长等于T6+N+N1+RTT+ΔPDCCH1。
可选地,所述第一预设时长等于T6+2N+1+ΔPDCCH2。
其中,RTT表示所述第一RTT,T5表示所述第六时间间隔,N表示所述HARQ反馈持续时间,ΔPDCCH1表示所述第一PDCCH间隔,ΔPDCCH2表示所述第二PDCCH间隔。
可选地,在一些实施例中,所述情况6中的实现方式可以适用于RedCap终端,例如NB-Iot终端。具体地,适用于非交织场景,或者交织场景中终端设备没有被配置HARQ-ACK bundling的情况。
以下,说明当PDCCH调度的是上行传输时,上行HARQ进程对应的UL HARQ RTT定时器的时长的确定方式。
作为一个实施例,可以将所述第一HARQ进程对应的HARQ RTT定时器的时长确定为所述第一RTT,或者,所述第一RTT和第二预设时长中的较大值。
可选地,所述第二预设时长可以是4,或者可以根据高层参数K ULHARQRTT确定,单位为子帧,或毫秒。
可选地,在本申请另一些实施例中,所述S210可以具体包括:
根据所述第一RTT和第二信息,确定所述第一HARQ进程对应的HARQ RTT定时器的时长;
其中,所述第二信息包括如下中的至少一项:
第三PDCCH间隔,表示从第三时刻到第三时刻之后的第一个PDCCH时机之间的时间间隔,所述第三时刻在所述终端设备完成传输所述至少一个TB对应的数据信道的时刻之后,并且间隔所述第一RTT;
第四PDCCH间隔,表示从第四时刻到所述第四时刻之后的第一PDCCH时机之间的时间间隔,所述第四时刻在完成传输所述至少一个TB对应的数据信道之后,并且间隔所述处理时延。
在一些实施例中,在第一HARQ进程对应的HARQ反馈功能的状态为开启状态时,可以根据第一RTT确定第一HARQ进程对应的HARQ RTT定时器的时长;在第一HARQ进程对应的HARQ反馈功能的状态为关闭状态时,确定第一HARQ进程对应的HARQ RTT定时器的时长为预设值。
在一些实施例中,将终端设备完成所述至少一个TB对应的数据信道的时刻记为传输完成时刻,所述传输完成时刻之后的第一RTT时刻为RTT时刻,所述第三PDCCH间隔可以为所述RTT时刻到该RTT时刻之后的第一个PDCCH时机之间的时间间隔,更具体地,所述第三PDCCH间隔可以为RTT时刻到该RTT时刻之后的第一个PDCCH时机所在子帧之间的时间间隔,即终端设备完成上行传输之后再经历第一RTT的时刻到下一个PDCCH时机的第一个子帧之间的时间间隔。
在一些实施例中,所述第四PDCCH间隔可以为传输完成时刻之后再经历所述处理时延的时刻到其后的第一个PDCCH时机之间的时间间隔。作为一个示例,终端设备完成PUSCH传输对应的最后一个子帧之后再经历3ms到下一个PDCCH时机的第一个子帧之间的时间间隔。
以下,从终端设备的角度描述上行HARQ进程对应的HARQ RTT定时器的时长的确定方式,对于网络设备而言,上述信息网络设备也可以获知,因此,网络设备也可以按照终端设备类似的方式确定上行HARQ进程对应的HARQ RTT定时器的时长,进一步地,在上行HARQ进程对应的HARQ RTT定时器超时时,进行数据的调度,为了简洁,这里不再赘述。
在一些实施例中,所述根据所述第一RTT和第二信息,确定所述第一HARQ进程对应的HARQ RTT定时器的时长,包括:
终端设备可以根据所述第一RTT和所述第二信息,确定第二时长;
进一步根据所述第二时长,确定所述第一HARQ进程对应的HARQ RTT定时器的时长。
作为一个实施例,所述终端设备可以将所述第二时长确定为所述第一HARQ进程对应的HARQ RTT定时器的时长。
作为另一个实施例,所述终端设备可以将所述第二时长和第二预设时长中的较大值确定为所述第一HARQ进程对应的HARQ RTT定时器的时长。
以下结合具体实施例,说明该第一HARQ进程对应的HARQ RTT定时器的时长的确定方式。
情况7:此情况可以适用于RedCap终端,例如,eMTC终端
作为一个实施例,所述终端设备可以将第一RTT确定为第一HARQ进程对应的HARQ RTT定时器的时长。
作为另一实施例,所述终端设备可以根据第一RTT和第二预设时长确定第一HARQ进程对应的HARQ RTT定时器的时长。
例如,可以将所述第一RTT和所述第二预设时长中的最大值确定为所述第一HARQ进程对应的HARQ RTT定时器的时长。
情况8:所述至少一个TB包括一个TB,所述多个TB包括所述第一TB。
此情况可以适用于RedCap终端,例如,NB-IoT终端。
在此情况8中,所述终端设备可以根据所述第一RTT和第三PDCCH间隔,确定所述第二时长。
其中,所述第三PDCCH间隔ΔPDCCH3表示第一TB的PUSCH传输对应的最后一个子帧之后再经历第一RTT的时刻到下一个PO之间的时间间隔,或者,第一TB的PUSCH传输对应的最后一个子帧之后再经历第一RTT的时刻到下一个PO的第一个子帧之间的时间间隔。
作为一个示例,所述第二时长等于RTT+ΔPDCCH3。
作为一个示例,所述第二预设时长等于4+ΔPDCCH4。
其中,RTT表示所述第一RTT,ΔPDCCH3表示所述第三PDCCH间隔,ΔPDCCH4表示所述第四PDCCH间隔。
情况9:所述至少一个TB包括多个TB,所述多个TB包括所述第一TB。
此情况可以适用于RedCap终端,例如,NB-IoT终端。
在此情况9中,所述终端设备可以根据所述第一RTT和第三PDCCH间隔,确定所述第二时长。
其中,所述第三PDCCH间隔ΔPDCCH3表示第一TB的PUSCH传输对应的最后一个子帧之后再经历第一RTT的时刻到下一个PO之间的时间间隔,或者说,第一TB的PUSCH传输对应的最后一个子帧之后再经历第一RTT的时刻到下一个PO的第一个子帧之间的时间间隔。
作为一个示例,所述第二时长等于RTT+ΔPDCCH3。
作为一个示例,所述第二预设时长等于1+ΔPDCCH4。
其中,RTT表示所述第一RTT,ΔPDCCH3表示所述第三PDCCH间隔,ΔPDCCH4表示所述第四PDCCH间隔。
应理解,本申请实施例仅以单次反馈一个HARQ反馈信息所占用的时间为1ms或一个子帧为例进行说明,在其他实施例中,当单次反馈一个HARQ反馈信息所占用的时间为其他时间长度时,只需将占用的时间乘以该其他时间长度即可,本申请对此不作限定。
以下结合具体实施例,说明前述的9种情况的具体实现过程。
实施例一,对应于前述的情况1:
可选地,该实施例一可以适用于eMTC终端。
步骤1:UE接收网络的DRX配置。
步骤2:UE接收到PDCCH,该PDCCH指示调度一个下行TB,则UE在接收该一个下行TB的PDSCH的最后一次重复传输所在子帧启动该PDSCH所使用的下行HARQ进程i对应的HARQ RTT Timer。
步骤3:UE确定步骤2中所述下行HARQ进程i对应的HARQ RTT Timer的时长。
在一些实施例中,如果所述下行HARQ进程i为开启HARQ反馈功能的HARQ进程,则:
对于FDD系统,可以根据如下方式中的一种确定HARQ RTT Timer的时长:
方式1:HARQ RTT Timer的时长为max{T1+N1+RTT,7+N};
方式2:HARQ RTT Timer的时长为max{T1+N+RTT,7+N};
方式3:HARQ RTT Timer的时长为T1+N+RTT。
其中:T1表示PDSCH的最后一次重复传输到对应的HARQ反馈的第一次重复传输之间的时间间隔,对应于情况1中的第一时间间隔。
可选地,在一些实施例中,T1可以为预定义的取值,例如T1=4。
N1表示PUCCH的第一次重复传输,PUCCH用于承载TB对应的HARQ反馈信息,对应于前文中的第一参数。
在一些实施例中,由高层配置参数(fdd-UplinkSubframeBitmapBR)确定的有效上行子帧才会计入到N1。可选地,N1取值为1。
RTT表示UE与网络之间信号传输时延,即第一RTT;
N表示使用的PUCCH重复因子,对应于前文中的第二参数。
可选地,只有由高层配置参数fdd-UplinkSubframeBitmapBR确定的有效的上行子帧才会计入到N。
对于TDD系统,可以根据如下方式中的一种确定HARQ RTT Timer的时长:
方式1:HARQ RTT Timer的时长为max{T1+N1+RTT,3+k+N};
方式2:HARQ RTT Timer的时长为max{T1+N+RTT,3+k+N};
方式3:HARQ RTT Timer的时长为T1+N+RTT。
其中,T1、N1、RTT和N的含义和FDD中的对应参数的含义相同。
在另一些情况中,如果所述下行HARQ进程i为关闭HARQ反馈功能的HARQ进程,则HARQ RTT Timer为一个预定义的非负常量,例如,HARQ RTT Timer取值固定为0。
实施例二,对应于前述的情况2:
可选地,该实施例二可以适用于eMTC终端。
步骤1:UE接收网络的DRX配置。
步骤2:UE接收到PDCCH指示调度多个下行TB,则UE在接收所述多个下行TB的最后一个下行TB的PDSCH的最后一次重复传输所在子帧启动所述多个下行TB中的每个下行TB的PDSCH所使用的下行HARQ进程对应的HARQ RTT Timer。
步骤3:如果该UE没有被配置HARQ-ACK bundling,则对于所述多个下行TB中的每个下行TB的PDSCH所使用的下行HARQ进程,UE可以确定其对应的HARQ RTT Timer的时长。
在一些情况中,如果下行HARQ进程为开启HARQ反馈功能的HARQ进程,则可以根据如下方式中的一种确定HARQ RTT Timer的时长:
方式1:HARQ RTT Timer的时长为T2+N TB*N+RTT;
方式2:HARQ RTT Timer的时长为max{T2+N TB*N+RTT,7+N TB*N};
方式3:HARQ RTT Timer的时长为max{T2+(N TB-1)*N+N1+RTT,7+N TB*N}。
其中:T2表示所述N TB个TB的最后一个TB的PDSCH的最后一次重复传输到针对所述N TB个TB的HARQ反馈的第一次重复传输之间的时间间隔。
可选地,T2可以为预定义的取值,例如T2=4。
N1表示针对所述多个TB中的最后一个TB反馈的PUCCH的第一次重复传输,只有有效的上行子帧才会计入到N1。可选地,N1取值为1。
RTT表示UE与网络之间信号传输时延。
N表示使用的PUCCH重复因子。
可选地,只有由高层配置参数fdd-UplinkSubframeBitmapBR确定的有效的上行子帧才会计入到N。
N TB为所述PDCCH调度的TB个数。
在另一些情况中,如果所述下行HARQ进程为关闭HARQ反馈功能的HARQ进程,则HARQ RTT Timer为一个预定义的非负常量,例如,HARQ RTT Timer取值固定为0。
实施例三,对应于前述的情况3:
可选地,该实施例三可以适用于eMTC终端。
步骤1:UE接收网络的DRX配置。
步骤2:UE接收到PDCCH指示调度多个下行TB,则UE在接收所述多个下行TB的最后一个下行TB的PDSCH的最后一次重复传输所在子帧启动所述多个下行TB中的每个下行TB的PDSCH所使用的下行HARQ进程对应的HARQ RTT Timer,其中,该PDSCH用于承载该下行TB。
步骤3:如果该UE被配置HARQ-ACK bundling,则对于所述多个下行TB中的每个下行TB的PDSCH所使用的下行HARQ进程,UE可以确定其对应的HARQ RTT Timer的时长。
在一些实施例中,如果所使用的下行HARQ进程为开启HARQ反馈功能的HARQ进程,则可以根据如下方式中的一种确定HARQ RTT Timer的时长:
方式1:HARQ RTT Timer的时长为T3+k*N+RTT;
方式2:HARQ RTT Timer的时长为max{T3+k*N+RTT,7+k*N};
方式3:HARQ RTT Timer的时长为max{T3+(k-1)*N+N1+RTT,7+k*N}。
其中:T3表示所述N TB个TB的最后一个TB的PDSCH的最后一次重复传输到针对所述N TB个TB的HARQ反馈的第一次重复传输之间的时间间隔。
可选地,T3可以为预定义的取值,例如T3=4。
N1表示针对所述多个TB中的最后一个TB反馈的PUCCH的第一次重复传输,只有有效的上行子帧才会计入到N1。可选地,N1取值为1。
RTT表示UE与网络之间信号传输时延。
N表示使用的PUCCH重复因子。
可选地,只有由高层配置参数fdd-UplinkSubframeBitmapBR确定的有效的上行子帧才会计入到N。
k为HARQ反馈组(bundle)的个数。可选地,k=ceiling(N TB/M),其中N TB为PDCCH调度的TB个数,M为单个bundling的大小,即一个bundling包括多少个TB的反馈,ceiling表示向上取整。
在另一些实施例中,如果所述下行HARQ进程为关闭HARQ反馈功能的HARQ进程,则HARQ RTT Timer为一个预定义的非负常量,例如,HARQ RTT Timer取值固定为0。
实施例四,对应于前述的情况4:
可选地,该实施例四可以适用于NB-IoT终端。
步骤1:UE接收网络的DRX配置。
步骤2:UE接收到PDCCH指示调度一个下行TB,则UE在接收该一个下行TB的PDSCH的最后一次重复传输所在子帧启动该PDSCH所使用的下行HARQ进程i对应的HARQ RTT Timer。
步骤3:UE确定步骤2中所述下行HARQ进程i对应的HARQ RTT Timer的时长。
在一些实施例中,如果所述下行HARQ进程i为开启HARQ反馈功能的HARQ进程,则可以根据如下方式中的一种确定HARQ RTT Timer的时长:
方式1:HARQ RTT Timer的时长为max{T4+T CK+RTT+ΔPDCCH1,T4+3+N+ΔPDCCH2},其中,T CK表示单次发送一个反馈信息所占用的时间;
方式2:HARQ RTT Timer的时长为max{T4+N+RTT+ΔPDCCH1,T4+3+N+ΔPDCCH2},N表示N次发送一个反馈信息所占用的时间;
方式3:HARQ RTT Timer的时长为T4+N+RTT+ΔPDCCH1。
其中:T4表示传输PDSCH的最后一个子帧到对应的HARQ反馈的第一个子帧之间的时间间隔。
RTT表示UE与网络之间信号传输时延。
N表示HARQ反馈持续时间。
ΔPDCCH1,表示UE完成HARQ反馈之后经历第一RTT的时刻到下一个PDCCH时机的第一个子帧之间的时间间隔。
ΔPDCCH2,表示从进行HARQ反馈使用的最后一个子帧之后的第3个子帧到下一个PDCCH时机的第一个子帧之间的时间间隔。
在另一些实施例中,如果所述下行HARQ进程i为关闭HARQ反馈功能的HARQ进程,则HARQ RTT Timer为一个预定义的非负常量,例如,HARQ RTT Timer取值固定为0。
实施例五,对应于前述的情况5:
可选地,该实施例五可以适用于NB-IoT终端。
可选地,该实施例可以适用于交织场景中终端设备被配置了HARQ-ACK bundling的情况。
步骤1:UE接收网络的DRX配置。
步骤2:UE接收到PDCCH指示调度多个下行TB,则UE在接收所述多个下行TB的最后一个下行TB的PDSCH的最后一次重复传输所在子帧启动所述多个下行TB中的每个下行TB的PDSCH所使用的下行HARQ进程对应的HARQ RTT Timer。
步骤3:如果该UE被配置HARQ-ACK bundling,则对于所述多个下行TB中的每个下行TB的PDSCH所使用的下行HARQ进程,UE可以确定其对应的HARQ RTT Timer的时长。
在一些情况中,如果所述使用的下行HARQ进程为开启HARQ反馈功能的HARQ进程,则可以根据如下方式中的一种确定HARQ RTT Timer的时长:
方式1:HARQ RTT Timer的时长为T5+N+RTT+ΔPDCCH1;
方式2:HARQ RTT Timer的时长为max{T5+N+RTT+ΔPDCCH1,T5+3+N+ΔPDCCH2}。
其中:T5表示传输PDSCH的最后一个子帧到对应的HARQ反馈的第一个子帧之间的时间间隔。
RTT表示UE与网络之间信号传输时延。
N表示HARQ反馈持续时间。
ΔPDCCH1,表示UE完成HARQ反馈之后经历第一RTT的时刻到下一个PDCCH时机的第一个子帧之间的时间间隔;
ΔPDCCH2,表示从进行HARQ反馈使用的最后一个子帧之后的第3个子帧到下一个PDCCH时机的第一个子帧之间的时间间隔。
在另一些实施例中,如果所述下行HARQ进程为关闭HARQ反馈功能的HARQ进程,则HARQ RTT Timer为一个预定义的非负常量,例如,HARQ RTT Timer取值固定为0。
实施例六,对应于前述的情况6:
可选地,该实施例六可以适用于NB-IoT终端。
可选地,该实施例可以适用于非交织场景,或者交织场景中终端设备没有被配置HARQ-ACK  bundling的情况。
步骤1:UE接收网络的DRX配置。
步骤2:UE接收到PDCCH指示调度多个下行TB,则UE在接收所述多个下行TB的最后一个下行TB的PDSCH的最后一次重复传输所在子帧启动所述多个下行TB中的每个下行TB的PDSCH所使用的下行HARQ进程对应的HARQ RTT Timer,其中,该PDSCH用于承载该下行TB。
步骤3:如果该UE没有被配置HARQ-ACK bundling,则对于所述多个下行TB中的每个下行TB的PDSCH所使用的下行HARQ进程,UE可以确定其对应的HARQ RTT Timer的时长。
在一些情况中,如果所使用的下行HARQ进程为开启HARQ反馈功能的HARQ进程,则可以根据如下方式中的一种确定HARQ RTT Timer的时长:
方式1:HARQ RTT Timer的时长为T6+2*N+RTT+ΔPDCCH1;
方式2:HARQ RTT Timer的时长为max{T6+2*N+RTT+ΔPDCCH1,T6+2*N+1+ΔPDCCH2};
方式3:HARQ RTT Timer的时长为max{T6+N+N1+RTT+ΔPDCCH1,T6+2*N+1+ΔPDCCH2}。
其中:T6表示传输PDSCH的最后一个子帧到对应的HARQ反馈的第一个子帧之间的时间间隔。
RTT表示UE与网络之间信号传输时延。
N表示HARQ反馈持续时间。
ΔPDCCH1,表示UE完成HARQ反馈之后经历第一RTT的时刻到下一个PDCCH时机的第一个子帧之间的时间间隔;
ΔPDCCH2,表示从UE完成HARQ反馈后的第一个子帧到下一个PDCCH时机的第一个子帧之间的时间间隔。
在另一些情况中,如果所述下行HARQ进程为关闭HARQ反馈功能的HARQ进程,则HARQ RTT Timer为一个预定义的非负常量,例如,HARQ RTT Timer取值固定为0。
实施例七,对应于前述的情况7:
可选地,该实施例七可以适用于eMTC终端。
步骤1:UE接收网络的DRX配置。
步骤2:UE接收到PDCCH指示调度上行TB或UE在配置授权商发送上行TB,则UE在完成所述上行TB的PDSCH的最后一次重复传输所在子帧启动所述上行TB的PDSCH所使用的上行HARQ进程对应的UL HARQ RTT Timer。
步骤3:UE可以确定步骤2中的上行HARQ进程对应的UL HARQ RTT Timer的时长。
在一些实施例中,如果所述上行HARQ进程为开启HARQ功能的HARQ进程
对于FDD系统,则可以根据如下方式中的一种确定UL HARQ RTT Timer的时长:
方式1:UL HARQ RTT Timer的时长为RTT;
方式2:UL HARQ RTT Timer为max{RTT,4}。
对于TDD系统,则可以根据如下方式中的一种确定UL HARQ RTT Timer的时长:
方法1:UL HARQ RTT Timer的时长为RTT;
方法2:UL HARQ RTT Timer的时长为max{RTT,k ULHARQRTT}
其中,RTT表示UE与网络之间信号传输时延。
在另一些实施例中,如果所述上行HARQ进程为关闭HARQ反馈功能的HARQ进程,则UL HARQ RTT Timer为一个预定义的非负常量,比如,UL HARQ RTT Timer取值固定为3。
实施例八,对应于前述的情况8:
可选地,该实施例八可以适用于NB-IoT终端。
步骤1:UE接收网络的DRX配置。
步骤2:UE接收到PDCCH指示调度一个上行TB,则UE在完成所述上行TB的PDSCH的最后一次重复传输所在子帧启动所述上行TB的PDSCH所使用的上行HARQ进程对应的UL HARQ RTT Timer。
步骤3:UE可以确定步骤2中的上行HARQ进程对应的HARQ RTT Timer的时长。
在一些实施例中,如果所述上行HARQ进程为开启HARQ反馈功能的HARQ进程,则可以根据如下方式中的一种确定UL HARQ RTT Timer的时长:
方式1:HARQ RTT Timer的时长可以为RTT+ΔPDCCH3;
方式2:HARQ RTT Timer的时长可以为max{RTT+ΔPDCCH3,4+ΔPDCCH4}。
其中:RTT表示UE与网络之间信号传输时延。
ΔPDCCH3,表示PUSCH传输对应的最后一个子帧之后经历第一RTT之后的时刻到下一个PDCCH时机的第一个子帧之间的时间间隔。
ΔPDCCH4,表示从PUSCH传输对应的最后一个子帧的下一个子帧之后再经历3ms的时刻到下一个PDCCH时机的第一个子帧之间的时间间隔。
在另一些实施例中,如果所述上行HARQ进程为关闭HARQ反馈功能的HARQ进程,则ULHARQ RTT Timer为一个预定义的非负常量,例如,HARQ RTT Timer取值固定为0。
实施例九,对应于前述的情况9:
可选地,该实施例九可以适用于NB-IoT终端。
步骤1:UE接收网络的DRX配置。
步骤2:UE接收到PDCCH指示调度多个上行TB,则UE在发送所述多个上行TB的最后一个上行TB的PUSCH的最后一次重复传输所在子帧启动所述多个上行TB中的每个上行TB的PUSCH所使用的上行HARQ进程对应的UL HARQ RTT Timer。
步骤3:UE可以确定步骤2中的每个上行HARQ进程对应的UL HARQ RTT Timer的时长。
在一些情况中,如果所使用的上行HARQ进程为开启HARQ反馈功能的HARQ进程,,则可以根据如下方式中的一种确定UL HARQ RTT Timer的时长:
方式1:HARQ RTT Timer的时长可以为RTT+ΔPDCCH3;
方式2:HARQ RTT Timer的时长可以为max{RTT+ΔPDCCH3,1+ΔPDCCH4}。
其中:RTT表示UE与网络之间信号传输时延。
ΔPDCCH3,表示PUSCH传输对应的最后一个子帧之后经历第一RTT之后的时刻到下一个PDCCH时机的第一个子帧之间的时间间隔。
ΔPDCCH4,表示从PUSCH传输对应的最后一个子帧的下一个子帧之后再经历3ms的时刻到下一个PDCCH时机的第一个子帧之间的时间间隔。
在另一些实施例中,如果所述上行HARQ进程为关闭HARQ反馈功能的HARQ进程,则ULHARQ RTT Timer为一个预定义的非负常量,例如,HARQ RTT Timer取值固定为0。
基于上述技术方案,终端设备或网络设备可以在HARQ进程对应的HARQ反馈状态为开启终端或关闭状态时,分别根据往返时间RTT确定数据信道所使用的HARQ进程对应的HARQ RTT定时器的时长或确定时长为预设值,有利于兼顾终端的省电和网络的调度。
上文结合图3,详细描述了本申请的方法实施例,下文结合图4至图6,详细描述本申请的装置实施例,应理解,装置实施例与方法实施例相互对应,类似的描述可以参照方法实施例。
图4示出了根据本申请实施例的设备400的示意性框图。如图4所示,该设备400包括:
处理单元410,根据第一往返时间RTT,确定第一混合自动请求重传HARQ进程对应的HARQ RTT定时器的时长,或确定所述第一HARQ进程对应的HARQ RTT定时器的时长为预设值,其中,所述第一HARQ进程为第一数据信道所使用的HARQ进程,所述第一数据信道用于承载物理下行控制信道PDCCH调度的至少一个传输块TB中的第一TB,所述第一RTT根据终端设备和网络设备之间的信号传输时延确定,所述设备为终端设备或网络设备,所述设备为所述第一数据信道的发送端或接收端。
可选地,在一些实施例中,所述至少一个TB为下行TB,所述第一HARQ进程为下行HARQ进程,所述处理单元410具体用于:
根据所述第一RTT和第一信息,确定所述第一HARQ进程对应的HARQ RTT定时器的时长;
其中,所述第一信息包括如下中的至少一项:
所述至少一个TB的HARQ-ACK反馈时延;
终端设备完成HARQ-ACK反馈后的处理时延;
所述至少一个TB对应的HARQ-ACK信息的反馈重复传输次数参数;
所述至少一个TB的个数;
终端设备是否被配置为HARQ绑定反馈;
进行HARQ绑定反馈的TB个数;
所述第一HARQ进程对应的HARQ反馈功能的状态;
HARQ反馈持续时间,表示多次发送一个HARQ反馈信息所占用的总时间;
单次发送一个HARQ反馈信息所占用的时间;
第一PDCCH间隔,表示从第一时刻到第一时刻之后的第一个PDCCH时机之间的时间间隔,所述第一时刻在所述终端设备完成HARQ反馈之后,并且间隔所述第一RTT;
第二PDCCH间隔,表示从第二时刻到所述第二时刻之后的第一PDCCH时机之间的时间间隔,所述第二时刻在所述终端设备完成HARQ反馈之后,并且间隔所述处理时延。
可选地,在一些实施例中,所述处理单元410还用于:
根据所述第一RTT和所述第一信息,确定第一时长;
根据所述第一时长,确定所述第一HARQ进程对应的HARQ RTT定时器的时长。
可选地,在一些实施例中,所述处理单元410还用于:
将所述第一时长确定为所述第一HARQ进程对应的HARQ RTT定时器的时长;或者
将所述第一时长和第一预设时长中的较大值确定为所述第一HARQ进程对应的HARQ RTT定时器的时长;
其中,所述第一预设时长根据所述至少一个TB的反馈时延和所述处理时延确定。
可选地,在一些实施例中,所述至少一个TB只包括第一TB,其中,
所述至少一个TB的反馈时延包括第一时间间隔,所述第一时间间隔表示所述第一TB的最后一次传输到所述第一TB对应的HARQ反馈信息的第一次传输之间的时间间隔;
所述至少一个TB对应的HARQ-ACK信息的反馈重复传输次数参数包括第一参数和/或第二参数,其中,所述第一参数用于指示物理上行控制信道PUCCH的第一次传输,所述PUCCH用于承载所述第一TB对应的HARQ反馈信息,所述第二参数用于指示PUCCH重复因子。
可选地,在一些实施例中,所述处理单元410还用于:
根据所述第一RTT、所述第一时间间隔和所述反馈重复传输次数参数确定所述第一时长。
可选地,在一些实施例中,所述第一时长等于所述第一时间间隔、所述第一参数和所述第一RTT的和值,或者,所述第一时长等于所述第一时间间隔、所述第二参数和所述第一RTT的和值;
所述第一预设时长等于所述第一TB的反馈时延和所述处理时延。
可选地,在一些实施例中,所述至少一个TB包括多个TB,所述多个TB包括所述第一TB,所述终端设备没有被配置HARQ绑定反馈,其中,所述至少一个TB的反馈时延包括第二时间间隔,所述第二时间间隔表示所述多个TB中的最后一个TB的最后一次传输到所述多个TB对应的HARQ反馈信息的第一次传输之间的时间间隔;
所述至少一个TB对应的HARQ-ACK信息的反馈重复传输次数参数包括第一参数和/或第二参数,其中,所述第一参数用于指示PUCCH的第一次传输,所述PUCCH用于承载所述多个TB中的最后一个TB对应的HARQ反馈信息,所述第二参数用于指示PUCCH重复因子。
可选地,在一些实施例中,所述处理单元410还用于:根据所述第一RTT、所述多个TB的个数、所述第二时间间隔和所述反馈重复传输次数参数,确定所述第一时长。
可选地,在一些实施例中,所述第一时长等于T2+N TB*N+RTT或T2+(N TB-1)*N+N1+RTT,所述第一预设时长等于7+N TB*N;其中,RTT表示所述第一RTT,T2表示所述第二时间间隔,N1表示所述第一参数,N表示所述第二参数,N TB表示所述多个TB的个数。
可选地,在一些实施例中,所述至少一个TB包括多个TB,所述多个TB包括所述第一TB,所述终端设备被配置HARQ绑定反馈,其中,
所述至少一个TB的反馈时延包括第三时间间隔,所述第三时间间隔表示所述多个TB中的最后一个TB的最后一次传输到所述多个TB对应的HARQ反馈信息的第一次传输之间的时间间隔;
所述至少一个TB对应的HARQ-ACK信息的反馈重复传输次数参数包括第一参数和/或第二参数,其中,所述第一参数用于指示PUCCH的第一次传输,所述PUCCH用于承载所述多个TB中的最后一个绑定反馈的HARQ反馈信息,所述第二参数用于指示PUCCH重复因子。
可选地,在一些实施例中,所述处理单元410还用于:
根据所述第一RTT、所述第三时间间隔、所述反馈重复传输次数参数和对所述多个TB进行HARQ绑定反馈的组数确定所述第一HARQ进程对应的HARQ RTT定时器的时长。
可选地,在一些实施例中,所述第一时长等于T3+k*N+RTT,或T3+(k-1)*N+N1+RTT,所述第一预设时长等于7+k*N;其中,RTT表示所述第一RTT,T3表示所述第三时间间隔,N1表示所述第一参数,N表示所述第二参数,k表示所述多个TB进行HARQ绑定反馈的组数。
可选地,在一些实施例中,所述终端设备为增强机械类通信eMTC终端。
可选地,在一些实施例中,所述至少一个TB只包括第一TB,所述处理单元410还用于:
根据所述第一RTT、第四时间间隔、所述HARQ反馈持续时间和所述第一PDCCH间隔确定所述第一时长,其中,所述第四时间间隔表示所述第一TB的最后一次传输到所述第一TB对应的HARQ反馈信息的第一次传输之间的时间间隔。
可选地,在一些实施例中,所述第一时长等于T4+1+RTT+ΔPDCCH1,或T4+N+RTT+ΔPDCCH1,所述第一预设时长等于k+3+N+ΔPDCCH2;
其中,RTT表示所述第一RTT,T4表示所述第四时间间隔,N表示所述HARQ反馈持续时间,ΔPDCCH1表示所述第一PDCCH间隔,ΔPDCCH2表示所述第二PDCCH间隔。
可选地,在一些实施例中,所述至少一个TB包括多个TB,所述多个TB包括所述第一TB,所述终端设备被配置HARQ绑定反馈,所述处理单元410还用于:
根据所述第一RTT、第五时间间隔、所述HARQ反馈持续时间和所述第一PDCCH间隔确定所述第一时长,其中,所述第六时间间隔表示所述多个TB的最后一次传输到所述多个TB对应的HARQ反馈信息的第一次传输之间的时间间隔。
可选地,在一些实施例中,所述第一时长等于T5+N+RTT+ΔPDCCH1,所述第一预设时长等于T5+3+N+ΔPDCCH2;其中,RTT表示所述第一RTT,T5表示所述第五时间间隔,N表示所述HARQ反馈持续时间,ΔPDCCH1表示所述第一PDCCH间隔,ΔPDCCH2表示所述第二PDCCH间隔。
可选地,在一些实施例中,所述至少一个TB包括多个TB,所述多个TB包括所述第一TB,所述终端设备未被配置HARQ绑定反馈,所述处理单元410还用于:
根据所述第一RTT、第六时间间隔、所述HARQ反馈持续时间、单次发送一个HARQ反馈信息所占用的时间和所述第一PDCCH间隔确定所述第一时长;或
根据所述第一RTT、第六时间间隔、所述HARQ反馈持续时间和所述第一PDCCH间隔确定所述第一时长;其中,所述第六时间间隔表示所述多个TB的最后一次传输到所述多个TB对应的HARQ反馈信息的第一次传输之间的时间间隔。
可选地,所述第一时长等于T6+2N+RTT+ΔPDCCH1,或T6+N+N1+RTT+ΔPDCCH1,所述第一预设时长等于k+2N+1+ΔPDCCH2;其中,RTT表示所述第一RTT,T6表示所述第六时间间隔,N表示所述HARQ反馈持续时间,ΔPDCCH1表示所述第一PDCCH间隔,ΔPDCCH2表示所述第二PDCCH间隔,N1表示从完成第一个HARQ反馈信息的传输到完成第二个HARQ反馈信息的第一次传输所需使用的时间。
可选地,在一些实施例中,所述终端设备为窄带物联网NB-IoT终端。
可选地,所述至少一个TB为上行TB,所述第一HARQ进程为上行HARQ进程。
可选地,在一些实施例中,所述第一HARQ进程对应的HARQ RTT定时器的时长为所述第一RTT;或者,所述第一RTT和第二预设时长中的较大值。
可选地,在一些实施例中,所述终端设备为eMTC终端。
可选地,在一些实施例中,所述处理单元410还用于:
根据所述第一RTT和第二信息,确定所述第一HARQ进程对应的HARQ RTT定时器的时长;
其中,所述第二信息包括如下中的至少一项:第三PDCCH间隔,表示从第三时刻到第三时刻之后的第一个PDCCH时机之间的时间间隔,所述第三时刻在所述终端设备完成传输所述至少一个TB对应的数据信道的时刻之后,并且间隔所述第一RTT;
第四PDCCH间隔,表示从第四时刻到所述第四时刻之后的第一PDCCH时机之间的时间间隔,所述第四时刻在完成传输所述至少一个TB对应的数据信道之后,并且间隔所述处理时延。
可选地,在一些实施例中,所述处理单元410还用于:
根据所述第一RTT和所述第二信息确定第二时长;
根据所述第二时长确定所述第一HARQ进程对应的HARQ RTT定时器的时长。
可选地,在一些实施例中,所述根据所述第二时长确定所述第一HARQ进程对应的HARQ RTT定时器的时长,包括:
将所述第二时长确定为所述第一HARQ进程对应的HARQ RTT定时器的时长;或者
将所述第二时长和第二预设时长中的较大值确定为所述第一HARQ进程对应的HARQ RTT定时器的时长;其中,所述第二预设时长根据所述处理时延确定。
可选地,在一些实施例中,所述至少一个TB只包括第一TB,所述第二时长等于所述第一RTT和所述第三PDCCH间隔的和值;所述第二预设时长等于4和所述第四PDCCH间隔的和值。
可选地,在一些实施例中,所述至少一个TB包括多个TB,所述第二时长等于所述第一RTT和所述第三PDCCH间隔的和值;
所述第二预设时长等于1和所述第四PDCCH间隔的和值。
可选地,在一些实施例中,所述终端设备为NB-IoT终端。
可选地,在一些实施例中,所述处理单元410还用于:
在所述第一HARQ进程对应的HARQ反馈功能的状态为开启HARQ反馈功能的情况下,根据所述第一RTT,确定所述第一HARQ进程对应的HARQ RTT定时器的时长。
可选地,在一些实施例中,所述处理单元410还用于:
在所述第一HARQ进程对应的HARQ反馈功能的状态为关闭HARQ反馈功能的情况下,所述第一设备确定所述第一HARQ进程对应的HARQ RTT定时器的时长为预设值。
可选地,在一些实施例中,所述第一RTT根据所述终端设备的时间提前量TA确定。
应理解,根据本申请实施例的终端设备400可对应于本申请方法实施例中的终端设备,并且终端设备400中的各个单元的上述和其它操作和/或功能分别为了实现图3所示方法200中终端设备或网络设备的相应流程,为了简洁,在此不再赘述。
图5是本申请实施例提供的一种通信设备600示意性结构图。图5所示的通信设备600包括处理器610,处理器610可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图5所示,通信设备600还可以包括存储器620。其中,处理器610可以从存储器620中调用并运行计算机程序,以实现本申请实施例中的方法。其中,存储器620可以是独立于处理器610的一个单独的器件,也可以集成在处理器610中。
可选地,如图5所示,通信设备600还可以包括收发器630,处理器610可以控制该收发器630与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器630可以包括发射机和接收机。收发器630还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备600具体可为本申请实施例的网络设备,并且该通信设备600可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备600具体可为本申请实施例的移动终端/终端设备,并且该通信设备600可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
图6是本申请实施例的芯片的示意性结构图。图6所示的芯片700包括处理器710,处理器710可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图6所示,芯片700还可以包括存储器720。其中,处理器710可以从存储器720中调用并运行计算机程序,以实现本申请实施例中的方法。其中,存储器720可以是独立于处理器710的一个单独的器件,也可以集成在处理器710中。
可选地,该芯片700还可以包括输入接口730。其中,处理器710可以控制该输入接口730与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片700还可以包括输出接口740。其中,处理器710可以控制该输出接口740与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本申请实施例中的网络设备,并且该芯片可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该芯片可应用于本申请实施例中的移动终端/终端设备,并且该芯片可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述 的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序产品可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选的,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序可应用于本申请实施例中的移动终端/终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,)ROM、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (39)

  1. 一种无线通信的方法,其特征在于,包括:
    第一设备根据第一往返时间RTT,确定第一混合自动请求重传HARQ进程对应的HARQ RTT定时器的时长,或所述第一设备确定所述第一HARQ进程对应的HARQ RTT定时器的时长为预设值,其中,所述第一HARQ进程为第一数据信道所使用的HARQ进程,所述第一数据信道用于承载物理下行控制信道PDCCH调度的至少一个传输块TB中的第一TB,所述第一RTT根据终端设备和网络设备之间的信号传输时延确定,所述第一设备为终端设备或网络设备,所述第一设备为所述第一数据信道的发送端或接收端。
  2. 根据权利要求1所述的方法,其特征在于,所述至少一个TB为下行TB,所述第一HARQ进程为下行HARQ进程,所述第一设备根据第一往返时间RTT,确定第一混合自动请求重传HARQ进程对应的HARQ RTT定时器的时长,包括:
    根据所述第一RTT和第一信息,确定所述第一HARQ进程对应的HARQ RTT定时器的时长;
    其中,所述第一信息包括如下中的至少一项:
    所述至少一个TB的HARQ-ACK反馈时延;
    终端设备完成HARQ-ACK反馈后的处理时延;
    所述至少一个TB对应的HARQ-ACK信息的反馈重复传输次数参数;
    所述至少一个TB的个数;
    终端设备是否被配置为HARQ绑定反馈;
    进行HARQ绑定反馈的TB个数;
    所述第一HARQ进程对应的HARQ反馈功能的状态;
    HARQ反馈持续时间,表示多次发送一个HARQ反馈信息所占用的总时间;
    单次发送一个HARQ反馈信息所占用的时间;
    第一PDCCH间隔,表示从第一时刻到第一时刻之后的第一个PDCCH时机之间的时间间隔,所述第一时刻在所述终端设备完成HARQ反馈之后,并且间隔所述第一RTT;
    第二PDCCH间隔,表示从第二时刻到所述第二时刻之后的第一PDCCH时机之间的时间间隔,所述第二时刻在所述终端设备完成HARQ反馈之后,并且间隔所述处理时延。
  3. 根据权利要求2所述的方法,其特征在于,所述根据所述第一RTT和第一信息,确定所述第一HARQ进程对应的HARQ RTT定时器的时长,包括:
    根据所述第一RTT和所述第一信息,确定第一时长;
    根据所述第一时长,确定所述第一HARQ进程对应的HARQ RTT定时器的时长。
  4. 根据权利要求3所述的方法,其特征在于,所述根据所述第一时长,确定所述第一HARQ进程对应的HARQ RTT定时器的时长,包括:
    将所述第一时长确定为所述第一HARQ进程对应的HARQ RTT定时器的时长;或者
    将所述第一时长和第一预设时长中的较大值确定为所述第一HARQ进程对应的HARQ RTT定时器的时长;
    其中,所述第一预设时长根据所述至少一个TB的反馈时延和所述处理时延确定。
  5. 根据权利要求3或4所述的方法,其特征在于,所述至少一个TB只包括第一TB,其中,
    所述至少一个TB的反馈时延包括第一时间间隔,所述第一时间间隔表示所述第一TB的最后一次传输到所述第一TB对应的HARQ反馈信息的第一次传输之间的时间间隔;
    所述至少一个TB对应的HARQ-ACK信息的反馈重复传输次数参数包括第一参数和/或第二参数,其中,所述第一参数用于指示物理上行控制信道PUCCH的第一次传输,所述PUCCH用于承载所述第一TB对应的HARQ反馈信息,所述第二参数用于指示PUCCH重复因子。
  6. 根据权利要求5所述的方法,其特征在于,所述根据所述第一RTT和所述第一信息,确定第一时长,包括:
    根据所述第一RTT、所述第一时间间隔和所述反馈重复传输次数参数确定所述第一时长。
  7. 根据权利要求6所述的方法,其特征在于,所述第一时长等于所述第一时间间隔、所述第一参数和所述第一RTT的和值,或者,所述第一时长等于所述第一时间间隔、所述第二参数和所述第一RTT的和值;
    所述第一预设时长等于所述第一TB的反馈时延和所述处理时延。
  8. 根据权利要求3或4所述的方法,其特征在于,所述至少一个TB包括多个TB,所述多个TB包括所述第一TB,所述终端设备没有被配置HARQ绑定反馈,其中,
    所述至少一个TB的反馈时延包括第二时间间隔,所述第二时间间隔表示所述多个TB中的最后 一个TB的最后一次传输到所述多个TB对应的HARQ反馈信息的第一次传输之间的时间间隔;
    所述至少一个TB对应的HARQ-ACK信息的反馈重复传输次数参数包括第一参数和/或第二参数,其中,所述第一参数用于指示PUCCH的第一次传输,所述PUCCH用于承载所述多个TB中的最后一个TB对应的HARQ反馈信息,所述第二参数用于指示PUCCH重复因子。
  9. 根据权利要求8所述的方法,其特征在于,所述根据所述第一RTT和第一信息,确定第一时长,包括:
    根据所述第一RTT、所述多个TB的个数、所述第二时间间隔和所述反馈重复传输次数参数,确定所述第一时长。
  10. 根据权利要求9所述的方法,其特征在于,所述第一时长等于T2+N TB*N+RTT或T2+(N TB-1)*N+N1+RTT,所述第一预设时长等于7+N TB*N;
    其中,RTT表示所述第一RTT,T2表示所述第二时间间隔,N1表示所述第一参数,N表示所述第二参数,N TB表示所述多个TB的个数。
  11. 根据权利要求3或4所述的方法,其特征在于,所述至少一个TB包括多个TB,所述多个TB包括所述第一TB,所述终端设备被配置HARQ绑定反馈,其中,
    所述至少一个TB的反馈时延包括第三时间间隔,所述第三时间间隔表示所述多个TB中的最后一个TB的最后一次传输到所述多个TB对应的HARQ反馈信息的第一次传输之间的时间间隔;
    所述至少一个TB对应的HARQ-ACK信息的反馈重复传输次数参数包括第一参数和/或第二参数,其中,所述第一参数用于指示PUCCH的第一次传输,所述PUCCH用于承载所述多个TB中的最后一个绑定反馈的HARQ反馈信息,所述第二参数用于指示PUCCH重复因子。
  12. 根据权利要求11所述的方法,其特征在于,所述根据所述第一RTT和第一信息,确定第一时长,包括:
    根据所述第一RTT、所述第三时间间隔、所述反馈重复传输次数参数和对所述多个TB进行HARQ绑定反馈的组数确定所述第一HARQ进程对应的HARQ RTT定时器的时长。
  13. 根据权利要求12所述的方法,其特征在于,所述第一时长等于T3+k*N+RTT,或T3+(k-1)*N+N1+RTT,所述第一预设时长等于7+k*N;
    其中,RTT表示所述第一RTT,T3表示所述第三时间间隔,N1表示所述第一参数,N表示所述第二参数,k表示所述多个TB进行HARQ绑定反馈的组数。
  14. 根据权利要求5-13中任一项所述的方法,其特征在于,所述终端设备为增强机械类通信eMTC终端。
  15. 根据权利要求3或4所述的方法,其特征在于,所述至少一个TB只包括第一TB,其中,所述根据所述第一RTT和第一信息,确定第一时长,包括:
    根据所述第一RTT、第四时间间隔、所述HARQ反馈持续时间和所述第一PDCCH间隔确定所述第一时长,其中,所述第四时间间隔表示所述第一TB的最后一次传输到所述第一TB对应的HARQ反馈信息的第一次传输之间的时间间隔。
  16. 根据权利要求15所述的方法,其特征在于,所述第一时长等于T4+1+RTT+ΔPDCCH1,或T4+N+RTT+ΔPDCCH1,所述第一预设时长等于k+3+N+ΔPDCCH2;
    其中,RTT表示所述第一RTT,T4表示所述第四时间间隔,N表示所述HARQ反馈持续时间,ΔPDCCH1表示所述第一PDCCH间隔,ΔPDCCH2表示所述第二PDCCH间隔。
  17. 根据权利要求3或4所述的方法,其特征在于,所述至少一个TB包括多个TB,所述多个TB包括所述第一TB,所述终端设备被配置HARQ绑定反馈,其中,
    根据所述第一RTT和第一信息,确定第一时长,包括:
    根据所述第一RTT、第五时间间隔、所述HARQ反馈持续时间和所述第一PDCCH间隔确定所述第一时长,其中,所述第六时间间隔表示所述多个TB的最后一次传输到所述多个TB对应的HARQ反馈信息的第一次传输之间的时间间隔。
  18. 根据权利要求17所述的方法,其特征在于,所述第一时长等于T5+N+RTT+ΔPDCCH1,所述第一预设时长等于T5+3+N+ΔPDCCH2;
    其中,RTT表示所述第一RTT,T5表示所述第五时间间隔,N表示所述HARQ反馈持续时间,ΔPDCCH1表示所述第一PDCCH间隔,ΔPDCCH2表示所述第二PDCCH间隔。
  19. 根据权利要求3或4所述的方法,其特征在于,所述至少一个TB包括多个TB,所述多个TB包括所述第一TB,所述终端设备未被配置HARQ绑定反馈,其中,
    所述根据所述第一RTT和第一信息,确定第一时长,包括:
    根据所述第一RTT、第六时间间隔、所述HARQ反馈持续时间、单次发送一个HARQ反馈信息 所占用的时间和所述第一PDCCH间隔确定所述第一时长;或
    根据所述第一RTT、第六时间间隔、所述HARQ反馈持续时间和所述第一PDCCH间隔确定所述第一时长;
    其中,所述第六时间间隔表示所述多个TB的最后一次传输到所述多个TB对应的HARQ反馈信息的第一次传输之间的时间间隔。
  20. 根据权利要求19所述的方法,其特征在于,所述第一时长等于T6+2N+RTT+ΔPDCCH1,或T6+N+N1+RTT+ΔPDCCH1,所述第一预设时长等于k+2N+1+ΔPDCCH2;
    其中,RTT表示所述第一RTT,T6表示所述第六时间间隔,N表示所述HARQ反馈持续时间,ΔPDCCH1表示所述第一PDCCH间隔,ΔPDCCH2表示所述第二PDCCH间隔,N1表示从完成第一个HARQ反馈信息的传输到完成第二个HARQ反馈信息的第一次传输所需使用的时间。
  21. 根据权利要求15-20中任一项所述的方法,其特征在于,所述终端设备为窄带物联网NB-IoT终端。
  22. 根据权利要求1所述的方法,其特征在于,所述至少一个TB为上行TB,所述第一HARQ进程为上行HARQ进程。
  23. 根据权利要求22所述的方法,其特征在于,所述第一HARQ进程对应的HARQ RTT定时器的时长为所述第一RTT;或者,所述第一RTT和第二预设时长中的较大值。
  24. 根据权利要求23所述的方法,其特征在于,所述终端设备为eMTC终端。
  25. 根据权利要求22所述的方法,其特征在于,所述根据第一往返时间RTT,确定第一混合自动请求重传HARQ进程对应的HARQ RTT定时器的时长,包括:
    根据所述第一RTT和第二信息,确定所述第一HARQ进程对应的HARQ RTT定时器的时长;
    其中,所述第二信息包括如下中的至少一项:
    第三PDCCH间隔,表示从第三时刻到第三时刻之后的第一个PDCCH时机之间的时间间隔,所述第三时刻在所述终端设备完成传输所述至少一个TB对应的数据信道的时刻之后,并且间隔所述第一RTT;
    第四PDCCH间隔,表示从第四时刻到所述第四时刻之后的第一PDCCH时机之间的时间间隔,所述第四时刻在完成传输所述至少一个TB对应的数据信道之后,并且间隔所述处理时延。
  26. 根据权利要求25所述的方法,其特征在于,所述根据所述第一RTT和第二信息,确定所述第一HARQ进程对应的HARQ RTT定时器的时长,包括:
    根据所述第一RTT和所述第二信息确定第二时长;
    根据所述第二时长确定所述第一HARQ进程对应的HARQ RTT定时器的时长。
  27. 根据权利要求26所述的方法,其特征在于,所述根据所述第二时长确定所述第一HARQ进程对应的HARQ RTT定时器的时长,包括:
    将所述第二时长确定为所述第一HARQ进程对应的HARQ RTT定时器的时长;或者
    将所述第二时长和第二预设时长中的较大值确定为所述第一HARQ进程对应的HARQ RTT定时器的时长;
    其中,所述第二预设时长根据所述处理时延确定。
  28. 根据权利要求26或27所述的方法,其特征在于,所述至少一个TB只包括第一TB,所述第二时长等于所述第一RTT和所述第三PDCCH间隔的和值;
    所述第二预设时长等于4和所述第四PDCCH间隔的和值。
  29. 根据权利要求26或27所述的方法,其特征在于,所述至少一个TB包括多个TB,所述第二时长等于所述第一RTT和所述第三PDCCH间隔的和值;
    所述第二预设时长等于1和所述第四PDCCH间隔的和值。
  30. 根据权利要求25-29中任一项所述的方法,其特征在于,所述终端设备为NB-IoT终端。
  31. 根据权利要求1-30中任一项所述的方法,其特征在于,所述第一设备根据第一往返时间RTT,确定第一混合自动请求重传HARQ进程对应的HARQ RTT定时器的时长,包括:
    在所述第一HARQ进程对应的HARQ反馈功能的状态为开启HARQ反馈功能的情况下,根据所述第一RTT,确定所述第一HARQ进程对应的HARQ RTT定时器的时长。
  32. 根据权利要求1所述的方法,其特征在于,所述第一设备确定所述第一HARQ进程对应的HARQ RTT定时器的时长为预设值,包括:
    在所述第一HARQ进程对应的HARQ反馈功能的状态为关闭HARQ反馈功能的情况下,所述第一设备确定所述第一HARQ进程对应的HARQ RTT定时器的时长为预设值。
  33. 根据权利要求1-32中任一项所述的方法,其特征在于,所述第一RTT根据所述终端设备的 时间提前量TA确定。
  34. 一种无线通信的设备,其特征在于,包括:
    处理单元,根据第一往返时间RTT,确定第一混合自动请求重传HARQ进程对应的HARQ RTT定时器的时长,或确定所述第一HARQ进程对应的HARQ RTT定时器的时长为预设值,其中,所述第一HARQ进程为第一数据信道所使用的HARQ进程,所述第一数据信道用于承载物理下行控制信道PDCCH调度的至少一个传输块TB中的第一TB,所述第一RTT根据终端设备和网络设备之间的信号传输时延确定,所述设备为终端设备或网络设备,所述设备为所述第一数据信道的发送端或接收端
  35. 一种无线通信的设备,其特征在于,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至33中任一项所述的方法。
  36. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至33中任一项所述的方法。
  37. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至33中任一项所述的方法。
  38. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至33中任一项所述的方法。
  39. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1至33中任一项所述的方法。
PCT/CN2020/118989 2020-09-29 2020-09-29 无线通信的方法和设备 WO2022067549A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP20955574.7A EP4221310A4 (en) 2020-09-29 2020-09-29 METHOD AND DEVICE FOR WIRELESS COMMUNICATION
CN202311388758.2A CN117320173A (zh) 2020-09-29 2020-09-29 无线通信的方法和设备
PCT/CN2020/118989 WO2022067549A1 (zh) 2020-09-29 2020-09-29 无线通信的方法和设备
CN202080102117.4A CN115702584A (zh) 2020-09-29 2020-09-29 无线通信的方法和设备
US18/187,666 US20230224091A1 (en) 2020-09-29 2023-03-22 Wireless communication method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/118989 WO2022067549A1 (zh) 2020-09-29 2020-09-29 无线通信的方法和设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/187,666 Continuation US20230224091A1 (en) 2020-09-29 2023-03-22 Wireless communication method and device

Publications (1)

Publication Number Publication Date
WO2022067549A1 true WO2022067549A1 (zh) 2022-04-07

Family

ID=80949413

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/118989 WO2022067549A1 (zh) 2020-09-29 2020-09-29 无线通信的方法和设备

Country Status (4)

Country Link
US (1) US20230224091A1 (zh)
EP (1) EP4221310A4 (zh)
CN (2) CN115702584A (zh)
WO (1) WO2022067549A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230041930A1 (en) * 2021-08-06 2023-02-09 Qualcomm Incorporated Indication of control channel repetition factor
WO2024098341A1 (zh) * 2022-11-10 2024-05-16 Oppo广东移动通信有限公司 无线通信的方法和终端设备

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11962420B1 (en) * 2022-10-11 2024-04-16 Asus Technology Licensing Inc. Method and apparatus of handling discontinuous reception (DRX) timer for multicast data reception in a wireless communication system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180041310A1 (en) * 2016-08-05 2018-02-08 Htc Corporation Device and Method of Handling a Hybrid Automatic Repeat Request Round-trip Time Timer in a Discontinuous Reception
CN110419238A (zh) * 2017-03-22 2019-11-05 夏普株式会社 终端装置、基站装置、通信方法以及集成电路
CN110876210A (zh) * 2018-08-31 2020-03-10 展讯通信(上海)有限公司 Ue非连续接收的控制方法及装置、存储介质、终端

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5285785B2 (ja) * 2008-12-16 2013-09-11 リサーチ イン モーション リミテッド 間欠受信でのハイブリッド自動再送要求ラウンドトリップタイムおよび肯定応答/否定応答の繰り返し
EP3900243B1 (en) * 2020-01-17 2022-06-22 Telefonaktiebolaget LM Ericsson (publ) Harq rtt timer adjustment for multi-tb scheduling

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180041310A1 (en) * 2016-08-05 2018-02-08 Htc Corporation Device and Method of Handling a Hybrid Automatic Repeat Request Round-trip Time Timer in a Discontinuous Reception
CN110419238A (zh) * 2017-03-22 2019-11-05 夏普株式会社 终端装置、基站装置、通信方法以及集成电路
CN110876210A (zh) * 2018-08-31 2020-03-10 展讯通信(上海)有限公司 Ue非连续接收的控制方法及装置、存储介质、终端

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CMCC: "Considerations on UL HARQ RTT Timer", 3GPP DRAFT; R2-164059 CONSIDERATIONS ON UL HARQ RTT TIMER, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Nanjing, China; 20160523 - 20160527, 22 May 2016 (2016-05-22), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051105384 *
See also references of EP4221310A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230041930A1 (en) * 2021-08-06 2023-02-09 Qualcomm Incorporated Indication of control channel repetition factor
US11889498B2 (en) * 2021-08-06 2024-01-30 Qualcomm Incorporated Indication of control channel repetition factor
WO2024098341A1 (zh) * 2022-11-10 2024-05-16 Oppo广东移动通信有限公司 无线通信的方法和终端设备

Also Published As

Publication number Publication date
EP4221310A1 (en) 2023-08-02
EP4221310A4 (en) 2023-11-01
CN115702584A (zh) 2023-02-14
US20230224091A1 (en) 2023-07-13
CN117320173A (zh) 2023-12-29

Similar Documents

Publication Publication Date Title
CN110035502B (zh) 通信方法、通信设备和网络设备
US11451345B2 (en) Data transmission method, terminal, and RAN device
WO2022067549A1 (zh) 无线通信的方法和设备
US20220232596A1 (en) Discontinuous reception method, terminal device and storage medium
WO2021056226A1 (zh) 无线通信方法和终端设备
US20240023015A1 (en) Sidelink transmission method and terminal
WO2022006914A1 (zh) 混合自动重传请求应答harq-ack的反馈方法和终端设备
US20230337320A1 (en) Wireless communication method and terminal device
WO2021155605A1 (zh) 配置授权定时器的使用方法与装置、终端设备和网络设备
CN116134906A (zh) 一种随机接入方法、电子设备及存储介质
WO2022056725A1 (zh) 信道反馈方法、终端设备和网络设备
WO2022077174A1 (zh) 无线通信方法和设备
WO2022120747A1 (zh) 无线通信的方法和终端设备
WO2024098341A1 (zh) 无线通信的方法和终端设备
WO2022205346A1 (zh) 终端设备切换搜索空间集分组sssg的方法、终端设备和网络设备
WO2022067729A1 (zh) 非连续接收的方法、终端设备和网络设备
WO2023044655A1 (zh) 无线通信的方法、终端设备和网络设备
WO2022233033A1 (zh) 无线通信的方法及设备
WO2022099514A1 (zh) 无线通信方法和设备
WO2022155926A1 (zh) 无线通信的方法和终端设备
WO2022027669A1 (zh) 传输反馈信息的方法、终端设备和网络设备
WO2022233031A1 (zh) 无线通信的方法和终端设备
WO2023065316A1 (zh) 基于预配置资源的小数据传输方法、装置、设备及介质
WO2021087903A1 (zh) 无线通信方法及设备、终端设备和网络设备
WO2021068224A1 (zh) 无线通信方法、终端设备和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20955574

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020955574

Country of ref document: EP

Effective date: 20230424