WO2021056226A1 - 无线通信方法和终端设备 - Google Patents

无线通信方法和终端设备 Download PDF

Info

Publication number
WO2021056226A1
WO2021056226A1 PCT/CN2019/107645 CN2019107645W WO2021056226A1 WO 2021056226 A1 WO2021056226 A1 WO 2021056226A1 CN 2019107645 W CN2019107645 W CN 2019107645W WO 2021056226 A1 WO2021056226 A1 WO 2021056226A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
downlink
uplink
timer
pdcch
Prior art date
Application number
PCT/CN2019/107645
Other languages
English (en)
French (fr)
Inventor
杨宁
Original Assignee
Oppo广东移动通信有限公司
Oppo广东移动通信有限公司深圳分公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司, Oppo广东移动通信有限公司深圳分公司 filed Critical Oppo广东移动通信有限公司
Priority to CN201980095407.8A priority Critical patent/CN113728697B/zh
Priority to PCT/CN2019/107645 priority patent/WO2021056226A1/zh
Publication of WO2021056226A1 publication Critical patent/WO2021056226A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management

Definitions

  • the embodiments of the present application relate to the communication field, and more specifically, to a wireless communication method and terminal device.
  • the fifth-generation mobile communication technology New Radio 5-Generation New Radio, 5G NR
  • 5G NR fifth-generation mobile communication technology New Radio
  • NTN non-terrestrial networks
  • HARQ hybrid Automatic Repeat reQuest
  • the embodiments of the application provide a wireless communication method and terminal equipment.
  • the terminal equipment dynamically schedules uplink transmission, dynamically schedules downlink transmission, pre-configured resource uplink transmission, and pre-configured resource uplink and downlink transmission. Start or restart the Discontinuous Reception (DRX) inactivation timer, so that the terminal device can continue to monitor the Physical Downlink Control Channel (PDCCH) after performing these operations, which is convenient for the terminal device in the NTN network.
  • the network equipment continuously schedules retransmissions or continuous reception of new transmissions.
  • a wireless communication method includes:
  • the terminal device starts or restarts the DRX inactivation timer after performing the first operation, where:
  • the first operation includes at least one of the following:
  • Receive downlink dynamic scheduling signaling receive uplink dynamic scheduling signaling, receive Media Access Control Protocol Data Unit (MAC PDU) on downlink pre-configured resources, and send MAC PDU on uplink pre-configured resources .
  • MAC PDU Media Access Control Protocol Data Unit
  • receiving the MAC PDU on the downlink pre-configured resource may also be receiving downlink data on the downlink pre-configured resource
  • sending the MAC PDU on the uplink pre-configured resource may also be sending uplink data on the uplink pre-configured resource.
  • a terminal device which is used to execute the method in the above-mentioned first aspect or its implementation manners.
  • the terminal device includes a functional module for executing the method in the foregoing first aspect or each of its implementation manners.
  • a terminal device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the method in the above-mentioned first aspect or each of its implementation manners.
  • a device for implementing the method in the first aspect or its implementation manners.
  • the device includes a processor, configured to call and run a computer program from the memory, so that the device installed with the device executes the method in the first aspect or its implementation manners.
  • a computer-readable storage medium for storing a computer program that enables a computer to execute the method in the above-mentioned first aspect or each of its implementation manners.
  • a computer program product including computer program instructions that cause a computer to execute the method in the first aspect or its implementation manners.
  • a computer program which when running on a computer, causes the computer to execute the method in the first aspect or its implementation manners.
  • the terminal device starts or restarts the DRX inactivation timer after performing the first operation, so that the terminal device can continue to monitor the PDCCH after performing the first operation, which is convenient for the NTN network
  • the terminal equipment can continuously schedule retransmissions or continuous reception of new transmissions to the network equipment.
  • Fig. 1 is a schematic diagram of a communication system architecture provided by an embodiment of the present application.
  • Fig. 2 is a schematic flowchart of a wireless communication method according to an embodiment of the present application.
  • Fig. 3 is a schematic diagram of a dynamic scheduling downlink transmission provided according to an embodiment of the present application.
  • Fig. 4 is a schematic diagram of dynamically scheduling uplink transmission according to an embodiment of the present application.
  • Fig. 5 is a schematic diagram of uplink transmission on uplink pre-configured resources according to an embodiment of the present application.
  • Fig. 6 is a schematic diagram of uplink and downlink transmission of a downlink pre-configured resource according to an embodiment of the present application.
  • Fig. 7 is a schematic block diagram of a terminal device according to an embodiment of the present application.
  • Fig. 8 is a schematic block diagram of a communication device provided according to an embodiment of the present application.
  • Fig. 9 is a schematic block diagram of an apparatus provided according to an embodiment of the present application.
  • Fig. 10 is a schematic block diagram of a communication system according to an embodiment of the present application.
  • GSM Global System of Mobile Communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Advanced Long Term Evolution
  • New Radio, NR evolution of NR system
  • LTE LTE-based access to unlicensed spectrum
  • LTE-U Universal Mobile Telecommunication System
  • UMTS Universal Mobile Telecommunication System
  • WLAN Wireless Local Area Networks
  • WiFi Wireless Fidelity
  • D2D Device to Device
  • M2M Machine to Machine
  • MTC machine type communication
  • V2V vehicle to vehicle
  • the communication system in the embodiments of the present application can be applied to a carrier aggregation (Carrier Aggregation, CA) scenario, can also be applied to a dual connectivity (DC) scenario, and can also be applied to a standalone (SA) deployment.
  • CA Carrier Aggregation
  • DC dual connectivity
  • SA standalone
  • the embodiment of the application does not limit the applied frequency spectrum.
  • the embodiments of this application can be applied to licensed spectrum or unlicensed spectrum.
  • the communication system 100 applied in the embodiment of the present application is shown in FIG. 1.
  • the communication system 100 may include a network device 110, and the network device 110 may be a device that communicates with a terminal device 120 (or called a communication terminal or terminal).
  • the network device 110 may provide communication coverage for a specific geographic area, and may communicate with terminal devices located in the coverage area.
  • Figure 1 exemplarily shows one network device and two terminal devices.
  • the communication system 100 may include multiple network devices and the coverage of each network device may include other numbers of terminal devices. The embodiment does not limit this.
  • the communication system 100 may also include other network entities such as a network controller and a mobility management entity, which are not limited in the embodiment of the present application.
  • network entities such as a network controller and a mobility management entity, which are not limited in the embodiment of the present application.
  • the devices with communication functions in the network/system in the embodiments of the present application may be referred to as communication devices.
  • the communication device may include a network device 110 having a communication function and a terminal device 120.
  • the network device 110 and the terminal device 120 may be the specific devices described above, which will not be repeated here.
  • the communication device may also include other devices in the communication system 100, such as network controllers, mobility management entities, and other network entities, which are not limited in the embodiment of the present application.
  • terminal equipment may also be referred to as User Equipment (UE), access terminal, subscriber unit, user station, mobile station, mobile station, and remote Station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device, etc.
  • UE User Equipment
  • the terminal device can be a station (STAION, ST) in the WLAN, a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, and personal digital processing (Personal Digital Assistant, PDA) devices, handheld devices with wireless communication functions, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, and next-generation communication systems, such as terminal devices in the NR network or Terminal equipment in the public land mobile network (PLMN) network that will evolve in the future.
  • STAION, ST station
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices. It is a general term for using wearable technology to intelligently design everyday wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is directly worn on the body or integrated into the user's clothes or accessories. Wearable devices are not only a kind of hardware device, but also realize powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-sized, complete or partial functions that can be achieved without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, and need to cooperate with other devices such as smart phones.
  • a network device can be a device used to communicate with mobile devices.
  • the network device can be an access point (AP) in WLAN, a base station (BTS) in GSM or CDMA, or a device in WCDMA.
  • the base station (NodeB, NB) can also be an evolved base station (Evolutional Node B, eNB or eNodeB) in LTE, or a relay station or access point, or a vehicle-mounted device, a wearable device, and a network device or base station in the NR network ( gNB) or network equipment in the future evolved PLMN network.
  • the network equipment provides services for the cell
  • the terminal equipment communicates with the network equipment through the transmission resources (for example, frequency domain resources, or spectrum resources) used by the cell
  • the cell may be a network equipment (for example, The cell corresponding to the base station.
  • the cell can belong to a macro base station or a base station corresponding to a small cell.
  • the small cell here can include: Metro cell, Micro cell, Pico Cells, Femto cells, etc. These small cells have the characteristics of small coverage and low transmit power, and are suitable for providing high-rate data transmission services.
  • the 5G NR system defines the deployment scenarios of NTN systems including satellite networks.
  • NTN generally uses satellite communication to provide communication services to ground users.
  • satellite communication Compared with terrestrial cellular network communication, satellite communication has many unique advantages. First of all, satellite communication is not restricted by the user area. For example, general terrestrial communication cannot cover the ocean, mountains, deserts and other areas where communication equipment cannot be installed or because of the sparse population. Satellites can cover a larger ground, and satellites can orbit the earth, so in theory every corner of the earth can be covered by satellite communications. Secondly, satellite communication has greater social value.
  • Satellite communication can be covered at a lower cost in remote mountainous areas, poor and backward countries or regions, so that people in these areas can enjoy advanced voice communication and mobile Internet technology, which is conducive to narrowing the digital gap with developed areas and promoting The development of these areas.
  • the satellite communication distance is long, and the communication cost has not increased significantly with the increase of the communication distance; finally, the satellite communication has high stability and is not restricted by natural disasters.
  • Communication satellites are classified into Low-Earth Orbit (LEO) satellites, Medium-Earth Orbit (MEO) satellites, Geostationary Earth Orbit (GEO) satellites, and highly elliptical orbits. (High Elliptical Orbit, HEO) satellite and so on.
  • LEO Low-Earth Orbit
  • MEO Medium-Earth Orbit
  • GEO Geostationary Earth Orbit
  • HEO High Elliptical Orbit
  • the altitude range of LEO satellites is 500km-1500km, and the corresponding orbital period is about 1.5 hours to 2 hours.
  • the signal propagation delay of single-hop communication between users is generally less than 20ms.
  • the maximum satellite viewing time is 20 minutes.
  • the signal propagation distance is short, the link loss is small, and the requirement for the transmission power of the user terminal is not high.
  • the GEO satellite has an orbital height of 35786km and a rotation period of 24 hours around the earth.
  • the signal propagation delay of single-hop communication between users is generally 250ms.
  • the conditions for the terminal device to start or restart drx-InactivityTimer are:
  • the terminal If the terminal receives a PDCCH indicating downlink or uplink initial transmission, the terminal starts or restarts the drx-InactivityTimer.
  • the terminal device When the terminal device receives a PDCCH indicating downlink transmission, or when the terminal receives a MAC PDU on the configured downlink authorized resource, the terminal stops the drx-RetransmissionTimerDL corresponding to the HARQ process. The terminal starts the drx-HARQ-RTT-TimerDL corresponding to the HARQ process after completing the transmission of the HARQ process feedback for this downlink transmission.
  • the terminal starts the drx-RetransmissionTimerDL corresponding to this HARQ process.
  • the terminal When the terminal receives a PDCCH indicating uplink transmission, or when the terminal sends a MAC PDU on the configured uplink authorization resource, the terminal stops the drx-RetransmissionTimerUL corresponding to the HARQ process. The terminal starts the drx-HARQ-RTT-TimerUL corresponding to the HARQ process after completing the first repetition of this PUSCH.
  • the terminal starts the drx-RetransmissionTimerUL corresponding to this HARQ process.
  • the signal propagation delay between the terminal equipment and the satellite in NTN is greatly increased.
  • a scheme to enable or disable HARQ can be designed .
  • the terminal device does not need to send HARQ feedback for the physical downlink shared channel (Physical Downlink Shared Channel, PDSCH) to the network device.
  • Physical Downlink Shared Channel Physical Downlink Shared Channel
  • the network device may continue to schedule the uplink transmission or the retransmission of the downlink transmission before receiving the uplink transmission or the feedback for the downlink transmission from the terminal device.
  • the terminal equipment for the uplink data transmission, the terminal equipment can continue to receive the uplink retransmission schedule after sending the uplink transmission; for the downlink data transmission, the terminal equipment can continue to receive the downlink before the decoding of the downlink transmission is completed. Retransmission scheduling.
  • the HARQ round-trip transmission time timer Uplink Discontinuous Reception HARQ round trip time Timer, drx-HARQ-RTT-TimerUL
  • the downlink non-continuous reception HARQ round-trip transmission time timing are no longer needed.
  • Device Downlink Discontinuous Reception HARQ round trip time Timer, drx-HARQ-RTT-TimerDL.
  • the uplink discontinuous reception retransmission timer (Uplink Discontinuous Reception Retransmission Timer, drx-Retransmission Timer UL) and the downlink discontinuous reception retransmission timer (Downlink Discontinuous Reception) Retransmission Timer, drx-RetransmissionTimerDL) is also no longer required, that is, the retransmission scheduling on the network side can be earlier than the network side's Acknowledgement (ACK) or Negative Acknowledgement (NACK) feedback or uplink data. The moment when the transmission is received.
  • ACK Acknowledgement
  • NACK Negative Acknowledgement
  • this application designs a solution for the terminal device to discontinuously receive the Physical Downlink Control Channel (PDCCH) when the HARQ feedback is turned off.
  • PDCCH Physical Downlink Control Channel
  • the terminal device no longer waits for the data packet detection result on the network side, and passes Introducing the restart of the Discontinuous Reception (DRX) inactivity timer (inactivity timer) ensures that the terminal device can continue to monitor the PDCCH after dynamically scheduling uplink transmission/downlink transmission and pre-configured uplink transmission/downlink transmission, which is convenient
  • DRX Discontinuous Reception
  • inactivity timer ensures that the terminal device can continue to monitor the PDCCH after dynamically scheduling uplink transmission/downlink transmission and pre-configured uplink transmission/downlink transmission, which is convenient
  • DRX Discontinuous Reception
  • inactivity timer ensures that the terminal device can continue to monitor the PDCCH after dynamically scheduling uplink transmission/downlink transmission and pre-configured uplink transmission/downlink transmission, which is convenient
  • terminal equipment can continuously schedule
  • FIG. 2 is a schematic flowchart of a wireless communication method 200 according to an embodiment of the present application. As shown in FIG. 2, the method 200 may include some or all of the following contents:
  • the first operation includes at least one of the following:
  • Receive downlink dynamic scheduling signaling receive uplink dynamic scheduling signaling, receive MAC PDU on downlink pre-configured resources, and send MAC PDU on uplink pre-configured resources.
  • the terminal device needs to monitor the PDCCH during the running of the DRX inactivity timer (DRX inactivity timer).
  • the terminal device no longer waits for the data packet detection result on the network side after performing the first operation, but starts or restarts the DRX inactive after performing the first operation
  • the timer ensures that the terminal device can continue to monitor the PDCCH after dynamically scheduling uplink transmission, dynamically scheduling downlink transmission, receiving MAC PDU on downlink pre-configured resources, or sending MAC PDU on uplink pre-configured resources, which is convenient for NTN network
  • the terminal equipment can continuously schedule retransmissions or continuous reception of new transmissions on the network.
  • the method 200 can be applied to NTN. That is, the embodiments of this application can be applied to NTN.
  • the embodiments of the present application may also be applied to systems other than NTN, for example, V2V, D2D, LTE, NR, and subsequent evolved communication systems, which are not limited in the present application.
  • the terminal device does not start or close the first timer and/or the second timer corresponding to the HARQ process after performing the first operation, and the duration of the first timer is A round trip time (RTT) in DRX, the second timer is a timer for retransmission in DRX, and the terminal device is during the running period of the first timer and/or the second timer It is not necessary to monitor the PDCCH.
  • RTT round trip time
  • the first timer is drx-HARQ-RTT-TimerUL or drx-HARQ-RTT-TimerDL.
  • each HARQ process can correspond to a dedicated first timer.
  • the first timer reflects the minimum time interval required by the terminal device from uplink transmission to receiving the retransmission schedule issued by the network.
  • the drx-HARQ-RTT-TimerDL corresponding to this HARQ process is started after the feedback of the downlink HARQ process is completed.
  • the drx-HARQ-RTT-TimerUL corresponding to this HARQ process is started after the feedback of the uplink HARQ process is transmitted.
  • the second timer is an uplink DRX retransmission timer (drx-RetransmissionTimerUL) or a downlink DRX retransmission timer (drx-RetransmissionTimerDL).
  • drx-RetransmissionTimerUL uplink DRX retransmission timer
  • drx-RetransmissionTimerDL downlink DRX retransmission timer
  • each HARQ process can correspond to a dedicated second timer.
  • the terminal device starts or restarts the DRX inactivation timer after performing the first operation. That is, the terminal device immediately starts or restarts the DRX inactivation timer after performing the first operation.
  • the terminal device starts or restarts the DRX inactivation timer every time after performing the first operation.
  • the terminal device immediately starts or restarts the DRX inactivation timer every time the first operation is performed.
  • the terminal device before performing the above step S210, the terminal device first needs to determine the HARQ process with the feedback function turned off.
  • the terminal device determines the HARQ process with the feedback function turned off according to the configuration of the network device.
  • the terminal device receives first configuration information sent by the network device, where the first configuration information is used to indicate that part or all of the HARQ process has turned off the feedback function; and the terminal device determines that the feedback function is turned off according to the first configuration information.
  • the terminal device receives first configuration information sent by the network device, where the first configuration information is used to indicate that part or all of the HARQ process has turned off the feedback function; and the terminal device determines that the feedback function is turned off according to the first configuration information.
  • the terminal device receives first configuration information sent by the network device, where the first configuration information is used to indicate that part or all of the HARQ process has turned off the feedback function; and the terminal device determines that the feedback function is turned off according to the first configuration information.
  • HARQ process receives first configuration information sent by the network device, where the first configuration information is used to indicate that part or all of the HARQ process has turned off the feedback function; and the terminal device determines that the feedback function is turned off according to the first configuration information.
  • the first configuration information is Media Access Control main (MAC main) information.
  • MAC main Media Access Control main
  • the network device may send the first configuration information to the terminal device through broadcast or dedicated radio resource control (Radio Resource Control, RRC) signaling.
  • RRC Radio Resource Control
  • the network device can also configure DRX related parameters, specifically including DRX cycle (DRX cycle), DRX state duration timer (drx-onDurationTimer), DRX inactivity timer (drx-InactivityTimer), uplink DRX HARQ RTT Timer (drx-HARQ-RTT-TimerUL), downlink DRX HARQ RTT timer (drx-HARQ-RTT-TimerDL), uplink DRX retransmission timer (drx-RetransmissionTimerUL), downlink DRX retransmission timer (drx-RetransmissionTimerDL) )Wait.
  • DRX cycle DRX cycle
  • DRX state duration timer drx-onDurationTimer
  • DRX inactivity timer drx-InactivityTimer
  • uplink DRX HARQ RTT Timer drx-HARQ-RTT-TimerUL
  • downlink DRX HARQ RTT timer
  • the DRX related parameters can be configured together with the first configuration information, that is, the network device can configure the DRX related parameters and the first configuration information through a piece of RRC signaling.
  • the downlink dynamic scheduling signaling is used to schedule new downlink transmissions or downlink retransmissions. That is, when the first operation is downlink dynamic scheduling signaling, the first operation is used to schedule new downlink transmissions or downlink retransmissions.
  • the downlink dynamic scheduling signaling and the first downlink control information are carried in a PDCCH, and the New Data Indicator (NDI) bit in the first DCI is used for bit flipping Indicate that the downlink dynamic scheduling signaling is used for scheduling new downlink transmissions, and that the NDI bit in the first DCI is not inverted is used to indicate that the downlink dynamic scheduling signaling is used for scheduling downlink retransmissions.
  • DCI Downlink Control Information
  • NDI New Data Indicator
  • the uplink dynamic scheduling signaling is used to schedule uplink new transmission or uplink retransmission. That is, when the first operation is uplink dynamic scheduling signaling, the first operation is used for scheduling new uplink transmission or uplink retransmission.
  • the uplink dynamic scheduling signaling and the second DCI are carried in one PDCCH, and the NDI bit inversion in the second DCI is used to indicate that the uplink dynamic scheduling signaling is used for scheduling uplink new transmissions, and the second DCI The non-reversal of the NDI bit in is used to indicate that the uplink dynamic scheduling signaling is used for scheduling uplink retransmission.
  • the MAC PDU received on the downlink pre-configured resource is a new downlink MAC PDU.
  • the terminal device receives a first PDCCH, and the first PDCCH includes first downlink scheduling signaling and a third DCI, where the first Downlink scheduling signaling is used to schedule downlink retransmissions, the HARQ process indicated in the third DCI is the HARQ process with the feedback function disabled; and the terminal device starts or restarts the DRX inactive timing after receiving the first PDCCH Device.
  • the terminal device starts or restarts the DRX inactivation timer after receiving the first PDCCH. That is, the terminal device immediately starts or restarts the DRX inactivation timer after receiving the first PDCCH.
  • the MAC PDU sent on the uplink pre-configured resource is an uplink newly transmitted MAC PDU.
  • the terminal device receives a second PDCCH, and the second PDCCH includes the first uplink scheduling signaling and the fourth DCI, where the first The uplink scheduling signaling is used to schedule uplink retransmissions, the HARQ process indicated in the fourth DCI is the HARQ process with the feedback function disabled; and the terminal device starts or restarts the DRX inactivation timer after receiving the second PDCCH .
  • the terminal device finishes receiving the second PDCCH, it starts or restarts the DRX inactivation timer. That is, the terminal device immediately starts or restarts the DRX inactivation timer after receiving the second PDCCH.
  • the terminal device receives the RRC configuration information sent by the network device.
  • the RRC configuration information is specifically used to configure DRX related parameters and downlink HARQ process related configuration information, where the DRX related parameters include DRX cycle , Drx-onDurationTimer, drx-InactivityTimer, drx-HARQ-RTT-TimerDL, drx-RetransmissionTimerDL, etc.;
  • the relevant configuration information of the downlink HARQ process includes the configuration of 2 DL HARQ processes, and the HARQ feedback function of HARQ ID 1 is in the on state, HARQ The HARQ feedback function of ID 0 is disabled.
  • timer 1 in Fig. 3 can be drx-onDurationTimer
  • timer 2 in Fig. 3 can be drx-InactivityTimer
  • timer 3 in Fig. 3 can be drx-HARQ-RTT-TimerDL
  • Timer 4 in 3 may be drx-RetransmissionTimerDL.
  • the terminal device receives the new transmission of PDCCH indicating TB1 during the operation of timer 1, and the used HARQ ID 0, the terminal device starts timer 2 after receiving the PDCCH.
  • the terminal device then successively receives two PDCCH indication transmission block (Transmission block, TB) 1 retransmissions, and the terminal device restarts timer 2 every time it receives the PDCCH indicating TB1 retransmission scheduling.
  • the terminal device receives the new transmission of the PDCCH indicating TB2 during the operation of Timer 1, and the HARQ ID used is 1.
  • the terminal device receives the Physical Downlink Shared Channel (PDSCH) on the resource indicated by the PDCCH. ), and the terminal device starts the timer 3 corresponding to the HARQ ID 1 after completing the ACK feedback received for the PDSCH, and starts the timer 4 corresponding to the HARQ ID 1 after the timer 3 times out.
  • PDSCH Physical Downlink Shared Channel
  • the terminal device receives the RRC configuration information sent by the network device.
  • the RRC configuration information is specifically used to configure DRX related parameters and uplink HARQ process related configuration information, where the DRX related parameters include DRX cycle , Drx-onDurationTimer, drx-InactivityTimer, drx-HARQ-RTT-TimerUL, drx-RetransmissionTimerUL, etc.;
  • the relevant configuration information of the uplink HARQ process includes the configuration of 2 UL HARQ processes, among which the HARQ feedback function of HARQ ID 1 is in the on state, HARQ The HARQ feedback function of ID 0 is disabled.
  • timer 1 in Fig. 4 can be drx-onDurationTimer
  • timer 2 in Fig. 4 can be drx-InactivityTimer
  • timer 5 in Fig. 4 can be drx-HARQ-RTT-TimerUL
  • Timer 6 in 4 may be drx-RetransmissionTimerUL.
  • the terminal device receives a new transmission of PDCCH indicating TB1 during the operation of timer 1, and the used HARQ ID 0, the terminal device starts timer 2 after receiving the PDCCH.
  • the terminal device then successively receives two PDCCHs indicating the retransmission of TB1, and the terminal device restarts timer 2 each time it receives the PDCCH indicating the retransmission scheduling of TB1.
  • the terminal device receives the new transmission of the PDCCH indicating TB2 during the operation of Timer 1, and the HARQ ID used is 1.
  • the terminal device receives the Physical Uplink Shared Channel (PUSCH) on the resource indicated by the PDCCH. ), and the terminal device starts the timer 5 corresponding to the HARQ ID 1 after completing the transmission for the PUSCH, and starts the timer 6 corresponding to the HARQ ID 1 after the timer 5 times out.
  • PUSCH Physical Uplink Shared Channel
  • the terminal device receives the RRC configuration information sent by the network device.
  • the RRC configuration information is specifically used to configure DRX related parameters and uplink HARQ process related configuration information, where the DRX related parameters include DRX cycle , Drx-onDurationTimer, drx-InactivityTimer, drx-HARQ-RTT-TimerUL, drx-RetransmissionTimerUL, etc.;
  • the relevant configuration information of the uplink HARQ process includes the configuration of 2 UL HARQ processes, among which the HARQ feedback function of HARQ ID 1 is in the on state, HARQ The HARQ feedback function of ID 0 is disabled.
  • timer 1 in Figure 5 can be drx-onDurationTimer
  • timer 2 in Figure 5 can be drx-InactivityTimer
  • timer 5 in Figure 5 can be drx-HARQ-RTT-TimerUL
  • Timer 6 in 5 may be drx-RetransmissionTimerUL.
  • the terminal device sends a new transmission of TB1 on the uplink pre-configured resource (configured UL grant) with the HARQ ID 0 used, and the terminal device starts timer 2 after completing the PUSCH transmission.
  • the terminal device then successively receives two PDCCHs indicating the retransmission of TB1, and the terminal device restarts timer 2 each time it receives the PDCCH indicating the retransmission scheduling of TB1.
  • the terminal device sends a new transmission of TB2 on the uplink pre-configured resource (configured UL grant), using the HARQ ID 1, and the terminal device starts the HARQ ID 1 corresponding to timer 5 after completing the transmission for the PUSCH. And after the timer 5 expires, the timer 6 corresponding to HARQ ID 1 is started.
  • the terminal device receives the RRC configuration information sent by the network device.
  • the RRC configuration information is specifically used to configure DRX related parameters and downlink HARQ process related configuration information, where the DRX related parameters include DRX cycle , Drx-onDurationTimer, drx-InactivityTimer, drx-HARQ-RTT-TimerDL, drx-RetransmissionTimerDL, etc.;
  • the relevant configuration information of the downlink HARQ process includes the configuration of 2 DL HARQ processes, and the HARQ feedback function of HARQ ID 1 is in the on state, HARQ The HARQ feedback function of ID 0 is disabled.
  • timer 1 in Figure 6 can be drx-onDurationTimer
  • timer 2 in Figure 6 can be drx-InactivityTimer
  • timer 3 in Figure 6 can be drx-HARQ-RTT-TimerDL
  • Timer 4 in 6 may be drx-RetransmissionTimerDL.
  • the terminal device sends a new transmission of TB1 on the downlink pre-configured resource (configured DL assignment) with the HARQ ID 0 used, and the terminal device starts timer 2 after completing the PDSCH reception.
  • the terminal device then successively receives two PDCCHs indicating the retransmission of TB1, and the terminal device restarts timer 2 each time it receives the PDCCH indicating the retransmission scheduling of TB1.
  • the terminal device sends a new transmission of TB2 on the downlink pre-configured resource (configured DL assignment), using HARQ ID 1, and the terminal device starts the timer corresponding to HARQ ID 1 after completing the ACK feedback for PDSCH reception 3. After the timer 3 expires, the timer 4 corresponding to HARQ ID 1 is started.
  • the terminal device no longer waits for the data packet detection result on the network side after performing the first operation, but starts or restarts DRX after performing the first operation
  • the inactive timer ensures that the terminal device can continue to monitor the PDCCH after dynamically scheduling uplink transmission, dynamically scheduling downlink transmission, receiving MAC PDU on downlink pre-configured resources, or sending MAC PDU on uplink pre-configured resources, which is convenient for NTN
  • the terminal equipment in the network can continuously schedule retransmissions or continuous reception of new transmissions on the network.
  • FIG. 7 shows a schematic block diagram of a terminal device 300 according to an embodiment of the present application.
  • the terminal device 300 includes: a processing unit 310,
  • the processing unit 310 starts or restarts the DRX inactivation timer after performing the first operation, where:
  • the first operation includes at least one of the following:
  • Receive downlink dynamic scheduling signaling receive uplink dynamic scheduling signaling, receive MAC PDU on downlink pre-configured resources, and send MAC PDU on uplink pre-configured resources.
  • the processing unit 310 is further configured to not start or close the first timer and/or the second timer corresponding to the HARQ process after the first operation is performed, and the duration of the first timer is that of DRX.
  • An RTT, the second timer is a timer for retransmission in DRX, and the terminal device does not monitor the PDCCH during the running of the first timer and/or the second timer.
  • processing unit 310 is specifically configured to:
  • the processing unit 310 is further configured to determine the HARQ process whose feedback function is turned off.
  • the terminal device 300 further includes:
  • the communication unit 320 is configured to receive first configuration information, where the first configuration information is used to indicate that part or all of the HARQ process has turned off the feedback function;
  • the processing unit 310 is specifically used for:
  • the HARQ process with the feedback function turned off it is determined that the HARQ process with the feedback function turned off.
  • the downlink dynamic scheduling signaling is used to schedule new downlink transmissions or downlink retransmissions.
  • the downlink dynamic scheduling signaling and the first DCI are carried in a PDCCH
  • the new data in the first DCI indicating NDI bit inversion is used to indicate that the downlink dynamic scheduling signaling is used for scheduling new downlink transmissions
  • the The non-inverted NDI bit in the first DCI is used to indicate that the downlink dynamic scheduling signaling is used for scheduling downlink retransmission.
  • the uplink dynamic scheduling signaling is used to schedule uplink new transmission or uplink retransmission.
  • the uplink dynamic scheduling signaling and the second DCI are carried in one PDCCH, and the NDI bit inversion in the second DCI is used to indicate that the uplink dynamic scheduling signaling is used for scheduling uplink new transmissions, and the second DCI The non-reversal of the NDI bit in is used to indicate that the uplink dynamic scheduling signaling is used for scheduling uplink retransmission.
  • the MAC PDU received on the downlink pre-configured resource is a new downlink MAC PDU.
  • the terminal device 300 further includes:
  • the communication unit 320 is configured to receive a first PDCCH, where the first PDCCH includes first downlink scheduling signaling and a third DCI, where the first downlink scheduling signaling is used to schedule downlink retransmissions, and the third DCI
  • the indicated HARQ process is the HARQ process with the feedback function turned off;
  • the processing unit 310 is further configured to start or restart the DRX inactivation timer after the communication unit receives the first PDCCH.
  • processing unit 310 is specifically configured to:
  • the communication unit 320 When the communication unit 320 finishes receiving the first PDCCH, it starts or restarts the DRX inactivation timer.
  • the MAC PDU sent on the uplink pre-configured resource is an uplink newly transmitted MAC PDU.
  • the terminal device 300 further includes:
  • the communication unit 320 is configured to receive a second PDCCH.
  • the second PDCCH includes a first uplink scheduling signaling and a fourth DCI.
  • the first uplink scheduling signaling is used to schedule uplink retransmissions.
  • the HARQ process is the HARQ process with the feedback function turned off;
  • the processing unit 310 is further configured to start or restart the DRX inactivation timer after the communication unit 320 receives the second PDCCH.
  • processing unit 310 is specifically configured to:
  • the communication unit 320 When the communication unit 320 finishes receiving the second PDCCH, it starts or restarts the DRX inactivation timer.
  • the terminal device 300 is applied to NTN.
  • terminal device 300 may correspond to the terminal device in the method embodiment of the present application, and the above-mentioned and other operations and/or functions of each unit in the terminal device 300 are to implement the method shown in FIG. 2 respectively.
  • the corresponding process of the terminal equipment in 200 will not be repeated here.
  • FIG. 8 is a schematic structural diagram of a communication device 400 provided by an embodiment of the present application.
  • the communication device 400 shown in FIG. 8 includes a processor 410, and the processor 410 can call and run a computer program from a memory to implement the method in the embodiment of the present application.
  • the communication device 400 may further include a memory 420.
  • the processor 410 may call and run a computer program from the memory 420 to implement the method in the embodiment of the present application.
  • the memory 420 may be a separate device independent of the processor 410, or may be integrated in the processor 410.
  • the communication device 400 may further include a transceiver 430, and the processor 410 may control the transceiver 430 to communicate with other devices. Specifically, it may send information or data to other devices, or receive other devices. Information or data sent by the device.
  • the transceiver 430 may include a transmitter and a receiver.
  • the transceiver 430 may further include an antenna, and the number of antennas may be one or more.
  • the communication device 400 may specifically be a network device or a base station in an embodiment of the present application, and the communication device 400 may implement the corresponding process implemented by the network device or the base station in each method of the embodiment of the present application.
  • the communication device 400 may implement the corresponding process implemented by the network device or the base station in each method of the embodiment of the present application.
  • This will not be repeated here.
  • the communication device 400 may specifically be a mobile terminal/terminal device of an embodiment of the present application, and the communication device 400 may implement the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application.
  • I won’t repeat it here.
  • Fig. 9 is a schematic structural diagram of a device according to an embodiment of the present application.
  • the apparatus 500 shown in FIG. 9 includes a processor 510, and the processor 510 can call and run a computer program from the memory to implement the method in the embodiment of the present application.
  • the apparatus 500 may further include a memory 520.
  • the processor 510 may call and run a computer program from the memory 520 to implement the method in the embodiment of the present application.
  • the memory 520 may be a separate device independent of the processor 510, or may be integrated in the processor 510.
  • the device 500 may further include an input interface 530.
  • the processor 510 can control the input interface 530 to communicate with other devices or chips, and specifically, can obtain information or data sent by other devices or chips.
  • the device 500 may further include an output interface 540.
  • the processor 510 can control the output interface 540 to communicate with other devices or chips, and specifically, can output information or data to other devices or chips.
  • the device can be applied to the network equipment or the base station in the embodiments of the present application, and the device can implement the corresponding procedures implemented by the network equipment or the base station in the various methods of the embodiments of the present application.
  • the device can implement the corresponding procedures implemented by the network equipment or the base station in the various methods of the embodiments of the present application.
  • it will not be omitted here. Go into details.
  • the device can be applied to the mobile terminal/terminal device in the embodiment of the present application, and the device can implement the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application.
  • the device can implement the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application.
  • the device can implement the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application.
  • the device mentioned in the embodiment of the present application may also be a chip.
  • it can be a system-level chip, a system-on-chip, a system-on-chip, or a system-on-chip.
  • FIG. 10 is a schematic block diagram of a communication system 600 according to an embodiment of the present application. As shown in FIG. 10, the communication system 600 includes a terminal device 610 and a network device 620.
  • the terminal device 610 can be used to implement the corresponding function implemented by the terminal device in the above method
  • the network device 620 can be used to implement the corresponding function implemented by the network device or the base station in the above method. Go into details again.
  • the processor of the embodiment of the present application may be an integrated circuit chip with signal processing capability.
  • the steps of the foregoing method embodiments can be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the above-mentioned processor may be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (ASIC), a ready-made programmable gate array (Field Programmable Gate Array, FPGA) or other Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC application specific integrated circuit
  • FPGA Field Programmable Gate Array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application can be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), and electrically available Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • DDR SDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • Enhanced SDRAM, ESDRAM Enhanced Synchronous Dynamic Random Access Memory
  • Synchronous Link Dynamic Random Access Memory Synchronous Link Dynamic Random Access Memory
  • DR RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be static random access memory (static RAM, SRAM), dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM) and so on. That is to say, the memory in the embodiments of the present application is intended to include, but is not limited to, these and any other suitable types of memory.
  • the embodiment of the present application also provides a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium may be applied to the network device or base station in the embodiment of the present application, and the computer program causes the computer to execute the corresponding process implemented by the network device or the base station in each method of the embodiment of the present application, in order to It's concise, so I won't repeat it here.
  • the computer-readable storage medium can be applied to the mobile terminal/terminal device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application , For the sake of brevity, I won’t repeat it here.
  • the embodiments of the present application also provide a computer program product, including computer program instructions.
  • the computer program product can be applied to the network device or base station in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding process implemented by the network device or the base station in each method of the embodiment of the present application, for the sake of brevity , I won’t repeat it here.
  • the computer program product can be applied to the mobile terminal/terminal device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application, For the sake of brevity, I will not repeat them here.
  • the embodiment of the present application also provides a computer program.
  • the computer program can be applied to the network device or base station in the embodiment of the present application.
  • the computer program runs on the computer, the computer can execute the corresponding implementation of the network device or the base station in each method of the embodiment of the present application. For the sake of brevity, the process will not be repeated here.
  • the computer program can be applied to the mobile terminal/terminal device in the embodiment of the present application.
  • the computer program runs on the computer, the computer executes each method in the embodiment of the present application. For the sake of brevity, the corresponding process will not be repeated here.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种无线通信方法和终端设备,对于关闭了反馈功能的HARQ进程,终端设备在动态调度上行传输、动态调度下行传输、预配置资源上行传输、预配置资源上下行传输之后启动或者重启DRX非激活定时器,从而终端设备能够在执行这些操作之后继续监听PDCCH,便于在NTN网络中终端设备能够对网络设备持续调度重传或新传的连续接收。该无线通信方法包括:对于关闭了反馈功能的HARQ进程,终端设备在执行第一操作之后启动或者重启DRX非激活定时器,其中,该第一操作包括以下中的至少一种:接收下行动态调度信令、接收上行动态调度信令、在下行预配置资源上接收MAC PDU、以及在上行预配置资源上发送MAC PDU。

Description

无线通信方法和终端设备 技术领域
本申请实施例涉及通信领域,并且更具体地,涉及一种无线通信方法和终端设备。
背景技术
第五代移动通信技术新无线(5-Generation New Radio,5G NR)系统定义了包括卫星网络在内的非地面网络(Non-terrestrial networks,NTN)系统部署场景,借助卫星的广域覆盖能力,NTN系统可以实现5G NR业务的连续性。由于卫星相对地面快速移动,NTN中终端设备与卫星之间的信号传播时延大幅增加,为了在不增加混合自动重传请求(Hybrid Automatic Repeat reQuest,HARQ)进程数目的情况下保证数据传输连续性,对NTN系统中的HARQ方案提出了更高的要求,如何在不增加HARQ进程数目的情况下保证数据传输连续性,是一个亟待解决的问题。
发明内容
本申请实施例提供了一种无线通信方法和终端设备,对于关闭了反馈功能的HARQ进程,终端设备在动态调度上行传输、动态调度下行传输、预配置资源上行传输、预配置资源上下行传输之后启动或者重启非连续接收(Discontinuous Reception,DRX)非激活定时器,从而终端设备能够在执行这些操作之后继续监听物理下行控制信道(Physical Downlink Control Channel,PDCCH),便于在NTN网络中终端设备能够对网络设备持续调度重传或新传的连续接收。
第一方面,提供了一种无线通信方法,该方法包括:
对于关闭了反馈功能的HARQ进程,终端设备在执行第一操作之后启动或者重启DRX非激活定时器,其中,
该第一操作包括以下中的至少一种:
接收下行动态调度信令、接收上行动态调度信令、在下行预配置资源上接收媒体接入控制协议数据单元(Media Access Control Protocol Data Unit,MAC PDU)、以及在上行预配置资源上发送MAC PDU。
需要说明的是,上述在下行预配置资源上接收MAC PDU也可以是在下行预配置资源上接收下行数据,上述在上行预配置资源上发送MAC PDU也可以是在上行预配置资源上发送上行数据。
第二方面,提供了一种终端设备,用于执行上述第一方面或其各实现方式中的方法。
具体地,该终端设备包括用于执行上述第一方面或其各实现方式中的方法的功能模块。
第三方面,提供了一种终端设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第一方面或其各实现方式中的方法。
第四方面,提供了一种装置,用于实现上述第一方面或其各实现方式中的方法。
具体地,该装置包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该装置的设备执行如上述第一方面或其各实现方式中的方法。
第五方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述第一方面或其各实现方式中的方法。
第六方面,提供了一种计算机程序产品,包括计算机程序指令,所述计算机程序指令使得计算机执行上述第一方面或其各实现方式中的方法。
第七方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面或其各实现方式中的方法。
通过上述技术方案,对于关闭了反馈功能的HARQ进程,终端设备在执行第一操作之后启动或者重启DRX非激活定时器,从而终端设备能够在执行第一操作之后继续监听PDCCH,便于在NTN网络中终端设备能够对网络设备持续调度重传或新传的连续接收。
附图说明
图1是本申请实施例提供的一种通信系统架构的示意性图。
图2是根据本申请实施例提供的一种无线通信方法的示意性流程图。
图3是根据本申请实施例提供的一种动态调度下行传输的示意图。
图4是根据本申请实施例提供的一种动态调度上行传输的示意图。
图5是根据本申请实施例提供的一种上行预配置资源上上行传输的示意图。
图6是根据本申请实施例提供的一种下行预配置资源上下行传输的示意图。
图7是根据本申请实施例提供的一种终端设备的示意性框图。
图8是根据本申请实施例提供的一种通信设备的示意性框图。
图9是根据本申请实施例提供的一种装置的示意性框图。
图10是根据本申请实施例提供的一种通信系统的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。针对本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、新无线(New Radio,NR)系统、NR系统的演进系统、免授权频谱上的LTE(LTE-based access to unlicensed spectrum,LTE-U)系统、免授权频谱上的NR(NR-based access to unlicensed spectrum,NR-U)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)、下一代通信系统或其他通信系统等。
通常来说,传统的通信系统支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信系统将不仅支持传统的通信,还将支持例如,设备到设备(Device to Device,D2D)通信,机器到机器(Machine to Machine,M2M)通信,机器类型通信(Machine Type Communication,MTC),以及车辆间(Vehicle to Vehicle,V2V)通信等,本申请实施例也可以应用于这些通信系统。
可选地,本申请实施例中的通信系统可以应用于载波聚合(Carrier Aggregation,CA)场景,也可以应用于双连接(Dual Connectivity,DC)场景,还可以应用于独立(Standalone,SA)布网场景。
本申请实施例对应用的频谱并不限定。例如,本申请实施例可以应用于授权频谱,也可以应用于免授权频谱。
示例性的,本申请实施例应用的通信系统100如图1所示。该通信系统100可以包括网络设备110,网络设备110可以是与终端设备120(或称为通信终端、终端)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备进行通信。
图1示例性地示出了一个网络设备和两个终端设备,可选地,该通信系统100可以 包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
可选地,该通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例中网络/系统中具有通信功能的设备可称为通信设备。以图1示出的通信系统100为例,通信设备可包括具有通信功能的网络设备110和终端设备120,网络设备110和终端设备120可以为上文所述的具体设备,此处不再赘述;通信设备还可包括通信系统100中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
本申请实施例结合终端设备和网络设备描述了各个实施例,其中:终端设备也可以称为用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置等。终端设备可以是WLAN中的站点(STAION,ST),可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备以及下一代通信系统,例如,NR网络中的终端设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的终端设备等。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
网络设备可以是用于与移动设备通信的设备,网络设备可以是WLAN中的接入点(Access Point,AP),GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB,NB),还可以是LTE中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者车载设备、可穿戴设备以及NR网络中的网络设备或者基站(gNB)或者未来演进的PLMN网络中的网络设备等。
在本申请实施例中,网络设备为小区提供服务,终端设备通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与网络设备进行通信,该小区可以是网络设备(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(Small cell)对应的基站,这里的小小区可以包括:城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
5G NR系统定义了包括卫星网络在内的NTN系统部署场景。NTN一般采用卫星通信的方式向地面用户提供通信服务。相比地面蜂窝网通信,卫星通信具有很多独特的优点。首先,卫星通信不受用户地域的限制,例如一般的陆地通信不能覆盖海洋、高山、沙漠等无法搭设通信设备或由于人口稀少而不做通信覆盖的区域,而对于卫星通信来说,由于一颗卫星即可以覆盖较大的地面,加之卫星可以围绕地球做轨道运动,因此理论上 地球上每一个角落都可以被卫星通信覆盖。其次,卫星通信有较大的社会价值。卫星通信在边远山区、贫穷落后的国家或地区都可以以较低的成本覆盖到,从而使这些地区的人们享受到先进的语音通信和移动互联网技术,有利于缩小与发达地区的数字鸿沟,促进这些地区的发展。再次,卫星通信距离远,且通信距离增大通讯的成本没有明显增加;最后,卫星通信的稳定性高,不受自然灾害的限制。
通信卫星按照轨道高度的不同分为低地球轨道(Low-Earth Orbit,LEO)卫星、中地球轨道(Medium-Earth Orbit,MEO)卫星、地球同步轨道(Geostationary Earth Orbit,GEO)卫星、高椭圆轨道(High Elliptical Orbit,HEO)卫星等等。
例如,LEO卫星高度范围为500km~1500km,相应轨道周期约为1.5小时~2小时。用户间单跳通信的信号传播延迟一般小于20ms。最大卫星可视时间20分钟。信号传播距离短,链路损耗少,对用户终端的发射功率要求不高。
又例如,GEO卫星轨道高度为35786km,围绕地球旋转周期为24小时。用户间单跳通信的信号传播延迟一般为250ms。
终端设备启动或重启drx-InactivityTimer的条件为:
如果终端接收到一个指示下行或者上行初始传输的PDCCH,则终端启动或者重启drx-InactivityTimer。
终端启动和停止drx-RetransmissionTimerDL的条件为:
当终端设备接收到一个指示下行传输的PDCCH,或者当终端在配置的下行授权资源上接收到一个MAC PDU,则终端停止该HARQ进程对应的drx-RetransmissionTimerDL。终端在完成针对这次下行传输的HARQ进程反馈的传输之后启动该HARQ进程对应的drx-HARQ-RTT-TimerDL。
如果终端设备的某个HARQ对应的定时器drx-HARQ-RTT-TimerDL超时,并且使用这个HARQ进程传输的下行数据解码不成功,则终端启动这个HARQ进程对应的drx-RetransmissionTimerDL。
终端启动和停止drx-RetransmissionTimerUL的条件为:
当终端接收到一个指示上行传输的PDCCH,或者当终端在配置的上行授权资源上发送一个MAC PDU,则终端停止该HARQ进程对应的drx-RetransmissionTimerUL。终端在完成这次PUSCH的第一次重复传输(repetition)之后启动该HARQ进程对应的drx-HARQ-RTT-TimerUL。
如果终端的某个HARQ对应的定时器drx-HARQ-RTT-TimerUL超时,则终端启动这个HARQ进程对应的drx-RetransmissionTimerUL。
与传统NR采用的蜂窝网络相比,NTN中终端设备与卫星之间的信号传播时延大幅增加,为了在不增加HARQ进程数目的情况下保证数据传输连续性,可以设计开启或者关闭HARQ的方案。
如果HARQ功能关闭,则终端设备不需要向网络设备发送针对物理下行共享信道(Physical Downlink Shared Channel,PDSCH)的HARQ反馈。
在关闭HARQ反馈的情况下,为了保证数据传输可靠性,仍然支持HARQ重传。
需要说明的是,如果关闭了HARQ,由于没有了针对HARQ的反馈,网络设备可以在接收到终端设备的上行传输或者针对下行传输的反馈之前继续调度该上行传输或者下行传输的重传。对于终端设备而言,对于上行数据传输,终端设备可以在发送完本次上行传输之后继续接收上行重传调度;对于下行数据传输,终端设备可以在完成对本次下行传输的解码之前继续接收下行重传调度。因此,在关闭HARQ的情况下可以不再需要上行非连续接收HARQ往返传输时间定时器(Uplink Discontinuous Reception HARQ round trip time Timer,drx-HARQ-RTT-TimerUL)和下行非连续接收HARQ往返传输时间定时器(Downlink Discontinuous Reception HARQ round trip time Timer,drx-HARQ-RTT-TimerDL)。同时由于终端设备不需要等待网络侧处理接收情况再调度 重传,因此上行非连续接收重传定时器(Uplink Discontinuous Reception Retransmission Timer,drx-RetransmissionTimerUL)和下行非连续接收重传定时器(Downlink Discontinuous Reception Retransmission Timer,drx-RetransmissionTimerDL)也不再需要,即网络侧的重传调度可以是早于网络侧对下行数据传输的肯定应答(Acknowledgement,ACK)或者否定应答(Negative Acknowledgement,NACK)反馈或者上行数据传输的接收时刻。
针对以上技术问题,本申请设计了一种在关闭HARQ反馈的情况下终端设备非连续接收物理下行控制信道(Physical Downlink Control Channel,PDCCH)的方案。针对关闭HARQ反馈功能的HARQ进程,通过关闭drx-HARQ-RTT-TimerUL、drx-HARQ-RTT-TimerDL、drx-RetransmissionTimerUL和drx-RetransmissionTimerUL,使得终端设备不再等待网络侧的数据包检测结果,通过引入非连续接收(Discontinuous Reception,DRX)非激活定时器(inactivity timer)的重启,保证了终端设备能够在动态调度上行传输/下行传输和预配置的上行传输/下行传输后能够继续监听PDCCH,便于在NTN网络中终端设备能够对网络设备持续调度重传或新传的连续接收。
以下详细阐述本申请针对上述技术问题而设计的在关闭HARQ反馈的情况下终端设备非连续接收PDCCH的方案。
图2是根据本申请实施例的无线通信方法200的示意性流程图,如图2所示,该方法200可以包括如下内容中的部分或全部:
S210,对于关闭了反馈功能的HARQ进程,终端设备在执行第一操作之后启动或者重启DRX非激活定时器,其中,
该第一操作包括以下中的至少一种:
接收下行动态调度信令、接收上行动态调度信令、在下行预配置资源上接收MAC PDU、以及在上行预配置资源上发送MAC PDU。
需要说明的是,在DRX非激活定时器(DRX inactivity timer)运行期间终端设备要监听PDCCH。
在本申请实施例中,对于关闭了反馈功能的HARQ进程,终端设备在执行第一操作之后不再等待网络侧的数据包检测结果,而是,在执行第一操作之后启动或者重启DRX非激活定时器,保证了终端设备能够在动态调度上行传输、动态调度下行传输、在下行预配置资源上接收MAC PDU、或者在上行预配置资源上发送MAC PDU之后能够继续监听PDCCH,便于在NTN网络中终端设备能够对网络持续调度重传或新传的连续接收。
可选地,该方法200可以应用于NTN。即本申请实施例可以应用于NTN。
可选地,本申请实施例还可以应用于除NTN之外的系统,例如,V2V,D2D,LTE,NR,以及后续演进的通信系统,本申请对此并不限定。
可选地,在本申请实施例中,该终端设备在执行该第一操作之后不启动或者关闭该HARQ进程对应的第一定时器和/或第二定时器,该第一定时器的时长为DRX中的一个往返传输时间(Round Trip Time,RTT),该第二定时器为DRX中针对重传的定时器,且该终端设备在该第一定时器和/或该第二定时器运行期间可以不监听PDCCH。
可选地,该第一定时器为drx-HARQ-RTT-TimerUL或者drx-HARQ-RTT-TimerDL。
需要说明的是,每个HARQ进程都可以对应一个专属的第一定时器。该第一定时器反映的是终端设备从上行传输到接收到网络下发的重传调度所需要的最小时间间隔。
例如对于新传或者重传下行数据,在传输完下行HARQ进程反馈之后启动这个HARQ进程对应的drx-HARQ-RTT-TimerDL。
又例如,对于新传或者重传上行数据,在传输完上行HARQ进程反馈之后启动这个HARQ进程对应的drx-HARQ-RTT-TimerUL。
可选地,该第二定时器为上行DRX重传定时器(drx-RetransmissionTimerUL)或者下行DRX重传定时器(drx-RetransmissionTimerDL)。
需要说明的是,每个HARQ进程都可以对应一个专属的第二定时器。
可选地,在本申请实施例中,该终端设备在执行完该第一操作时,启动或者重启该DRX非激活定时器。即该终端设备在执行完该第一操作之后立即启动或者重启该DRX非激活定时器。
可选地,在本申请实施例中,该终端设备在每次执行该第一操作之后都启动或者重启该DRX非激活定时器。
可选地,该终端设备在每次执行该第一操作之后都立即启动或者重启该DRX非激活定时器。
在本申请实施例中,在执行上述步骤S210之前,该终端设备首先需要确定关闭了反馈功能的HARQ进程。
可选地,该终端设备根据网络设备的配置,确定关闭了反馈功能的所述HARQ进程。
例如,该终端设备接收网络设备发送的第一配置信息,该第一配置信息用于指示部分或者全部HARQ进程关闭了反馈功能;以及该终端设备根据该第一配置信息确定关闭了反馈功能的该HARQ进程。
例如,该第一配置信息为媒体接入控制主配置(Media Access Control main,MAC main)信息。
可选地,该网络设备可以通过广播或者专用无线资源控制(Radio Resource Control,RRC)信令向该终端设备发送该第一配置信息。
可选地,该网络设备还可以配置DRX的相关参数,具体包括DRX周期(DRX cycle)、DRX状态持续定时器(drx-onDurationTimer)、DRX非激活定时器(drx-InactivityTimer)、上行DRX HARQ RTT定时器(drx-HARQ-RTT-TimerUL)、下行DRX HARQ RTT定时器(drx-HARQ-RTT-TimerDL)、上行DRX重传定时器(drx-RetransmissionTimerUL)、下行DRX重传定时器(drx-RetransmissionTimerDL)等。
需要说明的是,该DRX的相关参数可以与该第一配置信息一起配置,即网络设备可以通过一条RRC信令配置该DRX的相关参数和该第一配置信息。
可选地,在本申请实施例中,该下行动态调度信令用于调度下行新传或者下行重传。即该第一操作为下行动态调度信令时,该第一操作用于调度下行新传或者下行重传。
可选地,该下行动态调度信令和第一下行控制信息(Downlink Control Information,DCI)承载于一个PDCCH中,该第一DCI中的新数据指示(New Data Indicator,NDI)比特翻转用于指示该下行动态调度信令用于调度下行新传,以及该第一DCI中的NDI比特不翻转用于指示该下行动态调度信令用于调度下行重传。
可选地,在本申请实施例中,所述上行动态调度信令用于调度上行新传或者上行重传。即该第一操作为上行动态调度信令时,该第一操作用于调度上行新传或者上行重传。
可选地,该上行动态调度信令和第二DCI承载于一个PDCCH中,该第二DCI中的NDI比特翻转用于指示该上行动态调度信令用于调度上行新传,以及该第二DCI中的NDI比特不翻转用于指示该上行动态调度信令用于调度上行重传。
可选地,在本申请实施例中,该下行预配置资源上接收的MAC PDU为下行新传MAC PDU。
可选地,若该第一操作为在下行预配置资源上接收MAC PDU,该终端设备接收第一PDCCH,该第一PDCCH包括第一下行调度信令和第三DCI,其中,该第一下行调度信令用于调度下行重传,该第三DCI中指示的HARQ进程为关闭了反馈功能的HARQ进程;以及该终端设备在接收到该第一PDCCH之后启动或者重启该DRX非激活定时器。
具体地,该终端设备在接收完该第一PDCCH时,启动或者重启该DRX非激活定时器。也即,该终端设备在接收到该第一PDCCH之后立即启动或者重启该DRX非激活定时器。
可选地,在本申请实施例中,该上行预配置资源上发送的MAC PDU为上行新传MAC  PDU。
可选地,若该第一操作为在上行预配置资源上发送的MAC PDU,该终端设备接收第二PDCCH,该第二PDCCH包括第一上行调度信令和第四DCI,其中,该第一上行调度信令用于调度上行重传,该第四DCI中指示的HARQ进程为关闭了反馈功能的HARQ进程;以及该终端设备在接收到该第二PDCCH之后启动或者重启该DRX非激活定时器。
具体地,该终端设备在接收完该第二PDCCH时,启动或者重启该DRX非激活定时器。也即,该终端设备在接收到该第二PDCCH之后立即启动或者重启该DRX非激活定时器。
以下通过实施例1至实施例4详述上述方法200。
可选地,作为实施例1,终端设备接收网络设备发送的RRC配置信息,该RRC配置信息具体用于配置DRX的相关参数和下行HARQ进程相关配置信息,其中,该DRX的相关参数包括DRX cycle,drx-onDurationTimer,drx-InactivityTimer,drx-HARQ-RTT-TimerDL,drx-RetransmissionTimerDL等;该下行HARQ进程相关配置信息包括配置2个DL HARQ进程,其中HARQ ID 1的HARQ反馈功能为开启状态,HARQ ID 0的HARQ反馈功能为关闭状态。
需要说明的是,图3中的定时器1可以是drx-onDurationTimer,图3中的定时器2可以是drx-InactivityTimer,图3中的定时器3可以是drx-HARQ-RTT-TimerDL,以及图3中的定时器4可以是drx-RetransmissionTimerDL。
如图3所示,终端设备在定时器1运行期间接收到PDCCH指示TB1的新传,使用的HARQ ID 0,终端设备完成该PDCCH接收后启动定时器2。终端设备随后又先后接收到2条PDCCH指示传输块(Transmission block,TB)1的重传,终端设备在每次收到指示TB1重传调度的PDCCH后都重启定时器2。
如图3所示,终端设备在定时器1运行期间接收到PDCCH指示TB2的新传,使用的HARQ ID 1,终端设备在该PDCCH指示的资源上接收物理下行共享信道(Physical Downlink Shared Channel,PDSCH),并且终端设备在完成针对该PDSCH接收的ACK反馈后启动HARQ ID 1对应的定时器3,并在该定时器3超时后启动HARQ ID 1对应的定时器4。
可选地,作为实施例2,终端设备接收网络设备发送的RRC配置信息,该RRC配置信息具体用于配置DRX的相关参数和上行HARQ进程相关配置信息,其中,该DRX的相关参数包括DRX cycle,drx-onDurationTimer,drx-InactivityTimer,drx-HARQ-RTT-TimerUL,drx-RetransmissionTimerUL等;该上行HARQ进程相关配置信息包括配置2个UL HARQ进程,其中HARQ ID 1的HARQ反馈功能为开启状态,HARQ ID 0的HARQ反馈功能为关闭状态。
需要说明的是,图4中的定时器1可以是drx-onDurationTimer,图4中的定时器2可以是drx-InactivityTimer,图4中的定时器5可以是drx-HARQ-RTT-TimerUL,以及图4中的定时器6可以是drx-RetransmissionTimerUL。
如图4所示,终端设备在定时器1运行期间接收到PDCCH指示TB1的新传,使用的HARQ ID 0,终端设备完成该PDCCH接收后启动定时器2。终端设备随后又先后接收到2条PDCCH指示TB1的重传,终端设备在每次收到指示TB1重传调度的PDCCH后都重启定时器2。
如图4所示,终端设备在定时器1运行期间接收到PDCCH指示TB2的新传,使用的HARQ ID 1,终端设备在该PDCCH指示的资源上接收物理上行共享信道(Physical Uplink Shared Channel,PUSCH),并且终端设备在完成针对该PUSCH传输后启动HARQ ID 1对应的定时器5,并在该定时器5超时后启动HARQ ID 1对应的定时器6。
可选地,作为实施例3,终端设备接收网络设备发送的RRC配置信息,该RRC配置信息具体用于配置DRX的相关参数和上行HARQ进程相关配置信息,其中,该DRX的 相关参数包括DRX cycle,drx-onDurationTimer,drx-InactivityTimer,drx-HARQ-RTT-TimerUL,drx-RetransmissionTimerUL等;该上行HARQ进程相关配置信息包括配置2个UL HARQ进程,其中HARQ ID 1的HARQ反馈功能为开启状态,HARQ ID 0的HARQ反馈功能为关闭状态。
需要说明的是,图5中的定时器1可以是drx-onDurationTimer,图5中的定时器2可以是drx-InactivityTimer,图5中的定时器5可以是drx-HARQ-RTT-TimerUL,以及图5中的定时器6可以是drx-RetransmissionTimerUL。
如图5所示,终端设备在上行预配置资源(configured UL grant)上发送TB1的新传,使用的HARQ ID 0,终端设备完成PUSCH传输后启动定时器2。终端设备随后又先后接收到2条PDCCH指示TB1的重传,终端设备在每次收到指示TB1重传调度的PDCCH后都重启定时器2。
如图5所示,终端设备在上行预配置资源(configured UL grant)上发送TB2的新传,使用的HARQ ID 1,终端设备在完成针对PUSCH的传输后启动HARQ ID 1对应的定时器5,并在该定时器5超时后启动HARQ ID 1对应的定时器6。
可选地,作为实施例4,终端设备接收网络设备发送的RRC配置信息,该RRC配置信息具体用于配置DRX的相关参数和下行HARQ进程相关配置信息,其中,该DRX的相关参数包括DRX cycle,drx-onDurationTimer,drx-InactivityTimer,drx-HARQ-RTT-TimerDL,drx-RetransmissionTimerDL等;该下行HARQ进程相关配置信息包括配置2个DL HARQ进程,其中HARQ ID 1的HARQ反馈功能为开启状态,HARQ ID 0的HARQ反馈功能为关闭状态。
需要说明的是,图6中的定时器1可以是drx-onDurationTimer,图6中的定时器2可以是drx-InactivityTimer,图6中的定时器3可以是drx-HARQ-RTT-TimerDL,以及图6中的定时器4可以是drx-RetransmissionTimerDL。
如图6所示,终端设备在下行预配置资源(configured DL assignment)上发送TB1的新传,使用的HARQ ID 0,终端设备完成PDSCH接收后启动定时器2。终端设备随后又先后接收到2条PDCCH指示TB1的重传,终端设备在每次收到指示TB1重传调度的PDCCH后都重启定时器2。
如图6所示,终端设备在下行预配置资源(configured DL assignment)上发送TB2的新传,使用的HARQ ID 1,终端设备在完成针对PDSCH接收的ACK反馈后启动HARQ ID 1对应的定时器3,并在该定时器3超时后启动HARQ ID 1对应的定时器4。
因此,在本申请实施例中,对于关闭了反馈功能的HARQ进程,终端设备在执行第一操作之后不再等待网络侧的数据包检测结果,而是,在执行第一操作之后启动或者重启DRX非激活定时器,保证了终端设备能够在动态调度上行传输、动态调度下行传输、在下行预配置资源上接收MAC PDU、或者在上行预配置资源上发送MAC PDU之后能够继续监听PDCCH,便于在NTN网络中终端设备能够对网络持续调度重传或新传的连续接收。
图7示出了根据本申请实施例的终端设备300的示意性框图。如图7所示,该终端设备300包括:处理单元310,
对于关闭了反馈功能的HARQ进程,该处理单元310在执行第一操作之后启动或者重启DRX非激活定时器,其中,
该第一操作包括以下中的至少一种:
接收下行动态调度信令、接收上行动态调度信令、在下行预配置资源上接收MAC PDU、以及在上行预配置资源上发送MAC PDU。
可选地,该处理单元310还用于在执行该第一操作之后不启动或者关闭该HARQ进程对应的第一定时器和/或第二定时器,该第一定时器的时长为DRX中的一个RTT,该第二定时器为DRX中针对重传的定时器,且该终端设备在该第一定时器和/或该第二定 时器运行期间不监听PDCCH。
可选地,该处理单元310具体用于:
在执行完该第一操作时,启动或者重启该DRX非激活定时器。
可选地,该处理单元310还用于确定关闭了反馈功能的该HARQ进程。
可选地,该终端设备300还包括:
通信单元320,用于接收第一配置信息,该第一配置信息用于指示部分或者全部HARQ进程关闭了反馈功能;
该处理单元310具体用于:
根据该第一配置信息确定关闭了反馈功能的该HARQ进程。
可选地,该下行动态调度信令用于调度下行新传或者下行重传。
可选地,该下行动态调度信令和第一DCI承载于一个PDCCH中,该第一DCI中的新数据指示NDI比特翻转用于指示该下行动态调度信令用于调度下行新传,以及该第一DCI中的NDI比特不翻转用于指示该下行动态调度信令用于调度下行重传。
可选地,该上行动态调度信令用于调度上行新传或者上行重传。
可选地,该上行动态调度信令和第二DCI承载于一个PDCCH中,该第二DCI中的NDI比特翻转用于指示该上行动态调度信令用于调度上行新传,以及该第二DCI中的NDI比特不翻转用于指示该上行动态调度信令用于调度上行重传。
可选地,该下行预配置资源上接收的MAC PDU为下行新传MAC PDU。
可选地,该终端设备300还包括:
通信单元320,用于接收第一PDCCH,该第一PDCCH包括第一下行调度信令和第三DCI,其中,该第一下行调度信令用于调度下行重传,该第三DCI中指示的HARQ进程为关闭了反馈功能的HARQ进程;
该处理单元310还用于在该通信单元接收到该第一PDCCH之后启动或者重启该DRX非激活定时器。
可选地,该处理单元310具体用于:
在该通信单元320接收完该第一PDCCH时,启动或者重启该DRX非激活定时器。
可选地,该上行预配置资源上发送的MAC PDU为上行新传MAC PDU。
可选地,该终端设备300还包括:
通信单元320,用于接收第二PDCCH,该第二PDCCH包括第一上行调度信令和第四DCI,其中,该第一上行调度信令用于调度上行重传,该第四DCI中指示的HARQ进程为关闭了反馈功能的HARQ进程;
该处理单元310还用于在该通信单元320接收到该第二PDCCH之后启动或者重启该DRX非激活定时器。
可选地,该处理单元310具体用于:
在该通信单元320接收完该第二PDCCH时,启动或者重启该DRX非激活定时器。
可选地,该终端设备300应用于NTN。
应理解,根据本申请实施例的终端设备300可对应于本申请方法实施例中的终端设备,并且终端设备300中的各个单元的上述和其它操作和/或功能分别为了实现图2所示方法200中终端设备的相应流程,为了简洁,在此不再赘述。
图8是本申请实施例提供的一种通信设备400示意性结构图。图8所示的通信设备400包括处理器410,处理器410可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图8所示,通信设备400还可以包括存储器420。其中,处理器410可以从存储器420中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器420可以是独立于处理器410的一个单独的器件,也可以集成在处理器410中。
可选地,如图8所示,通信设备400还可以包括收发器430,处理器410可以控制该收发器430与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器430可以包括发射机和接收机。收发器430还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备400具体可为本申请实施例的网络设备或者基站,并且该通信设备400可以实现本申请实施例的各个方法中由网络设备或者基站实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备400具体可为本申请实施例的移动终端/终端设备,并且该通信设备400可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
图9是本申请实施例的装置的示意性结构图。图9所示的装置500包括处理器510,处理器510可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图9所示,装置500还可以包括存储器520。其中,处理器510可以从存储器520中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器520可以是独立于处理器510的一个单独的器件,也可以集成在处理器510中。
可选地,该装置500还可以包括输入接口530。其中,处理器510可以控制该输入接口530与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该装置500还可以包括输出接口540。其中,处理器510可以控制该输出接口540与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该装置可应用于本申请实施例中的网络设备或者基站,并且该装置可以实现本申请实施例的各个方法中由网络设备或者基站实现的相应流程,为了简洁,在此不再赘述。
可选地,该装置可应用于本申请实施例中的移动终端/终端设备,并且该装置可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
可选地,本申请实施例提到的装置也可以是芯片。例如可以是系统级芯片,系统芯片,芯片系统或片上系统芯片等。
图10是本申请实施例提供的一种通信系统600的示意性框图。如图10所示,该通信系统600包括终端设备610和网络设备620。
其中,该终端设备610可以用于实现上述方法中由终端设备实现的相应的功能,以及该网络设备620可以用于实现上述方法中由网络设备或者基站实现的相应的功能为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其 硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本申请实施例中的网络设备或者基站,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备或者基站实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本申请实施例中的网络设备或者基站,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备或者基站实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序产品可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选的,该计算机程序可应用于本申请实施例中的网络设备或者基站,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备或者基站实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序可应用于本申请实施例中的移动终端/终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术 人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。针对这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (37)

  1. 一种无线通信方法,其特征在于,包括:
    对于关闭了反馈功能的混合自动重传请求HARQ进程,终端设备在执行第一操作之后启动或者重启非连续接收DRX非激活定时器,其中,
    所述第一操作包括以下中的至少一种:
    接收下行动态调度信令、接收上行动态调度信令、在下行预配置资源上接收媒体接入控制协议数据单元MAC PDU、以及在上行预配置资源上发送MAC PDU。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述终端设备在执行所述第一操作之后不启动或者关闭所述HARQ进程对应的第一定时器和/或第二定时器,所述第一定时器的时长为DRX中的一个往返传输时间RTT,所述第二定时器为DRX中针对重传的定时器,且所述终端设备在所述第一定时器和/或所述第二定时器运行期间不监听物理下行控制信道PDCCH。
  3. 根据权利要求1或2所述的方法,其特征在于,所述终端设备在执行第一操作之后启动或者重启DRX非激活定时器,包括:
    所述终端设备在执行完所述第一操作时,启动或者重启所述DRX非激活定时器。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备确定关闭了反馈功能的所述HARQ进程。
  5. 根据权利要求4所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收第一配置信息,所述第一配置信息用于指示部分或者全部HARQ进程关闭了反馈功能;
    所述终端设备确定关闭了反馈功能的所述HARQ进程,包括:
    所述终端设备根据所述第一配置信息确定关闭了反馈功能的所述HARQ进程。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述下行动态调度信令用于调度下行新传或者下行重传。
  7. 根据权利要求6所述的方法,其特征在于,所述下行动态调度信令和第一下行控制信息DCI承载于一个PDCCH中,所述第一DCI中的新数据指示NDI比特翻转用于指示所述下行动态调度信令用于调度下行新传,以及所述第一DCI中的NDI比特不翻转用于指示所述下行动态调度信令用于调度下行重传。
  8. 根据权利要求1至5中任一项所述的方法,其特征在于,所述上行动态调度信令用于调度上行新传或者上行重传。
  9. 根据权利要求8所述的方法,其特征在于,所述上行动态调度信令和第二DCI承载于一个PDCCH中,所述第二DCI中的NDI比特翻转用于指示所述上行动态调度信令用于调度上行新传,以及所述第二DCI中的NDI比特不翻转用于指示所述上行动态调度信令用于调度上行重传。
  10. 根据权利要求1至5中任一项所述的方法,其特征在于,所述下行预配置资源上接收的MAC PDU为下行新传MAC PDU。
  11. 根据权利要求10所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收第一PDCCH,所述第一PDCCH包括第一下行调度信令和第三DCI,其中,所述第一下行调度信令用于调度下行重传,所述第三DCI中指示的HARQ进程为关闭了反馈功能的HARQ进程;
    所述终端设备在接收到所述第一PDCCH之后启动或者重启所述DRX非激活定时器。
  12. 根据权利要求11所述的方法,其特征在于,所述终端设备在接收到所述第一PDCCH之后启动或者重启所述DRX非激活定时器,包括:
    所述终端设备在接收完所述第一PDCCH时,启动或者重启所述DRX非激活定时器。
  13. 根据权利要求1至5中任一项所述的方法,其特征在于,所述上行预配置资源 上发送的MAC PDU为上行新传MAC PDU。
  14. 根据权利要求13所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收第二PDCCH,所述第二PDCCH包括第一上行调度信令和第四DCI,其中,所述第一上行调度信令用于调度上行重传,所述第四DCI中指示的HARQ进程为关闭了反馈功能的HARQ进程;
    所述终端设备在接收到所述第二PDCCH之后启动或者重启所述DRX非激活定时器。
  15. 根据权利要求14所述的方法,其特征在于,所述终端设备在接收到所述第二PDCCH之后启动或者重启所述DRX非激活定时器,包括:
    所述终端设备在接收完所述第二PDCCH时,启动或者重启所述DRX非激活定时器。
  16. 根据权利要求1至15中任一项所述的方法,其特征在于,所述方法应用于非地面通信网络NTN。
  17. 一种终端设备,其特征在于,包括:处理单元,
    对于关闭了反馈功能的混合自动重传请求HARQ进程,所述处理单元在执行第一操作之后启动或者重启非连续接收DRX非激活定时器,其中,
    所述第一操作包括以下中的至少一种:
    接收下行动态调度信令、接收上行动态调度信令、在下行预配置资源上接收媒体接入控制协议数据单元MAC PDU、以及在上行预配置资源上发送MAC PDU。
  18. 根据权利要求17所述的终端设备,其特征在于,所述处理单元还用于在执行所述第一操作之后不启动或者关闭所述HARQ进程对应的第一定时器和/或第二定时器,所述第一定时器的时长为DRX中的一个往返传输时间RTT,所述第二定时器为DRX中针对重传的定时器,且所述终端设备在所述第一定时器和/或所述第二定时器运行期间不监听物理下行控制信道PDCCH。
  19. 根据权利要求17或18所述的终端设备,其特征在于,所述处理单元具体用于:
    在执行完所述第一操作时,启动或者重启所述DRX非激活定时器。
  20. 根据权利要求17至19中任一项所述的终端设备,其特征在于,所述处理单元还用于确定关闭了反馈功能的所述HARQ进程。
  21. 根据权利要求20所述的终端设备,其特征在于,所述终端设备还包括:
    通信单元,用于接收第一配置信息,所述第一配置信息用于指示部分或者全部HARQ进程关闭了反馈功能;
    所述处理单元具体用于:
    根据所述第一配置信息确定关闭了反馈功能的所述HARQ进程。
  22. 根据权利要求17至21中任一项所述的终端设备,其特征在于,所述下行动态调度信令用于调度下行新传或者下行重传。
  23. 根据权利要求22所述的终端设备,其特征在于,所述下行动态调度信令和第一下行控制信息DCI承载于一个PDCCH中,所述第一DCI中的新数据指示NDI比特翻转用于指示所述下行动态调度信令用于调度下行新传,以及所述第一DCI中的NDI比特不翻转用于指示所述下行动态调度信令用于调度下行重传。
  24. 根据权利要求17至21中任一项所述的终端设备,其特征在于,所述上行动态调度信令用于调度上行新传或者上行重传。
  25. 根据权利要求24所述的终端设备,其特征在于,所述上行动态调度信令和第二DCI承载于一个PDCCH中,所述第二DCI中的NDI比特翻转用于指示所述上行动态调度信令用于调度上行新传,以及所述第二DCI中的NDI比特不翻转用于指示所述上行动态调度信令用于调度上行重传。
  26. 根据权利要求17至21中任一项所述的终端设备,其特征在于,所述下行预配置资源上接收的MAC PDU为下行新传MAC PDU。
  27. 根据权利要求26所述的终端设备,其特征在于,所述终端设备还包括:
    通信单元,用于接收第一PDCCH,所述第一PDCCH包括第一下行调度信令和第三DCI,其中,所述第一下行调度信令用于调度下行重传,所述第三DCI中指示的HARQ进程为关闭了反馈功能的HARQ进程;
    所述处理单元还用于在所述通信单元接收到所述第一PDCCH之后启动或者重启所述DRX非激活定时器。
  28. 根据权利要求27所述的终端设备,其特征在于,所述处理单元具体用于:
    在所述通信单元接收完所述第一PDCCH时,启动或者重启所述DRX非激活定时器。
  29. 根据权利要求17至21中任一项所述的终端设备,其特征在于,所述上行预配置资源上发送的MAC PDU为上行新传MAC PDU。
  30. 根据权利要求29所述的终端设备,其特征在于,所述终端设备还包括:
    通信单元,用于接收第二PDCCH,所述第二PDCCH包括第一上行调度信令和第四DCI,其中,所述第一上行调度信令用于调度上行重传,所述第四DCI中指示的HARQ进程为关闭了反馈功能的HARQ进程;
    所述处理单元还用于在所述通信单元接收到所述第二PDCCH之后启动或者重启所述DRX非激活定时器。
  31. 根据权利要求30所述的终端设备,其特征在于,所述处理单元具体用于:
    在所述通信单元接收完所述第二PDCCH时,启动或者重启所述DRX非激活定时器。
  32. 根据权利要求17至31中任一项所述的终端设备,其特征在于,所述终端设备应用于非地面通信网络NTN。
  33. 一种终端设备,其特征在于,包括:处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至16中任一项所述的方法。
  34. 一种装置,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述装置的设备执行如权利要求1至16中任一项所述的方法。
  35. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至16中任一项所述的方法。
  36. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至16中任一项所述的方法。
  37. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1至16中任一项所述的方法。
PCT/CN2019/107645 2019-09-25 2019-09-25 无线通信方法和终端设备 WO2021056226A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980095407.8A CN113728697B (zh) 2019-09-25 2019-09-25 无线通信方法和终端设备
PCT/CN2019/107645 WO2021056226A1 (zh) 2019-09-25 2019-09-25 无线通信方法和终端设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/107645 WO2021056226A1 (zh) 2019-09-25 2019-09-25 无线通信方法和终端设备

Publications (1)

Publication Number Publication Date
WO2021056226A1 true WO2021056226A1 (zh) 2021-04-01

Family

ID=75165567

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/107645 WO2021056226A1 (zh) 2019-09-25 2019-09-25 无线通信方法和终端设备

Country Status (2)

Country Link
CN (1) CN113728697B (zh)
WO (1) WO2021056226A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113630218A (zh) * 2021-08-12 2021-11-09 惠州Tcl云创科技有限公司 一种数据传输处理方法、装置、移动终端及存储介质
WO2023060597A1 (en) * 2021-10-15 2023-04-20 Nec Corporation Method, device and computer readable medium for communication
CN116458267A (zh) * 2021-04-13 2023-07-18 Oppo广东移动通信有限公司 非连续接收方法及相关装置
CN117858158A (zh) * 2024-03-07 2024-04-09 上海移芯通信科技股份有限公司 一种基于nb-iot的非地面网络通讯方法及通讯终端

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023123459A1 (zh) * 2021-12-31 2023-07-06 北京小米移动软件有限公司 信息接收、传输方法和装置、通信装置和存储介质
WO2024092576A1 (zh) * 2022-11-02 2024-05-10 北京小米移动软件有限公司 一种定时器的启动方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009136830A1 (en) * 2008-05-07 2009-11-12 Telefonaktiebolaget L M Ericsson (Publ) Discontinuous reception (drx) timer triggered with the transmission of a buffer status report (bsr)
CN102595624A (zh) * 2011-01-17 2012-07-18 华为技术有限公司 基于组的调度方法、ue及网络设备
WO2017119729A1 (en) * 2016-01-05 2017-07-13 Lg Electronics Inc. Method for performing drx operation in wireless communication system and a device therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009136830A1 (en) * 2008-05-07 2009-11-12 Telefonaktiebolaget L M Ericsson (Publ) Discontinuous reception (drx) timer triggered with the transmission of a buffer status report (bsr)
CN102595624A (zh) * 2011-01-17 2012-07-18 华为技术有限公司 基于组的调度方法、ue及网络设备
WO2017119729A1 (en) * 2016-01-05 2017-07-13 Lg Electronics Inc. Method for performing drx operation in wireless communication system and a device therefor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZTE CORPORATION, SANECHIPS: "Impact of HARQ on DRX", 3GPP DRAFT; R2-1906117-IMPACT OF HARQ ON DRX, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Reno, USA; 20190513 - 20190517, 13 May 2019 (2019-05-13), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051729594 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116458267A (zh) * 2021-04-13 2023-07-18 Oppo广东移动通信有限公司 非连续接收方法及相关装置
CN113630218A (zh) * 2021-08-12 2021-11-09 惠州Tcl云创科技有限公司 一种数据传输处理方法、装置、移动终端及存储介质
CN113630218B (zh) * 2021-08-12 2022-10-25 惠州Tcl云创科技有限公司 一种数据传输处理方法、装置、移动终端及存储介质
WO2023060597A1 (en) * 2021-10-15 2023-04-20 Nec Corporation Method, device and computer readable medium for communication
CN117858158A (zh) * 2024-03-07 2024-04-09 上海移芯通信科技股份有限公司 一种基于nb-iot的非地面网络通讯方法及通讯终端
CN117858158B (zh) * 2024-03-07 2024-05-10 上海移芯通信科技股份有限公司 一种基于nb-iot的非地面网络通讯方法及通讯终端

Also Published As

Publication number Publication date
CN113728697A (zh) 2021-11-30
CN113728697B (zh) 2024-03-08

Similar Documents

Publication Publication Date Title
WO2021056226A1 (zh) 无线通信方法和终端设备
US20220124645A1 (en) Wireless communication method, terminal device, and network device
US20230224091A1 (en) Wireless communication method and device
EP4181594A1 (en) Method for feeding back hybrid automatic repeat request acknowledgement (harq-ack) and terminal device
US20230337320A1 (en) Wireless communication method and terminal device
US20230239961A1 (en) Sidelink transmission method and terminal
WO2023056604A1 (zh) 无线通信的方法、终端设备和网络设备
WO2022120747A1 (zh) 无线通信的方法和终端设备
WO2022205095A1 (zh) 无线通信的方法及终端设备
EP4199625A1 (en) Channel transmission method, terminal device and network device
WO2021227030A1 (zh) 一种非连续接收的处理方法、电子设备及存储介质
WO2021068224A1 (zh) 无线通信方法、终端设备和网络设备
WO2022233031A1 (zh) 无线通信的方法和终端设备
WO2021087903A1 (zh) 无线通信方法及设备、终端设备和网络设备
WO2023050335A1 (zh) 无线通信的方法、终端设备和网络设备
WO2021227050A1 (zh) 一种信息处理方法、终端设备及存储介质
US20230269732A1 (en) Wireless communication method and terminal device
WO2024098341A1 (zh) 无线通信的方法和终端设备
WO2023050336A1 (zh) 无线通信的方法、终端设备和网络设备
WO2022236965A1 (zh) 无线通信的方法、终端设备和网络设备
WO2021217615A1 (zh) 无线通信方法、终端设备和网络设备
EP4340432A1 (en) Method for determining drx activation period and terminal device
WO2022077481A1 (zh) 一种信道传输方法及其装置
CN116235439A (zh) 信息处理方法、终端设备和网络设备
CN116530160A (zh) 终端设备切换搜索空间集分组sssg的方法、终端设备和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19946791

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19946791

Country of ref document: EP

Kind code of ref document: A1