WO2024098341A1 - 无线通信的方法和终端设备 - Google Patents

无线通信的方法和终端设备 Download PDF

Info

Publication number
WO2024098341A1
WO2024098341A1 PCT/CN2022/131209 CN2022131209W WO2024098341A1 WO 2024098341 A1 WO2024098341 A1 WO 2024098341A1 CN 2022131209 W CN2022131209 W CN 2022131209W WO 2024098341 A1 WO2024098341 A1 WO 2024098341A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
harq
harq process
drx
type
Prior art date
Application number
PCT/CN2022/131209
Other languages
English (en)
French (fr)
Inventor
李海涛
胡奕
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2022/131209 priority Critical patent/WO2024098341A1/zh
Publication of WO2024098341A1 publication Critical patent/WO2024098341A1/zh

Links

Images

Definitions

  • the embodiments of the present application relate to the field of communications, and specifically to a method and terminal device for wireless communications.
  • the concept of discontinuous reception is proposed. If the terminal device is configured with DRX, the terminal device needs to monitor the PDCCH during the DRX active time (Active Time). During the operation of the DRX inactivity timer (drx-InactivityTimer), the terminal device is in the Active Time.
  • the network device can configure the HARQ process to disable HARQ feedback or enable HARQ feedback.
  • HARQ hybrid automatic repeat request
  • the network device can configure the HARQ process used by some of the multiple TBs to enable HARQ feedback mode, and configure the HARQ process used by other TBs in the multiple TBs to disable HARQ feedback mode.
  • how the terminal device starts or restarts the drx-InactivityTimer to select the appropriate time to monitor the PDCCH is an urgent problem to be solved.
  • the embodiments of the present application provide a method and terminal device for wireless communication, which are helpful for the terminal device to select an appropriate time to monitor the PDCCH.
  • a method for wireless communication including: a terminal device receives a physical downlink control channel PDCCH, the PDCCH is used to schedule the transmission of multiple transmission blocks TB, wherein the multiple TBs are transmitted using multiple hybrid automatic retransmission request HARQ processes, wherein the multiple HARQ processes include at least one first type HARQ process and at least one second type HARQ process, wherein the first type HARQ process is configured to disable a downlink HARQ feedback mode, and the second type HARQ process is configured to enable a downlink HARQ feedback mode; and according to the time when HARQ feedback is completed for the multiple TBs, starting or restarting a discontinuous reception DRX inactivation timer and/or a DRX retransmission timer corresponding to the at least one first type HARQ process.
  • a terminal device which is used to execute the method in the first aspect or any possible implementation of the first aspect.
  • the terminal device includes a unit for executing the method in the first aspect or any possible implementation of the first aspect.
  • a terminal device comprising: a processor and a memory.
  • the memory is used to store a computer program, and the processor is used to call and run the computer program stored in the memory to execute the method in the first aspect or its implementation manners.
  • a chip is provided for implementing the method in the first aspect or its various implementations.
  • the chip includes: a processor, which is used to call and run a computer program from a memory, so that a device equipped with the chip executes the method in the above-mentioned first aspect or its various implementation modes.
  • a computer-readable storage medium for storing a computer program, wherein the computer program enables a computer to execute the method in the above-mentioned first aspect or its various implementations.
  • a computer program product comprising computer program instructions, which enable a computer to execute the method in the above-mentioned first aspect or its various implementations.
  • a computer program which, when executed on a computer, enables the computer to execute the method in the first aspect or its various implementations.
  • the terminal device can start or restart the drx-InactivityTimer and/or the drx-RetransmissionTimer corresponding to the HARQ process configured as the disabled DL HARQ feedback mode according to the time for completing the HARQ feedback for the multiple TBs, that is, determine the monitoring timing of the PDCCH, which is beneficial to avoid resource waste caused by the terminal device monitoring the PDCCH before completing the HARQ feedback for the multiple TBs.
  • 1 to 3 are schematic diagrams of application scenarios provided by embodiments of the present application.
  • FIG4 and FIG5 are network architecture diagrams of NTN based on transparent data satellite and regenerative data satellite respectively.
  • FIG6 is a schematic diagram of a wireless communication method provided in an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a wireless communication method according to an embodiment of the present application.
  • FIG8 is a schematic diagram of a wireless communication method according to another embodiment of the present application.
  • FIG. 9 is a schematic block diagram of a terminal device provided in an embodiment of the present application.
  • FIG10 is a schematic block diagram of a communication device provided in another embodiment of the present application.
  • FIG. 11 is a schematic block diagram of a chip provided in an embodiment of the present application.
  • FIG12 is a schematic block diagram of a communication system provided in an embodiment of the present application.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Advanced long term evolution
  • NR New Radio
  • LTE-based access to unlicensed spectrum (LTE-U) systems LTE-based access to unlicensed spectrum (LTE-U) systems
  • NR-based access to unlicensed spectrum (NR-U) systems NTN-based access to unlicensed spectrum (NR-U) systems
  • NTN non-terrestrial communication networks
  • UMTS universal mobile telecommunication systems
  • WLAN wireless local area networks
  • WiFi wireless fidelity
  • 5G fifth-generation communication
  • D2D Device to Device
  • M2M Machine to Machine
  • MTC Machine Type Communication
  • V2V vehicle to vehicle
  • V2X vehicle to everything
  • CA carrier aggregation
  • DC dual connectivity
  • SA standalone
  • the communication system in the embodiment of the present application can be applied to an unlicensed spectrum, where the unlicensed spectrum can also be considered as a shared spectrum; or, the communication system in the embodiment of the present application can also be applied to an authorized spectrum, where the authorized spectrum can also be considered as an unshared spectrum.
  • NTN non-terrestrial communication networks
  • TN terrestrial communication networks
  • the NTN system includes but is not limited to the New Radio NTN (NR-NTN) system and the Internet of Things NTN (IoT-NTN) system.
  • the IoT-NTN system may include the Narrow Band Internet of Things over NTN (NB-IoT-NTN) system and the enhanced Machine Type Communication over NTN (eMTC-NTN) system.
  • NR-NTN New Radio NTN
  • IoT-NTN Internet of Things NTN
  • NB-IoT-NTN Narrow Band Internet of Things over NTN
  • eMTC-NTN enhanced Machine Type Communication over NTN
  • the embodiments of the present application describe various embodiments in conjunction with network equipment and terminal equipment, wherein the terminal equipment may also be referred to as user equipment (UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication equipment, user agent or user device, etc.
  • UE user equipment
  • the terminal device can be a station (STATION, ST) in a WLAN, a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Assistant (PDA) device, a handheld device with wireless communication function, a computing device or other processing device connected to a wireless modem, a vehicle-mounted device, a wearable device, a terminal device in the next generation communication system such as the NR network, or a terminal device in the future evolved Public Land Mobile Network (PLMN) network, etc.
  • STATION, ST in a WLAN
  • a cellular phone a cordless phone
  • Session Initiation Protocol (SIP) phone Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the terminal device can be deployed on land, including indoors or outdoors, handheld, wearable or vehicle-mounted; it can also be deployed on the water surface (such as ships, etc.); it can also be deployed in the air (for example, on airplanes, balloons and satellites, etc.).
  • the terminal device may be a mobile phone, a tablet computer, a computer with wireless transceiver function, a virtual reality (VR) terminal device, an augmented reality (AR) terminal device, a wireless terminal device in industrial control, a wireless terminal device in self-driving, a wireless terminal device in remote medical, a wireless terminal device in smart grid, a wireless terminal device in transportation safety, a wireless terminal device in smart city, or a wireless terminal device in smart home, etc.
  • VR virtual reality
  • AR augmented reality
  • the terminal device involved in the embodiments of the present application may also be referred to as a terminal, a user equipment (UE), an access terminal device, a vehicle-mounted terminal, an industrial control terminal, a UE unit, a UE station, a mobile station, a mobile station, a remote station, a remote terminal device, a mobile device, a UE terminal device, a wireless communication device, a UE agent, or a UE device, etc.
  • the terminal device may also be fixed or mobile.
  • the terminal device may also be a wearable device.
  • Wearable devices may also be referred to as wearable smart devices, which are a general term for wearable devices that are intelligently designed and developed using wearable technology for daily wear, such as glasses, gloves, watches, clothing, and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothes or accessories. Wearable devices are not only hardware devices, but also powerful functions achieved through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-sized, and fully or partially independent of smartphones, such as smart watches or smart glasses, as well as devices that only focus on a certain type of application function and need to be used in conjunction with other devices such as smartphones, such as various types of smart bracelets and smart jewelry for vital sign monitoring.
  • the network device may be a device for communicating with a mobile device.
  • the network device may be an access point (AP) in WLAN, a base station (BTS) in GSM or CDMA, a base station (NodeB, NB) in WCDMA, an evolved base station (Evolutional Node B, eNB or eNodeB) in LTE, or a relay station or access point, or a vehicle-mounted device, a wearable device, and a network device (gNB) in an NR network, or a network device in a future evolved PLMN network, or a network device in an NTN network, etc.
  • the network device may have a mobile feature, for example, the network device may be a mobile device.
  • the network device may be a satellite or a balloon station.
  • the satellite may be a low earth orbit (LEO) satellite, a medium earth orbit (MEO) satellite, a geostationary earth orbit (GEO) satellite, a high elliptical orbit (HEO) satellite, etc.
  • the network device may also be a base station set up in a location such as land or water.
  • a network device can provide services for a cell, and a terminal device communicates with the network device through transmission resources used by the cell (for example, frequency domain resources, or spectrum resources).
  • the cell can be a cell corresponding to a network device (for example, a base station), and the cell can belong to a macro base station or a base station corresponding to a small cell.
  • the small cells here may include: metro cells, micro cells, pico cells, femto cells, etc. These small cells have the characteristics of small coverage and low transmission power, and are suitable for providing high-speed data transmission services.
  • FIG1 is a schematic diagram of the architecture of a communication system provided in an embodiment of the present application.
  • the communication system 100 may include a network device 110, and the network device 110 may be a device that communicates with a terminal device 120 (or referred to as a communication terminal, terminal).
  • the network device 110 may provide communication coverage for a specific geographical area, and may communicate with terminal devices located in the coverage area.
  • FIG1 exemplarily shows a network device and two terminal devices.
  • the communication system 100 may include multiple network devices and each network device may include other number of terminal devices within its coverage area, which is not limited in the embodiments of the present application.
  • FIG2 is a schematic diagram of the architecture of another communication system provided in an embodiment of the present application.
  • FIG2 which includes a terminal device 1101 and a satellite 1102, and wireless communication can be performed between the terminal device 1101 and the satellite 1102.
  • the network formed between the terminal device 1101 and the satellite 1102 can also be referred to as NTN.
  • the satellite 1102 can have the function of a base station, and the terminal device 1101 and the satellite 1102 can communicate directly. Under the system architecture, the satellite 1102 can be referred to as a network device.
  • a plurality of network devices 1102 may be included in the communication system, and each network device 1102 may include other number of terminal devices within its coverage range, which is not limited in the embodiments of the present application.
  • FIG3 is a schematic diagram of the architecture of another communication system provided in an embodiment of the present application.
  • a terminal device 1201, a satellite 1202 and a base station 1203 are included. Wireless communication can be performed between the terminal device 1201 and the satellite 1202, and communication can be performed between the satellite 1202 and the base station 1203.
  • the network formed between the terminal device 1201, the satellite 1202 and the base station 1203 can also be referred to as NTN.
  • the satellite 1202 may not have the function of a base station, and the communication between the terminal device 1201 and the base station 1203 needs to be transferred through the satellite 1202.
  • the base station 1203 can be referred to as a network device.
  • a plurality of network devices 1203 may be included in the communication system, and other number of terminal devices may be included within the coverage range of each network device 1203, which is not limited in the embodiment of the present application.
  • Figures 1 to 3 are only examples of the system to which the present application is applicable.
  • the method shown in the embodiment of the present application can also be applied to other systems, such as 5G communication systems, LTE communication systems, etc.
  • the embodiment of the present application does not make specific limitations on this.
  • the wireless communication system shown in Figures 1 to 3 may also include other network entities such as a mobility management entity (Mobility Management Entity, MME), an access and mobility management function (Access and Mobility Management Function, AMF), etc., but the embodiments of the present application are not limited to this.
  • MME Mobility Management Entity
  • AMF Access and Mobility Management Function
  • the device with communication function in the network/system in the embodiment of the present application can be called a communication device.
  • the communication device may include a network device 110 and a terminal device 120 with communication function, and the network device 110 and the terminal device 120 may be the specific devices described above, which will not be repeated here; the communication device may also include other devices in the communication system 100, such as other network entities such as a network controller and a mobile management entity, which is not limited in the embodiment of the present application.
  • the "indication" mentioned in the embodiments of the present application can be a direct indication, an indirect indication, or an indication of an association relationship.
  • a indicates B which can mean that A directly indicates B, for example, B can be obtained through A; it can also mean that A indirectly indicates B, for example, A indicates C, and B can be obtained through C; it can also mean that A and B have an association relationship.
  • corresponding may indicate a direct or indirect correspondence between two items, or an association relationship between the two items, or a relationship of indication and being indicated, configuration and being configured, etc.
  • pre-definition can be implemented by pre-saving corresponding codes, tables or other methods that can be used to indicate relevant information in a device (for example, including a terminal device and a network device), and the present application does not limit the specific implementation method.
  • pre-definition can refer to what is defined in the protocol.
  • the "protocol” may refer to a standard protocol in the communication field, for example, it may include an LTE protocol, an NR protocol, and related protocols used in future communication systems, and the present application does not limit this.
  • FIG. 4 and FIG. 5 show two NTN network architectures, wherein FIG. 4 is an NTN network architecture based on transparent forwarding, and FIG. 5 is an NTN network architecture based on regenerative forwarding.
  • the NTN network may include the following network elements: one or more gateways, which are used to connect satellites and ground public networks.
  • the gateway and the satellite communicate through a feeder link, and the satellite and the terminal can communicate through a service link.
  • the gateway and the satellite communicate through a feeder link, and the satellite and the terminal can communicate through a service link.
  • satellites communicate with each other through an interstar link, the gateway and the satellite communicate through a feeder link, and the satellite and the terminal can communicate through a service link.
  • the satellite In transparent forwarding, the satellite only provides the functions of wireless frequency filtering, frequency conversion and amplification. It only provides transparent forwarding of signals and does not change the waveform signal it forwards.
  • the satellite can provide not only the functions of wireless frequency filtering, frequency conversion and amplification, but also the functions of demodulation/decoding, routing/conversion, encoding/modulation. It has some or all functions of a base station.
  • the concept of discontinuous reception is proposed for the purpose of terminal power saving.
  • the network device can configure the terminal device to wake up (DRX ON) at a time predicted by the network and monitor the physical downlink control channel (PDCCH).
  • the network can also configure the terminal device to sleep (DRX OFF) at a time predicted by the network, that is, the terminal device does not need to monitor PDCCH. Therefore, if the network device has data to transmit to the terminal device, the network device can schedule the terminal device during the time when the terminal device is in DRX ON, and during the DRC OFF time, the terminal power consumption can be reduced because the radio frequency is turned off.
  • the network device can configure the DRX function for the terminal device so that the terminal device monitors the PDCCH non-continuously to achieve the purpose of power saving.
  • each MAC entity may correspond to a DRX configuration.
  • the DRX configuration may include at least one of the following:
  • DRX onDuration Timer (drx-onDurationTimer): The duration that the terminal device wakes up at the beginning of a DRX Cycle.
  • DRX slot offset (drx-SlotOffset): The delay for the terminal device to start drx-onDurationTimer.
  • DRX inactivity timer (drx-InactivityTimer): When the terminal device receives a PDCCH indicating an initial uplink transmission or an initial downlink transmission, the terminal device continues to monitor the PDCCH for a certain duration.
  • DRX downlink retransmission timer (drx-RetransmissionTimerDL): The maximum duration that the terminal device monitors the PDCCH indicating the downlink retransmission schedule.
  • drx-RetransmissionTimerDL The maximum duration that the terminal device monitors the PDCCH indicating the downlink retransmission schedule.
  • Each downlink HARQ process except the broadcast Hybrid Automatic Repeat reQuest (HARQ) process corresponds to one drx-RetransmissionTimerDL.
  • DRX uplink retransmission timer (drx-RetransmissionTimerUL): The maximum duration for the terminal device to monitor the PDCCH indicating uplink retransmission scheduling.
  • Each uplink HARQ process corresponds to one drx-RetransmissionTimerUL.
  • Long DRX cycle start offset (longDRX-CycleStartOffset): used to configure the long DRX cycle, and the subframe offset at which the long DRX cycle and the short DRX cycle start.
  • Short DRX cycle (drx-ShortCycle): Short DRX cycle, which is an optional configuration.
  • Short cycle timer (drx-ShortCycleTimer): The duration that the terminal device is in a short DRX cycle (and does not receive any PDCCH), which is an optional configuration.
  • HARQ RTT Timer The minimum waiting time required for a terminal device to receive the PDCCH indicating downlink scheduling.
  • RTT Round Trip Time
  • HARQ RTT Timer The minimum waiting time required for a terminal device to receive the PDCCH indicating downlink scheduling.
  • Each downlink HARQ process except the broadcast HARQ process corresponds to a HARQ RTT Timer.
  • Short TTI DRX retransmission timer (drx-RetransmissionTimerShortTTI): The length of the downlink retransmission timer when short TTI is configured.
  • Short TTI DRX uplink retransmission timer (drx-ULRetransmissionTimerShortTTI): The length of the uplink retransmission timer when short TTI is configured.
  • Uplink Hybrid Automatic Repeat Request (HARQ) Round Trip Time (RTT) Timer (UL HARQ RTT Timer): the minimum waiting time that the terminal device expects to receive the PDCCH indicating uplink scheduling.
  • RTT Round Trip Time
  • Each uplink HARQ process corresponds to one UL HARQ RTT Timer.
  • DRX Active Time includes the following situations:
  • drx-onDurationTimer Any of drx-onDurationTimer, drx-InactivityTimer, drx-RetransmissionTimerDL, drx-RetransmissionTimerShortTTI, drx-RetransmissionTimerUL, drx-ULRetransmissionTimerShortTTI and random access contention resolution timer (ra-ContentionResolutionTimer) is running;
  • the terminal device sends a Scheduling Request (SR) on PUCCH/Short PUCCH (SPUCCH) and is in a pending state;
  • SR Scheduling Request
  • the terminal device has not received an initial transmission of a PDCCH indication scrambled by a cell radio network temporary identifier (Cell RNTI, C-RNTI) after successfully receiving a random access response;
  • Cell RNTI cell radio network temporary identifier
  • the UL grant can be received, and there is data in the HARQ buffer of the asynchronous HARQ process;
  • the machine type of communication (MTC) PDCCH uplink HARQ-ACK feedback configuration (mpdcch-UL-HARQ-ACK-FeedbackConfig) is configured and repeated transmission within a bundle is currently in progress.
  • the terminal device uses a long DRX cycle.
  • DRX command media access control control element DRX Media Access Control Command Control Element, DRX Command MAC CE
  • the terminal device uses a short DRX cycle.
  • the terminal device can decide when to start the drx-onDurationTimer according to whether it is currently in a long DRX cycle or a short DRX cycle.
  • the specific provisions are as follows:
  • the terminal device is a Narrow Band Internet of Things (NB-IoT) terminal, then:
  • modulo represents the modulo operation.
  • the conditions for the terminal device to start or restart the HARQ RTT Timer are:
  • the terminal device receives a PDCCH indicating a downlink transmission, or if the terminal device has a configured downlink grant in the subframe, then:
  • the terminal device is an NB-IoT terminal or an enhanced Machine Type Communication (eMTC) terminal, then:
  • the terminal device If PDCCH indicates that multiple transport blocks (TB) are scheduled for transmission, the terminal device starts the HARQ RTT Timer corresponding to all downlink HARQ processes used by the PDSCH of the multiple TBs when receiving the last repeated transmission of the Physical Downlink Shared Channel (PDSCH) of the last TB of the multiple TBs in the subframe.
  • PDSCH Physical Downlink Shared Channel
  • the terminal device starts the HARQ RTT Timer corresponding to the downlink HARQ process used by the PDSCH when receiving the subframe where the last repeated transmission of the PDSCH is located.
  • the terminal device starts the HARQ RTT Timer corresponding to the downlink HARQ process used by the PDSCH.
  • the terminal device starts the drx-RetransmissionTimer corresponding to the downlink HARQ process.
  • the HARQ RTT Timer times out, for the NB-IoT terminal: if PDCCH schedules multiple TBs, when the HARQ RTT Timers corresponding to the HARQ processes used by the multiple TBs all time out, start or restart the drx-InactivityTimer; otherwise, if PDCCH schedules a single TB, when the HARQ RTT Timer corresponding to the HARQ process used by the TB times out, start or restart the drx-InactivityTimer.
  • the conditions for the terminal device to start or restart the UL HARQ RTT Timer are:
  • the terminal device receives a PDCCH indicating an uplink transmission using an asynchronous HARQ process, or if the terminal device has a configured uplink grant for an asynchronous HARQ process in the subframe, or the terminal device receives a PDCCH indicating an uplink transmission using an automatic HARQ process, then:
  • the terminal device If PDCCH indicates that the transmission of multiple TBs is scheduled, the terminal device starts the UL HARQ RTT Timer corresponding to all uplink HARQ processes used by the Physical Uplink Shared Channel (PUSCH) of the multiple TBs in the subframe where the last repeated transmission of PUSCH of the last TB of the multiple TBs is completed.
  • PUSCH Physical Uplink Shared Channel
  • the UE starts the UL HARQ RTT Timer corresponding to the uplink HARQ process used by the PUSCH in the subframe where the last repeated transmission of the PUSCH is completed.
  • the terminal device If the UL HARQ RTT Timer corresponding to an uplink HARQ process times out, the terminal device starts the drx-ULRetransmissionTimer corresponding to the uplink HARQ process.
  • the drx-InactivityTimer is started or restarted; otherwise, if the PDCCH schedules a single TB, then when the UL HARQ RTT Timer corresponding to the HARQ process used by the TB times out, the drx-InactivityTimer is started or restarted.
  • HARQ RTT Timer UL HARQ RTT Timer
  • the duration of the HARQ RTT Timer is 7+N (in subframes), where N is the physical uplink control channel (PUCCH) repetition factor used.
  • the HARQ RTT Timer is 3+k+N, where k is the time interval between the last repetition of the PDSCH and the first repetition of the corresponding HARQ feedback, and N is the PUCCH repetition factor used.
  • the duration of the HARQ RTT Timer is 7+m*N, where N is the PUCCH repetition factor used and m is the number of scheduled TBs indicated by the PDCCH.
  • the duration of HARQ RTT Timer is k+3+N+ ⁇ PDCCH (unit: subframe), where k is the time interval between the last subframe of PDSCH transmission and the first subframe of the corresponding HARQ feedback transmission, N is the transmission duration of the corresponding HARQ feedback, and ⁇ PDCCH is the time interval from the next subframe of the last subframe of the corresponding HARQ feedback plus 3 subframes to the first subframe of the next PDCCH opportunity.
  • the duration of the HARQ RTT Timer is k+2*N+1+ ⁇ PDCCH (unit: subframe), where k is the time interval between the last subframe of PDSCH transmission and the first subframe of the corresponding HARQ feedback transmission, N is the transmission duration of the corresponding HARQ feedback, and ⁇ PDCCH is the time interval from the next subframe of the last subframe of the corresponding HARQ feedback plus 1 subframe to the first subframe of the next PDCCH opportunity.
  • the duration of the UL HARQ RTT Timer is 4 subframes; for TDD, the duration of the UL HARQ RTT Timer is k ULHARQRTT subframes, where k ULHARQRTT is k PHICH .
  • the duration of UL HARQ RTT Timer is 4+ ⁇ PDCCH subframes, where ⁇ PDCCH is the time interval from the next subframe of the last subframe of PUSCH transmission plus 3 subframes to the first subframe of the next PDCCH opportunity.
  • the duration of UL HARQ RTT Timer is 1+ ⁇ PDCCH subframes, where ⁇ PDCCH is the time interval from the next subframe after the last subframe of PUSCH transmission plus 1 subframe to the first subframe of the next PDCCH timing.
  • the signal transmission delay between the UE and the base station in the NTN system is greatly increased.
  • it is considered to add an RTT offset to the definition of HARQ RTT Timer and UL RTT Timer on the basis of the above formula, and stipulate that in the TN system, the RTT offset value is 0, and in the NTN system, the RTT offset value is the RTT between the UE and the base station.
  • the network device can configure the HARQ process to disable HARQ feedback or enable HARQ feedback.
  • the network device can configure some HARQ processes of the UE to enable HARQ feedback mode, and configure other HARQ processes of the UE to disable HARQ feedback mode.
  • the definition of the above timer only considers the case of enabling HACK feedback. Therefore, when the network device schedules the transmission of multiple TBs, and the HARQ processes used by the multiple TBs include both HARQ processes that enable HACK feedback and HARQ processes that disable HARQ feedback, how the terminal device chooses the appropriate time to monitor the PDCCH is an urgent problem to be solved.
  • FIG6 is a schematic flow chart of a wireless communication method 200 provided in an embodiment of the present application. As shown in FIG6 , the method 200 may include at least part of the following contents:
  • the terminal device receives a physical downlink control channel PDCCH, where the PDCCH is used to schedule transmission of multiple transport blocks TB, where the multiple TBs are transmitted using multiple hybrid automatic retransmission request HARQ processes, where the multiple HARQ processes include at least one first type HARQ process and at least one second type HARQ process, where the first type HARQ process is configured to disable a downlink hybrid automatic retransmission request HARQ feedback mode, and the second type HARQ process is configured to enable a downlink HARQ feedback mode;
  • S220 start or restart a discontinuous reception DRX inactivation timer and/or a DRX retransmission timer corresponding to the at least one first type HARQ process according to the time when the HARQ feedback is completed for the multiple TBs.
  • the terminal device is a terminal device in an NTN.
  • the NTN may be an Internet of Things non-terrestrial communication network (IoT-NTN) system.
  • IoT-NTN Internet of Things non-terrestrial communication network
  • NB-IoT-NTN Narrow Band Internet of Things over NTN
  • eMTC-NTN enhanced Machine Type Communication over NTN
  • the terminal device is a NB-IoT terminal or an eMTC terminal.
  • the terminal device is in a connected state.
  • the HARQ feedback mode may be replaced by a HARQ-ACK feedback mode, and the HARQ feedback may be replaced by a HARQ-ACK feedback.
  • the multiple TBs are transmitted via PDSCH, for example, each TB is transmitted via a corresponding PDSCH.
  • the first type HARQ process and the second type HARQ process are downlink HARQ processes.
  • the first type of HARQ process is configured to disable a downlink HARQ feedback mode, or in other words, is configured to disable downlink HARQ feedback.
  • the first type of HARQ process is a HARQ process with a disabled HARQ feedback mode (or in other words, a HARQ feedback disabled) (HARQ process with a disabled DL HARQ feedback mode).
  • the second type of HARQ process is configured to enable a downlink HARQ feedback mode, or in other words, is configured to enable downlink HARQ feedback.
  • the second type of HARQ process is a HARQ process with HARQ feedback mode enabled (or in other words, HARQ feedback enabled) (HARQ process with DL HARQ feedback mode enabled).
  • the terminal device For TBs transmitted using the first type of HARQ process, the terminal device does not need to perform HARQ feedback.
  • the terminal device For TBs transmitted using the second type of HARQ process, the terminal device needs to perform HARQ feedback.
  • the terminal device can feedback an acknowledgement (ACK) or a negative acknowledgement (NACK) based on the decoding result of the TB.
  • ACK acknowledgement
  • NACK negative acknowledgement
  • some of the multiple TBs are transmitted using the first type of HARQ process, and the other TBs are transmitted using the second type of HARQ process. That is, there are TBs that require HARQ feedback (referred to as the first type of TBs) and TBs that do not require HARQ feedback (referred to as the second type of TBs) among the multiple TBs.
  • the terminal device for the transmission of multiple TBs scheduled by a PDCCH, when the terminal device needs to perform HARQ feedback on some of the multiple TBs, the terminal device needs to perform HARQ feedback on the part of the TBs after completing the reception of the multiple TBs.
  • the terminal device cannot perform downlink reception. Therefore, the terminal device can determine the timing to start monitoring the PDCCH based on the time when the HARQ feedback is completed for the multiple TBs, thereby avoiding the waste of resources caused by the terminal device monitoring the PDCCH before completing the HARQ feedback for the multiple TBs.
  • the drx-InactivityTimer and/or the drx-RetransmissionTimer corresponding to at least one first type HARQ process.
  • the terminal device monitors the PDCCH during the operation of the drx-InactivityTimer, and/or monitors the PDCCH indicating downlink retransmission scheduling during the operation of the drx-RetransmissionTimer corresponding to each first-type HARQ process.
  • the terminal device starts or restarts the drx-InactivityTimer and/or the drx-RetransmissionTimer corresponding to at least one first-class HARQ process, so that the terminal device can enter the active period (active time) as soon as possible to monitor the PDCCH, so that the network device can use the first-class HARQ process to schedule subsequent data transmission as soon as possible, reduce the possibility of HARQ process stalling, and improve the transmission rate and throughput.
  • the network device may send a PDCCH to the terminal device after receiving the HARQ feedback of the terminal device on the multiple TBs, or a PDCCH indicating downlink retransmission scheduling.
  • the network device may consider that the terminal device enters the active time after completing the HARQ feedback for the multiple TBs. Furthermore, the network device may send PDCCH to the terminal device when the terminal device is in the active time.
  • the completing the HARQ feedback of the multiple TBs includes:
  • the present application does not limit the HARQ feedback mode of the TB using the second type of HARQ process, for example, it may be binding feedback, or non-binding feedback, etc.
  • the 210 In some other embodiments of the present application, the 210:
  • the terminal device does not start or restart the drx-InactivityTimer and/or the drx-RetransmissionTimer corresponding to at least one first-type HARQ process immediately after completing the HARQ feedback for the multiple TBs. Instead, the terminal device starts or restarts the drx-InactivityTimer and/or the drx-RetransmissionTimer corresponding to at least one first-type HARQ process after the first time period after completing the HARQ feedback for the multiple TBs.
  • the terminal device before completing the HARQ feedback of the multiple TBs and within the first time period after completing the HARQ feedback of the multiple TBs, the terminal device cannot perform downlink reception, or is not ready for downlink reception. Therefore, the terminal device can start or restart the drx-InactivityTimer and/or the drx-RetransmissionTimer corresponding to at least one first-class HARQ process after the first time period after completing the HARQ feedback of the multiple TBs, which is beneficial to reduce the waste of resources caused by the terminal device performing PDCCH monitoring during this time period.
  • the terminal device After the first period of time after completing the HARQ feedback for the multiple TBs, it can be considered that the terminal device is able to perform downlink reception, or is ready for downlink reception.
  • the drx-InactivityTimer and/or the drx-RetransmissionTimer corresponding to at least one first-type HARQ process can be started or restarted to ensure that the terminal device enters the active period (active time) to monitor the PDCCH as soon as possible when it is able to perform downlink reception, so that the network device can use the first-type HARQ process to schedule subsequent data transmission as soon as possible, reduce the possibility of HARQ process stalling, and improve the transmission rate and throughput.
  • the first duration is predefined or configured by the network device.
  • 1ms, 3ms, or other time lengths For example, 1ms, 3ms, or other time lengths.
  • the first duration is determined according to the switching time of the terminal device from uplink transmission to downlink reception and/or the transmission delay between the network device and the terminal device.
  • the transmission delay may be the RTT between the network device and the terminal device.
  • the first duration may be a switching time.
  • the first duration may be the sum of the switching time and the transmission delay.
  • the terminal device's HARQ feedback for multiple TBs belongs to uplink sending behavior
  • the terminal device's monitoring of PDCCH belongs to downlink receiving behavior.
  • a certain switching time is required from uplink sending to downlink receiving, and the terminal device cannot perform downlink reception during the switching time. Therefore, the switching time of the terminal device is considered when designing the start time or restart time of the drx-InactivityTimer and/or at least one first-class HARQ process corresponding to the drx-RetransmissionTimer, which is beneficial to reducing the waste of resources caused by the terminal device's PDCCH monitoring during the switching time.
  • the transmission delay between the network device and the terminal device is relatively large.
  • the HARQ feedback information sent by the terminal device to the network device needs a certain amount of time to reach the network device, and the signal sent by the network device to the terminal device also needs a certain amount of time to reach the terminal device. Before the signal sent by the network device may reach the terminal device, the terminal device does not need to monitor the PDCCH.
  • the transmission delay between the network device and the terminal device can be considered when designing the start time or restart time of the drx-InactivityTimer and/or at least one first-class HARQ process corresponding to the drx-RetransmissionTimer, which is beneficial to reduce the waste of resources caused by the terminal device monitoring the PDCCH during the signal propagation process.
  • the method 200 further includes:
  • Step 1 The terminal device receives PDCCH.
  • the PDCCH indicates the simultaneous scheduling of PDSCH transmissions of multiple TBs, wherein at least one TB among the multiple TBs uses a HARQ process in disabled DL HARQ feedback mode, and at least one TB uses a HARQ process in enabled DL HARQ feedback mode.
  • PDCCH schedules PDSCH transmission of 6 TBs, including TB1 to TB6, and the HARQ processes used are HARQ processes 0 to 5, respectively.
  • the HARQ processes used by TB2 and TB4 are disabled DL HARQ feedback mode, and the HARQ processes used by other TBs are enabled DL HARQ feedback mode. Then the terminal device needs to perform HARQ feedback for TB1, TB3, TB5 and TB6.
  • Step 2 The terminal device receives the PDSCH of the multiple TBs.
  • Step 3 The terminal device performs HARQ feedback on TB1, TB3, TB5 and TB6.
  • FIG7 is an example of performing HARQ feedback using a non-bundling HARQ feedback method. As shown in FIG7 , the terminal device can perform HARQ feedback on TB1, TB3, TB5, and TB6, respectively.
  • FIG8 is an example of performing HARQ feedback using the bundled HARQ feedback method. As shown in FIG8 , the terminal device can perform bundled feedback on TB1 and TB3, and perform bundled feedback on TB5 and TB6.
  • Step 4 Start or restart the drx-InactivityTimer and/or the drx-RetransmissionTimer corresponding to HARQ process 1 and HARQ process 3.
  • the drx-InactivityTimer and/or the drx-RetransmissionTimer corresponding to the HARQ process 1 and the HARQ process 3 are immediately started or restarted.
  • the drx-InactivityTimer and/or the drx-RetransmissionTimer corresponding to the HARQ process 1 and the HARQ process 3 are started or restarted.
  • the terminal device can start or restart the drx-InactivityTimer and/or the drx-RetransmissionTimer corresponding to the HARQ process configured as the disabled DL HARQ feedback mode according to the time for completing the HARQ feedback for the multiple TBs, that is, determine the timing for monitoring the PDCCH, which is beneficial to avoid waste of resources caused by the terminal device monitoring the PDCCH before completing the HARQ feedback for the multiple TBs.
  • the terminal device may immediately start the drx-InactivityTimer and/or the drx-RetransmissionTimer corresponding to the HARQ process configured in the disabled DL HARQ feedback mode, so that the terminal device can enter the active period (active time) to monitor the PDCCH as soon as possible, so that the network device can use the HARQ process configured in the disabled DL HARQ feedback mode to schedule subsequent data transmission as soon as possible, reduce the possibility of HARQ process stalling, and improve the transmission rate and throughput.
  • the terminal device before completing the first duration of HARQ feedback for the multiple TBs, the terminal device is not yet ready to receive and/or the signal sent by the network device cannot reach the terminal device. Therefore, the terminal device can start the drx-InactivityTimer and/or the drx-RetransmissionTimer corresponding to the HARQ process configured as the disabled DL HARQ feedback mode after completing the first duration of HARQ feedback for the multiple TBs, so that the terminal device can enter the active period (active time) to monitor the PDCCH as soon as possible, so that the network device can use the HARQ process configured as the disabled DL HARQ feedback mode to schedule subsequent data transmission as soon as possible, reduce the possibility of HARQ process stalling, and improve the transmission rate and throughput.
  • the terminal device can start the drx-InactivityTimer and/or the drx-RetransmissionTimer corresponding to the HARQ process configured as the disabled DL HARQ feedback mode after completing the first duration of HARQ feedback
  • Fig. 9 shows a schematic block diagram of a terminal device 400 according to an embodiment of the present application.
  • the terminal device 400 includes:
  • a communication unit 410 is configured to receive a physical downlink control channel PDCCH, where the PDCCH is used to schedule transmission of multiple transport blocks TB, where the multiple TBs are transmitted using multiple hybrid automatic repeat request HARQ processes, where the multiple HARQ processes include at least one first type HARQ process and at least one second type HARQ process, where the first type HARQ process is configured to disable a downlink HARQ feedback mode, and the second type HARQ process is configured to enable a downlink HARQ feedback mode;
  • the processing unit 420 is used to start or restart the discontinuous reception DRX inactivation timer and/or the DRX retransmission timer corresponding to the at least one first type HARQ process according to the time when the HARQ feedback is completed for the multiple TBs.
  • processing unit 420 is further configured to:
  • processing unit 420 is further configured to:
  • the first duration is predefined or configured by the network device.
  • the first duration is determined based on the switching time of the terminal device from uplink transmission and downlink reception and/or the transmission delay between the network device and the terminal device.
  • the performing HARQ feedback for the plurality of TBs comprises:
  • processing unit 420 is further configured to:
  • the terminal device is a terminal device in a non-terrestrial network NTN.
  • the terminal device is a narrowband Internet of Things NB-IoT terminal, or an enhanced machine type communication eMTC terminal.
  • the communication module may be a communication interface or a transceiver, or an input/output interface of a communication chip or a system on chip.
  • the determination module may be one or more processors.
  • terminal device 400 may correspond to the terminal device in the method embodiment of the present application, and the above-mentioned and other operations and/or functions of each unit in the terminal device 400 are respectively for realizing the corresponding processes of the terminal device in the method 200 shown in Figures 6 to 8, which will not be repeated here for the sake of brevity.
  • the terminal device can start or restart the drx-InactivityTimer and/or the drx-RetransmissionTimer corresponding to the HARQ process configured as the disabled DL HARQ feedback mode according to the time of completing the HARQ feedback for the multiple TBs, that is, determine the monitoring timing of the PDCCH, which is beneficial to avoid resource waste caused by the terminal device monitoring the PDCCH before completing the HARQ feedback for the multiple TBs.
  • the terminal device may immediately start the drx-InactivityTimer and/or the drx-RetransmissionTimer corresponding to the HARQ process configured in the disabled DL HARQ feedback mode, so that the terminal device can enter the active period (active time) to monitor the PDCCH as soon as possible, so that the network device can use the HARQ process configured in the disabled DL HARQ feedback mode to schedule subsequent data transmission as soon as possible, reduce the possibility of HARQ process stalling, and improve the transmission rate and throughput.
  • the terminal device before completing the first duration of HARQ feedback for the multiple TBs, the terminal device is not yet ready to receive and/or the signal sent by the network device cannot reach the terminal device. Therefore, the terminal device can start the drx-InactivityTimer and/or the drx-RetransmissionTimer corresponding to the HARQ process configured as the disabled DL HARQ feedback mode after completing the first duration of HARQ feedback for the multiple TBs, so that the terminal device can enter the active period (active time) to monitor the PDCCH as soon as possible, so that the network device can use the HARQ process configured as the disabled DL HARQ feedback mode to schedule subsequent data transmission as soon as possible, reduce the possibility of HARQ process stalling, and improve the transmission rate and throughput.
  • the terminal device can start the drx-InactivityTimer and/or the drx-RetransmissionTimer corresponding to the HARQ process configured as the disabled DL HARQ feedback mode after completing the first duration of HARQ feedback
  • Fig. 10 is a schematic structural diagram of a communication device 600 provided in an embodiment of the present application.
  • the communication device 600 shown in Fig. 10 includes a processor 610, and the processor 610 can call and run a computer program from a memory to implement the method in the embodiment of the present application.
  • the communication device 600 may further include a memory 620.
  • the processor 610 may call and run a computer program from the memory 620 to implement the method in the embodiment of the present application.
  • the memory 620 may be a separate device independent of the processor 610 , or may be integrated into the processor 610 .
  • the communication device 600 may further include a transceiver 630 , and the processor 610 may control the transceiver 630 to communicate with other devices, specifically, may send information or data to other devices, or receive information or data sent by other devices.
  • the transceiver 630 may include a transmitter and a receiver.
  • the transceiver 630 may further include an antenna, and the number of the antennas may be one or more.
  • the communication device 600 may specifically be a network device of an embodiment of the present application, and the communication device 600 may implement the corresponding processes implemented by the network device in each method of the embodiment of the present application, which will not be described in detail here for the sake of brevity.
  • the communication device 600 may specifically be a mobile terminal/terminal device of an embodiment of the present application, and the communication device 600 may implement the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiment of the present application, which will not be described in detail here for the sake of brevity.
  • Fig. 11 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • the chip 700 shown in Fig. 11 includes a processor 710, and the processor 710 can call and run a computer program from a memory to implement the method according to the embodiment of the present application.
  • the chip 700 may further include a memory 720.
  • the processor 710 may call and run a computer program from the memory 720 to implement the method in the embodiment of the present application.
  • the memory 720 may be a separate device independent of the processor 710 , or may be integrated into the processor 710 .
  • the chip 700 may further include an input interface 730.
  • the processor 710 may control the input interface 730 to communicate with other devices or chips, and specifically, may obtain information or data sent by other devices or chips.
  • the chip 700 may further include an output interface 740.
  • the processor 710 may control the output interface 740 to communicate with other devices or chips, and specifically, may output information or data to other devices or chips.
  • the chip can be applied to the network device in the embodiments of the present application, and the chip can implement the corresponding processes implemented by the network device in each method of the embodiments of the present application. For the sake of brevity, they will not be repeated here.
  • the chip can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the chip can implement the corresponding processes implemented by the mobile terminal/terminal device in the various methods of the embodiments of the present application. For the sake of brevity, they will not be repeated here.
  • the chip mentioned in the embodiments of the present application can also be called a system-level chip, a system chip, a chip system or a system-on-chip chip, etc.
  • FIG12 is a schematic block diagram of a communication system 900 provided in an embodiment of the present application.
  • the communication system 900 includes a terminal device 910 and a network device 920 .
  • the terminal device 910 can be used to implement the corresponding functions implemented by the terminal device in the above method
  • the network device 920 can be used to implement the corresponding functions implemented by the network device in the above method. For the sake of brevity, they will not be repeated here.
  • the processor of the embodiment of the present application may be an integrated circuit chip with signal processing capabilities.
  • each step of the above method embodiment can be completed by the hardware integrated logic circuit in the processor or the instruction in the form of software.
  • the above processor can be a general processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), a field programmable gate array (Field Programmable Gate Array, FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • the methods, steps and logic block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general processor can be a microprocessor or the processor can also be any conventional processor, etc.
  • the steps of the method disclosed in the embodiment of the present application can be directly embodied as a hardware decoding processor to perform, or the hardware and software modules in the decoding processor can be combined to perform.
  • the software module can be located in a mature storage medium in the field such as a random access memory, a flash memory, a read-only memory, a programmable read-only memory or an electrically erasable programmable memory, a register, etc.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiment of the present application can be a volatile memory or a non-volatile memory, or can include both volatile and non-volatile memories.
  • the non-volatile memory can be a read-only memory (ROM), a programmable read-only memory (PROM), an erasable programmable read-only memory (EPROM), an electrically erasable programmable read-only memory (EEPROM), or a flash memory.
  • the volatile memory can be a random access memory (RAM), which is used as an external cache.
  • RAM Direct Rambus RAM
  • SRAM Static RAM
  • DRAM Dynamic RAM
  • SDRAM Synchronous DRAM
  • DDR SDRAM Double Data Rate SDRAM
  • ESDRAM Enhanced SDRAM
  • SLDRAM Synchlink DRAM
  • DR RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be static random access memory (static RAM, SRAM), dynamic random access memory (dynamic RAM, DRAM), synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous link dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM), etc. That is to say, the memory in the embodiment of the present application is intended to include but not limited to these and any other suitable types of memory.
  • An embodiment of the present application also provides a computer-readable storage medium for storing a computer program.
  • the computer-readable storage medium can be applied to the network device in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the network device in the various methods of the embodiments of the present application. For the sake of brevity, they are not repeated here.
  • the computer-readable storage medium can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the mobile terminal/terminal device in the various methods of the embodiments of the present application. For the sake of brevity, they are not repeated here.
  • An embodiment of the present application also provides a computer program product, including computer program instructions.
  • the computer program product can be applied to the network device in the embodiments of the present application, and the computer program instructions enable the computer to execute the corresponding processes implemented by the network device in the various methods of the embodiments of the present application. For the sake of brevity, they are not repeated here.
  • the computer program product can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the computer program instructions enable the computer to execute the corresponding processes implemented by the mobile terminal/terminal device in the various methods of the embodiments of the present application. For the sake of brevity, they are not repeated here.
  • the embodiment of the present application also provides a computer program.
  • the computer program can be applied to the network device in the embodiments of the present application.
  • the computer program runs on a computer, the computer executes the corresponding processes implemented by the network device in the various methods of the embodiments of the present application. For the sake of brevity, they are not described here.
  • the computer program can be applied to the mobile terminal/terminal device in the embodiments of the present application.
  • the computer program When the computer program is run on a computer, the computer executes the corresponding processes implemented by the mobile terminal/terminal device in the various methods of the embodiments of the present application. For the sake of brevity, they are not repeated here.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the units is only a logical function division. There may be other division methods in actual implementation, such as multiple units or components can be combined or integrated into another system, or some features can be ignored or not executed.
  • Another point is that the mutual coupling or direct coupling or communication connection shown or discussed can be through some interfaces, indirect coupling or communication connection of devices or units, which can be electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place or distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application can be essentially or partly embodied in the form of a software product that contributes to the prior art.
  • the computer software product is stored in a storage medium and includes several instructions for a computer device (which can be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), disk or optical disk, and other media that can store program codes.

Landscapes

  • Mobile Radio Communication Systems (AREA)

Abstract

一种无线通信的方法和终端设备,该方法包括:终端设备接收物理下行控制信道PDCCH,所述PDCCH用于调度多个传输块TB的传输,其中,所述多个TB是使用多个混合自动请求重传HARQ进程传输的,其中,所述多个HARQ进程包括至少一个第一类HARQ进程和至少一个第二类HARQ进程,其中,所述第一类HARQ进程被配置为去使能下行HARQ反馈模式,所述第二类HARQ进程被配置为使能下行HARQ反馈模式;根据对所述多个TB完成HARQ反馈的时间,启动或重启非连续接收DRX非激活定时器和/或所述至少一个第一类HARQ进程对应的DRX重传定时器。

Description

无线通信的方法和终端设备 技术领域
本申请实施例涉及通信领域,具体涉及一种无线通信的方法和终端设备。
背景技术
在一些场景中,为了终端省电的目的,提出了非连续接收(Discontinuous Reception,DRX)的概念,如果终端设备配置了DRX,则终端设备需要在DRX激活时间(Active Time)监听PDCCH。其中,在DRX非激活定时器(drx-InactivityTimer)运行期间,终端设备处于Active Time。
在NTN系统中,考虑引入去使能混合自动请求重传(Hybrid Automatic Repeat reQuest,HARQ)反馈,即网络设备可以配置HARQ进程去使能HARQ反馈或使能HARQ反馈。如果一个PDCCH调度了多个传输块(Transport Block,TB)传输,网络设备可以将该多个TB中的部分TB使用的HARQ进程配置为使能HARQ反馈模式,同时将该多个TB中的其他TB所使用的HARQ进程配置为去使能HARQ反馈模式。此情况下,终端设备如何启动或重启drx-InactivityTimer以选择合适的时机监听PDCCH是一项亟需解决的问题。
发明内容
本申请实施例提供一种无线通信的方法和终端设备,有利于终端设备选择合适的时机监听PDCCH。
第一方面,提供了一种无线通信的方法,包括:终端设备接收物理下行控制信道PDCCH,所述PDCCH用于调度多个传输块TB的传输,其中,所述多个TB是使用多个混合自动请求重传HARQ进程传输的,其中,所述多个HARQ进程包括至少一个第一类HARQ进程和至少一个第二类HARQ进程,其中,所述第一类HARQ进程被配置为去使能下行HARQ反馈模式,所述第二类HARQ进程被配置为使能下行HARQ反馈模式;根据对所述多个TB完成HARQ反馈的时间,启动或重启非连续接收DRX非激活定时器和/或所述至少一个第一类HARQ进程对应的DRX重传定时器。
第二方面,提供了一种终端设备,用于执行上述第一方面或第一方面的任意可能的实现方式中的方法。具体地,该终端设备包括用于执行上述第一方面或第一方面的任一可能的实现方式中的方法的单元。
第三方面,提供了一种终端设备,该终端设备包括:包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第一方面或其各实现方式中的方法。
第四方面,提供了一种芯片,用于实现上述第一方面或其各实现方式中的方法。
具体地,该芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片的设备执行如上述第一方面或其各实现方式中的方法。
第五方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述第一方面或其各实现方式中的方法。
第六方面,提供了一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述第一方面或其各实现方式中的方法。
第七方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面或其各实现方式中的方法。
基于上述技术方案,对于一个PDCCH调度的多个TB的传输,在该多个TB中的部分TB使用的HARQ进程被配置为disabled DL HARQ feedback模式,其他TB使用的HARQ进程被配置为enabled DL HARQ feedback模式时,终端设备可以根据完成对该多 个TB的HARQ反馈的时间,启动或重启drx-InactivityTimer和/或被配置为disabled DL HARQ feedback模式的HARQ进程对应的drx-RetransmissionTimer,即确定PDCCH的监听时机,有利于避免终端设备在对该多个TB完成HARQ反馈之前监听PDCCH导致的资源浪费。
附图说明
图1至图3是本申请实施例提供的应用场景的示意性图。
图4和图5分别是基于透传数据卫星和再生数据卫星的NTN的网络架构图。
图6是本申请实施例提供的一种无线通信的方法的示意性图。
图7是根据本申请一个实施例的无线通信的方法的示意性图。
图8是根据本申请另一实施例的无线通信的方法的示意性图。
图9是本申请实施例提供的一种终端设备的示意性框图。
图10是本申请另一实施例提供的一种通信设备的示意性框图。
图11是本申请实施例提供的一种芯片的示意性框图。
图12是本申请实施例提供的一种通信系统的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。针对本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、新无线(New Radio,NR)系统、NR系统的演进系统、非授权频谱上的LTE(LTE-based access to unlicensed spectrum,LTE-U)系统、非授权频谱上的NR(NR-based access to unlicensed spectrum,NR-U)系统、非地面通信网络(Non-Terrestrial Networks,NTN)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)、第五代通信(5th-Generation,5G)系统或其他通信系统等。
通常来说,传统的通信系统支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信系统将不仅支持传统的通信,还将支持例如,设备到设备(Device to Device,D2D)通信,机器到机器(Machine to Machine,M2M)通信,机器类型通信(Machine Type Communication,MTC),车辆间(Vehicle to Vehicle,V2V)通信,或车联网(Vehicle to everything,V2X)通信等,本申请实施例也可以应用于这些通信系统。
本申请实施例中的通信系统可以应用于载波聚合(Carrier Aggregation,CA)场景,也可以应用于双连接(Dual Connectivity,DC)场景,还可以应用于独立(Standalone,SA)布网场景。
本申请实施例中的通信系统可以应用于非授权频谱,其中,非授权频谱也可以认为是共享频谱;或者,本申请实施例中的通信系统也可以应用于授权频谱,其中,授权频谱也可以认为是非共享频谱。
本申请实施例可应用于非地面通信网络(Non-Terrestrial Networks,NTN)系统,也可应用于地面通信网络(Terrestrial Networks,TN)系统。
作为示例,NTN系统包括但不限于新无线非地面通信网络(New Radio NTN, NR-NTN)系统和物联网非地面通信网络(Internet of Things NTN,IoT-NTN)系统。其中,IoT-NTN系统可以包括窄带物联网非地面通信网络(Narrow Band Internet of Things over NTN,NB-IoT-NTN)系统和增强的机器类型通信非地面通信网络(enhanced Machine Type Communication over NTN,eMTC-NTN)系统。
本申请实施例结合网络设备和终端设备描述了各个实施例,其中,终端设备也可以称为用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置等。
终端设备可以是WLAN中的站点(STATION,ST),可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、下一代通信系统例如NR网络中的终端设备,或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的终端设备等。
在本申请实施例中,终端设备可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。
在本申请实施例中,终端设备可以是手机(Mobile Phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self driving)中的无线终端设备、远程医疗(remote medical)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备或智慧家庭(smart home)中的无线终端设备等。本申请实施例所涉及的终端设备还可以称为终端、用户设备(user equipment,UE)、接入终端设备、车载终端、工业控制终端、UE单元、UE站、移动站、移动台、远方站、远程终端设备、移动设备、UE终端设备、无线通信设备、UE代理或UE装置等。终端设备也可以是固定的或者移动的。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
在本申请实施例中,网络设备可以是用于与移动设备通信的设备,网络设备可以是WLAN中的接入点(Access Point,AP),GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB,NB),还可以是LTE中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者车载设备、可穿戴设备以及NR网络中的网络设备(gNB)或者未来演进的PLMN网络中的网络设备或者NTN网络中的网络设备等。
作为示例而非限定,在本申请实施例中,网络设备可以具有移动特性,例如网络设备可以为移动的设备。在本申请一些实施例中,网络设备可以为卫星、气球站。例如,卫星可以为低地球轨道(low earth orbit,LEO)卫星、中地球轨道(medium earth orbit,MEO)卫星、地球同步轨道(geostationary earth orbit,GEO)卫星、高椭圆轨道(High Elliptical Orbit,HEO)卫星等。在本申请一些实施例中,网络设备还可以为设置在陆地、 水域等位置的基站。
在本申请实施例中,网络设备可以为小区提供服务,终端设备通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与网络设备进行通信,该小区可以是网络设备(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(Small cell)对应的基站,这里的小小区可以包括:城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
示例性的,图1为本申请实施例提供的一种通信系统的架构示意图。如图1所示,通信系统100可以包括网络设备110,网络设备110可以是与终端设备120(或称为通信终端、终端)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备进行通信。
图1示例性地示出了一个网络设备和两个终端设备,在本申请一些实施例中,该通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
示例性的,图2为本申请实施例提供的另一种通信系统的架构示意图。请参见图2,包括终端设备1101和卫星1102,终端设备1101和卫星1102之间可以进行无线通信。终端设备1101和卫星1102之间所形成的网络还可以称为NTN。在图2所示的通信系统的架构中,卫星1102可以具有基站的功能,终端设备1101和卫星1102之间可以直接通信。在系统架构下,可以将卫星1102称为网络设备。在本申请一些实施例中,通信系统中可以包括多个网络设备1102,并且每个网络设备1102的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
示例性的,图3为本申请实施例提供的另一种通信系统的架构示意图。请参见图3,包括终端设备1201、卫星1202和基站1203,终端设备1201和卫星1202之间可以进行无线通信,卫星1202与基站1203之间可以通信。终端设备1201、卫星1202和基站1203之间所形成的网络还可以称为NTN。在图3所示的通信系统的架构中,卫星1202可以不具有基站的功能,终端设备1201和基站1203之间的通信需要通过卫星1202的中转。在该种系统架构下,可以将基站1203称为网络设备。在本申请一些实施例中,通信系统中可以包括多个网络设备1203,并且每个网络设备1203的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
需要说明的是,图1-图3只是以示例的形式示意本申请所适用的系统,当然,本申请实施例所示的方法还可以适用于其它系统,例如,5G通信系统、LTE通信系统等,本申请实施例对此不作具体限定。
在本申请一些实施例中,图1-图3所示的无线通信系统还可以包括移动性管理实体(Mobility Management Entity,MME)、接入与移动性管理功能(Access and Mobility Management Function,AMF)等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例中网络/系统中具有通信功能的设备可称为通信设备。以图1示出的通信系统100为例,通信设备可包括具有通信功能的网络设备110和终端设备120,网络设备110和终端设备120可以为上文所述的具体设备,此处不再赘述;通信设备还可包括通信系统100中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请的实施例中提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可 以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。
在本申请实施例的描述中,术语“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。
本申请实施例中,"预定义"可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。比如预定义可以是指协议中定义的。
本申请实施例中,所述"协议"可以指通信领域的标准协议,例如可以包括LTE协议、NR协议以及应用于未来的通信系统中的相关协议,本申请对此不做限定。
图4和图5示出了两种NTN网络架构,其中,图4是一种基于透明转发的NTN网络架构,图5是一种基于再生转发的NTN网络架构。
其中,NTN网络可以包括如下网元1个或者多个网关,用于连接卫星和地面公共网络。对于,基于透传转发的NTN网络,网关和卫星之间通过馈线链路(Feeder link)进行通信,卫星和终端之间可以通过服务链路(service link)进行通信。对于基于再生转发的NTN网络,卫星和卫星之间通过星间(InterStar link)进行通信,网关和卫星之间通过馈线链路(Feeder link)进行通信,卫星和终端之间可以通过服务链路(service link)进行通信。
在透明转发中,卫星只提供无线频率滤波,频率转换和放大的功能.只提供信号的透明转发,不会改变其转发的波形信号。
在再生转发中,卫星除了提供无线频率滤波,频率转换和放大的功能,还可以提供解调/解码,路由/转换,编码/调制的功能。其具有基站的部分或者全部功能。
在一些场景中,为了终端省电的目的,提出了非连续接收(Discontinuous Reception,DRX)的概念。具体的,网络设备可以配置终端设备在网络预知的时间醒来(DRX ON),监听物理下行控制信道(Physical Downlink Control Channel,PDCCH),同时网络也可以配置终端设备在网络预知的时间睡眠(DRX OFF),即,终端设备不用监听PDCCH。由此,如果网络设备有数据要传给终端设备,网路设备可以在终端设备处于DRX ON的时间内调度所述终端设备,而DRC OFF时间内,由于射频关闭,可以减少终端耗电。
在一些场景中,网络设备可以为终端设备配置DRX功能,使得终端设备非连续地监听PDCCH,以达到省电的目的。例如,每个MAC实体可以对应一个DRX配置,可选的,DRX配置可以包括如下中的至少一种:
DRX持续定时器(drx-onDurationTimer):在一个DRX Cycle的开始终端设备醒来的持续时间。
DRX时隙偏移(drx-SlotOffset):终端设备启动drx-onDurationTimer的时延。
DRX非激活定时器(drx-InactivityTimer):当终端设备收到一个指示上行初传或者下行初传的PDCCH后,终端设备继续监听PDCCH的持续时间。
DRX下行重传定时器(drx-RetransmissionTimerDL):终端设备监听指示下行重传调度的PDCCH的最长持续时间。除广播混合自动请求重传(Hybrid Automatic Repeat reQuest,HARQ)进程之外的每个下行HARQ进程对应一个drx-RetransmissionTimerDL。
DRX上行重传定时器(drx-RetransmissionTimerUL):终端设备监听指示上行重传调度的PDCCH的最长持续时间。每个上行HARQ进程对应一个drx-RetransmissionTimerUL。
长DRX周期开始偏移(longDRX-CycleStartOffset):用于配置长DRX周期,以及长DRX周期和短DRX周期开始的子帧偏移。
短DRX周期(drx-ShortCycle):短DRX周期,为可选配置。
短周期定时器(drx-ShortCycleTimer):终端设备处于短DRX周期(并且没有接收 到任何PDCCH)的持续时间,为可选配置。
下行混合自动重传请求(Hybrid Automatic Repeat Request,HARQ)往返传输时间(Round Trip Time,RTT)定时器(HARQ RTT Timer):终端设备期望接收到指示下行调度的PDCCH需要的最少等待时间。除广播HARQ进程之外的每个下行HARQ进程对应一个HARQ RTT Timer。
短TTI DRX重传定时器(drx-RetransmissionTimerShortTTI):当配置了短TTI时,下行重传定时器的时长。
短TTI DRX上行重传定时器(drx-ULRetransmissionTimerShortTTI):当配置了短TTI时,上行重传定时器的时长。
上行混合自动重传请求(Hybrid Automatic Repeat Request,HARQ)往返传输时间(Round Trip Time,RTT)定时器(UL HARQ RTT Timer):终端设备期望接收到指示上行调度的PDCCH需要的最少等待时间,每个上行HARQ进程对应一个UL HARQ RTT Timer。
如果终端设备配置了DRX,则终端设备需要在DRX激活时间(Active Time)监听PDCCH。DRX Active Time包括如下几种情况:
drx-onDurationTimer,drx-InactivityTimer,drx-RetransmissionTimerDL,drx-RetransmissionTimerShortTTI,drx-RetransmissionTimerUL,drx-ULRetransmissionTimerShortTTI以及随机接入竞争决议定时器(ra-ContentionResolutionTimer)中的任何一个定时器正在运行;
终端设备在PUCCH/短PUCCH(Short PUCCH,SPUCCH)上发送了调度请求(Scheduling Request,SR)并处于等待(pending)状态;
在基于竞争的随机接入过程中,终端设备在成功接收到随机接入响应后还没有接收到小区无线网络临时标识(Cell RNTI,C-RNTI)加扰的PDCCH指示的一次初始传输;
对于一个pending的HARQ重传可以接收UL grant,并且该异步HARQ进程的HARQ缓存(buffer)里有数据;
配置了机器类通信(machine type of communication,MTC)PDCCH上行HARQ-ACK反馈配置(mpdcch-UL-HARQ-ACK-FeedbackConfig)并且当前正在进行一个绑定组(bundle)内的重复传输。
在一些场景中,若drx-InactivityTimer超时和/或终端设备收到一个DRX命令媒体接入控制控制元素(DRX Media Access Control Command Control Element,DRX Command MAC CE),所述终端设备使用长DRX周期。
在一些场景中,若drx-ShortCycleTimer超时和/或终端设备收到一个long DRX command MAC CE,所述终端设备使用短DRX周期。
在一些场景中,终端设备可以根据当前是处于长DRX周期还是短DRX周期,来决定启动drx-onDurationTimer的时间,例如,具体规定如下:
如果使用的是短DRX周期,并且当前子帧满足[(SFN×10)+子帧号]modulo(drx-ShortCycle)=(drx-StartOffset)modulo(drx-ShortCycle)。
如果使用的是长DRX周期,并且当前子帧满足[(SFN×10)+子帧号]modulo(drx-LongCycle)=drx-StartOffset。
如果终端设备是窄带物联网(Narrow Band Internet of Things,NB-IoT)终端,则:
如果至少存在一个HARQ进程对应的HARQ RTT Timer或UL HARQ RTT Timer没有运行,则启动drx-onDurationTimer。
否则,启动drx-onDurationTimer。
其中,modulo表示取模运算。
在一些场景中,终端设备启动或重启HARQ RTT Timer的条件为:
如果终端终端设备接收到一个指示下行传输的PDCCH,或者如果终端设备在该子帧有配置的下行授权,则:
a)如果该终端设备为NB-IoT终端或者增强的机器类型通信(enhanced Machine Type Communication,eMTC)终端,则:
a1)如果PDCCH指示调度了多个传输块(Transport Block,TB)传输,则终端设备在接收该多个TB的最后一个TB的物理下行共享信道(Physical Downlink Shared Channel,PDSCH)的最后一次重复传输所在子帧启动该多个TB的PDSCH所使用的所有下行HARQ进程对应的HARQ RTT Timer。
a2)否则,终端设备在接收该PDSCH的最后一次重复传输所在子帧启动该PDSCH所使用的下行HARQ进程对应的HARQ RTT Timer。
b)否则,终端设备启动该PDSCH所使用的下行HARQ进程对应的HARQ RTT Timer。
如果HARQ RTT Timer超时,则:如果该HARQ进程的数据解码失败,则终端设备启动该下行HARQ进程对应的drx-RetransmissionTimer。
此外,如果HARQ RTT Timer超时,对于NB-IoT终端:如果PDCCH调度的是多个TB,则当该多个TB使用的HARQ进程对应的HARQ RTT Timer都超时,则启动或重启drx-InactivityTimer;否则,如果PDCCH调度的是单个TB,则当该TB使用的HARQ进程对应的HARQ RTT Timer超时时,启动或重启drx-InactivityTimer。
在一些场景中,终端设备启动或重启UL HARQ RTT Timer的条件为:
如果终端设备接收到PDCCH指示一个使用异步HARQ进程的上行传输,或者如果终端设备在该子帧对于某个异步HARQ进程有配置的上行授权,或者终端设备接收到PDCCH指示使用一个自动HARQ进程的上行传输,则:
a)如果没有配置mpdcch-UL-HARQ-ACK-FeedbackConfig;
a1)如果PDCCH指示调度了多个TB的传输,则终端设备在完成该多个TB的最后一个TB的PUSCH的最后一次重复传输所在子帧启动该多个TB的物理上行共享信道(Physical Uplink Shared Channel,PUSCH)所使用的所有上行HARQ进程对应的UL HARQ RTT Timer。
a2)否则,UE在完成该PUSCH的最后一次重复传输所在子帧启动该PUSCH所使用的上行HARQ进程对应的UL HARQ RTT Timer。
如果某个上行HARQ进程对应的UL HARQ RTT Timer超时,则终端设备启动该上行HARQ进程对应的drx-ULRetransmissionTimer。
此外,如果某个上行HARQ进程对应的UL HARQ RTT Timer超时,对于NB-IoT终端:如果PDCCH指示调度的是多个TB,则当该多个TB使用的HARQ进程对应的UL HARQ RTT Timer都超时则启动或重启drx-InactivityTimer;否则,如果PDCCH调度的是单个TB,则当该TB使用的HARQ进程对应的UL HARQ RTT Timer超时时,启动或重启drx-InactivityTimer。
在一些场景中,HARQ RTT Timer和UL HARQ RTT Timer的定义如下:
对于eMTC,如果PDCCH指示调度了一个TB,则HARQ RTT Timer的时长为7+N(单位:子帧),其中N为使用的物理上行控制信道(Physical Uplink Control Channel,PUCCH)重复因子。对于TDD,HARQ RTT Timer为3+k+N,其中,k为PDSCH最后一次重复传输和对应的HARQ反馈的第一次重复传输之间的时间间隔,N为使用的PUCCH重复因子。
对于eMTC,如果PDCCH指示调度了多个TB并且没有配置HACK-ACK bundling,则HARQ RTT Timer的时长为7+m*N,其中,N为使用的PUCCH重复因子,m为该PDCCH指示的调度的TB个数。
对于eMTC,如果PDCCH指示调度了多个TB并且配置了HACK-ACK bundling, 则HARQ RTT Timer的时长为7+k*N,其中,N为使用的PUCCH重复因子,k为HARQ反馈bundle的个数,k=ceiling(N TB/M),N TB为该PDCCH指示的调度的TB个数,M为PDCCH指示的多TB调度的HARQ反馈bundling大小。
对于NB-IoT,如果PDCCH指示调度了一个TB,或者,如果PDCCH指示同时调度了多个TB且配置了HARQ-ACK bundling,则HARQ RTT Timer的时长为k+3+N+△PDCCH(单位:子帧),其中,k为PDSCH传输的最后一个子帧和对应HARQ反馈传输的第一个子帧之间的时间间隔,N为对应HARQ反馈的传输时长,△PDCCH为从对应HARQ反馈的最后一个子帧加上3个子帧的下一个子帧开始到下一个PDCCH时机的第一个子帧之间的时间间隔。
对于NB-IoT,如果PDCCH指示同时调度了多个TB且没有配置HARQ-ACK bundling,则HARQ RTT Timer的时长为k+2*N+1+△PDCCH(单位:子帧),其中k为PDSCH传输的最后一个子帧和对应HARQ反馈传输的第一个子帧之间的时间间隔,N为对应HARQ反馈的传输时长,△PDCCH为从对应HARQ反馈的最后一个子帧加1个子帧的下一个子帧开始到下一个PDCCH时机的第一个子帧之间的时间间隔。
对于eMTC,对于FDD和帧结构类型3,UL HARQ RTT Timer的时长为4个子帧;对于TDD,UL HARQ RTT Timer的时长为k ULHARQRTT个子帧,其中k ULHARQRTT为k PHICH
对于NB-IoT,如果PDCCH指示调度了一个TB,UL HARQ RTT Timer的时长为4+△PDCCH个子帧,其中,△PDCCH为从PUSCH传输的最后一个子帧加上3个子帧的下一个子帧开始到下一个PDCCH时机的第一个子帧之间的时间间隔。
对于NB-IoT,如果PDCCH指示同时调度了多个TB,UL HARQ RTT Timer的时长为1+△PDCCH个子帧,其中,△PDCCH为从PUSCH传输的最后一个子帧加上1个子帧的下一个子帧开始到下一个PDCCH时机的第一个子帧之间的时间间隔。
与TN系统相比,NTN系统中UE与基站之间信号传输时延大大增大。为了适配NTN系统中的大时延特性,考虑将HARQ RTT Timer和UL RTT Timer的定义在上述公式上的基础上再加一个RTT offset,同时规定在TN系统中,RTT offset取值为0,在NTN系统中,RTTRTT offset取值为UE与基站之间的RTT。
在NTN系统中,考虑引入去使能HARQ反馈,即网络设备可以配置HARQ进程去使能HARQ反馈或使能HARQ反馈。对于一个UE,网络设备可以将该UE的部分HARQ进程配置为使能HARQ反馈模式,同时将该UE的其他HARQ进程配置为去使能HARQ反馈模式。
在NTN系统中,上述定时器的定义只考虑了使能HACK反馈的情况。因此,在网络设备调度的多个TB的传输,并且该多个TB使用的HARQ进程既有使能HACK反馈的HARQ进程,又有去使能HARQ反馈的HARQ进程的情况下,终端设备如何选择合适的时机监听PDCCH是一项亟需解决的问题。
图6为本申请实施例提供的一种无线通信的方法200的示意性流程图。如图6所示,该方法200可以包括如下至少部分内容:
S210,终端设备接收物理下行控制信道PDCCH,所述PDCCH用于调度多个传输块TB的传输,其中,所述多个TB是使用多个混合自动请求重传HARQ进程传输的,其中,所述多个HARQ进程包括至少一个第一类HARQ进程和至少一个第二类HARQ进程,其中,所述第一类HARQ进程被配置为去使能下行混合自动请求重传HARQ反馈模式,所述第二类HARQ进程被配置为使能下行HARQ反馈模式;
S220,根据对所述多个TB完成HARQ反馈的时间,启动或重启非连续接收DRX非激活定时器和/或所述至少一个第一类HARQ进程对应的DRX重传定时器。
在一些实施例中,所述终端设备为NTN中的终端设备。
可选地,该NTN可以是物联网非地面通信网络(Internet of Things NTN,IoT-NTN) 系统。
例如窄带物联网非地面通信网络(Narrow Band Internet of Things over NTN,NB-IoT-NTN)系统或,增强的机器类型通信非地面通信网络(enhanced Machine Type Communication over NTN,eMTC-NTN)系统。
在一些实施例中,所述终端设备为NB-IoT终端,或eMTC终端。
在一些实施例中,终端设备处于连接态。
在本申请实施例中,HARQ反馈模式可以替换为HARQ-ACK反馈模式,HARQ反馈可以替换为HARQ-ACK反馈。
在一些实施例中,所述多个TB通过PDSCH传输,例如,每个TB通过对应的PDSCH传输。
即,第一类HARQ进程和第二类HARQ进程是下行HARQ进程。
在一些实施例中,第一类HARQ进程被配置为去使能下行HARQ反馈模式,或者说,被配置为去使能下行HARQ反馈。
即,第一类HARQ进程为去使能HARQ反馈模式(或者说,去使能HARQ反馈)的HARQ进程(disabled DL HARQ feedback模式的HARQ进程)。
在一些实施例中,第二类HARQ进程被配置为使能下行HARQ反馈模式,或者说,被配置为使能下行HARQ反馈。
即,第二类HARQ进程为使能HARQ反馈模式(或者说,使能HARQ反馈)的HARQ进程(enabled DL HARQ feedback模式的HARQ进程)。
对于使用第一类HARQ进程传输的TB,终端设备不需要进行HARQ反馈。
对于使用第二类HARQ进程传输的TB,终端设备需要进行HARQ反馈。
例如,对于使用第二类HARQ进程传输的TB,终端设备可以根据TB的解码结果,反馈肯定应答(Acknowledgement,ACK)或否定应答(Negative Acknowledgement,NACK)。
在一些实施例中,所述多个TB中的部分TB是使用第一类HARQ进程传输的,其他TB是使用第二类HARQ进程传输的。也就是说,多个TB中存在需要HARQ反馈的TB(记为第一类TB)以及不需要反馈HARQ反馈的TB(记为第二类TB)。
在本申请实施例中,对于一个PDCCH调度的多个TB的传输,在终端设备需要对该多个TB中的部分TB进行HARQ反馈时,终端设备在完成该多个TB的接收后,需要对该部分TB进行HARQ反馈,在终端设备未完成HARQ反馈时,终端设备不能进行下行接收。因此,终端设备可以基于对该多个TB完成HARQ反馈的时间,确定开始监听PDCCH的时机,从而避免终端设备在对该多个TB完成HARQ反馈之前监听PDCCH导致的资源浪费。
在本申请一些实施例中,所述S210:
在完成所述多个TB的HARQ反馈后,启动或重启DRX非激活定时器(drx-InactivityTimer)和/或所述至少一个第一类HARQ进程对应的DRX重传定时器(drx-RetransmissionTimer)。
例如,在完成所述多个TB的HARQ反馈后,立即启动或重启drx-InactivityTimer和/或至少一个第一类HARQ进程对应的drx-RetransmissionTimer。
进一步地,终端设备在drx-InactivityTimer运行期间监听PDCCH,和/或在每个第一 类HARQ进程对应的drx-RetransmissionTimer运行期间监听指示下行重传调度的PDCCH。
因此,终端设备在完成对该多个TB的HARQ反馈后,即启动或重启drx-InactivityTimer和/或至少一个第一类HARQ进程对应的drx-RetransmissionTimer,使得终端设备能够尽快进入激活期(active time)监听PDCCH,以便网络设备能够尽快使用第一类HARQ进程调度后续的数据传输,减少HARQ进程Stalling的可能,提升传输速率和吞吐量。
对应地,网络设备可以在接收完终端设备对该多个TB的HARQ反馈之后,再向终端设备发送PDCCH,或者,指示下行重传调度的PDCCH。
也就是说,网络设备可以认为终端设备在完成对该多个TB的HARQ反馈之后,进入active time,进一步地,网络设备可以在终端设备处于active time时,向终端设备发送PDCCH。
应理解,在本申请实施例中,所述完成所述多个TB的HARQ反馈,包括:
完成所述多个TB中使用所述第二类HARQ进程的TB的HARQ反馈。
也即,完成对需要进行HARQ反馈的TB的HARQ反馈。
应理解,本申请并不限定使用第二类HARQ进程的TB的HARQ反馈方式,例如可以是绑定反馈,或非绑定反馈等。
在本申请另一些实施例中,所述210:
在完成所述多个TB的HARQ反馈的第一时长后,启动或重启DRX非激活定时器和/或所述至少一个第一类HARQ进程对应的DRX重传定时器。
与前述实施例不同的是,终端设备不是在完成对该多个TB的HARQ反馈后立即启动或重启drx-InactivityTimer和/或至少一个第一类HARQ进程对应的drx-RetransmissionTimer。而是在完成对该多个TB的HARQ反馈后的第一时长之后,再启动或重启drx-InactivityTimer和/或至少一个第一类HARQ进程对应的drx-RetransmissionTimer。
在一些实施例中,可以认为在完成所述多个TB的HARQ反馈之前以及完成所述多个TB的HARQ反馈之后的第一时长内,终端设备还不能执行下行接收,或者说,还未准备好进行下行接收。因此,终端设备可以在完成对该多个TB的HARQ反馈后的第一时长之后,再启动或重启drx-InactivityTimer和/或至少一个第一类HARQ进程对应的drx-RetransmissionTimer,有利于降低终端设备在该时间段内进行PDCCH监听导致的资源浪费。
在完成对该多个TB的HARQ反馈后的第一时长之后,可以认为终端设备能够执行下行接收,或者说,已准备好进行下行接收,此情况下,可以启动或重启drx-InactivityTimer和/或至少一个第一类HARQ进程对应的drx-RetransmissionTimer,能够保证终端设备在能够执行下行接收时,尽快进入激活期(active time)监听PDCCH,以便网络设备能够尽快使用第一类HARQ进程调度后续的数据传输,减少HARQ进程Stalling的可能,提升传输速率和吞吐量。
在一些实施例中,所述第一时长是预定义的,或者,网络设备配置的。
例如,1ms,3ms,或其他时间长度。
在一些实施例中,所述第一时长根据所述终端设备从上行发送到下行接收的切换时间和/或网络设备和所述终端设备之间的传输时延确定。可选地,该传输时延可以是网络设备和终端设备之间的RTT。
示例性地,第一时长可以为切换时间。
示例性地,第一时长可以是切换时间和传输时延之和。
具体而言,终端设备对多个TB进行HARQ反馈属于上行发送行为,终端设备监听PDCCH属于下行接收行为,从上行发送到下行接收需要一定的切换时间,终端设备在该切换时间内不能进行下行接收,因此,在设计drx-InactivityTimer和/或至少一个第一类HARQ进程对应的drx-RetransmissionTimer的启动时间或重启时间时考虑终端设备的切换时间,有利于降低终端设备在切换时间内进行PDCCH监听导致的资源浪费。
另外,在NTN系统中,网络设备和终端设备之间的传输时延较大,终端设备向网络设备发送的HARQ反馈信息需要经过一定时间才能到达网络设备,并且网络设备向终端设备发送的信号也需要经过一定的时间才能到达终端设备。在网络设备发送的信号可能到达终端设备之前,终端设备可以不必监听PDCCH。因此,在本申请实施例中,在设计drx-InactivityTimer和/或至少一个第一类HARQ进程对应的drx-RetransmissionTimer的启动时间或重启时间时可以考虑网络设备和终端设备之间的传输时延,有利于降低终端设备在信号传播过程进行PDCCH监听导致的资源浪费。
在一些实施例中,所述方法200还包括:
在完成所述多个TB的HARQ反馈后,启动或重启所述至少一个第二类HARQ进程对应的HARQ往返时间RTT定时器;或
在完成所述多个TB的接收后,启动或重启所述至少一个第二类HARQ进程对应的HARQ RTT定时器。
结合图7和图8所示的具体示例说明具体的执行过程。
步骤1:终端设备接收PDCCH。
该PDCCH指示同时调度多个TB的PDSCH传输,其中,该所述多个TB中有至少一个TB所使用的HARQ进程为disabled DL HARQ feedback模式,且有至少一个TB所使用的HARQ进程为enabled DL HARQ feedback模式。
如图7和图8所示,PDCCH调度6个TB的PDSCH传输,该6个TB包括TB1~TB6,分别使用的HARQ进程为HARQ进程0~5,其中,TB2和TB4所使用的HARQ进程是disabled DL HARQ feedback模式,其他TB所使用的HARQ进程是enabled DL HARQ feedback模式。则终端设备需要对TB1,TB3,TB5和TB6进行HARQ反馈。
步骤2:终端设备接收该多个TB的PDSCH。
步骤3:终端设备对TB1,TB3,TB5和TB6进行HARQ反馈。
图7是采用非bundling HARQ反馈方式进行HARQ反馈的示例,如图7所示,终端设备可以分别对TB1,TB3,TB5和TB6进行HARQ反馈。
图8是采用bundling HARQ反馈方式进行HARQ反馈的示例,如图8所示,终端设备可以TB1和TB3进行bundling反馈,对TB5和TB6进行bundling反馈。
步骤4:启动或重启drx-InactivityTimer和/或HARQ进程1和HARQ进程3对应的drx-RetransmissionTimer。
如图7所示,在完成对TB1,TB3,TB5和TB6的HARQ反馈之后,立即启动或重启drx-InactivityTimer和/或HARQ进程1和HARQ进程3对应的drx-RetransmissionTimer。
如图8所示,在完成对TB1,TB3,TB5和TB6的HARQ反馈之后的第一时长之后,启动或重启drx-InactivityTimer和/或HARQ进程1和HARQ进程3对应的drx-RetransmissionTimer。
综上,在本申请实施例中,对于一个PDCCH调度的多个TB的传输,在该多个TB中的部分TB使用的HARQ进程被配置为disabled DL HARQ feedback模式,其他TB使用的HARQ进程被配置为enabled DL HARQ feedback模式时,终端设备可以根据完成对 该多个TB的HARQ反馈的时间,启动或重启drx-InactivityTimer和/或被配置为disabled DL HARQ feedback模式的HARQ进程对应的drx-RetransmissionTimer,即确定PDCCH的监听时机,有利于避免终端设备在对该多个TB完成HARQ反馈之前监听PDCCH导致的资源浪费。
在一种实现方式中,终端设备可以在完成对该多个TB的HARQ反馈后,立即启动drx-InactivityTimer和/或被配置为disabled DL HARQ feedback模式的HARQ进程对应的drx-RetransmissionTimer,使得终端设备能够尽快进入激活期(active time)监听PDCCH,以便网络设备能够尽快使用被配置为disabled DL HARQ feedback模式的HARQ进程调度后续的数据传输,减少HARQ进程Stalling的可能,提升传输速率和吞吐量。
在另一种实现方式中,在完成对该多个TB的HARQ反馈的第一时长之前,终端设备还没有准备好进行接收接收和/或网络设备发送的信号还不能到达终端设备,因此,终端设备可以在完成对该多个TB的HARQ反馈的第一时长后,启动drx-InactivityTimer和/或被配置为disabled DL HARQ feedback模式的HARQ进程对应的drx-RetransmissionTimer,使得终端设备能够尽快进入激活期(active time)监听PDCCH,以便网络设备能够尽快使用被配置为disabled DL HARQ feedback模式的HARQ进程调度后续的数据传输,减少HARQ进程Stalling的可能,提升传输速率和吞吐量。
上文结合图6至图8,详细描述了本申请的方法实施例,下文结合图9至图12,详细描述本申请的装置实施例,应理解,装置实施例与方法实施例相互对应,类似的描述可以参照方法实施例。
图9示出了根据本申请实施例的终端设备400的示意性框图。如图9所示,该终端设备400包括:
通信单元410,用于接收物理下行控制信道PDCCH,所述PDCCH用于调度多个传输块TB的传输,其中,所述多个TB是使用多个混合自动请求重传HARQ进程传输的,其中,所述多个HARQ进程包括至少一个第一类HARQ进程和至少一个第二类HARQ进程,其中,所述第一类HARQ进程被配置为去使能下行HARQ反馈模式,所述第二类HARQ进程被配置为使能下行HARQ反馈模式;
处理单元420,用于根据对所述多个TB完成HARQ反馈的时间,启动或重启非连续接收DRX非激活定时器和/或所述至少一个第一类HARQ进程对应的DRX重传定时器。
在一些实施例中,所述处理单元420还用于:
在对所述多个TB完成HARQ反馈后,启动或重启DRX非激活定时器和/或所述至少一个第一类HARQ进程对应的DRX重传定时器。
在一些实施例中,所述处理单元420还用于:
在对所述多个TB完成HARQ反馈的第一时长后,启动或重启DRX非激活定时器和/或所述至少一个第一类HARQ进程对应的DRX重传定时器。
在一些实施例中,所述第一时长是预定义的,或者,网络设备配置的。
在一些实施例中,所述第一时长是根据所述终端设备从上行发送到下行接收的切换时间和/或网络设备和所述终端设备之间的传输时延确定。
在一些实施例中,所述对所述多个TB完成HARQ反馈,包括:
对所述多个TB中使用所述第二类HARQ进程的TB完成HARQ反馈。
在一些实施例中,所述处理单元420还用于:
在对所述多个TB完成HARQ反馈后,启动或重启所述至少一个第二类HARQ进程对应的HARQ往返时间RTT定时器;或
在完成所述多个TB的接收后,启动或重启所述至少一个第二类HARQ进程对应的HARQ RTT定时器。
在一些实施例中,所述终端设备为非地面网络NTN中的终端设备。
在一些实施例中,所述终端设备为窄带物联网NB-IoT终端,或增强的机器类型通信eMTC终端。
可选地,在一些实施例中,上述通信模块可以是通信接口或收发器,或者是通信芯片或者片上系统的输入输出接口。上述确定模块可以是一个或多个处理器。
应理解,根据本申请实施例的终端设备400可对应于本申请方法实施例中的终端设备,并且终端设备400中的各个单元的上述和其它操作和/或功能分别为了实现图6至图8所示方法200中终端设备的相应流程,为了简洁,在此不再赘述。
综上,在本申请实施例中,对于一个PDCCH调度的多个TB的传输,在该多个TB中的部分TB使用的HARQ进程被配置为disabled DL HARQ feedback模式,其他TB使用的HARQ进程被配置为enabled DL HARQ feedback模式时,终端设备可以根据完成对该多个TB的HARQ反馈的时间,启动或重启drx-InactivityTimer和/或被配置为disabled DL HARQ feedback模式的HARQ进程对应的drx-RetransmissionTimer,即确定PDCCH的监听时机,有利于避免终端设备在对该多个TB完成HARQ反馈之前监听PDCCH导致的资源浪费。
在一种实现方式中,终端设备可以在完成对该多个TB的HARQ反馈后,立即启动drx-InactivityTimer和/或被配置为disabled DL HARQ feedback模式的HARQ进程对应的drx-RetransmissionTimer,使得终端设备能够尽快进入激活期(active time)监听PDCCH,以便网络设备能够尽快使用被配置为disabled DL HARQ feedback模式的HARQ进程调度后续的数据传输,减少HARQ进程Stalling的可能,提升传输速率和吞吐量。
在另一种实现方式中,在完成对该多个TB的HARQ反馈的第一时长之前,终端设备还没有准备好进行接收接收和/或网络设备发送的信号还不能到达终端设备,因此,终端设备可以在完成对该多个TB的HARQ反馈的第一时长后,启动drx-InactivityTimer和/或被配置为disabled DL HARQ feedback模式的HARQ进程对应的drx-RetransmissionTimer,使得终端设备能够尽快进入激活期(active time)监听PDCCH,以便网络设备能够尽快使用被配置为disabled DL HARQ feedback模式的HARQ进程调度后续的数据传输,减少HARQ进程Stalling的可能,提升传输速率和吞吐量。
图10是本申请实施例提供的一种通信设备600示意性结构图。图10所示的通信设备600包括处理器610,处理器610可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图10所示,通信设备600还可以包括存储器620。其中,处理器610可以从存储器620中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器620可以是独立于处理器610的一个单独的器件,也可以集成在处理器610中。
可选地,如图10所示,通信设备600还可以包括收发器630,处理器610可以控制该收发器630与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器630可以包括发射机和接收机。收发器630还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备600具体可为本申请实施例的网络设备,并且该通信设备600可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备600具体可为本申请实施例的移动终端/终端设备,并且该通信设备600可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
图11是本申请实施例的芯片的示意性结构图。图11所示的芯片700包括处理器710,处理器710可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图11所示,芯片700还可以包括存储器720。其中,处理器710可以从存储器720中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器720可以是独立于处理器710的一个单独的器件,也可以集成在处理器710中。
可选地,该芯片700还可以包括输入接口730。其中,处理器710可以控制该输入接口730与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片700还可以包括输出接口740。其中,处理器710可以控制该输出接口740与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本申请实施例中的网络设备,并且该芯片可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该芯片可应用于本申请实施例中的移动终端/终端设备,并且该芯片可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
图12是本申请实施例提供的一种通信系统900的示意性框图。如图12所示,该通信系统900包括终端设备910和网络设备920。
其中,该终端设备910可以用于实现上述方法中由终端设备实现的相应的功能,以及该网络设备920可以用于实现上述方法中由网络设备实现的相应的功能,为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序产品可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选的,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序可应用于本申请实施例中的移动终端/终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,)ROM、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (23)

  1. 一种无线通信的方法,其特征在于,包括:
    终端设备接收物理下行控制信道PDCCH,所述PDCCH用于调度多个传输块TB的传输,其中,所述多个TB是使用多个混合自动请求重传HARQ进程传输的,其中,所述多个HARQ进程包括至少一个第一类HARQ进程和至少一个第二类HARQ进程,其中,所述第一类HARQ进程被配置为去使能下行HARQ反馈模式,所述第二类HARQ进程被配置为使能下行HARQ反馈模式;
    根据对所述多个TB完成HARQ反馈的时间,启动或重启非连续接收DRX非激活定时器和/或所述至少一个第一类HARQ进程对应的DRX重传定时器。
  2. 根据权利要求1所述的方法,其特征在于,所述根据对所述多个TB完成HARQ反馈的时间,启动或重启非连续接收DRX非激活定时器和/或所述至少一个第一类HARQ进程对应的DRX重传定时器,包括:
    在对所述多个TB完成HARQ反馈后,启动或重启DRX非激活定时器和/或所述至少一个第一类HARQ进程对应的DRX重传定时器。
  3. 根据权利要求1所述的方法,其特征在于,所述根据对所述PDSCH完成HARQ反馈的时间,启动或重启非连续接收DRX非激活定时器和/或所述至少一个第一类HARQ进程对应的DRX重传定时器,包括:
    在对所述多个TB完成HARQ反馈的第一时长后,启动或重启DRX非激活定时器和/或所述至少一个第一类HARQ进程对应的DRX重传定时器。
  4. 根据权利要求3所述的方法,其特征在于,所述第一时长是预定义的,或者,网络设备配置的。
  5. 根据权利要求3或4所述的方法,其特征在于,所述第一时长是根据所述终端设备从上行发送到下行接收的切换时间和/或网络设备和所述终端设备之间的传输时延确定。
  6. 根据权利要求1-5中任一项所述的方法,其特征在于,
    所述对所述多个TB完成HARQ反馈,包括:
    对所述多个TB中使用所述第二类HARQ进程的TB完成HARQ反馈。
  7. 根据权利要求1-6中任一项所述的方法,其特征在于,所述方法还包括:
    在对所述多个TB完成HARQ反馈后,启动或重启所述至少一个第二类HARQ进程对应的HARQ往返时间RTT定时器;或
    在完成所述多个TB的接收后,启动或重启所述至少一个第二类HARQ进程对应的HARQ RTT定时器。
  8. 根据权利要求1-7中任一项所述的方法,其特征在于,所述终端设备为非地面网络NTN中的终端设备。
  9. 根据权利要求1-8中任一项所述的方法,其特征在于,所述终端设备为窄带物联网NB-IoT终端,或增强的机器类型通信eMTC终端。
  10. 一种终端设备,其特征在于,包括:
    通信单元,用于接收物理下行控制信道PDCCH,所述PDCCH用于调度多个传输块TB的传输,其中,所述多个TB是使用多个混合自动请求重传HARQ进程传输的,其中,所述多个HARQ进程包括至少一个第一类HARQ进程和至少一个第二类HARQ进程,其中,所述第一类HARQ进程被配置为去使能下行HARQ反馈模式,所述第二类HARQ进程被配置为使能下行HARQ反馈模式;
    处理单元,用于根据对所述多个TB完成HARQ反馈的时间,启动或重启非连续接收DRX非激活定时器和/或所述至少一个第一类HARQ进程对应的DRX重传定时器。
  11. 根据权利要求10所述的终端设备,其特征在于,所述处理单元还用于:
    在对所述多个TB完成HARQ反馈后,启动或重启DRX非激活定时器和/或所述至 少一个第一类HARQ进程对应的DRX重传定时器。
  12. 根据权利要求10所述的终端设备,其特征在于,所述处理单元还用于:
    在对所述多个TB完成HARQ反馈的第一时长后,启动或重启DRX非激活定时器和/或所述至少一个第一类HARQ进程对应的DRX重传定时器。
  13. 根据权利要求12所述的终端设备,其特征在于,所述第一时长是预定义的,或者,网络设备配置的。
  14. 根据权利要求12或13所述的终端设备,其特征在于,所述第一时长是根据所述终端设备从上行发送到下行接收的切换时间和/或网络设备和所述终端设备之间的传输时延确定。
  15. 根据权利要求10-14中任一项所述的终端设备,其特征在于,
    所述对所述多个TB完成HARQ反馈,包括:
    对所述多个TB中使用所述第二类HARQ进程的TB完成HARQ反馈。
  16. 根据权利要求10-15中任一项所述的终端设备,其特征在于,所述处理单元还用于:
    在对所述多个TB完成HARQ反馈后,启动或重启所述至少一个第二类HARQ进程对应的HARQ往返时间RTT定时器;或
    在完成所述多个TB的接收后,启动或重启所述至少一个第二类HARQ进程对应的HARQ RTT定时器。
  17. 根据权利要求10-16中任一项所述的终端设备,其特征在于,所述终端设备为非地面网络NTN中的终端设备。
  18. 根据权利要求10-17中任一项所述的终端设备,其特征在于,所述终端设备为窄带物联网NB-IoT终端,或增强的机器类型通信eMTC终端。
  19. 一种终端设备,其特征在于,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至9中任一项所述的方法。
  20. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至9中任一项所述的方法。
  21. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至9中任一项所述的方法。
  22. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至9中任一项所述的方法。
  23. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1至9中任一项所述的方法。
PCT/CN2022/131209 2022-11-10 2022-11-10 无线通信的方法和终端设备 WO2024098341A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/131209 WO2024098341A1 (zh) 2022-11-10 2022-11-10 无线通信的方法和终端设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/131209 WO2024098341A1 (zh) 2022-11-10 2022-11-10 无线通信的方法和终端设备

Publications (1)

Publication Number Publication Date
WO2024098341A1 true WO2024098341A1 (zh) 2024-05-16

Family

ID=91031674

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/131209 WO2024098341A1 (zh) 2022-11-10 2022-11-10 无线通信的方法和终端设备

Country Status (1)

Country Link
WO (1) WO2024098341A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110535558A (zh) * 2019-07-24 2019-12-03 中兴通讯股份有限公司 一种数据传输方法、装置和存储介质
CN110875814A (zh) * 2018-09-03 2020-03-10 华为技术有限公司 发送和接收混合自动重传请求确认信息的方法、通信装置
WO2021227030A1 (zh) * 2020-05-15 2021-11-18 Oppo广东移动通信有限公司 一种非连续接收的处理方法、电子设备及存储介质
WO2022067549A1 (zh) * 2020-09-29 2022-04-07 Oppo广东移动通信有限公司 无线通信的方法和设备
CN115174009A (zh) * 2021-04-06 2022-10-11 维沃移动通信有限公司 Harq反馈的确定方法及装置、终端及可读存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110875814A (zh) * 2018-09-03 2020-03-10 华为技术有限公司 发送和接收混合自动重传请求确认信息的方法、通信装置
CN110535558A (zh) * 2019-07-24 2019-12-03 中兴通讯股份有限公司 一种数据传输方法、装置和存储介质
WO2021227030A1 (zh) * 2020-05-15 2021-11-18 Oppo广东移动通信有限公司 一种非连续接收的处理方法、电子设备及存储介质
WO2022067549A1 (zh) * 2020-09-29 2022-04-07 Oppo广东移动通信有限公司 无线通信的方法和设备
CN115174009A (zh) * 2021-04-06 2022-10-11 维沃移动通信有限公司 Harq反馈的确定方法及装置、终端及可读存储介质

Similar Documents

Publication Publication Date Title
CN113728697B (zh) 无线通信方法和终端设备
WO2022067549A1 (zh) 无线通信的方法和设备
WO2020215332A1 (zh) 非连续接收的方法和设备
EP4181594A1 (en) Method for feeding back hybrid automatic repeat request acknowledgement (harq-ack) and terminal device
WO2018112850A1 (zh) 通信方法、终端设备和网络设备
US20230337320A1 (en) Wireless communication method and terminal device
US20240023015A1 (en) Sidelink transmission method and terminal
WO2024098341A1 (zh) 无线通信的方法和终端设备
WO2023056604A1 (zh) 无线通信的方法、终端设备和网络设备
WO2022205095A1 (zh) 无线通信的方法及终端设备
WO2022077174A1 (zh) 无线通信方法和设备
WO2021072705A1 (zh) 无线通信的方法和设备
WO2022067729A1 (zh) 非连续接收的方法、终端设备和网络设备
WO2022233031A1 (zh) 无线通信的方法和终端设备
WO2024092659A1 (zh) 非连续接收的方法、终端设备和网络设备
WO2023044655A1 (zh) 无线通信的方法、终端设备和网络设备
WO2022056725A1 (zh) 信道反馈方法、终端设备和网络设备
WO2022205346A1 (zh) 终端设备切换搜索空间集分组sssg的方法、终端设备和网络设备
WO2023133745A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023102788A1 (zh) 无线通信的方法、终端设备和网络设备
WO2024092653A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023115245A1 (zh) 无线通信的方法和终端设备
WO2022021032A1 (zh) 信息处理方法、终端设备和网络设备
WO2022133675A1 (zh) 无线通信方法和终端设备
WO2022077214A1 (zh) 传输公共时间提前量ta的方法、终端设备和网络设备