WO2023065316A1 - 基于预配置资源的小数据传输方法、装置、设备及介质 - Google Patents

基于预配置资源的小数据传输方法、装置、设备及介质 Download PDF

Info

Publication number
WO2023065316A1
WO2023065316A1 PCT/CN2021/125758 CN2021125758W WO2023065316A1 WO 2023065316 A1 WO2023065316 A1 WO 2023065316A1 CN 2021125758 W CN2021125758 W CN 2021125758W WO 2023065316 A1 WO2023065316 A1 WO 2023065316A1
Authority
WO
WIPO (PCT)
Prior art keywords
message
timer
network device
sdt
transmission
Prior art date
Application number
PCT/CN2021/125758
Other languages
English (en)
French (fr)
Inventor
林雪
王淑坤
尤心
付喆
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2021/125758 priority Critical patent/WO2023065316A1/zh
Priority to CN202180100548.1A priority patent/CN117716757A/zh
Publication of WO2023065316A1 publication Critical patent/WO2023065316A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management

Definitions

  • the present application relates to the field of wireless communication, and in particular to a small data transmission method, device, device and medium based on pre-configured resources.
  • the small data transmission can complete the data transmission when the terminal is in the inactive state (Inactive) of the radio resource control (Radio Resource Control, RRC).
  • Radio Resource Control Radio Resource Control
  • Embodiments of the present application provide a small data transmission method, device, device, and medium based on pre-configured resources. Described technical scheme is as follows:
  • a small data transmission method based on pre-configured resources comprising:
  • the terminal After the terminal selects and configures the authorized small data transmission CG-SDT, it transmits the first message during the operation of the first timer;
  • the first message includes a first uplink message sent during the SDT process, and the first uplink message includes at least an RRC message.
  • a small data transmission method based on pre-configured resources comprising:
  • the network device configures the timer duration of the first timer to the terminal; so that the terminal transmits the first message during the operation of the first timer;
  • the network device receives the first message, where the first message includes a first uplink message sent during the SDT process, and the first uplink message includes at least an RRC message.
  • a device for small data transmission based on pre-configured resources includes:
  • a transmission module configured to transmit the first message during the operation of the first timer after the CG-SDT is selected
  • the first message includes a first uplink message sent during the SDT process, and the first uplink message includes at least an RRC message.
  • a device for small data transmission based on pre-configured resources includes:
  • the configuration module is used for the network device to configure the timer duration of the first timer to the terminal; so that the terminal transmits the first message during the operation of the first timer;
  • a receiving module configured to receive the first message, where the first message includes a first uplink message sent during the SDT process, and the first uplink message includes at least an RRC message.
  • a communication device includes a processor and a memory, a computer program is stored in the memory, and the processor executes the computer program to realize the above-mentioned pre-based A small data transfer method for configuration resources.
  • a computer-readable storage medium where a computer program is stored in the storage medium, and the computer program is used to be executed by a processor, so as to implement the above-mentioned pre-configured resource-based small data transfer method.
  • a chip is provided, the chip includes a programmable logic circuit and/or program instructions, and when the chip is running, it is used to implement the above-mentioned small data transmission method based on pre-configured resources .
  • a computer program product or computer program includes computer instructions, the computer instructions are stored in a computer-readable storage medium, and the processor reads from the The computer-readable storage medium reads and executes the computer instructions, so as to realize the above-mentioned small data transmission method based on pre-configured resources.
  • the first message is transmitted during the operation of the first timer, which improves the mechanism of the first message transmission in the small data transmission process based on pre-configured resources, and ensures that the first message can be carried out in the initial transmission stage.
  • Message Transmission provides a solution to the problem of how to proceed with the first message transmission.
  • Fig. 1 is a flowchart of the EDT data transmission process
  • FIG. 2 is a flowchart of data transmission using PUR
  • Figure 3 is a time-frequency resource diagram of the transmission process of CG-SDT
  • Fig. 4 is a block diagram of a communication system provided by an exemplary embodiment of the present application.
  • FIG. 5 is a flowchart of a small data transmission method based on pre-configured resources provided by an embodiment of the present application
  • FIG. 6 is a flowchart of a small data transmission method based on pre-configured resources provided by an embodiment of the present application
  • FIG. 7 is a flowchart of a small data transmission method based on preconfigured resources provided by an embodiment of the present application.
  • FIG. 8 is a time-frequency resource diagram of a CG-SDT transmission process provided by an embodiment of the present application.
  • FIG. 9 is a flow chart of a small data transmission method based on pre-configured resources provided by an embodiment of the present application.
  • FIG. 10 is a time-frequency resource diagram of a CG-SDT transmission process provided by an embodiment of the present application.
  • FIG. 11 is a flowchart of a small data transmission method based on pre-configured resources provided by an embodiment of the present application.
  • FIG. 12 is a time-frequency resource diagram of a CG-SDT transmission process provided by an embodiment of the present application.
  • Fig. 13 is a flowchart of a small data transmission method based on pre-configured resources provided by an embodiment of the present application
  • FIG. 14 is a time-frequency resource diagram of a CG-SDT transmission process provided by an embodiment of the present application.
  • FIG. 15 is a flowchart of a small data transmission method based on pre-configured resources provided by an embodiment of the present application.
  • Fig. 16 is a flowchart of a small data transmission method based on pre-configured resources provided by an embodiment of the present application
  • FIG. 17 is a time-frequency resource diagram of a CG-SDT transmission process provided by an embodiment of the present application.
  • FIG. 18 is a flowchart of a small data transmission method based on pre-configured resources provided by an embodiment of the present application.
  • FIG. 19 is a flowchart of a small data transmission method based on pre-configured resources provided by an embodiment of the present application.
  • FIG. 20 is a flowchart of a small data transmission method based on pre-configured resources provided by an embodiment of the present application
  • Fig. 21 is a flowchart of a small data transmission method based on pre-configured resources provided by an embodiment of the present application
  • Fig. 22 is a flowchart of a small data transmission method based on pre-configured resources provided by an embodiment of the present application
  • Fig. 23 is a block diagram of a small data transmission device based on pre-configured resources provided by an embodiment of the present application.
  • FIG. 24 is a block diagram of a small data transmission device based on pre-configured resources provided by an embodiment of the present application.
  • Fig. 25 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • the network architecture and business scenarios described in the embodiments of the present application are for more clearly illustrating the technical solutions of the embodiments of the present application, and do not constitute limitations on the technical solutions provided by the embodiments of the present application.
  • the evolution of the technology and the emergence of new business scenarios, the technical solutions provided in the embodiments of this application are also applicable to similar technical problems.
  • first, second, etc. may be used in the present disclosure to describe various information, the information should not be limited to these terms. These terms are only used to distinguish information of the same type from one another.
  • a first parameter may also be called a second parameter, and similarly, a second parameter may also be called a first parameter.
  • the word "if” as used herein may be interpreted as “at” or “when” or “in response to a determination.”
  • the EDT process is introduced, which can be understood as a small data transmission process.
  • the terminal may always remain in the idle state (RRC_IDLE) or the suspended state (RRC_SUSPEND) or the inactive state (RRC_INACTIVE) to complete the transmission of uplink and/or downlink small data packets.
  • RRC_IDLE idle state
  • RRC_SUSPEND suspended state
  • RRC_INACTIVE inactive state
  • the network will configure a maximum transmission block threshold (TB size) allowed by the current network on the System Information Block 2 (SIB2), and the terminal judges the amount of data to be transmitted.
  • SIB2 System Information Block 2
  • the maximum TB size the terminal can initiate EDT transmission; otherwise, the terminal uses the normal connection establishment process and enters the connection state to transmit data.
  • the base station can directly submit the uplink data to the core network after receiving the RRC connection recovery request and uplink data sent by the terminal.
  • the specific process is shown in Figure 1.
  • a method of using PUR for data transmission in the idle state is introduced.
  • the PUR is only valid in the currently configured cell, that is, when the UE detects a cell change and initiates random access in the new cell, the UE needs to release the PUR configured in the original cell.
  • the PUR transmission process is similar to the LTE UP-EDT, except that the process of sending the preamble to obtain the TA and UL grant is omitted. The specific process is shown in Figure 2.
  • RRC_IDLE inactive state
  • RRC_INACTIVE active state
  • RRC_CONNECTED connected state
  • the RRC_INACTIVE state is a new state introduced by the 5G system from the perspective of energy saving.
  • the radio bearer and all radio resources will be released, but the UE access context is reserved on the terminal side and the base station side to quickly restore the RRC connection.
  • the network usually keeps terminals with infrequent data transmission in the RRC_INACTIVE state.
  • R17 set up a project to carry out research on small data transmission under RRC_INACTIVE.
  • the project goals mainly have two directions: small data transmission based on random access (two-step/four-step) (ie RA-SDT) and small data transmission based on pre-configured resources.
  • Data transmission such as: small data transmission of Configured Grant (CG) type1.
  • Uplink CG-SDT supports multiple Hybrid Automatic Repeat reQuest (HARQ) processes.
  • HARQ Hybrid Automatic Repeat reQuest
  • CG-SDT subsequent data transmission can use CG resources or dynamic scheduling (Dynamic Grant, DG), that is, dynamic allocation of Cell-Radio Network Temporary Identifier (C-RNTI) to UE.
  • DG Dynamic Grant
  • C-RNTI Cell-Radio Network Temporary Identifier
  • the UE can at least start the random access channel (Random Access Channel, RACH) procedure, for example: triggered due to no uplink (Uplink, UL) resources . There is no need to rebuild the Medium Access Control Packet Data Unit (MAC PDU).
  • RACH Random Access Channel
  • MAC PDU Medium Access Control Packet Data Unit
  • the previously configured C-RNTI in the RRC connection state is used by the UE to monitor the Physical Downlink Control Channel (PDCCH) in the CG-SDT.
  • PDCCH Physical Downlink Control Channel
  • the dynamic retransmission mechanism based on the Configured Scheduling-Radio Network Temporary Identifier can be used for CG-SDT. Whether the terminal provides the same CS-RNTI as the CS-RNTI configured in the RRC connected state or a new CS-RNTI.
  • the UE re-evaluates the SSB for the subsequent CG transmission for the purpose of CG resource selection. What happens if there is no valid SSB.
  • the UE can use CG or DG resources for new data transmission, and the retransmission is based on dynamic scheduling of the network.
  • the UE uses CG resources for new data transmission, it needs to re-evaluate the SSB configured with CG resources, that is, to determine whether there is an SSB that meets the Reference Signal Received Power (RSRP) threshold and is configured with CG resources .
  • RSRP Reference Signal Received Power
  • the terminal initiates a traditional RACH process when at least one of the following conditions is met:
  • TA is invalid, including timing alignment timer (Time Alignment Timer, TAT) timeout, and/or, RSRP variation exceeds the threshold;
  • TAT Timing Alignment Timer
  • the subsequent transmission refers to: in the SDT process, after the UE successfully completes the first uplink data transmission, the UE remains in the RRC connection state and continues to perform uplink data transmission without changing the terminal state.
  • the transmission process of CG-SDT can be divided into two phases: the initial transmission phase and the subsequent transmission phase.
  • Figure 3 shows the time-frequency resource diagram of the CG-SDT transmission process.
  • FIG. 4 shows a block diagram of a communication system provided by an exemplary embodiment of the present application.
  • the communication system may include: a network device 12 and a terminal 14 .
  • the network device 12 may be a base station, and the base station is a device deployed in an access network to provide a terminal with a wireless communication function.
  • the base station may include various forms of macro base stations, micro base stations, relay stations, access points and so on.
  • the names of devices with base station functions may be different. For example, in LTE systems, they are called eNodeB or eNB; in 5G NR-U systems, they are called gNodeB or gNB. .
  • the description "base station" may change.
  • the above-mentioned devices that provide wireless communication functions for the terminal 14 are collectively referred to as network devices.
  • the communication interface between network devices 12 is an Xn interface.
  • the terminal 14 may include various handheld devices with wireless communication functions, vehicle-mounted devices, wearable devices, computing devices or other processing devices connected to wireless modems, as well as various forms of user equipment, mobile stations (Mobile Station, MS), Terminal (terminal device) and so on.
  • the network device 12 and the terminal 14 communicate with each other through some air interface technology, such as Uu interface.
  • the terminal 14 supports performing a small data transmission process in an inactive state.
  • GSM Global System of Mobile Communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • LTE-A Advanced Long Term Evolution
  • NR New Radio
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Microwave Access
  • WLAN Wireless Local Area Networks
  • WiFi Wireless Fidelity
  • D2D Device to Device
  • M2M Machine to Machine
  • MTC Machine Type Communication
  • V2V Vehicle to Vehicle
  • V2X Vehicle to Everything
  • Fig. 5 provides a flow chart of a small data transmission method based on pre-configured resources provided by an embodiment of the present application. This method can be executed by the terminal shown in Fig. 4, and the method includes:
  • Step 310 After selecting CG-SDT, the terminal transmits the first message during the operation of the first timer;
  • the terminal is in an RRC inactive state when selecting CG-SDT.
  • the terminal triggers CG-SDT when the target condition is met.
  • the target conditions include but are not limited to any of the following:
  • All the data to be transmitted belongs to the radio bearer (Radio Bearer, RB) that is allowed to trigger SDT, and the amount of data to be transmitted is not greater than the data amount threshold configured by the network;
  • Radio Bearer Radio Bearer
  • the RSRP measurement result is not less than the RSRP threshold configured by the network
  • ⁇ TA is valid, that is, TAT is running, and/or the variation of RSRP does not exceed the pre-configured threshold.
  • the first message includes the first uplink message sent during the SDT process, and the first uplink message includes at least an RRC message.
  • the RRC message is an RRC resume request (Resume Request) message.
  • the first message further includes: terminal data.
  • the terminal data is user plane data and/or control plane data.
  • the first message further includes: a Media Access Layer Control Element (Medium Access Control Control Element, MAC CE);
  • MAC CE Media Access Layer Control Element
  • BSR Buffer Status Report
  • the terminal starts the first timer after selecting the CG-SDT; the timer duration of the first timer is configured by the network device.
  • the first timer is used to control the STD process; optionally, the first timer is a timer maintained by the RRC layer.
  • the terminal performs the first transmission of the first message during the running period of the first timer.
  • the terminal when the first timer is running and no correct reception feedback is received from the network device, the terminal does not transmit the second message, and the second message is a message to be transmitted in a subsequent transmission stage in the SDT process.
  • the second message is different from the first message.
  • the subsequent transmission stage is the subsequent transmission stage in the time-frequency resource diagram of the CG-SDT transmission process shown in FIG. 3 .
  • the method provided by this embodiment improves the transmission of the first message in the small data transmission process based on pre-configured resources by adding the first timer and transmitting the first message during the operation of the first timer.
  • the mechanism ensures that the first message can be transmitted in the initial transmission stage, and provides a method for how to perform the first message transmission.
  • FIG. 6 provides a flow chart of a small data transmission method based on pre-configured resources provided by an embodiment of the present application. This method can be executed by the terminal shown in FIG. 4, and the method includes:
  • Step 310 After selecting CG-SDT, the terminal transmits the first message during the operation of the first timer;
  • step 310 in the embodiment shown in FIG. 5 , which will not be repeated in this embodiment.
  • Step 320 During the running of the first timer and before receiving the correct reception feedback from the network device, transmit the first message by using the CG resource or the DG resource scheduled for retransmission by the network device.
  • the correct reception feedback is used to indicate that the first message has been received and successfully decoded.
  • the correct reception feedback is a hybrid automatic repeat request feedback (Hybrid Automatic Repeat request-ACK, HARQ-ACK).
  • DG resources are dynamic resources scheduled by network devices.
  • the network device schedules the DG resource to transmit the first message.
  • the DG resource and the CG resource are usually different, but the same situation is not excluded; exemplary Yes, the identification numbers (Identity, ID) of the HARQ processes of the same resource are the same, and the IDs of the HARQ processes of different resources are different.
  • the first message can be transmitted using CG resources, or the DG resources scheduled for retransmission by network equipment can be used to transmit the first message; those skilled in the art can understand that any one of the above two methods can be used.
  • the above two methods can be divided into two different embodiments.
  • the terminal maintains the CG-SDT process and does not return to the RA-SDT or RACH process.
  • the method provided by this embodiment improves the mechanism of the first message transmission in the process of small data transmission based on pre-configured resources by transmitting the first message during the running of the first timer, and by using CG resources Or the network device schedules the DG resource for retransmission, and provides a method for transmitting the first message when no correct reception feedback from the network device is received, further ensuring the successful transmission of the first message in the initial transmission stage.
  • the first implementation is to use the CG resources of the same HARQ process to transmit the first message.
  • FIG. 7 shows a flow chart of the small data transmission method based on the pre-configured resources of the first implementation.
  • the second implementation is to use the CG resources of the same or different HARQ processes to transmit the first message.
  • FIG. 9 shows a flowchart of the small data transmission method based on the pre-configured resources of the second implementation.
  • Step 322 During the running of the first timer and before receiving the correct reception feedback from the network device, transmit the first message by using the CG resource having the same hybrid automatic repeat request HARQ process as the first message transmitted for the first time;
  • the ID of the same HARQ process is the same, for example: the HARQ process ID corresponding to the CG resource that continuously transmits the first message is X.
  • FIG. 8 shows a time-frequency resource diagram of the CG-SDT transmission process provided by this embodiment.
  • the time-frequency resource diagram shows three CG resources.
  • the IDs of the HARQ processes of the three CG resources are the same, that is, the terminal uses the same ID as the HARQ process.
  • the CG resources with the same HARQ process transmit the first message for the first time, and the IDs of the HARQ processes of the three CG resources shown in FIG. 8 are all X.
  • Step 324 During the operation of the first timer and before receiving the correct reception feedback from the network device, the MAC PDU that generates the first message is stored in the first buffer;
  • the MAC PDU is generated when the first message is transmitted for the first time after the terminal selects CG-SDT, and the terminal stores the MAC PDU in the first buffer.
  • Step 326 Based on the first buffer zone, transmit the MAC PDU of the first message by using the CG resource having the same or different HARQ process as the first message transmitted for the first time;
  • the ID of the HARQ process of the CG resource of the MAC PDU that transmits the first message can be the same or different; for example: the ID of the HARQ process corresponding to the CG resource of the first message transmitted for the first time is X, and the ID of the HARQ process for the second transmission of the first message
  • the HARQ process ID corresponding to the CG resource is Y; or, the HARQ process IDs corresponding to the CG resources transmitting the first message are both X.
  • FIG. 10 shows a time-frequency resource diagram of the CG-SDT transmission process provided by this embodiment; the time-frequency resource diagram shows three CG resources, and the IDs of the HARQ processes of the three CG resources are different.
  • the IDs of the HARQ processes of the three CG resources shown in FIG. 10 are X, Y, and Z respectively.
  • the MAC PDU stored in the first buffer is stored in the buffer corresponding to any HARQ process.
  • the terminal When the terminal newly transmits the first message on the CG resource of any HARQ process, the terminal stores the MAC PDU in the first buffer into the buffer corresponding to any HARQ process.
  • the method provided in this embodiment provides two implementations of transmitting the first message, and further enriches the mechanism of the first message transmission in the small data transmission process based on pre-configured resources, which can be used in different situations Performing the first message transmission further ensures that the first message transmission is successfully performed in the initial transmission phase.
  • FIG. 11 shows a flowchart of a small data transmission method based on preconfigured resources provided by an embodiment of the present application. This method can be executed by the terminal shown in Figure 4, and the method includes:
  • Step 310 After selecting CG-SDT, the terminal transmits the first message during the operation of the first timer;
  • step 310 in the embodiment shown in FIG. 5 , which will not be repeated in this embodiment.
  • Step 320a During the running of the first timer and before receiving the correct reception feedback from the network device, transmit the first message by using the CG resource;
  • step 320 in the embodiment shown in FIG. 6 , which will not be repeated in this embodiment.
  • Step 332 Stop using the CG resource to transmit the first message if the correct reception feedback from the network device is received;
  • the correct reception feedback is used to indicate that the first message has been received and successfully decoded.
  • the correct reception feedback is HARQ-ACK.
  • Step 334 When the second timer expires or is not running, use the CG resource to retransmit the first message
  • FIG. 12 shows a time-frequency resource diagram of the CG-SDT transmission process provided by this embodiment.
  • the time-frequency resource diagram shows two CG resources.
  • the method provided in this embodiment adds the methods of using CG resources to retransmit the first message and stopping using CG resources to transmit the first message, fully considering the relationship between ensuring successful transmission and power consumption in the process of using CG resources.
  • the balance relationship further enriches the mechanism of the first message transmission in the small data transmission process based on pre-configured resources.
  • FIG. 13 shows a flow chart of a small data transmission method based on preconfigured resources provided by an embodiment of the present application. This method can be executed by the terminal shown in Figure 4, and the method includes:
  • Step 310 After selecting CG-SDT, the terminal transmits the first message during the operation of the first timer;
  • step 310 in the embodiment shown in FIG. 5 , which will not be repeated in this embodiment.
  • Step 328 During the running of the first timer and before receiving the correct reception feedback from the network device, and in the case of receiving the dynamic scheduling of the network device, stop using the CG resource to transmit the first message, and use the dynamic scheduling The scheduled DG resource retransmits the first message;
  • DG resources are dynamic resources scheduled by network devices.
  • the network device schedules the DG resource to transmit the first message.
  • the DG resource and the CG resource are usually different, but the same situation is not excluded; exemplary Yes, the IDs of the HARQ processes of the same resource are the same, and the IDs of the HARQ processes of different resources are different.
  • FIG. 14 shows a time-frequency resource diagram of the CG-SDT transmission process provided by this embodiment.
  • the time-frequency resource diagram shows a CG resource and a DG resource.
  • the method provided by this embodiment improves the mechanism of the first message transmission in the small data transmission process based on pre-configured resources by transmitting the first message during the running of the first timer, and by using the network device Scheduling the DG resource for retransmission provides a method for transmitting the first message when no correct reception feedback from the network device is received, further ensuring the successful transmission of the first message in the initial transmission phase.
  • the first implementation is that the terminal enters the RRC idle state;
  • FIG. 15 shows a flow chart of the small data transmission method based on pre-configured resources in the first implementation.
  • FIG. 16 shows the flow chart of the small data transmission method based on pre-configured resources in the first implementation.
  • the third implementation is that the terminal falls back to the RA-SDT or RACH process;
  • FIG. 18 shows a flow chart of the small data transmission method based on pre-configured resources in the first implementation.
  • Step 342 When the first timer expires and no correct reception feedback from the network device is received, the terminal enters the RRC idle state;
  • the terminal enters the RRC idle state to end the SDT process, and the correct reception feedback is used to indicate that the first message has been received and successfully decoded.
  • Step 344 During the operation of the first timer, if the number of transmissions and/or the transmission duration of the first message reaches the failure condition, the correct reception feedback from the network device is still not received, and the current SDT process is terminated;
  • the terminal terminates the current STD process, that is, it considers that the STD process has not been successfully completed.
  • failure conditions include but are not limited to at least one of the following:
  • the number of transmission times of the first message reaches a number threshold
  • the third timer expires.
  • the third timer is used for counting the duration of trying to transmit the first message.
  • the third timer is started; the duration of the third timer is configured by the network device.
  • the first timer is a timer maintained by the lower layer, for example: the first timer is a timer maintained by the MAC layer.
  • the third timer is used to increase the speed of detecting whether the first message is successfully transmitted.
  • FIG. 17 shows a time-frequency resource diagram of the CG-SDT transmission process provided by this embodiment.
  • the time-frequency resource diagram shows three CG resources, and when the third timer expires and/or the number of transmissions of the first message reaches the threshold, the terminal does not transmit the first message.
  • the implementation manner 2 further includes: receiving first configuration information, where the first configuration information is used to configure the number of times threshold or the duration of the third timer.
  • the timer duration of the third timer is used to indicate the failure condition of the transmission duration of the first message; the number threshold of the first information transmission times is used to indicate the failure condition of the first message transmission times.
  • Step 346 During the operation of the first timer, if the number of transmissions and/or the transmission duration of the first message reaches the failure condition, and the correct reception feedback from the network device is still not received, fall back to the RA-SDT or RACH process;
  • the terminal falls back to RA-SDT when the execution condition of RA-SDT is satisfied; the terminal falls back to the RACH process when the execution condition of RA-SDT is not met.
  • RA-SDT execution conditions of RA-SDT.
  • the third implementation manner further includes: receiving first configuration information, where the first configuration information is used to configure the number of times threshold or the duration of the third timer.
  • the timer duration of the third timer is used to indicate the failure condition of the transmission duration of the first message; the number threshold of the first information transmission times is used to indicate the failure condition of the first message transmission times.
  • this embodiment may also include the following steps:
  • Step 348 use the second buffer to store the CCCH SDU
  • the Common Control Channel Common Control Channel, CCCH
  • Service Data Units, SDU Service Data Units
  • the terminal When the terminal obtains the RRC recovery request message from the upper layer, it saves the CCCH SDU to the second buffer.
  • the NAS layer of the terminal acquires the RRC recovery request message, before the first transmission of the first message, the CCCH SDU of the RRC recovery request message is stored in the second buffer.
  • Step 350 Based on the CCCH SDU, construct the MAC PDU in message 3 or message A.
  • the MAC PDU in message 3 is formed; in the case of falling back to the two-step RA-SDT process, based on the CCCH SDU, the forming message MAC PDU in A.
  • Fig. 20 shows a flowchart of a small data transmission method based on pre-configured resources provided by an embodiment of the present application.
  • the terminal can be executed by the terminal shown in Figure 4
  • the network device can be executed by the network device shown in Figure 4, and the method includes:
  • Step 502 the network device configures the timer duration of the first timer to the terminal;
  • the terminal starts the first timer after selecting the CG-SDT; the timer duration of the first timer is configured by the network device.
  • the first timer is used to control the STD process; optionally, the first timer is a timer maintained by the RRC layer.
  • Step 504 After selecting CG-SDT, the terminal transmits the first message during the operation of the first timer;
  • step 310 in the embodiment shown in FIG. 5 , which will not be repeated in this embodiment.
  • Step 506 the network device receives the first message
  • the first message includes the first uplink message sent during the SDT process, and the first uplink message includes at least an RRC message.
  • the method provided by this embodiment improves the transmission of the first message in the small data transmission process based on pre-configured resources by adding the first timer and transmitting the first message during the operation of the first timer.
  • the mechanism ensures that the first message can be transmitted in the initial transmission stage, and provides a method for how to perform the first message transmission.
  • Fig. 21 shows a flowchart of a small data transmission method based on pre-configured resources provided by an embodiment of the present application.
  • the terminal can be executed by the terminal shown in Figure 4
  • the network device can be executed by the network device shown in Figure 4, and the method includes:
  • Step 502 the network device configures the timer duration of the first timer to the terminal;
  • step 502 in the embodiment shown in FIG. 20 , which will not be repeated in this embodiment.
  • Step 504 After selecting CG-SDT, the terminal transmits the first message during the operation of the first timer;
  • step 310 in the embodiment shown in FIG. 5 , which will not be repeated in this embodiment.
  • Step 508 The network device configures the terminal with a timer duration of the second timer
  • the terminal when the terminal finishes transmitting the first message on the CG, it starts the second timer; the timer duration of the second timer is configured by the network device.
  • the second timer is CGRT.
  • the timer duration of the second timer is configured, so that the terminal uses the CG resource to retransmit the first message when the second timer expires or is not running.
  • step 508 may be performed before, after or at the same time as step 504.
  • no restrictive provisions are made on the timing relationship between the above two steps.
  • the timer duration of the first timer and the second timer can be configured at the same time, or can be configured separately; the process of configuring the first timer and the third timer can be completed by using one signaling, or through different The multiple signalings of the application are respectively configured.
  • no restrictive provisions are made on the configuration methods of the timer durations of the first timer and the second timer.
  • Step 510 During the running of the first timer and before receiving the correct reception feedback from the network device, transmit the first message using the CG resource;
  • step 320a in the embodiment shown in FIG. 11 , which will not be repeated in this embodiment.
  • Step 512 When the second timer expires or is not running, use the CG resource to retransmit the first message
  • step 334 in the embodiment shown in FIG. 11 , which will not be repeated in this embodiment.
  • Step 506 the network device receives the first message
  • step 506 in the embodiment shown in FIG. 20 , which will not be repeated in this embodiment.
  • the method provided in this embodiment adds the method of using CG resources to retransmit the first message, fully considers the use of CG resources to retransmit in the process of using CG resources to ensure successful transmission, and enriches the method based on pre-configured resources.
  • Fig. 22 shows a flowchart of a small data transmission method based on pre-configured resources provided by an embodiment of the present application.
  • the terminal can be executed by the terminal shown in Figure 4
  • the network device can be executed by the network device shown in Figure 4, and the method includes:
  • Step 502 the network device configures the timer duration of the first timer to the terminal;
  • step 502 in the embodiment shown in FIG. 20 , which will not be repeated in this embodiment.
  • Step 504 After selecting CG-SDT, the terminal transmits the first message during the operation of the first timer;
  • step 310 in the embodiment shown in FIG. 5 , which will not be repeated in this embodiment.
  • Step 514 The network device configures the terminal with the timer duration of the third timer and/or the number threshold of the first information transmission times;
  • the third timer is used for counting the duration of trying to transmit the first message.
  • the third timer is started; the duration of the third timer is configured by the network device.
  • the first timer is a timer maintained by the lower layer, for example: the first timer is a timer maintained by the MAC layer.
  • the third timer is used to increase the speed of detecting whether the first message is successfully transmitted.
  • the timer duration of the third timer is used to indicate the failure condition of the transmission duration of the first message; the number threshold of the first information transmission times is used to indicate the failure condition of the first message transmission times.
  • step 514 may be performed before, after or at the same time as step 504, and in each embodiment of the present application, no restrictive provisions are made on the timing relationship between the above two steps.
  • the timer duration of the first timer, the timer duration of the third timer, and the number threshold of the first information transmission times can be configured simultaneously or separately; configure the timer duration of the first timer, the The process of the timer duration of the three timers and the number of times threshold of the first information transmission times can be configured using one signaling, or can be configured separately through different multiple signalings.
  • the first The configuration methods of the timer duration of the first timer, the timer duration of the third timer, and the number threshold of the first information transmission times do not make any restrictive provisions.
  • Step 516 During the operation of the first timer, if the number of times and/or the transmission duration of the first message reaches the failure condition, the correct reception feedback from the network device is still not received, terminate the current SDT process, or fall back to RA - SDT or RACH procedure;
  • step 344 in the embodiment shown in FIG. 16
  • step 346 in the embodiment shown in FIG. 18 , which will not be repeated in this embodiment.
  • Step 506 the network device receives the first message
  • step 506 in the embodiment shown in FIG. 20 , which will not be repeated in this embodiment.
  • the method provided by this embodiment improves the transmission of the first message in the small data transmission process based on pre-configured resources by adding the first timer and transmitting the first message during the operation of the first timer.
  • the mechanism ensures that the first message can be transmitted in the initial transmission stage, and provides a method for how to perform the first message transmission.
  • Fig. 23 shows a block diagram of an apparatus for small data transmission based on pre-configured resources provided by an exemplary embodiment of the present application, and the apparatus includes:
  • a transmission module 610 configured to transmit the first message during the operation of the first timer after the CG-SDT is selected
  • the first message includes a first uplink message sent during the SDT process, and the first uplink message includes at least an RRC message.
  • the transmission module 610 is also used to:
  • the first message is transmitted by using the CG resource or the DG resource scheduled for retransmission by the network device.
  • the transmission module 610 is also used to:
  • the terminal does not transmit the second message, and the second message is a subsequent transmission stage in the SDT process message to be transmitted.
  • the transmission module 610 is also used to:
  • the first message is transmitted by using the CG resource having the same HARQ process as the first message transmitted for the first time.
  • the transmission module 610 includes:
  • the first storage unit 612 is configured to generate the MAC PDU of the first message and store it in the first buffer during the operation of the first timer and before receiving the correct reception feedback from the network device;
  • the transmitting unit 614 is configured to transmit the MAC PDU of the first message based on the first buffer zone, using the CG resource that has the same or a different HARQ process as that used for the first transmission of the first message.
  • the device when the MAC PDU of the first message is transmitted using CG resources of different HARQ processes, the device further includes:
  • the second storage unit 616 is configured to store the MAC PDU stored in the first buffer in the case where the terminal newly transmits the first message on the CG resource of any HARQ process. In the buffer corresponding to any HARQ process.
  • the MAC PDU is generated when the terminal transmits the first message for the first time after the terminal selects CG-SDT.
  • the transmission module 610 is also used to:
  • the second timer is a CGRT timer.
  • the transmission module 610 is also used to:
  • the dynamic scheduling is used to schedule retransmission of the first message.
  • the device also includes:
  • the conversion module 620 is configured to enter the RRC idle state when the first timer expires and no correct reception feedback from the network device is received.
  • the device also includes:
  • Termination module 630 configured to terminate the current SDT if no correct reception feedback from the network device is received after the number of transmissions and/or transmission duration of the first message reaches the failure condition during the operation of the first timer process.
  • the device also includes:
  • the rollback module 640 is configured to roll back if no correct reception feedback from the network device is received after the number of transmission times and/or the transmission duration of the first message reaches the failure condition during the operation of the first timer to the RA-SDT or RACH procedure.
  • the failure conditions include at least one of the following:
  • the number of transmission times of the first message reaches a number threshold
  • the third timer expires; wherein, the third timer is used for counting the duration of attempting to transmit the first message.
  • the device also includes:
  • the receiving module 650 is configured to receive first configuration information, where the first configuration information is used to configure the times threshold or the duration of the third timer.
  • the fallback to RA-SDT or RACH process includes:
  • the execution conditions of the RA-SDT include:
  • the rollback module 640 is also used to:
  • the RRC message is an RRC recovery request message.
  • the first uplink message further includes:
  • Fig. 24 shows a block diagram of an apparatus for small data transmission based on pre-configured resources provided by an exemplary embodiment of the present application, and the apparatus includes:
  • the configuration module 710 is used for the network device to configure the timer duration of the first timer to the terminal; so that the terminal transmits the first message during the operation of the first timer;
  • the receiving module 720 is configured to receive the first message, the first message includes the first uplink message sent during the SDT process, and the first uplink message includes at least an RRC message.
  • the configuration module 710 is also used to:
  • the network device configures the timer duration of the second timer to the terminal; so that the terminal uses CG resources to retransmit the first message when the second timer expires or is not running.
  • the configuration module 710 is also used to:
  • the network device configures a timer duration of a third timer to the terminal; the timer duration of the third timer is used to indicate a failure condition of the transmission duration of the first message;
  • the network device configures a threshold value of the first information transmission times to the terminal; the threshold value of the first information transmission times is used to indicate a failure condition of the first message transmission times.
  • the device provided by the above embodiment realizes its functions, it only uses the division of the above-mentioned functional modules as an example for illustration. In practical applications, the above-mentioned function allocation can be completed by different functional modules according to actual needs. That is, the content structure of the device is divided into different functional modules to complete all or part of the functions described above.
  • Fig. 25 shows a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • the communication device may include: a processor 801 , a receiver 802 , a transmitter 803 , a memory 804 and a bus 805 .
  • the processor 801 includes one or more processing cores, and the processor 801 executes various functional applications and information processing by running software programs and modules.
  • the receiver 802 and the transmitter 803 can be implemented as a transceiver, and the transceiver can be a communication chip.
  • the memory 804 is connected to the processor 801 through the bus 805; for example, the processor 801 can be implemented as a first IC chip, and the processor 801 and the memory 804 can be jointly implemented as a second IC chip; the first chip or the second chip can be It is an Application Specific Integrated Circuit (ASIC) chip.
  • ASIC Application Specific Integrated Circuit
  • the memory 804 may be used to store at least one computer program, and the processor 801 is used to execute the at least one computer program, so as to implement various steps in the foregoing method embodiments.
  • the memory 804 can be implemented by any type of volatile or non-volatile storage device or their combination, and the volatile or non-volatile storage device includes but not limited to: random-access memory (Random-Access Memory, RAM) , Read-Only Memory (Read-Only Memory, ROM), Erasable Programmable Read-Only Memory (EPROM), Electrically Erasable Programmable Read-Only Memory (Electrically Erasable Programmable Read-Only Memory, EEPROM), flash memory or other solid-state storage technology, compact disc read-only memory (CD-ROM), high-density digital video disc (Digital Video Disc, DVD) or other optical storage, tape cartridges, tapes, disks storage or other magnetic storage devices.
  • random-access memory Random-Access Memory
  • ROM Read-Only Memory
  • EPROM Erasable Programmable Read-Only Memory
  • EEPROM Electrically Erasable Programmable Read-Only Memory
  • flash memory or other solid-state storage technology compact disc read-only memory (CD-ROM), high-
  • An embodiment of the present application also provides a computer-readable storage medium, where a computer program is stored in the storage medium, and the computer program is used to be executed by a processor of a multi-link device, so as to implement the above-mentioned small resource based on pre-configured resources. data transfer method.
  • the computer-readable storage medium may include: a read-only memory (Read-Only Memory, ROM), a random-access memory (Random-Access Memory, RAM), a solid-state hard drive (Solid State Drives, SSD) or an optical disc.
  • the random access memory may include resistive random access memory (Resistance Random Access Memory, ReRAM) and dynamic random access memory (Dynamic Random Access Memory, DRAM).
  • the embodiment of the present application also provides a chip, the chip includes a programmable logic circuit and/or program instructions, and when the chip is running on a multi-link device, it is used to realize the above-mentioned small data transmission based on pre-configured resources method.
  • An embodiment of the present application also provides a computer program product or computer program, where the computer program product or computer program includes computer instructions, the computer instructions are stored in a computer-readable storage medium, and the processor of the multi-link device reads from the The computer-readable storage medium reads and executes the computer instructions, so as to realize the above-mentioned small data transmission method based on pre-configured resources.
  • the "indication" mentioned in the embodiments of the present application may be a direct indication, may also be an indirect indication, and may also mean that there is an association relationship.
  • a indicates B which can mean that A directly indicates B, for example, B can be obtained through A; it can also indicate that A indirectly indicates B, for example, A indicates C, and B can be obtained through C; it can also indicate that there is an association between A and B relation.
  • the term "corresponding" may indicate that there is a direct or indirect correspondence between the two, or that there is an association between the two, or that it indicates and is indicated, configuration and is configuration etc.
  • the "plurality” mentioned herein means two or more.
  • “And/or” describes the association relationship of associated objects, indicating that there may be three types of relationships, for example, A and/or B may indicate: A exists alone, A and B exist simultaneously, and B exists independently.
  • the character “/” generally indicates that the contextual objects are an "or” relationship.
  • the numbering of the steps described herein only exemplarily shows a possible sequence of execution among the steps.
  • the above-mentioned steps may not be executed according to the order of the numbers, such as two different numbers
  • the steps are executed at the same time, or two steps with different numbers are executed in the reverse order as shown in the illustration, which is not limited in this embodiment of the present application.
  • the functions described in the embodiments of the present application may be implemented by hardware, software, firmware or any combination thereof.
  • the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium.
  • Computer-readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • a storage media may be any available media that can be accessed by a general purpose or special purpose computer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种基于预配置资源的小数据传输方法、装置、设备及介质,涉及无线通信领域。所述方法包括:终端在选择配置授权小数据传输CG-SDT后,在第一定时器的运行期间传输第一消息;其中,所述第一消息包含所述SDT过程中发送的第一条上行消息,所述第一条上行消息中至少包含无线资源控制RRC消息。本申请的实施例提供的技术方案通过添加第一定时器,在第一定时器的运行期间传输第一消息,完善了基于预配置资源的小数据传输过程中的第一消息传输的机制,保证了在初始传输阶段可以进行第一消息传输,为如何进行第一消息传输的问题提供了方法。

Description

基于预配置资源的小数据传输方法、装置、设备及介质 技术领域
本申请涉及无线通信领域,特别涉及一种基于预配置资源的小数据传输方法、装置、设备及介质。
背景技术
小数据传输可以在终端处于无线资源控制(Radio Resource Control,RRC)非激活态(Inactive)的情况下完成数据传输。
在相关技术中,配置授权(Configured Grant,CG)小数据传输(Small Data Transmission,SDT)过程,需要在初始传输阶段完成第一消息的传输情况下,进入后续传输阶段,进行数据传输。
然而,如何保证第一消息传输成功,是亟待解决的问题。
发明内容
本申请实施例提供了一种基于预配置资源的小数据传输方法、装置、设备及介质。所述技术方案如下:
根据本申请实施例的一个方面,提供了一种基于预配置资源的小数据传输方法,所述方法包括:
终端在选择配置授权小数据传输CG-SDT后,在第一定时器的运行期间传输第一消息;
其中,所述第一消息包含所述SDT过程中发送的第一条上行消息,所述第一条上行消息中至少包含RRC消息。
根据本申请实施例的另一个方面,提供了一种基于预配置资源的小数据传输方法,所述方法包括:
网络设备向终端配置第一定时器的定时器时长;以便所述终端在所述第一定时器的运行期间传输第一消息;
所述网络设备接收所述第一消息,所述第一消息包含所述SDT过程中发送的第一条上行消息,所述第一条上行消息中至少包含RRC消息。
根据本申请实施例的另一个方面,提供了一种基于预配置资源的小数据传输装置,所述装置包括:
传输模块,用于在选择CG-SDT后,在第一定时器的运行期间传输第一消息;
其中,所述第一消息包含所述SDT过程中发送的第一条上行消息,所述第一条上行消息中至少包含RRC消息。
根据本申请实施例的另一个方面,提供了一种基于预配置资源的小数据传输装置,所述装置包括:
配置模块,用于网络设备向终端配置第一定时器的定时器时长;以便所述终端在所述第一定时器的运行期间传输第一消息;
接收模块,用于接收所述第一消息,所述第一消息包含所述SDT过程中发送的第一条上行消息,所述第一条上行消息中至少包含RRC消息。
根据本申请实施例的另一方面,提供了一种通信设备,所述通信设备包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述计算机程序以实现上述基于预配置资源的小数据传输方法。
根据本申请实施例的另一个方面,提供了一种计算机可读存储介质,所述存储介质中存储有计算机程序,所述计算机程序用于被处理器执行,以实现上述基于预配置资源的小数据传输方法。
根据本申请实施例的另一个方面,提供了一种芯片,所述芯片包括可编程逻辑电路和/或程序指令,当所述芯片运行时,用于实现上述基于预配置资源的小数据传输方法。
根据本申请实施例的另一个方面,提供了一种计算机程序产品或计算机程序,所述计算机程序产品或计算机程序包括计算机指令,所述计算机指令存储在计算机可读存储介质中,处理器从所述计算机可读存储介质读取并执行所述计算机指令,以实现上述基于预配置资源的小数据传输方法。
本申请实施例提供的技术方案可以带来如下有益效果:
通过添加第一定时器,在第一定时器的运行期间传输第一消息,完善了基于预配置资源的小数据传输过程中的第一消息传输的机制,保证了在初始传输阶段可以进行第一消息传输,为如何进行第一消息传输的问题提供了方法。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是EDT数据传输流程的流程图;
图2是利用PUR进行数据传输的流程图;
图3是CG-SDT的传输过程的时频资源图;
图4是本申请一个示例性实施例提供的通信系统的框图;
图5是本申请一个实施例提供的基于预配置资源的小数据传输方法的流程图;
图6是本申请一个实施例提供的基于预配置资源的小数据传输方法的流程图;
图7是本申请一个实施例提供的基于预配置资源的小数据传输方法的流程图;
图8是本申请一个实施例提供的CG-SDT的传输过程的时频资源图;
图9是本申请一个实施例提供的基于预配置资源的小数据传输方法的流程图;
图10是本申请一个实施例提供的CG-SDT的传输过程的时频资源图;
图11是本申请一个实施例提供的基于预配置资源的小数据传输方法的流程图;
图12是本申请一个实施例提供的CG-SDT的传输过程的时频资源图;
图13是本申请一个实施例提供的基于预配置资源的小数据传输方法的流程图;
图14是本申请一个实施例提供的CG-SDT的传输过程的时频资源图;
图15是本申请一个实施例提供的基于预配置资源的小数据传输方法的流程图;
图16是本申请一个实施例提供的基于预配置资源的小数据传输方法的流程图;
图17是本申请一个实施例提供的CG-SDT的传输过程的时频资源图;
图18是本申请一个实施例提供的基于预配置资源的小数据传输方法的流程图;
图19是本申请一个实施例提供的基于预配置资源的小数据传输方法的流程图;
图20是本申请一个实施例提供的基于预配置资源的小数据传输方法的流程图;
图21是本申请一个实施例提供的基于预配置资源的小数据传输方法的流程图;
图22是本申请一个实施例提供的基于预配置资源的小数据传输方法的流程图;
图23是本申请一个实施例提供的基于预配置资源的小数据传输装置的框图;
图24是本申请一个实施例提供的基于预配置资源的小数据传输装置的框图;
图25是本申请一个实施例提供的通信设备的结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本申请相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本申请的一些方面相一致的装置和方法的例子。
本申请实施例描述的网络架构以及业务场景是为了更加清楚地说明本申请实施例的技术方案,并不构成对本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
在本公开使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开。在本公开和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开可能采用术语第一、第二等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开范围的情况下,第一参数也可以被称为第二参数,类似地,第二参数也可以被称为第一参数。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
首先,对本申请实施例中涉及的名词进行简单介绍:
提前数据传输(Early Data Transmission,EDT):
在长期演进(Long Term Evolution,LTE)中,引入了EDT过程,该过程可以理解为一种小数据传输过程。在该过程中,终端可能始终保持在空闲态(RRC_IDLE)或者挂起态(RRC_SUSPEND)或者非激活态(RRC_INACTIVE),完成上行和/或下行小数据包的传输。在配置上,网络会在系统信息块2(System Information Block 2,SIB2)上配置一个当前网络允许传输的最大传输块阈值(TB size),终端判断自己待传输的数据量,如果小于这个广播的最大TB size,则终端可以发起EDT传输;反之,终端使用正常的连 接建立过程,进入连接态来传输数据。
若终端发起上行的EDT的小区与最后的服务小区相同,则基站在收到终端发送的RRC连接恢复请求及上行数据后,可以直接将上行数据递交给核心网,具体流程如图1所示。
预配置上行资源(Preconfigured Uplink Resource,PUR):
在LTE Release16中,针对NB-IoT和eMTC场景,引入了在空闲态利用PUR进行数据传输的方法。PUR只在当前配置的小区内有效,即当UE检测到小区变化,并在新的小区发起随机接入时,UE需要释放原小区配置的PUR。PUR传输流程和LTE UP-EDT类似,只是省去了发送前导码获取TA和UL grant的过程,具体流程如图2所示。
小数据传输(Small Data Transmission,SDT):
在5G NR系统中,RRC状态分为3种,分别为:RRC_IDLE(空闲态)、RRC_INACTIVE(非激活态)、RRC_CONNECTED(连接态)。
其中,RRC_INACTIVE态是5G系统从节能角度考虑引入的新状态,对于RRC_INACTIVE态的终端,无线承载和全部无线资源都会被释放,但终端侧和基站侧保留UE接入上下文,以便快速恢复RRC连接,网络通常将数据传输不频繁的终端保持在RRC_INACTIVE态。
R16之前,处于RRC_INACTIVE状态的终端不支持数据传输,当上行或下行数据到达时,终端需要恢复连接,待数据传输完成后再释放到非激活态。对于数据量小且传输频率低的终端,这样的传输机制会导致不必要的功耗和信令开销。因此,R17立项开展对RRC_INACTIVE下小数据传输的研究,项目目标主要有两个方向:基于随机接入(两步/四步)的小数据传输(即RA-SDT)以及基于预配置资源的小数据传输,如:配置授权(Configured Grant,CG)type1的小数据传输。
对于基于预配置资源的小数据传输,3GPP RAN2工作组经过讨论得出如下结论:
1.支持CG-SDT的动态授权重传。
2.上行CG-SDT支持多个混合自动重传请求(Hybrid Automatic Repeat reQuest,HARQ)进程。
3.对于CG-SDT,随后的数据传输可以使用CG资源或动态调度(Dynamic Grant,DG),即给UE的小区无线网络临时标识(Cell-Radio Network Temporary Identifier,C-RNTI)的动态拨款。关于C-RNTI的细节,可以与前面的C-RNTI相同,也可以由网络显式配置,可以在阶段3中讨论。
4.在随后的CG传输阶段,即在UE收到网络设备的响应后,UE至少可以启动随机接入信道(Random Access Channel,RACH)程序,例如:由于没有上行(Uplink,UL)资源而触发。不需要重建媒体接入控制协议数据单元(Medium Access Control Packet Data Unit,MAC PDU)。用于进一步研究RA-SDT RA资源是否可以用于后续数据。
a.至少同意以下条件:(1)在进行评估时没有合格的同步信号块(Synchronization Signaling Block,SSB);(2)上行定时提前量(Timing Advance,TA)无效时;(3)由于缺乏UL资源而触发选择重传(Selective Repeat,SR)。
5.之前配置的RRC连接态的C-RNTI用于UE在CG-SDT中监控物理下行控制信道(Physical Downlink Control Channel,PDCCH)。
6.基于配置调度无线网络临时标识(Configured Scheduling-Radio Network Temporary Identifier,CS-RNTI)的动态重传机制可用于CG-SDT。终端是否提供CS-RNTI与RRC连接态中配置的CS-RNTI相同或新的CS-RNTI。
7.在随后的新CG传输阶段,为了CG资源选择的目的,UE重新评估SSB用于后续CG传输。如果没有有效的SSB会发生什么。
根据上述结论,在CG-SDT过程中,UE可以使用CG或DG资源进行数据新传,重传基于网络的动态调度。UE在每次利用CG资源进行数据新传时,需要重新对配置了CG资源的SSB进行评估,即判断是否存在满足参考信号接收功率(Reference Signal Received Power,RSRP)阈值且配置了CG资源的SSB。
在CG-SDT的后续(Subsequent)传输阶段,终端在满足以下条件中的至少一种的情况下,发起传统的RACH过程:
1.在重新评估SSB时,没有满足RSRP阈值的且配置了CG资源的SSB;
2.TA无效,包括定时对齐定时器(Time Alignment Timer,TAT)超时,和/或,RSRP变化量超过门限;
3.没有用于传输SR的上行资源;
需要说明的是,后续传输指的是:在SDT过程中,UE在成功完成第一次上行数据传输后,在不改变终端状态的情况下,即保持在RRC连接态,继续执行上行数据传输。
根据会议进展,CG-SDT的传输过程可以分为两个阶段:初始传输阶段和后续传输阶段,图3示出了CG-SDT的传输过程的时频资源图。
图4示出了本申请一个示例性实施例提供的通信系统的框图,该通信系统可以包括:网络设备12和终端14。
网络设备12可以是基站,所述基站是一种部署在接入网中用以为终端提供无线通信功能的装置。基站可以包括各种形式的宏基站,微基站,中继站,接入点等等。在采用不同的无线接入技术的系统中,具备基站功能的设备的名称可能会有所不同,例如在LTE系统中,称为eNodeB或者eNB;在5G NR-U系统中,称为gNodeB或者gNB。随着通信技术的演进,“基站”这一描述可能会变化。为方便本申请实施例中,上述为终端14提供无线通信功能的装置统称为网络设备。可选的,网络设备12之间的通信接口为Xn接口。
终端14可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其他处理设备,以及各种形式的用户设备,移动台(Mobile Station,MS),终端(terminal device)等等。为方便描述,上面提到的设备统称为终端。网络设备12与终端14之间通过某种空口技术互相通信,例如Uu接口。可选的,终端14支持在非激活态执行小数据传输过程。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile Communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)系统、先进的长期演进(Advanced Long Term Evolution,LTE-A)系统、新无线(New Radio,NR)系统、NR系统的演进系统、非授权频段上的LTE(LTE-based access to Unlicensed spectrum,LTE-U)系统、NR-U系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信系统、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)、下一代通信系统或其他通信系统等。
通常来说,传统的通信系统支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信系统将不仅支持传统的通信,还将支持例如,设备到设备(Device to Device,D2D)通信,机器到机器(Machine to Machine,M2M)通信,机器类型通信(Machine Type Communication,MTC),车辆间(Vehicle to Vehicle,V2V)通信以及车联网(Vehicle to Everything,V2X)系统等。本申请实施例也可以应用于这些通信系统。
图5提供了本申请一个实施例提供的基于预配置资源的小数据传输方法的流程图,本方法可以由图4所示的终端执行,该方法包括:
步骤310:终端在选择CG-SDT后,在第一定时器的运行期间传输第一消息;
示例性的,终端在选择CG-SDT时处于RRC非激活态。终端在满足目标条件的情况下,触发CG-SDT。示例性的,目标条件包括但不限于如下任意一种:
·待传输数据全部属于允许触发SDT的无线承载(Radio Bearer,RB),且待传输数据量不大于网络配置的数据量门限;
·RSRP测量结果不小于网络配置的RSRP门限;
·所选载波及SSB上存在CG资源;
·TA有效,即TAT处于运行状态,和/或RSRP变化量不超过预配置门限。
第一消息包含所述SDT过程中发送的第一条上行消息,所述第一条上行消息中至少包含RRC消息。示例性的,RRC消息是RRC恢复请求(Resume Request)消息。
可选的,第一消息还包括:终端数据,示例性的,终端数据是用户面数据和/或控制面数据。
可选的,第一消息还包括:媒体接入层控制单元(Medium Access Control Control Element,MAC CE);示例性的,MAC CE是缓冲区状态报告(Buffer Status Report,BSR)MAC CE。
示例性的,终端在选择CG-SDT后,启动第一定时器;第一定时器的定时器时长是网络设备配置的。示例性的,第一定时器用于控制STD过程;可选的,第一定时器是RRC层维护的定时器。
示例性的,终端在第一定时器的运行期间进行第一消息的第一次传输。
可选的,在第一定时器的运行期间且没有接收到网络设备的正确接收反馈的情况下,终端不进行第二消息的传输,第二消息是SDT过程中后续传输阶段的待传输消息。示例性的,第二消息与第一消息不同。示例性的,后续传输阶段是图3示出的CG-SDT的传输过程的时频资源图中的后续传输阶段。
综上所述,本实施例提供的方法,通过添加第一定时器,在第一定时器的运行期间传输第一消息,完 善了基于预配置资源的小数据传输过程中的第一消息传输的机制,保证了在初始传输阶段可以进行第一消息传输,为如何进行第一消息传输的问题提供了方法。
图6提供了本申请一个实施例提供的基于预配置资源的小数据传输方法的流程图,本方法可以由图4所示的终端执行,该方法包括:
步骤310:终端在选择CG-SDT后,在第一定时器的运行期间传输第一消息;
本步骤可以参考图5示出的实施例中的步骤310,在本实施例中不再赘述。
步骤320:在第一定时器的运行期间且没有接收到网络设备的正确接收反馈之前,利用CG资源或网络设备调度重传的DG资源传输第一消息。
正确接收反馈用于指示第一消息已经被接收且成功解码,示例性的,正确接收反馈是混合自动重传请求反馈(Hybrid Automatic Repeat request-ACK,HARQ-ACK)。
DG资源是网络设备调度的动态资源。示例性的,网络设备在第一消息已经被接收但未成功解码的情况下,调度DG资源传输第一消息,DG资源与CG资源通常是不同的,但也不排除是相同的情况;示例性的,相同资源的HARQ进程的标识号(Identity,ID)相同,不同资源的HARQ进程的ID不同。
在本实施例中,可以利用CG资源传输第一消息,也可以利用网络设备调度重传的DG资源传输第一消息;本领域技术人员可以理解,使用上述两种方法中的任意一种即可以完成基于预配置资源的小数据传输过程,上述两种方法可以拆分成不同的两个实施例。
示例性的,在第一定时器的运行期间且没有接收到网络设备的正确接收反馈之前,终端保持CG-SDT过程,不退回到RA-SDT或RACH过程。
综上所述,本实施例提供的方法,通过在第一定时器的运行期间传输第一消息,完善了基于预配置资源的小数据传输过程中的第一消息传输的机制,通过利用CG资源或网络设备调度重传的DG资源,在没有接收到网络设备的正确接收反馈的情况下,提供了第一消息传输的方法,进一步保证了在初始传输阶段成功进行第一消息传输。
针对利用CG资源持续传输第一消息的情况;在本申请中,利用CG资源持续传输第一消息有两种实现方式:
实现方式一是利用同一HARQ进程的CG资源传输第一消息,图7示出了实现方式一的基于预配置资源的小数据传输方法的流程图。
实现方式二是利用相同或不同HARQ进程的CG资源传输第一消息,图9示出了实现方式二的基于预配置资源的小数据传输方法的流程图。
两种实现方式的详细介绍如下:
实现方式一:
步骤322:在第一定时器的运行期间且没有接收到网络设备的正确接收反馈之前,利用与第一次传输第一消息具有相同混合自动重传请求HARQ进程的CG资源,传输第一消息;
示例性的,同一HARQ进程的ID相同,比如:持续传输第一消息的CG资源对应的HARQ进程ID为X。图8示出了本实施例提供的CG-SDT的传输过程的时频资源图,时频资源图中示出了三个CG资源,三个CG资源的HARQ进程的ID相同,即终端利用与第一次传输第一消息具有相同HARQ进程的CG资源传输第一消息,图8示出的三个CG资源的HARQ进程的ID均为X。
实现方式二:
步骤324:在第一定时器的运行期间且没有接收到网络设备的正确接收反馈之前,生成第一消息的MAC PDU存储在第一缓冲区中;
示例性的,MAC PDU是在终端选择CG-SDT后,第一次传输第一消息时生成的,终端将MAC PDU存储在第一缓冲区中。
步骤326:基于第一缓冲区,利用与第一次传输第一消息具有相同或不同HARQ进程的CG资源,传输第一消息的MAC PDU;
传输第一消息的MAC PDU的CG资源的HARQ进程的ID可以相同,也可以不相同;比如:第一次传输第一消息的CG资源对应的HARQ进程ID为X,第二次传输第一消息的CG资源对应的HARQ进程ID为Y;或,传输第一消息的CG资源对应的HARQ进程ID均为X。图10示出了本实施例提供的CG-SDT的传输过程的时频资源图;时频资源图中示出了三个CG资源,三个CG资源的HARQ进程的ID不同。图10示出的三个CG资源的HARQ进程的ID分别为X、Y、Z。
可选的,终端在任一HARQ进程的CG资源上新传第一消息的情况下,将存储在第一缓冲区中的MAC PDU,存储至任一HARQ进程对应的缓冲区中。
终端在任一HARQ进程的CG资源上新传第一消息的情况下,终端将第一缓冲区中的MAC PDU,存储至任一HARQ进程对应的缓冲区中。
综上所述,本实施例提供的方法,提供了传输第一消息的两种实现方式,进一步丰富了基于预配置资源的小数据传输过程中的第一消息传输的机制,可以在不同情况下进行第一消息传输,进一步保证了在初始传输阶段成功进行第一消息传输。
针对利用CG资源持续传输第一消息的情况;图11示出了本申请一个实施例提供的基于预配置资源的小数据传输方法的流程图。本方法可以由图4所示的终端执行,该方法包括:
步骤310:终端在选择CG-SDT后,在第一定时器的运行期间传输第一消息;
本步骤可以参考图5示出的实施例中的步骤310,在本实施例中不再赘述。
步骤320a:在第一定时器的运行期间且没有接收到网络设备的正确接收反馈之前,利用CG资源传输第一消息;
本步骤可以参考图6示出的实施例中的步骤320,在本实施例中不再赘述。
本申请的实施例中还包括如下步骤中的任意一个:
步骤332:在接收到网络设备的正确接收反馈的情况下,停止使用CG资源传输第一消息;
正确接收反馈用于指示第一消息已经被接收且成功解码,示例性的,正确接收反馈是HARQ-ACK。
步骤334:在第二定时器超时或未运行状态的情况下,使用CG资源重传第一消息;
示例性的,终端在CG上完成第一消息传输时,启动第二定时器;第二定时器的定时器时长是网络设备配置的。示例性的,第二定时器为配置授权重传定时器(Configured Grant Retransmission Timer,CGRT)。图12示出了本实施例提供的CG-SDT的传输过程的时频资源图。时频资源图中示出了两个CG资源,终端在第一个CG上完成第一消息传输时,启动第二定时器,在第二定时器超时的情况下,终端在第二个CG上进行第一消息的传输,第一个CG资源和第二个CG资源的HARQ进程可以是相同的,也可以是不同的,本实施不作出任何限制性规定。
本领域技术人员可以理解,使用上述两个步骤中的任意一个即可以完成基于预配置资源的小数据传输过程,上述两个步骤可以拆分成不同的两个实施例。
综上所述,本实施例提供的方法,增加了使用CG资源重传第一消息和停止使用CG资源传输第一消息的方法,充分考虑了使用CG资源过程中保证传输成功和功率消耗之间的平衡关系,进一步丰富了基于预配置资源的小数据传输过程中的第一消息传输的机制。
针对利用网络设备调度重传的DG资源持续传输第一消息的情况;图13示出了本申请一个实施例提供的基于预配置资源的小数据传输方法的流程图。本方法可以由图4所示的终端执行,该方法包括:
步骤310:终端在选择CG-SDT后,在第一定时器的运行期间传输第一消息;
本步骤可以参考图5示出的实施例中的步骤310,在本实施例中不再赘述。
步骤328:在第一定时器的运行期间且没有接收到网络设备的正确接收反馈之前,且在接收到网络设备的动态调度的情况下,停止使用CG资源传输第一消息,以及使用动态调度所调度的DG资源重传第一消息;
DG资源是网络设备调度的动态资源。示例性的,网络设备在第一消息已经被接收但未成功解码的情况下,调度DG资源传输第一消息,DG资源与CG资源通常是不同的,但也不排除是相同的情况;示例性的,相同资源的HARQ进程的ID相同,不同资源的HARQ进程的ID不同。
终端在接收到网络设备的动态调度后,停止使用CG资源传输第一消息,使用动态调度所调度的DG资源重传第一消息。图14示出了本实施例提供的CG-SDT的传输过程的时频资源图。时频资源图中示出了一个CG资源和一个DG资源,终端在接收到网络设备的动态调度的情况下,停止使用CG资源传输第一消息,使用DG资源重传第一消息。
综上所述,本实施例提供的方法,通过在第一定时器的运行期间传输第一消息,完善了基于预配置资源的小数据传输过程中的第一消息传输的机制,通过利用网络设备调度重传的DG资源,在没有接收到网络设备的正确接收反馈的情况下,提供了第一消息传输的方法,进一步保证了在初始传输阶段成功进行第一消息传输。
在本申请中,在第一定时器的运行期间传输第一消息后存在三种实现方式:
实现方式一是终端进入RRC空闲态;图15示出了实现方式一的基于预配置资源的小数据传输方法的流程图。
实现方式二是终端终止当前SDT过程;图16示出了实现方式一的基于预配置资源的小数据传输方法 的流程图。
实现方式三是终端回退到RA-SDT或RACH过程;图18示出了实现方式一的基于预配置资源的小数据传输方法的流程图。
三种实现方式的详细介绍如下:
实现方式一:
步骤342:在第一定时器超时,且没有接收到网络设备的正确接收反馈的情况下,终端进入RRC空闲态;
示例性的,终端进入RRC空闲态即结束SDT流程,正确接收反馈用于指示第一消息已经被接收且成功解码。
实现方式二:
步骤344:在第一定时器的运行期间,若第一消息的传输次数和/或传输时长达到失败条件后,仍然没有接收到网络设备的正确接收反馈,终止当前SDT过程;
终端终止当前STD过程,即认为STD过程没有成功完成。
示例性的,失败条件包括但不限于如下至少一种:
第一消息的传输次数达到次数阈值;
第三定时器超时。
其中,第三定时器用于计时尝试传输第一消息的时长。示例性的,终端在选择CG-STD后,启动第三定时器;第三定时器的定时器时长是网络设备配置的。可选的,第一定时器是低层维护的定时器,比如:第一定时器是MAC层维护的定时器。示例性的,第三定时器用于提高检测第一消息是否成功传输的速度。
图17示出了本实施例提供的CG-SDT的传输过程的时频资源图。时频资源图中示出了三个CG资源,在第三定时器超时和/或第一消息的传输次数达到次数阈值的情况下,终端不在传输第一消息。
可选的,实现方式二还包括:接收第一配置信息,第一配置信息用于配置次数阈值或者第三定时器的时长。其中,第三定时器的定时器时长用于指示第一消息的传输时长的失败条件;第一信息传输次数的次数阈值用于指示第一消息的传输次数的失败条件。
实现方式三:
步骤346:在第一定时器的运行期间,若第一消息的传输次数和/或传输时长达到失败条件后,仍然没有接收到网络设备的正确接收反馈,回退到RA-SDT或RACH过程;
本步骤中关于失败条件的描述可以参考上文中步骤344中的相关内容,在本步骤中不再赘述。
示例性的,终端在满足RA-SDT的执行条件的情况下,回退到RA-SDT;终端在不满足RA-SDT的执行条件的情况下,回退到RACH过程。
其中,RA-SDT的执行条件包括但不限于:
存在RA-STD资源;
和/或,满足执行RA-STD的RSRP门限。
可选的,实现方式三还包括:接收第一配置信息,第一配置信息用于配置次数阈值或者第三定时器的时长。其中,第三定时器的定时器时长用于指示第一消息的传输时长的失败条件;第一信息传输次数的次数阈值用于指示第一消息的传输次数的失败条件。
可选的,请参考图19,本实施例还可以包括如下步骤:
步骤348:使用第二缓冲区存储CCCH SDU;
示例性的,公共控制信道(Common Control Channel,CCCH)业务数据单元(Service Data Units,SDU)为RRC恢复请求消息的CCCH SDU。
终端在从高层获取到RRC恢复请求消息的情况下,将CCCH SDU保存到第二缓冲区。示例性的,终端的NAS层在获取到RRC恢复请求消息的情况下,在第一消息的第一次传输之前,将RRC恢复请求消息的CCCH SDU保存到第二缓冲区。
步骤350:基于CCCH SDU,组建消息3或消息A中的MAC PDU。
组建消息3(Msg 3)或消息A(Msg A)中的MAC PDU时,从第二缓冲区获取CCCH SDU。
示例性的,在回退到四步RA-SDT过程的情况下,基于CCCH SDU,组建消息3中的MAC PDU;在回退到两步RA-SDT过程的情况下,基于CCCH SDU,组建消息A中的MAC PDU。
图20示出了本申请一个实施例提供的基于预配置资源的小数据传输方法的流程图。本方法中终端可以由图4所示的终端执行,网络设备可以由图4所示的网络设备执行,该方法包括:
步骤502:网络设备向终端配置第一定时器的定时器时长;
示例性的,终端在选择CG-SDT后,启动第一定时器;第一定时器的定时器时长是网络设备配置的。 示例性的,第一定时器用于控制STD过程;可选的,第一定时器是RRC层维护的定时器。
配置第一定时器的定时器时长,以便终端在第一定时器的运行期间传输第一消息;
步骤504:终端在选择CG-SDT后,在第一定时器的运行期间传输第一消息;
本步骤可以参考图5示出的实施例中的步骤310,在本实施例中不再赘述。
步骤506:网络设备接收第一消息;
第一消息包含SDT过程中发送的第一条上行消息,第一条上行消息中至少包含RRC消息。
综上所述,本实施例提供的方法,通过添加第一定时器,在第一定时器的运行期间传输第一消息,完善了基于预配置资源的小数据传输过程中的第一消息传输的机制,保证了在初始传输阶段可以进行第一消息传输,为如何进行第一消息传输的问题提供了方法。
图21示出了本申请一个实施例提供的基于预配置资源的小数据传输方法的流程图。本方法中终端可以由图4所示的终端执行,网络设备可以由图4所示的网络设备执行,该方法包括:
步骤502:网络设备向终端配置第一定时器的定时器时长;
本步骤可以参考图20示出的实施例中的步骤502,在本实施例中不再赘述。
步骤504:终端在选择CG-SDT后,在第一定时器的运行期间传输第一消息;
本步骤可以参考图5示出的实施例中的步骤310,在本实施例中不再赘述。
步骤508:网络设备向终端配置第二定时器的定时器时长;
示例性的,终端在CG上完成第一消息传输时,启动第二定时器;第二定时器的定时器时长是网络设备配置的。示例性的,第二定时器为CGRT。
配置第二定时器的定时器时长,以便终端在第二定时器超时或未运行状态的情况下,使用CG资源重传第一消息。
需要说明是,步骤508可以在步骤504的之前、之后或同时执行,在本申请的各个实施例中,对上述两个步骤执行时序的关系不作出任何限制性规定。第一定时器和第二定时器的定时器时长可以是同时配置的,也可以是分别配置的;配置第一定时器和第三定时器的过程可以使用一条信令完成配置,也可以通过不同的多条信令分别完成配置,在本申请的各个实施例中,对第一定时器和第二定时器的定时器时长的配置方法不作出任何限制性规定。
步骤510:在第一定时器的运行期间且没有接收到网络设备的正确接收反馈之前,利用CG资源传输第一消息;
本步骤可以参考图11示出的实施例中的步骤320a,在本实施例中不再赘述。
步骤512:在第二定时器超时或未运行状态的情况下,使用CG资源重传第一消息;
本步骤可以参考图11示出的实施例中的步骤334,在本实施例中不再赘述。
步骤506:网络设备接收第一消息;
本步骤可以参考图20示出的实施例中的步骤506,在本实施例中不再赘述。
综上所述,本实施例提供的方法,增加了使用CG资源重传第一消息的方法,充分考虑了使用CG资源过程中使用CG资源重传以保证传输成功,丰富了基于预配置资源的小数据传输过程中的第一消息传输的机制。
图22示出了本申请一个实施例提供的基于预配置资源的小数据传输方法的流程图。本方法中终端可以由图4所示的终端执行,网络设备可以由图4所示的网络设备执行,该方法包括:
步骤502:网络设备向终端配置第一定时器的定时器时长;
本步骤可以参考图20示出的实施例中的步骤502,在本实施例中不再赘述。
步骤504:终端在选择CG-SDT后,在第一定时器的运行期间传输第一消息;
本步骤可以参考图5示出的实施例中的步骤310,在本实施例中不再赘述。
步骤514:网络设备向终端配置第三定时器的定时器时长和/或第一信息传输次数的次数阈值;
其中,第三定时器用于计时尝试传输第一消息的时长。示例性的,终端在选择CG-STD后,启动第三定时器;第三定时器的定时器时长是网络设备配置的。可选的,第一定时器是低层维护的定时器,比如:第一定时器是MAC层维护的定时器。示例性的,第三定时器用于提高检测第一消息是否成功传输的速度。
第三定时器的定时器时长用于指示所述第一消息的传输时长的失败条件;第一信息传输次数的次数阈值用于指示所述第一消息的传输次数的失败条件。
需要说明是,步骤514可以在步骤504的之前、之后或同时执行,在本申请的各个实施例中,对上述两个步骤执行时序的关系不作出任何限制性规定。
第一定时器的定时器时长、第三定时器的定时器时长和第一信息传输次数的次数阈值可以是同时配置 的,也可以是分别配置的;配置第一定时器的定时器时长、第三定时器的定时器时长和第一信息传输次数的次数阈值的过程可以使用一条信令完成配置,也可以通过不同的多条信令分别完成配置,在本申请的各个实施例中,对第一定时器的定时器时长、第三定时器的定时器时长和第一信息传输次数的次数阈值的配置方法不作出任何限制性规定。
步骤516:在第一定时器的运行期间,若第一消息的传输次数和/或传输时长达到失败条件后,仍然没有接收到网络设备的正确接收反馈,终止当前SDT过程,或回退到RA-SDT或RACH过程;
本步骤可以参考图16示出的实施例中的步骤344,或参考图18示出的实施例中的步骤346,在本实施例中不再赘述。
步骤506:网络设备接收第一消息;
本步骤可以参考图20示出的实施例中的步骤506,在本实施例中不再赘述。
综上所述,本实施例提供的方法,通过添加第一定时器,在第一定时器的运行期间传输第一消息,完善了基于预配置资源的小数据传输过程中的第一消息传输的机制,保证了在初始传输阶段可以进行第一消息传输,为如何进行第一消息传输的问题提供了方法。
本领域普通技术人员可以理解,上述实施例可以独立实施,也可以将上述实施例进行自由组合,组合出新的实施例,本申请对此不加以限制。
下述为本申请装置实施例,可以用于执行本申请方法实施例。对于本申请装置实施例中未披露的细节,请参照本申请方法实施例。
图23示出了本申请一个示例性实施例提供的基于预配置资源的小数据传输装置的框图,该装置包括:
传输模块610,用于在选择CG-SDT后,在第一定时器的运行期间传输第一消息;
其中,所述第一消息包含所述SDT过程中发送的第一条上行消息,所述第一条上行消息中至少包含RRC消息。
在本实施的一个可选设计中,所述传输模块610还用于:
在所述第一定时器的运行期间且没有接收到网络设备的正确接收反馈之前,利用CG资源或所述网络设备调度重传的DG资源传输所述第一消息。
在本实施的一个可选设计中,所述传输模块610还用于:
在所述第一定时器的运行期间且没有接收到网络设备的正确接收反馈的情况下,所述终端不进行第二消息的传输,所述第二消息是所述SDT过程中后续传输阶段的待传输消息。
在本实施的一个可选设计中,所述传输模块610还用于:
在所述第一定时器的运行期间且没有接收到所述网络设备的正确接收反馈之前,利用与第一次传输所述第一消息具有相同HARQ进程的CG资源,传输所述第一消息。
在本实施的一个可选设计中,所述传输模块610,包括:
第一存储单元612,用于在所述第一定时器的运行期间且没有接收到所述网络设备的正确接收反馈之前,生成所述第一消息的MAC PDU存储在第一缓冲区中;
传输单元614,用于基于所述第一缓冲区,利用与第一次传输所述第一消息具有相同或不同HARQ进程的CG资源,传输所述第一消息的MAC PDU。
在本实施的一个可选设计中,所述在利用不同HARQ进程的CG资源,传输所述第一消息的MAC PDU的情况下,所述装置还包括:
第二存储单元616,用于所述终端在任一HARQ进程的CG资源上新传所述第一消息的情况下,将存储在所述第一缓冲区中的所述MAC PDU,存储至所述任一HARQ进程对应的缓冲区中。
在本实施的一个可选设计中,所述MAC PDU是在所述终端选择CG-SDT后,第一次传输所述第一消息时生成的。
在本实施的一个可选设计中,所述传输模块610还用于:
在接收到所述网络设备的正确接收反馈的情况下,停止使用所述CG资源传输所述第一消息;
或,
在第二定时器超时或未运行状态的情况下,使用所述CG资源重传所述第一消息。
在本实施的一个可选设计中,所述第二定时器为CGRT定时器。
在本实施的一个可选设计中,所述传输模块610还用于:
在所述第一定时器的运行期间且没有接收到所述网络设备的正确接收反馈之前,且在接收到所述网络设备的动态调度的情况下,停止使用所述CG资源传输所述第一消息,以及使用所述动态调度所调度的DG资源重传所述第一消息;所述动态调度用于调度重传所述第一消息。
在本实施的一个可选设计中,所述装置还包括:
转换模块620,用于在所述第一定时器超时,且没有接收到网络设备的正确接收反馈的情况下,所述终端进入RRC空闲态。
在本实施的一个可选设计中,所述装置还包括:
终止模块630,用于在所述第一定时器的运行期间,若所述第一消息的传输次数和/或传输时长达到失败条件后,仍然没有接收到网络设备的正确接收反馈,终止当前SDT过程。
在本实施的一个可选设计中,所述装置还包括:
回退模块640,用于在所述第一定时器的运行期间,若所述第一消息的传输次数和/或传输时长达到失败条件后,仍然没有接收到网络设备的正确接收反馈,回退到RA-SDT或RACH过程。
在本实施的一个可选设计中,所述失败条件包括如下至少一种:
所述第一消息的传输次数达到次数阈值;
第三定时器超时;其中,所述第三定时器用于计时尝试传输所述第一消息的时长。
在本实施的一个可选设计中,所述装置还包括:
接收模块650,用于接收第一配置信息,所述第一配置信息用于配置所述次数阈值或者所述第三定时器的时长。
在本实施的一个可选设计中,所述回退到RA-SDT或RACH过程,包括:
在满足RA-SDT的执行条件的情况下,回退到RA-SDT;
在不满足RA-SDT的执行条件的情况下,回退到RACH过程。
在本实施的一个可选设计中,所述RA-SDT的执行条件包括:
存在所述RA-STD资源;
和/或,
满足执行所述RA-STD的RSRP门限。
在本实施的一个可选设计中,所述回退模块640还用于:
使用第二缓冲区存储CCCH SDU,所述CCCH SDU为RRC恢复请求消息的CCCH SDU;
基于所述CCCH SDU,组建消息3或消息A中的MAC PDU。
在本实施的一个可选设计中,所述RRC消息是RRC恢复请求消息。
在本实施的一个可选设计中,所述第一条上行消息还包括:
终端数据;
和/或,
MAC CE。
图24示出了本申请一个示例性实施例提供的基于预配置资源的小数据传输装置的框图,该装置包括:
配置模块710,用于网络设备向终端配置第一定时器的定时器时长;以便所述终端在所述第一定时器的运行期间传输第一消息;
接收模块720,用于接收所述第一消息,所述第一消息包含所述SDT过程中发送的第一条上行消息,所述第一条上行消息中至少包含RRC消息。
在本实施的一个可选设计中,所述配置模块710还用于:
所述网络设备向所述终端配置第二定时器的定时器时长;以便所述终端在所述第二定时器超时或未运行状态的情况下,使用CG资源重传所述第一消息。
在本实施的一个可选设计中,所述配置模块710还用于:
所述网络设备向所述终端配置第三定时器的定时器时长;所述第三定时器的定时器时长用于指示所述第一消息的传输时长的失败条件;
和/或,
所述网络设备向所述终端配置第一信息传输次数的次数阈值;所述第一信息传输次数的次数阈值用于指示所述第一消息的传输次数的失败条件。
需要说明的一点是,上述实施例提供的装置在实现其功能时,仅以上述各个功能模块的划分进行举例说明,实际应用中,可以根据实际需要而将上述功能分配由不同的功能模块完成,即将设备的内容结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
图25示出了本申请一个实施例提供的通信设备的结构示意图。该通信设备可以包括:处理器801、接收器802、发射器803、存储器804和总线805。
处理器801包括一个或者一个以上处理核心,处理器801通过运行软件程序以及模块,从而执行各种功能应用以及信息处理。
接收器802和发射器803可以实现为一个收发器,该收发器可以是一块通信芯片。
存储器804通过总线805与处理器801相连;示例性的,可以将处理器801实现为第一IC芯片,将处理器801和存储器804共同实现为第二IC芯片;第一芯片或第二芯片可以是一种专用集成电路(Application Specific Integrated Circuit,ASIC)芯片。
存储器804可用于存储至少一个计算机程序,处理器801用于执行该至少一个计算机程序,以实现上述方法实施例中的各个步骤。
此外,存储器804可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,易失性或非易失性存储设备包括但不限于:随机存储器(Random-Access Memory,RAM)、只读存储器(Read-Only Memory,ROM)、可擦写可编程只读存储器(Erasable Programmable Read-Only Memory,EPROM)、电可擦写可编程只读存储器(Electrically Erasable Programmable Read-Only Memory,EEPROM)、闪存或其他固态存储其技术、只读光盘(Compact Disc Read-Only Memory,CD-ROM)、高密度数字视频光盘(Digital Video Disc,DVD)或其他光学存储、磁带盒、磁带、磁盘存储或其他磁性存储设备。
本申请实施例还提供了一种计算机可读存储介质,所述存储介质中存储有计算机程序,所述计算机程序用于被多链路设备的处理器执行,以实现上述基于预配置资源的小数据传输方法。
可选地,该计算机可读存储介质可以包括:只读存储器(Read-Only Memory,ROM)、随机存储器(Random-Access Memory,RAM)、固态硬盘(Solid State Drives,SSD)或光盘等。其中,随机存取记忆体可以包括电阻式随机存取记忆体(Resistance Random Access Memory,ReRAM)和动态随机存取存储器(Dynamic Random Access Memory,DRAM)。
本申请实施例还提供了一种芯片,所述芯片包括可编程逻辑电路和/或程序指令,当所述芯片在多链路设备上运行时,用于实现上述基于预配置资源的小数据传输方法。
本申请实施例还提供了一种计算机程序产品或计算机程序,所述计算机程序产品或计算机程序包括计算机指令,所述计算机指令存储在计算机可读存储介质中,多链路设备的处理器从所述计算机可读存储介质读取并执行所述计算机指令,以实现上述基于预配置资源的小数据传输方法。
应理解,在本申请的实施例中提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。
在本申请实施例的描述中,术语“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。
在本文中提及的“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
另外,本文中描述的步骤编号,仅示例性示出了步骤间的一种可能的执行先后顺序,在一些其它实施例中,上述步骤也可以不按照编号顺序来执行,如两个不同编号的步骤同时执行,或者两个不同编号的步骤按照与图示相反的顺序执行,本申请实施例对此不作限定。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本申请实施例所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
以上所述仅为本申请的示例性实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (50)

  1. 一种基于预配置资源的小数据传输方法,其特征在于,所述方法包括:
    终端在选择配置授权小数据传输CG-SDT后,在第一定时器的运行期间传输第一消息;
    其中,所述第一消息包含所述SDT过程中发送的第一条上行消息,所述第一条上行消息中至少包含无线资源控制RRC消息。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    在所述第一定时器的运行期间且没有接收到网络设备的正确接收反馈之前,利用CG资源或所述网络设备调度重传的动态调度DG资源传输所述第一消息。
  3. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    在所述第一定时器的运行期间且没有接收到网络设备的正确接收反馈的情况下,所述终端不进行第二消息的传输,所述第二消息是所述SDT过程中后续传输阶段的待传输消息。
  4. 根据权利要求2所述的方法,其特征在于,所述在所述第一定时器的运行期间且没有接收到网络设备的正确接收反馈之前,利用CG资源传输所述第一消息,包括:
    在所述第一定时器的运行期间且没有接收到所述网络设备的正确接收反馈之前,利用与第一次传输所述第一消息具有相同混合自动重传请求HARQ进程的CG资源,传输所述第一消息。
  5. 根据权利要求2所述的方法,其特征在于,所述在所述第一定时器的运行期间且没有接收到网络设备的正确接收反馈之前,利用CG资源传输所述第一消息,包括:
    在所述第一定时器的运行期间且没有接收到所述网络设备的正确接收反馈之前,生成所述第一消息的媒体接入控制协议数据单元MACPDU存储在第一缓冲区中;
    基于所述第一缓冲区,利用与第一次传输所述第一消息具有相同或不同HARQ进程的CG资源,传输所述第一消息的MACPDU。
  6. 根据权利要求5所述的方法,其特征在于,所述在利用不同HARQ进程的CG资源,传输所述第一消息的MACPDU的情况下,所述方法还包括:
    所述终端在任一HARQ进程的CG资源上新传所述第一消息的情况下,将存储在所述第一缓冲区中的所述MAC PDU,存储至所述任一HARQ进程对应的缓冲区中。
  7. 根据权利要求5所述的方法,其特征在于,所述MACPDU是在所述终端选择CG-SDT后,第一次传输所述第一消息时生成的。
  8. 根据权利要求2至7任一所述的方法,其特征在于,所述方法还包括:
    在接收到所述网络设备的正确接收反馈的情况下,停止使用所述CG资源传输所述第一消息;
    或,
    在第二定时器超时或未运行状态的情况下,使用所述CG资源重传所述第一消息。
  9. 根据权利要求8所述的方法,其特征在于,所述第二定时器为配置授权重传定时器CGRT。
  10. 根据权利要求2所述的方法,其特征在于,所述在所述第一定时器的运行期间且没有接收到网络设备的正确接收反馈之前,利用所述网络设备调度重传的DG资源传输所述第一消息,包括:
    在所述第一定时器的运行期间且没有接收到所述网络设备的正确接收反馈之前,且在接收到所述网络设备的动态调度的情况下,停止使用所述CG资源传输所述第一消息,以及使用所述动态调度所调度的DG资源重传所述第一消息;所述动态调度用于调度重传所述第一消息。
  11. 根据权利要求1至10任一所述的方法,其特征在于,所述方法还包括:
    在所述第一定时器超时,且没有接收到网络设备的正确接收反馈的情况下,所述终端进入RRC空闲态。
  12. 根据权利要求1至10任一所述的方法,其特征在于,所述方法还包括:
    在所述第一定时器的运行期间,若所述第一消息的传输次数和/或传输时长达到失败条件后,仍然没有接收到网络设备的正确接收反馈,终止当前SDT过程。
  13. 根据权利要求1至10任一所述的方法,其特征在于,所述方法还包括:
    在所述第一定时器的运行期间,若所述第一消息的传输次数和/或传输时长达到失败条件后,仍然没有接收到网络设备的正确接收反馈,回退到随机接入小数据传输RA-SDT或随机接入信道RACH过程。
  14. 根据权利要求12或13所述的方法,其特征在于,所述失败条件包括如下至少一种:
    所述第一消息的传输次数达到次数阈值;
    第三定时器超时;其中,所述第三定时器用于计时尝试传输所述第一消息的时长。
  15. 根据权利要求14所述的方法,其特征在于,所述方法还包括:
    接收第一配置信息,所述第一配置信息用于配置所述次数阈值或者所述第三定时器的时长。
  16. 根据权利要求13所述的方法,其特征在于,所述回退到RA-SDT或RACH过程,包括:
    在满足RA-SDT的执行条件的情况下,回退到RA-SDT;
    在不满足RA-SDT的执行条件的情况下,回退到RACH过程。
  17. 根据权利要求16所述的方法,其特征在于,所述RA-SDT的执行条件包括:
    存在所述RA-SDT资源;
    和/或,
    满足执行所述RA-SDT的参考信号接收功率RSRP门限。
  18. 根据权利要求13所述的方法,其特征在于,所述方法还包括:
    使用第二缓冲区存储公共控制信道业务数据单元CCCHSDU,所述CCCH SDU为RRC恢复请求消息的CCCH SDU;
    基于所述CCCHSDU,组建消息3或消息A中的MACPDU。
  19. 根据权利要求1至18任一所述的方法,其特征在于,所述RRC消息是RRC恢复请求消息。
  20. 根据权利要求1至18任一所述的方法,其特征在于,所述第一条上行消息还包括:
    终端数据;
    和/或,
    媒体接入层控制单元MAC CE。
  21. 一种基于预配置资源的小数据传输方法,其特征在于,所述方法包括:
    网络设备向终端配置第一定时器的定时器时长;以便所述终端在所述第一定时器的运行期间传输第一消息;
    所述网络设备接收所述第一消息,所述第一消息包含所述SDT过程中发送的第一条上行消息,所述第一条上行消息中至少包含RRC消息。
  22. 根据权利要求21所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述终端配置第二定时器的定时器时长;以便所述终端在所述第二定时器超时或未运行状态的情况下,使用CG资源重传所述第一消息。
  23. 根据权利要求21所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述终端配置第三定时器的定时器时长;所述第三定时器的定时器时长用于指示所述第一消息的传输时长的失败条件;
    和/或,
    所述网络设备向所述终端配置第一信息传输次数的次数阈值;所述第一信息传输次数的次数阈值用于指示所述第一消息的传输次数的失败条件。
  24. 一种基于预配置资源的小数据传输装置,其特征在于,所述装置包括:
    传输模块,用于在选择CG-SDT后,在第一定时器的运行期间传输第一消息;
    其中,所述第一消息包含所述SDT过程中发送的第一条上行消息,所述第一条上行消息中至少包含RRC消息。
  25. 根据权利要求24所述的装置,其特征在于,所述传输模块还用于:
    在所述第一定时器的运行期间且没有接收到网络设备的正确接收反馈之前,利用CG资源或所述网络设备调度重传的DG资源传输所述第一消息。
  26. 根据权利要求24所述的装置,其特征在于,所述传输模块还用于:
    在所述第一定时器的运行期间且没有接收到网络设备的正确接收反馈的情况下,所述终端不进行第二消息的传输,所述第二消息是所述SDT过程中后续传输阶段的待传输消息。
  27. 根据权利要求25所述的装置,其特征在于,所述传输模块还用于:
    在所述第一定时器的运行期间且没有接收到所述网络设备的正确接收反馈之前,利用与第一次传输所述第一消息具有相同HARQ进程的CG资源,传输所述第一消息。
  28. 根据权利要求25所述的装置,其特征在于,所述传输模块,包括:
    第一存储单元,用于在所述第一定时器的运行期间且没有接收到所述网络设备的正确接收反馈之前,生成所述第一消息的MAC PDU存储在第一缓冲区中;
    传输单元,用于基于所述第一缓冲区,利用与第一次传输所述第一消息具有相同或不同HARQ进程的CG资源,传输所述第一消息的MAC PDU。
  29. 根据权利要求28所述的装置,其特征在于,所述在利用不同HARQ进程的CG资源,传输所述第一消息的MAC PDU的情况下,所述装置还包括:
    第二存储单元,用于所述终端在任一HARQ进程的CG资源上新传所述第一消息的情况下,将存储在所述第一缓冲区中的所述MAC PDU,存储至所述任一HARQ进程对应的缓冲区中。
  30. 根据权利要求28所述的装置,其特征在于,所述MAC PDU是在所述终端选择CG-SDT后,第一次传输所述第一消息时生成的。
  31. 根据权利要求25至30任一所述的装置,其特征在于,所述传输模块还用于:
    在接收到所述网络设备的正确接收反馈的情况下,停止使用所述CG资源传输所述第一消息;
    或,
    在第二定时器超时或未运行状态的情况下,使用所述CG资源重传所述第一消息。
  32. 根据权利要求31所述的装置,其特征在于,所述第二定时器为CGRT定时器。
  33. 根据权利要求25所述的装置,其特征在于,所述传输模块还用于:
    在所述第一定时器的运行期间且没有接收到所述网络设备的正确接收反馈之前,且在接收到所述网络设备的动态调度的情况下,停止使用所述CG资源传输所述第一消息,以及使用所述动态调度所调度的DG资源重传所述第一消息;所述动态调度用于调度重传所述第一消息。
  34. 根据权利要求24至33任一所述的装置,其特征在于,所述装置还包括:
    转换模块,用于在所述第一定时器超时,且没有接收到网络设备的正确接收反馈的情况下,所述终端进入RRC空闲态。
  35. 根据权利要求24至33任一所述的装置,其特征在于,所述装置还包括:
    终止模块,用于在所述第一定时器的运行期间,若所述第一消息的传输次数和/或传输时长达到失败条件后,仍然没有接收到网络设备的正确接收反馈,终止当前SDT过程。
  36. 根据权利要求24至33任一所述的装置,其特征在于,所述装置还包括:
    回退模块,用于在所述第一定时器的运行期间,若所述第一消息的传输次数和/或传输时长达到失败条 件后,仍然没有接收到网络设备的正确接收反馈,回退到RA-SDT或RACH过程。
  37. 根据权利要求35或36所述的装置,其特征在于,所述失败条件包括如下至少一种:
    所述第一消息的传输次数达到次数阈值;
    第三定时器超时;其中,所述第三定时器用于计时尝试传输所述第一消息的时长。
  38. 根据权利要求37所述的装置,其特征在于,所述装置还包括:
    接收模块,用于接收第一配置信息,所述第一配置信息用于配置所述次数阈值或者所述第三定时器的时长。
  39. 根据权利要求36所述的装置,其特征在于,所述回退到RA-SDT或RACH过程,包括:
    在满足RA-SDT的执行条件的情况下,回退到RA-SDT;
    在不满足RA-SDT的执行条件的情况下,回退到RACH过程。
  40. 根据权利要求39所述的装置,其特征在于,所述RA-SDT的执行条件包括:
    存在所述RA-STD资源;
    和/或,
    满足执行所述RA-STD的RSRP门限。
  41. 根据权利要求36所述的装置,其特征在于,所述回退模块还用于:
    使用第二缓冲区存储CCCH SDU,所述CCCH SDU为RRC恢复请求消息的CCCH SDU;
    基于所述CCCH SDU,组建消息3或消息A中的MAC PDU。
  42. 根据权利要求24至41任一所述的装置,其特征在于,所述RRC消息是RRC恢复请求消息。
  43. 根据权利要求24至41任一所述的装置,其特征在于,所述第一条上行消息还包括:
    终端数据;
    和/或,
    MAC CE。
  44. 一种基于预配置资源的小数据传输装置,其特征在于,所述装置包括:
    配置模块,用于网络设备向终端配置第一定时器的定时器时长;以便所述终端在所述第一定时器的运行期间传输第一消息;
    接收模块,用于接收所述第一消息,所述第一消息包含所述SDT过程中发送的第一条上行消息,所述第一条上行消息中至少包含RRC消息。
  45. 根据权利要求44所述的装置,其特征在于,所述配置模块还用于:
    所述网络设备向所述终端配置第二定时器的定时器时长;以便所述终端在所述第二定时器超时或未运行状态的情况下,使用CG资源重传所述第一消息。
  46. 根据权利要求44所述的装置,其特征在于,所述配置模块还用于:
    所述网络设备向所述终端配置第三定时器的定时器时长;所述第三定时器的定时器时长用于指示所述第一消息的传输时长的失败条件;
    和/或,
    所述网络设备向所述终端配置第一信息传输次数的次数阈值;所述第一信息传输次数的次数阈值用于指示所述第一消息的传输次数的失败条件。
  47. 一种通信设备,其特征在于,所述通信设备包括处理器和存储器,所述存储器中有至少一段程序;所述处理器,用于执行所述存储器上中的所述至少一段程序以实现上述权利要求1至23任一项所述的基于预配置资源的小数据传输方法。
  48. 一种计算机可读存储介质,其特征在于,所述存储介质中存储有计算机程序,所述计算机程序用于被处理器执行,以实现上述权利要求1至23任一项所述的基于预配置资源的小数据传输方法。
  49. 一种芯片,其特征在于,所述芯片包括可编程逻辑电路和/或程序指令,当所述芯片运行时,用于实现权利要求1至23任一项所述的基于预配置资源的小数据传输方法。
  50. 一种计算机程序产品或计算机程序,其特征在于,所述计算机程序产品或计算机程序包括计算机指令,所述计算机指令存储在计算机可读存储介质中,处理器从所述计算机可读存储介质读取并执行所述计算机指令,以实现上述权利要求1至23任一项所述的基于预配置资源的小数据传输方法。
PCT/CN2021/125758 2021-10-22 2021-10-22 基于预配置资源的小数据传输方法、装置、设备及介质 WO2023065316A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/125758 WO2023065316A1 (zh) 2021-10-22 2021-10-22 基于预配置资源的小数据传输方法、装置、设备及介质
CN202180100548.1A CN117716757A (zh) 2021-10-22 2021-10-22 基于预配置资源的小数据传输方法、装置、设备及介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/125758 WO2023065316A1 (zh) 2021-10-22 2021-10-22 基于预配置资源的小数据传输方法、装置、设备及介质

Publications (1)

Publication Number Publication Date
WO2023065316A1 true WO2023065316A1 (zh) 2023-04-27

Family

ID=86058743

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/125758 WO2023065316A1 (zh) 2021-10-22 2021-10-22 基于预配置资源的小数据传输方法、装置、设备及介质

Country Status (2)

Country Link
CN (1) CN117716757A (zh)
WO (1) WO2023065316A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021207467A1 (en) * 2020-04-08 2021-10-14 Idac Holdings, Inc. Methods and apparatus for downlink small data reception
WO2021207317A1 (en) * 2020-04-08 2021-10-14 Idac Holdings, Inc. Methods, apparatus and systems for uplink transmission of small data
CN113518453A (zh) * 2020-04-10 2021-10-19 夏普株式会社 数据传输方法以及用户设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021207467A1 (en) * 2020-04-08 2021-10-14 Idac Holdings, Inc. Methods and apparatus for downlink small data reception
WO2021207317A1 (en) * 2020-04-08 2021-10-14 Idac Holdings, Inc. Methods, apparatus and systems for uplink transmission of small data
CN113518453A (zh) * 2020-04-10 2021-10-19 夏普株式会社 数据传输方法以及用户设备

Also Published As

Publication number Publication date
CN117716757A (zh) 2024-03-15

Similar Documents

Publication Publication Date Title
US20210168814A1 (en) Method and apparatus for resource configuration for sidelink in internet of vehicles
TWI680689B (zh) 資料提前傳送方法及使用者設備
EP3549384B1 (en) Communications device, infrastructure equipment and methods
CN107360562B (zh) 处理无线资源控制状态改变的装置及方法
CN109587769B (zh) 一种数据传输方法及装置、搜索空间优化方法及装置
WO2021169775A1 (zh) 数据传输方法与设备
WO2013120458A1 (zh) 数据传输方法、基站及用户设备
WO2012136101A1 (zh) 一种混合自动重传的处理方法、系统及装置
WO2013166670A1 (zh) 上行信道资源配置方法和设备
US11617209B2 (en) Timer control in early data transmission
WO2022067549A1 (zh) 无线通信的方法和设备
CN111147202A (zh) 一种车联网的数据传输方法、发送终端和网络侧设备
WO2019062582A1 (zh) 一种信息获取方法及终端
CN107484258B (zh) 处理与基站的通信的装置及方法
WO2021253431A1 (zh) 物理下行控制信道pdcch的监听方法及装置
US20230284231A1 (en) Data transmission method and apparatus, communication device, and storage medium
WO2023065303A1 (zh) 一种控制方法、设备及存储介质
WO2023115299A1 (zh) 上行资源选择方法、装置、设备及存储介质
WO2023065316A1 (zh) 基于预配置资源的小数据传输方法、装置、设备及介质
WO2022178813A1 (zh) 一种侧行链路通信方法及装置
JP2023536002A (ja) データ送信のための方法および装置
CN116941323A (zh) 边链路非连续接收命令的触发方法、装置和系统
WO2023133760A1 (zh) 小数据传输过程中的上行重传方法、装置、设备及介质
WO2023108420A1 (zh) 定时提前的有效性的确定方法、装置、设备及存储介质
CN113382379B (zh) 无线通信方法和通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21961064

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180100548.1

Country of ref document: CN